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Abstract 

Current EEG research has enriched our literature and societies with 

many prospects for fruitful applications. This sophisticated yet simple 

device allows monitoring of the human brain in various states for 

clinical applications and cognitive science studies. It can accurately 

identify the distinct sleep stages or the depth of anaesthesia and 

identifies seizures and other neurological disorders to diagnose 

neurodegenerative diseases and track their progression. Other 

methods reveal robust EEG correlations with cognitive processes 

associated with working memory, mental calculations, and selective 

attention. EEG is essential in measuring coma depth or determining 

cerebral death. It is also used in neurofeedback rehabilitation and 

psychopharmacology studies, perception, awareness, language 

production and comprehension, structure vs function in the brain, 

spatial navigation, alertness monitoring, depression, and mental state 

studies. 

Since its first inception by Hans Berger almost a century ago, EEG 

has carried a massive burden in its core ideology, an irony to question 

telepathy, the dichotomy of whether it is actual or not, or to study 

higher brain abilities, mind genesis, cognition, and consciousness. Or 

as in the concept of (BCI), an acronym for Brain Computer Interface, 

that has fascinated researchers all around the world, to have the ability 

to read, interpret and control thoughts or control machines through 

thoughts instinctively and intuitively, restoring abilities, skills and 

control for people with disabilities who lost motor functions, 

providing alternative new means and tools for those with severe 

neuromuscular disorders, paraplegia, amyotrophic lateral sclerosis 

(ALS), locked-in syndrome (LIS), cerebral palsy, amputation, or 

trauma. More benefits would also be harnessed for non-medical 

applications in gaming, polygraphy, and personal identification. 
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BCI research is one of the most interdisciplinary and 

multidisciplinary subjects in contemporary neuroscience and 

engineering. It falls at the intersection of many fields as it combines 

mathematics, biology, physics, physiology and psychology, medicine, 

information technology, computer science, biomaterials, and the 

mainstream engineering disciplines of electrical, mechanical, and 

electronic engineering, in addition to biochemistry, signal processing, 

machine learning, statistics, control theory and more. 

EEG is the most prominent candidate to realize BCI Sensorimotor 

Imagery (MI) Systems due to the non-invasive nature of data 

acquisition, low cost of fabrication, and a high degree of mobility and 

portability, which makes it the preferred module among researchers 

rather than the bulky and expensive functional Magnetic Resonance 

Imaging (fMRI) and Magnetoencephalography (MEG). Aiming to 

replace, restore, enhance, or improve the natural Central Nervous 

System (CNS) output to foster healthcare service and improve life 

quality. Different signal analysis methods, feature extraction, 

dimension reduction, and classification have been proposed. Our goal 

of having a plug-and-play system driven and enabled by oscillatory 

brain waves and rhythms is still in its early stages of research and 

exploration. 

Aims and motive 

This thesis aims to emphasize the role of EEG in clinical diagnosis, 

neurorehabilitation, cognitive sciences, psychopharmacology and 

sleep research, perception, awareness, attention and memory, 

language production, spatial navigation, alertness monitoring, and 

BCIs. EEG is typically used to diagnose or monitor conditions such 

as epilepsy, sleep disorders, and brain damage. The patterns and 

frequencies of the brain waves recorded by the EEG can provide 

insight into the functioning of the brain and its responses to various 

stimuli. 
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EEG-based BCI refers to a technology that interfaces with the human 

brain to translate electrical activity generated by neurons into 

commands that control a computer or a variety of other devices and 

assistive technologies, exoskeletons and robotic devices. The central 

goal of BCI research and development is for people severely disabled 

by neuromuscular disorders such as (ALS), stroke, spinal cord injury 

(SPI), cerebral palsy, multiple sclerosis, and muscular dystrophy. BCI 

systems would allow individuals with physical disabilities or locked-

in syndrome to interact with the world using their brain activity, 

bypassing their physical limitations, and improving their quality of 

life, subsequently enabling them to live enjoyable and productive 

lives if provided with effective assistive technology.  

Several challenges come with using and designing EEG-based BCI 

systems, including low signal-to-noise ratio (SNR), variability in 

brain signals, and the need for calibration and parameterization, in 

addition to the complexity of processing and interpreting neural 

signals. However, with improvements in signal processing and 

machine learning algorithms, EEG-based BCI systems are becoming 

more reliable and accurate. However, the rapid increase in BCI 

research has exposed an underappreciated problem: BCI Illiteracy. 

This problem remains unresolved across all major BCI approaches 

(P300, SSVEP, and ERD/ERS). 

This work explores machine-learning methods for multi-class EEG 

Motor Imagery (MI) signal classification and comments on using 

EEG as a medium to construct BCIs and praises this selection, and 

addresses current challenges. Our results propose that Convolutional 

Neural Networks (CNNs) designs and Deep Learning (DL) 

algorithms are fit for implementing feature extraction and 

classification. Using fewer channels and feature vectors would also 

reduce the computational complexity and increase the classifier 

models' speed and accuracy. 
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The EEG 

The EEG is a dynamic non-invasive, relatively inexpensive technique 

used to monitor the state of the brain. Despite the tremendous 

progress in structural and functional brain imaging over the last 

decades, scalp EEG has remained an indispensable diagnostic tool for 

studying physiologic and pathologic cerebral activity. An EEG is 

simply a record of the brain's electrical activities, recorded as a set of 

surface potentials by placing electrodes on the scalp [1] [8] [9]. 

Electrical recordings from the head's outer surface demonstrate 

continuous electrical activities within various underlying cortex 

regions. Both the intensities and patterns of these electrical activities 

are significantly determined by the overall levels of regional 

Inhibitory and excitatory postsynaptic oscillatory potentials, in other 

words, changes in the brain's electrical fields [7] [8] [9]. 

 

Figure 1: Cortical surface regions where alpha rhythms were recorded in a 

large population of epilepsy surgery patients arc indicated by wavy lines. 
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Dotted region near the central motor strip indicates beta activity. From 

Nunez adapted from Jasper and Penfield (1949) [8]. 

Neuroscientists have always longed for a method with a sufficient 

spatial and temporal resolution to monitor the ever-changing patterns 

of brain activity. The definition of "sufficient" in this context is a 

complex issue, and to acquire precisely a brain activity without 

seriously interfering with it while compromising between spatial and 

temporal resolution, is indeed a dilemma [15]. The desired temporal 

resolution is the concordance of the wave with the speed of neurons, 

that is, on the millisecond scale. The desired spatial resolution, which 

means better localization of the source of any specific signal, depends 

on the goal of the investigation and expands from the global scale of 

the brain down to the spines of individual neurons. No current method 

can continuously zoom from the decimeter to the micrometer scale, 

which is why several approaches are being used, often in combination 

[15]. 

EEG activity is a non-stationary, non-linear, non-deterministic, non-

Gaussian, stochastic, and chaotic process. EEG signals have a high 

temporal resolution, poor spatial resolution, and discriminative 

spectral features. Data acquisition is affected by the skin-electrode 

interface, electrode material, configuration, and reference, in addition 

to motion artifacts like EMG, EOG, ECG, swallowing, breathing, 

power line interference, cross talk, volume conduction, posture, 

mental state and mood of the subject and else more of intrinsic and 

extrinsic sources of artifacts [10] [15]. 

These characteristics of scalp EEG depend not only on the nature and 

location of the current sources but also on the electrical and 

geometrical properties of the brain, skull, and scalp. The connection 

between surface and depth events is thus intimately dependent on the 

physics of electric field behaviour in biological tissue. Physical 

principles directly apply to neural tissue; we only need to interpret 

variables and consider tissue properties to provide a good picture of 
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head volume conduction and how it relates to broader issues 

concerning EEG, brain dynamics, cell assemblies, cognition, motor 

and behaviour [10] [15]  

 

Figure 2: The human brain. (b) Section of cerebral cortex showing 

microcurrent sources due to synaptic and action potentials. (c) Each scalp 

EEG electrode records space averages over many square centimeters of 

cortical sources. A four-second epoch of alpha rhythm and its 

corresponding power amplitude 

As mentioned, an EEG can be recorded as a set of surface potentials 

by placing electrodes on the scalp. In a recording application, the 

electrode couples galvanically to capture the local field potential. The 



8 

 

dimensions, geometry, and composition are paramount to design 

requirements. Signal degradation due to inferior electrode design or 

placement is unlikely to be ameliorated by design improvements in 

blocks further down the signal chain, thus avoiding garbage-in 

garbage-out (GIGO) scenarios that give inaccurate data or unreliable 

results. Both conductive-gel and sponge-saline electrode systems 

(wet electrodes) are used. The sponge-saline electrodes are easier to 

apply but have limited recording time (about an hour) because 

impedances rise as the sponges dry. Dry electrodes technology is also 

now available. The electrodes themselves are usually metallic and 

made from tin (Sn), silver/silver chloride (Ag/AgCl), gold (Au), or 

platinum (Pt) [9] [10] [11]. 

Any voltage measurement requires both a recording electrode and a 

reference electrode. EEG practitioners have long been perplexed 

about finding a proper reference electrode for EEG recordings. 

Reference recordings involve choosing some fixed location, typically 

an ear, mastoid, or neck site, and recording all potentials with respect 

to this static site. The number of electrodes applied varies between 8 

to 256. Increasing the number of recording sites is valid only up to a 

limit because scalp electrodes placed too close together will sense the 

same electrical fields without further enhancing spatial resolution. 

The monitored signals range between 0 and 300 µV, and their 

frequencies range from 0.5 to approximately 50 Hz. The 

characteristics of the recorded waves, and the EEG patterns, are (after 

subtraction of artifacts) highly dependent on the degree of activities 

within the cerebral cortex. The features of these waves change 

markedly between states of wakefulness, sleep, and coma [9]. Even 

in a healthy individual, EEG patterns are often irregular, but distinct 

patterns do appear under certain conditions [9] [10] [11]. 
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Figure 3: Survey of EEG applications. adapted from Nunez [8]. 

Brain Computer Interfaces (BCIs) 

A BCI system measures CNS activity and converts it into artificial 

output that replaces, restores, enhances, supplements, or improves 

natural CNS output [10]. BCIs have emerged as a novel technology 

that connects and bridges the brain with external devices. They have 

been developed to decode human intention, leading to direct brain 

control of a computer or device without going through the natural 

neuromuscular pathway [21]. The central goal of BCI research and 

development is for people severely disabled by neuromuscular 

disorders such as ALS, stroke, SCI, cerebral palsy, multiple sclerosis, 

and muscular dystrophies to live enjoyable and productive lives 

provided with effective assistive technology [9] [10]. 

In the 1970s, Jacques Vidal developed a system that used the scalp-

recorded visual evoked potential (VEP) to determine the eye gaze 
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direction (i.e., the visual fixation point) in humans and thus to 

determine the direction in which a person wanted to move a computer 

cursor. At that time, Vidal coined the term brain-computer interface. 

The pace and breadth of BCI research began to increase rapidly in the 

mid-1990s, and this growth has continued almost exponentially into 

the present. In BCIs that measure EEG Sensorimotor Rhythms 

(SMR), the user typically employs mental imagery to modulate SMR 

to produce the BCI output [12] [13] [14] 

In 1988, Farwell and Donchin proposed the successful BCI paradigm 

known as the "P300 speller", based on event-related potentials (ERP) 

in response to a specific event or stimulus. Wolpaw and his colleagues 

developed a BCI for 1D cursor control based on operant conditioning 

in 1991 [10] [13]. Gert Pfurtscheller and his team were developing 

another BCI-based SMR, in which users had to explicitly imagine left 

or right-hand movements that were translated into a command for the 

computer by using machine learning; this defined the motor imagery 

(MI)–based BCIs. Niels Birbaumer and his colleagues worked on a 

third type of BCI paradigm based on slow cortical potential (SCP). 

Yet, Brendan Allison and others have lately rejected this type owing 

to generally inferior performances [17] [19] [20] [22]. 

In general, BCI systems can be categorized as either [(invasive vs 

non-invasive) (endogenous vs exogenous) (or synchronous vs 

asynchronous) (active, reactive, or passive) (evoked vs spontaneous) 

and hybrid] depending on the recording method, brain signal pattern, 

stimulus modality, mode and strategy of operation. Considering the 

user's attention, efforts, cognitive/mental state, and engagement [10] 

[13] [21]. 

However, the translation of intent into action depends on the 

expression of the intention in the form of measurable signals. Each 

signal acquisition method is associated with an inherent spatial and 

temporal resolution. EEG is the most prevalent, popular and 
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promising signal acquisition method for BCIs; even though it has a 

low spatial resolution, it has excellent temporal resolution and zero 

clinical risk, increased mobility and portability, and is low-cost and 

feasible to manufacture. 

P300-based BCIs are the only BCIs in daily use by severely disabled 

people in their homes. The P300 speller uses EEG to detect and 

analyze the P300 wave, a signal in the brain associated with cognitive 

processing, selective attention, and decision-making in the brain, 

particularly the recognition of essential stimuli, such as a target 

among distractors. When using the P300 speller, the user is presented 

with a matrix of letters or symbols on a computer screen and 

instructed to focus on the desired letter or symbol as it flashes in a 

random sequence. As the brain responds to the target stimulus, the 

P300 wave is detected by the EEG and translated into a selection on 

the computer screen [10] [16].  

The P300 speller has effectively enabled communication and 

improved the quality of life for individuals with severe motor 

impairments. However, it requires significant concentration and 

training to use effectively and may only be suitable for some as it may 

accompany Uncomfortable fatigue and workload. Advances in BCI 

technology continue to improve the accuracy and ease of use of the 

P300 speller and other BCIs, offering hope for improved 

communication options for individuals with disabilities. The P300 

speller technology has demonstrated high accuracy rates, with users 

able to type at speeds of up to 10 characters per minute. It has been 

mainly used for communication but has potential in virtual gaming 

and neuro-rehabilitation applications. The P300 speller was first 

developed in the 1980s and has undergone significant refinement and 

optimization, resulting in various system versions. The technology is 

being continuously developed and improved, with ongoing research 

focused on enhancing its usability, reliability, and accessibility for 

individuals with diverse needs and abilities [13] [21]. 
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ERD/ERS is a time-locked ERP associated with sensory stimulation 

or mental imagery tasks. Task-related modulation in SMR usually 

manifests as an amplitude decrease in the low-frequency components 

(alpha/beta band), also known as event-related desynchronization 

(ERD), a reduction of oscillatory activity. In contrast, an amplitude 

increase in mu and gamma frequency bands is known as event-related 

synchronization (ERS) that occurs before movement onset. Such 

characteristic changes in EEG rhythms can be used to classify brain 

states relating to the planning/imagining of different types of limb 

movement. This is the basis of neural control in BCIs [22]. 

An increased widespread ERD could result from the involvement of 

a more extensive neural network in information processing. Due, for 

example, to increased task complexity or the need for more effort and 

attention. Moreover, with training, people can learn to increase and 

decrease SMR amplitude. However, a substantial training period is 

typically required for users to develop the skill to maintain and 

manipulate various mental states to enable control. This can be pretty 

demanding for users, especially disabled users [9] [10]. 

Datasets 

Three different data sets were used in our method's evaluation 

process, the Physionet EEG Motor Movement/ MI Dataset, which the 

developers of the BCI2000 system recorded. It has a 64-electrode 

EEG setup, sampled at 160 Hz. The data contains recordings of motor 

execution, as well as MI tasks. There are recordings from 109 

different subjects performing two different MI tasks (left/right fist or 

both fists/feet) in two-minute runs of each MI of the two tasks. One 

trial consists of 2 s rest, 4 s of cued MI, and again 2 s of rest before 

the next trial starts. 

The BCI Competition IV-2a dataset is also publicly available. It 

contains recordings from nine subjects who performed four motor 
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imagery tasks (Left Hand, Right Hand, Both Feet and Tongue). The 

data collection is divided into short runs, each containing 48 trials of 

each motor imagery activity. The data was collected in two sessions 

in two days, comprising six runs per session with a short break 

between them. So, the data contains 288 trials of each motor imagery 

activity. The EEG data were recorded with 22 Ag/AgCl electrodes 

arranged in a standard 10-20 system, sampled at 250 Hz and band 

pass-filtered between 0.5 And 100 Hz. The amplifier sensitivity was 

set to 100 microvolts. An additional 50 Hz notch filter was enabled to 

suppress line noise. In addition, three mono-polar Electrooculography 

(EOG) channels were recorded and sampled at 250 Hz. 

The third dataset used in this research is the MTA-TTK dataset from 

the Hungarian Academy of Sciences, which belongs to Peter Pazmany 

Catholic University. It contains 25 recording subjects, 63 EEG sensor 

channels, and a 500 Hz sampling frequency. Five classes were 

considered: rest, imagined movements of the left hand, right hand, 

left leg, and right leg. No filtering was applied to the original raw 

signals; however, a 0.5-Hz low-pass filter removes the DC component 

from the signal and enhances its accuracy. 

 

Figure 4: TTK dataset - raw data 
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Figure 5: TTK dataset - Filtered data 

Methods 

A BCI translation algorithm uses features extracted from brain signals 

to produce device commands that convey the user's intent. The core 

component of an effective translation algorithm is an appropriate 

model. A model is a mathematical abstraction of the relationship 

between independent variables (i.e., brain signal features) and 

dependent variables (i.e., the user's intent as expressed by the BCI 

outputs). The two other components of a translation algorithm are the 

method for selecting the features used by the model and determining 

the model's parameters and weights. The primary goal in developing 

a translation algorithm is to maximize its ability to generalize to new 

data since BCIs must operate online in real time [10]. 

Classification algorithms depend on the label output type, whether 

learning is supervised or unsupervised, and whether the algorithm is 

statistical or non-statistical. Statistical algorithms can be further 

categorized as generative or discriminative. The algorithms in 

supervised classification procedures predicting categorical labels are 

Linear discriminant analysis (LDA), Support vector machine (SVM), 
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Decision trees, Naive Bayes classifier, Logistic regression, K-nearest-

neighbor (kNN) algorithms, Kernel estimation, Neural networks 

(NN), Linear regression, Gaussian process regression, Kalman filters 

and more [11]. 

Unsupervised classification attempts to find inherent patterns for 

unlabeled data that can then be used to determine the correct output 

value for new data instances. Some standard algorithms of 

unsupervised machine learning classification are K-means clustering, 

Hierarchical clustering, Principal Component Analysis (PCA), 

Kernel Principal Component Analysis (Kernel PCA), Hidden Markov 

Models, Independent Component Analysis (ICA), Categorical 

mixture model, etc. Semi-supervised learning combines the two 

classification procedures [12] [16]. 

PCA is a well-established method for feature extraction and 

dimensionality reduction in which the dimensional data is represented 

in a lower-dimensional space. Such a representation would reduce the 

degrees of freedom and the space and time complexities. ICA helps 

segregate the brain and non-brain components from the acquired 

EEG. It converts random signals with multiple variables into one, 

which measures the frequency strength at a time. They properly 

visualize the EEG waves to get the frequency wave bands. 

Common Spatial Pattern (CSP) is a signal processing technique used 

in neuroscience and machine learning to enhance EEG, MEG, fMRI 

and ECoG data information. CSP is a supervised machine learning 

method that exploits the information about differences in brain signals 

between cognitive tasks/states or motor commands. It involves 

finding the spatial filters that maximize the contrast of variance in 

brain signals between two classes of conditions [16].  

CSP has been shown to improve the classification accuracy and speed 

of BCI systems, which can be applied to assistive technology for 

people with motor disabilities or to enhance the performance of 



16 

 

healthy individuals in tasks requiring neurofeedback training. CSP 

has been successfully applied in various BCI applications, including 

motor imagery, speech recognition, and emotion recognition. It has 

also been used in clinical applications, such as detecting seizures in 

epilepsy patients and diagnosing Alzheimer's disease. One of the 

advantages of CSP is that it is a data-driven method, meaning that it 

can be applied to any EEG data without requiring prior knowledge of 

the underlying neural mechanisms or signal characteristics. However, 

it does require a sufficient amount of training data to learn the optimal 

spatial filters. Overall, CSP is a powerful technique for feature 

extraction in EEG-based BCIs. Its effectiveness in enhancing the 

SNR and increasing classification accuracy has been demonstrated in 

various neuroscience and machine learning applications. 

Support vector machine (SVM) is a supervised machine learning 

algorithm that can be used for classification, regression or outlier 

detection purposes. The algorithm was developed by Vladimir Vapnik 

and his team in the 1990s. The basic idea behind SVM is to find the 

optimal hyperplane that separates the different classes by maximizing 

the margin between them. The margin is the distance between the 

hyperplane and the closest data points from each class, and SVM 

finds the hyperplane that maximizes this distance. 

SVM works by transforming the input data into a higher-dimensional 

space using a kernel function, which allows it to identify complex 

nonlinear relationships between the features. The most commonly 

used kernels are linear, polynomial and radial basis functions (RBF) 

or sigmoid functions. SVMs can be used for both linear and nonlinear 

classification. It effectively handles noise and outliers in data and can 

be used for binary and multi-class classification problems. 

Additionally, SVM has a regularization parameter that can be used to 

control overfitting and improve generalization performance [10] [11] 

[15]. 
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Nevertheless, SVM can be sensitive to kernel function and 

hyperparameters, which require careful tuning. Moreover, the 

training time of SVM can be slow in high-dimensional datasets, 

which can be computationally expensive, especially for large 

datasets. However, various optimization techniques, such as 

stochastic gradient descent, have been developed to overcome this 

issue. In summary, SVM is a robust and widely used algorithm in 

machine learning, and it has been shown to perform well in various 

applications. 

While conventional methods like LDA, AR, KNN, and CSP along 

variants of different filter banks and augmentation strategies, SVMs, 

Riemannian, Laplacian and Bayesian methods, have made significant 

progress in terms of classification accuracy, deep transfer learning-

based systems have shown the potential to outperform them. Deep 

learning (DL) techniques, especially convolutional neural networks 

(CNNs), have been extensively used in the field of BCI motor 

imagery (MI) signal analysis for their high classification accuracy and 

simple construction procedure. Many trials were conducted using a 

combination of a long short-term memory (LSTM) network and a 

spatial CNN, or a multiscale fusion CNN based on an attention 

mechanism, separable convolution, depth-wise convolution, or 

temporal convolution network (TCN). Compared to CNNs, RNNs 

were originally used to model data that involve sequential 

characteristics such as time series, language modelling, and speech 

synthesis, to name a few. Because of their ability to model sequential 

dependencies, RNNs are a natural choice for EEG-based BCI, where 

brain signals are treated as time series. Trade-offs must be invected in 

selecting from these general family models. Complex models fit 

existing data better than simple models, but they may not generalize 

as well to new data. Limiting the model to only the most relevant 

signal features often improves its generalization ability. 
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CNN is a deep neural network that is renowned for image processing 

applications. The convolution operation takes place by applying 

multiple filters to the data to extract features generating feature maps 

from the data set. Following up is typically a pooling operation in 

which the dimensionality of feature maps is reduced. Therefore, CNN 

proved very useful in classifying MI signals since the raw EEG signal 

can be used directly as an input without needing a preprocessing 

stage, like a WT. A CNN model can be integrated within a BCI-based 

system for real-time applications.  

Nevertheless, it depends on the software development kit available to 

perform predictions and commands. Tuning DNNs can help improve 

a DL model's classification accuracy or generalization capabilities. 

Batch normalization is typically applied to normalize intermediate 

representations between layers, improving generalization and 

accuracy, especially for CNNs. Dropout layers combat overfitting by 

randomly disabling a certain percentage of neurons in a layer; this 

ensures that a network learns generalized features rather than relying 

on individual neural connections. Dropout is only used during the 

training phase and turned off for validation and testing. 

Regularization to reduce overfitting by penalizing weights. Data 

augmentation aims to produce more training data from available data 

artificially. In the case of image data, it is possible to rotate, scale or 

flip the images without changing the meaning. By feeding augmented 

data to the network, the network learns some degree of invariance to 

this type of image transformation [25] [26] [29]. 

Thesis 1  

“In this research, I co-created a software code utilizing Python 

named Coleeg, an open-source initiative for facilitating the 

evaluation of EEG signal classification using neural networks. It 

is a platform to compare the performance of different CNN 

architectures [31].” 
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First, we systematically studied the following models: 

• [Basic] represents the simplest neural network model with 

only one layer and no convolution. This model is not 

suggested for real-life applications but rather for 

performance comparison. 

• [CNN1D], which performs convolution along the time axis 

only. 

• [CNN2D], where time and sensor channels are considered 

for two-dimensional convolution. 

• [CNN3D and TimeDist] are video classification models that 

convert the sensor channels into a 2D image that changes 

with time. 3D convolution and time-distributed 2D 

convolution are used in CNN3D and TimeDist models, 

respectively. A simplified diagram for the proposed models 

is shown below. 

• We also added the models [EEGNet], [ShallowConvNet], 

and [DeepConvNet] proposed in the literature. 

Three arrays are produced from reading each dataset:  

• data_x, which contains time samples obtained from the 

dataset with the following dimensions: time-epochs x time-

samples x sensors x frequency-bands.  

• data_y contains the class label corresponding to each time 

epoch.  

• data_index has two columns; the first is the index of the first 

epoch for each subject, and the second is the subject number 
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Figure 6: A simplified diagram for the models: a Basic. b CNN1D. c 

CNN2D. d CNN3D. e TimeDist 

 

Figure 7: 2D Mapping visualization of Physionet dataset sensors 

Results 

The models CNN2D, CNN3D, and TimeDist show low accuracy 

while having high training times, and this might be because of the 

increased complexity of the models, which makes them tend to have 



21 

 

an over-fitting problem and require more training time. The 

ShallowConvNet architecture was designed specifically to extract log 

band power features; in situations where the dominant feature is 

signal amplitude, as in ERP BCIs, ShallowConvNet performance 

tended to suffer. The opposite situation occurred with DeepConvNet; 

its architecture was designed to be a general-purpose architecture not 

restricted to specific feature types, such as extracting frequency 

features, so its performance was lower when frequency power was the 

dominant feature. 

 

Figure 8: Average Accuracies for Physionet dataset 
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Figure 9: Average accuracies for BCI Competition IV-2a dataset 

Then we modified the CNN1D model to have a multiband frequency 

input CNN1D_MF; doing so has improved the accuracy significantly. 

Any other model can accept multiple frequency band inputs. 

However, only the CNN1D model has been considered because it 

performs best among other proposed models. The subbands are 0.5–

8.0 Hz, coinciding with the combined delta (δ) and theta (θ) waves. 

The band 8.0–13.0 Hz contains the alpha (α) rhythm, while the band 

13.0–40.0 Hz coincides with the beta (β) wave and some of the lower 

parts of the gamma (γ) wave. A finite impulse response (FIR) filter 

with a linear phase and Hamming window define the bands. Results 

are presented in Tables 1 and 2 for the Physionet and BCI competition 

IV-2a datasets, respectively. 
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Thesis 2  

“I present a novel “Multifrequency Band Fusion Method 

(MFBF)” for EEG MI decoding. Its mechanism divides the signal 

spectrum into multiple frequency bands and feeds each band into 

duplicates of the selected CNN model. All the model duplicates 

are then concatenated to give the required classification.” 

 

Figure 10: MFBF method illustration 

The CNN1D model and the frequency bands mentioned above were 

used in the experimental evaluation to form the CNN1D-MFBF 

model. Considering two scenarios, it was evaluated against the 

EEGNet-fusion model on the three datasets. The first one is where no 

multiband filtering is used, and it was applied to the CNN1D and the 

EEGNet-fusion models. The second scenario is applied to the 

CNN1D and CNN1D-MFBF models. The preprocessing applied to 

the EEG signals was resampling all datasets to 100 Hz. The data were 

also normalized to have zero mean and a standard deviation of 1. The 

results are shown in Figures below. 
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Figure 11: mean Accuracies for Physionet dataset 

 

Figure 12: Mean accuracies for BCI Competition IV-2a dataset 
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Figure 13: Mean accuracies for MTA-TTK dataset 

Our experimental result shows that CNN1D_MFBF has the best 

accuracy and training time performance, as it takes advantage of the 

convolution process while keeping the model as simple as possible. 

They also show that applying multiple filter bands on the input data 

increases the accuracy results significantly, mainly due to data 

augmentation. Additional minimal improvement in accuracy using 4 

s of the trial time instead of 2 s and performing cross-validation for 

every subject at the expense of increased computational time and cost. 

Coleeg has matured to provide many utility functions that facilitate 

dealing with different datasets and models, such as applying various 

filter bands, applying notch filters, resampling data, specifying 

included and excluded subjects, classes and shuffling, data 

visualization and augmentation features were also added along the 

choice, to use local runtime, which allows researchers to utilize the 

power of local hardware and overcome the limitations imposed by 
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Colab-hosted runtime, in addition to evaluation metrics, like Cohen 

Kappa, specificity and sensitivity and plotting the results and saving 

the plots as pdf files [31]. 

Discussion 

Most EEG-based BCIs use the P300 evoked potential, sensorimotor 

rhythms (SMRs), or steady-state visual evoked potential (SSVEP). 

All three BCI types can help to restore essential communication and 

control to people with severe neuromuscular disabilities. At present, 

their capabilities are limited. Improved EEG recording methods are 

needed to provide stable, high-quality signals in all environments, be 

comfortable, and be easy to use. New dry-electrode systems have 

considerable promise. Improved signal analysis algorithms that can 

consistently maintain accurate performance are also required. While 

much algorithmic development has relied on offline analyses of 

archival data, online testing of new algorithms is essential because it 

considers the ongoing adaptive interactions between the user and the 

BCI. BCIs, particularly SMR-based BCIs, also show promise as new 

methods for enhancing functional recovery for people with strokes or 

other chronic disorders. Several strategies for using BCIs to induce 

beneficial plasticity are under study. Evidence that these methods can 

enhance recovery beyond what can be achieved by conventional 

methods alone is just beginning to emerge [11]. 

Recent advances in digital recording and signal processing, together 

with the leaps in computational power, are expected to spawn a 

revolution in the processing of measurements of brain activities, 

primarily EEGs and ERPs. This will enable the implementation of 

more complicated denoising techniques of ERP than ensemble 

averaging and more complicated EEG quantification analysis 

methods than the amplitude and frequencies, including nonlinear 

dynamics and higher-order statistics. Furthermore, this will help 
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implement various techniques describing the interactions between 

different regions of the brain, which offer more insights into the 

functional neural networks in the brain [8] [15]  

Current DL-based EEG classification studies aim to improve 

classification accuracies, proposing a new way to interpret the 

features and enhancing real-time feasibility. The ability of DL models 

to properly clean the artifacts and learn from neurological signals still 

needs to be improved and needs further research. It is crucial in EEG 

to understand what was learned in the model because the end goal of 

EEG-based studies is to understand the brain and utilize the signals 

extracted from the brain. Many studies still need to open-source the 

data and code, which would be vital in increasing replicability. Open 

sourcing the data could also help the community train the DL model 

and transfer the knowledge to a target domain where such a large 

dataset is unavailable [11] [17]. 

End-to-end DL classification in EEG data processing and modelling 

pipeline has the potential to remove the necessity of preprocessing 

that tends to rely on either specific domain knowledge or visual 

interpretation by experts. Also, it allows us to focus on one 

optimization model from the beginning to the end. However, at the 

current stage, end-to-end is still difficult without a thorough analysis 

of how and what the DL is learning and relying on to make decisions 

and proper interpretation and decoding [24]. 

DL for EEG neural classification is still in the emerging stage. There 

is growing interest in increasing the reliability and usability of such 

models with the intent of using them for real-time implementation. 

However, no real-time implementations currently employ these 

deep learning models for EEG decoding tasks. Several attempts to 

analyze EEG signals using CNN models were postulated. Many 

showed promising accuracy results concerning motor imagery and 

laterality of motion. None proved superior or reliable, but 
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experiments are ongoing, searching for better, well-formed software 

to extract more information from EEG signals [36] [40].  

EEG has several benefits compared to other imaging techniques. The 

most prominent benefit of EEG is its excellent time resolution; that 

is, it can take hundreds to thousands of snapshots of electrical activity 

across multiple sensors within a single second. EEG is an ideal 

technology for studying the precise time course of cognitive and 

emotional dynamics, most occurring within tens of milliseconds. The 

second reason that EEG is an advantageous technique for studying 

neurocognitive processes is that it allows the direct measure of neural 

activity. EEG signals directly reflect biophysical phenomena 

occurring in neuron populations. This is a clear advantage over other 

methods, such as fMRI, that do not directly measure neural activity 

but introduce an extra relationship between what is measured 

(changes in blood flow in the case of fMRI) and the actual neural 

activity. Finally, EEG is non-invasive, and the required equipment is 

relatively cheap, portable and relatively easy to operate [15] [21]. 

On the other hand, the main disadvantage of EEG is its poor spatial 

resolution. Neural activity is conducted through the brain volume to 

the scalp and electrodes by volume conduction. The concept of 

volume conduction carries important implications for surface EEG 

measurements as currents are not restricted to the immediate 

neighborhood of the source, and the electrical activity measured 

between electrodes has more to do with their orientation to the actual 

generator than with the proximity of the electrodes to the generator. 

Because the skull is a poor conductor, current tends to "splash off of 

it", and each electrode receives signals from millions of neurons, 

reducing potential spatial localization. This is exacerbated by the fact 

that the head tissues' conductivities vary across individuals and within 

the same individual due to variations in age, disease state, and 

environmental factors. The inference of the location of the current 

sources from electrode voltage measurements on the scalp is known 
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as the EEG inverse problem. It is comparable to reconstructing an 

object from its shadow; only generic features are uniquely determined 

[8] [9] [15].  

EEG is also very sensitive to subject movement and external noise. 

Electrodes used in EEG recording do not discriminate the electrical 

signals they receive. Intrinsic and extrinsic Artifacts contaminate the 

recordings in both temporal and spectral domains within a wide 

frequency band. The internal source of artifacts may be due to the 

subject's physiological activities (e.g., eye movement, 

electrocardiographic activity, sweat or muscle artifacts) or their 

movement. External sources of artifacts are environmental 

interferences such as power line interference, improper contacts 

between electrodes and skin, or interferences from recording 

equipment and cable movement [15] [21]. 

Four criteria are a must for a system to function as a BCI system:  

• The system must rely on activity recorded directly from the 

brain.  

• Intentional control: At least one recordable brain signal, 

which can be intentionally modulated, must provide input to 

the BCI (electrical potentials, magnetic fields or 

hemodynamic changes).  

• Real-time processing: Signal processing must occur online 

and yield a communication or control signal.  

• Feedback: The user must obtain feedback about the success 

or failure of his/her efforts to communicate or control.  

The primary goal has been to introduce and articulate a 

framework capable of synthesizing some results and theories in 

motor control, imagery, perception, and perhaps even cognition 

and language rather than providing compelling data for its 
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adoption. These considerations are not theoretically insignificant 

but are also quite far from conclusive. BCI development relies 

heavily on offline analyses of data gathered during BCI 

operations or various open-loop psychophysiological studies. 

These analyses can be instrumental and imperative in comparing 

different models, feature selection, and parameterization 

methods and testing alternative algorithms. 

 

Conclusion 
The path of the signal: 

 
"Brain – scalp-electrode interface – electrodes (composition 

material, specifications and configuration) – Amplification and 

Filtering (Analog circuitry) – ADC – Signal processing (Artifact 

removing – Feature extraction, dimension reduction, feature 

selection and classification) – then to application circuit 

(Digital/analogue commands) leading to intention decoding & 

neuro-control". 

 

BCI is an emerging field where EEG techniques are used as a direct 

nonmuscular communication channel between the brain and the 

external world. BCI research and development is a highly complex, 

interdisciplinary, and demanding endeavour that depends on carefully 

evaluating and comparing many different brain signals, signal 

processing methods, and output devices. Most current BCI systems' 

inflexibility, unreliability and limited capabilities significantly pose a 

considerable challenge for designers and users alike. A few people 

with severe disabilities already use a BCI for essential 

communication and control in their daily lives. With better signal-

acquisition hardware, clear clinical validation, viable dissemination 

models, and increased reliability, BCIs may become an essential new 
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communication and control technology for people with disabilities 

and possibly the general population  [11] [21] [22]. 

The present report sheds light on the difficulties encountered in BCI 

technology. Problems in the field today are accuracy, reliability, and 

number of commands, Bandwidth as the Information Transfer rate 

(ITR) (i.e., speed of the system) and new applications and paradigms, 

and lack of shared codes. Users' comfort needs to be addressed as 

cognitive workload and mental fatigue may appear as side effects of 

using the system. Calibration is also challenging in BCI because the 

SNR is unfavorable, and the subject-to-subject variability is immense. 

Visual ERP-based BCIs often have the advantage that the stimulus 

presentation mode leads to a unique structure of the collected brain 

signal data, which supervised and unsupervised learning methods 

may exploit. Without significant improvements, the real-life 

usefulness of BCIs will, at best, remain limited to only the most basic 

communication functions for those with the most severe disabilities. 

In current BCIs, the BCI, rather than the user, typically determines 

when output is produced. Ideally, BCIs should be self-paced so that 

the BCI is always available, and the user's brain signals alone control 

when the BCI output is produced. 

EEG phenomena's complexity requires computer simulations to 

understand the underlying generation processes. New tools for 

studying nonlinear dynamic systems have been introduced in this 

domain of theoretical neurophysiology. Furthermore, the availability 

of powerful computer tools opens new possibilities for modelling 

complex membrane phenomena and network properties. Academic 

studies are justified if combined with experimental investigations 

(hence, offline and online examinations, invasive and noninvasive 

techniques). In this way, one may obtain new insights about the 

generation of EEG patterns and formulate hypotheses to be tested 

under experimental conditions. In the last decades, a shift of attention 
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from models describing the behaviour of neuronal networks in the 

temporal domain toward models considering complex networks' 

spatial and spectral properties has occurred. The person interested in 

interpreting the EEG must draw conclusions based on the brainwaves' 

frequency, amplitude, morphology, and spatial distribution. However, 

the diversity of EEG patterns cannot be wholly explained by any 

single mathematical or biological model available today. Therefore, 

EEG interpretation remains a phenomenological medical discipline 

with undoubted prospects in the BCI domain. 

 

‘It remains sadly true that most of our present understanding of 

mind would remain as valid and useful if, for all we knew, the 

cranium were stuffed with cotton wadding’ [41] [42]. [Ralph Gerard 

(1949), Robert Maxwell Young (1970), Christopher Lawrence 

(2021)] 
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