
Exploiting high-level abstractions to
extend capabilities and improve
performance of domain-specific

languages

By:
BALOGH Gábor Dániel

Thesis Supervisor:

Dr. REGULY István Zoltán PhD

PhD Dissertation

Pázmány Péter Catholic University
Roska Tamás Doctoral School of Sciences and Technology

2023

I would like to dedicate this dissertation to my loving family.

Acknowledgements

First of all, I would like to express my gratitude to my supervisor Dr. István Reguly, for
introducing me to the world of High-Performance Computing, providing me with countless
opportunities, and for his immense support, guidance, and patience that led me through these
years. His positive and supportive attitude helped me a tremendous amount during the past
years. I am deeply grateful to Dr. Gihan Mudalige for welcoming me into his research group
during my stay in Warwick and for his help and insight during our collaboration. I am also
grateful to Jacques du Toit, who generously provided knowledge and expertise. I would like to
thank Prof. Uwe Neumann and Dr. Johannes Lotz for the opportunity to learn from them during
my stay at RWTH Aachen University.

I would like to thank all my friends and colleagues for filling these past few years with laughter
and joy. I would like to thank András Attila Sulyok, Bálint Siklósi, Bence Horváth-Keömley,
Tamás Rudner, Mihály Vághy, and many others for the myriad thought-provoking discussions
we’ve shared that have been a constant source of inspiration and growth.

I am thankful to the Pázmány Péter Catholic University, Faculty of Information Technology,
especially to Prof. Gábor Szederkényi and Prof. Péter Szolgay for the opportunity to participate
in the doctoral program and for supporting me throughout. I am especially thankful to Dr.
Tivadarné Vida for her kind help during my doctoral studies.

Finally, I am most grateful to my family for their limitless support and especially to Zsófia
Balogh-Lantos for tolerating me and helping me through the difficult times.

iii

Abstract

In the past two decades, we observed a paradigm shift in high-performance computing. Where
once frequency scaling and single-threaded performance increase were the main sources of gains in
compute throughput for applications, nowadays parallel programming and the use of specialized
hardware are required. While large CPU clusters are still and will continue to be important in the
computing landscape, GPUs and other accelerator architectures took over the focus for scientists
developing large-scale applications. To further increase the difficulty, each platform might require
specific programming models, languages, or optimizations to fully utilize the capabilities provided
by the hardware. It is not clear which hardware solution will provide the best performance for
an application, but the differences in the way to express the computation on different hardware
make it infeasible to learn the intricacies of each hardware or port and maintain multiple code
bases.

In light of the surging programming models and parallel hardware, research focused on
increasing the abstraction level of scientific codes to support multiple hardware platforms without
the development cost of multiple implementations. Performance, portability, and productivity
became the three key concepts for programming models. Without performance, computing
results for applications with ever-increasing computational needs simply take too much time.
While specialized code for a specific hardware will produce the best performance, it requires
significant coding effort and makes adopting new platforms difficult. The ideal programming
model lets the scientists focus on the science and express computations close to the scientific
model without concerns for the utilized hardware while getting good performance on multiple
hardware families.

Aiming to address these problems, Domain-Specific languages (DSLs) and high-level abstrac-
tions arose to help scientists through high-level abstractions that encapsulate hardware details
while expressing problems naturally. Using domain-specific abstractions enables the libraries
to constrict computations in a way that enables them to take advantage of high-level concepts
to make low-level optimizations for the target hardware automatically. This approach lets
domain scientists express their computations once and get high-performance and future-proof
implementations for their applications.

This dissertation explores techniques for improving the capabilities and performance of two
DSLs from the Oxford Parallel family. OP2 and OPS aim to express computations as a series
of loops with high-level descriptions of the data access patterns for parallelization. From this
high-level description, the DSL will generate target-specific optimized implementations for the
loops. This allows the developer to support multiple hardware from a single source and get good
performance due to the generated low-level implementations without any additional effort to
support each platform. OP2 supports computations on unstructured meshes, while OPS uses
structured grids and stencil-like data accesses.

In the first part of my research, I study unstructured mesh computations and their mapping to
parallel hardware. My research focuses on improving the code generation used by the DSL in two
main regards. The code generation of DSLs quickly becomes complex, and writing extensions

or new optimizations is proved to be error-prone. I introduced a parallelization skeleton-based
approach for code generation, which drastically reduces the amount of code actually generated by
the library with the main structure of the loops outlined in the skeleton and only replaces loop-
specific patches during code generation. Another main concern for source-to-source translation is
the integration with industrial build systems. I improved the robustness of the code generation
library, moving it from a text-based Python implementation into clang’s compiler infrastructure,
taking advantage of the compiler’s representation of the source code.

The second part of my research focused on linear solvers for applications using the Alternating
Direction Implicit (ADI) method. My goal was to provide scalable solver algorithms for batch-
tridiagonal systems for large-scale HPC clusters. I explore solver algorithms and the algorithmic
trade-offs required at increasing machine scale. In an ADI application, the solution of multiple
batches of 1D problems is used to approximate the solution of higher-dimensional problems. To
solve hundreds of batch-tridiagonal problems for each time step, scalable solver implementations
are essential. I introduce a new exact, iterative distributed solver algorithm supporting all
common memory layouts used in ADI applications. I evaluate the performance of the best
implementations that are used to solve a number of large-scale problems on CPU and GPU
clusters. With the integration to the OPS library, we extend the supported domain, enabling
direct support for ADI applications in OPS.

Finally, I focused on extending OPS with Adjoint-mode (or reverse-mode) Algorithmic Differ-
entiation support. Adjoints efficiently compute sensitivity information for computer programs
building on the chain rule. I address two challenges that are present for reverse-mode algorithmic
differentiation. AD tools often have large memory overhead introduced by caching intermediate
states and the control flow graph in a structure called tape. I show the advantages of using
a domain-specific library and the domain restrictions to compute derivatives of large stencil
computations on CPU and GPU platforms. Using a loop-level adjoint tape (built by the generated
code) to follow the computational steps drastically decreases the memory requirements of storing
this information compared to traditional operator-overloading-based tools. Secondly, the reversal
of the control flow during derivative propagation makes parallelization a complex problem. I show
that the code generation of DSLs, in combination with the high-level description of parallelism
in the original code, is a great tool to provide performance-portable implementations for adjoint
codes to support multiple hardware from the same source.

v

Kivonat

Az elmúlt két évtizedben paradigmaváltást figyeltünk meg a nagy-teljesítményű számítástechni-
kában. Ahol egykor a frekvenciaskálázás és az egyszálas teljesítménynövelés volt az alkalmazások
számítási teljesítményény növelésének fő módszere, most párhuzamos programozás és speciális
hardverek használata az út. Míg a nagy CPU-klaszterek továbbra is és a jövőben is fontosak
lesznek a HPC területén, a GPU-k és más gyorsítók átvették a fókuszt a nagyszabású alkal-
mazásokat fejlesztő tudósok számára. A helyzetet tovább nehezíti, hogy minden platformon
speciális programozási modellekre, nyelvekre vagy optimalizációkra lehet szükség a hardver által
biztosított képességek teljes kihasználásához. Nem egyértelmű, hogy melyik hardver fogja a
legjobb teljesítményt nyújtani egy alkalmazás számára, de az ezeken a hardvereken használt
számítási modellek különbségeinek köszönhetően az összes hardver támogatása portolás vagy
több kódbázis párhuzamos fejlesztésével fenntarthatatlanná vált.

Az újonnan születő programozási modellek és a párhuzamos architektúrák fényében a kutatók
a tudományos kód absztrakciós szintjének növelésére összpontosítottak, hogy több hardver tá-
mogatása extra fejlesztési költség nélkül lehetővé váljon. A teljesítmény, a hordozhatóság és a
produktivitás a programozási modellek három kulcsfogalma lett. Az egyre növekvő számítási
igényű alkalmazások eredményeinek jó teljesítmény nélküli számítása egyszerűen túl sok időt vesz
igénybe. Ezzel szemben egy adott hardveren a speciálizált kód biztosítja a legjobb teljesítményt,
ez azonban jelentős kódolási erőfeszítést igényel, és megnehezíti az új platformok támogatását.
Az ideális programozási modell lehetővé teszi a tudósok számára, hogy a tudományra összponto-
sítsanak, és a tudományos modellhez közeli módon fejezzék ki a számításokat anélkül, hogy a
felhasznált hardverrel foglalkoznának, majd az így kapott modellből több különböző hardveren is
jó teljesítményt érjenek el.

E problémák megoldása érdekében a domén-specifikus nyelvek (DSL) olyan magas szintű
absztrakciókon keresztül segítik a tudósokat, amelyek elfedik a hardverre vonatkozó részleteket,
miközben a tudósok természetes módon fejezhetik ki a problémákat. A domén-specifikus abszt-
rakciók használata lehetővé teszi a könyvtárak számára, hogy a számítások típusát oly módon
szorítsák meg, hogy a magas szintű fogalmak és absztrakciók előnyeit kihasználva automatikusan a
célhardverre optimalizált alacsony szintű implementációt adhassanak. Ez a megközelítés lehetővé
teszi a tudósok számára, hogy a számításaikat egyszer, egy magas szintű modellben, kifejezve
olyan alkalmazás kódot kapjanak, ami több hardveren is jó teljesítményt nyújt és potenciálisan
támogatja a jövőben használt hardvereket is.

A disszertációm az Oxford Parallel domén-specifikus nyelvcsalád két DSL-jének kiegészítésére
és javítására szolgáló technikákat vizsgál. Az OP2 és az OPS célja, hogy a számításokat ciklusok
sorozataként fejezze ki az adathozzáférési minták magas szintű leírásával a párhuzamosításhoz.
Ebből a magas szintű leírásból a DSL optimalizált implementációkat generál a számítási kernelek
számára. Ez lehetővé teszi a fejlesztő számára, hogy több hardvert támogasson egyetlen forráskód-
ból, és jó teljesítményt érjen el a generált alacsony szintű megvalósításoknak köszönhetően anélkül,
hogy az egyes platformokra explicit módon írna kódot. Az OP2 a strukturálatlan hálókon végzett

számítások támogatására, míg az OPS strukturált rácsokon értelmezett számítások támogatására
ad lehetőséget.

Kutatásom első részében strukturálatlan hálókon értelmezett számítások és azok párhuzamos
hardverekre való leképezésének módszerét vizsgáltam. Kutatásom a DSL által használt kódge-
nerálás fejlesztésére irányul. A DSL-ek kódgenerálási lépése gyorsan bonyolulttá válik, és azok
kiegészítése nehéz feladat. Ezt a problémát célozva egy párhuzamosítási váz alapú megközelítést
írtam le, amely drasztikusan csökkenti a könyvtár által ténylegesen generált kód mennyiségét.
A ciklusok szerkezetét a vázból nyerve, csak a ciklus-specifikus részleteket helyettesíti be a
kódgenerálás során.

Kutatásom második része a Alternating Direction Implicit módszert alkalmazó alkalmazások
lineáris megoldóira fókuszált. Célom az volt, hogy skálázható megoldó algoritmusokat biztosítsak
batch-tridiagonális rendszerekhez nagyméretű HPC klaszterekhez. Egy ADI-alkalmazásban az
1D-s problémák batch-elt megoldását használják a magasabb dimenziós problémák megoldásának
közelítésére. Időlépésenként több száz batch-tridiagonális rendszer megoldásához elengedhetetle-
nek a skálázható megoldó algoritmusok. Bevezetek egy új, egzakt, iteratív elosztott megoldó
algoritmust, amely támogatja az összes gyakori memóriaelrendezést, ami ADI alkalmazásokban
előfordul. Majd a megvalósítások teljesítményét kiértékelem CPU és GPU klasztereken. Az
OPS könyvtárba való integrációval kiterjesztjük a DSL által támogatott alkalmazások osztályát,
lehetővé téve az ADI alkalmazások direkt támogatását OPS-ben.

Végül az OPS kiterjesztésére összpontosítottam az Adjoint módú (vagy fordított módú) algo-
ritmikus differenciálás támogatásával. Az AAD a láncszabályra építve hatékonyan számítja ki
a programokhoz tartozó derivált inormációkat. Két olyan kihívással foglalkozom, amelyek az
adjoint módú algoritmikus differenciálásnál lépnek fel. Az AD-eszközök gyakran nagy memória
igénnyel rendelkeznek, amelyet a közbülső állapotok elmentése és a control-flow gráf követése
okoz, amelyeket egy tape nevű struktúrában tárolnak. Megmutatom, hogy a domén-specifikus
könyvtárak és az általuk használt absztrakciók és megkötések a milyen előnyökkel járnak stencil
kódok esetén. A (generált kód által épített) számítási ciklus szintű adjoint tape használata
a számítási lépések követésére drasztikusan csökkenti ezen információk tárolásának memória-
igényét a hagyományos operátor túlterhelés alapú eszközökhöz képest. Másodszor, a control
flow megfordítása a derivált propagálás során kihívást állít a párhuzamos programok esetén.
Megmutatom, hogy a DSL-ek kódgenerálása az eredeti kódban a párhuzamosság magas szintű
leírásával kombinálva ígéretes eszköz a teljesítmény-hordozható megvalósítások biztosításához
adjoint kódokhoz, amelyek több hardvert is támogatnak ugyanabból a forráskódból.

vii

Contents

1 Introduction 1
1.1 Parallel architectures in HPC . 2
1.2 Motivation for my research . 4
1.3 Oxford Parallel Domain-Specific Languages . 6
1.4 Source-to-source translation in High Performance Computing (HPC) 12
1.5 Alternating Direction Implicit (Alternating Direction Implicit (ADI)) Method . . 13
1.6 Tridiagonal Systems Solver Algorithms . 15
1.7 Current Library Support to Solve Tridiagonal Systems 19
1.8 Sensitivities in structured-mesh applications . 21
1.9 Algorithmic Differentiation . 22
1.10 Algorithmic Differentiation in HPC . 24
1.11 Structure of the dissertation . 25

2 Source-to-source translation for unstructured-mesh applications 27
2.1 Motivation . 27
2.2 Clang LibTooling for OP2 Code Generation . 30
2.3 Extensibility and Modularity . 34
2.4 Evaluation and Performance . 38
2.5 Conclusions . 42

3 Scalable Batch-Tridiagonal solver algorithms 43
3.1 Motivation . 43
3.2 Distributed Memory Algorithms . 44
3.3 Evaluation and Performance . 49
3.4 Conclusion . 54

4 Adjoint mode Algorithmic Differentiation with OPS 55
4.1 Reverse mode Algorithmic Differentiation in OPS 56
4.2 Orchestration . 64
4.3 Evaluation . 69
4.4 Conclusion . 76

5 Summary of the Dissertation 78
5.1 Methods and tools . 78
5.2 New Scientific Results . 79
5.3 Potential applications and benefits . 86

viii

List of author publications 87

ix

Glossary

AAD Adjoint-mode Algorithmic Differentiation.

AD Algorithmic (Automatic) Differentiation.

ADI Alternating Direction Implicit.

AoS Array of Structures.

API Application Programming Interface.

AST Abstract Syntax Tree.

CDE Convection-Diffusion Equation.

CFD Computational Fluid Dynamic.

CPU Central Processing Unit.

CR Cyclic Reduction.

CUDA Compute Unified Device Architecture.

DSL Domain-Specific Language.

eDSL Embedded Domain-Specific Language.

FPGA Field Programmable Gate Array.

GPU Graphical Processing Unit.

HPC High Performance Computing.

IR Intermediate Representation.

LLVM Low Level Virtual Machine.

MPI Message Passing Interface.

NUMA Non-Uniform Memory Access.

OP-DSL Oxford Parallel Domain-Specific Languages.

x

OP2 Oxford Parallel Library for Unstructured mesh solvers.

OPS Oxford Parallel Library for Structured mesh solvers.

PCR Parallel Cyclic Reduction.

PDE Partial Differential Equation.

SIMD Single Instruction Multiple Data.

SIMT Single Instruction Multiple Thread.

SM Streaming Multiprocessors.

SoA Structure of Arrays.

xi

List of Figures

1.1 The high-level architecture of OP2 and OPS Domain-Specific Languages. 7
1.2 Example unstructured grid with cells, edges, and vertices. The key attribute of the

unstructured grids is that the connectivity of elements can’t be determined solely
from the indices, but it requires explicit mappings. In Oxford Parallel Library for
Unstructured mesh solvers (OP2) the user can define data on these mesh elements
and the connectivity between the sets through mappings. 8

1.3 ADI half steps on a 2D uniform grid. In the half steps, the red arrows mark the
required independent 1D systems that require solutions to advance the state. . . 14

1.4 Steps of the CR algorithm for a system of size 8. 16
1.5 Result of a single iteration of the Parallel Cyclic Reduction (PCR) algorithm.

After the iteration, every second row will form a separate tridiagonal system. . . 17
1.6 Tridiagonal matrix split into 3 subsystems after the hybrid Thomas-PCR forward

pass [65]. The reduced system is shown in bold and M = 4. 17

2.1 The high-level architecture of OP2-Clang and its place within OP2 31
2.2 Schematic figure of different coloring strategies used in OP2. The arrows represent

the individual pieces of data loaded indirectly when executing the block. 36
2.3 Absolute performance comparison of the Airfoil and Volna application on a P100

GPU using different coloring and parallelization approaches. 41

3.1 Communication patterns in iterative solver algorithms. 45
3.2 MPI decomposition of a 3D computational domain along all three spatial dimen-

sion. Each small grid represents the computational domain owned be a single MPI
process. The nodes highlighted by red share tridiagonal systems along the X axis. 47

3.3 Example memory layout of the coefficients stored in column-major format within
a MPI process for a 3D domain. Values in X stored contiguously, Y is stored with
stride Nx and Z is stored with stride Nx ∗Ny. 48

3.4 Memory access patterns during X solves for CUDA threads. The X dimension
is stored contiguously as the indices highlight and the rows are representing
independent systems. Each thread loads a single block at a time. Above: the
original memory reads where each CUDA thread (shown in a different color)
only loads the values for its own tridiagonal system, leading to uncoalesced reads
(first read instruction loads indices: 0, 7, 14, 21). Below: the data is loaded using
coalesced memory access. This pattern results in faster loads, but the threads get
data from different systems. Extra vector shuffles are required for each thread to
get the corresponding coefficients. 49

xii

3.5 ARCHER2 scaling: (a),(b) - Weak-scaling, 5123 grid points per node. (c),(d)
- Strong-scaling, 8192 points in the direction of solve, and 512 in others. AG -
AllGather, GS - Gather-Scatter. The dotted lines in the strong scaling plots show
ideal scaling performance. 50

3.6 TridSlv (Y-dim) weak scaling runtime breakdown, ARCHER2: 5123 per node . . 51
3.7 Cirrus scaling (MPI+CUDA) :(a),(b) - Weak-scaling, 5123 points per GPU. (c),(d)

- Strong-scaling, 2048 points in the direction of solve, 512 points in others. HC -
host copy, GD- GPU direct. 52

4.1 Left: The gather stencil used during the forward pass in the parallel loop in
Listing 1.2. Data is read on the four neighboring points and in the center and
only writes at the center. Right: The stencil and access pattern used during the
reverse pass on the adjoint memory with the loop body in Listing 4.1. The data
read on the five points, but writes happen for the neighbors. 57

4.2 Interactions of forward and corresponding reverse loops with the high-level tape
in OPS. Each active forward loop pushes a small descriptor into the DAG, and
during execution, it will save the overwritten data to a stack-like storage. In the
reverse pass, OPS will call the generated adjoint for the loop, which will propagate
the derivative information and load the saved state. 59

4.3 Example scheduling applied by OPS with OpenMP for a three-point wide stencil.
Stripes with the same color are executed parallel, each thread executes a single
chunk. 66

4.4 Data access for a three-point read stencil on a 1D dataset v in a 2D loop. The
arrows represent the accessed values to compute the new u values. The loop reads
the same three points for each iteration, sharing the same i index highlighted in
green. In the adjoint loop, each iteration highlighted in green will increment the
derivative for the same three values in v. In addition, the neighboring columns
will have overlapping increments as well. 67

4.5 Speedup of our access-pattern-aware adjoint reductions and accumulations, com-
pared to using only atomics on kernels from the CDE application, which have
lower-dimensional data accesses with a mesh size of 10242 and 40962 on an NVidia
A100. 68

4.6 Memory requirements for the applications. Primal is the memory usage of the
original application, while Adjoint shows the adjoint memory allocated for datasets.
The checkpoint sizes note the size of the Revolve checkpoints. First CP for
Cloverleaf and Second CP for CDE marks a single checkpoint with more data
due to datasets that are only written at the beginning. All other checkpoints
use the uniform size shown as Checkpoint. Tape marks the required saved states
for interpreting one time step. Finally, Results marks extra copies for saving the
datasets at the end of the forward pass. 71

xiii

4.7 The overhead of AD on the benchmark applications, compared to a single evaluation
of the passive, original application, showed by Forward. The values show that
evaluating the adjoints takes N times of evaluating the original application. All
bars show the values relative to the original applications. The Overhead values
show the additional cost of collecting the DAG, saving intermediate states, and
storing Revolve checkpoints during the forward pass, Revolve values represent
the additional time spent on replaying sections of the applications to restore states
for the adjoints loops and the Adjoint part shows the time spent in the actual
adjoint loops. 73

4.8 Runtime relative to a single evaluation of the original application (Forward) of
evaluating the adjoints for the applications (including the original applications)
with Revolve. On the X axis number of available Revolve checkpoints is increased.
At each tick on the X three values are shown. The number Revolve checkpoints
used, ratio of checkpoints and the total number of iterations, and the average
number of forward steps taken at each iteration is shown. The increased number
of checkpoints reduces the number of additional forward steps required to restore
intermediate states. 74

5.1 The high-level architecture of OP2-Clang and its place within OP2 80
5.2 Comparison of the Tridsolver library to TridiagLU. Left: weak-scaling 5123 grid

points per node, Right: Strong-scaling, 8192 points in the direction of solve, and
512 in others. AG - AllGather, GS - Gather-Scatter 82

5.3 ARCHER2 scaling (MPI+OpenMP): (a),(c) Cirrus scaling (MPI+CUDA):(b),(d)
- All weak-scaling using 5123 points per node. Strong scaling on ARCHER2 uses
8192 points in the direction of solve while Cirrus measurements use 2048 points
and 512 points in others. 83

5.4 Speedup of the version using the access pattern aware reductions over atomic
operations in kernels for the CDE application with a mesh size of 10242 and 40962. 84

5.5 The overhead of AD on the benchmark applications, compared to a single evaluation
of the passive, original application. The values show that evaluating the gradient
takes N times of evaluating the original application. The Overhead values
show the additional cost of collecting the DAG, saving intermediate states, and
storing revolve checkpoints during the forward pass, Revolve values represent the
additional time spent on replaying sections of the applications to restore states
for the adjoints loops and the Adjoint part shows the time spent in the actual
adjoint loops. 85

xiv

List of Tables

2.1 Performance of Airfoil and Volna on the Intel Xeon E5-1660 CPU (for OpenMP
and SIMD) and on an NVIDIA P100 GPU with OP2-Clang. CUDA results with
two different colorings (global and hierarchical) and two data layouts (AoS and
SoA) presented. The values in parenthesis are the percentage difference in run
time compared to the sources generated with OP2’s current Python-based source-
to-source translator (negative values mean OP2-Clang has better performance). . 40

3.1 Communication steps needed to solve the reduced system for each algorithm. Np

is the number of processes that share the same set of tridiagonal systems Nsys

is the number of independent systems the processes share. J is the number of
Jacobi iterations required. The message size is shown in terms of elements, each
element requires to send the corresponding ai, ci, di coefficients (bi = 1). 44

4.1 Runtime and memory comparison between the original applications and the
computing of the adjoints measured on an Intel(R) Xeon(R) Gold 6226R with 16
threads using OpenMP (Top) and on an NVidia A100 using CUDA (Bottom).
Note: For the Poisson code, Iterative stands for computing the adjoints as a fixed
point iteration with storing tape for the last iteration only. 70

4.2 Bandwidth values for the Poisson and Cloverleaf applications. The Peak (%)
values show the relative bandwidth compared to the Triad kernel in BabelStream. 72

4.3 Double precision throughput of compute bound kernels in the CDE application.
The first four columns were measured on a single socket of an Intel(R) Xeon(R)
Gold 6226R with the peak throughput measured with the Empirical Roofline
Toolkit[155]. The last four columns were measured on the NVidia A100 GPU. . 72

5.1 Communication steps needed to solve the reduced system for each algorithm. Np

is the number of processes that share the same set of tridiagonal systems Nsys

is the number of independent systems the processes share. J is the number of
Jacobi iterations required. The message size is shown in terms of elements, each
element requires to send the corresponding ai, ci, di coefficients (bi = 1). 81

xv

List of Listings

1.1 Specification of a mesh, datasets, and an OP2 parallel loop on the edges reading
data on the edges and incrementing on the cells of the grid 9

1.2 Example declaration of an OPS dataset and its use in an OPS parallel loop. . . . 11

2.1 Skeleton for OpenMP (excerpt) – direct kernels 29
2.2 Skeleton for OpenMP (excerpt) – indirect kernels 29
2.3 Left: Parallelization skeleton for MPI (excerpt) Right: Generated MPI paral-

lelization (excerpt) . 32
2.4 Elemental function call in the Abstract Syntax Tree (AST) of the skeleton 33
2.5 ASTMatcher to match the AST node for the elemental function call 33
2.6 Example of creating a Replacement to replace the elemental function call. The

Result object is the MatchFinder::MatchResult object created by the match of
the ASTMatcher from Listing 2.5. 34

2.7 The modified version of the elemental function res, to use strided memory accesses
wit SoA data layout. 35

2.8 CUDA kernel with global coloring (excerpt) . 36
2.9 CUDA kernel with hierarchical coloring (excerpt) 37
2.10 Vectorized loop for res (excerpt). 39

4.1 The user given adjoint loop body for the kernel from Listing 1.2. 57
4.2 Example parallel loop using active grid invariant scalar data. 58
4.3 Typical steps for an Adjoint workflow in OPS. 60
4.4 An external function solving a batch tridiagonal system formed by the datasets. . 63
4.5 Example use of Revolve for the loop chain from Listing 4.3 with 10 checkpoints

and a fix chain length of niter. The ops_ad_set_checkpoint_count call initi-
ates Revolve, and the ops_ad_manual_checkpoint_datlist function marks the
checkpoints from which OPS can start recomputing steps. The function takes all
the ops_dats that are required to recompute the iteration. 64

4.6 Example code for executing a fixed point iteration in the primal with a fixed point
iteration as an adjoint. In the adjoint of an external function, the user can create
local tapes to use. Similarly to other external functions, the user can use passive
loops for error calculation, reseeding, or other purposes. 65

4.7 Example two dimensional loop with data access to lower dimensional data. . . . 67

xvi

List of Algorithms

1 thomas(a, b, c, d) . 16
2 pcr(a, c, d) . 17
3 hybrid_forward(a, b, c, d) . 18
4 hybrid_backward(a∗, c∗, d∗) . 19
5 jacobi(a, b, c, d) . 20

6 forward_sweep(a, b, c, d) . 46

xvii

1 Introduction

The relentless pace of innovation in computing technology has profoundly impacted how pro-
grammers and scientists can achieve high performance. While twenty years ago, a few gigaflops
might reside within a single CPU, today’s most powerful supercomputers deliver trillions of
calculations per second across hundreds of thousands of hardware threads. Keeping pace with
this exponential growth has required fundamental changes in both hardware and software.

For decades, compute performance has been steadily increasing due to hardware effects
described by Dennard scaling and Moore’s law. Proposed in the 1970s, Dennard scaling observed
that as transistor feature sizes shrunk by Moore’s law, keeping the power supply voltage constant
caused power and heat densities to remain constant. This meant CPU clock frequencies and
throughput could approximately double every 18 months as the number of transistors per unit
area doubled. Such regular and exponential increases drove the widespread adoption of computing
across all sectors.

However, from around 2005, it became clear that silicon technology reached its limits, and
Dennard scaling broke down. Shrinking chip features without a proportional rise in power
consumption was rendered infeasible. Performance could no longer freely scale at constant power,
and economy of scale diminished.

While still exponential, Moore’s law transistor density growth has also flattened in recent
manufacturing process nodes. Where feature sizes halved every 24 months in the 1990s, the
reduction significantly slowed down today. Many projections foresee outright saturation of
Moore’s law within this decade. As a result, the computing industry faces a post-Dennard,
post-Moore’s law era where past exponential increases are simply infeasible without fundamentally
new microarchitectures. Novel accelerators, including Graphical Processing Units (GPUs), Field
Programmable Gate Arrays (FPGAs), and even quantum and neuromorphic platforms emerge in
step.

In the early 2000s, performance revolved around optimizing for single superscalar Central
Processing Units (CPUs). Programmers leveraged techniques like loop unrolling, prefetching,
and blocking to minimize latency and maximize instruction throughput. However, with the
breakdown of Dennard scaling, multi-core architectures became necessary to extract further
throughput gains within the existing power budgets. With the emergence of multi-core chips,
performance needs demanded algorithms designed for concurrent execution. This paradigm
shift posed software challenges around parallel programmability that remain a work in progress
today. Shared memory and locks became tantamount, necessitating careful orchestration to
avoid contention bottlenecks.

As problem sizes and computational demands grew exponentially. Traditional CPU-based
architectures began to struggle with the complexity and scale of modern applications, leading to
the widespread adoption of large, distributed clusters comprising both CPUs and GPUs. These

1

hybrid architectures allowed supercomputers to harness the strengths of both types of processors
– CPUs for general-purpose tasks and GPUs for highly parallel workloads – enabling more efficient
execution of massive computations.

However, these pre-exascale supercomputers faced several challenges. Distributed computing
introduced issues of communication latency and data movement between nodes, which were
critical bottlenecks. In large, distributed systems, communication overhead can severely degrade
performance if not managed efficiently. The time and energy cost of moving data between nodes
becomes a critical bottleneck, particularly in applications that require frequent data exchanges.
Communication latency can limit the overall speedup achieved from parallelization, diminishing
the expected gains of adding more processors. The wide adoption of hybrid architectures and
accelerators ads an additional layer of communication between the host and the accelerator
memory space, which further increase the importance of hiding the cost of data movement.
Additionally, hybrid systems demanded new algorithmic approaches tailored to both CPU and
GPU architectures, as many algorithms needed to be re-engineered to efficiently exploit the
parallelism offered by GPUs while balancing the workload across CPUs. As supercomputers
grew in scale and the computational throughput of the GPUs and CPUs increased having data
ready near these processors always became a key challenge for sustaining high computational
throughput.

For HPC, these realities necessitated a strategic evolution. The dawning exascale era builds on
computational power across hundreds of thousands of concurrent threads. Hardware specialization
is inevitable - general-purpose designs struggle to meet Exascale’s constraints. Programming
such systems demands refactoring algorithms into maximally concurrent forms, preferably with
leverage from higher levels of abstraction.

1.1 Parallel architectures in HPC

CPUs have historically played a critical role in this arena, undergoing significant transformations
to adapt to the evolving demands of HPC applications. In the early 2000s, enhancing single-core
CPU performance was paramount. Each new CPU generation brought substantial performance
gains through increased clock speeds and other architectural advancements. However, the end of
Dennard scaling around the mid-2000s marked a paradigm shift in CPU design. Challenges such
as excessive heat dissipation and power consumption limitations led to a halt in the continuous
increase of clock speeds. To further increase single thread performance, modern CPUs use
advanced caching mechanisms and complex instruction sets and logic, increasing vector sizes
with the use of Single Instruction Multiple Data (SIMD) model where the instructions are
executed on a vector of data instead of scalar effectively multiplying the number of operations
executed per cycle. However, the single-thread performance still could not keep up with the
increasing computational demands. Instead, chip manufacturers pivoted towards a multi-core
CPU architecture, wherein a single chip housed multiple processor cores, enhancing performance
by enabling parallel processing.

Contemporary high-end server CPUs integrate numerous advanced features to optimize perfor-
mance, energy efficiency, and parallel processing capabilities. Such CPUs can have up to 64 cores,
each supporting two threads, increasing vector unit sizes up to 512-bit wide vectors. To fully

2

take advantage of these CPUs’ compute capabilities and avoid starvation due to memory latency,
modern CPUs have multiple levels of cache memories with large L3 caches up to 256 MB.

Modern HPC systems frequently deploy multi-socket CPU configurations to bolster further
performance, wherein multiple CPUs are installed on a single motherboard. Despite the benefits,
this approach introduces Non-Uniform Memory Access (NUMA) issues. In NUMA architectures,
memory access time depends on the memory location relative to a processor, leading to variability
in performance. The memory allocated by a thread will be located on the closest memory chips
directly connected to the socket hosting the thread. Accessing this memory from another socket
or NUMA region results in increased latency. Efficiently managing these NUMA issues is crucial
for ensuring optimal performance in HPC environments.

Multiple programming abstractions support parallelism for CPU architectures. OpenMP is the
most commonly used model for shared memory parallelism, allowing developers to write parallel
code for shared memory systems quickly and efficiently. Using compiler directives, OpenMP
can automatically handle thread creation, synchronization, and workload distribution among
threads. Alternatively, applications can consider each core as a standalone process and use
Message Passing Interface (MPI) to handle communications between the processes. In this
distributed memory paradigm, individual processes operate independently and exchange data
via message passing. This model is adept for large-scale parallelism across many CPUs or even
across different machines in a cluster. Additionally, hybrid models combining OpenMP and MPI
are employed to exploit parallelism at multiple levels, maximizing computational efficiency by
utilizing both thread-level and process-level parallelism.

The last ten years have seen the widespread adoption of GPUs by the HPC community. They
offer higher performance and efficiency for a wide range of highly parallel workloads. Initially
designed to accelerate graphics rendering, GPUs have emerged as powerful accelerators for a
wide range of computationally intensive tasks. Their pivotal role in HPC stems from their
architectural and operational characteristics, tailored to handle a high degree of parallelism.

Unlike the traditional CPU that features a limited number of cores optimized for single-
threaded performance with sophisticated scheduling, a GPU houses thousands of smaller, more
efficient cores designed for multi-threaded performance with simpler scheduling capabilities. This
architectural distinction makes GPUs especially well-suited for tasks that can be parallelized,
where large blocks of data can be processed simultaneously.

A single GPU may contain more than 100 Streaming Multiprocessors (SM), each with up
to 128 CUDA cores executing instructions in parallel. To include such a high amount of cores,
GPUs reduce the logic for thread scheduling by running the same instruction in 32 thread groups
called warps following the Single Instruction Multiple Thread (SIMT) modell. These warps
are grouped into thread blocks bound to one of the SMs and executing the same computation,
and finally, a set of blocks executing the same computation grouped together for each kernel.
Only threads within a thread block share data and are synchronized. The blocks run entirely
independently from each other. The memory hierarchy of GPUs is also a critical consideration.
GPUs typically have smaller memory compared to CPUs, albeit the memory size increases with
every generation. Modern GPUs only have up to 80 GB of memory, but they compensate with
significantly higher memory bandwidth. GPUs have relatively small caches, having up to 50 MB

3

of L2 cache and 256 KB programmable L1 cache shared by the threads within a block. Efficient
memory management and data transfer optimization are essential to maximize the performance
benefits offered by GPUs.

Programming techniques for GPUs have also evolved significantly. The Compute Unified Device
Architecture (CUDA) [1] language extensions to C/C++ and the OpenCL language [2] provide
a low-level programming abstraction that gives fine-grained control over GPU architectures.
CUDA/OpenCL allows exploiting low-level features like scratch pad memory, warp operations,
and block-level synchronization. However, converting existing applications to use CUDA or
OpenCL is a substantial undertaking that requires significant effort and considerable changes
to the design of the program and the source code. Furthermore, getting good performance can
entail detailed work in orchestrating parallelism.

High-level directive-based programming abstractions were introduced to simplify the adoption
of GPUs, particularly for existing codes. OpenACC [3], introduced in 2011, was one of the first
supporting GPUs. Subsequently, the OpenMP standard introduced support for accelerators
starting from version 4 [4], with refinements in 4.5 and 5.0. Of particular note is the evolution of
directive-based approaches driven by the acquisition of large US DoE systems such as Titan1

and the Summit2, and Sierra3 systems. To utilize these systems efficiently, existing codes needed
to be modified to support GPUs with relative ease. Many of these codes are written in Fortran,
and as such, there is now compiler support for writing CUDA, OpenACC, and OpenMP with
Fortran in various compilers.

While directive-based programming models make GPU adoption much faster thus increasing
the productivity of the developers, it is generally agreed that the best performance can be achieved
by using CUDA. It is crucial to understand what potential performance benefits can be achieved
in return for more development costs of adopting lower-level programming models. However, the
performance difference between CUDA and directive-based approaches varies significantly based
on a multitude of factors. These primarily include the type of computation being parallelized,
the language being used (C or Fortran), and the compiler.

In conclusion, the differences between the two architecture families create a gap between
how to express computations on these hardware. As the computational requirements of HPC
applications grow, the trend of hardware specialization to meet these requirements will persist.
Developing applications in multiple languages and porting large-scale applications for each new
hardware is infeasible. Hence, there is a need for a way to provide uniform APIs and models
supporting parallel hardware from a high-level abstraction while still capitalizing on the potential
performance of these specialized hardware.

1.2 Motivation for my research

Due to the rapidly changing hardware and programming models that run the most powerful
computers in the world, performance portability and productivity became the focus point of
any discussion on future-proof high-performance software. In this ever-changing landscape,

1https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/
2https://www.olcf.ornl.gov/summit/
3https://hpc.llnl.gov/hardware/compute-platforms/sierra

4

https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/
https://www.olcf.ornl.gov/summit/
https://hpc.llnl.gov/hardware/compute-platforms/sierra

future-proof applications have become synonymous with performance portable applications. The
ultimate dream is to support all current and future hardware with the best performance from a
single source [5].

On modern hardware, the parallel execution of algorithms is necessary to solve larger and
more complicated problems. There are many abstractions to write parallel algorithms with
different advantages. MPI, OpenMP, and their combination have been the most common way
to target CPUs for a long time. By contrast, the landscape for available frameworks for GPUs
is much more complicated, with vendor-specific frameworks providing the highest performance.
Maintaining a code base to target all these hardware for an application is infeasible. To solve
this problem, general purpose frameworks have arisen in recent years to target all platforms
from a single source, such as SYCL [6], KOKKOS [7], [8] or RAJA [9], [10]. SYCL provides a
template library to describe general parallel computations on a relatively low level. However,
due to the differences in the hardware, this approach achieves portability among hardware but is
missing hardware-specific tuning and leaves performance on the table. The other approach is
to focus on performance portability using higher-level abstractions, such as in KOKKOS and
RAJA, and sacrifice generality in terms of ways to express computations.

1.2.1 Domain-Specific Languages

Domain-Specific Languages (DSLs) or other high-level abstractions are the key approaches
for trading generality for performance portability. By sacrificing generality, DSLs can express
algorithms using higher-level concepts specific to that domain and have a natural meaning to
the application developer. The DSL can take advantage of this meaning and any accompanying
restrictions to perform a wide range of optimizations to generate efficient code for the target hard-
ware. Domain-specific languages and declarative programming hold promise, raising abstraction
to separate concerns of performance and the description of the computations.

In HPC, DSLs have shown particular promise in addressing two key challenges. Firstly,
they facilitate performance portability through architecture-agnostic problem descriptions that
abstract away low-level processor details. The high-level descriptions effectively allow the
application developer to describe the problem to be computed instead of how the problem should
be computed. Secondly, they aid application productivity by raising the level of abstraction for
algorithm expression while retaining control over optimization opportunities. Together, these
advantages have driven extensive research into DSLs for HPC applications over the past years.

One such domain-specific language family is the Oxford Parallel Domain-Specific Languages,
consisting of two active libraries or embedded DSLs OPS [11] and OP2 [12]. Embedded Domain-
Specific Languages (eDSLs) are DSLs that are embedded into a host programming language
and behave like a traditional library. This approach takes advantage of the capabilities and
flexibility of the host language while providing the advantages of the traditional DSL approach
to the application where needed. These libraries provide DSL abstractions targeted at Partial
Differential Equation (PDE) solvers embedded in C/C++ and Fortran. Domain experts author
PDE solvers within these DSLs through high-level parallel loops, expressing computations
through element kernels while abstracting away parallel execution details and data movement.
During compilation, the libraries use a code generation step to generate target-specific parallel

5

implementations for the parallel loops, applying a wide range of optimizations.
My primary motivation is to research the boundaries and capabilities of the domain-specific

language approach and push it to create performance-portable solutions for new areas and problem
classes. My research focuses on domain-specific languages for computations on structured and
unstructured meshes.

As a first step of my research, I concentrated on increasing the robustness of the code
generation step of DSLs, making it more applicable in industrial environments. I aimed to move
the complexity of supported programming models from the code generator to parallelization
skeletons or templates used to generate the parallel implementations for the applications and,
simultaneously, take advantage of using a compiler toolchain to generate the code.

The second half of my research focuses on providing performance portable solutions for new
application classes. I worked on two extensions to the OPS DSL. The first area is support
for linear solvers for scalable batch-tridiagonal equations for ADI applications, and the second
is using OPS to compute sensitivities for the output of OPS applications with Algorithmic
Differentiation.

1.3 Oxford Parallel Domain-Specific Languages

Oxford Parallel Domain-Specific Languages (OP-DSL) family[13] contains two eDSL targeting
high-level performance portable solutions for two of the 13 dwarfs of high-performance computing
[14]: structured and unstructured grid computations. The 13 dwarfs are classes of important
application areas such that algorithms in the same class can be implemented differently, and the
underlying numerical methods may change over time. However, the claim is that the underlying
patterns have persisted through generations of changes and will remain important into the
future[14].

With restrictions on the supported class of applications DSLs can move the abstractions to an
even higher level and provide better performance and more specialized code compared to general
tools. DSLs often use code generation techniques to produce code that includes sophisticated
orchestration of parallel executions, such as various coloring strategies (to handle data races)
and modifications to the elementary kernel that the high-level application programmer would
not have to implement themselves manually.

The OP-DSL family provides abstractions to describe the applications at a parallel loop level
with high-level constructs and verbose descriptions of the used data and access patterns. Based on
this information, the DSL can generate a target-specific optimized implementation of the parallel
loop with drastic optimizations such as loop tiling[11], [15]. The code generation approach starts
from a hardware-agnostic high-level code, which allows the developer to write the application
code once and use the platform-specific highly efficient implementations for all the supported
architectures, improving the productivity of the developer and the performance portability of
the created application. Other frameworks targeting a different domain include Devito [16],
STELLA [17] (and its successor GridTools) and PSyclone [18].

Oxford Parallel Library for Structured mesh solvers (OPS) and OP2 have similar architecture
and Application Programming Interface (API). Figure 1.1 shows the high-level architecture of
the DSLs. OPS and OP2 applications are written in C/C++ or Fortran where the DSLs behave

6

Figure 1.1: The high-level architecture of OP2 and OPS Domain-Specific Languages.

as traditional libraries meaning the OP2/OPS application on the figure is a valid sequential
application. The user can compile and run the application, which enables quick and easy
development with traditional methods. Both DSLs consider the application as a series of
computational loops and use verbose API calls to describe these loops in order to generate target-
specific implementations for them, which in turn can be compiled with traditional methods linking
to the target-specific backends. The key part of the structure is the source-to-source translation
layer of the DSLs. OPS and OP2 parse the C++ application into an intermediate representation
containing the description and metadata of the computational loops and relevant data. From this
representation, they will generate two main components. The first is a modified application code
that is compatible with the different parallel or even distributed memory backends of the DSLs.
The second is a set of platform-specific optimized implementations for each computational loop.
The modified application files then can be compiled together with the kernel implementations
and linked to one of the OP2/OPS platform-specific optimized backend libraries. These backends
handle all details about data allocation, movement, communication, scheduling, and other details
that are required for performance on the given hardware and configuration. The advantage of this
design is the direct support for different hardware, often with widely different programming models,
from the same high-level application without compromising on the performance achievable by
the low-level approaches of different platforms. Moreover, through the support of communication
libraries the OP2/OPS applications can scale on multinode systems or large clusters. The main
difference between the two DSLs comes naturally from the common computational patterns used
for the two application classes.

1.3.1 OP2 for Unstructured Mesh Solvers

The Oxford Parallel Library for Unstructured mesh solvers (OP2) DSL is the second version of
the OPlus library, focusing on automatically parallelizing unstructured mesh computations. The
initial version was a traditional software library that supported MPI parallelization, whereas
OP2 can be referred to as an “active” library or an embedded DSL. OP2 was among the first
high-level abstraction frameworks to apply this approach to production applications [19]. Similar
frameworks for unstructured mesh applications include FeniCS [20], Firedrake [21], [22] and

7

PyFR [23].

Figure 1.2: Example unstructured grid with cells, edges, and vertices. The key attribute of the
unstructured grids is that the connectivity of elements can’t be determined solely
from the indices, but it requires explicit mappings. In OP2 the user can define data
on these mesh elements and the connectivity between the sets through mappings.

The library builds on an API that expresses the computations on unstructured meshes. The
abstraction consists of four major components. The first is a mesh made up of a number of sets
(such as cells, edges, and vertices), the second is the connections between sets (e.g., an edge
is connected to two vertices or cells connected to edges), the third is the data defined on sets
(such as coordinates on vertices, or pressure/velocity on a cell center) and finally the fourth
is the computations performed on every element of a given set in the mesh. This abstraction
enables the expression of various static unstructured meshes. Figure 1.2 shows the declaration
of a mesh consisting of three sets, the blue rectangles marking the indices of the cells, the red
circles showing the vertices, and the numbers on the lines are the indices of the edges. Note that
we cannot give a formula to compute the index of a neighboring element in the grid from the
indices. Hence, unstructured grids use explicit mappings to connect neighboring grid elements
within the sets and across multiple sets.

A user begins by establishing a mesh and provides all relevant data and metadata to the library
through the OP2 API. This API is presented as a conventional software interface integrated into
C/C++ or Fortran. From there on, any interaction with the data given to OP2 must be via
these API methods. In essence, OP2 creates an internal private replica of the data, allowing it
to modify the data structure to optimize performance for the intended platform. After mesh
configuration, calculations are expressed as parallel loops on a specific set. The “computational
kernel” is applied to each set element, utilizing data accessed either directly from the iteration
set or through one level of indirection. The access type is also specified, whether it’s read, write,
read-write, or associative increment. Algorithms solvable by OP2 are limited to those where the
sequence of element execution doesn’t influence the final outcome within the machine’s precision.
Moreover, users can provide mesh-invariant data to the elemental computational kernel and

8

Listing 1.1 Specification of a mesh, datasets, and an OP2 parallel loop on the edges reading
data on the edges and incrementing on the cells of the grid

1 /* ----- elemental kernel function in res.h ------*/
2 void res(const double *edge,
3 double *cell0, double *cell1){
4 //Computations, such as:
5 cell0 += *edge; *cell1 += *edge;
6 }
7 /* ---------- in the main program file -----------*/
8 // Declaring the mesh with OP2
9 // sets

10 op_set edges = op_decl_set(numedge, "edges");
11 op_set cells = op_decl_set(numcell, "cells");
12 // mappings - connectivity between sets
13 op_map edge2cell = op_decl_map(
14 edges, cells, 2, etoc_mapdata, "edge2cell");
15 // data on sets
16 op_dat p_edge = op_decl_dat(edges, 1, "double", edata, "p_edge");
17 op_dat p_cell = op_decl_dat(cells, 4, "double", cdata, "p_cell");
18

19 // OP2 parallel loop declaration
20 op_par_loop(res, "res", edges,
21 op_arg_dat(p_edge, -1, OP_ID , 4, "double", OP_READ),
22 op_arg_dat(p_cell, 0, edge2cell, 4, "double", OP_INC),
23 op_arg_dat(p_cell, 1, edge2cell, 4, "double", OP_INC));

conduct reductions.
The design of these parallel loops was deliberately crafted to support just a few computational

and memory access patterns: direct access, indirect reading, and indirect writing or incrementing.
This high-level definition grants OP2 the flexibility to parallelize these loops, choosing the most
suitable implementation and optimizations for a specific platform. Essentially, this abstraction
enables OP2 to produce code that’s customized to the situation. The diverse parallelizations and
performance outcomes of real-world applications employing OP2 have been documented in prior
works, as seen in [19], [24]. These showcase almost peak performance across various architectures,
encompassing multi-core CPUs, GPUs, and clusters of both CPUs and GPUs [19], [24]–[28].
The generated parallelization uses an even more extensive range of programming models such
as OpenMP, OpenMP4.0, CUDA, and OpenACC, and their combinations with MPI and even
simultaneous heterogeneous execution.

A mesh similar to the one shown in Figure 1.2 is defined on OP2 through a series of API
calls shown in Listing 1.1. The figure also shows a definition of an OP2 parallel loop using the
description of data access used in the loop. In this example, the loop operates on the set of the
edges in the mesh, performing the same computation per edge (the elemental kernel) defined in
the function res, reading the data from the edges p_edge directly while updating the data for
the two neighboring cells, p_cell, adjacent to the edge, indirectly using the edge2cell mapping.
The op_arg_dat object holds all the important details of how an op_dat’s data is accessed in the
loop. The descriptor requires the op_dat, followed by its indirection index, the op_map used to
access the data indirectly, the arity of the data in the op_dat, and the type of the data. The final
argument is the access mode of the data, read-only, increment, and others (such as read/write

9

and write only).
The op_par_loop function encapsulates all the essential details about the computational loop

required for parallelization. Consequently, because of this abstraction, the parallelization hinges
on just a few parameters. These include the presence of indirectly accessed data or reductions
within the loop, in addition to the data access patterns that are conducive to optimizations. OP2
group the computational loops into two main categories direct and indirect loops. A parallel loop
is direct if it does not write or increment datasets through indirections. In this case, the loop does
not require any synchronization (apart from reductions on scalar values). In the case of indirect
loops, the loop will write datasets on indirectly accessed datasets. In most cases, this leads to
multiple iterations writing the same values e.g. two cells increment data on the connecting edge.
The connectivity of the elements is only known at runtime. OP2 supports multiple solutions to
avoid the arising data races. The most common is to use coloring of the grid, and running the
elements of different colors separately with synchronization between the colors. The DSL handles
the application as a series of loops a single op_par_loop holds enough information to parallelize
within a loop and the abstraction lets OP2 to follow the data accesses and dependencies between
loops at runtime. OP2 generates calls to MPI halo exchanges using op_mpi_halo_exchanges()
inside the parallel loop implementations to facilitate distributed memory parallelism together
with OpenMP. OP2 implements distributed memory parallelization as a classical library in
the backend. As the computation requires values from neighboring mesh elements during a
distributed memory parallel run, halo exchanges are needed to carry out the computation over
the mesh elements in the boundary of each MPI partition. Additionally, data races over MPI are
handled by redundant computation over the halo elements [25]. This approach with the runtime
information available through the API enables the DSL to minimize data movement between MPI
nodes, perform checkpointing automatically, handle data movement between different memory
environments in the case of GPUs, and provide similar application-level features.

1.3.2 OPS for Structured Mesh Solvers

The Oxford Parallel Library for Structured mesh solvers (OPS) [11] is an eDSL designed to
bridge the gap between high-level scientific stencil computations and the optimal use of parallel
and distributed systems. OPS is integrated into C, C++, and Fortran, similarly to OP2,
and offers computational scientists and engineers a set of abstractions tailored for structured
mesh calculations. By separating the high-level application code from the low-level parallel
implementation, OPS alleviates the burden on scientists and engineers to delve into the intricate
aspects of parallelism and data movement. This approach enables them to craft a singular
high-level source code, while the library handles the nuances of optimizing for the designated
architectures.

Stencil computations apply a specific operation to each element of a Cartesian grid accessing a
fixed pattern of neighboring elements, called a stencil. Essentially, a stencil defines the method to
combine the values of adjacent cells in a grid to determine a new value for a particular cell. These
computations are prevalent in numerous domains, such as CFD [29], [30], climate modeling [31],
[32] and computational finance [33], [34]. They are efficient and scalable, making them suitable
for large-scale simulations on parallel computing architectures. The process of parallelizing

10

Listing 1.2 Example declaration of an OPS dataset and its use in an OPS parallel loop.
1 // User kernel
2 void stencil(const ACC<double> &u, const ACC<double> &f,
3 ACC<double> &u2) {
4 u2(0, 0) = ((u(-1, 0) + u(1, 0)) * dy * dy +
5 (u(0, -1) + u(0, 1)) * dx * dx -
6 f(0, 0) * dx * dx * dy * dy) /
7 (2.0 * (dx * dx + dy * dy));
8 }
9 // ...

10 // Declaring a dataset on a block
11 int size[2] = {size_x, size_y}
12 int base[2] = {0, 0};
13 // max halo depths for the dat in all direction
14 int d_p[2] = {1, 1};
15 int d_m[2] = {-1, -1};
16 ops_dat u = ops_decl_dat(block, 1, size, base, d_m, d_p,
17 nullptr, "double", "u");
18 // Execute a given loop on the block
19 int iter_range[] = {0, size_x, 0, size_y};
20 ops_par_loop(stencil, "stencil", block, 2, iter_range,
21 ops_arg_dat(u, 1, S2D_4PT, "double", OPS_READ),
22 ops_arg_dat(f, 1, S2D_00, "double", OPS_READ),
23 ops_arg_dat(u2, 1, S2D_00, "double", OPS_WRITE));

stencil codes is relatively straightforward. The techniques to optimize and execute stencil loops
effectively on modern parallel platforms have been extensively researched [35]–[37].

OPS defines several fundamental abstractions for expressing computations. Blocks represent
multi-dimensional containers on which datasets are defined. Similarly to OP2, datasets are
collections of data entities associated with blocks (instead of sets) and are used in the compu-
tational kernels through the user-defined stencils describing the access pattern of the datasets.
Computations within OPS are generally formulated using the parallel loop calls, where custom,
user-defined kernels are applied across designated iteration spans and datasets on the same block.
In the phase of automatic transformation, OPS substitutes these parallel loop calls with calls to
parallel implementations specific to the intended target. The loops require the users to define the
mode of access for each dataset by the kernel – such as data being read, written, or incremented –
along with the distinct stencil design that directs data access. OPS requires the parallel operation
to be insensitive to the order of execution on individual grid points (within machine precision).
Through this abstraction, domain experts can express algorithms for structured meshes without
detailing the execution method in a parallel environment with heterogeneous memory spaces.

Listing 1.2 illustrates the API for forming a dataset on a block and subsequently utilizing
the datasets in an OPS parallel loop, taken from the Poisson example application. Scientists
convey the computation through these computational loops, supplying the loop body to be
enacted for each grid point, the block, the iteration span, and a descriptor for every loop body
argument. These descriptors contain details about the dataset, the access mode, the stencil, and
the inherent data type. The source-to-source translation layer of OPS processes this information
and generates the hardware-specific low-level parallel implementations for the kernel. OPS
supports and generates code for a range of target hardware with different parallel programming

11

models such as OpenMP, OpenACC, CUDA, and their combination with MPI. There’s no need
for users to alter the OPS application source to take advantage of these frameworks. The
transformed source code is then compiled using traditional compilers and linked against OPS
backend libraries.

It is important to highlight that OPS takes ownership of all datasets and can exclusively
be accessed through APIs. This allows OPS to monitor and follow the state of each dataset,
determining when data transfers are needed, for example, between CPUs and GPUs. The ability
to track data movement and dependencies across the application has proven crucial in enabling
OPS to implement sophisticated optimizations, including loop tiling and lazy execution[11].

OPS enhances the productivity of researchers by enabling them to develop a single high-level
application source, which then automatically benefits from all the optimizations OPS offers for
both existing and upcoming architectures. While adopting the OPS abstraction does involve
certain costs, like refactoring loops into outlined loop bodies and ops_par_loop calls, the payoff
is substantial. By maintaining a singular codebase, the application can effortlessly gain access to
highly optimized implementations for an extensive variety of hardware platforms.

1.4 Source-to-source translation in HPC

Source-to-source transformations and code generation is used in many HPC frameworks, par-
ticularly as a means to help application developers write programs for new hardware. Some
of the earliest were motivated by the emergence of NVIDIA GPUs for scientific computations.
Williams et al. [38], [39] showed that with proper annotations on the source written in the
MINT programming model [40], the ROSE compiler tool-chain [41] can be used to generate
transformations to utilize GPUs. ROSE was also previously explored as a source-to-source
translator toolchain in the initial stages of the OP2 project [42]. However, it proved hard to
maintain and required substantial coding effort to change the generated code or adopt new
parallelization models. Ueng et al. with CUDAlite [43] showed that the memory usage of existing
annotated CUDA codes can be optimized with source-to-source tools based on the Phoenix
compiler infrastructure. Other notable works include translators such as O2G [44] based on the
Cetus compiler framework [45], which is designed to perform source-to-source transformations
based on static data dependence analysis and the hiCUDA [46] programming model which use a
set of directives to transform C/C++ applications to CUDA using the front-end of the GNU
C/C++ compiler. Another notable source-to-source transformation tool is Scout [47], which
uses Low Level Virtual Machine (LLVM)/Clang to vectorize loops using SIMD instructions at
the source level. The source-to-source transformation entails replacing expressions with their
vectorized intrinsic counterparts. Other parallelizations are not supported. To achieve this, Scout
modifies the AST of the source code directly. The tools’ capabilities have been applied to the
production-level Computational Fluid Dynamic (CFD) codes at the German Aerospace Centre.

There are two main issues with the above works: (1) difficulties in extending them to generate
new parallelizations or generating multiple target parallel code and (2) the underlying source-
to-source translation tool relying on unmaintained software technologies due to their lack of
adaptation by the community. Both these issues make them difficult to use in eDSLs such as OP2,
which has so far relied on tools written in Python to carry out the translation of higher-level API

12

statements to their optimized platform-specific versions. In fact, Python has been and continues
to be used in related DSLs and active library frameworks for target code generation. These
include, OPS [48], Firedrake [21], OpenSBLI [49], DeVito [16] and others. However, the tools
written in Python significantly lack the robustness of compiler frameworks such as Clang/LLVM
or GNU. These tools are capable of limited syntax or semantic checking only, have even limited
error/bug reporting to ease the development, and become complicated very quickly when adding
different optimizations, which in turn affect its maintainability and extensibility.

Previous works with LibTooling include [50], [51], which demonstrate its use for translation of
annotated C/C++ code to CUDA using the MINT programming model. While the goals of my
research in 2 are similar, it focuses on the use of LibTooling not only for generating CUDA code
but to support other parallelizations such as OpenMP, SIMD, and MPI, as well.

1.5 Alternating Direction Implicit (ADI) Method

The OPS and OP2 DSLs allow for the description of a wide range of structured- and unstructured-
mesh algorithms, making them applicable to a relatively broad range of problems. However,
there are a handful of frequently used algorithms for the solution of linear systems of equations -
implicit solvers - that are highly computationally expensive, and given a relatively narrow set
of implementation parameters, they lend themselves to specialized implementations. They also
commonly use algorithms that do not fit the abstraction of OP2/OPS; for example by violating
the order-independence restriction. A prime example is the ScaLAPACK [52], [53] - the Scalable
Linear Algebra PACKage - numerical applications often spend a high fraction of their execution
time in implicit solves, therefore any performance improvements have a relatively large impact
on overall application performance; there is a long history of developing tuned implementations
for various hardware architectures [54]–[58].

The Alternating Direction Implicit (ADI) method is a numerical technique used primarily
to solve partial differential equations (PDEs), especially those that are parabolic or elliptic.
Originally ADI was developed to solve the 2D diffusion equation on a Cartesian grid using
finite differences[59]. It is particularly useful for multidimensional problems, such as those
involving two or three spatial variables. The method is a form of operator splitting that allows
for implicit time-stepping while reducing the complexity of solving the resulting systems of
equations. Implicit methods solve PDEs by solving a system of equations at each time step.
The solution of these equations can be computationally expensive. Operator splitting methods
(such as ADI) the multidimensional PDE into a series of lower-dimensional problems that are
easier to solve and approximating the solution of the original equations. In the case of ADI, the
resulting lower-dimensional problems are one-dimensional tridiagonal or pentadiagonal systems.
ADI applies these implicit steps one after the other, alternating the direction in which they are
applied. While the library support for these linear system solvers on different hardware is growing,
batched tridiagonal and pentadiagonal system solvers are often missing or lack performance in
these libraries.

As an example let’s look at how would ADI approach a 2D heat equation on a uniform grid.

13

X

Y
Original 2D problem

un → un+1

Half step I:
solution in X direction

un → un+1/2

Half step II:
solution in Y direction

un+1/2 → un+1

Figure 1.3: ADI half steps on a 2D uniform grid. In the half steps, the red arrows mark the
required independent 1D systems that require solutions to advance the state.

The 2D heat equation:
∂u

∂t
= ∂2u

∂x2 + ∂2u

∂y2

After discretisation we have un
i,j representing the temperature at grid point (xi, yj) at time

step n. Using finite differences the second derivatives are approximated as:

∂2u

∂x2 = ui+1,j − 2ui,j + ui−1,j

∆x2

∂2u

∂y2 = ui,j+1 − 2ui,j + ui,j−1
∆y2

The ADI method will define two half steps to compute un+1 at timestep n. The first half step
will compute un+1/2 as:

u
n+1/2
i,j − un

i,j

∆t/2 =
u

n+1/2
i+1,j − 2u

n+1/2
i,j + u

n+1/2
i−1,j

∆x2 +
un

i,j+1 − 2un
i,j + un

i,j−1
∆y2

Note that the unknowns in the equation rearranging for u
n+1/2
i,j form tridiagonal equation systems

along the X dimension. After solving these equations the second half step will compute un from
the intermediate solution using similar tridiagonal systems along the Y dimension:

un+1
i,j − u

n+1/2
i,j

∆t/2 =
u

n+1/2
i+1,j − 2u

n+1/2
i,j + u

n+1/2
i−1,j

∆x2 +
un+1

i,j+1 − 2un+1
i,j + un+1

i,j−1
∆y2

The ADI method will apply these alternating half steps at each timestep. Figure 1.3 shows
how each half step requires the solution of a batch of tridiagonal equation systems forming along

14

one dimension of the grid. Together, the solution of these systems will provide the state of the
next time iteration. To compute a single half-step ADI methods will require the solution of
independent tridiagonal equation systems along the other directions, in other words computing
the half-step in X direction requires solving NY independent systems, similarly the half-step
in Y will require NX solves. With increasing the number of spatial dimensions the number of
independent systems (the batch size) increases by a factor of the size of the new dimension while
the number of implicit steps (batch-tridiagonal problems) required to compute a timestep also
increases. The key advantage of the ADI method is the lower computational complexity which
becomes more and more significant as the number of spatial dimensions increases. At the same
time, the increasing number of batch problems and the increasing size of these problems create
new challenges and make the efficient solution of large batch tridiagonal systems along different
directions of the computational grids a crucial point for performance in ADI applications.

1.6 Tridiagonal Systems Solver Algorithms

Tridiagonal systems solvers arise from the need to solve a system of linear equations as given
in (Equation (1.1)) or its matrix form of Ax = d given in (Equation (1.2)), where a0 = cN−1 = 0.

aiui−1 + biui + ciui+1 = d,

i = 0, 1, . . . , N − 1
(1.1)

b0 c0 0 . . . 0
a1 b1 c1 . . . 0
0 a2 b2 . . . 0
...

...
...

0 0 . . . aN−1 bN−1

u0

u1

u2
...

uN−1

=

d0

d1

d2
...

dN−1

(1.2)

The solution to such systems is well known. Thomas [60] presented a sequential algorithm -
the specialization of the well-known Gaussian elimination for tridiagonal systems - while Cyclic
Reduction (CR) [61] and PCR [62] are inherently parallel. The latter has been used extensively
to implement solvers on GPUs [63]–[65]. Additionally, combinations of Thomas and PCR have
been used in a hybrid algorithm, demonstrating better performance in several cases [65], [66].
In most applications, the tridiagonal systems are scalar, with only one unknown per grid point.
However, multiple unknowns leading to block-tridiagonal structures do occur in areas such as
CFD. This chapter focuses on scalar tridiagonal systems, noting that the same algorithms extend
naturally to block-tridiagonal systems.

The Thomas Algorithm (Algorithm 1), just like Gaussian elimination, consists of a forward
pass to eliminate the lower diagonal elements, ai of the tridiagonal matrix, by adding a multiple
of the row above. A backward pass follows using the modified ci values from the last index to
the first. This algorithm is inherently serial, as each iteration of the loops has a dependency on
the previous iteration, taking 2N steps.

The CR algorithm uses two phases to solve the tridiagonal systems. The first phase. the

15

Algorithm 1 thomas(a, b, c, d)
1: d∗

0 ← d0/b0
2: c∗

0 ← c0/b0
3: for i = 1, 2, ..., N − 1 do
4: r ← 1/(bi − aic

∗
i−1)

5: d∗
i ← r(di − aid

∗
i−1)

6: c∗
i ← rci

7: end for
8: for i = N − 2, ..., 1, 0 do
9: di ← d∗

i − c∗
i di+1

10: end for
11: return d

e

0

e

1

e

2

e

3

e

4

e

5

e

6

e

7

e’

1

e’

3

e’

5

e’

7

3

e”

7

e”

x3 x7
1

e’

5

e’

x1 x3 x5 x7
0

e

2

e

4

e

6

e

x0 x1 x2 x3 x4 x5 x6 x7

Step 1: Forward Reduction of e

Step 2: Forward Reduction of e’

Step 3: Solve 2 unknown system e”

Step 4: Backward Substitution to e’

Step 5: Backward Substitution to e

Figure 1.4: Steps of the CR algorithm for a system of size 8.

forward reductions, halve the number of unknowns in every step by eliminating every second
unknown from the equation system. Figure 1.4 shows the steps of the CR algorithm on a system
with N = 8 unknowns. When there are only two unknowns remain the CR algorithm computes
these variables and start the backward substitution phase by back substituting the equations
from the forward reductions in reverse order.

In contrast, the PCR algorithm (Algorithm 2), assumes the matrix is normalized so that bi = 1
and then, similarly to CR, for each matrix row i, subtracts multiples of rows i±20, 21, 22, ..., 2P −1,
where P is the smallest integer such that 2P ≥ N . Each iteration of the PCR algorithm reduces
each of the current systems (a(p−1), c(p−1), d(p−1)) into two systems of half the size (a(p), c(p), d(p))
as Figure 1.5 shows. After P steps, all of the modified a(P) and c(P) coefficients become zero,
leaving values for the unknowns ui in d

(P)
i . The key difference to CR is the fact that the PCR

algorithm trades the backward substitution phase from CR to redundant computations which
are computed at the same time.

In PCR, the iterations of the inner loop do not depend on each other, allowing multiple

16

Algorithm 2 pcr(a, c, d)
1: for p = 1, 2, ..., P do
2: s← 2p−1

3: for i = 0, 1, ..., N − 1 do
4: r ← 1/(1− a

(p−1)
i c

(p−1)
i−s − c

(p−1)
i a

(p−1)
i+s)

5: a
(p)
i ← −r(a(p−1)

i a
(p−1)
i−s)

6: c
(p)
i ← −r(c(p−1)

i c
(p−1)
i+s)

7: d
(p)
i ← r(d(p−1)

i − a
(p−1)
i d

(p−1)
i−s − c

(p−1)
i d

(p−1)
i+s)

8: end for
9: end for

10: return d(P)

1 c0
a1 1 c1

a2 1 c2
a3 1 c3

a4 1 c4
a5 1 c5

a6 1 c6
a7 1

1 c∗0
a∗2 1 c∗2

a∗4 1 c∗4
a∗6 1

1 c∗1
a∗3 1 c∗3

a∗5 1 c∗5
a∗7 1

-
-

-
-

-
-

-
-

-
-

-
-

-

-

Figure 1.5: Result of a single iteration of the PCR algorithm. After the iteration, every second
row will form a separate tridiagonal system.

threads to be used to solve each tridiagonal system. PCR is more computationally expensive
than the Thomas algorithm. Nevertheless, it is well suited for implementations on modern
multi-core/many-core architectures with high computational capabilities. The CR algorithm is
similar to PCR but consists of a forward and backward pass. The forward pass of CR is the
same as the PCR algorithm but with an additional reverse pass that performs a back solve. This
results in fewer operations overall but exhibits less parallelism and requires twice as many passes.

1 c∗0
a∗1 1 c∗1
a∗2 1 c∗2
a∗
3 1 c∗3

a∗
4 1 c∗4

a∗5 1 c∗5
a∗6 1 c∗6
a∗
7 1 c∗7

a∗
8 1 c∗8

a∗9 1 c∗9
a∗10 1 c∗10
a∗
11 1

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

=

d∗
0

d∗1
d∗2
d∗
3

d∗
4

d∗5
d∗6
d∗
7

d∗
8

d∗9
d∗10
d∗
11

Figure 1.6: Tridiagonal matrix split into 3 subsystems after the hybrid Thomas-PCR forward
pass [65]. The reduced system is shown in bold and M = 4.

17

Algorithm 3 hybrid_forward(a, b, c, d)
1: for i = 0, 1 do
2: d∗

i ← di/bi

3: a∗
i ← ai/bi

4: c∗
i ← ci/bi

5: end for
6: for i = 2, 3, ..., M − 1 do
7: r ← 1/(bi − aic

∗
i−1)

8: d∗
i ← r(di − aid∗

i−1)
9: a∗

i ← −raia
∗
i−1

10: c∗
i ← rci

11: end for
12: for i = M − 3, M − 4, ..., 1 do
13: d∗

i ← d∗
i − c∗

i d∗
i+1

14: a∗
i ← a∗

i − c∗
i a∗

i+1
15: c∗

i ← −c∗
i c∗

i+1
16: end for
17: r ← 1/(1− c∗

0a∗
1)

18: d∗
0 ← r(d∗

0 − c∗
0d∗

1)
19: a∗

0 ← ra∗
0

20: c∗
0 ← −rc∗

0c∗
1

21: return a∗, c∗, d∗

1.6.1 Hybrid Algorithms

Combining Thomas with PCR has been shown to result in the best performance on GPUs [65].
The tridiagonal system is split into subsystems of size M , each of which is handled by a separate
thread. Each subsystem is solved using a modified Thomas algorithm where in a forward pass
(see Algorithm 3) each unknown is expressed in terms of two unknowns, u0 and uM−1:

a∗
i u0 + ui + c∗

i uM−1 = d∗
i , i = 1, 2, ..., M − 2.

The forward pass results in a reduced tridiagonal system made up of the unknowns at the
beginning and end of each subsystem, as can be seen in Figure 1.6. How this reduced system
is solved has a significant impact on the overall performance of the solver. Options for solving
this include the previously mentioned algorithms. Finally, the result of the reduced system is
substituted back into the individual subsystems, running a backward pass to solve each subsystem
(see Algorithm 4).

The Thomas-PCR implementation on NVIDIA GPUs developed by László et al. [65] has a
key advantage where up to a certain size of the system, the entire subsystem can be stored in
the registers of a warp (32 CUDA threads). It can outperform the other previously described
algorithms until the subsystem becomes too large to fit in a warp’s registers. Once this limit is
reached, a Thomas algorithm optimized for GPU memory accesses was shown to outperform the
Thomas-PCR hybrid.

Other hybrid algorithms have been proposed, such as a CR-PCR hybrid in [63], [66]. This
solver again targets GPUs and starts by using the CR algorithm due to its low algorithmic
complexity. Similarly to the Thomas-PCR, the hybrid CR-PCR uses the forward reduction of the

18

Algorithm 4 hybrid_backward(a∗, c∗, d∗)
1: d0 ← d∗

0
2: for i = 1, 2, ..., M − 1 do
3: di ← d∗

i − a∗
i d∗

0 − c∗
i d∗

M−1
4: end for
5: dM−1 ← d∗

M−1
6: return d

first algorithm (CR in this case) to create smaller reduced systems of size M . It then switches to
PCR when there is no longer enough parallelism to fully exploit the GPU. Solve the remaining
reduced system using the PCR algorithm. Finally, the algorithm substitutes the solved unknowns
back into the original systems using the backward substitution phase of CR.

A further alternative is the PCR-Thomas algorithm [66], which uses PCR to decompose the
tridiagonal system into multiple smaller tridiagonal systems and then solve these smaller systems
using the standard Thomas algorithm. The key difference between the Thomas-PCR [65] and
PCR-Thomas [66] is in the memory access patterns used during the solver algorithm. In the
case of Thomas-PCR the Thomas algorithm operates on consecutive indices to form the reduced
system (which is solved by PCR), which provides more optimizations on the memory accesses,
while starting with PCR will inherently start the algorithm with strided indices.

Regardless of the algorithm used, solving tridiagonal systems on parallel systems is considered
to be memory bandwidth bound, especially on GPUs [65]. Designing the memory access patterns
of the algorithms to give coalesced and aligned memory accesses is a key issue.

This is particularly true for the X dimension solve where the natural memory access pattern
prohibits coalesced memory operations. Various solutions to this issue have been proposed,
including global transposes [67] and local transposes [65].

1.6.2 Iterative Solutions

We have considered only algorithms providing exact solutions to tridiagonal systems. Iterative
methods with approximate solutions, such as the widely used Jacobi method, are also available.
Such approaches are applicable to solving general systems resulting in diagonally dominant
matrices, not only tridiagonal systems. The solution to Ax = d is sought starting from an initial
guess for the unknowns, iterating until a given convergence criterion is met. Algorithm 5 details
the Jacobi method applied to a tridiagonal system, where a, b and c are arrays holding the three
diagonals and d holds the right hand side of the equation.

Each iteration requires 5 operations per grid point for tridiagonal matrices, with an additional
cost of checking the convergence of the solution within a desired tolerance (approximate solution).
So, while an iteration of the Jacobi method is cheaper than a direct approach, multiple iterations
are needed, with many iterations required for poorly conditioned systems.

1.7 Current Library Support to Solve Tridiagonal Systems

Several algorithms have been proposed [68]–[71] for which the tridiagonal matrices can be split
over multiple processes. Partitioning-based algorithms like PCR-pThomas[72] proved to be

19

Algorithm 5 jacobi(a, b, c, d)
1: p← 1
2: while Not Converged do
3: x

(p)
0 ←

(
d0 − c0x

(p−1)
1

)
/b0

4: for i = 1, ..., N − 2 do
5: x

(p)
i ←

(
di − aix

(p−1)
i−1 − cix

(p−1)
i+1

)
/bi

6: end for
7: x

(p)
N−1 ←

(
dN−1 − aN−1x

(p−1)
N−2

)
/bN−1

8: checkIfConverged()
9: p← p + 1

10: end while
11: return x(p)

efficient on GPUs. For a small number of GPUs solving a single system, Chang et al.[73]
introduced a numerically stable solver based on the SPIKE algorithm [74] with diagonal pivoting.
Efficient multi-GPU batch tridiagonal solvers were introduced in Diéguez et al. [75], but the
implementation assumes that the GPUs own separate batches with full systems - which is not
the case in ADI use cases

TridiagLU [76] provides a state-of-the-art implementation for batches of tridiagonal systems
for CPU clusters. Many of these algorithms divide the system into partitions and form a smaller
decoupled tridiagonal system connecting the partitions (reduced system). In TridiagLU, the
partitioning is the MPI decomposition, and each MPI process holds a single row from the reduced
system.

The reduced system is solved iteratively using the Jacobi method, computing an approxi-
mate solution only. Instead of checking for convergence, an optional estimate of iterations for
convergence can be provided to TridiagLU (to avoid the residual calculation with extra global
communications). However, this limits its use to domains where it is possible to provide a good
estimate of the iterations required. For cases where estimating an iteration count for convergence
is not practical, TridiagLU can calculate a global norm to check for convergence at the expense
of some performance.

TridiagLU also has the option to gather a reduced system, corresponding to one tridiagonal
system, onto a single MPI process and solve it on that MPI process. The result is then scattered
back to the relevant MPI processes after the reduced solution. Different reduced systems in
the batch of tridiagonal systems will be gathered to different MPI processes so that the load is
balanced. Naturally, the use of global collectives degrades performance when using these options.
Therefore, these implementations do not scale beyond a certain number of MPI nodes.

The PaScal_TDMA library[77], [78] provides support for distributed solution of batched
tridiagonal systems for CPU clusters similarly to TridiagLU. The main difference that while
PaScal_TDMA supports solver calls along different dimensions, it only supports all-to-all
communication based solver algorithms for the reduced systems. Leading to the same issues on
large number of processes.

Although these libraries show relevant work, they lack support for common memory and
MPI layouts that are present in an ADI application, resulting in the use of expensive transpose
operations. My research aims to provide a performance portable solver library supporting both

20

GPU and CPU clusters computing exact solutions of the batch-tridiagonal systems for ADI
applications.

1.8 Sensitivities in structured-mesh applications

Sensitivity (mathematical derivative) information has a wide range of uses, such as gradient-based
design optimization for Computational Fluid Dynamic (CFD) applications [79]–[83], machine
learning [84], inverse problems [85], computational finance [86], [87], image processing [88],
medical imaging[89] or real-time risk management [90]. Algorithmic Differentiation (AD) is an
essential tool for obtaining sensitivity information in such applications: finite differences are often
too expensive (or inaccurate) while deriving and then evaluating symbolic gradient information
is often very laborious and can lead to brittle, error-prone code.

Algorithmic Differentiation, also known as Automatic Differentiation or AD, is a set of
techniques that can compute the exact derivatives of a function with respect to its input variables
by repeatedly applying the chain rule of calculus. Depending on the direction of the evaluation
of the chain rule, we distinguish between two different modes of AD: forward (tangent) mode
AD, where the evaluation order follows the order of the original computation, and reverse
(adjoint) mode AD, which evaluates the chain rule in reverse order. AD is particularly useful in
optimization problems where objective functions are not available in closed form and require
many hundreds or thousands of lines of computer code to evaluate. The function’s derivatives
are crucial in determining the direction and rate of change that will lead to the optimal solution.
One evaluation with forward mode AD will compute the derivatives of all outputs with respect
to a single input, while one evaluation with adjoint mode AD will produce the derivatives of one
output with respect to all inputs. A significant advantage of AD over finite difference approaches
is that it can compute derivatives of arbitrary order to machine precision, and in cases where the
application produces far fewer outputs than inputs, adjoint mode AD can compute the gradient
hundreds of times faster[91].

Adjoint-mode Algorithmic Differentiation (AAD) has been applied successfully for multiple
application areas in the past years. In CFD, AAD is used for optimizing the design of business
jets[79]. Guasch et al.[85] used AAD to compute accurate three-dimensional images of the brain
with high resolution from ultrasound recordings. In computational finance, AAD is the industry
standard to compute Greeks in option pricing problems[86], [87], and in medical imaging, AAD
can be used in registration problems to match the alignment of images from multiple sources like
X-ray and CT data[89].

Implementing derivatives of applications is difficult, error-prone, and particularly challenging
in a parallel environment [92]. Ideally, users would like to be able to describe what needs
to be computed in simple terms, including any derivative information, and then have a tool
or framework to generate an efficient parallel implementation, including choosing the most
appropriate method for obtaining the derivatives.

21

1.9 Algorithmic Differentiation

Algorithmic Differentiation (AD) is a set of techniques for computing derivatives of functions
represented as computer programs. Assume we have an application with some input variables
x ∈ Rn, which perform a series of steps and then compute the final result y ∈ Rm. If we take
this program as a mathematical function, F : Rn → Rm, AD will compute the value

x̄ = ∂F (x)
∂x

= ∂y

∂x
.

Working out and manually writing code to compute analytical derivatives directly could provide
the fastest solution, but it is error-prone and simply becomes infeasible for large applications. Most
commonly, there are three ways to compute the derivative information automatically: symbolic
differentiation in computer algebra systems, numeric differentiation with finite differences, and
algorithmic differentiation [92]. Symbolic differentiation computes derivatives by manipulating
symbolic expressions. It could provide exact derivatives, but it can be slow and requires the
problem to be defined as closed-form expressions [84], which in many cases is just not possible.
Using finite differences to estimate derivatives is sometimes the easiest to implement, but the
derivatives are subject to floating point precision, and getting accurate second or third-order
information can be a real challenge. Finally, AD evaluates derivatives by differentiating the
sequence of elementary arithmetic operations and elementary functions which make up a user’s
application, thus ensuring accuracy.

Algorithmic differentiation builds on the fact that a computer program, no matter how
complex, will always be constructed from a series of elementary operations such as additions,
multiplications, or math functions like sine. The derivatives of these elementary operations are
known and easy to compute. If we consider the function to be a composite with K elementary
steps F = f1 ◦ f2 ◦ · · · ◦ fK then

y = F (x) = fK(. . . f2(f1(x)))

and the derivative of y can be computed by applying the chain rule to all of the elementary
functions

∂y

∂x
= ∂f1

∂x

∂f2
∂f1
· · · ∂fK

∂fK−1
(1.3)

There are two main modes of algorithmic differentiation based on which direction we start to
evaluate Equation (1.3). Let J note the m × n Jacobian matrix of F with (i, j)th component
Jij = ∂fi

∂xj
and u ∈ Rn a vector in the input space. The tangent or forward-mode AD will compute

the action of the Jacobian matrix on u:

Ju = JKJK−1 · · · J1u

The forward-mode AD evaluates the derivatives in the same order as the original function
evaluation (if F is implemented in a computer program, this is the same order in which the
program evaluates statements). Choosing u to be a vector such that it is 1 for input j and 0
otherwise, a single evaluation of the tangent model will compute the jth column of the Jacobian,

22

in other words, the derivatives of all outputs with respect to a single input.
For adjoint or reverse-mode AD, let us consider w ∈ Rm, a vector in the output space.

Adjoint-mode AD will compute the action of the transpose of J on w:

JT w = JT
1 JT

2 · · · JT
Kw

Similarly to the previous case, let us choose w such that it has a single 1 at position i and
all other values are 0. A single evaluation of the adjoint model on w will produce the ith row
of J , or the derivatives of a single output with respect to all inputs. Evaluation of the tangent
model requires twice as much memory and typically takes roughly twice as long as the original
application. However, often derivatives with respect to multiple inputs are required.

The adjoint-mode AD evaluates derivatives in the reverse order, equivalent to running your
computer program backwards. Doing this requires storing a Directed Acyclic Graph (DAG) of
the program control flow in memory, along with local derivative information. This can cause
dramatic increases in memory requirements. The data structure that records the intermediate
states and the computational graph is often referred to as the tape. One of the main challenges is
to efficiently save all intermediate state and the computational steps (and their local Jacobians)
while computing the result of the program, so that one can propagate derivative information
from outputs back to inputs.

The choice between forward and reverse mode AD often depends on the target application.
The forward mode can perform better for applications with a few inputs and a lot of outputs,
and reverse mode AD shines in scenarios where a function has a large number of inputs but a
relatively smaller number of outputs, like gradient-based optimization and machine learning. Due
to its efficiency in such contexts, adjoint mode AD often receives special attention. This work
focuses on adjoint mode AD, where OPS can take advantage of a high-level decomposition of F

using computational loops as the fi composite functions instead of elementary operations. Most
adjoint mode AD tools belong to one of two categories: either they apply source transformation
to generate the adjoints of the function or use operator overloading techniques [91]. Source
transformation tools automatically transform the original code to produce a new program
that calculates the adjoint values, while operator overloading tools leverage the object-oriented
capabilities of C++ and other object-oriented languages to overload basic arithmetic operations
and functions to compute derivatives.

While tracing the original data flow with operator overloading is easier, the resulting tape
quickly increases in size. Source transformation tools can reduce the performance overhead of
adjoint calculations and potentially allow more drastic optimizations. In summary, algorithmic
differentiation provides an effective and accurate means to compute derivatives, with adjoint
mode AD being especially pertinent in contexts with numerous input variables and only a
small number of outputs. Its strategic application ensures the derivation of gradients with both
computational efficiency and high precision. Our approach uses source transformation techniques
that allow it to store the control flow on a higher level (at the level of entire parallel loops)
while also having the ability to apply transformations and optimizations on the loops to achieve
near-peak performance on parallel hardware.

I refer to the evaluation of the function F (with the additional caching and tape recording) as

23

the forward pass. The computations that are part of F are called primal, and their counterparts
computing the local Jacobian are called the adjoint of the computation. The evaluation of JT w

executing the adjoints of the computational steps in reverse order we call the reverse pass. We
refer to variables and computations that take part in the derivative accumulation as active and
all other data and code as passive. Finally, the variables holding the values and states during the
forward pass are called primal data, and for active data, we will refer to the variables holding
derivative values as adjoint data.

1.10 Algorithmic Differentiation in HPC

The ability to produce exact derivatives efficiently for many inputs made Adjoint mode AD
(AAD) tools popular. Despite the challenges of efficient implementation, AAD is used in many
different areas and applications using both source transformation based techniques and operator
overloading. Application areas include for example shape optimization tasks [93]–[95], or in CFD
solvers like the NASA ice Sheet System Model[96], OpenFOAM[97], [98] or STAMPS[99].

The most straightforward way to implement AAD is using operator overloading, which allows
the flexibility to easily follow complex control flow and different language constructs. Multiple
tools exist that efficiently use operator overloading, like Adept[100], dco/c++[101] or Sacado[102].
However, naively implemented operator overloading tools lead to large memory overheads for
storing the tape, which is often alleviated with advanced techniques like expression templates[103],
using direct derivatives of linear algebra constructs like in the Stan Math library[104] or additional
hybrid code generation extensions in case of dco/c++.

The other approach uses source-to-source transformation techniques to generate code to
compute the derivatives. This approach can reduce the overhead of tracing the computations at
the cost of more complex tooling. Examples of AAD tools with source transformation include
ADIC[105], Tapenade[106], OpenAD[107].

To utilize modern hardware efficiently, simulations and applications generally take advantage
of parallelism. Computing derivatives and reversing the data flow in a parallel environment
brings additional challenges for AD tools. The parallelization of derivative computations is
achieved in many ways in AD tools. A fairly simple approach is to compute different tangent
mode AD passes that are independent of each other in parallel computing different derivatives of
a serial application[108], [109] or with nested parallelism for a parallel application[110], [111]. For
reverse mode AD, there is an inherent complication. Because data flow is reversed, thread-safe
concurrent reads in the primal code become thread-unsafe concurrent writes in the adjoint code.
Handling these race conditions efficiently is a key concern. In [112], it was shown that, with
source transformation tools in combination with handwritten adjoint routines, it is possible to
get efficient parallel implementations for applications.

Another approach is the use of tool-agnostic extension libraries for handling parallelism,
which was introduced with the AMPI library[113], [114] for handling MPI constructs combined
with traditional AD tools, which has been shown to successfully integrate with the operator
overloading library dco/c++[115]. OpDiLib[116] is another tool-agnostic library for shared
memory parallelism with OpenMP or hybrid codes with OpenMP and MPI. The other approach
is to integrate special treatment of MPI constructs into the AD library, such as in CoDiPack[117]

24

and TAF [118], [119].
OpenMP parallelism is controlled through preprocessor #pragmas, which are hard to follow

with conventional operator overloading tools since there is no function to overload like in the
case of conventional MPI, and tools had to rely on constructors and destructors.

Multiple tools have recently developed extensions for supporting shared memory parallelism.
PARAD[120] extends the operator overloading tool Adept to support OpenMP parallel constructs,
and the OpDiLib[116], as mentioned earlier, supports OpenMP through either wrapping the
directives into macros or the event-based OMPT API. The source transformation tool Tapenade
also gained support for some OpenMP directives through a theoretical model[121] and a more
complete support for Fortran with a formal extension FormAD[122]. The Enzyme source
transformation tool performs the code generation inside the compiler on the LLVM IR level[123],
taking advantage of the optimization passes of the compiler prior to the code generation and
using rule-based transformations for OpenMP and MPI[124]. PerforAD showed the capability to
generate race-free OpenMP for adjoint-based loop transformations for stencil loops[125].

Similarly to the Stan Math Library, using specialized adjoint functions for linear functions
like matrix-matrix multiplication, AAD can be applied to CUDA applications efficiently[126]. A
handful of tools provide support for CUDA as well. AutoMat[127] shows possibilities for operator
overloading for CUDA kernels but heavily depends on recomputing values and lacks high-level
checkpointing strategies like Revolve. Enzyme showed the ability to generate adjoint kernels for
race-free CUDA kernels using the same mechanisms in the IR[128].

My research aims to provide a performance portable solution for stencil applications by sup-
porting both many-core CPUs through OpenMP shared memory parallelism and GPUs through
CUDA from a single high-level application source code taking advantage of the opportunities of
the abstraction of the OPS DSL.

1.11 Structure of the dissertation

My research aims to extend the capabilities of existing domain-specific languages to facilitate
their use as a performance-portable and future proof solution in the ever changing HPC landscape.
Each chapter of the dissertation discusses one area of my research related to improving the two
DSLs of the OP-DSL family, briefly introducing the theory and background of the specific area,
then describes my scientific contributions supporting my related theses.

Chapter 2 presents my research focusing on the code generation process of DSLs like OP2, the
DSL for unstructured meshes. First, I introduce the use of skeletons to minimize the number of
lines generated programmatically. Then, I show how the code generation can leverage a modern
compiler framework to increase the robustness of the code generation and detail the design
and implementation of OP2-Clang, a code generator based on Clang’s libTooling. Section 2.3
demonstrates OP2-Clang’s extensibility and modularity. I finish the chapter with an analysis of
the performance of the generated code.

In Chapter 3, I introduce my research on scalable solver algorithms for batch-tridiagonal
problems used in ADI applications. These solver algorithms are integrated into OPS and are used
by applications in Chapter 4. Section 3.1 outlines the motivation for high-performance tridiagonal
solvers. Section 3.2 starts with a novel distributed memory algorithm for batch-tridiagonal solvers

25

aiming to improve the MPI scalability of such solvers to enable the use of ADI on large-scale
CPU and GPU clusters. Then, Section 3.3 analyzes the scaling properties of the implemented
solver algorithms and highlights the trade-offs arising at scale.

Chapter 4 focuses on Adjoint-mode Algorithmic Differentiation of stencil applications. Sec-
tion 1.9 introduces the background of adjoint mode algorithmic differentiation and highlights the
core advantages that OPS can build on. Then, I introduce a model of the adjoint computations
based on the abstraction used to describe the original computation in OPS. I describe the
scheduling of the reverse pass and the code generation used to parallelize the adjoint loops. I
extend this model and library with support for computations outside of OPS. Finally, I provide
an abstraction to control the memory overhead of the derivative propagation using the Revolve
checkpointing strategy.

Finally, Chapter 5 summarizes the contributions of the dissertation. It shows the impor-
tant methods and tools used and briefly overviews new scientific results and their potential
applications.

26

2 Source-to-source translation for
unstructured-mesh applications

This chapter presents my research involving unstructured mesh computations and their mapping
to parallel hardware. As Section 1.4 discuss Domain-Specific Languages (DSLs) often use source-
to-source translation layers to produce optimized hardware-specific code from a higher abstraction.
However, these translation layers often build on fragile techniques (like basic sting manipulation
in Python) or exotic compiler ecosystems which leads to a high barrier for adoption. An other
problem is that these approaches lack basic tooling support and require large efforts to provide
proper diagnostics. My research aims to solve these problems by proposing the integration of the
translation layer into the industrial strength Clang/LLVM compiler toolchain. I introduced OP2
in Section 1.3.1 and its abstraction. My research focuses on improving the code generation used
by the DSL in two primary regards.

• I introduced a parallelization skeleton-based approach for code generation, drastically
reducing the amount of generated code with the main structure of the loops outlined in
the skeleton.

• I improved the robustness of the code generation library, moving it from a text-based
Python implementation into Clang’s compiler infrastructure, taking advantage of the
compiler’s representation of the source code.

The rest of this chapter is organized as follows. In Section 2.1, I briefly introduce the motivation
driving this work, including the limitations of the current source-to-source translation software.
In Section 2.2, I chart the design and development of OP2-Clang. Section 2.3 illustrates the ease
of extending the tool charting the case for the SIMD-vectorization and CUDA code generator.
Section 2.4 shows the performance of the generated parallel code and compares the results to the
code generated by the current OP2 source-to-source translator. Section 2.5 details conclusions
and potential applications of the results.

2.1 Motivation

Embedded DSLs such as OP2, provide an API embedded in general-purpose languages such
as C/C++/Fortran. They rely on source-to-source translation and code refactorization to
translate the higher-level API calls to platform-specific parallel implementations. OP2 targets
the solution of unstructured-mesh computations, where it can generate a variety of parallel
implementations for execution on architectures such as CPUs, GPUs, distributed memory clusters,
and heterogeneous processors making use of a wide range of platform-specific optimizations.

27

Compiler toolchains supporting the source-to-source translation of code written in mainstream
languages such as C/C++ or Fortran currently lack the capabilities to carry out such wide-ranging
code transformations. Available toolchains such as the ROSE compiler framework [38], [39], [41]
and others, have suffered from a lack of adoption by both the compilers and HPC community.
This has been a major factor in limiting the wider adoption of DSLs or active libraries with a
non-conventional source-to-source translator where there is a lack of a significant community of
developers under open governance to maintain it. The result is often a highly complicated tool
with a narrow focus, steep learning curve, inflexibility for easy extension to produce different
target code (e.g., new optimizations, new parallelizations for different hardware), and issues
with long-term maintenance. In other words, the lack of industrial-strength tooling that can
be integrated into a DevOps toolchain without any changes provokes a lack of growth in the
numbers of users and developers for DSLs or active libraries, which in turn is the source of
missing tools themselves, leading to a typical catch-22 or deadlock situation. The underlying
motivation of the research presented in this chapter is to break this deadlock by pioneering a
methodology using an industrial-strength compiler toolchain that can be integrated as-is in most
DevOps environments.

Clang/LLVM’s Tooling library (libTooling) [129] has long been touted as facilitating source-to-
source translation capabilities but has only demonstrated its use in simple source refactoring
and code generation tasks [130], [131] or in the transformation of a very limited subset of
algorithms without hardware-specific optimizations [50]. In this chapter, I introduce OP2-Clang
[132], a source-to-source translator based on Clang’s LibTooling for OP2. The broader aim is to
generate platform-specific parallel codes for unstructured-mesh applications written with OP2.
Two options to achieve this are: (1) translating programs written with OP2’s C/C++ API to
code with C++ parallelized with SIMD, OpenMP, CUDA, and their combinations with MPI,
etc., that can then be compiled by conventional platform-specific compilers and (2) compiling
programs written with OP2’s C/C++ API to LLVM Intermediate Representation (IR). The
former case, which is the subject of this research, follows OP2’s current application development
process and has been shown to deliver significant performance improvements. The latter case,
which will be explored in future work, opens up opportunities for low-level, application-driven
optimizations that would otherwise be unavailable to the source-to-source OP2 solution or to the
same application written as a generic C++ program. The development of OP2-Clang also aims to
provide additional benefits, which are challenging to implement in OP2’s current source-to-source
translation layer written in Python. These include full syntax and semantic analysis of OP2
programs with improved user development tools to diagnose and correct errors. Many of such
capabilities come for free when using Clang/LLVM. In this research, I chart the development of
OP2-Clang, outlining its design and architecture.

2.1.1 Code generation patterns in OP2

The OP2 API was constructed to make it easy for a parsing phase to extract the relevant
information about each loop that will describe which computation and memory access patterns will
be used - this is required for code generation aimed at different architectures and parallelizations.

The fact that only a few parameters define the parallelization means that in the case of two

28

Listing 2.1 Skeleton for OpenMP (excerpt) – direct kernels
1 // elemental kernel function
2 void skeleton(double * __restrict__ d) {}
3

4 void op_par_loop_skeleton(char const *name, op_set set, op_arg arg0) {
5 /*-------------- number of arguments --------------*/
6 int nargs = 1;
7 op_arg args[1] = {arg0};
8 /*---------------- Invariant code -----------------*/
9 int exec_size = op_mpi_halo_exchanges(set, nargs, args);

10 #pragma omp parallel for
11 for (int n = 0; n < exec_size; n++) {
12 if (n == set->core_size)
13 op_mpi_wait_all(nargs, args);
14 /*---*/
15 // set up pointers, call elemental kernel
16 skeleton(&((double *)arg0.data)[2 * n]);
17 }
18 }

Listing 2.2 Skeleton for OpenMP (excerpt) – indirect kernels
1 // elemental kernel function
2 void skeleton(double * __restrict__ d) {}
3

4 void op_par_loop_skeleton(char const *name, op_set set, op_arg arg0) {
5 /*-------------- number of arguments --------------*/
6 int nargs = 1; op_arg args[1] = {arg0};
7 int ninds = 1; op_arg inds[1] = {0};
8 /*---------------- Invariant code -----------------*/
9 int set_size = op_mpi_halo_exchanges(set, nargs, args);

10 op_plan *Plan = op_plan_get(name, set, 256, nargs, args, ninds, inds);
11 int block_offset = 0;
12 for (int col = 0; col < Plan->ncolors; col++) {
13 if (col == Plan->ncolors_core) {
14 op_mpi_wait_all(nargs, args);
15 }
16 int nblocks = Plan->ncolblk[col];
17 #pragma omp parallel for
18 for(int blockIdx = 0; blockIdx < nblocks; blockIdx++) {
19 int blockId = Plan->blkmap[blockIdx + block_offset];
20 int nelem = Plan->nelems[blockId];
21 int offset_b = Plan->offset[blockId];
22 for(int n = offset_b; n < offset_b + nelem; n++) {
23 /*---*/
24 // Prepare indirect accesses
25 int map0idx = arg0.map_data[n * arg0.map->dim + 0];
26 // set up pointers, call elemental kernel
27 skeleton(&((double *)arg0.data)[2 * map0idx]);
28 }
29 }
30 }
31 }

29

computational loops, the generated parallel loops have the same lines of code with only small
code sections with divergences. The identical chunks of code in the generated parallel loops
can be considered invariant to the transformation or boilerplate code that should be generated
into every parallel implementation without change. However, given that these sections largely
define the structure of the generated code, they can be viewed as an important blueprint of
the target code to be generated. This leads us to the idea of using a parallel implementation
(with the invariant chunks) of a dummy loop and carrying out the code generation process as a
refactoring or modification of this parallel loop. In other words, modify the dummy parallel loop
as a skeleton (or template) to generate the required candidate computational loop. For example,
Listing 2.1 and Listing 2.2 illustrate partial parallel skeletons we can extract for the generated
OpenMP implementation for direct and indirect loops.

In a direct loop, all iterations are independent of each other, and as such, the parallelization of
such a loop does not have to worry about data races except for global reductions. However, in
indirect loops, at least one op_dat is accessed using an indirection, i.e., via an op_map. Such
indirections occur when the op_dat is not declared on the set over which the loop is iterating.
In which case an op_map that provides the connectivity information between the iteration set
and the set on which the op_dat is declared over is used to access (read or write depending on
the access mode) the data. This essentially leads to indirect access.

With indirect loops, we must ensure that no two threads are simultaneously writing to the
same data location. This is handled through the invariant code responsible for ordering the
loop iterations in Listing 2.2. In this case, OP2 orchestrates the execution of iterations using a
coloring scheme that can take data locality into consideration [133].

2.2 Clang LibTooling for OP2 Code Generation

The idea of modifying the target parallelization skeletons forms the basis for the design of
OP2-Clang in this work. The alternative would require the full target source generation with the
information given in an op_par_loop. With such a technique, the variations to be generated for
each parallelization and optimization would have made the code generator prohibitively laborious
to develop and even more problematic to extend and maintain. The skeletons simply allow us to
reuse code and allow the code generator to concentrate on the parts that need to be customized
for each loop, optimization, target architecture, and so on. As such, we use multiple skeletons
for each parallelization. In most cases, one skeleton for direct and one for indirect kernels are
used, given the considerable differences in direct and indirect loops as given in Listing 2.1 and
Listing 2.2. The aim, as mentioned before, is to avoid significant structural transformation.

Clang’s Tooling library (libTooling) provides a convenient API to perform a range of varying
operations over source code. As such, its capabilities lend very well to the tasks of refactoring
and source code modification of a parallelization skeleton in OP2. The starting point of source-
to-source translation in OP2-Clang is to make use of Clang to parse and generate an Abstract
Syntax Tree (AST) of the code with OP2 API calls. The generated AST is used to collect the
required information of the sets, maps, data including their types and sizes, and information in
each of the parallel loops that make up the application. The second phase involves transforming
the skeletons with the information for each parallel loop. The two phases of code generation

30

OP2 Application (C/C++ API)

Modified
OP2 Application

Target Specific Optimized
Application Files

unstructured mesh problem

OP2-Clang

(Phase 1) AST analysis and data collection

MPI CUDAOpenMP SIMD

(Phase 2) Target Specific Code Generators

New ?

Conventional Compiler + Compiler Flags
(e.g. Icc, nvcc, pgcc, ifort, gfortran)

Parallel executable

CUDA

OpenMP

MPI

MPI+CUDA

Other

…

New ?

OP2 Platform Specific
Optimized Backend libraries

link

Figure 2.1: The high-level architecture of OP2-Clang and its place within OP2

and where they fit into the overall architecture of OP2 are illustrated in Figure 2.1. The output
of OP2-Clang will be compiled by conventional compilers, linking with OP2’s platform-specific
libraries for a given parallelization to produce the final parallel executable. Each parallel version
is generated separately.

2.2.1 OP2-Clang Application Processor

The first phase of OP2-Clang is responsible for collecting all data about the parallel loops, or
kernel calls, used in the application. This step will also perform semantic checks based on the
types of the op_dats. Particularly check whether the declared op_dats match the types declared
in the op_par_loop. However, such checks are not currently implemented but will be very
straightforward, given that all the information is present in the AST. The data collection and
model creation happens along the OP2 API calls. As the parser builds the AST with the help of
ASTMatchers [134], OP2-Clang keeps a record of the kernel calls, global constants, and global
variable declarations that are also accessible inside kernels.

During the data collection, this phase also carries out a number of modifications to the
application-level files that contain the OP2 API calls. Essentially, replacing the op_par_loop
calls with the function calls that implement the specific parallel implementations. Of course,
these implementations are yet to be generated in the second phase of code generation.

2.2.2 OP2-Clang Target Specific Code Generators

The second phase is responsible for generating the target-specific optimized parallel implementa-
tions for each kernel whose details are now collected within OP2-Clang. Given the information of
each of the op_par_loops the parallelization (currently one of OpenMP, CUDA, SIMD, or MPI),
we are generating code for and whether the loop is a direct or indirect loop, a target skeleton
can be selected.

The target code generation, then, is a matter of changing the selected skeleton at appropriate
places, using the properties of the candidate op_par_loop for which the generator will generate

31

Listing 2.3 Left: Parallelization skeleton for MPI (excerpt) Right: Generated MPI paralleliza-
tion (excerpt)
1 // elemental kernel function
2 void skeleton(double *__restrict__ d){
3 }
4

5

6

7

8 void op_par_loop_skeleton(
9 char const *name, op_set set,

10 op_arg arg0) {
11 /* ----- number of arguments ---- */
12 int nargs = 1;
13 op_arg args[1] = {arg0};
14

15 /* ------- Invariant code ------- */
16 int exec_size=op_mpi_halo_exchanges(
17 set, nargs, args);
18 for (int n = 0; n < exec_size; n++){
19 if (n == set->core_size)
20 op_mpi_wait_all(nargs, args);
21 /* ------------------------------ */
22

23 // prepare indirect accesses
24 int map0idx =
25 arg0.map_data[n*arg0.map->dim+0];
26

27

28

29 // set up pointers, call kernel
30 skeleton(
31 &((double*)arg0.data)[2*map0idx]);
32

33 }
34 // invariant code
35 ...
36 }

// elemental kernel function
void res(double * __restrict__ edge,

double * __restrict__ cell0,
double * __restrict__ cell1){

*cell0 += *edge; *cell1 += *edge;
}

void op_par_loop_res(char const *name,
op_set set, op_arg arg0,
op_arg arg1, op_arg arg2) {

/* ----- number of arguments ---- */
int nargs = 3;
op_arg args[3] = {arg0, arg1, arg2};

/* ------- Invariant code ------- */
int exec_size=op_mpi_halo_exchanges(

set, nargs, args);
for (int n = 0; n < exec_size; n++){

if (n == set->core_size)
op_mpi_wait_all(nargs, args);

/* ------------------------------ */

// prepare indirect accesses
int map0idx =
arg1.map_data[n*arg1.map->dim+0];

int map1idx =
arg1.map_data[n*arg1.map->dim+1];

// set up pointers, call kernel
res(&((double*)arg0.data)[n],
&((double*)arg1.data)[2*map0idx],
&((double*)arg1.data)[2*map1idx]);

}
// invariant code
...

}

a parallelization. For example, consider the op_par_loop in Listing 1.1. This loop is an
indirect loop with three arguments, one of which is a directly accessed op_dat and two of which
are indirectly accessed op_dats. The loop iterates over the set of edges, and the elemental
computation kernel is given by res. Listing 2.3 shows the simplest skeleton in OP2-Clang, the
skeleton for generating MPI parallelization, and the specific code that needs to be generated by
changing the skeleton for the above loop. The elemental kernel function needs to be set to res,
the number of arguments set to three while handling the indirections by using the mappings
specified for those arguments, and finally, the elemental kernel should be called by passing in the
appropriate arguments.

This type of transformation rhymes well with Clang’s RefactoringTool[135], [136], which can
apply replacements to the source code based on the AST. As such, the process of modifying the
skeleton first creates the AST of the skeleton by running it through Clang. Then, the AST is
searched for points of interest (i.e., points where the skeleton needs to be modified). The search

32

is again done using ASTMatchers, which, in principle, are descriptions of AST nodes of interest.
For example, to set the specific elemental kernel function from skeleton to res in Listing 2.3,
OP2-Clang needs to find the function call in the AST (part of which is given in Listing 2.4)
using the matcher given in Listing 2.5. The definitions of the matchers are trivial, given that the
skeleton is an input to the above process.

Listing 2.4 Elemental function call in the AST of the skeleton
FunctionDecl op_par_loop_skeleton
...
`-CallExpr 'void'

|-DeclRefExpr 'void (double *)' lvalue
Function 'skeleton'

`-UnaryOperator 'double *' prefix '&'
`-ArraySubscriptExpr 'double' lvalue

(...)

Listing 2.5 ASTMatcher to match the AST node for the elemental function call
StatementMatcher functionCallMatcher =
callExpr(

callee(functionDecl(hasName("skeleton"), parameterCountIs(1))),
hasAncestor(

functionDecl(hasName("op_par_loop_skeleton"))))
.bind("function_call");

To formulate all such modifications to the skeleton, I create a set of matchers and run them
through the OP2RefactoringTool, which is derived from the base class RefactoringTool in
LibTooling. When OP2RefactoringTool with the specific collection of matchers are run through
the AST of the skeleton, the matchers find the AST nodes of interest, create a MatchResult
object containing all the information for the given match, invokes a callback function with the
MatchResult where we can identify which matcher found a match with its keys. The identified
calling matcher provides the AST node of interest and the corresponding source location. This
allows the generation of the specific replacement code in a Replacement[137] just as it is shown
in Listing 2.6. The replacement is not immediately done but is collected in a map. Once all the
AST nodes of interest are matched and the replacement strings collected, together with the source
locations, they can be applied to the source code. In this case, the collection of Replacements
are checked to ascertain if the replacements are independent of each other so that they can be
applied to the source without errors. This finalizes and commits the changes to the skeleton.

As it can be seen, the process does not do large structural transformations. All the changes
on the skeleton can be formulated as replacements for single lines or small source ranges. The
adoption of skeletons leads to another implicit benefit. As the code generation requires the AST
of the skeleton built, the skeleton must be valid C/C++ code, which, combined with the fact
that we apply relatively small modifications to the code, implies that the generated code can also
be guaranteed to be valid C/C++. Any errors can only come from small chunks of generated
code, which is easy for the OP2-Clang developer to debug. This is a significant benefit during the

33

development of a new code generator. One of the key difficulties of OP2’s current Python-based
translator is the lack of support for such debugging tasks to ascertain that valid C/C++ code is
generated.

Listing 2.6 Example of creating a Replacement to replace the elemental function call. The
Result object is the MatchFinder::MatchResult object created by the match of the ASTMatcher
from Listing 2.5.

CallExpr *match = Result.Nodes.getNodeAs<CallExpr>("func_call");
SourceLocation begin = match->getLocStart();
SourceLocation end = match->getLocEnd();
SourceRange matchRange(begin, end);
string replacement = "res(&((double *)arg0.data)[n],"

"&((double *)arg1.data)[2 * map0idx],"
"&((double *)arg1.data)[2 * map1idx]);"

Replacement replacement(*Result.SourceManager,
CharSourceRange(matchRange, false),
replacement);

2.3 Extensibility and Modularity

The underlying aim of OP2 is to create a performance portable application written using the
OP2 API. A further objective is to “future-proof” the higher-level science application where
only the code generation needs to be extended to translate it to be able to execute on new
hardware platforms. As such, the target code generation, using OP2’s Python-based translator,
currently supports a range of parallelizations with optimizations tailored to the underlying
hardware to gain near-optimal performance. The new OP2-Clang source-to-source translator will
also need to support generating all these parallelizations and optimizations but also be easy to
extend to implement new parallelizations and optimizations. In this section, we present further
evidence of OP2-Clang’s capabilities for modular and extensible code generation for a number of
architectures, carrying out different optimizations.

Since the data collection phase is independent of the target code generation, OP2-Clang only
needs to add a new target-specific code generator to support generating code for a new platform
or to use a new parallel programming model. As we have seen, a target-specific code generator
consists of (1) a parallel skeleton (usually one skeleton for implementing direct loops and one for
indirect loops), (2) a list of matchers that identify AST nodes of interest, and (3) a corresponding
list of Replacements that specify the changes to the code.

While the skeletons already modularize and enable the reuse of code, the matchers and
the corresponding Replacements can also be reused. Thus, when developing a new code
generator, we reuse existing ASTMatchers and Replacements as required. Only the matchers
and Replacements that do not exist need to be created from scratch.

While Clang’s ASTMatchers is extensive, there are some AST nodes that don’t have the
specialized matchers we require. For example, there were currently no matchers to match nodes
representing the OpenMP constructs. I had to extend the list of available matchers with a single
matcher to match the omp parallel for pragma in order to be able to perform our translation

34

Listing 2.7 The modified version of the elemental function res, to use strided memory accesses
wit SoA data layout.

1 __constant__ intdirect_res_stride_OP2CONSTANT;
2 __constant__ intopDat1_res_stride_OP2CONSTANT;
3 __device__ void res_calc_gpu(const double * __restrict edge,
4 double * __restrict cell0,
5 double * __restrict cell1){
6 cell0[0 * opDat1_res_stride_OP2CONSTANT] +=
7 edge[0 * direct_res_stride_OP2CONSTANT];
8 cell1[0 * opDat1_res_stride_OP2CONSTANT] +=
9 edge[0 * direct_res_stride_OP2CONSTANT];

10 }

conveniently. In this section, I look at several other challenges that had to be overcome when
supporting the various code generators for OP2.

2.3.1 CUDA

The CUDA parallelization presented a number of challenges in code generation. Again, much
of the code generation using a skeleton followed a similar process to that of the OpenMP
parallelization. However, the skeleton was larger and required considerably more replacements.
Nevertheless, the steps taken to do the replacements were the same. For CUDA, it was necessary
to accurately set the device pointers and create a CUDA kernel call that encapsulates the
elemental function. OP2 handles the data movement between the device and the host in the
backend by copying the data to device arrays and updating host arrays if necessary. Therefore,
this aspect does not affect the code generation.

The main challenge with CUDA was implementing a number of optimizations that significantly
impact the performance on GPUs, unlike the previous parallelizations that utilize CPUs. First
among these is memory access; the memory access pattern of CPUs is not optimal for GPUs.
For example, to gain coalesced memory accesses on GPUs, OP2 can restructure the data arrays
to make the neighboring threads read data next to each other in memory. On CPUs with large
caches, it is beneficial to organize data in an Array of Structures (AoS) layout, which maximizes
data reuse. However, on GPUs, the threads are performing the same operation on consecutive
set elements at the same time. Organizing the data such that the data needed by consecutive
threads are next to each other is more beneficial. In this case, we can read one cache line and use
all of the data in it. This data layout is called a Structure of Arrays (SoA) layout. To use a SoA
layout, OP2-Clang needs to change the indexing inside the elemental function to use a strided
accesses pattern. The generated elemental function for executing res in CUDA is illustrated in
Listing 2.7.

Another way to improve the memory access patterns in CUDA is to modify the coloring
strategy used for indirect kernels. The coloring in the OpenMP parallelization is done such that
no two threads with the same color write to the same data locations. Then, iterations with the
same color can be run in parallel. Applying this strategy to CUDA means that thread blocks
need to be colored, and no two thread blocks will write to the same data as shown in Figure 2.2a
for an example kernel reading data on the edges and writing data on the cells. However, for

35

Listing 2.8 CUDA kernel with global coloring (excerpt)
1 // CUDA kernel function
2 __global__ void op_cuda_res(const double *__restrict arg0,
3 double *ind_arg0, double *ind_arg1,
4 const int *__restrict opDat0Map, int start,
5 int end, const int * __restrict col_reord,
6 int set_size) {
7 int tid = threadIdx.x + blockIdx.x * blockDim.x;
8 if (tid + start >= end) return;
9 int n = col_reord[tid + start];

10 int map0idx = opDat0Map[n + set_size * 0];
11 int map1idx = opDat0Map[n + set_size * 1];
12 res_calc_gpu(arg0 + n, ind_arg0 + map0idx * 1,
13 ind_arg1 + map1idx * 1);
14 }

(a) Global coloring approach. In each ker-
nel launch, the kernels work on edges
of the same color. Arrows correspond-
ing to block red.

(b) Hierarchical coloring approach. The
thread blocks are circled with dashed
lines, and the edge colors show the
color inside the block.

Figure 2.2: Schematic figure of different coloring strategies used in OP2. The arrows represent
the individual pieces of data loaded indirectly when executing the block.

CUDA, a further level of coloring could improve the performance [J1]. In this case, the threads
within a thread block are also colored to avoid data races. This two-level coloring is called
hierarchical coloring. Hierarchical coloring has been shown to improve data locality and data
reuse inside CUDA blocks considerably.

Figure 2.2b shows the effect of the hierarchical coloring on the amount of memory loaded by the
block to the shared memory. This coloring approach can take advantage of the memory locality
coming from the natural order of the mesh elements that form the CUDA thread blocks. To
further improve the memory locality or, in other words, reduce the amount of memory loaded by
each block (and increase the reuse of the loaded memory), one can apply renumbering techniques
on the mesh itself. The renumbering of the mesh can increase the memory locality, but in
return, it also increases the number of colors inside the block, which increases the number of
synchronizations required to execute the block. This trade-off is explored in more detail in [J1],
and the results can be applied to the generated code, but optimizing the mesh is out of the scope
of this work on the code generation. The difference in the CUDA kernel function between the

36

Listing 2.9 CUDA kernel with hierarchical coloring (excerpt)
1 // CUDA kernel function
2 void op_cuda_res(const double *__restrict arg0, double *ind_arg0,
3 double *ind_arg1, constint *__restrict opDat0Map,
4 int block_offset, int *blkmap, int *offset, int *nelems,
5 int *ncolors, int *colors, int nblocks, int set_size) {
6 __shared__ int ncolor, nelem, offset_b;
7

8 if (blockIdx.x >= nblocks) return;
9 double arg1_l[1] = {0.0}, arg2_l[1] = {0.0};

10 if (threadIdx.x == 0) {
11 int blockId = blkmap[blockIdx.x + block_offset];
12 nelem = nelems[blockId];
13 offset_b = offset[blockId];
14 ncolor = ncolors[blockId];
15 }
16 __synchthreads();
17

18 int col2 = -1, n = threadIdx.x;
19 if (n < nelem) {
20 res_calc_gpu(arg0 + offset_b + n, arg1_l, arg2_l);
21 col2 = colors[n + offset_b];
22 }
23 for (int col = 0; col < ncolor; col++) {
24 if (col2 == col) {
25 int map0idx = opDat0Map[n+offset_b+set_size*0];
26 int map1idx = opDat0Map[n+offset_b+set_size*1];
27 ind_arg0[0 + map0idx * 1] += arg1_l[0];
28 ind_arg1[0 + map1idx * 1] += arg2_l[0];
29 }
30 __synchthreads();
31 }
32 }

two coloring strategies is shown in Listing 2.8 and Listing 2.9. The variations to the code to be
generated can simply be captured again with a different skeleton, in this case, a skeleton that
does the hierarchical coloring. However, the required Replacements, including the data layout
transformations (AoS to SoA), can be reused for both one-level coloring and hierarchical coloring
skeletons.

2.3.2 SIMD vectorization

A more involved code generation task is required for SIMD vectorization on CPUs. For vectoriza-
tion, OP2 attempts to parallelize over the iteration set of the loop [26]. The idea is to generate
code that will be automatically vectorized when compiled using a conventional C/C++ compiler
such as icpc. Listing 2.10 illustrates the code that needs to be generated by OP2-Clang to
achieve vectorization for our example loop res. There are two key differences here, compared to
non-vectorizable code as in Listing 2.3: (1) the use of gather/scatters when indirect increments
are applied and (2) the use of a modified elemental function in the vectorized loop. The first
is motivated due to the multiple iterations (equivalent to the SIMD vector length of the CPU)
that are carried out simultaneously. In this case, we need to be careful when indirect writes are

37

performed. In each iteration, we perform a gather of the required data into local arrays, then
perform the computation on the local copies, and then we perform a scatter to write back the
updated values. The gathers and the execution of the kernel are vectorized with #pragma omp
simd, the scatter cannot be vectorized due to data races and so is executed serially. Finally,
the remainder of the iteration set needs to be completed. Much of the code in Listing 2.10 can
be generated as discussed previously. However, now we must also modify the internals of the
elemental function res to produce a vectorizable elemental kernel res_vec. As illustrated, the
function signature needs to be changed, which in turn requires modifications to the data accesses
inside the function body (i.e., the computational kernel).

In order to perform these transformations, we introduced a further layer of refactoring, which
parses the elemental function and transforms it into the vectorized version. Since the elemental
function consists of the kernel that each iteration of the loop performs, the scope of these
transformations is limited. Even the indexing of the arrays is done in the generated code that
calls the elemental function. To perform the necessary changes to the elemental function, the
function itself is passed through Clang to obtain its AST, and matchers are used to identify the
AST nodes in the function signature and replace them with the correct array subscript (e.g.,
edge is changed to edge[][SIMD_VEC]). Again ASTMatchers are used to identify AST nodes
within the elemental kernel, replacing them with the variable with array subscripts (edge[0] is
changed to edge[0][i]). Simple dereferences are replaced with [0][simd_vec] indexing. The
match and replacements here are only different because we are now modifying the elemental
kernel itself and not a skeleton.

2.4 Evaluation and Performance

In contrast to the OP2-Clang translator, OP2’s current Python-based translator only parses
the application source to identify OP2 API calls. However, no AST is created as a result, but
simply the specifications and arguments in each of the op_par_loop calls are collected and
stored in Python lists. When it comes to generating code, the full source of what is to be
generated is produced using the information gathered in these lists for each parallelization. No
text replacements are done as in the OP2-Clang translator. However, as the invariant code for
a given parallelization can be generated without change, only the specific changes for a given
op_par_loop need to be produced. Again, the code generation stage does not use an AST. As
such, changing code within elemental kernels (as in the SIMD vectorization case) is significantly
more difficult and cannot easily handle how users write their elemental kernels. All of the above
makes the Python translator error-prone and difficult to extend and maintain. In this section,
I present some results from evaluating the OP2-Clang translator on two OP2 applications by
comparing the code generated from it to the performance of the code generated through OP2’s
current Python-based translator.

Both of the applications used in these tests have loops with indirections and indirect increments,
various global reductions, and the use of global constants.

38

Listing 2.10 Vectorized loop for res (excerpt).
1 // vectorized elemental function
2 inline void res_vec(const double edge[*][SIMD_VEC],
3 double cell0[*][SIMD_VEC],
4 double cell1[*][SIMD_VEC], int i) {
5 cell0[0][i] += edge[0][i]; cell1[0][i] += edge[0][i];
6 }
7

8 #pragma novector
9 for(int n=0; n<(exec_size/SIMD_VEC)*SIMD_VEC; n+=SIMD_VEC) {

10 double arg0_p[1][VEC]; double arg1_p[1][VEC]; double arg2_p[1][VEC];
11 // gather data to local variables
12 #pragma omp simd
13 for (int i = 0; i < SIMD_VEC; i++) {
14 arg0_p[0][i] = (ptr0)[idx0_2 + 0];
15 arg1_p[0][i] = 0.0; arg2_p[0][i] = 0.0;
16 }
17 // vectorized elemental function call
18 #pragma omp simd
19 for (int i = 0; i < SIMD_VEC; i++) {
20 res_vec(arg0_p, arg1_p, arg2_p, i);
21 }
22 // Scatter indirect increments
23 for (int i = 0; i < SIMD_VEC; i++) {
24 int map0idx = arg1.map_data[(n + i) * arg1.map->dim + 0];
25 int map1idx = arg1.map_data[(n + i) * arg1.map->dim + 1];
26 ((double *)arg1.data)[2 * map0idx] += arg1_p[i];
27 ((double *)arg2.data)[2 * map1idx] += arg2_p[i];
28 }
29 }
30 // remainder loop
31 for (int n = 0; n < exec_size; n++) {
32 int map0idx = arg1.map_data[n * arg1.map->dim + 0];
33 int map1idx = arg1.map_data[n * arg1.map->dim + 1];
34 res(&((double *)arg0.data)[n], &((double *)arg1.data)[2 * map0idx],
35 &((double *)arg1.data)[2 * map1idx]);
36 }

2.4.1 The Airfoil Application

The first application, Airfoil, is a benchmark application representative of large industrial CFD
applications utilized by users of OP2. It is a non-linear 2D inviscid airfoil code that uses an
unstructured grid and a finite-volume discretization to solve the 2D Euler equations using scalar
numerical dissipation[138]. The algorithm iterates towards the steady state solution in each
iteration using a control volume approach, meaning the change in a cell’s mass is equal to the
net flux along the four edges of the cell, which requires indirect connections between cells and
edges. Airfoil is implemented using OP2, where two versions exist, one implemented with OP2’s
C/C++ API and the other using OP2’s Fortran API [139], [140].

The application consists of five parallel loops: save_soln, adt_calc, res_calc, bres_calc
and update [12]. The save_soln loop iterates through cells and is a simple loop accessing two
arrays directly. It copies every four state variables of cells from the first array to the second one.
The adt_calc kernel also iterates on cells, and it computes the local area/timestep for every

39

single cell. For the computation, it reads values from nodes indirectly and writes in a direct way.
There are some computationally expensive operations (such as square roots) performed in this
kernel. The res_calc loop is the most complex loop with both indirect reads and writes; it
iterates through edges and computes the flux through them. It is called 2000 times during the
total execution of the application and performs about 100 floating-point operations per mesh
edge. The bres_calc loop is similar to res_calc but computes the flux for boundary edges.
Finally, update is a direct kernel that includes a global reduction, which computes a root mean
square error over the cells and updates the state variables.

The mesh used in our experiments consists of over 2.8 million node cells and about 5.8
million edges. In the most computationally intensive loop from the five, about 100 floating-point
operations are performed per mesh edge. This makes the code memory bandwidth bound and a
good candidate to showcase the effect of the reduced memory movement used in hierarchical
coloring.

2.4.2 The Volna Application

The second application, Volna, is a shallow water simulation capable of handling the complete
life-cycle of a tsunami (generation, propagation, and run-up along the coast) [24], [141]. The
simulation algorithm works on 2.5D unstructured triangular meshes and uses the finite volume
method. Volna is written in C/C++ and converted to use the OP2 library[140]. For Volna, the
top three kernels where the most time is spent: computeFluxes, SpaceDiscretization and
NumericalFluxes. In the computeFluxes kernel, there are indirect reads and direct writes,
in NumericalFluxes, there are indirect reads with direct writes and a global reduction for
calculating the minimum timestep and in SpaceDiscretization there are indirect reads and
indirect increments.

Tests are executed in single precision on a mesh containing 2.4 million triangular cells and
about 3.5 million edges, simulating a tsunami run-up to the US Pacific coast.

2.4.3 Performance

SIMD OpenMP
CUDA
Global
(AoS)

CUDA
Global
(SoA)

CUDA
Hier.
(AoS)

CUDA
Hier.
(SoA)

Airfoil 363.92 s
(-0.2%)

70.417 s
(1.2%)

12.77 s
(-0.6%)

9.58 s
(-0.4%)

9.85 s
(0.2%)

7.30 s
(1.8%)

Volna 95.39 s
(0.3%)

14.84 s
(-0.2%)

3.00 s
(0.5%)

2.33 s
(0.2%)

2.32 s
(1.2%)

1.97 s
(1.1%)

Table 2.1: Performance of Airfoil and Volna on the Intel Xeon E5-1660 CPU (for OpenMP
and SIMD) and on an NVIDIA P100 GPU with OP2-Clang. CUDA results with
two different colorings (global and hierarchical) and two data layouts (AoS and SoA)
presented. The values in parenthesis are the percentage difference in run time compared
to the sources generated with OP2’s current Python-based source-to-source translator
(negative values mean OP2-Clang has better performance).

40

(a) Measured run times of versions for the Airfoil application.

(b) Measured run times of versions for the Volna application.

Figure 2.3: Absolute performance comparison of the Airfoil and Volna application on a P100
GPU using different coloring and parallelization approaches.

41

The generated code was compiled and executed on a single Intel Xeon CPU E5-1660 node
(total of 8 cores) for OpenMP and SIMD vectorization (using Intel compilers suite 17.0.3.) and
a single NVIDIA P100 GPU with CUDA 9.0. Table 2.1 shows the performance results and
percentage difference of runtime compared to OP2’s current Python-based translator. In all
cases, the performance difference is less than 2%. This figure was the same when comparing the
run times of each kernel. These results, therefore, give an initial indication that identical code
was generated by OP2-Clang.

The run times of different versions of Airfoil on a P100 GPU are shown in Figure 2.3a. The
hierarchical coloring is used in res_calc and bres_calc, because these have indirect increments.
The versions using the hierarchical coloring scheme have the best performance due to the huge
performance gains in res_calc thanks to data reuse. The main difference between versions with
the same coloring strategy is in the run times of the res_calc and adt_calc kernels, where
most of the computation is performed. The Fortran versions suffer from high register pressure,
leading to lower occupancy in general, and directive-based approaches have the same problem,
especially in adt_calc [C1].

For Volna, the SpaceDiscretization kernel has a huge impact on runtime (half of the time
is spent in this kernel when using global coloring), and so the hierarchical coloring leads to
significant overall performance gain as shown on Figure 2.3b (the measurements are in single
precision because Volna requires only single precision to get correct results).

2.5 Conclusions

In this chapter, I introduced OP2-Clang, a source-to-source translator based on LibTooling, for
OP2. OP2-Clang is capable of parsing a higher-level declarative program written in OP2’s C/C++
API and generating parallel code based on SIMD, OpenMP, CUDA, and their combinations with
MPI. The wide range of transformations required for generating code for each parallelization in
OP2 and the variation in specific optimizations for each are significant, going well beyond what has
been previously demonstrated with LibTooling. We presented the use of parallelization skeletons
to reuse code and demonstrated the use of LibTooling’s ASTMathchers and Replacements to
modify a skeleton to generate the necessary parallel code. Multiple levels of refactoring using
LibTooling’s RefactoringTool enables the application of specific optimizations in a flexible,
maintainable, and extensible manner. Challenges in developing OP2-Clang were presented,
discussing the generation of MPI, OpenMP, SIMD vectorized code, and CUDA code for CPUs
and GPUs. Performance from the OP2-Clang generated code showed near-identical performance
to the code generated by OP2’s current source-to-source translator (based on Python). We
believe that the lessons learned from OP2-Clang can be readily applied in developing similar
source-to-source translators, particularly for DSLs.

42

3 Scalable Batch-Tridiagonal solver algorithms

In this chapter, I present my research involving linear solvers for ADI applications. Section 1.7
highlights the limitations of the current solutions availible for ADI applications. A large 3D
ADI application requires solution of a large number of independent tridiagonal equation systems
in each spatial dimension for every time iteration. It is not feasible to restrict the domain
decompositions along any dimension or require data transposition for certain dimensions on
large clusters. However, most of the state-of-the-art libraries use similar restrictions or provide
limited scalability as the number of nodes increase. My goal is to provide exact scalable solver
algorithms for batch-tridiagonal systems for large-scale HPC clusters for ADI applications. I
explore solver algorithms and the algorithmic trade-offs required at increasing machine scale.
My work does not focus on improving the performance of CPU or GPU kernels solving partial
systems, as this was done in prior work.

In Section 1.6 I introduced the core algorithms for the solution of tridiagonal systems. This
chapter is divided into two parts. The first introduces the extension of the tridiagonal solver
algorithms to distributed memory-based systems and shows the implications to performance at
increasing scale. In the second part, the best implementations are used to solve a number of
large-scale problems, analyzing performance on CPU and GPU clusters.

3.1 Motivation

Tridiagonal systems of equations arise in numerous fields, particularly as part of the numerical
approximation of multidimensional Partial Differential Equation (PDEs). They frequently
appear in CFD, Computational Electro-Magnetics (CEM), computational finance, and image
processing. In some cases in computational finance, the use of the ADI time discretization is
preferred leading to the need for the solution of multiple tridiagonal systems of equations in
each dimension [59], [142]–[144]. In CFD, tridiagonal systems form the core component for using
implicit techniques [145] with application in solving incompressible fluid flow problems [146] and
design of turbomachinery [147] among others. Since there are large numbers of independent
systems to be solved in multiple dimensions, they offer significant opportunities for exploiting the
massive parallelism available on modern multi-core CPU and many-core GPU devices. With the
advent of such hardware, recent work [65] re-examined the choice between different tridiagonal
solution algorithms (Thomas [60], Parallel Cyclic Reduction (PCR) [62] and Hybrid [65]) and
showed that high performance is achievable on both shared memory environments like CPUs and
GPUs with platform-specific optimizations. However, many real-world problems require such
algorithms to work efficiently over multiple CPU/GPU devices due to the need for compute and
memory resources beyond a single node.

A good example is high-fidelity simulations such as the ones performed with the Xcom-

43

Communication Number of messages Message size
Thomas-Thomas(AG) All-to-All 1 2×Np ×Nsys

Thomas-Thomas(GS) All-to-All 2 2×Np×Nsys

Np

Thomas-PCR One-to-One 2× log2Np + 2 Nsys

Thomas-Jacobi One-to-One 2× J + 2 Nsys

Table 3.1: Communication steps needed to solve the reduced system for each algorithm. Np

is the number of processes that share the same set of tridiagonal systems Nsys is
the number of independent systems the processes share. J is the number of Jacobi
iterations required. The message size is shown in terms of elements, each element
requires to send the corresponding ai, ci, di coefficients (bi = 1).

pact3d [148] framework, requiring the solution of up to 150 batches of tridiagonal systems at each
time step to compute derivatives and interpolations using implicit high-order finite-difference
schemes. For a production problem with 10243 mesh nodes, which represents, for instance, a
wind farm of several kilometers squared with a mesh node every 2 meters, this would require
a cluster with more than 80 GPUs to solve 10242 systems, each with a length of 1024 for a
single batched solve (of which there are 150 per timestep). Looking at exascale systems, such
simulations will be based on 100-1000 billion mesh nodes and performed with 10-100 million
cores for hundreds of thousands of time steps.

Such problems mean that tridiagonal solver algorithms over distributed memory for these
multi-core/many-core devices still require careful investigation in terms of performance and
especially scalability. This is imperative in the current age of exascale systems in HPC, where the
software capabilities of exploiting such systems crucially depend on the scalability of numerical
simulation applications and their underpinning algorithms. In my research, I investigate the
state-of-the-art multi-core/many-core algorithms for tridiagonal solvers for distributed-memory
systems and re-examine the algorithmic trade-offs required at increasing machine scale to achieve
good performance. Based on this research I introduce a new, highly scalable algorithm and
implementation that extends the single-node shared memory work of László et al [65] to distributed
memory CPU and GPU clusters that are essential for solving modern state-of-the-art problems.

3.2 Distributed Memory Algorithms

The new distributed memory tridiagonal solver builds on the hybrid Thomas-PCR algorithm
detailed in the Section 1.6. I implemented multiple variations of this hybrid algorithm, but
the overall structure of the distributed tridiagonal solver can be summarized as follows. Each
subsystem of size M belongs to a separate MPI process, which performs the hybrid Thomas-*
forward pass. This produces a reduced system with two rows per MPI process. The solution
to the reduced system is implemented in a number of ways, resulting in different performance
characteristics over distributed memory systems. Once the reduced system is solved, the backward
pass of the hybrid Thomas-* is performed on each MPI process.

The reduced system can be solved using several strategies in terms of memory movement, as
well. The reduced system can be gathered into a single MPI process, which then solves it and
scatters the results back to the other MPI processes. This gather-scatter (GS) implementation

44

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Iteration 1

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Iteration 2

(a) Constant communication pattern of Jacobi iterations.

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Iteration 1

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Iteration 2

(b) Communications in PCR, distance doubles in every iteration.

Figure 3.1: MPI communications using Jacobi and PCR on the reduced system. Each arrow
highlights a message sent with the values owned by the process, and the P5 node
also receives messages from the same processes.

can also be slightly modified to obtain an allgather (AG) implementation where the reduced
system is gathered onto all MPI processes and then solved on each process. AG removes the
need for the scattering of the results. Both GS and AG require excessive global communications,
which naturally leads to poor scaling.

The PCR or Jacobi methods can be used to avoid global collectives. PCR would follow the same
algorithm as described previously but with the addition of point-to-point MPI communications
during each iteration of the algorithm. Therefore, it will carry out MPI communications with
processes successively further away for the later iterations of the PCR algorithm. Figure 3.1b
shows the pattern for the communication for the first two iterations. A further alternative is to
use the iterative Jacobi method on the reduced system, similar to the TridiagLU implementation,
to obtain an approximate solution to the reduced system. Again, there is the option to provide
an estimated number of iterations or to check for convergence. Using the Jacobi iterations for the
reduced system has the advantage that it only requires MPI processes to communicate with their
neighbors. Figure 3.1 compares this communication pattern to the communications in PCR. To
summarize the different solutions Table 3.1 shows the number and size of the messages required
for each solver algorithm. While the message size for the two iterative solution is the same, and
each iteration requires communication with two additional nodes the key difference is the number
of messages and the locality of those messages. While Jacobi might require more iterations
after the messages in PCR are sent to other physical nodes in the cluster, communications for
the Jacobi iterations become cheaper compared to the PCR iterations. However, if required

45

Algorithm 6 forward_sweep(a, b, c, d)
1: d∗

1 ← d1/b1
2: c∗

1 ← c1/b1
3: a∗

1 ← a1/b1
4: b∗

0 ← b0 − c0a∗
1

5: d∗
0 ← d0 − c0d∗

1
6: c∗

0 ← −c0c∗
1

7: for i = 2, 3, ..., M − 2 do
8: r ← 1/(bi − aic

∗
i−1)

9: d∗
i ← r(di − aid

∗
i−1)

10: a∗
i ← −raia

∗
i−1

11: c∗
i ← rci

12: b∗
0 ← b∗

0 − c∗
0a∗

i

13: d∗
0 ← d∗

0 − c∗
0d∗

i

14: c∗
0 ← −c∗

0c∗
i

15: end for
16: r ← 1/(bM−1 − aM−1c∗

M−2)
17: d∗

M−1 ← r(dM−1 − aM−1d∗
M−2)

18: a∗
M−1 ← −raM−1a∗

M−2
19: c∗

M−1 ← rcM−1
20: d∗

0 ← d∗
0/b∗

0
21: c∗

0 ← c∗
0/b∗

0
22: a∗

0 ← a0/b∗
0

23: return a∗, c∗, d∗

to check for convergence, then its near neighbor communication advantage gets nullified as a
global collective communication is needed for each iteration (or every n number of iterations).
Considering the above approaches, the key advantage of PCR for the reduced system is that it
avoids the need for collective communications while at the same time providing an exact solution.

An improvement to the forward pass of the hybrid Thomas algorithm (Algorithm 3) is to
combine it with the forward of TridiagLU [76]. Algorithm 6 normalizes each row and forms the
a∗ column fromFigure 1.6 and c∗

0 for a subdomain resulting in a reduced system with one row
per subdomain. This relaxes the need to express each unknown in terms of u0 and uM−1, instead
each ui, i ∈ 1, ...M − 1 will be expressed with u0 and ui+1:

a∗
i u0 + ui + c∗

i ui+1 = d∗
i , i = 1, 2, . . . , M − 1.

Although this introduces dependencies inside a partition, the backward substitution pass still
requires only a single sweep without extra memory movements. Both the original and modified
algorithms are trivially scalable since there is no communication involved. The reduced computa-
tional cost of the forward pass and the smaller reduced system size (one row per MPI process
instead of two) leads to smaller messages and better overall performance. Hence, the Tridsolver
library uses Algorithm 6 on GPUs when the reduced system is solved with the Jacobi or PCR
methods.

46

X

Y

Z

3D computational domain MPI decomposition

Single equation system along X:

Figure 3.2: MPI decomposition of a 3D computational domain along all three spatial dimension.
Each small grid represents the computational domain owned be a single MPI process.
The nodes highlighted by red share tridiagonal systems along the X axis.

3.2.1 Tridiagonal systems in 3D applications

A tridiagonal system, by its nature, represents a one-dimensional problem, however, applications of
interest are commonly 2 or 3-dimensional. These applications would use these higher dimensional
structured grids as the computational domains and distribute these grids evenly along all spatial
dimensions of the computational domain. Figure 3.2 shows such a decomposition on a 3D domain.

Tridiagonal systems are formed in these applications by solving along one of the coordinate
axes - and there will be as many independent systems as there are discretization points along the
other axes. For example, the ADI [59] method, preferred in computational finance, works by
repeatedly solving tridiagonal systems along different axes. If we take a problem along the X

axis NyNz (where Ny and Nz is the number of discretization points owned by the process in Y

and Z dimension respectively) independent systems is shared among the processes highlighted by
red in Figure 3.2. In ADI, the ai, bi, ci, di coefficients are calculated for each grid point in a way
that matches the underlying data structure of the application; data for the diagonals are stored
contiguously in either a row-major (Z is contiguous, Y and X are strided) or more commonly, as
Figure 3.3 shows, a column-major (X is contiguous, Y and Z are strided) format. This poses a
challenge for algorithms that then solve multiple tridiagonal systems simultaneously; coefficients
for an individual system will be laid out differently, depending on the direction of the solve. If
we solve along the X direction (and use a column-major format), for example, then coefficients
for the same system are contiguous in memory, followed by the coefficients for the next system,
etc. If, however, we solve along the Z direction, then coefficients for the same row of different
systems are laid out contiguously, followed by the next row, etc.

The TridiagLU library can only handle a data layout corresponding to a Z-solve as described
above, and so in a 3D application, one would have to appropriately transpose data for X and
Y solves - an operation notoriously difficult to do efficiently due to inefficient memory access
patterns. On the other hand, the tridiagonal solver library developed in this work (which we

47

X

Y

Z

Nx Nx Nx Nx Nx Nx Nx Nx

NxNy NxNy

NxNyNz

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 3.3: Example memory layout of the coefficients stored in column-major format within a
MPI process for a 3D domain. Values in X stored contiguously, Y is stored with
stride Nx and Z is stored with stride Nx ∗Ny.

henceforth call the Tridsolver library), was designed from the outset to handle higher-dimensional
applications carrying out 1D solves in different directions - of course as with the approaches of
László et al [65] the implementations are still impacted by memory access patterns.

A number of optimizations help improve performance on modern systems. On CPUs the Y and
Z dimension solves (see next section) can be vectorized by splitting the tridiagonal systems into
strips of consecutive memory and adding compiler pragma omp simd on the appropriate loops.
On the GPU, a key issue is the uncoalesced memory accesses in the X dimension. Figure 3.3
shows that the coefficients corresponding to a single system are stored contiguously in memory.
Each GPU thread works on a single system. Loading the data for the coefficients of each system
in a natural way lead uncoalesced data accesses (each thread reads data with stride Nx). Local
transposition using vector shuffles [65] provides a solution where threads of a warp cooperate to
read a 32× 16 or 32× 8 (depending on single or double precision mathematics) block of the YZ
plane at once. This corresponds to either 16 or 8 elements of 32 neighboring tridiagonal systems.
After loading this block of data, the elements of the tridiagonal system are not necessarily
held by the thread solving that system. The __shfl_xor_sync() intrinsic is then used to swap
the elements to the correct threads. A similar operation is performed in reverse when storing
intermediate values and the solution of the tridiagonal systems. Figure 3.4 shows both the
original method of loading a block of memory, where each CUDA thread only loads its own
tridiagonal system, and the new cooperative memory strategy used to achieve coalesced memory
accesses.

48

Figure 3.4: Memory access patterns during X solves for CUDA threads. The X dimension is
stored contiguously as the indices highlight and the rows are representing independent
systems. Each thread loads a single block at a time. Above: the original memory
reads where each CUDA thread (shown in a different color) only loads the values for
its own tridiagonal system, leading to uncoalesced reads (first read instruction loads
indices: 0, 7, 14, 21). Below: the data is loaded using coalesced memory access. This
pattern results in faster loads, but the threads get data from different systems. Extra
vector shuffles are required for each thread to get the corresponding coefficients.

3.3 Evaluation and Performance

To study the performance and scalability of the Tridsolver library, I designed benchmarks
(published with the repository) for two of the UK’s HPC systems: ARCHER21, a CrayEX
system with AMD Rome CPUs (2 × 64 cores per node) and 256 GB of RAM, and Cirrus2, a
HPE/SGI system with 36 GPU nodes, each with 4×NVIDIA V100 16GB GPUs, interconnected
with NVLink, and FDR Infiniband between nodes.

All measurements showed in this section is a result of average of 10 runs. As a baseline, I
compared against the TridiagLU library on the CPU - which only supports distributed memory
parallelism with MPI. For 3D problems, TridiagLU assumes the same coefficients from different
systems are packed together, corresponding to a Z solve. I include an extra copy of the a, b, c

coefficient arrays in our timing as these are overwritten by the solve algorithm, but the original
values are required by our applications. For the solution of the reduced system, I evaluated both

1https://www.archer2.ac.uk/
2https://www.cirrus.ac.uk/

49

https://www.archer2.ac.uk/
https://www.cirrus.ac.uk/

the exact solver approach with Gather-Scatter and the approximate iterative approach (Jacobi),
which includes Allreduce calls to determine whether the solution has converged.

I evaluated the performance of our library (marked with TridSlv) utilizing, for the reduced
system solve, both exact solution approaches (with AG, GS, PCR) as well as the approximate
iterative approach (Jacobi), including convergence checks. For the solution of the reduced
system, I evaluated solutions in all directions, and directly compared to TridiagLU in Z. To avoid
differences in convergence at increasing scale, I fixed the number of Jacobi iterations at 10 as
done by Ghosh et al [76].

3.3.1 Weak Scaling on CPUs - ARCHER2

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16 32 64 128

R
u

n
ti
m

e
 (

s
)

Number of nodes

TridSlv-jac X TridSlv-jac Y TridSlv-jac Z

TridSlv-pcr X TridSlv-pcr Y TridSlv-pcr Z

(a) Tridsolver (TridSlv) weak scaling in X, Y and Z
dimensions

0

0.5

1

1.5

2

2.5

3

3.5

1 2 4 8 16 32 64 128

R
u
n

ti
m

e
 (

s
)

Number of nodes

TridSlv-AG Z TridSlv-GS Z

TridiagLU-GS Z TridiagLU-jac Z

TridSlv-jac Z TridSlv-pcr Z

(b) Tridsolver (TridSlv) vs TridiagLU weak scaling in
Z dimension

0.125

0.25

0.5

1

2

4

8

16

1 2 4 8 16 32 64 128

R
un

tim
e

(s
)

Number of nodes

TridSlv-jac X TridSlv-jac Y
TridSlv-jac Z TridSlv-pcr X
TridSlv-pcr Y TridSlv-pcr Z

(c) Tridsolver (TridSlv) strong scaling in X, Y and Z
dimensions

0.125

0.25

0.5

1

2

4

8

16

1 2 4 8 16 32 64 128

R
un

tim
e

(s
)

Number of nodes

TridSlv-AG Z TridSlv-GS Z
TridiagLU-GS Z TridiagLU-jac Z
TridSlv-jac Z TridSlv-pcr Z

(d) Tridsolver (TridSlv) vs TridiagLU strong scaling
in Z dimension

Figure 3.5: ARCHER2 scaling: (a),(b) - Weak-scaling, 5123 grid points per node. (c),(d) - Strong-
scaling, 8192 points in the direction of solve, and 512 in others. AG - AllGather,
GS - Gather-Scatter. The dotted lines in the strong scaling plots show ideal scaling
performance.

For weak scaling, where problem size increases with machine size, I picked 5123 grid points
per ARCHER2 node, a typical problem size used by frameworks such as Xcompact3D. Currently,
ARCHER2 only has 1024 nodes in 4 cabinets, and considering that tridiagonal solves in various
directions are completely independent, I tested weak scalability only along one “line” of nodes:
for X solve N × 1× 1 nodes and (N ∗ 512)× 512× 512 grid points, for Y solve 1× N × 1 nodes
and 512× (N ∗ 512)× 512 grid points, and for Z solve 1× 1× N nodes and 512× 512× (N ∗ 512)
grid points. With pure MPI, we have 128 processes per node, which we distribute 4× 4× 8 along
the X, Y, and Z directions respectively.

Weak scaling performance along different directions varies significantly (see Figure 3.5a) - the
X solve is the least amenable to parallelization and vectorization, with the Thomas algorithm

50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 4 8 16 32 64 128

R
u
n

ti
m

e
 (

s
)

Number of nodes

Y PCR Total Y Jacobi Total
Y PCR forward Y Jacobi forward
Y PCR backward Y Jacobi backward
Y PCR reduced Y Jacobi reduced

Figure 3.6: TridSlv (Y-dim) weak scaling runtime breakdown, ARCHER2: 5123 per node

being up to 1.7× slower than the Y solve due to the diagonals for each system is contiguous in
memory when solving along the X dimension. The Y and Z solves lend themselves to trivial
parallelization. However, as the algorithm steps from row to row, the corresponding coefficients
are separated by larger strides (more so in the case of Z) leading to degraded TLB performance,
as documented before [65]. The performance on a single node heavily depends on the possible
memory bandwidth. On a single ARCHER2 node, the hybrid Thomas forward step achieves
270.2 GB/s for X and Y solve, and 225 GB/s for Z solve the backward achieves 307.7 GB/s, 275.8
GB/s, and 268.5 GB/s for X, Y, and Z solves, respectively. Although the theoretical maximum
for the AMD Rome CPU is 204.8 GB/s per socket, the Triad (simple addition kernel) kernel
in the BabelStream [149] benchmark achieves 288 GB/s as well. Comparing different solvers,
as expected, the Tridsolver Allgather (AG) and Gather-Scatter (GS) approaches (Figure 3.5b)
have poor scaling efficiency (60%). This scaling behaviour comes down to two factors, the first is
the all-to-all nature of the communication and the second is the fact that the amount of data
that participates in the communication scales with the number of processes as Table 3.1 shows.
While TridiagLU GS scales somewhat better (48-94%) due to the distributed nature of reduced
system solves, scaling efficiency remains low due to high communication costs. In contrast,
the Jacobi approximate solver (jac) has excellent scalability (90-98%) due to its low-volume
neighbor-to-neighbor communication patterns. The Tridsolver with PCR for reduced system
solve comes very close to Jacobi in terms of scaling efficiency - only falling behind at larger node
counts. This is due to PCR having overall worse (long-distance) communication patterns (see
Figure 3.1b), but as Table 3.1 shows number of messages scale logarithmically with the number
of processes along the solve dimension.

Investigating performance in more detail, we see that since forward and backward steps involve
no communication, they scale trivially: Figure 3.6 shows that during Y solve, total runtime starts
at 0.52 seconds and increases to 0.62 for Jacobi and 0.83 for PCR at 128 nodes. The Forward
step takes 0.34 seconds (< 58%), and the backward takes 0.15 seconds (< 27%). The reduced
system solve step takes 0.10− 0.14 seconds for 10 iterations of the Jacobi solver, with very little
increase (92− 96%) in time when scaling. In contrast, the same step takes 0.06− 0.33 seconds
with PCR, increasing steadily with a 70− 74% scaling efficiency.

51

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 16 32

R
u

n
ti
m

e
 (

s
)

Number of GPUs

TridSlv-jac X TridSlv-jac Y TridSlv-jac Z

TridSlv-pcr X TridSlv-pcr Y TridSlv-pcr Z

(a) Tridsolver (TridSlv) weak scaling in X, Y, and
Z-dims

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 4 8 16 32

R
u

n
ti
m

e
 (

s
)

Number of GPUs

HC - Allgather GD - Allgather

HC - Jacobi GD - Jacobi

HC - PCR GD - PCR

(b) Tridsolver (TridSlv), weak scaling, Host Copies
vs GPU-Direct

0.0625

0.125

0.25

0.5

1

2

4

1 2 4 8 16 32

R
u

n
ti
m

e
 (

s
)

Number of GPUs

TridSlv-jac X TridSlv-jac Y TridSlv-jac Z

TridSlv-pcr X TridSlv-pcr Y TridSlv-pcr Z

(c) Tridsolver (TridSlv), strong scaling in X, Y, and
Z-dims

0.0625

0.125

0.25

0.5

1

2

4

1 2 4 8 16 32

R
u

n
ti
m

e
 (

s
)

Number of GPUs

HC - Allgather GD - Allgather

HC - Jacobi GD - Jacobi

HC - PCR GD - PCR

(d) Tridsolver (TridSlv), strong scaling, Host Copies
vs GPU-Direct

Figure 3.7: Cirrus scaling (MPI+CUDA) :(a),(b) - Weak-scaling, 5123 points per GPU. (c),(d) -
Strong-scaling, 2048 points in the direction of solve, 512 points in others. HC - host
copy, GD- GPU direct.

3.3.2 Strong scaling on CPUs - ARCHER2

For strong scaling, where a large single global problem is solved at increasing machine scale, I
used a grid size of 8192 in the direction of the solve and 512 in other directions, allowing us
to scale from 1 node to 128 nodes. I assigned 4 × 4 × 8 processes per node in the X, Y, and
Z directions, respectively. Figure 3.5c shows the results in different directions and Figure 3.5d
compares different solvers. Here, the logarithmic scale for the y axis reduces the visibility of the
difference between the X solve and other solves. Nevertheless, it is consistent with the slowdown
observed when weak scaling. Even superlinear scaling (102-108%) can be observed on up to 8
nodes, with both Jacobi and PCR, owing to the continuously reducing number of TLB and LLC
misses. However, at larger scales, communication costs dominate; using Jacobi for the reduced
solve, efficiency drops to 80% above 32 nodes, and using PCR to 82-56% above 32 nodes. At 128
nodes for the Z solve, the reduced system solve phase accounts for 60% of total time with Jacobi
and 85% with PCR.

Comparing the scalability of different algorithms in Figure 3.5d, we see that the Tridsolver
AG and GS variants slow down early and actually run out of memory due to the large size of the
reduced system. The PCR solver shows competitive scaling compared to the approximate Jacobi
method - it is within a factor of 2 and scales further than the TridiagLU library.

52

3.3.3 Weak Scaling on GPUs - Cirrus

For weak scaling on GPUs, I kept the problem size per GPU at 5123 in order to compare with
the CPU results and scaled the problem in the direction of the solve, only performing MPI
decomposition in that direction. I did not compare against other libraries as I am not aware of
other MPI-enabled GPU tridiagonal solver libraries. Tridsolver implementations support any
MPI distribution by copying data to the host (I used MPT 2.22) and then making transfers
between CPUs, as well as GPU Direct-enabled MPI distributions (I used OpenMPI 4.1.0), where
transfers take place directly between GPUs. The best results were achieved with GPU Direct.

Looking at results from Cirrus in Figure 3.7a, I compare the performance when using Jacobi
and PCR variants to solve the reduced system in different directions (note that Y and Z
solves are virtually indistinguishable on the plot). As for the CPU, the performance of X
solves is degraded by poor memory access patterns. On a single GPU, X solve in Tridsolver
achieves 458 GB/s bandwidth, while the Y and Z solves achieve 731 GB/s and 739 GB/s,
respectively (the Triad kernel in the BabelStream [149] benchmark achieves 821 GB/s on a
single V100 GPU). I compared Tridsolver on a single V100 GPU to the batch tridiagonal solver
functions in the cuSPARSE. Currently, cuSPARSE has two batch-tridiagonal solver functions:
cusparse<t>gtsv2StridedBatch() uses the same memory layout as the X solve in Tridsolver
and achieves 525.5 GB/s, while cusparse<t>gtsvInterleacedBatch() comparable to the Z
solve and achieves 725.6 GB/s. On Cirrus, there is a marked decline in parallel efficiency
beyond 4 GPUs. Up to 4 GPUs, communications are performed via the high-speed NVLink
interconnect, but beyond that, there is inter-node communication through a slower Infiniband
connection. Studying performance breakdowns in more detail, we see that in the case of the Y
and Z solves, total time takes between 0.13− 0.21 (Jacobi) or 0.13− 0.33 (PCR) seconds. The
computational part takes 0.13 seconds (forward and backward steps). For up to 4 GPUs, the cost
of communications is less than 8% and 4% of total runtime for Jacobi and PCR, respectively.
However, beyond 4 GPUs, this increases to 22-27% for Jacobi and 27-53% for PCR.

Figure 3.7b compares the performance of the baseline MPI implementation using explicit host
copies (HC) with using GPU Direct (GD) - I also show the scalability of the Allgather (AG)
version. AG clearly shows the impact of increasing communication volume as the number of
GPUs increase, leading to dramatic slowdowns. On Jacobi and PCR, the GD version is up to
1.69× faster. Note that on a single GPU, the PCR and Jacobi versions are 1.8× faster than the
AG version. Since on a single node, there is no need for a reduced system solve, the performance
improvement is purely due to the adoption of the newly improved Thomas forward and backward
pass.

Overall, we see that a single GPU is 4.6× faster than a single ARCHER2 node running with a
pure MPI parallelization in the Y and Z directions. This difference arises from the overhead of
the MPI communication on the CPU node and the bandwidth limitations of the two hardware.
At 32 GPUs/nodes, this is reduced to 3× for Jacobi and 2.1× for PCR due to the comparatively
worse communications scaling on the Cirrus GPU cluster.

53

3.3.4 Strong Scaling on GPUs - Cirrus

The largest problem that can fit in a single GPU has 2048 points in the direction of solve and 512
in others - which then can be strong-scaled up to 32 GPUs. Results in Figure 3.7c detail again
the Y and Z solves only showing marginal differences in performance. As before, we see a drop
in scaling efficiency beyond 4 GPUs, which are in a single node interconnected with NVLink;
over 93% up to 4 GPUs, then 55-66% for Jacobi and 39-57% for PCR. As observed during weak
scaling, communications become more of a bottleneck for the PCR solver: at 32 GPUs, 86% of
total time is communications, compared to Jacobi’s 72%. The differences between HC and GD
versions are even more prominent in strong scaling (see Figure 3.7d). GD is up to 3.25× faster.

3.4 Conclusion

In this chapter, I investigated the state-of-the-art in multi-core/many-core algorithms for tridi-
agonal solvers for distributed-memory systems and re-examined the algorithmic trade-offs for
obtaining better scaling and runtime performance at increasing machine scale. The exploration
led to the development of an improved distributed-memory solver with scalable performance
for a large number of MPI nodes based on the hybrid Thomas-PCR algorithm, giving exact
solutions to the problem by extending and augmenting a previous single-node library to execute
over clusters of CPUs and GPUs. Further developments led to the implementation of a new,
improved Thomas-PCR forward pass and integrating iterative techniques based on a Jacobi
solver, which provided approximate solutions that can be used as an option for the solution of
the reduced system resulting on the boundaries of MPI partitions.

Performance evaluation on a CrayEX system showed superior performance on realistic problem
sizes, specifically for ADI applications. The new solver with the Jacobi solver for the reduced
system obtained 90-98% scaling efficiency. However, solving the reduced system with the PCR
algorithm provided competitive performance. It achieved almost perfect scaling and tested up to
16 ARCHER2 nodes along the solve dimension, with the added advantage of providing an exact
solution.

Execution on a GPU cluster demonstrated that the Jacobi and PCR solvers (for the reduced
system solve) scaled with 93% efficiency up to 4 GPUs due to the high bandwidth single node
interconnect. However, efficiency reduced to 55-66% for Jacobi and 39-57% for PCR beyond this
point. Further optimizations with a modified Thomas-PCR forward pass algorithm improved
performance with a speedup of 1.8×.

The new tridiagonal solver library is integrated into the OPS domain-specific language [11] for
the solution of structured-mesh problems. This extends OPS’s capabilities with implicit solutions
on top of its existing explicit solvers used in frameworks such as OpenSBLI [35].

54

4 Adjoint mode Algorithmic Differentiation with
OPS

In this chapter, I present my research using domain-specific languages for computing derivative
information of scientific applications. Derivatives are crucial for various engineering and scientific
applications such as optimization, machine learning, and inverse problems. While finite difference
approximations can estimate derivatives, they are computationally expensive and inaccurate.
Algorithmic (Automatic) Differentiation (AD) provides an efficient and exact method to compute
derivatives by treating computer programs as mathematical functions and applying the chain
rule of calculus.

My work focuses on adjoint mode AD for structured mesh stencil applications. I introduce
an extension to the Oxford Parallel Library for Structured mesh solvers (OPS) domain-specific
language to compute adjoints using OpenMP and CUDA parallelism. Using a DSL provides
multiple advantages for the applications. The introduction of AAD to OPS can provide a
performance-portable implementation of the derivative calculation. In the modern landscape
of HPC, where more and more specialized hardware arises to meet the computational needs of
scientific computations, performance-portability and hardware-agnostic abstractions are the only
way to provide future-proof solutions for applications. OPS allows developers to express mesh
algorithms from a high-level code targeting multiple hardware from the same source with the
potential of getting support for future hardware through OPS.

My research aims to provide a performance portable solution for stencil applications by
supporting both many-core CPUs through OpenMP shared memory parallelism and GPUs
through CUDA from a single high-level application source code. The user defines the application
in the abstraction of OPS, provides the loop bodies and their adjoints as functions, and the
library generates all the parallel implementations for the application. To enable AD for an OPS
application, the original application code requires minimal changes (such as seeding and accessing
derivatives) and the adjoints of the loop bodies. Many of the tools mentioned above depend
on large tapes to follow the control flow of the applications. In OPS, the code transformation
and optimization step for the parallel implementations happens at compile time with additional
augmentation to build the tape. At runtime, OPS builds a highly compact tape of the entire
simulation where each entry in the tape represents a parallel loop or an external function (see
Section 4.1.3).

In Section 4.1, I present a model for reverse mode differentiation of complex stencil applications
using OpenMP and CUDA from the same source expressed in the OPS domain-specific language.
I introduce an AD tape to the OPS DSL with elements handled on the computational kernel
level, allowing more compact storage thanks to the OPS abstraction. I show that this tape
makes the implementation of extensions, such as optimal AD checkpointing via Revolve[150] or

55

arbitrary "external" (to OPS) adjoint functions, such as linear solvers, reasonably straightforward.
In Section 4.2, I introduce the mapping of the high-level description of computational loops
to the parallel implementation of the adjoint loops. I show that extensive transformations
and optimizations on the parallel implementation of the adjoint loops are feasible with the
information provided by the DSL. Finally, in Section 4.3, the experimental results for three
applications implemented in OPS are shown: a simple Poisson equation solver, the Cloverleaf
hydrodynamics mini-application, and a Convection-Diffusion Equation (CDE) solver code. I
present detailed performance of the OpenMP and CUDA implementations. I show performance
results for two implementations to compute adjoints for the Poisson application, one with
traditional implementation and one with the application expressed as a fix point iteration.
Furthermore, I show the performance of Revolve as the checkpointing algorithm for Cloverleaf
and a Convection-Diffusion Equation (CDE) application.

4.1 Reverse mode Algorithmic Differentiation in OPS

This chapter focuses on adjoint mode differentiation of stencil computations in the Oxford Parallel
Library for Structured mesh solvers (OPS) [11], [13] domain-specific language.

I introduced OPS in Section 1.3.2 and described the main cornerstones of the abstraction and
the API.

OPS supports multiple parallelization models and targets from the same high-level application
code using code transformation techniques to provide efficient and optimized implementations
for all supported targets. This approach naturally creates performance-portable code bases for
the applications. Extending a DSL like OPS with AD support enables a new class of applications
to take full advantage of the performance-portability and optimizations provided by the DSL.
The OPS library itself can generate code based on the additional information and restrictions
of the domain, which enables diagnostics and optimizations that would require extensive code
analysis or are just impossible for general-purpose tools. The ability to follow data movement
and dependencies throughout the application is not only critical for some of the optimizations
OPS can provide, but it also plays a crucial role in adopting reverse mode AD in OPS. The
code generation is the key to future-proof and make the applications performance-portable. In
addition the code generation also grants us an entry point to insert the proper functionalities to
build a tape in OPS. OPS also reduces the adjoint AD memory overhead of storing the control
flow by using a high-level representation of the computational steps.

Our extension for OPS uses reverse-mode AD and does not support forward-mode AD; from
this point on, the discussion focuses on reverse-mode AD.

OPS follows the control flow through the ops_par_loop calls (such as in Listing 1.2). These
calls refer to computational kernels, listing all accessed datasets and the access patterns. This
makes them the perfect candidate to become the building block of the control flow graph in OPS.

Note that the ownership of all datasets is handed to the library and can only be accessed
through OPS APIs, which allows OPS to keep track of the state of all datasets and when it is
required to move the data, for example, between CPUs and GPUs. The ability to follow data
movement and dependencies throughout the application has already shown to be a critical factor

56

Listing 4.1 The user given adjoint loop body for the kernel from Listing 1.2.
1 // Adjoint user kernel
2 void stencil_adjoint(
3 const ACC<double> &u, ACC<double> &u_a1s,
4 const ACC<double> &f, ACC<double> &f_a1s,
5 ACC<double> &u2, ACC<double> &u2_a1s) {
6 double div = (2.0 * (dx * dx + dy * dy));
7 u_a1s(-1, 0) += u2_a1s(0, 0) * dy * dy / div;
8 u_a1s(1, 0) += u2_a1s(0, 0) * dy * dy / div;
9 u_a1s(0, -1) += u2_a1s(0, 0) * dx * dx / div;

10 u_a1s(0, 1) += u2_a1s(0, 0) * dx * dx / div;
11 f_a1s(0, 0) += u2_a1s(0, 0) * dx * dx * dy * dy / div;
12 u2_a1s(0, 0) = 0;
13 }

Figure 4.1: Left: The gather stencil used during the forward pass in the parallel loop in Listing 1.2.
Data is read on the four neighboring points and in the center and only writes at the
center. Right: The stencil and access pattern used during the reverse pass on the
adjoint memory with the loop body in Listing 4.1. The data read on the five points,
but writes happen for the neighbors.

in allowing OPS to perform complex optimizations like loop tiling and lazy execution[11] and
also plays a crucial role in adopting reverse mode AD in OPS.

Since OPS has all the required information on the data dependencies on a loop level, we can
build a DAG on a computational loop level instead of on an expression level, resulting in a smaller
memory footprint. OPS will handle the execution of the adjoint loops by caching intermediate
states during the primal evaluation and re-loading these states in the adjoint loops in reverse
order.

The only component required to do adjoint mode AD is the adjoint functions of the kernel
bodies. OPS already generates the primal kernel from the kernel function and the data presented
by the stencils. If OPS has a reference to the adjoint of the kernel body (such as in Listing 4.1)
function, it can use the same information to generate parallel loops for the adjoint of the kernel.

In an OPS loop, each dataset is accessed through a stencil with an assigned access pattern:
read, write, or increment. All forward loops in OPS must use gather stencils only, meaning that
read can appear with any stencil with any number of points, but increment and write stencils

57

Listing 4.2 Example parallel loop using active grid invariant scalar data.
1 // User kernel
2 void kernel(const ACC<double> &a, const double* scalar,
3 ACC<double> &anext) {
4 anext(0, 0) += *scalar * (a(1, 0) - a(0, 0) + a(-1, 0));
5 }
6 // Adjoint User kernel
7 void kernel_adjoint(
8 const ACC<double> &a, ACC_A1S<double> &a_a1s,
9 const double* scalar, double* scalar_a1s,

10 ACC<double> &anext, ACC_A1S<double> &anext_a1s) {
11 a_a1s(1, 0) += *scalar * anext_a1s(0, 0);
12 a_a1s(0, 0) += -1 * *scalar * anext_a1s(0, 0);
13 a_a1s(-1, 0) += *scalar * anext_a1s(0, 0);
14 *scalar_a1s +=
15 (a(1, 0) - a(0, 0) + a(-1, 0)) * anext_a1s(0, 0);
16 }
17 // ...
18 // Declaring a dataset on a block
19 double scalar = 1.0;
20 ops_scalar scl = ops_decl_scalar("scl", &scalar, 1);
21 // ...
22 // Execute a given loop on the block
23 ops_par_loop(kernel, "kernel", block, 2, iter_range,
24 ops_arg_dat(a, 1, S2D_3PT, "double", OPS_READ),
25 ops_arg_scalar(scl, 1, "double", OPS_READ),
26 ops_arg_dat(anext, 1, S2D_00, "double", OPS_INC));

must have one single point access with zero offsets. In Reverse mode AD in the adjoint loops,
the data flow will be reversed from gathering stencils, and we will get scatter operations on the
adjoint data. Due to the reversal, the write and increment stencils on the datasets will turn into
one-point read stencils on the adjoint data, and read stencils will turn into increment stencils
with multiple points. Figure 4.1 shows the change in the access pattern between the primal and
adjoint loop for a five-point stencil. The above has two implications: first, the primal loops are
race-free, the parallelization is trivial, and second, the adjoint loops will have data races on the
adjoint data. However, OPS has all the information on where these data races occur from the
read stencils of the primal loops.

OPS has two other loop parameter types: grid invariant constants and global reductions. I
keep the global constants as passive data, which will not have derivatives, and introduce a new
ops_scalar type for global read parameters with adjoint data. Reads on ops_scalars will turn
into global reductions in the adjoint loops. Finally, global reductions become global reads on the
adjoint data in the adjoint loops.

Listing 4.2 shows a kernel with an active scalar value. To use ops_scalars in the kernel, it
must be passed with a ops_arg_scalar wrapper with OPS_READ access. This argument will
notify OPS to generate the proper code for the adjoints as well. Note that the adjoint loop has
a global reduction in the derivative of the scalar, which will naturally have a significant effect
on the performance during the execution of the adjoint loop. On the other hand, the opposite
happens for reductions in primal loops, which can be removed entirely from adjoint loops and
produce a global read on the adjoint memory.

58

OPS Tape

high-level
DAG

intermediate
state storage

fo
rw

ar
d reverse

Figure 4.2: Interactions of forward and corresponding reverse loops with the high-level tape in
OPS. Each active forward loop pushes a small descriptor into the DAG, and during
execution, it will save the overwritten data to a stack-like storage. In the reverse pass,
OPS will call the generated adjoint for the loop, which will propagate the derivative
information and load the saved state.

4.1.1 Adjoint function of the loop body

OPS handles the code generation of the adjoint loops similarly to the primal, which requires
a function pointer to the loop body. OPS depends on the function provided by the user as an
adjoint of a loop body with the _adjoint suffix. To help provide these functions, I implemented
a helper script to generate adjoints of user kernels using Tapenade[106], which can help to
generate adjoints for relatively simple loop bodies and can give a good starting point to write
the adjoints for more complex functions. This tool acts as a wrapper for calling Tapenade on
the user kernels, mapping the OPS API to a format for which Tapenade can generate adjoints.
The tool treats ops_dat and ops_scalar parameters as active at the moment. After generating
the adjoint functions, OPS uses them as the user-provided adjoints for the loops to generate
the backend-specific parallel loops. In our experiments, I used this tool to generate the adjoint
implementations for the 87 distinct kernels in Cloverleaf - a few required further modifications
(such as removing stack objects that would not work for CUDA) to these implementations to get
our final versions of the adjoint kernels.

4.1.2 Getting derivatives in OPS

Listing 4.3 shows an example AD workflow in OPS. The code computes the adjoints with
respect to a given output in four main steps in OPS. Initialize datasets and grid invariant

59

Listing 4.3 Typical steps for an Adjoint workflow in OPS.
1 // OPS initialisation
2 std::unique_ptr<OPS_instance> instance =
3 std::make_unique<OPS_instance>(argc, argv, 1);
4 // Mesh
5 ops_block block = instance->decl_block(2, "The Block");
6 // Preparing data for ops
7 ops_scalar scl = ops_decl_scalar("scl", &scalar, 1);
8 ops_dat a_in = block->decl_dat(1, size, base, pad_p, pad_m,
9 input_a, "double", "a_in");

10 ops_dat a = block->decl_dat(1, size, base, pad_p, pad_m,
11 nullptr, "double", "a");
12 ops_dat a2 = block->decl_dat(1, size, base, pad_p, pad_m,
13 nullptr, "double", "a2");
14 // ...
15 // Run the code to be differentiated
16 ops_par_loop(copy, "copy", block, 2, iter_range,
17 ops_arg_dat(a_in, 1, S2D_00, "double", OPS_READ),
18 ops_arg_dat(a, 1, S2D_00, "double", OPS_WRITE));
19 for (int i = 0; i < niter; ++i) {
20 ops_par_loop(kernel, "kernel", block, 2, iter_range,
21 ops_arg_dat(a, 1, S2D_3PT, "double", OPS_READ),
22 ops_arg_scalar(scl, 1, "double", OPS_READ),
23 ops_arg_dat(a2, 1, S2D_00, "double", OPS_INC));
24

25 std::swap(a2, a);
26 }
27

28 // Initialise Adjoints
29 int memspace = OPS_HOST;
30 auto *a_a1s = reinterpret_cast<double *>(
31 a->derivative_get_raw_pointer(S2D_00, &memspace));
32 // Seed the output
33 a_a1s[output_idx] = 1.;
34 a->release_raw_derivative(OPS_WRITE, memspace);
35 // Interpret Adjoints
36 ops_interpret_adjoints(instance.get()));
37

38 // Accessing derivatives
39 int disp[OPS_MAX_DIM];
40 int size[OPS_MAX_DIM];
41 ops_dat_get_extents(a_in, 0, disp, size);
42 size_t array_size = size[0] * size[1];
43 std::vector<double> output(array_size);
44 a_in->fetch_derivative(output.data(), OPS_HOST);
45

60

values (ops_scalars) before the primal, followed by actually computing the primal the same
way as a traditional OPS application. Then, seed the output variable’s derivative and finally
run the reverse pass. During the primal execution, OPS will save all events (loops, reductions,
etc.) relevant for derivative propagation into its own tape and save the intermediate states if
necessary. OPS needs to store only a small descriptor of the parallel loop in memory to create
a representation of the computation. Based on this descriptor, OPS will execute the loop and
store the overwritten data. Figure 4.2 shows the actions performed on a parallel loop and its
corresponding section in the reverse pass. After the primal execution, the adjoint of the output
needs to be initialized, and finally, the ops_interpret_adjoints call will run the adjoint of
each computational step in reverse order, accumulating derivative information. This final step
will allocate and initialize all required adjoint variables that are not seeded before the function
call. For each event in the DAG, OPS will execute the corresponding adjoint function, such as
calling the adjoint loop as shown in Figure 4.2. Listing 4.3 also shows the two main ways to
access derivatives of datasets. The API is similar to the data access API in OPS. The user can
either get access to the raw pointer underneath the ops_dat variable or can create a copy in
some memory space.

In order to maximize performance and constrain memory use, it is helpful to identify which
variables are taking part in the propagation of derivative information. Existing tools use different
conventions - for example, most operator overloading tools embed this information into their
types. Some source transformation tools treat all pointers to floating point values as active, and
all variables copied by value as passive constants or depend on an explicit listing of active input
and outputs. In OPS, all datasets declared with ops_decl_dat are considered active, the user can
define passive datasets with the ops_decl_dat_passive function to avoid the allocation of the
adjoint variables, and similarly, the user can create passive loops with ops_par_loop_passive
function for loops that are not part of the derivative propagation. For active loops, OPS can
detect active variables from the signature of the adjoint function of the loop body. The example
kernel in Listing 4.2 shows a loop where all inputs are active, and their derivative is present
in the argument list of the adjoint. By simply leaving out the derivative of an input from the
signature of the adjoint of a given kernel function, OPS will treat the relevant data in that kernel
as passive.

4.1.3 Computations outside of OPS

In some cases, pure stencil computations cannot give sufficient performance, or methods that
cannot be represented in the abstraction of OPS are required. An important case here is direct
linear solvers, which are used to implement High-Order Compact discretization schemes or
modern direction splitting time steppers such as Douglas, Modified Craig-Sneyd, or Hundsdorfer-
Verwer [151]. The standard solution in a non-AD context is to ask for access to the raw data
behind the OPS datasets, perform the computations outside of OPS, and return the data to OPS.
I refer to such calculations which take place outside of the OPS abstraction as external calculations.
OPS provides an external adjoint API to support this feature in an AD-aware manner. OPS takes
a function pointer to the primal of the external computations, a function to the adjoint of the
external function, and an explicit list of datasets accessed in the external function, similar to an

61

OPS loop. Inside this function, the user can execute arbitrary computations with the traditional
APIs and even OPS loops as long as all data ownership is returned to OPS before the end of the
function. It is crucial that the function not modify any global program state not owned by OPS
since this could result in incorrect values should checkpointing be used. For such cases, OPS
provides ops_execute_external_function version which always saves the affected OPS data
to avoid the re-execution of external functions at the cost of the additional memory overhead.
Listing 4.4 shows an external function from the CDE application accessing four datasets that
form a batch of tridiagonal systems, solve the systems, and return ownership to OPS. The ad
function contains the adjoint of the external function, which consists of a tridiagonal solve of the
transposed system and an OPS loop on the derivatives.

4.1.4 Controlling memory requirements

Adjoint mode AD executes the adjoint of each instruction of the primal in reverse order, for
which it requires the intermediate states of the variables. There are two ways to produce these
intermediate states that are combined in most tools: saving the states during the primal and
reloading from memory and recomputing. OPS, by default, saves all data that a loop writes at
the beginning of every loop. During the adjoints, OPS will load these, restoring all variables to
the state before the primal loop. With this strategy, OPS does not need to rerun primal loops,
which means faster overall run-time, but this introduces significant memory requirements to
checkpoint all these intermediate states. Existing tools use checkpointing strategies to manage
the trade-off between extra computational steps due to recomputing and the high memory
requirement of adjoint mode AD. OPS implements Revolve [150], originally developed for time
marching schemes.

OPS enables users to define checkpoints, manually specifying which datasets to save. OPS
will store the information of all possible checkpoints in the DAG and use Revolve to manage
rerunning loops and saving intermediate states. Listing 4.5 shows the Revolve API for OPS.
At the beginning of the application, OPS requires the user to set the parameters for Revolve
with ops_ad_set_checkpoint_count, and then Revolve decides which checkpoints should be
active in the chain. At the beginning of each application-level iteration, the user provides a list
of datasets to build a checkpoint with ops_ad_manual_checkpoint_datlist. The list should
contain datasets that are required to reset their states to this point to compute the current
iteration, or in other words, all datasets that are read and will be overwritten later in the
application. Every time OPS encounters a ops_ad_manual_checkpoint_datlist call, it will
save the list of datasets provided, and if this checkpoint should be active, then saves a copy of
each dataset to memory and compute the index of the next active checkpoint. In the reverse pass,
OPS will interpret the adjoint of one iteration at a time. For each iteration, it will recompute
iterations from the last active checkpoint and cache the intermediate states for the last iteration
to prepare it for the reverse pass. If OPS passes an active checkpoint, OPS frees the saved data,
and when OPS recomputes sections of the DAG and has available slots for checkpoints, OPS will
save checkpoints based on the Revolve algorithm.

62

Listing 4.4 An external function solving a batch tridiagonal system formed by the datasets.
The primal function will be called by the ops_execute_external_function_recomp function
during the forward pass, while the ad function provides the adjoint for the external function.

1 auto primal = [=]() {
2 // get access to used ops_dats
3 double *a_raw = reinterpret_cast<double *>(
4 ops_dat_get_raw_pointer(a, 0, S2D_00, &mem_space));
5 // ...
6 tridDmtsvStridedBatch(&trid_params, a_raw, b_raw, c_raw, d_raw,
7 ndim, solvedim, dims, stride);
8 ops_dat_release_raw_data(a, 0, OPS_READ); // ...
9 };

10 auto ad = [=]() {
11 // get access to used ops_dats
12 double *a_raw = reinterpret_cast<double *>(
13 ops_dat_get_raw_pointer(a, 0, S2D_00, &mem_space));
14 double *d_a1s = reinterpret_cast<T *>(
15 ops_dat_derivative_get_raw_pointer(d, S2D_00, &mem_space));
16 // ...
17 tridDmtsvStridedBatch(&trid_params, c_raw - 1, b_raw, a_raw + 1, d_a1s,
18 ndim, solvedim, dims, stride);
19 // Release datasets
20 ops_dat_release_raw_derivative(d, OPS_RW, mem_space);
21 ops_dat_release_raw_data(a, 0, OPS_READ);
22 // ...
23 // Update a1_M = -a1_d * x^T
24 ops_dat a1_a = ops_get_derivative_as_ops_dat(a); // ...
25 ops_par_loop_passive(update_a1_M, "update_a1_M", theBlock, 2, range,
26 ops_arg_idx(),
27 ops_arg_gbl(&nx, 1, "int", OPS_READ),
28 ops_arg_dat(d, 1, S2D_3PT_X, "double", OPS_READ),
29 ops_arg_dat(a1_d, 1, S2D_00, "double", OPS_READ),
30 ops_arg_dat(a1_a, 1, S2D_00, "double", OPS_INC),
31 ops_arg_dat(a1_b, 1, S2D_00, "double", OPS_INC),
32 ops_arg_dat(a1_c, 1, S2D_00, "double", OPS_INC));
33 };
34 ops_execute_external_function_recomp(primal, ad,
35 ops_arg_dat(a, 1, S2D_00, "double", OPS_READ),
36 ops_arg_dat(b, 1, S2D_00, "double", OPS_READ),
37 ops_arg_dat(c, 1, S2D_00, "double", OPS_READ),
38 ops_arg_dat(d, 1, S2D_00, "double", OPS_RW));

63

Listing 4.5 Example use of Revolve for the loop chain from Listing 4.3 with 10 checkpoints
and a fix chain length of niter. The ops_ad_set_checkpoint_count call initiates Revolve, and
the ops_ad_manual_checkpoint_datlist function marks the checkpoints from which OPS can
start recomputing steps. The function takes all the ops_dats that are required to recompute the
iteration.

1 // Initialise Revolve
2 ops_ad_set_checkpoint_count(instance.get(), 10, niter);
3 // Register a Revolve checkpoint
4 ops_ad_manual_checkpoint_datlist(a_in);
5 // Run the code to be differentiated
6 ops_par_loop(copy, "copy", block, 2, iter_range,
7 ops_arg_dat(a_in, 1, S2D_00, "double", OPS_READ),
8 ops_arg_dat(a, 1, S2D_00, "double", OPS_WRITE));
9 for (int i = 0; i < niter; ++i) {

10 // Register a Revolve checkpoint
11 ops_ad_manual_checkpoint_datlist(a, a2);
12 ops_par_loop(kernel, "kernel", block, 2, iter_range,
13 ops_arg_dat(a, 1, S2D_3PT, "double", OPS_READ),
14 ops_arg_scalar(scl, 1, "double", OPS_READ),
15 ops_arg_dat(a2, 1, S2D_00, "double", OPS_INC));
16

17 ops_par_loop(copy, "copy", block, 2, iter_range,
18 ops_arg_dat(a2, 1, S2D_00, "double", OPS_READ),
19 ops_arg_dat(a, 1, S2D_00, "double", OPS_WRITE));
20 }

4.1.5 Retaping and reverse accumulation

OPS provides access to its tape object to give a finer level of control if needed. Through the
tape object, OPS provides support for retaping, where the same tape is used multiple times to
compute different rows in the Jacobian. OPS allows to create and compose a hierarchy of tapes
that allows advanced techniques like reverse accumulation for fixed point iterations [152] that
can drastically reduce the size of the tape and cached states.

Listing 4.6 shows an example of reverse accumulation. OPS can create a local tape in the
adjoint, record computations, and reuse the computational graph to form a convergent iteration
from the adjoint. Since all iterations in the primal are performed in the external function (or
performed as passive loops), these loops are not present in the original tape, and OPS will not
save any intermediate state for them. Instead, in the adjoint of the external function, the new
tape will record one iteration and its intermediate states. However, OPS must reset the adjoint
and primal states between each iteration, which involves runtime overheads.

4.2 Orchestration

As discussed in Section 4.1, all primal computational loops in OPS will write data at the center of
the stencil or perform a reduction on global variables. OPS will save the state of the reductions
for all loops in order to avoid recomputing reductions. For datasets, the parallel OPS loop
already ensures that no race conditions exist for the writes; thus, creating copies of the states is

64

Listing 4.6 Example code for executing a fixed point iteration in the primal with a fixed point
iteration as an adjoint. In the adjoint of an external function, the user can create local tapes to
use. Similarly to other external functions, the user can use passive loops for error calculation,
reseeding, or other purposes.

1 auto primal = [&]() {
2 double error = std::numeric_limits<double>::max();
3 while (error > tolerance) {
4 ops_par_loop(step, "step", block, 2, range,
5 // ...
6 ops_arg_dat(a, 1, S_00, "double", OPS_INC),
7 ops_arg_reduce(err, 1, "double", OPS_MAX));
8 err->get_result(&error);
9 }

10 };
11 auto ad = [&]() {
12 ops_dat derivative = a->get_derivative_as_ops_dat();
13 ops_reduction maxerr =
14 ops_decl_reduction_handle(sizeof(double), "double", "maxerr");
15 ops_ad_tape *tape = ops_create_tape(OPS_instance::getOPSInstance());
16 // record one iteration
17 ops_par_loop(step, "step", block, 2, range,
18 // ...
19 ops_arg_dat(a, 1, S_00, "double", OPS_INC),
20 ops_arg_reduce(tmperr, 1, "double", OPS_MAX));
21 double error = std::numeric_limits<double>::max();
22 while (error > tolerance) {
23 // interpret adjoints
24 tape->interpret_adjoint(OPS_instance::getOPSInstance());
25 // check error
26 ops_par_loop_passive(maxerr, "maxerr", block, 2, range,
27 // ...
28 ops_arg_dat(derivative, 1, S_00, "double", OPS_READ),
29 ops_arg_reduce(maxerr, 1, "double", OPS_MAX));
30 maxerr->get_result(&error);
31 // zero adjoints in tape
32 tape->zero_adjoints_except({a});
33 // reseed others like scalars
34 // ...
35 }
36 ops_remove_tape(OPS_instance::getOPSInstance(), tape);
37 };
38 ops_execute_external_function(primal, ad,
39 // ...
40 ops_arg_reduce(err, 1, "double", OPS_MAX),
41 ops_arg_dat(a, 1, S_00, "double", OPS_INC));

65

Thread 0 Thread 1

Thread 0 Thread 1

barrier

barrier

Figure 4.3: Example scheduling applied by OPS with OpenMP for a three-point wide stencil.
Stripes with the same color are executed parallel, each thread executes a single chunk.

performed inside the loops before calling the user kernel. In the adjoint loops, the OPS will load
these copies for each grid point at the beginning of the loop body and redirect any subsequent
writes for these datasets to local storage.

The adjoint kernels will reverse the data flow, introducing data races on the adjoint data of
read-only datasets. There are four main data access patterns to consider: reductions, global
reads (ops_scalar), data access on grid points, and data access on lower dimensional data.
The first two will switch sides in the reverse pass on the adjoint data, the adjoint of reductions
will be read-only data, and the loop will perform reductions on the adjoint for the ops_scalar
arguments. In the other two cases, the data races will arise along read stencils accessing multiple
points or lower dimensional data. In the implementation, I chose to handle the data races from
lower dimensional data separately, which I will discuss in Section 4.2.1.

To ensure correct results with data races present during the adjoints, a common approach is to
use atomic operations on increments for data that is not thread-local. The other main possibility
is to use the colored execution of grid points and run only points with the same color in parallel.
The deciding factor between the two solutions is the cost of atomic operations and the cost of
creating a coloring and running the loops in multiple chunks. From the stencils in the primal
loops, OPS has information on the pattern in which data races could arise during the adjoint of
loops and can generate adjoint loops in different configurations.

On CPUs, the cost of atomics is higher, and running the loop in two chunks with a barrier
between the two chunks is relatively fast. Therefore, OPS uses the latter approach. Given the
stencils’ width in a parallel loop, OPS can divide the grid into stripes along the highest dimension.
Figure 4.3 shows an example of the coloring. OPS chooses the stripes such that each stripe has a
width equal to at least the width of the stencils. Then, the stripes are executed in two stages,
and each stage computes at least the width of the stencil iterations, making both stages race-free
(no overlaps of the written data within a stage).

On GPUs, the overhead of introducing atomic operations is much smaller compared to the
performance loss of the worse memory access patterns that would be introduced by colored
execution. Therefore, adjoint loops in CUDA use atomic operations on the adjoints of datasets
with a single kernel launch. This keeps the coalesced memory accesses in the loops, but the
performance of the writes on the adjoint data depends on the stencil itself.

66

vi−1 vi vi+1

ui,j

u[i, j] = v[i− 1] + v[i+ 1] + v[i]

Figure 4.4: Data access for a three-point read stencil on a 1D dataset v in a 2D loop. The arrows
represent the accessed values to compute the new u values. The loop reads the same
three points for each iteration, sharing the same i index highlighted in green. In the
adjoint loop, each iteration highlighted in green will increment the derivative for the
same three values in v. In addition, the neighboring columns will have overlapping
increments as well.

Listing 4.7 Example two dimensional loop with data access to lower dimensional data.
1 for (int j = 1; j < size_y - 1; ++j) {
2 for (int i = 1; i < size_x - 1; ++i) {
3 u[j * size_x + i] = x[i - 1] + x[i] + x[i + 1] + v[j - 1] + v[j] + v[j + 1];
4 }
5 }

4.2.1 Handling low-dimension datasets

As mentioned above, we handle access to lower dimensional datasets separately to mitigate
the effect of the shared data access of large amounts of threads. Reads in the primal to a
low-dimension dataset will result in a large number of writes in the adjoint loop to the adjoint
of the low-dimension dataset. Essentially, the loops perform sums along the dimensions where
the lower dimensional dataset is invariant. For example, in a two-dimensional loop such as in
Listing 4.7, the loop would access two one-dimensional datasets x and v, where x is invariant
along the Y axis, and v is invariant along the X axis with access patterns shown in Figure 4.4.

The loop is parallelized on CPUs in the outermost (non-contiguous) dimension. If a dataset
is not invariant in this dimension, such as v in the example, then the original parallelization
already takes care of the races on the dataset. However, in the case of x, where the dataset is
invariant in the outermost dimension, all threads would write the same values of the adjoint,
which would lead to further data races. To avoid a data race for these datasets, OPS will allocate
a temporary buffer for each thread to collect the increments from the given thread during the
adjoint loop. Then, in a separate step, OPS will sum the increments from each thread for the
adjoint of the lower dimensional datasets.

On the GPU, atomic operations are sufficient for handling the data races in theory. However, in
the presence of lower dimensional datasets, the performance of the atomic operations drastically
drops due to the high number of conflicts. If possible, OPS will use two-dimensional CUDA

67

hv implicit
matrices

hv predictor
step 0

hv predictor
step 1

hv predictor
step 2

hv predictor
step 3

0

5

10

15

20

25

30

Sp
ee

du
p

8.8

12.1

15.4
13.7

15.4

18.7

27.4

31.4

28.8

31.310242

40962

Figure 4.5: Speedup of our access-pattern-aware adjoint reductions and accumulations, compared
to using only atomics on kernels from the CDE application, which have lower-
dimensional data accesses with a mesh size of 10242 and 40962 on an NVidia A100.

thread blocks with the shape of 32× nwarps to reduce the effect of writes to the same location
within an OPS block. This shape keeps the coalesced memory accesses of the primal on the
higher dimensional datasets. However, threads within a warp will write the same values for
v[j] and v[j ± 1] from Listing 4.7 (a dataset that is invariant in X), so when the warp executes
an atomic write, the memory address collisions within the warp will result in the write being
serialized. In the case of x (a dataset that is invariant Y), threads within a warp will only have
address collisions if non-zero stencils are present, but address collisions arise among the warps
inside the block. To reduce the effects of these data races, OPS will accumulate the increments of
each thread in registers and then handle races in a separate step at the end of the kernel. There
are four important cases that OPS handles. First, for datasets like v that are always shared by
the warp, OPS will perform a warp level reduction so that only one thread per warp will perform
an atomic write to the global memory. Second, for datasets like x that are always shared among
the warps of the block, the increments are written with atomics directly by each thread at the
end since the threads in a single warp do not have races in the center of the stencil. The final
two cases arise in three- or higher-dimensional loops. If a dataset is invariant in both the X and
Y dimensions, all threads within a block will share all accessed data, and OPS will perform a
block-level reduction for all written adjoint values. Finally, datasets that are invariant only in the
third or higher dimensions will behave like ordinary datasets from the perspective of the block.

Figure 4.5 shows the actual speedup this optimization achieved on the adjoints of kernels
with lower dimensional datasets in one of the test applications. These kernels use the access
pattern shown in Listing 4.7 on two separate datasets. The CDE application is a 2D stencil code
on a non-uniform mesh[153]. Computing the finite difference estimates requires knowing the
mesh coordinates to the left and right in the X dimension and to the top and bottom in the Y
dimension, in addition to knowing the current mesh point. These X and Y mesh coordinates are
stored in two 1D datasets. Warps have coalesced reads to the X mesh coordinates similarly to x

68

in Listing 4.7, whereas each read from the Y mesh coordinates results in a single value broadcast
across the warp as for v. The three-point access to the two datasets can be replaced with access
to 12 separate datasets per mesh point but with a one-point stencil instead of three, which
reduces the data races during the adjoint kernel. This optimization increases the performance
for both the primal and adjoint kernels. In the presence of one-point stencils only, the reductions
achieve 3.7 – 6.9x and 7.1 – 15.4x speedups on the 10242 and 40962 mesh, respectively.

4.3 Evaluation

To show the performance of AAD in OPS, I tested it on three distinct applications. I tested a
Poisson mini application from the examples in OPS, the Cloverleaf[154] CFD application, and
a 2D parabolic Convection-Diffusion Equation (CDE) solver from computational finance[153].
In my measurements, passive denotes the time it takes to run the original application, forward
denotes the time it takes to run the application and record the tape, and adjoint denotes the
time of computing derivatives for all inputs.

The Poisson application solves the equation

∇2u = f

with Jacobi iterations with 2D finite differences, where the update iteration can be written as:

u
(n+1)
i,j =

(u(n)
i−1,j + u

(n)
i+1,j)dy2 + (u(n)

i,j−1 + u
(n)
i,j+1)dx2 − dx2dy2fi,j

2(dx2 + dy2)

I used a 40962 mesh with 100 iterations for evaluating performance. These measurements show
the performance of recording the tape and accumulating derivative information with OPS. I
introduced two versions for handling the derivative propagation; the first is to record all iterations
and compute the adjoints, and the second is to take advantage of the fact that the code can
be expressed as a fixed point iteration. Hence, I can compute the derivative with a fixed point
iteration with the tape for a single iteration.

CloverLeaf[154] is a mini-app that solves the compressible Euler equations on a Cartesian grid
using an explicit, second-order accurate method. Cloverleaf is a mini-app from the UK Mini App
Consortium and is widely used for performance benchmarks for stencil computations. I used the
OPS implementation for Cloverleaf on two example problems, one with a 9602 problem size and
2955 time steps and a bigger 38402 problem with 87 time steps.

The CDE application is a convection-diffusion-reaction code from computational finance[153].
It computes the price of a European call option driven by a Heston stochastic volatility model
using the Method of Lines. The CDE application uses a finite volume scheme with central finite
differences and first-order upwinding at the v = 0 boundary. It uses the Hundsdorfer–Verwer
ADI time stepping scheme and requires the solution of batches of tridiagonal systems, which
the tridsolver[J2] library performs. I use this application to highlight two aspects: the effect of
low-dimensional datasets on performance and external adjoint nodes in OPS.

69

4.3.1 Measurement Setup

I ran the OpenMP measurements on CentOS Linux release 7.9 using a single socket of an Intel(R)
Xeon(R) Gold 6226R CPU at 2.9 GHz without hyper-threading and 376 GB RAM. Using the
Empirical Roofline Toolkit[155] OpenMP kernels reach 224.5 GFLOP/s on a single sockets
without hyper-threading. The CUDA measurements were executed on a CentOS 8 using an
AMD EPYC 7F72 24-core Processor and an NVidia A100 GPU with 40 GB RAM with a 5.25
TFLOP/s peak double precision compute throughput. All codes are compiled using GCC 11.2
and CUDA 12.0. I do not use Revolve for the Poisson application but save all intermediate states
for the 100 iterations. When I do not specify otherwise, I report runtimes of Cloverleaf 985 using
29 Revolve checkpoints for both the 9602 and 38402 test-cases, and 10 checkpoints for CDE. All
measurements were repeated ten times, and the mean value is shown as the final result. For each
application, I measured the original application and the AD version with the combined forward
and reverse pass.

4.3.2 Results

Intel(R) Xeon(R) Gold 6226R
16 threads using OpenMP

Revolve
CPs

Runtime
Passive (s)

Peak memory
passive (GiB)

Runtime
Adjoint (s)

Peak memory
adjoint (GiB)

Adjoint
factor

Number of
sensitivities

Poisson 40962, 100 iter - 0.677 0.50 2.974 14.88 4.39 34 M
Poisson Iterative 40962, 100 iter - 0.677 0.50 2.514 4.63 3.72 34 M
Cloverleaf 9602, 2955 iter 895 60.076 0.18 450.526 29.01 7.03 4 M
Cloverleaf 9602, 2955 iter 100 60.076 0.18 470.058 3.96 7.82 4 M
Cloverleaf 38402, 87 iter 29 32.791 2.76 202.890 28.46 6.19 59 M
Cloverleaf 38402, 87 iter 10 32.791 2.76 218.522 18.43 6.66 59 M
CDE 10242, 100 iter 10 1.399 0.19 13.521 1.07 9.67 1 M
CDE 40962, 100 iter 10 34.259 3.01 261.440 12.52 7.63 17 M
NVidia A100
Poisson 40962, 100 iter - 0.032 0.50 0.195 14.88 6.05 34 M
Poisson Iterative 40962, 100 iter - 0.032 0.50 0.171 4.63 5.31 34 M
Cloverleaf 9602, 2955 iter 895 7.639 0.18 40.631 29.01 5.32 4 M
Cloverleaf 9602, 2955 iter 100 7.639 0.18 42.825 3.96 5.61 4 M
Cloverleaf 38402, 87 iter 29 1.799 2.76 11.885 28.46 6.61 59 M
Cloverleaf 38402, 87 iter 10 1.799 2.76 12.722 18.43 7.07 59 M
CDE 10242, 100 iter 10 0.453 0.19 2.078 1.07 4.59 1 M
CDE 40962, 100 iter 10 3.731 3.01 20.157 12.52 5.40 17 M

Table 4.1: Runtime and memory comparison between the original applications and the computing
of the adjoints measured on an Intel(R) Xeon(R) Gold 6226R with 16 threads using
OpenMP (Top) and on an NVidia A100 using CUDA (Bottom). Note: For the
Poisson code, Iterative stands for computing the adjoints as a fixed point iteration
with storing tape for the last iteration only.

For all applications, I evaluated the performance of the original OPS application as well as OPS
with adjoint calculations. I evaluated each application using the OpenMP and CUDA backend
and code generation path of OPS from the same source. As with many stencil applications, the
Poisson and Cloverleaf applications are memory bandwidth-bounded codes, where the achieved
bandwidth is a commonly used metric for performance on a given hardware. The CDE application
uses lower dimensional datasets in most computational kernels, which leads to compute-bound
loops for most of the loops in the application.

Table 4.1 shows all the absolute runtimes and peak memory usage of all the measured codes
as well as the number of sensitivities computed by the evaluation of the adjoint model.

The simplest application is Poisson, which performs the computations from Listing 4.3, where
a single computational loop applies the stencil from Listing 1.2 in each iteration. The first version
applies the adjoint calculation directly, caching all intermediate states of the datasets for the

70

Prim
al

Adjo
int

s

Res
ult

s
Ta

pe
0

100

200

300

400

500

Si
ze

 (M
iB

)
513 512 512

128

Poisson 40962

Prim
al

Adjo
int

s

Res
ult

s
Ta

pe

Firs
t C

P

Che
ck

po
int

0

200

400

600

800

1000

Si
ze

 (M
iB

)

180 151
72

1055

43 29

Cloverleaf 9602

Prim
al

Adjo
int

s

Res
ult

s
Ta

pe

Firs
t C

P

Che
ck

po
int

0

2000

4000

6000

8000

Si
ze

 (M
iB

)

2844 2374

1017

9130

678 452

Cloverleaf 38402

Prim
al

Adjo
int

s

Res
ult

s
Ta

pe

Sec
on

d C
P

Che
ck

po
int

0

50

100

150

Si
ze

 (M
iB

)

177 177

88

152

16 8

CDE 10242

Prim
al

Adjo
int

s

Res
ult

s
Ta

pe

Sec
on

d C
P

Che
ck

po
int

0

500

1000

1500

2000

2500

3000

Si
ze

 (M
iB

)

2947 2819

1280

2432

256 128

CDE 40962

Figure 4.6: Memory requirements for the applications. Primal is the memory usage of the original
application, while Adjoint shows the adjoint memory allocated for datasets. The
checkpoint sizes note the size of the Revolve checkpoints. First CP for Cloverleaf
and Second CP for CDE marks a single checkpoint with more data due to datasets
that are only written at the beginning. All other checkpoints use the uniform size
shown as Checkpoint. Tape marks the required saved states for interpreting one time
step. Finally, Results marks extra copies for saving the datasets at the end of the
forward pass.

whole application during the forward pass. The Iterative version performs the 100 iterations
without caching any state in an external adjoint function. It creates a new tape for the fixed
point iteration during the adjoint evaluation, records a much smaller tape for a single iteration,
and performs 100 adjoint evaluations on that tape. Figure 4.6 shows the components of the
application’s memory usage. The Iterative approach reduces the required memory footprint
due to caching only one iteration (and a loop after the fixed-point iteration computing the
error) and reusing that tape instead of using 100x of the memory storing the tape for 100
iterations. The trade-off is that this approach introduces overheads to the adjoint propagation
corresponding to resetting the primal and adjoint memory between adjoint evaluation on the
secondary tape. Nevertheless, these overheads have a lower impact on the total runtime than
caching all intermediate states during the forward pass in our case.

In Cloverleaf, we have significantly more kernels per time iteration (over 150), which leads to
much more cached memory, as Figure 4.6 shows. Creating a tape containing data for every time
step with these sizes is infeasible. Therefore, our implementation for Cloverleaf has to utilize
Revolve.

Finally, in addition to Revolve, the CDE application uses the external function API with

71

Application Testcase BW
(GiB/s)

Peak
(%)

Poisson 40962, 100 iter 55.54 92.28
Poisson
Active 40962, 100 iter 54.82 91.03

Poisson
Iterative 40962, 100 iter 57.07 94.77

CloverLeaf 9602, 2955 iter 50.33 83.58
CloverLeaf

Active 9602, 2955 iter 46.02 76.43

CloverLeaf 38402, 87 iter 59.42 98.67
CloverLeaf

Active 38402, 87 iter 58.22 96.68

BabelStream
Triad 1.0 GiB 60.22 100

(a) Bandwidth values measured on a single
socket of an Intel(R) Xeon(R) Gold 6226R
without hyper-threading using OpenMP.

Application Testcase BW
(GiB/s)

Peak
(%)

Poisson 40962, 100 iter 1195.93 92.87
Poisson
Active 40962, 100 iter 980.11 76.11

Poisson
Iterative 40962, 100 iter 968.66 75.22

CloverLeaf 9602, 2955 iter 600.02 46.60
CloverLeaf

Active 9602, 2955 iter 634.70 49.29

CloverLeaf 38402, 87 iter 1124.07 89.13
CloverLeaf

Active 38402, 87 iter 1024.86 79.59

BabelStream
Triad 1.0 GiB 1287.70 100

(b) Bandwidth values measured on the NVidia
A100 GPU using CUDA.

Table 4.2: Bandwidth values for the Poisson and Cloverleaf applications. The Peak (%) values
show the relative bandwidth compared to the Triad kernel in BabelStream.

OpenMP, GFLOPS/s CUDA, TFLOP/s
10242, 100 iter 40962, 100 iter 10242, 100 iter 40962, 100 iter

primal adjoint primal adjoint primal adjoint primal adjoint
hv implicit matrices 40.90 41.14 41.29 47.13 1.71 1.39 1.80 1.34
hv predictor step 0 41.50 24.58 38.40 27.62 2.85 1.58 3.00 1.67
hv predictor step 1 36.95 36.90 37.01 41.92 2.69 1.95 3.01 1.80
hv predictor step 2 35.89 24.66 32.63 27.90 2.72 1.68 2.90 1.75
hv predictor step 3 36.99 35.95 37.01 41.31 2.69 1.95 3.01 1.80
Peak throughput 224.5 5.25

Table 4.3: Double precision throughput of compute bound kernels in the CDE application. The
first four columns were measured on a single socket of an Intel(R) Xeon(R) Gold
6226R with the peak throughput measured with the Empirical Roofline Toolkit[155].
The last four columns were measured on the NVidia A100 GPU.

tridiagonal solver calls. We used two problem sizes to test a 10242 and a 40962 mesh with 100
time steps in each case. In both cases, the tridiagonal solver calls dominate the forward pass on
GPUs (around 90% of total time), while on CPUs, the 10242 problem spends 23% and the 40962

46% of the forward pass solving tridiagonal systems.
I used the Triad kernel from BabelStream [149] to measure the achievable bandwidth for our

test platforms. This kernel achieved 60.22 GiB/s on a single NUMA node of an Intel(R) Xeon(R)
Gold 6226R and 1287.70 GiB/s on the NVidia A100 GPU. Available memory bandwidth is the
main performance bottleneck for the Poisson and Cloverleaf applications. Table 4.2a shows
the achieved bandwidth for the whole application run on CPU. For all test cases, the Adjoint
versions achieve slightly lower bandwidth values due to the heavy use of atomics, with the biggest
difference being 4.3 GiB/s for the 9602 mesh in CloverLeaf which results in achieving 76.4%
of the bandwidth of BabelStream. The highest bandwidth measurement for adjoints reaches
96.7% of BabelStream. Using fixed point iterations to compute the derivatives for the Poisson
code achieves comparable bandwidth to the original application and lower runtime due to lower
overheads during the forward pass.

Table 4.2b shows similar results on the NVidia A100 GPU. The 9602 mesh is too small to
saturate the GPU and achieves worse bandwidth. Similarly to the OpenMP versions, the adjoint
implementations achieve lower bandwidth in general, but in the case of CUDA, the impact of

72

OpenMP
40962x

100

OpenMP Iter
40962x

100

CUDA
40962x

100

CUDA Iter
40962x

100

0

1

2

4

6

8

10

R
un

tim
e

re
la

tiv
e

to
 p

as
si

ve

4.39x

3.72x

6.05x

5.31x

Poisson

Forward
Overhead
Adjoint

OpenMP
9602x
2955

OpenMP
38402x

87

CUDA
9602x
2955

CUDA
38402x

87

7.03x

6.19x

5.32x

6.61x

Cloverleaf

Forward
Overhead
Revolve
Adjoint

OpenMP
10242x

100

OpenMP
40962x

100

CUDA
10242x

100

CUDA
40962x

100

9.67x

7.63x

4.59x

5.40x

CDE

Forward
Overhead
Revolve
Adjoint

Figure 4.7: The overhead of AD on the benchmark applications, compared to a single evaluation
of the passive, original application, showed by Forward. The values show that
evaluating the adjoints takes N times of evaluating the original application. All bars
show the values relative to the original applications. The Overhead values show the
additional cost of collecting the DAG, saving intermediate states, and storing Revolve
checkpoints during the forward pass, Revolve values represent the additional time
spent on replaying sections of the applications to restore states for the adjoints loops
and the Adjoint part shows the time spent in the actual adjoint loops.

atomics leads to a bigger difference than the passive versions.
Table 4.3 shows the achieved compute throughput for the compute-bound kernels from the

CDE applications. The adjoint loops achieved similar compute throughput compared to the
primal loops using OpenMP. However, on GPUs, the increased cost of the atomic leads to a
larger difference in performance. As Table 4.3 shows, the adjoint loops achieve 55-80% of the
throughput of the corresponding primal loops while reaching up to 37% of the theoretical double
precision throughput of the A100.

Note that the runtimes in Table 4.1 and the bandwidth values were measured using the same
high-level OPS source code without any modifications. By eliminating the cost of developing,
debugging, and maintaining separate code bases for distinct parallel platforms, a domain-specific
language like OPS enables the developer to focus on the application itself rather than the
hardware-specific details and allows the application to run on the available hardware.

Figure 4.7 shows the relation between the runtime of the original application and the adjoint
evaluation. The total values at the end of each bar show the relative cost of calculating the
adjoints (including evaluating the original code). These values mean the time to evaluate the
derivatives is equivalent to running the original code N times. The blue bars represent the
original runtime, and the orange Overhead parts represent the additional time the active code
spends in the forward pass. This time is spent on tasks like caching intermediate states, building
the tape, and handling Revolve checkpoints. The green parts for Cloverleaf and CDE represent
the time spent on re-running sections of the forward pass and handling moving the Revolve
checkpoints, and finally, the red part marks the time spent on actually evaluating the adjoints.

In the case of the Poisson code, we can clearly see the effect of caching intermediate states.
For all loops for each grid point, OPS will save the value of the written dataset, doubling the

73

 5
0.2%
8.3

10
0.3%
4.5

30
1.0%
2.8

50
1.7%
2.5

100
3.4%
2.0

0
2
4
6
8

10
12
14
16
18

R
un

tim
e

re
la

tiv
e

to
 F

or
w

ar
d

Cloverleaf 960^2x2955 OpenMP

 2
2.3%
8.0

10
11.5%

2.1

20
23%
1.8

30
34%
1.7

Cloverleaf 3840^2x87 OpenMP

 2
2%
8.6

10
10%
2.2

20
20%
1.8

30
30%
1.7

CDE 1024^2x100 OpenMP

 2
2%
8.6

10
10%
2.2

20
20%
1.8

30
30%
1.7

CDE 4096^2x100 OpenMP

 5
0.2%
8.3

10
0.3%
4.5

30
1.0%
2.8

50
1.7%
2.5

100
3.4%
2.0

Checkpoints
% of total iterations

0

2

4

6

8

10

12

14

R
un

tim
e

re
la

tiv
e

to
 F

or
w

ar
d

Cloverleaf 960^2x2955 CUDA

 2
2.3%
8.0

10
11.5%

2.1

20
23%
1.8

30
34%
1.7

Checkpoints
% of total iterations

Cloverleaf 3840^2x87 CUDA

 2
2%
8.6

10
10%
2.2

20
20%
1.8

30
30%
1.7

Checkpoints
% of total iterations

CDE 1024^2x100 CUDA

 2
2%
8.6

10
10%
2.2

20
20%
1.8

30
30%
1.7

Checkpoints
% of total iterations

CDE 4096^2x100 CUDA

Forward Overhead Adjoint kernels Revolve

Figure 4.8: Runtime relative to a single evaluation of the original application (Forward) of
evaluating the adjoints for the applications (including the original applications) with
Revolve. On the X axis number of available Revolve checkpoints is increased. At each
tick on the X three values are shown. The number Revolve checkpoints used, ratio of
checkpoints and the total number of iterations, and the average number of forward
steps taken at each iteration is shown. The increased number of checkpoints reduces
the number of additional forward steps required to restore intermediate states.

write in each kernel, thus, the time required for the forward pass for OpenMP. The overhead is
slightly bigger in the case of CUDA due to the higher cost of the memory operations related
to the cached states. Nevertheless, the Iterative version clearly shows its advantage in reducing
the overhead for the forward pass since it only requires caching before and after the fixed point
iterations. Of course, the Iterative spends more time evaluating the adjoints as a consequence
since it needs to reset the tape used for the fixed point iteration, increasing the cost of the adjoint
evaluation from 2.5x to 2.7x and from 4.0x to 4.2x for OpenMP and CUDA respectively. These
overheads are still compensated in the case of Poisson with the reduction in the Overhead cost,
but this heavily depends on the application and the quality of the adjoint kernels as well.

The Overhead for Cloverleaf mainly comes from caching the final iteration and handling
Revolve checkpoints. For each problem, I chose the maximum saved Revolve checkpoint as Niter

3 ,
which shows the increased relative overhead for the 9602 problem. However, the actual difference
is amortized due to grouping the allocations for the checkpoints. The chosen checkpoint counts
lead to spending 2.1− 2.5x the time of the original application performing re-runs of forward
kernels. In terms of actual adjoint kernels relative to the original application, OPS spends 3.3x

(9602) and 2.8x (40962) time on CPUs and 2.12x (9602) and 3.2x (40962) time on GPUs.
For the CDE application, I fixed the checkpoint count to 10 for the 100 iteration, which leads to

small overheads on the forward pass and 2.05− 2.87x time spent on re-computing forward kernels

74

(including forward kernels with caching). There is a large difference in the relative runtime of
the adjoint computation between the OpenMP (10242 − 5.62x, 40962 − 3.72x) and the CUDA
(10242 − 1.4x, 40962 − 2.05x) implementation. The main cause of the difference is in the time
spent on the tridiagonal solver calls - the original application spends 92% for the small and 88%
for the big mesh of the runtime in the tridiagonal solver calls in CUDA for the while for the
OpenMP version this ratio is only 23% and 46% respectively. As I showed, the adjoint for the
tridiagonal solve is another tridiagonal solve and a small loop on the derivatives leading to a
small overhead on the adjoints. In terms of adjoint loop performance on the small mesh, both
the OpenMP and CUDA versions compute the adjoints in 6.6− 6.7x while we see a difference on
the bigger mesh (5.5x for OpenMP and 8.2x for CUDA) where the overhead from the reductions
on the low dim datasets showing their effects with the increased number of blocks present.

Figure 4.7 clearly shows the effect of Revolve on the total runtime of the derivative propagation,
and Figure 4.6 shows the effect on the memory consumption. The Poisson application shows the
effect of naively implementing AD with caching all intermediate states. The original application
uses 513 MiB memory (4 datasets with a size of 128 MiB each plus some additional memory in
OPS). In addition, the active version allocates the adjoints for all these datasets and also saves
an additional copy of the primal results. The value shown in Figure 4.6 for the tape corresponds
to one time iteration where the loop writes one dataset. Hence, OPS will store 1 dataset worth
of data for the time iteration, adding 128 MiB per iteration, a total of 12.5 GiB memory for
the 100 iterations, and a runtime overhead on the forward pass, but potentially faster time to
derivatives. This highlights the main benefit of the iterative approach since this version only
caches data for one iteration, drastically decreasing the memory footprint of computing adjoints,
resulting in a constant memory requirement for computing the adjoints instead of constantly
increasing with the iteration count and the complexity of the computations. For a reasonably
complex application, the size of the tape required for a single iteration drastically increases,
making it infeasible to tape all iterations at once, and many applications are not fixed point
iterations, ruling out reverse accumulation. For such applications, Revolve provides a solution to
control the memory footprint at the cost of additional computing steps. Figure 4.6 also shows
how the memory requirements change with the number of Revolve checkpoints used in Cloverleaf
and CDE. The effect is twofold: OPS will cache only one iteration at a time (reducing the
peak memory for this category by a factor of Niter and fixing it to the Tape value shown in the
figure) and increasing the memory usage by saving the Revolve checkpoints to memory. Both
applications have one-time writes on a few datasets, leading to a bigger initial checkpoint, but all
other checkpoints are the same size, increasing the peak memory footprint linearly. Without the
active Revolve checkpoints, OPS can compute the adjoints using only 5.4−8.1x more memory for
Cloverleaf and 3.2− 3.4x more memory for CDE compared to the original application. Counting
the 10 Revolve checkpoints used for CDE OPS computes the adjoints under 3.7x more memory.

In terms of runtime, Revolve will, in total, increase the runtime with the additional re-
compute steps and the cost of actually saving the checkpoints. To get a clearer picture of
the effect on the runtime, Figure 4.8 shows both Cloverleaf and CDE runtimes at different
maximum active checkpoint counts. The theoretical minimum runtime overhead would arise
if the application stores all Revolve checkpoints during the forward pass. Then, each iteration

75

would be replayed once while saving all states. On the other end, using only a few Revolve
checkpoints while having smaller memory requirements leads to significantly more re-compute
steps. This highlights again the trade-off between memory and total runtime. While with each
additional checkpoints increases the peak memory usage linearly with the size of a checkpoint
of size showed in Figure 4.6. Figure 4.8 provides three value on the X axis: the number of
active checkpoints used, the percentage of the checkpoints for the iterations can be saved with
this amount of active checkpoints, and finally the average number of forward steps taken from
each checkpoint[150]. Note that while the memory requirement increase linearly this average
recompute number quickly closes to 2. In sync with this number, for both applications, the
overhead of the re-compute steps quickly reduces re-computing the forward steps only a handful
of times, and then allowing additional checkpoints to store to memory have diminishing returns.
In addition, during re-computing loops, OPS can reduce the cost of execution by skipping
reductions, which results are already saved during the first execution and would significantly
impact loop performance.

4.4 Conclusion

In this chapter, I presented an extension to the OPS DSL to support adjoint mode algorithmic
differentiation. OPS allows the expression of structured mesh applications from a high-level source
and handles parallelism, data movement, and optimizations to different hardware backends. The
extension provides performance portable derivatives for such applications on CPUs and GPUs.
The AD extension leverages the domain-specific abstraction of OPS to perform optimizations
that would be impossible with a more generic tool.

I introduced a model to describe data dependencies and data races in the adjoint of the
computational loops described in the OPS abstraction. From the description of the original
stencils, OPS calculates the scatter stencils used in the adjoint loops, which define the patterns
where data races arise.

I used this model to map the adjoint loops to OpenMP and CUDA parallel implementations.
OPS is free to generate any scheduling to avoid data races with synchronization or can generate
code that uses atomic operations. I show that OPS can specialize the kernels to accommodate
reductions on lower-dimensional datasets efficiently on both CPUs and GPUs. My approach
builds a compact AD tape in OPS by handling derivatives at the loop level instead of expressions.
Storing information only at the loop level drastically decreases the size of the tape compared to
operator overloading-based tools. In addition, the high level of abstraction makes implementing
extensions to the tape, like support for external adjoint functions, straightforward. I demonstrate
the use of the external function API using linear solvers in an ADI application. Then, to give
control over the memory overhead, I extended the tape with the Revolve checkpointing strategy.
Revolve requires the ability to restore the state of the application at specific points and, from
these points, recompute the original loops. I show that with code generation, OPS can optimize
the recompute steps by skipping reductions, which would increase the run time of the kernels
otherwise.

Experimental results on two memory bandwidth bound applications show that the adjoint
propagation achieves similar bandwidth as the original primal application, achieving over 90%

76

of the peak bandwidth on test cases that do not fit in cache on CPUs and only dropping 7%
compared to the original on smaller test cases. Similarly, on GPUs, active versions achieve
75 − 80% of the peak bandwidth on test cases that can saturate the GPU. Compared to the
original applications, the OpenMP versions on all three test applications computed adjoint under
10x overhead and on GPUs under 4.6− 6.6x.

I have integrated Revolve into OPS and showed that we can control the memory requirements
of the adjoint evaluation as expected. This enables large simulations to run in adjoint mode,
which would require too much memory otherwise by trading memory requirements for runtime
with re-computing sections of the forward pass.

The adjoint model in OPS provides an efficient way to compute derivatives for performance-
critical structured mesh applications. Using a DSL such as OPS unlocks the derivative com-
putations on both hardware from the same high-level source, giving the 10× speedup achieved
on the A100 GPU compared to a single socket of the Intel(R) Xeon(R) Gold 6226R for these
applications without any additional development cost.

77

5 Summary of the Dissertation

In this chapter, I provide a summary of the main scientific contributions of this dissertation and
briefly discuss the possible application areas of the results.

5.1 Methods and tools

The first part of my research is based on the OP2 domain-specific language [12], which provides
a high-level abstraction for the solution of unstructured-mesh applications defining an API to
describe computational kernels with all the necessary information for orchestrating parallelism. I
implemented the new source-to-source generator based on the refactoring tool support of Clang’s
LibTooling library. The correctness and performance of the generated code were tested on two
applications written using the OP2 abstraction: a benchmark simulating the airflow around the
wing of an aircraft called Airfoil and a tsunami simulation software called Volna [141].

The second part of my dissertation focuses on the distributed solution of batch-tridiagonal
systems with special attention to applications using the Alternating-Direction Implicit method [59].
The base of this work is the single-node solver library Tridsolver [65]. I combined the exact
iterative PCR algorithm [62] with the distributed communication strategies of the TridiagLU
library [76].

Finally, the third part of my research focuses on the other domain-specific language of the
OP-DSL family OPS [11] and computing sensitivity information for outputs. The structure
and abstraction of OPS are similar to OP2’s, but OPS targets structured meshes with stencil
loops. I applied reverse (adjoint) mode algorithmic differentiation (AAD) to applications written
in OPS. I used three applications to analyze the performance of AAD with OPS: a 2D code
solving the Poisson equation using Jacobi iterations applying AAD directly and using fixed
point iterations [152], the CloverLeaf[154] is a mini-app that solves the compressible Euler
equations on a Cartesian grid using an explicit, second-order accurate method and a code for 2D
convection-diffusion equation code from computational finance [153].

The applications and library extensions were implemented in C++ in combination with
the CUDA language extension for targeting GPUs. While the code generator for OP2 was
implemented in C++, the code generator for the AAD support of OPS was implemented in
Python. I used the NCCL and MPI libraries for message passing for distributed memory
parallelism, and for shared memory parallelism, I used OpenMP and CUDA.

For performance measurements, a range of hardware architectures and platforms were used.
For benchmarking the scaling performance of the Tridsolver library, I used two of the UK’s HPC
systems: ARCHER21, a CrayEX system with AMD Rome CPUs (2× 64 cores per node) and 256

1https://www.archer2.ac.uk/

78

https://www.archer2.ac.uk/

GB of RAM, and Cirrus2, a HPE/SGI system with 36 GPU nodes, each with 4×NVIDIA V100
16GB GPUs, interconnected with NVLink, and FDR Infiniband between nodes. For evaluating
the performance of AAD in OPS, I ran the OpenMP measurements on a single socket of an
Intel(R) Xeon(R) Gold 6226R CPU at 2.9 GHz without hyper-threading and 376 GB RAM and
the CUDA measurements were executed using an AMD EPYC 7F72 24-core Processor and an
NVidia A100 GPU with 40 GB RAM. In most cases, the runtimes reported are the results of
averaging 10 repeated runs.

5.2 New Scientific Results

Thesis I. I designed an automatic translation toolchain that uses a parallelization skeleton based
approach. My solution improves the stability and robustness of source-to-source translation in the
OP2 DSL, generating code for CPU clusters and GPUs, and improving memory locality. The
performance of the generated code is demonstrated on a set of representative applications, and I
performed a comparative analysis of the effects of various programming languages and compilers
on the efficiency of parallel loops.

Publications related to this thesis group are: [J1], [C1], [C2].

The OP2 API was constructed to make it easy for a parsing phase to extract the relevant
information about each loop that will describe which computation and memory access patterns will
be used - this is required for code generation aimed at different architectures and parallelization.
The op_arg_dat provides all the details of how an op_dat’s data is accessed in the loop. With this
information, the op_par_loop call contains all the necessary information about the computational
loop to perform the parallelization. It is clear that due to the abstraction, the parallelization
depends only on a handful of parameters, such as the existence of indirectly accessed data or
reductions in the loop, plus the data access modes that lend to optimizations.

The fact that only a few parameters define the parallelization means that in the case of two
computational loops, the generated parallel loops have the same lines of code with only small
code sections with divergences. The identical chunks of code in the generated parallel loops
are an important blueprint of the target code to be generated. This leads us to the idea of
using a parallel implementation (with the invariant chunks) of a dummy loop and carrying out
the code generation process as a refactoring or modification of this parallel loop. Figure 2.2
illustrates partial parallel skeletons we can extract for the generated OpenMP implementation for
indirect loops. The code generator can use this dummy parallel loop as a skeleton (or template)
and modify it to generate the required candidate computational loop. One can imagine similar
skeletons for all target parallelizations. This approach can reduce the cost of introducing new
targets since it requires only the implementation of a dummy loop to use as a skeleton instead of
implementing code generation paths for the whole kernel. At the same time, since implementing
a loop is much less error-prone than writing code to generate it, this approach reduces the risk
of introducing bugs in the invariant bits of code in the parallel loops.

2https://www.cirrus.ac.uk/

79

https://www.cirrus.ac.uk/

OP2 Application (C/C++ API)

Modified
OP2 Application

Target Specific Optimized
Application Files

unstructured mesh problem

OP2-Clang

(Phase 1) AST analysis and data collection

MPI CUDAOpenMP SIMD

(Phase 2) Target Specific Code Generators

New ?

Conventional Compiler + Compiler Flags
(e.g. Icc, nvcc, pgcc, ifort, gfortran)

Parallel executable

CUDA

OpenMP

MPI

MPI+CUDA

Other

…

New ?

OP2 Platform Specific
Optimized Backend libraries

link

Figure 5.1: The high-level architecture of OP2-Clang and its place within OP2

Based on the parallelization skeletons, the code generation for a parallel loop can be considered
as a refactoring step. Clang’s LibTooling library provides great support for code refactoring
tasks by matching specific parts of the code’s Abstract Syntax Tree (AST) and modifying the
source code behind the matched nodes. To complete the whole process of source-to-source
transformation in OP2, the code generator requires two steps. The first collects data about
the parallel loops to be generated and replaces the original op_par_loop calls with calls to
the generated functions, and the second is generating code for the target hardware as shown
in Figure 5.1. The first phase parses all the arguments in the op_par_loop calls to collect all
the information that is required to fill in the loop-specific code in the parallelization skeleton.
The second phase will choose the appropriate skeleton, build the AST, and perform a set of
refactoring steps, such as changing the function signature, to generate the final specialized loop
implementation. This approach provides two advantages over the conventional Python code
generator. The first is that the code generator can easily reuse bits of refactoring steps between
target structures, making extensions for new targets easier. The second is that by using the
compiler infrastructure, the new code generator can provide more sophisticated semantic checks
over the generated code at the time of the translation.

Thesis II. I designed a set of novel high-performance, scalable, distributed memory algorithms
for the solution of batch-tridiagonal systems of equations, targeting large-scale heterogeneous
supercomputers based on modern multi-core and many-core processor architectures. My algorithms
can compute both the approximate and the exact solution of individual systems, and seamlessly
integrates with Alternating-Direction Implicit methods commonly used in the solution of large-scale
high-dimensional Partial Differential Equations. I published my implementation as an extension
to the open-source Tridsolver library.

Publications related to this thesis group are: [J2].

The state-of-the-art distributed memory algorithms for tridiagonal systems divide the system

80

into subsystems and form a smaller decoupled tridiagonal system connecting the partitions
(reduced system). Then, commonly, this reduced system is either gathered into a single process
to solve, and then the solution is scattered among the processes or solved via iterative solver
algorithms like Jacobi iterations. The former scales poorly due to the all-to-all communication
patterns, and the latter, while using only point-to-point communications, produces approximate
solutions.

In ADI, the coefficients are calculated for each grid point in a way that matches the underlying
data structure of the application. MPI nodes are defined along all dimensions, and data for
the diagonals are stored contiguously in either a row-major (Z is contiguous, Y and X are
strided) or, more commonly, a column-major (X is contiguous, Y and Z are strided) format. This
poses a challenge for algorithms that then solve multiple tridiagonal systems simultaneously; the
different directions will use different memory layouts, which in turn require different optimizations.
Moreover, improving on the state-of-the-art, our library supports all of the three different memory
layouts possible for 3 or higher-dimensional problems.

By extending the Thomas-PCR hybrid algorithm to distributed memory environments, I
designed a tridiagonal solver algorithm that gives exact solutions for batch tridiagonal problems
while retaining the scaling properties of the approximate algorithms. The overall structure of
the distributed tridiagonal solver can be summarized as follows. Each subsystem of size M

belongs to a separate MPI process, which performs the hybrid Thomas-PCR forward pass. This
produces a reduced system with two rows per MPI process. The solution to the reduced system
is implemented using the distributed PCR algorithm. This algorithm uses only point-to-point
communications, which is a crucial criterion for scalability. Once the reduced system is solved,
the backward pass of the hybrid Thomas-PCR is performed on each MPI process.

Communication Number of messages Message size
Thomas-Thomas(AG) All-to-All 1 2×Np ×Nsys

Thomas-Thomas(GS) All-to-All 2 2×Np×Nsys

Np

Thomas-PCR One-to-One 2× log2Np + 2 Nsys

Thomas-Jacobi One-to-One 2× J + 2 Nsys

Table 5.1: Communication steps needed to solve the reduced system for each algorithm. Np

is the number of processes that share the same set of tridiagonal systems Nsys is
the number of independent systems the processes share. J is the number of Jacobi
iterations required. The message size is shown in terms of elements, each element
requires to send the corresponding ai, ci, di coefficients (bi = 1).

Table 5.1 shows a comparison between the three major solving strategies for the reduced
system and the trade-offs for using them, where Nproc marks the number of MPI processes
and Nsys marks the batch size. To create a scalable critical to avoid all-to-all communications,
which would lead to message size correlating with the number of processes. For the algorithms
using point-to-point communications, the number of messages and the distance between the
communicating nodes affect the overhead of the communication. We can see that the PCR
algorithm will use bigger messages between nodes that are further away from each other, but in
return, it does not require any global communication and produces exact solutions.

81

0

0.5

1

1.5

2

2.5

3

3.5

1 2 4 8 16 32 64 128

R
u
n

ti
m

e
 (

s
)

Number of nodes

TridSlv-AG Z TridSlv-GS Z

TridiagLU-GS Z TridiagLU-jac Z

TridSlv-jac Z TridSlv-pcr Z

0.0625

0.125

0.25

0.5

1

2

4

8

16

1 2 4 8 16 32 64 128

R
un

tim
e

(s
)

Number of nodes

TridSlv-AG Z TridSlv-GS Z
TridiagLU-GS Z TridiagLU-jac Z
TridSlv-jac Z TridSlv-pcr Z

Figure 5.2: Comparison of the Tridsolver library to TridiagLU. Left: weak-scaling 5123 grid
points per node, Right: Strong-scaling, 8192 points in the direction of solve, and
512 in others. AG - AllGather, GS - Gather-Scatter

Two of the three steps in the hybrid algorithm scales trivially. The only part that contributes
to the scaling properties is the distributed solver for the reduced system. Figure 5.2 shows that
algorithms relying on global communication collectives take over the runtime after a certain
point. For point-to-point communications, the message size and the distance of the nodes
that are required to communicate are the two factors defining the overhead. In the results
shown in Figure 5.2, I used a problem-specific upper bound on the number of Jacobi iterations
instead of using global reduce calls to compute the error; hence, the Jacobi iteration used a
fixed number of communications, and each node communicated only with neighboring nodes,
but such an upper bound can’t be defined for the general case. On the other hand, PCR has
one additional communication step at each data point on the figure but does not need any
problem-specific heuristics to compute the solution. The increasing cost of the communication
clearly shows in the case of strong scaling after 16 MPI nodes, where the cost of the far messages
(leaving local memory of ARCHER2 nodes) dominates the total runtime while still beating global
communication patterns significantly.

Figure 5.3 shows the scaling performance of the Tridsolver library for solver calls in all directions
of a 3D application on ARCHER2 and on the Cirrus system. On CPUs, the PCR version achieves
70% scaling efficiency up to 128 nodes, while on GPUs, the cost of the communication outside a
single Cirrus node (4 GPUs) is significantly higher due to slower interconnect, which has a great
impact on the scaling of the PCR solver.

Thesis III. I proposed an advanced, abstract computational model for reverse mode algorithmic
differentiation of complex stencil applications and integrated it into the OPS domain-specific
language. The model enables OPS to generate multi-core CPU and massively parallel GPU
implementations for the adjoint loops, leveraging the metadata provided by the DSL. The model
uses a new mapping of the algorithm to novel execution patterns for the adjoint loops. Furthermore,
the extension enables OPS to follow the computational steps at a loop level by integrating an AD
tape tailored for the OPS DSL, creating a streamlined storage mechanism thanks to the OPS
abstractions.

Publications related to this thesis group are: [J3], [C3].

82

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16 32 64 128

R
u

n
ti
m

e
 (

s
)

Number of nodes

TridSlv-jac X TridSlv-jac Y TridSlv-jac Z

TridSlv-pcr X TridSlv-pcr Y TridSlv-pcr Z

(a) Tridsolver weak scaling on ARCHER2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 16 32

R
u

n
ti
m

e
 (

s
)

Number of GPUs

TridSlv-jac X TridSlv-jac Y TridSlv-jac Z

TridSlv-pcr X TridSlv-pcr Y TridSlv-pcr Z

(b) Tridsolver weak scaling on Cirrus

0.0625

0.125

0.25

0.5

1

2

4

8

16

1 2 4 8 16 32 64 128

R
un

tim
e

(s
)

Number of nodes

TridSlv-jac X TridSlv-jac Y TridSlv-jac Z
TridSlv-pcr X TridSlv-pcr Y TridSlv-pcr Z

(c) Tridsolver strong scaling on ARCHER2

0.0625

0.125

0.25

0.5

1

2

4

1 2 4 8 16 32

R
u
n

ti
m

e
 (

s
)

Number of GPUs

TridSlv-jac X TridSlv-jac Y TridSlv-jac Z

TridSlv-pcr X TridSlv-pcr Y TridSlv-pcr Z

(d) Tridsolver strong scaling on Cirrus

Figure 5.3: ARCHER2 scaling (MPI+OpenMP): (a),(c) Cirrus scaling (MPI+CUDA):(b),(d) -
All weak-scaling using 5123 points per node. Strong scaling on ARCHER2 uses 8192
points in the direction of solve while Cirrus measurements use 2048 points and 512
points in others.

Subthesis III.1. I created a computational model based on the OPS abstraction for structured-
mesh stencil applications that describes computational patterns, data, and control flow and
described how adjoint mode Algorithmic Differentiation can be performed with this model. I
extended the OPS abstraction to handle AD active datatypes and code regions with custom adjoint
functions such as linear solvers.

Computing sensitivities efficiently is crucial in many areas, and getting efficient parallel
implementations of the gradient propagation in reverse mode AAD is especially challenging. The
two key challenges of reverse mode AD in a parallel environment are the data races introduced
by the reversal of the access patterns and following the control flow at runtime. The OPS API
uses a description of loops and the data access inside the loops to generate efficient parallel
implementations. Using this description, I created a model that describes the access patterns,
describing the potential data races for the loops executing the adjoints of the loops, enabling the
generation of parallel implementations. Building on the loop chain registered at run-time, this
model enables OPS to compute the gradient through reverse-mode AD.

Subthesis III.2. I designed and implemented a mapping of the high-level model to optimized,
low-level parallel computational kernels supporting both multi-core CPUs and many-core GPUs
with architecture-specific optimizations.

In an OPS loop, each dataset is accessed through a stencil with an assigned access pattern:

83

hv implicit
matrices

hv predictor
step 0

hv predictor
step 1

hv predictor
step 2

hv predictor
step 3

0

5

10

15

20

25

30

Sp
ee

du
p

8.8

12.1

15.4
13.7

15.4

18.7

27.4

31.4

28.8

31.310242

40962

Figure 5.4: Speedup of the version using the access pattern aware reductions over atomic opera-
tions in kernels for the CDE application with a mesh size of 10242 and 40962.

read, write, or increment. All loops in OPS must use gather stencils only, meaning that read can
appear with any stencil with any number of points, but increment and write stencils must have
one single point access with zero offsets. In reverse mode AD in the adjoint loops, the data flow
will be reversed from gathering stencils, and we will get scatter operations on the adjoint data.
Due to the reversal, the write and increment stencils on the datasets will turn into one-point
read stencils on the adjoint data and read stencils will turn into increment stencils with multiple
points. The above has two implications: first, the primal loops are race-free, the parallelization
is trivial, and second, the adjoint loops will have data races on the adjoint data. However, the
location and structure of these data races are defined by the read stencils of the primal loops.
The above has two implications: first, the primal loops are race-free, the parallelization is trivial,
and second, the adjoint loops will have data races on the adjoint data. However, these data
races are well defined by the read stencils of the primal loops. I devised and implemented an
execution pattern that avoids race conditions on CPUs executing the loop in two sweeps with
synchronization between. This approach avoids the cost of atomic operations. On GPUs, the cost
of atomic operations is lower; hence, the adjoint kernels use atomic operations on the derivatives.

Another important access pattern in terms of performance is reading to lower dimensional
data (data that is invariant in some dimension). These accesses will result in a large amount
of writes on the same derivative values in the backward pass. I introduced a specialized code
generation path for lower-dimensional datasets in CUDA adjoint kernels using reductions in
only the required dimensions. Figure 5.4 shows the speedup gain on an NVidia A100 using this
optimization.

In some cases, pure stencil computations cannot give sufficient performance or methods that
cannot be represented in the abstraction of OPS are required. The standard solution in a non-AD
context is to ask for access to the raw data behind the OPS datasets, perform the computations
outside of OPS, and return the data to OPS. Following this philosophy, I designed an external

84

OpenMP
40962x

100

OpenMP Iter
40962x

100

CUDA
40962x

100

CUDA Iter
40962x

100

0

1

2

4

6

8

10

R
un

tim
e

re
la

tiv
e

to
 p

as
si

ve

4.39x

3.72x

6.05x

5.31x

Poisson

Forward
Overhead
Adjoint

OpenMP
9602x
2955

OpenMP
38402x

87

CUDA
9602x
2955

CUDA
38402x

87

7.03x

6.19x

5.32x

6.61x

Cloverleaf

Forward
Overhead
Revolve
Adjoint

OpenMP
10242x

100

OpenMP
40962x

100

CUDA
10242x

100

CUDA
40962x

100

9.67x

7.63x

4.59x

5.40x

CDE

Forward
Overhead
Revolve
Adjoint

Figure 5.5: The overhead of AD on the benchmark applications, compared to a single evaluation
of the passive, original application. The values show that evaluating the gradient
takes N times of evaluating the original application. The Overhead values show the
additional cost of collecting the DAG, saving intermediate states, and storing revolve
checkpoints during the forward pass, Revolve values represent the additional time
spent on replaying sections of the applications to restore states for the adjoints loops
and the Adjoint part shows the time spent in the actual adjoint loops.

adjoint interface for OPS to express computations that require specialized adjoint functions.
The API will ask for a description of the accesses in the external function and two function
pointers, one for the primal and one for the adjoint function. This API enables the use of any
computation that cannot be expressed as stencil loops or computations that can use specialized
adjoint functions. I used two examples to demonstrate the use of this API. The CDE application
uses external adjoint functions for linear solvers, where in each iteration, the ADI method requires
multiple batch-tridiagonal solves. Here, the adjoint of the linear solver could be expressed as
another solver call with an additional small parallel loop. The second example is the use of
reverse accumulation for attractive fixed points in the Poisson code. This example demonstrates
the use of multiple tapes and multiple evaluations on the same tape using the tape of one forward
iteration as a fixed point iteration on the gradient. The performance of these versions is shown
in Figure 5.5.

Subthesis III.3. I extended the OPS abstraction to integrate the model and the mapping,
automatically orchestrating the forward and adjoint computations, including control over the
memory overhead of differentiation and enabling the efficient parallelization of the gradient
computation. I demonstrated the utility and performance of this extension on industrially
representative applications.

Reverse mode AD tools can only follow the control flow at most an expression level, leading
to high memory usage. Building on the OPS abstraction, I introduced a tape data structure
that keeps track of the parallel loop descriptors and stores overwritten data for the loops. The
high-level tape drastically reduces the memory overhead of storing control flow information.
However, storing all overwritten data for a large number of iterations in an application would
lead to huge tape. To address this issue, I extended the tape with the Revolve[150] checkpointing

85

strategy, providing the user with fine control over the memory usage of the adjoint computation
using loop re-execution to recompute the intermediate states.

I evaluated the performance of the gradient computation on three industrially representative
applications. Figure 5.5 shows the relative runtime of the whole gradient computation(including
the evaluation of the original function) compared to a single evaluation of the original application.

5.3 Potential applications and benefits

My work on the OP2-Clang tool was directly applicable as the source-to-source translation layer
of the OP2 DSL. The use of a compiler-based tool could increase the robustness and diagnostic
abilities of the code generation and make integration into industrial build systems easier at the
same time.

Results carried out in the context of batch-tridiagonal solver libraries can be used in large-
scale scientific applications using the ADI method. This research was performed partially in
support of the UK’s ExCALIBUR project, which aims to deliver the next generation of high-
performance simulation software. As part of the project, a discussion of the use of the library
in the xCompact3D library [148] is ongoing. This library is an industrial strength library for
simulating turbulent flows and is used for simulations such as airflow around an entire wind farm.

Adjoint mode Algorithmic Differentiation is often used in computational fluid dynamics and
computational finance. The results show how domain-specific languages or abstractions, in
particular OPS, can drastically reduce memory overhead and improve the runtime of computing
derivatives compared to general-purpose tools. The high-level OPS application code provides
support for both CPUs and GPUs, which makes OPS one of the first performance portable
adjoint mode AD libraries. Furthermore, with OPS’s support for AD completed, we plan to
enable this functionality in higher-level libraries building upon OPS, such as the Navier-Stokes
solver OpenSBLI library, which focuses on shocks and boundary layer interactions.

86

List of author publications

List of journal publications

[J1] A. A. Sulyok, G. D. Balogh, I. Z. Reguly, and G. R. Mudalige, “Locality optimized
unstructured mesh algorithms on gpus”, Journal of Parallel and Distributed Computing,
vol. 134, pp. 50–64, 2019, issn: 0743-7315. doi: https://doi.org/10.1016/j.jpdc.2019.
07.011. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0743731519301698.

[J2] G. D. Balogh, T. S. Flynn, S. Laizet, G. R. Mudalige, and I. Z. Reguly, “Scalable many-
core algorithms for tridiagonal solvers”, Computing in Science & Engineering, vol. 24,
no. 1, pp. 26–35, 2022. doi: 10.1109/MCSE.2021.3130544.

[J3] G. D. Balogh, J. Lotz, J. Du Toit, U. Naumann, and I. Reguly, “Performance portable
adjoints for structured mesh applications with ops”, ACM Trans. Math. Softw., under
review.

List of conference publications

[C1] G. D. Balogh, I. Z. Reguly, and G. R. Mudalige, “Comparison of parallelisation ap-
proaches, languages, and compilers for unstructured mesh algorithms on gpus”, in High
Performance Computing Systems. Performance Modeling, Benchmarking, and Simulation,
S. Jarvis, S. Wright, and S. Hammond, Eds., Cham: Springer International Publishing,
2018, pp. 22–43, isbn: 978-3-319-72971-8.

[C2] G. D. Balogh, G. R. Mudalige, I. Z. Reguly, S. F. Antao, and C. Bertolli, “Op2-
clang: A source-to-source translator using clang/llvm libtooling”, in 2018 IEEE/ACM 5th
Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC), 2018, pp. 59–70.
doi: 10.1109/LLVM-HPC.2018.8639205.

[C3] G. D. Balogh and I. Z. Reguly, “Automatic parallel implementations of adjoint codes
for structured mesh applications”, in 2020 20th IEEE/ACM International Symposium on
Cluster, Cloud and Internet Computing (CCGRID), 2020, pp. 908–911. doi: 10.1109/
CCGrid49817.2020.00019.

[C4] G. D. Balogh and I. Reguly, “Automatic parallelisation of sturctured mesh computations
with sycl”, in 2021 IEEE International Conference on Cluster Computing (CLUSTER),
2021, pp. 821–822. doi: 10.1109/Cluster48925.2021.00083.

87

https://doi.org/https://doi.org/10.1016/j.jpdc.2019.07.011
https://doi.org/https://doi.org/10.1016/j.jpdc.2019.07.011
https://www.sciencedirect.com/science/article/pii/S0743731519301698
https://www.sciencedirect.com/science/article/pii/S0743731519301698
https://doi.org/10.1109/MCSE.2021.3130544
https://doi.org/10.1109/LLVM-HPC.2018.8639205
https://doi.org/10.1109/CCGrid49817.2020.00019
https://doi.org/10.1109/CCGrid49817.2020.00019
https://doi.org/10.1109/Cluster48925.2021.00083

List of references related to the dissertation

[1] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel programming with
cuda”, Queue, vol. 6, no. 2, pp. 40–53, Mar. 2008, issn: 1542-7730. doi: 10.1145/1365490.
1365500. [Online]. Available: http://doi.acm.org/10.1145/1365490.1365500.

[2] J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel programming standard for
heterogeneous computing systems”, IEEE Des. Test, vol. 12, no. 3, pp. 66–73, May 2010,
issn: 0740-7475. doi: 10.1109/MCSE.2010.69. [Online]. Available: http://dx.doi.org/
10.1109/MCSE.2010.69.

[3] S. Wienke, P. Springer, C. Terboven, and D. an Mey, “Openacc: First experiences with
real-world applications”, in Proceedings of the 18th International Conference on Parallel
Processing, ser. Euro-Par’12, Rhodes Island, Greece: Springer-Verlag, 2012, pp. 859–870,
isbn: 978-3-642-32819-0. doi: 10.1007/978-3-642-32820-6_85. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-32820-6_85.

[4] OpenMP 4.5 specification, http://www.openmp.org/wp-content/uploads/openmp-
4.5.pdf.

[5] S. J. Pennycook, J. D. Sewall, D. W. Jacobsen, T. Deakin, and S. McIntosh-Smith, “Navi-
gating performance, portability, and productivity”, Computing in Science & Engineering,
vol. 23, no. 5, pp. 28–38, 2021. doi: 10.1109/MCSE.2021.3097276.

[6] C++ Single-source Heterogeneous Programming for OpenCL, http://www.khronos.org/sycl,
accessed: 2023.

[7] C. R. Trott, D. Lebrun-Grandié, D. Arndt, et al., “Kokkos 3: Programming model
extensions for the exascale era”, IEEE Transactions on Parallel and Distributed Systems,
vol. 33, no. 4, pp. 805–817, 2022. doi: 10.1109/TPDS.2021.3097283.

[8] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling manycore perfor-
mance portability through polymorphic memory access patterns”, Journal of Parallel
and Distributed Computing, vol. 74, no. 12, pp. 3202–3216, 2014, Domain-Specific Lan-
guages and High-Level Frameworks for High-Performance Computing, issn: 0743-7315.
doi: https://doi.org/10.1016/j.jpdc.2014.07.003. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0743731514001257.

[9] R. D. Hornung and J. A. Keasler, “The RAJA portability layer: Overview and status”,
Lawrence Livermore National Lab. (LLNL), Tech. Rep., Sep. 2014. doi: 10.2172/1169830.

[10] D. A. Beckingsale, J. Burmark, R. Hornung, et al., “Raja: Portable performance for large-
scale scientific applications”, in 2019 ieee/acm international workshop on performance,
portability and productivity in hpc (p3hpc), IEEE, 2019, pp. 71–81.

88

https://doi.org/10.1145/1365490.1365500
https://doi.org/10.1145/1365490.1365500
http://doi.acm.org/10.1145/1365490.1365500
https://doi.org/10.1109/MCSE.2010.69
http://dx.doi.org/10.1109/MCSE.2010.69
http://dx.doi.org/10.1109/MCSE.2010.69
https://doi.org/10.1007/978-3-642-32820-6_85
http://dx.doi.org/10.1007/978-3-642-32820-6_85
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://doi.org/10.1109/MCSE.2021.3097276
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/https://doi.org/10.1016/j.jpdc.2014.07.003
http://www.sciencedirect.com/science/article/pii/S0743731514001257
http://www.sciencedirect.com/science/article/pii/S0743731514001257
https://doi.org/10.2172/1169830

[11] I. Z. Reguly, G. R. Mudalige, and M. B. Giles, “Loop tiling in large-scale stencil codes
at run-time with ops”, IEEE Transactions on Parallel and Distributed Systems, vol. 29,
no. 4, pp. 873–886, 2018. doi: 10.1109/TPDS.2017.2778161.

[12] G. Mudalige, M. Giles, I. Reguly, C. Bertolli, and P. Kelly, “Op2: An active library
framework for solving unstructured mesh-based applications on multi-core and many-
core architectures”, in 2012 Innovative Parallel Computing (InPar), 2012, pp. 1–12. doi:
10.1109/InPar.2012.6339594.

[13] OP-DSL: The Oxford Parallel Domain Specific Languages, https://op-dsl.github.io,
2015.

[14] K. Asanović, R. Bodik, B. C. Catanzaro, et al., “The landscape of parallel computing
research: A view from berkeley”, EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2006-183, 2006. [Online]. Available: http://www2.eecs.berkeley.
edu/Pubs/TechRpts/2006/EECS-2006-183.html.

[15] M. Giles, G. Mudalige, C. Bertolli, P. Kelly, E. László, and I. Reguly, “An analytical study
of loop tiling for a large-scale unstructured mesh application”, in 2012 SC Companion:
High Performance Computing, Networking Storage and Analysis, 2012, pp. 477–482. doi:
10.1109/SC.Companion.2012.68.

[16] M. Lange, N. Kukreja, M. Louboutin, et al., “Devito: Towards a generic finite difference
dsl using symbolic python”, in Proceedings of the 6th Workshop on Python for High-
Performance and Scientific Computing, ser. PyHPC ’16, Salt Lake City, Utah: IEEE Press,
2016, pp. 67–75, isbn: 978-1-5090-5220-2. doi: 10.1109/PyHPC.2016.9.

[17] T. Gysi, C. Osuna, O. Fuhrer, M. Bianco, and T. C. Schulthess, “Stella: A domain-specific
tool for structured grid methods in weather and climate models”, in Proceedings of the
International Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’15, Austin, Texas: ACM, 2015, 41:1–41:12, isbn: 978-1-4503-3723-6. doi:
10.1145/2807591.2807627.

[18] PSyclone Project - GitHub Repository, https://github.com/stfc/PSyclone, 2018.

[19] I. Z. Reguly, G. R. Mudalige, C. Bertolli, et al., “Acceleration of a full-scale industrial cfd
application with op2”, IEEE Transactions on Parallel and Distributed Systems, vol. 27,
no. 5, pp. 1265–1278, 2016.

[20] K. B. Ølgaard, A. Logg, and G. N. Wells, “Automated Code Generation for Discontinuous
Galerkin Methods”, CoRR, vol. abs/1104.0628, 2011.

[21] F. Rathgeber, D. A. Ham, L. Mitchell, et al., “Firedrake: Automating the finite element
method by composing abstractions”, ACM Trans. Math. Softw., vol. 43, no. 3, 2016, issn:
0098-3500. doi: 10.1145/2998441. [Online]. Available: https://doi.org/10.1145/
2998441.

[22] C. T. Jacobs and M. D. Piggott, “Firedrake-Fluids v0.1: numerical modelling of shallow
water flows using an automated solution framework”, Geoscientific Model Development,
vol. 8, no. 3, pp. 533–547, 2015. doi: 10.5194/gmd-8-533-2015.

89

https://doi.org/10.1109/TPDS.2017.2778161
https://doi.org/10.1109/InPar.2012.6339594
https://op-dsl.github.io
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
https://doi.org/10.1109/SC.Companion.2012.68
https://doi.org/10.1109/PyHPC.2016.9
https://doi.org/10.1145/2807591.2807627
https://github.com/stfc/PSyclone
https://doi.org/10.1145/2998441
https://doi.org/10.1145/2998441
https://doi.org/10.1145/2998441
https://doi.org/10.5194/gmd-8-533-2015

[23] P. Vincent, F. Witherden, B. Vermeire, J. S. Park, and A. Iyer, “Towards green aviation
with python at petascale”, in SC16: International Conference for High Performance
Computing, Networking, Storage and Analysis, 2016, pp. 1–11. doi: 10.1109/SC.2016.1.

[24] I. Z. Reguly, D. Gopinathan, J. H. Beck, M. B. Giles, S. Guillas, and F. Dias, “The
volna-op2 tsunami code (version 1.0)”, Geoscientific Model Development Discussions,
2018.

[25] G. Mudalige, M. Giles, J. Thiyagalingam, et al., “Design and initial performance of a high-
level unstructured mesh framework on heterogeneous parallel systems”, Parallel Computing,
vol. 39, no. 11, pp. 669–692, 2013, issn: 0167-8191. doi: 10.1016/j.parco.2013.09.004.

[26] G. R. Mudalige, I. Z. Reguly, and M. B. Giles, “Auto-vectorizing a large-scale production
unstructured-mesh cfd application”, in Proceedings of the 3rd Workshop on Programming
Models for SIMD/Vector Processing, ser. WPMVP ’16, Barcelona, Spain: ACM, 2016,
5:1–5:8, isbn: 978-1-4503-4060-1. doi: 10.1145/2870650.2870651.

[27] I. Z. Reguly, E. László, G. R. Mudalige, and M. B. Giles, “Vectorizing unstructured mesh
computations for many-core architectures”, in Proceedings of Programming Models and
Applications on Multicores and Manycores, ser. PMAM’14, Orlando, FL, USA: Association
for Computing Machinery, 2018, pp. 39–50, isbn: 9781450326575. doi: 10.1145/2560683.
2560686. [Online]. Available: https://doi.org/10.1145/2560683.2560686.

[28] I. Z. Reguly and G. R. Mudalige, “Productivity, performance, and portability for compu-
tational fluid dynamics applications”, Computers & Fluids, vol. 199, p. 104 425, 2020, issn:
0045-7930. doi: https://doi.org/10.1016/j.compfluid.2020.104425. [Online]. Avail-
able: https://www.sciencedirect.com/science/article/pii/S0045793020300013.

[29] C. Othmer, “A continuous adjoint formulation for the computation of topological and
surface sensitivities of ducted flows”, International Journal for Numerical Methods in
Fluids, vol. 58, no. 8, pp. 861–877, 2008.

[30] K. Becker, K. Heitkamp, and E. Kügeler, “Recent progress in a hybrid-grid cfd solver for
turbomachinery flows”, in Proceedings fifth European conference on computational fluid
dynamics ECCOMAS CFD, vol. 2010, 2010.

[31] Y. Wang, K. Hua, and J. Zhang, “Fast and high accuracy numerical methods for solving
pdes in computational finance”, in 2011 International Conference on Business Computing
and Global Informatization, IEEE, 2011, pp. 307–310.

[32] B. Düring, M. Fournié, and C. Heuer, “High-order compact finite difference schemes
for option pricing in stochastic volatility models on non-uniform grids”, Journal of
Computational and Applied Mathematics, vol. 271, pp. 247–266, 2014.

[33] R. Mollapourasl, M. Haghi, and A. Heryudono, “Numerical simulation and applications
of the convection–diffusion–reaction equation with the radial basis function in a finite-
difference mode”, Journal of Computational Finance, vol. 23, no. 5, 2020.

[34] A. Clevenhaus, M. Ehrhardt, and M. Gunther, “An adi sparse grid method for pric-
ing efficiently american options under the heston model”, ADVANCES IN APPLIED
MATHEMATICS AND MECHANICS, vol. 13, no. 6, pp. 1384–1397, 2021.

90

https://doi.org/10.1109/SC.2016.1
https://doi.org/10.1016/j.parco.2013.09.004
https://doi.org/10.1145/2870650.2870651
https://doi.org/10.1145/2560683.2560686
https://doi.org/10.1145/2560683.2560686
https://doi.org/10.1145/2560683.2560686
https://doi.org/https://doi.org/10.1016/j.compfluid.2020.104425
https://www.sciencedirect.com/science/article/pii/S0045793020300013

[35] G. Mudalige, I. Reguly, S. Jammy, C. Jacobs, M. Giles, and N. Sandham, “Large-scale
performance of a DSL-based multi-block structured-mesh application for Direct Numerical
Simulation”, Journal of Parallel and Distributed Computing, vol. 131, pp. 130–146, 2019,
issn: 0743-7315. doi: 10.1016/j.jpdc.2019.04.019.

[36] I. Z. Reguly, A. M. Owenson, A. Powell, S. A. Jarvis, and G. R. Mudalige, “Under the
hood of sycl–an initial performance analysis with an unstructured-mesh cfd application”,
in High Performance Computing: 36th International Conference, ISC High Performance
2021, Virtual Event, June 24–July 2, 2021, Proceedings 36, Springer, 2021, pp. 391–410.

[37] E. Raut, J. Meng, M. Araya-Polo, and B. Chapman, “Evaluating performance of openmp
tasks in a seismic stencil application”, in OpenMP: Portable Multi-Level Parallelism on
Modern Systems: 16th International Workshop on OpenMP, IWOMP 2020, Austin, TX,
USA, September 22–24, 2020, Proceedings 16, Springer, 2020, pp. 67–81.

[38] P. Yang, F. Dong, D. Williams, et al., “Improving utility of gpu in accelerating indus-
trial applications with user-centred automatic code translation”, IEEE Transactions on
Industrial Informatics, 2017.

[39] D. Williams, V. Codreanu, P. Yang, et al., “Evaluation of autoparallelization toolkits
for commodity gpus”, in International Conference on Parallel Processing and Applied
Mathematics, Springer, 2013, pp. 447–457.

[40] D. Unat, X. Cai, and S. B. Baden, “Mint: Realizing cuda performance in 3d stencil methods
with annotated c”, in Proceedings of the international conference on Supercomputing,
ACM, 2011, pp. 214–224.

[41] D. J. Quinlan et al., Rose compiler project, 2012.

[42] C. Bertolli, A. Betts, G. Mudalige, M. Giles, and P. Kelly, “Design and performance of
the op2 library for unstructured mesh applications”, in European Conference on Parallel
Processing, Springer, 2011, pp. 191–200.

[43] S.-Z. Ueng, M. Lathara, S. S. Baghsorkhi, and W. H. Wen-mei, “Cuda-lite: Reducing gpu
programming complexity”, in International Workshop on Languages and Compilers for
Parallel Computing, Springer, 2008, pp. 1–15.

[44] S. Lee, S.-J. Min, and R. Eigenmann, “Openmp to gpgpu: A compiler framework for
automatic translation and optimization”, ACM Sigplan Notices, vol. 44, no. 4, pp. 101–110,
2009.

[45] S.-I. Lee, T. A. Johnson, and R. Eigenmann, “Cetus–an extensible compiler infrastruc-
ture for source-to-source transformation”, in International Workshop on Languages and
Compilers for Parallel Computing, Springer, 2003, pp. 539–553.

[46] T. D. Han and T. S. Abdelrahman, “Hi cuda: A high-level directive-based language for
gpu programming”, in Proceedings of 2nd Workshop on General Purpose Processing on
Graphics Processing Units, ACM, 2009, pp. 52–61.

91

https://doi.org/10.1016/j.jpdc.2019.04.019

[47] O. Krzikalla, K. Feldhoff, R. Müller-Pfefferkorn, and W. E. Nagel, “Scout: A source-
to-source transformator for simd-optimizations”, in Proceedings of the 2011 Interna-
tional Conference on Parallel Processing - Volume 2, ser. Euro-Par’11, Bordeaux, France:
Springer-Verlag, 2012, pp. 137–145, isbn: 978-3-642-29739-7. doi: 10.1007/978-3-642-
29740-3_17.

[48] I. Z. Reguly, G. R. Mudalige, M. B. Giles, D. Curran, and S. McIntosh-Smith, “The ops
domain specific abstraction for multi-block structured grid computations”, in Proceedings
of the 2014 Fourth International Workshop on Domain-Specific Languages and High-Level
Frameworks for High Performance Computing, ser. WOLFHPC ’14, IEEE Computer
Society, 2014, pp. 58–67, isbn: 978-1-4673-6757-8. doi: 10.1109/WOLFHPC.2014.7.

[49] C. T. Jacobs, S. P. Jammy, and N. D. Sandham, “OpenSBLI: A framework for the
automated derivation and parallel execution of finite difference solvers on a range of
computer architectures”, Journal of Computational Science, vol. 18, pp. 12–23, 2017.

[50] M. Marangoni and T. Wischgoll, “Togpu: Automatic source transformation from c++ to
cuda using clang/llvm”, Electronic Imaging, vol. 2016, no. 1, pp. 1–9, 2016.

[51] N. Jacobsen, “Llvm supported source-to-source translation-translation from annotated
c/c++ to cuda c/c++”, M.S. thesis, 2016.

[52] J. Choi, J. Demmel, I. Dhillon, et al., “Scalapack: A portable linear algebra library for
distributed memory computers — design issues and performance”, Computer Physics Com-
munications, vol. 97, no. 1, pp. 1–15, 1996, High-Performance Computing in Science, issn:
0010-4655. doi: https://doi.org/10.1016/0010-4655(96)00017-3. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0010465596000173.

[53] J. Choi, J. Dongarra, R. Pozo, and D. Walker, “Scalapack: A scalable linear algebra library
for distributed memory concurrent computers”, in The Fourth Symposium on the Frontiers
of Massively Parallel Computation, Los Alamitos, CA, USA: IEEE Computer Society, Oct.
1992, pp. 120, 121, 122, 123, 124, 125, 126, 127. doi: 10.1109/FMPC.1992.234898. [Online].
Available: https://doi.ieeecomputersociety.org/10.1109/FMPC.1992.234898.

[54] S. Tomov, J. Dongarra, and M. Baboulin, “Towards dense linear algebra for hybrid GPU
accelerated manycore systems”, Parallel Computing, vol. 36, no. 5-6, pp. 232–240, Jun.
2010, issn: 0167-8191. doi: 10.1016/j.parco.2009.12.005.

[55] J. Dongarra, M. Gates, A. Haidar, et al., “Accelerating numerical dense linear algebra
calculations with gpus”, Numerical Computations with GPUs, pp. 1–26, 2014.

[56] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, “A class of parallel tiled linear
algebra algorithms for multicore architectures”, Parallel Computing, vol. 35, no. 1, pp. 38–
53, 2009, issn: 0167-8191. doi: https : / / doi . org / 10 . 1016 / j . parco . 2008 . 10 .
002. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167819108001117.

[57] C. Yang, A. Buluç, and J. D. Owens, “Graphblast: A high-performance linear algebra-based
graph framework on the gpu”, ACM Transactions on Mathematical Software (TOMS),
vol. 48, no. 1, pp. 1–51, 2022.

92

https://doi.org/10.1007/978-3-642-29740-3_17
https://doi.org/10.1007/978-3-642-29740-3_17
https://doi.org/10.1109/WOLFHPC.2014.7
https://doi.org/https://doi.org/10.1016/0010-4655(96)00017-3
https://www.sciencedirect.com/science/article/pii/0010465596000173
https://doi.org/10.1109/FMPC.1992.234898
https://doi.ieeecomputersociety.org/10.1109/FMPC.1992.234898
https://doi.org/10.1016/j.parco.2009.12.005
https://doi.org/https://doi.org/10.1016/j.parco.2008.10.002
https://doi.org/https://doi.org/10.1016/j.parco.2008.10.002
https://www.sciencedirect.com/science/article/pii/S0167819108001117
https://www.sciencedirect.com/science/article/pii/S0167819108001117

[58] H. Anzt, T. Cojean, G. Flegar, et al., “Ginkgo: A modern linear operator algebra framework
for high performance computing”, vol. 48, no. 1, Feb. 2022, issn: 0098-3500. doi: 10.
1145/3480935. [Online]. Available: https://doi.org/10.1145/3480935.

[59] D. W. Peaceman and H. H. Rachford Jr, “The numerical solution of parabolic and elliptic
differential equations”, Journal of the Society for industrial and Applied Mathematics,
vol. 3, no. 1, pp. 28–41, 1955. doi: 10.1137/0103003.

[60] L. Thomas, “Elliptic problems in linear differential equations over a network: Watson
scientific computing laboratory”, Columbia Univ., NY, 1949.

[61] R. A. Sweet, “A cyclic reduction algorithm for solving block tridiagonal systems of
arbitrary dimension”, SIAM Journal on Numerical Analysis, vol. 14, no. 4, pp. 706–720,
1977. doi: 10.1137/0714048.

[62] W. Gander and G. H. Golub, “Cyclic reduction—history and applications”, Scientific
computing (Hong Kong, 1997), vol. 7385, pp. 73–86, 1997.

[63] Y. Zhang, J. Cohen, and J. D. Owens, “Fast tridiagonal solvers on the gpu”, SIGPLAN Not.,
vol. 45, no. 5, pp. 127–136, Jan. 2010, issn: 0362-1340. doi: 10.1145/1837853.1693472.
[Online]. Available: https://doi.org/10.1145/1837853.1693472.

[64] H. Kim, S. Wu, L. Chang, and W. W. Hwu, “A scalable tridiagonal solver for gpus”, in
2011 International Conference on Parallel Processing, 2011, pp. 444–453. doi: 10.1109/
ICPP.2011.41.

[65] E. Laszlo, M. Giles, and J. Appleyard, “Manycore algorithms for batch scalar and block
tridiagonal solvers”, ACM Transactions on Mathematical Software (TOMS), vol. 42, no. 4,
pp. 1–36, 2016. doi: 10.1145/2830568.

[66] Y. Zhang, J. Cohen, A. A. Davidson, and J. D. Owens, “Chapter 11 - a hybrid method
for solving tridiagonal systems on the gpu”, in GPU Computing Gems Jade Edition,
ser. Applications of GPU Computing Series, W.-m. W. Hwu, Ed., Boston: Morgan
Kaufmann, 2012, pp. 117–132, isbn: 978-0-12-385963-1. doi: 10.1016/B978- 0- 12-
385963-1.00011-3.

[67] Tridiagonal solvers on the GPU and applications to fluid simulation, Presented at the
GPU Technology Conference, San Jose, CA. Retrieved June 02, 2021 from https://www.
nvidia.com/content/GTC/documents/1058_GTC09.pdf.

[68] J. Hofhaus and E. F. Van de Velde, “Alternating-direction line-relaxation methods on
multicomputers”, SIAM Journal on Scientific Computing, vol. 17, no. 2, pp. 454–478,
1996.

[69] N. Mattor, T. J. Williams, and D. W. Hewett, “Algorithm for solving tridiagonal matrix
problems in parallel”, Parallel Computing, vol. 21, no. 11, pp. 1769–1782, 1995.

[70] H. H. Wang, “A parallel method for tridiagonal equations”, ACM Trans. Math. Softw.,
vol. 7, no. 2, pp. 170–183, Jun. 1981, issn: 0098-3500. doi: 10.1145/355945.355947.
[Online]. Available: https://doi.org/10.1145/355945.355947.

93

https://doi.org/10.1145/3480935
https://doi.org/10.1145/3480935
https://doi.org/10.1145/3480935
https://doi.org/10.1137/0103003
https://doi.org/10.1137/0714048
https://doi.org/10.1145/1837853.1693472
https://doi.org/10.1145/1837853.1693472
https://doi.org/10.1109/ICPP.2011.41
https://doi.org/10.1109/ICPP.2011.41
https://doi.org/10.1145/2830568
https://doi.org/10.1016/B978-0-12-385963-1.00011-3
https://doi.org/10.1016/B978-0-12-385963-1.00011-3
https://www.nvidia.com/content/GTC/documents/1058_GTC09.pdf
https://www.nvidia.com/content/GTC/documents/1058_GTC09.pdf
https://doi.org/10.1145/355945.355947
https://doi.org/10.1145/355945.355947

[71] S. Bondeli, “Divide and conquer: A parallel algorithm for the solution of a tridiagonal
linear system of equations”, Parallel Computing, vol. 17, no. 4, pp. 419–434, 1991, issn:
0167-8191. doi: https://doi.org/10.1016/S0167-8191(05)80145-0.

[72] H.-S. Kim, S. Wu, L.-w. Chang, and W.-m. W. Hwu, “A scalable tridiagonal solver for
gpus”, in 2011 International Conference on Parallel Processing, 2011, pp. 444–453. doi:
10.1109/ICPP.2011.41.

[73] L. Chang, J. A. Stratton, H. Kim, and W. W. Hwu, “A scalable, numerically stable,
high-performance tridiagonal solver using gpus”, in SC’12: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis, IEEE,
2012, pp. 1–11.

[74] E. Polizzi and A. H. Sameh, “A parallel hybrid banded system solver: The spike algo-
rithm”, Parallel Computing, vol. 32, no. 2, pp. 177–194, 2006, Parallel Matrix Algorithms
and Applications (PMAA’04), issn: 0167-8191. doi: https://doi.org/10.1016/j.
parco.2005.07.005. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0167819105001353.

[75] A. Pérez Diéguez, M. Amor López, and R. Doallo Biempica, “Solving multiple tridiagonal
systems on a multi-gpu platform”, in 2018 26th Euromicro International Conference
on Parallel, Distributed and Network-based Processing (PDP), 2018, pp. 759–763. doi:
10.1109/PDP2018.2018.00123.

[76] D. Ghosh, E. M. Constantinescu, and J. Brown, “Efficient implementation of nonlinear
compact schemes on massively parallel platforms”, SIAM Journal on Scientific Computing,
vol. 37, no. 3, pp. C354–C383, 2015. doi: 10.1137/140989261.

[77] K.-H. Kim, J.-H. Kang, X. Pan, and J.-I. Choi, “Pascal_tdma: A library of parallel
and scalable solvers for massive tridiagonal system”, Computer Physics Communications,
vol. 260, p. 107 722, 2021, issn: 0010-4655. doi: https://doi.org/10.1016/j.cpc.2020.
107722.

[78] K.-H. Kim, J.-H. Kang, and J.-I. Choi, Parallel and scalable library for tridiagonal matrix
algorithm, 2019. [Online]. Available: https://github.com/MPMC-Lab/PaScaL_TDMA.

[79] M. B. Giles and N. A. Pierce, “An introduction to the adjoint approach to design”, Flow,
turbulence and combustion, vol. 65, pp. 393–415, 2000.

[80] C. Bischof, G. Corliss, L. Green, A. Griewank, K. Haigler, and P. Newman, “Automatic
differentiation of advanced cfd codes for multidisciplinary design”, Computing Systems in
Engineering, vol. 3, no. 6, pp. 625–637, 1992.

[81] A. Carle, L. L. Green, P. Newman, and C. Bischof, “Applications of automatic differentia-
tion in cfd”, NASA STI/Recon Technical Report N, vol. 95, p. 16 828, 1994.

[82] R. Sanchez, T. Albring, R. Palacios, N. Gauger, T. Economon, and J. Alonso, “Coupled
adjoint-based sensitivities in large-displacement fluid-structure interaction using algorith-
mic differentiation”, International Journal for Numerical Methods in Engineering, vol. 113,
no. 7, pp. 1081–1107, 2018.

94

https://doi.org/https://doi.org/10.1016/S0167-8191(05)80145-0
https://doi.org/10.1109/ICPP.2011.41
https://doi.org/https://doi.org/10.1016/j.parco.2005.07.005
https://doi.org/https://doi.org/10.1016/j.parco.2005.07.005
https://www.sciencedirect.com/science/article/pii/S0167819105001353
https://www.sciencedirect.com/science/article/pii/S0167819105001353
https://doi.org/10.1109/PDP2018.2018.00123
https://doi.org/10.1137/140989261
https://doi.org/https://doi.org/10.1016/j.cpc.2020.107722
https://doi.org/https://doi.org/10.1016/j.cpc.2020.107722
https://github.com/MPMC-Lab/PaScaL_TDMA

[83] T. A. Albring, M. Sagebaum, and N. R. Gauger, “Efficient aerodynamic design using
the discrete adjoint method in su2”, in 17th AIAA/ISSMO Multidisciplinary Analysis
and Optimization Conference. 2016, p. 3518. doi: 10.2514/6.2016-3518. eprint: https:
//arc.aiaa.org/doi/pdf/10.2514/6.2016-3518. [Online]. Available: https://arc.
aiaa.org/doi/abs/10.2514/6.2016-3518.

[84] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, “Automatic differenti-
ation in machine learning: A survey”, Journal of Marchine Learning Research, vol. 18,
pp. 1–43, 2018.

[85] L. Guasch, O. Calderón Agudo, M.-X. Tang, P. Nachev, and M. Warner, “Full-waveform
inversion imaging of the human brain”, NPJ digital medicine, vol. 3, no. 1, p. 28, 2020.

[86] C. Homescu, “Adjoints and automatic (algorithmic) differentiation in computational
finance”, Available at SSRN 1828503, 2011.

[87] S. Jain, Á. Leitao, and C. W. Oosterlee, “Rolling adjoints: Fast greeks along monte
carlo scenarios for early-exercise options”, Journal of Computational Science, vol. 33,
pp. 95–112, 2019, issn: 1877-7503. doi: https://doi.org/10.1016/j.jocs.2019.03.
001. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1877750318312547.

[88] T.-M. Li, M. Gharbi, A. Adams, F. Durand, and J. Ragan-Kelley, “Differentiable program-
ming for image processing and deep learning in halide”, ACM Transactions on Graphics
(ToG), vol. 37, no. 4, pp. 1–13, 2018.

[89] M. Grabner, T. Pock, T. Gross, and B. Kainz, “Automatic differentiation for gpu-
accelerated 2d/3d registration”, in Advances in Automatic Differentiation, C. H. Bischof,
H. M. Bücker, P. Hovland, U. Naumann, and J. Utke, Eds., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 259–269, isbn: 978-3-540-68942-3.

[90] L. Capriotti and J. Lee, “Case studies of real-time risk management via adjoint algorith-
mic differentiation (aad)”, in High-Performance Computing in Finance, Chapman and
Hall/CRC, 2018, pp. 339–370.

[91] U. Naumann, The art of differentiating computer programs: an introduction to algorithmic
differentiation. SIAM, 2011. doi: 10.1137/1.9781611972078.

[92] C. C. Margossian, “A review of automatic differentiation and its efficient implementation”,
Wiley interdisciplinary reviews: data mining and knowledge discovery, vol. 9, no. 4, e1305,
2019.

[93] E. Özkaya and N. R. Gauger, “Automatic transition from simulation to one-shot shape
optimization with navier-stokes equations”, GAMM-Mitteilungen, vol. 33, no. 2, pp. 133–
147, 2010. doi: https : / / doi . org / 10 . 1002 / gamm . 201010011. eprint: https : / /
onlinelibrary.wiley.com/doi/pdf/10.1002/gamm.201010011. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/gamm.201010011.

95

https://doi.org/10.2514/6.2016-3518
https://arc.aiaa.org/doi/pdf/10.2514/6.2016-3518
https://arc.aiaa.org/doi/pdf/10.2514/6.2016-3518
https://arc.aiaa.org/doi/abs/10.2514/6.2016-3518
https://arc.aiaa.org/doi/abs/10.2514/6.2016-3518
https://doi.org/https://doi.org/10.1016/j.jocs.2019.03.001
https://doi.org/https://doi.org/10.1016/j.jocs.2019.03.001
https://www.sciencedirect.com/science/article/pii/S1877750318312547
https://www.sciencedirect.com/science/article/pii/S1877750318312547
https://doi.org/10.1137/1.9781611972078
https://doi.org/https://doi.org/10.1002/gamm.201010011
https://onlinelibrary.wiley.com/doi/pdf/10.1002/gamm.201010011
https://onlinelibrary.wiley.com/doi/pdf/10.1002/gamm.201010011
https://onlinelibrary.wiley.com/doi/abs/10.1002/gamm.201010011

[94] T. Verstraete, L. Müller, and J.-D. Müller, “Adjoint-based design optimisation of an
internal cooling channel u-bend for minimised pressure losses”, International Journal of
Turbomachinery, Propulsion and Power, vol. 2, no. 2, 2017, issn: 2504-186X. doi: 10.
3390/ijtpp2020010. [Online]. Available: https://www.mdpi.com/2504-186X/2/2/10.

[95] S. Vitale, M. Pini, and P. Colonna, “Multistage turbomachinery design using the discrete
adjoint method within the open-source software su2”, Journal of Propulsion and Power,
vol. 36, no. 3, pp. 465–478, 2020. doi: 10.2514/1.B37685. eprint: https://doi.org/10.
2514/1.B37685. [Online]. Available: https://doi.org/10.2514/1.B37685.

[96] E. Larour, J. Utke, A. Bovin, M. Morlighem, and G. Perez, “An approach to computing
discrete adjoints for mpi-parallelized models applied to ice sheet system model 4.11”,
Geoscientific Model Development, vol. 9, no. 11, pp. 3907–3918, 2016. doi: 10.5194/gmd-
9-3907-2016. [Online]. Available: https://gmd.copernicus.org/articles/9/3907/
2016/.

[97] M. Towara, M. Schanen, and U. Naumann, “Mpi-parallel discrete adjoint openfoam”,
Procedia Computer Science, vol. 51, pp. 19–28, 2015, International Conference On Compu-
tational Science, ICCS 2015, issn: 1877-0509. doi: https://doi.org/10.1016/j.procs.
2015.05.181.

[98] M. Towara and U. Naumann, “A discrete adjoint model for openfoam”, Procedia Computer
Science, vol. 18, pp. 429–438, 2013, 2013 International Conference on Computational
Science, issn: 1877-0509. doi: https://doi.org/10.1016/j.procs.2013.05.206.

[99] J.-D. Mueller, J. Hueckelheim, and O. Mykhaskiv, “Stamps: A finite-volume solver frame-
work for adjoint codes derived with source-transformation ad”, in 2018 Multidisciplinary
Analysis and Optimization Conference. 2018, p. 2928. doi: 10.2514/6.2018- 2928.
eprint: https://arc.aiaa.org/doi/pdf/10.2514/6.2018-2928. [Online]. Available:
https://arc.aiaa.org/doi/abs/10.2514/6.2018-2928.

[100] R. J. Hogan, “Fast reverse-mode automatic differentiation using expression templates in
c++”, ACM Trans. Math. Softw., vol. 40, no. 4, 2014, issn: 0098-3500. doi: 10.1145/
2560359. [Online]. Available: https://doi.org/10.1145/2560359.

[101] J. Lotz, “Hybrid approaches to adjoint code generation with dco/c++”, Dissertation,
Department of Computer Science, RWTH Aachen University, 2016. [Online]. Available:
http://publications.rwth-aachen.de/record/667318.

[102] D. M. Gay, “Semiautomatic differentiation for efficient gradient computations”, in Auto-
matic Differentiation: Applications, Theory, and Implementations, M. Bücker, G. Corliss,
U. Naumann, P. Hovland, and B. Norris, Eds., Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2006, pp. 147–158, isbn: 978-3-540-28438-3.

[103] M. Sagebaum, T. Albring, and N. R. Gauger, “Expression templates for primal value
taping in the reverse mode of algorithmic differentiation”, Optimization Methods and
Software, vol. 33, no. 4-6, pp. 1207–1231, 2018. doi: 10.1080/10556788.2018.1471140.
eprint: https : / / doi . org / 10 . 1080 / 10556788 . 2018 . 1471140. [Online]. Available:
https://doi.org/10.1080/10556788.2018.1471140.

96

https://doi.org/10.3390/ijtpp2020010
https://doi.org/10.3390/ijtpp2020010
https://www.mdpi.com/2504-186X/2/2/10
https://doi.org/10.2514/1.B37685
https://doi.org/10.2514/1.B37685
https://doi.org/10.2514/1.B37685
https://doi.org/10.2514/1.B37685
https://doi.org/10.5194/gmd-9-3907-2016
https://doi.org/10.5194/gmd-9-3907-2016
https://gmd.copernicus.org/articles/9/3907/2016/
https://gmd.copernicus.org/articles/9/3907/2016/
https://doi.org/https://doi.org/10.1016/j.procs.2015.05.181
https://doi.org/https://doi.org/10.1016/j.procs.2015.05.181
https://doi.org/https://doi.org/10.1016/j.procs.2013.05.206
https://doi.org/10.2514/6.2018-2928
https://arc.aiaa.org/doi/pdf/10.2514/6.2018-2928
https://arc.aiaa.org/doi/abs/10.2514/6.2018-2928
https://doi.org/10.1145/2560359
https://doi.org/10.1145/2560359
https://doi.org/10.1145/2560359
http://publications.rwth-aachen.de/record/667318
https://doi.org/10.1080/10556788.2018.1471140
https://doi.org/10.1080/10556788.2018.1471140
https://doi.org/10.1080/10556788.2018.1471140

[104] B. Carpenter, M. D. Hoffman, M. Brubaker, D. Lee, P. Li, and M. Betancourt, “The
stan math library: Reverse-mode automatic differentiation in c++”, arXiv preprint
arXiv:1509.07164, 2015.

[105] S. H. K. Narayanan, B. Norris, and B. Winnicka, “Adic2: Development of a component
source transformation system for differentiating c and c++”, Procedia Computer Science,
vol. 1, no. 1, pp. 1845–1853, 2010, ICCS 2010, issn: 1877-0509. doi: https://doi.org/
10.1016/j.procs.2010.04.206. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1877050910002073.

[106] L. Hascoet and V. Pascual, “The tapenade automatic differentiation tool: Principles,
model, and specification”, ACM Transactions on Mathematical Software (TOMS), vol. 39,
no. 3, 2013, issn: 0098-3500. doi: 10.1145/2450153.2450158. [Online]. Available: https:
//doi.org/10.1145/2450153.2450158.

[107] J. Utke, U. Naumann, M. Fagan, et al., “Openad/f: A modular open-source tool for
automatic differentiation of fortran codes”, ACM Trans. Math. Softw., vol. 34, no. 4,
2008, issn: 0098-3500. doi: 10.1145/1377596.1377598. [Online]. Available: https:
//doi.org/10.1145/1377596.1377598.

[108] H. M. Bücker, B. Lang, D. an Mey, and C. H. Bischof, “Bringing together automatic
differentiation and openmp”, in Proceedings of the 15th International Conference on
Supercomputing, ser. ICS ’01, Sorrento, Italy: Association for Computing Machinery,
2001, pp. 246–251, isbn: 158113410X. doi: 10.1145/377792.377842. [Online]. Available:
https://doi.org/10.1145/377792.377842.

[109] H. Bucker, B. Lang, A. Rasch, C. Bischof, and D. an Mey, “Explicit loop scheduling in
openmp for parallel automatic differentiation”, in Proceedings 16th Annual International
Symposium on High Performance Computing Systems and Applications, 2002, pp. 121–126.
doi: 10.1109/HPCSA.2002.1019144.

[110] H. M. Bücker, A. Rasch, and A. Wolf, “A class of openmp applications involving nested
parallelism”, in Proceedings of the 2004 ACM Symposium on Applied Computing, ser. SAC
’04, Nicosia, Cyprus: Association for Computing Machinery, 2004, pp. 220–224, isbn:
1581138121. doi: 10.1145/967900.967948. [Online]. Available: https://doi.org/10.
1145/967900.967948.

[111] E. Phipps, R. Pawlowski, and C. Trott, “Automatic differentiation of c++ codes on
emerging manycore architectures with sacado”, ACM Trans. Math. Softw., vol. 48, no. 4,
2022, issn: 0098-3500. doi: 10.1145/3560262. [Online]. Available: https://doi.org/10.
1145/3560262.

[112] P. Heimbach, C. Hill, and R. Giering, “Automatic generation of efficient adjoint code for
a parallel navier-stokes solver”, in Computational Science — ICCS 2002, P. M. A. Sloot,
A. G. Hoekstra, C. J. K. Tan, and J. J. Dongarra, Eds., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2002, pp. 1019–1028, isbn: 978-3-540-46080-0.

[113] M. Schanen, U. Naumann, L. Hascoët, and J. Utke, “Interpretative adjoints for numerical
simulation codes using mpi”, Procedia Computer Science, vol. 1, no. 1, pp. 1825–1833, 2010,
ICCS 2010, issn: 1877-0509. doi: https://doi.org/10.1016/j.procs.2010.04.204.

97

https://doi.org/https://doi.org/10.1016/j.procs.2010.04.206
https://doi.org/https://doi.org/10.1016/j.procs.2010.04.206
https://www.sciencedirect.com/science/article/pii/S1877050910002073
https://www.sciencedirect.com/science/article/pii/S1877050910002073
https://doi.org/10.1145/2450153.2450158
https://doi.org/10.1145/2450153.2450158
https://doi.org/10.1145/2450153.2450158
https://doi.org/10.1145/1377596.1377598
https://doi.org/10.1145/1377596.1377598
https://doi.org/10.1145/1377596.1377598
https://doi.org/10.1145/377792.377842
https://doi.org/10.1145/377792.377842
https://doi.org/10.1109/HPCSA.2002.1019144
https://doi.org/10.1145/967900.967948
https://doi.org/10.1145/967900.967948
https://doi.org/10.1145/967900.967948
https://doi.org/10.1145/3560262
https://doi.org/10.1145/3560262
https://doi.org/10.1145/3560262
https://doi.org/https://doi.org/10.1016/j.procs.2010.04.204

[114] M. Schanen, M. Förster, J. Lotz, K. Leppkes, and U. Naumann, “Adjoining hybrid parallel
code”, in Proceedings of the eighth international conference on engineering computational
technology, Citeseer, vol. 100, 2012, p. 18.

[115] J. Lotz, U. Naumann, M. Sagebaum, and M. Schanen, “Discrete adjoints of petsc through
dco/c++ and adjoint mpi”, in Euro-Par 2013 Parallel Processing, F. Wolf, B. Mohr, and
D. an Mey, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 497–507, isbn:
978-3-642-40047-6.

[116] J. Blühdorn, M. Sagebaum, and N. Gauger, “Event-based automatic differentiation of
openmp with opdilib”, ACM Trans. Math. Softw., vol. 49, no. 1, 2023, issn: 0098-3500.
doi: 10.1145/3570159. [Online]. Available: https://doi.org/10.1145/3570159.

[117] M. Sagebaum, T. Albring, and N. R. Gauger, “High-performance derivative computations
using codipack”, ACM Trans. Math. Softw., vol. 45, no. 4, 2019, issn: 0098-3500. doi:
10.1145/3356900. [Online]. Available: https://doi.org/10.1145/3356900.

[118] R. Giering, T. Kaminski, R. Todling, R. Errico, R. Gelaro, and N. Winslow, “Tangent
linear and adjoint versions of nasa/gmao’s fortran 90 global weather forecast model”,
in Automatic Differentiation: Applications, Theory, and Implementations, M. Bücker,
G. Corliss, U. Naumann, P. Hovland, and B. Norris, Eds., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2006, pp. 275–284, isbn: 978-3-540-28438-3.

[119] R. Giering, T. Kaminski, and T. Slawig, “Generating efficient derivative code with taf:
Adjoint and tangent linear euler flow around an airfoil”, Future Generation Computer
Systems, vol. 21, no. 8, pp. 1345–1355, 2005, issn: 0167-739X. doi: https://doi.org/10.
1016/j.future.2004.11.003. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167739X04001785.

[120] T. Kaler, T. B. Schardl, B. Xie, et al., “Parad: A work-efficient parallel algorithm for
reverse-mode automatic differentiation”, in Symposium on Algorithmic Principles of
Computer Systems (APOCS). 2021, pp. 144–158. doi: 10.1137/1.9781611976489.11.
eprint: https://epubs.siam.org/doi/pdf/10.1137/1.9781611976489.11. [Online].
Available: https://epubs.siam.org/doi/abs/10.1137/1.9781611976489.11.

[121] J. Hückelheim and L. Hascoët, “Source-to-source automatic differentiation of openmp
parallel loops”, ACM Trans. Math. Softw., vol. 48, no. 1, 2022, issn: 0098-3500. doi:
10.1145/3472796. [Online]. Available: https://doi.org/10.1145/3472796.

[122] J. Hückelheim and L. Hascoët, “Automatic differentiation of parallel loops with formal
methods”, in Proceedings of the 51st International Conference on Parallel Processing,
ser. ICPP ’22, Bordeaux, France: Association for Computing Machinery, 2023, isbn:
9781450397339. doi: 10.1145/3545008.3545089. [Online]. Available: https://doi.org/
10.1145/3545008.3545089.

[123] W. Moses and V. Churavy, “Instead of rewriting foreign code for machine learning,
automatically synthesize fast gradients”, in Advances in Neural Information Processing
Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33,
Curran Associates, Inc., 2020, pp. 12 472–12 485.

98

https://doi.org/10.1145/3570159
https://doi.org/10.1145/3570159
https://doi.org/10.1145/3356900
https://doi.org/10.1145/3356900
https://doi.org/https://doi.org/10.1016/j.future.2004.11.003
https://doi.org/https://doi.org/10.1016/j.future.2004.11.003
https://www.sciencedirect.com/science/article/pii/S0167739X04001785
https://www.sciencedirect.com/science/article/pii/S0167739X04001785
https://doi.org/10.1137/1.9781611976489.11
https://epubs.siam.org/doi/pdf/10.1137/1.9781611976489.11
https://epubs.siam.org/doi/abs/10.1137/1.9781611976489.11
https://doi.org/10.1145/3472796
https://doi.org/10.1145/3472796
https://doi.org/10.1145/3545008.3545089
https://doi.org/10.1145/3545008.3545089
https://doi.org/10.1145/3545008.3545089

[124] W. S. Moses, S. H. K. Narayanan, L. Paehler, et al., “Scalable automatic differentiation
of multiple parallel paradigms through compiler augmentation”, in SC22: International
Conference for High Performance Computing, Networking, Storage and Analysis, IEEE,
2022, pp. 1–18.

[125] J. Hückelheim, N. Kukreja, S. H. K. Narayanan, F. Luporini, G. Gorman, and P. Hovland,
“Automatic differentiation for adjoint stencil loops”, in Proceedings of the 48th Inter-
national Conference on Parallel Processing, ser. ICPP ’19, Kyoto, Japan: Association
for Computing Machinery, 2019, isbn: 9781450362955. doi: 10.1145/3337821.3337906.
[Online]. Available: https://doi.org/10.1145/3337821.3337906.

[126] F. Gremse, A. Höfter, L. Razik, F. Kiessling, and U. Naumann, “Gpu-accelerated adjoint al-
gorithmic differentiation”, Computer Physics Communications, vol. 200, pp. 300–311, 2016,
issn: 0010-4655. doi: https://doi.org/10.1016/j.cpc.2015.10.027. [Online]. Avail-
able: https://www.sciencedirect.com/science/article/pii/S0010465515004099.

[127] J. Blühdorn, N. R. Gauger, and M. Kabel, “Automat: Automatic differentiation for
generalized standard materials on gpus”, Computational Mechanics, vol. 69, no. 2, pp. 589–
613, 2022. doi: 10.1007/s00466-021-02105-2. [Online]. Available: https://doi.org/
10.1007/s00466-021-02105-2.

[128] W. S. Moses, V. Churavy, L. Paehler, et al., “Reverse-mode automatic differentiation and
optimization of gpu kernels via enzyme”, in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, ser. SC ’21, St.
Louis, Missouri: Association for Computing Machinery, 2021, isbn: 9781450384421. doi:
10.1145/3458817.3476165. [Online]. Available: https://doi.org/10.1145/3458817.
3476165.

[129] “Libtooling”. (2018), [Online]. Available: %5Curl%7Bhttp://clang.llvm.org/docs/
LibTooling.html%7D (visited on 08/13/2018).

[130] E. Bendersky. “Modern source-to-source transformation with clang and libtooling”. (2014),
[Online]. Available: https://eli.thegreenplace.net/2014/05/01/modern-source-
to-source-transformation-with-clang-and-libtooling (visited on 04/07/2018).

[131] J. Wu, A. Belevich, E. Bendersky, et al., “Gpucc: An open-source gpgpu compiler”, in
Proceedings of the 2016 International Symposium on Code Generation and Optimization,
ACM, 2016, pp. 105–116.

[132] OP2-Clang github repository, https://github.com/OP-DSL/clang-op-translator.

[133] M. B. Giles, G. R. Mudalige, B. Spencer, C. Bertolli, and I. Reguly, “Designing op2
for gpu architectures”, Journal of Parallel and Distributed Computing, vol. 73, no. 11,
pp. 1451–1460, 2013.

[134] Matching the clang ast, https://clang.llvm.org/docs/LibASTMatchers.html, 2018.

[135] “Refactoringtool class reference”. (), [Online]. Available: https://clang.llvm.org/
doxygen/classclang_1_1tooling_1_1RefactoringTool.html (visited on 08/13/2018).

99

https://doi.org/10.1145/3337821.3337906
https://doi.org/10.1145/3337821.3337906
https://doi.org/https://doi.org/10.1016/j.cpc.2015.10.027
https://www.sciencedirect.com/science/article/pii/S0010465515004099
https://doi.org/10.1007/s00466-021-02105-2
https://doi.org/10.1007/s00466-021-02105-2
https://doi.org/10.1007/s00466-021-02105-2
https://doi.org/10.1145/3458817.3476165
https://doi.org/10.1145/3458817.3476165
https://doi.org/10.1145/3458817.3476165
%5Curl%7Bhttp://clang.llvm.org/docs/LibTooling.html%7D
%5Curl%7Bhttp://clang.llvm.org/docs/LibTooling.html%7D
https://eli.thegreenplace.net/2014/05/01/modern-source-to-source-transformation-with-clang-and-libtooling
https://eli.thegreenplace.net/2014/05/01/modern-source-to-source-transformation-with-clang-and-libtooling
https://github.com/OP-DSL/clang-op-translator
https://clang.llvm.org/docs/LibASTMatchers.html
https://clang.llvm.org/doxygen/classclang_1_1tooling_1_1RefactoringTool.html
https://clang.llvm.org/doxygen/classclang_1_1tooling_1_1RefactoringTool.html

[136] E. Bendersky. “Ast matchers and clang refactoring tools”. (2014), [Online]. Available:
https://eli.thegreenplace.net/2014/07/29/ast-matchers-and-clang-refactoring-
tools (visited on 08/13/2018).

[137] “Replacements class reference”. (2018), [Online]. Available: %5Curl%7Bhttps://clang.
llvm.org/doxygen/classclang_1_1tooling_1_1Replacements.html%7D (visited on
08/13/2018).

[138] M. B. Giles, G. R. Mudalige, Z. Sharif, G. Markall, and P. H. Kelly, “Performance analysis
and optimization of the op2 framework on many-core architectures”, The Computer
Journal, vol. 55, no. 2, pp. 168–180, 2011.

[139] M. Giles, G. Mudalige, and I. Reguly, “Op2 airfoil example”, 2012.

[140] OP2 github repository, https://github.com/OP2/OP2-Common.

[141] D. Dutykh, R. Poncet, and F. Dias, “The volna code for the numerical modeling of
tsunami waves: Generation, propagation and inundation”, European Journal of Mechanics
- B/Fluids, vol. 30, no. 6, pp. 598–615, 2011, Special Issue: Nearshore Hydrodynam-
ics, issn: 0997-7546. doi: https : / / doi . org / 10 . 1016 / j . euromechflu . 2011 . 05 .
005. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0997754611000574.

[142] C. C. Douglas, S. Malhotra, and M. H. Schultz, “Parallel multigrid with adi-like smoothers
in two dimensions”, Preprint, 1998.

[143] J. Douglas and H. H. Rachford, “On the numerical solution of heat conduction problems
in two and three space variables”, Transactions of the American mathematical Society,
vol. 82, no. 2, pp. 421–439, 1956.

[144] J. Douglas and J. E. Gunn, “A general formulation of alternating direction methods”,
Numèrische mathèmatik, vol. 6, no. 1, pp. 428–453, 1964.

[145] T. H. Pulliam, “Implicit solution methods in computational fluid dynamics”, Applied
numerical mathematics, vol. 2, no. 6, pp. 441–474, 1986.

[146] Y. Wang, M. Baboulin, J. Dongarra, J. Falcou, Y. Fraigneau, and O. Le Maître, “A parallel
solver for incompressible fluid flows”, Procedia Computer Science, vol. 18, pp. 439–448,
2013, 2013 International Conference on Computational Science, issn: 1877-0509. doi:
https://doi.org/10.1016/j.procs.2013.05.207.

[147] T. Brandvik and G. Pullan, “An Accelerated 3D Navier–Stokes Solver for Flows in
Turbomachines”, Journal of Turbomachinery, vol. 133, no. 2, Oct. 2011, 021025, issn:
0889-504X. doi: 10.1115/1.4001192. [Online]. Available: https://doi.org/10.1115/1.
4001192.

[148] P. Bartholomew, G. Deskos, R. A. Frantz, F. N. Schuch, E. Lamballais, and S. Laizet,
“Xcompact3d: An open-source framework for solving turbulence problems on a cartesian
mesh”, SoftwareX, vol. 12, p. 100 550, 2020. doi: 10.1016/j.softx.2020.100550.

100

https://eli.thegreenplace.net/2014/07/29/ast-matchers-and-clang-refactoring-tools
https://eli.thegreenplace.net/2014/07/29/ast-matchers-and-clang-refactoring-tools
%5Curl%7Bhttps://clang.llvm.org/doxygen/classclang_1_1tooling_1_1Replacements.html%7D
%5Curl%7Bhttps://clang.llvm.org/doxygen/classclang_1_1tooling_1_1Replacements.html%7D
https://github.com/OP2/OP2-Common
https://doi.org/https://doi.org/10.1016/j.euromechflu.2011.05.005
https://doi.org/https://doi.org/10.1016/j.euromechflu.2011.05.005
https://www.sciencedirect.com/science/article/pii/S0997754611000574
https://www.sciencedirect.com/science/article/pii/S0997754611000574
https://doi.org/https://doi.org/10.1016/j.procs.2013.05.207
https://doi.org/10.1115/1.4001192
https://doi.org/10.1115/1.4001192
https://doi.org/10.1115/1.4001192
https://doi.org/10.1016/j.softx.2020.100550

[149] T. Deakin, J. Price, M. Martineau, and S. McIntosh-Smith, “Gpu-stream v2. 0: Bench-
marking the achievable memory bandwidth of many-core processors across diverse parallel
programming models”, in International Conference on High Performance Computing,
Springer, 2016, pp. 489–507. doi: 10.1007/978-3-319-46079-6_34.

[150] A. Griewank and A. Walther, “Algorithm 799: Revolve: An implementation of checkpoint-
ing for the reverse or adjoint mode of computational differentiation”, ACM Transactions
on Mathematical Software (TOMS), vol. 26, no. 1, pp. 19–45, 2000.

[151] W. H. Hundsdorfer, J. G. Verwer, and W. Hundsdorfer, Numerical solution of time-
dependent advection-diffusion-reaction equations. Springer, 2003, vol. 33. doi: 10.1007/
978-3-662-09017-6.

[152] B. Christianson, “Reverse accumulation and attractive fixed points”, Optimization Methods
and Software, vol. 3, no. 4, pp. 311–326, 1994.

[153] M. Wyns and J. Du Toit, “A finite volume–alternating direction implicit approach for
the calibration of stochastic local volatility models”, International Journal of Computer
Mathematics, vol. 94, no. 11, pp. 2239–2267, 2017.

[154] A. Mallinson, D. A. Beckingsale, W. Gaudin, J. Herdman, J. Levesque, and S. A. Jarvis,
“Cloverleaf: Preparing hydrodynamics codes for exascale”, The Cray User Group, vol. 2013,
2013.

[155] Y. J. Lo, S. Williams, B. Van Straalen, et al., “Roofline model toolkit: A practical
tool for architectural and program analysis”, in High Performance Computing Systems.
Performance Modeling, Benchmarking, and Simulation, S. A. Jarvis, S. A. Wright, and
S. D. Hammond, Eds., Cham: Springer International Publishing, 2015, pp. 129–148,
isbn: 978-3-319-17248-4. doi: 10.1007/978-3-319-17248-4_7. [Online]. Available:
https://doi.org/10.1007/978-3-319-17248-4%5C_7.

101

https://doi.org/10.1007/978-3-319-46079-6_34
https://doi.org/10.1007/978-3-662-09017-6
https://doi.org/10.1007/978-3-662-09017-6
https://doi.org/10.1007/978-3-319-17248-4_7
https://doi.org/10.1007/978-3-319-17248-4%5C_7

	Introduction
	Parallel architectures in HPC
	Motivation for my research
	Oxford Parallel Domain-Specific Languages
	Source-to-source translation in hpc
	Alternating Direction Implicit (adi) Method
	Tridiagonal Systems Solver Algorithms
	Current Library Support to Solve Tridiagonal Systems
	Sensitivities in structured-mesh applications
	Algorithmic Differentiation
	Algorithmic Differentiation in HPC
	Structure of the dissertation

	Source-to-source translation for unstructured-mesh applications
	Motivation
	Clang LibTooling for OP2 Code Generation
	Extensibility and Modularity
	Evaluation and Performance
	Conclusions

	Scalable Batch-Tridiagonal solver algorithms
	Motivation
	Distributed Memory Algorithms
	Evaluation and Performance
	Conclusion

	Adjoint mode Algorithmic Differentiation with OPS
	Reverse mode Algorithmic Differentiation in OPS
	Orchestration
	Evaluation
	Conclusion

	Summary of the Dissertation
	Methods and tools
	New Scientific Results
	Potential applications and benefits

	List of author publications

