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Abstract

In this dissertation, I introduce novel methods for real-time environment anal-

ysis using point cloud measurements of different Lidar (Light detection and

ranging) sensors, which can benefit both mobile robotics and autonomous driv-

ing. The thesis consists of two main parts. In the first part, I exploit dense

spatial information of high-density 3D city maps to improve the vehicles’ on-

board Lidar-based perception capabilities. I present (i) a cross-source point

cloud registration approach for accurate self-localization, and an extension of

this method for robust pose tracking, (ii) a cross-source change detection al-

gorithm between registered point clouds for low-level scene segmentation, and

(iii) a high-level application of the above methods for improved dynamic ob-

ject detection. In the second part, I introduce a novel method for enhancing

the quality of sparse and noisy Lidar depth measurement sequences, without

relying on any external data or information sources. The proposed solutions

contain traditional geometry-based algorithms and deep learning-based meth-

ods. This hybrid approach aims to incorporate both geometric understanding

and learned representations of the Lidar measurements. All proposed meth-

ods have been evaluated in real-life urban traffic scenarios and experimentally

compared against the state of the art, showing significant advantages.
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Chapter 1

Introduction

1.1 Motivation

In our modern world, the coexistence of humans and intelligent machines

already plays a significant role and the tendency is likely to continue and even

evolve in the future. Software and hardware technology have significantly

advanced, enabling machines to perform various tasks and assist humans in

several domains. During our daily life, we, humans interact with the world

in every minute. We continuously perceive our environment using various

senses: mostly our vision system, but also by hearing, touch, taste or smell.

These senses allow us to interpret the world around us, gathering information

about objects, people and events to understand the overall context of our

surroundings. Similarly, intelligent machines such as robots or vehicles need

advanced two- (2D) or three-dimensional (3D) sensors to continuously monitor

and analyze their environment, facilitating a better understanding of their

surroundings and enabling them to make informed decisions and to navigate

and operate safely.

Nowadays, the advanced perception systems of modern robots and vehi-

cles [8–10] usually combine multiple sensors such as cameras, radars (Radio

detection and ranging), and Lidar (Light detection and ranging) scanners to

provide complementary and redundant information. In general, Lidars cap-

ture accurate 3D point measurement flows with high acquisition speed [11].

As active laser-based sensors, they efficiently perform under different illumina-

tion and lighting conditions, but may provide noisy measurements in adverse

weather situations like fog, heavy rain, or snow. Cameras are characterized

1
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Chapter 1. Introduction

Figure 1.1: Comparison of an automotive camera image and a Lidar point cloud in dark

conditions with streetlights and low beam headlights (Source: [103]).

by their ability to capture high-resolution and high-quality image sequences

with rich color information, however, they are easily affected by the illumina-

tion changes of the scenes [12]. Radars excel at providing accurate velocity

and distance measurements in all weather conditions, but they typically have

lower spatial resolution compared to Lidars or cameras, therefore they may

struggle to provide detailed information about the environment.

Although it is inevitable that the most comprehensive perception capabil-

ities can be achieved through integrating the different sensor modalities [13],

there can be situations when Lidars may be the only sensors that are able to

robustly provide detailed and accurate measurements, for example in case of a

sudden sensor failure or temporal field-of-view (FoV) occlusion, or in scenarios

with limited lighting conditions such as darkness during nighttime driving (see

Fig. 1.1) or compromised visibility due to direct sunlight when the quality of

camera data usually degrades.

1.2 Thesis objectives

In this thesis, we focus on advanced environment analysis of moving robot

or vehicle platforms, using onboard measurements of solely Lidar sensors. As

the main challenge, in complex urban environments, the presence of various

obstacles, such as street furniture elements (e.g., traffic signs and lamps, bus

or tram stations, etc.), vehicles, and pedestrians can lead to occlusions and to

the reflection of laser beams in multiple directions, resulting in incomplete or

sparse point cloud data. This phenomenon can lead to issues such as Lidar-

based algorithms misidentify obstacles or have difficulties in navigating.

2
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Chapter 1. Introduction

We address this challenge in two specific manners. In the first part, we

integrate the onboard Lidar measurements with prior, detailed 3D map data

to provide a more comprehensive perception of the environment. In the second

part, assuming that 3D maps may not be available, we provide an algorithm

for the densification of the sparse Lidar measurements, in order to make the

raw data more useful for navigation, mapping, and analysis in the future.

1.2.1 Map-Lidar fusion for real-time scene analysis

The first topic focuses on the fusion of different Lidar-based data modal-

ities. A long-term vision of the conducted research work is to facilitate the

joint exploitation of the measurements from the vehicles’ real-time sensing

platforms and offline spatial database content of the newest Geo-Information

System (GIS) solutions. On one hand, the proposed new algorithms may help

autonomous vehicles (AVs) to obtain relevant spatial 3D map information

for decision support in real-time, for example, to enable safer moving vehi-

cle/pedestrian detection or behavior prediction in the future. On the other

hand, they also may provide opportunities for extending and updating the

GIS databases based on the sensor measurements of the vehicles in everyday

traffic.

In the addressed scenario, we assume a vehicle that captures onboard real-

time 3D measurements [14] taken by a rotating multi-beam (RMB) Lidar sen-

sor (see Fig. 1.2(a)). Beyond the RMB Lidar sensor, we also assume that the

(a) A sparse onboard Lidar measurement

frame

(b) Dense point cloud segment recorded by

an up-to-date MLS platform

Figure 1.2: Comparison of (a) sparse RMB Lidar-based and (b) dense MLS point clouds

captured in the same inner-city area.

3
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Chapter 1. Introduction

vehicle carries a Global Navigation Satellite System (GNSS) receiver, however,

we expect that in various dense city regions the global positioning might be

inaccurate, providing location errors up to several meters. To augment the

AVs’ limited RMB measurements with prior beliefs, we obtain detailed seg-

mented 3D environment models of dense urban areas. In industrial practice,

vector-based high-definition (HD) maps are often adopted for this purpose [15],

as they store precise and high-quality metadata about the static parts of the

environment [16]. Following a different approach, we utilize offline integrated

Mobile Laser Scanning (MLS) measurements that provide accurate and geo-

referenced point clouds [17, 18] (see Fig. 1.2(b)). Without any vectorization,

as preprocessing we segment the raw and noisy MLS data using an automatic

voxel-based point cloud segmentation technique [19] and remove all regions

that contain ground areas or dynamic objects, and consider the remaining

point cloud segments as highly detailed reference landmarks for the AVs’ on-

board RMB measurements.

As the main outputs, we aim first to achieve accurate (up to centimeters)

global localization and pose tracking (Fig. 1.3(a)) of the AVs. Using the local-

ization results, our next goal is to separate changed dynamic (including traffic

participants, urban renewal areas) or seasonally varying (vegetation areas, tree

crowns, bushes) regions, and unchanged static (among others street furniture,

traffic lights, signs) areas (Fig. 1.3(b)) from the AVs’ RMB measurements

(a) Localization and pose tracking (b) Change detection

Figure 1.3: Goals of the first topic: accurate localization and pose tracking by aligning the

vehicles’s onboard Lidar data to the semantic prior 3D map (a), then detecting changes

between the registered point clouds (b). Color codes for the onboard Lidar data (b): static

regions are marked by blue, seasonally varying regions by green, and dynamic changes by

red.

4
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Chapter 1. Introduction

exploiting the prior information obtained from the segmented MLS data.

In the above context, we propose four significant contributions that improve

the state of the art:

1. A novel efficient algorithm is introduced for the registration of sparse

RMB and dense MLS point clouds with a relatively poor initial align-

ment with position errors up to 12 meters, and orientation errors up to

±60 degrees. In practice, this method can compensate for the global po-

sitioning error of the AVs in dense urban areas where high-quality GPS

signals cannot be received.

2. An efficient and robust algorithm is presented for tracking the vehi-

cle movement even in highly occluded temporal scenes, by estimating

poses from the registration results and fusing them in a constant veloc-

ity model-based position-only-measured Kalman filter.

3. A new Markov Random Field-based approach (RangeMRF) is proposed

for multi-class change extraction and classification (dynamic, seasonal,

or no change) between the registered point clouds in a lossless way by

2D range image representations.

4. An efficient utilization of the proposed point-level change detection ap-

proach is demonstrated for enhancing the performance of state-of-the-art

Lidar-only object detection.

To the best of our knowledge, this is the first work that addresses a joint

multi-sensory point cloud registration and change detection problem by fusing

sparse RMB point clouds and preliminary recorded MLS data, where, as a key

challenge, the MLS point clouds are in several regions 100-1000 times denser

than the corresponding RMB measurement segments. For the above reason,

we constructed a new dataset, called the SZTAKIBudapest Benchmark, which

contains real RMB Lidar measurements and industrial MLS data, enabling the

research of the concerning problem and validation of the proposed cross-source

registration, localization, change, and object detection approaches.

1.2.2 Real-time densification of sparse Lidar data

The second topic focuses on the densification of sparse depth measurements

of Lidar devices without external sources or information, by exploiting tem-

5
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(a) Example sparse input to our method (b) The output of our proposed method

Figure 1.4: Goal of the second topic: completion of sparse depth measurements captured by

a non-rotating circular scanning Lidar.

poral and spatial patterns of the raw sensor data stream. In situations when

there is no pre-existing map data available, the vehicles must heavily rely on

the sparse real-time Lidar measurements. Without a comprehensive and dense

point cloud, they may struggle to perceive the environment accurately and to

make informed decisions. In such scenarios, accurate and fast densification of

the sparse Lidar measurements could play a critical role.

In the addressed scenario, we assume a robot or vehicle platform that

is equipped with a single Lidar that exhibits non-repetitive circular scanning

(NRCS) patterns. Here, as main contribution, we propose a novel deep learning

technique for the densification of sparse consecutive measurements of NRCS

Lidars. The proposed method provides a dense depth data stream with both

high spatial resolution and accuracy (see Fig. 1.4) and aims to contribute to

more advanced scene understanding or mapping functionalities in the future.

While the main goal of our work is to propose an algorithm that can accu-

rately deal with real Lidar measurement sequences, it is challenging to provide

dense, spatially precise depth information from the real world due to the inde-

pendent movements of dynamic objects of the scene including the ego-motion

of the robot or vehicle. To overcome this limitation, we constructed a new

urban dataset, that – to our best knowledge as the first open Benchmark

in this field – comprises various simulated and real-world NRCS Lidar data

6
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samples, allowing us to simultaneously train and test methods on synthetic

data with ground truth (GT), and to validate the result via real NRCS Lidar

measurements.

1.3 Structure of the thesis

The structure of the thesis mainly follows the order of the two topics out-

lined above. In Chapter 2, we introduce the Lidar technology in detail, the

main application areas, and the typical sensor devices that were applied in the

thesis for the addressed research problems. In Chapter 3, we present the con-

structed new datasets using the measurements of these devices. In Chapter 4,

we present the proposed methods for 3D map-based scene analysis: First a

cross-source localization and pose tracking technique, which is followed by the

description of the proposed cross-source change detection algorithm and the

object detection method. In Chapter 5, we introduce our proposed method

for Lidar data densification. Finally, in Chapter 6, we conclude the main

achievements of the thesis and discuss further related research problems.

7
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Chapter 2

Lidar technology

2.1 Introduction and short history

The word Lidar is derived from the term Light detection and ranging, and

refers to a technology that uses electromagnetic waves in the visible light and

infrared spectrum. In the history, one of the first attempts to measure distance

by light beams was made in the 1930s, when searchlights were used to study the

structure of the atmosphere and to determine the heights of clouds. The main

development started however only in the early 1960s, thanks to the invention

of laser. Lidars started first operating in the visible domain, then in the near

infrared (NIR) and thermal infrared (TIR) regions. Many Lidars are now

being developed in the eye-safe, short-wave infrared (SWIR) domain, having

a wavelength of about 900-1000 nanometers.

In general, today’s Lidar sensors work by the principle of emitting laser

pulses and measuring the time until their return after reflecting off objects in

the environment. The corresponding distance to each emitted pulse is calcu-

lated based on the following time-of-flight (ToF) equation:

d =
t∆ · c
2

Here d represents the distance to the given object, c is the speed of light

propagation and t∆ is the measured echo time of the emitted laser beam.

In theory, this principle is very similar to the Radar technology – named

after Radio detection and ranging – that uses radio- or microwaves, just Lidars

use much shorter wavelengths. This means in general that Lidars will have

much better angular resolution than radars but will not see through fog or

8
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Chapter 2. Lidar technology

Figure 2.1: Comparison chart of different electromagnetic waves (Source: [20]).

clouds [20]. A comparison chart about the typical wavelengths and frequencies

of electromagnetic waves is displayed in Fig. 2.1.

In general, the modern Lidar sensors integrate several laser emitter and re-

ceiver pairs, and follow a specific scanning pattern to collect a series of distance

measurements that form a 3D point cloud representation of the scene. The

intensity of the reflected light and therefore the measured surface’s reflectivity

can be usually measured as well.

In recent years, the Lidar technology has witnessed remarkable advance-

ments, leading to significant improvements like increased spatial resolution,

scanning speed, and accuracy, while also becoming more compact and cost-

effective. As a result of this tendency, Lidar devices play a key role today in

environment perception and understanding.

2.2 Main application areas and types of Lidar

scanners

Lidar maps find use today in various application domains including au-

tonomous robots and vehicles or city management. In the next subsections, I

briefly introduce these two main areas, the corresponding Lidar types, and the

exact sensor devices that were used during this thesis.

9
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Chapter 2. Lidar technology

2.2.1 Autonomous driving and mobile robotics

Lidar is a crucial component for autonomous robots and vehicles, helping

them navigate and perceive their surroundings. Autonomous vehicles and

mobile robots demand real-time 3D data acquisition and processing techniques

for identifying obstacles, pedestrians, and other vehicles, enabling safe and

efficient autonomous driving. In the last decade, repetitive, typically rotating

multi-beam (RMB) Lidar sensors [1] have been utilized for this purpose.

2.2.1.1 Rotating multi-beam Lidars

RMB Lidars can produce real-time point cloud streams (300 thousand - 2

million points per second). These sensors include a rotating element that is

responsible for spinning the sensor head 360 degrees horizontally, with a contin-

Figure 2.2: Point cloud frame captured by the Velodyne HDL 64E RMB Lidar.

10

10.15774/PPKE.ITK.2024.002



Chapter 2. Lidar technology

Figure 2.3: The Velodyne HDL 64E Lidar sensor.

uous rotation frequency of 5-20 Hz. Therefore, RMB Lidars can capture data

from all directions around the sensor’s location. The sensor measurements are

typically collected and processed in point cloud frames (see Fig. 2.2), where

the term frame refers to a single horizontal turnaround of the sensor head. The

captured data within a single time frame is notably sparse and non-uniformly

distributed: the point clouds have low vertical resolutions, while their densities

decline rapidly if the objects are located further from the sensor. Also, the

sensors’ FoV coverage is constant through the whole scanning process: Their

vertical resolution is fixed by the number of laser beams (typically between

16-128), while their horizontal resolution depends on the sensor’s rotation fre-

quency (5-20 Hz).

As a popular RMB Lidar, we used the Velodyne HDL 64E (Fig. 2.3(a))

sensor [8, 9] to evaluate the developed algorithms in the thesis. The Velodyne

HDL 64E sensor [104] utilizes 64 laser channels with a vertical FoV of 26.9◦

and delivers a real-time 360◦ horizontal FoV. The rotation rate is variable from

5 Hz to 20 Hz which enables the user to determine the density of data points

generated by the sensor. With a high rotation rate, the sensor can generate

point clouds of up to ca. 2.2 million points per second with a sensing range

of up to 120 meters. The spatial accuracy is around 1-2 centimeters in the

sensor’s own coordinate system, but the point density quickly decreases as a

function of the distance from the sensor and it shows typical ring patterns. The

HDL-64E is designed to operate over a wide temperature range and challenging

environments to support diverse operating conditions and applications. The

original price of this device was around 75.000 USD. Please note that in 2023,

there are more recent RMB Lidars such as the Ouster OS1 [105] with the same

resolution and at a more affordable price, costing around 8.000 USD.

11
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2.2.1.2 Non-repetitive circular scanning Lidars

Alternatively to the widespread RMB technology, recent non-repetitive cir-

cular scanning (NRCS) Lidar sensors are also capable of providing measure-

ments for real-time scene analysis, at a significantly lower cost compared to

RMB Lidars [21], by using single- or multi-line lasers combined with high-

speed scanning on a circular path. Unlike RMB Lidars whose FoV coverage

is constant through the whole scanning process, NRCS Lidars are able to

densely map large areas from a given scanning position due to their special

scanning technology which follows non-repetitive patterns (Fig. 2.6). The main

challenge is here to efficiently balance between the spatial and the temporal

resolution of the recorded range data using a suitable integration window [22].

In this thesis, we used the very recent Livox AVIA (see Fig. 2.5) sensor [106].

The Livox AVIA sensor uses a multi-line laser combined with high-speed scan-

ning. This results in a point cloud data capturing rate of up to 240 thousand

Figure 2.4: Point cloud captured by the Livox AVIA NRCS Lidar sensor within 1000 ms.

12
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Figure 2.5: The Livox AVIA NRCS Lidar sensor.

points per second with a detection range of up to 320 meters. The Livox AVIA

sensor has six Lidar beams organized in a linear beam array, which is moved

and rotated inside the sensor following a non-repetitive rosetta pattern. As a

result, the sensor has a FoV of 77.2◦ vertically and 70.4◦ horizontally, while

the scanning density is higher in the center of the FoV compared to the sur-

rounding area (Fig. 2.4). The Livox AVIA sensor costs 1.500 USD and it is

suitable for the majority of use case scenarios in traditional mapping, mobile

robotics, and urban (low-speed) autonomous driving.

Figure 2.6: Non-repetitive sampling strategy of the Livox AVIA NRCS Lidar. The circular

scanning produces typical rosetta patterns which vary across different time frames.

13
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Fig. 2.6 displays a comparison between the field-of-view coverage of a tra-

ditional rotating 64-beam Lidar and the Livox AVIA sensor. While using a

rotating Lidar, if the integration time is greater than the rotation period, the

field-of-view coverage is fixed (marked by blue on Fig. 2.6). Unlike that, using

the Livox AVIA sensor, due to its aperiodic sampling strategy, the field-of-view

coverage varies based on the integration time from 0 to 100% (marked by black

on Fig. 2.6). The lower subplot displays these different field-of-view coverages

using integration times of 50 ms, 200 ms, 500 ms, and 1 s, where the covered

areas are represented by black.

2.2.2 City management and maintenance

Lidar technology is valuable for urban planning and management as well.

Lidar-equipped vehicles or drones can scan and map entire cityscapes quickly

Figure 2.7: Point cloud captured by the Riegl VMX450 MLS system.
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Figure 2.8: The Riegl VMX450 MLS system.

and provide very detailed and accurate 3D spatial maps from the environ-

ment, which are stored and maintained in new-generation Geo-Information

Systems (GIS). These 3D city maps help with various applications, such as

assessing infrastructure conditions or monitoring urban development. Recent

Terrestrial (TLS) and Mobile Laser Scanning (MLS) platforms equipped with

time-synchronized Lidar sensors, calibrated cameras, and navigation units are

common choices for such applications, as they provide dense, accurate, and

feature-rich point clouds precisely registered to a geo-referenced global coordi-

nate system.

In the thesis, we used the measurements of the Riegl VMX450 MLS system

(Fig. 2.8) [107] that offers extremely high measurement rates providing dense,

accurate (up to global accuracy of a few centimeters), and feature-rich point

cloud data with a quite uniform point distribution even at high driving speeds

(see Fig. 2.7). The roof-carrier-mounted measuring head integrates two Riegl

VQ-450 laser scanners, a well-designed, calibrated camera platform with up to

six digital cameras, inertial measurement units (IMUs), and GNSS equipment,

all of them housed under an aerodynamically-shaped protective cover. By the

combination of precise laser scanning technology and high-resolution imaging,

the VMX450 system enables fast and accurate 3D data acquisition for a variety

of applications, including infrastructure management, city mapping, urban

planning, and road surveillance.
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Chapter 3

Datasets related to the thesis

3.1 The SZTAKIBudapest Benchmark for map-

based scene analysis

Although several academic benchmarks such as the KITTI [8] and the

nuScenes [9] or industrial datasets provided for example by the Honda [23] or

the AIMotive [10] company are available regarding 3D urban scene analysis

based on onboard AV measurements (Lidar, camera, IMUs, GPS), they do not

include dense 3D reference maps. While the nuScenes dataset [9] has a map

expansion module, the map thereby refers to only a top-view projection of the

scene with semantic layer information.

Our new SZTAKIBudapest Benchmark contains RMB point cloud streams

captured by a Velodyne HDL 64E 64-beam RMB Lidar sensor with 20 Hz

LIDAR
Top

CAM
Front right

CAM
Front left

CAM
Rear left

GPS

CAM
Rear right

Velodyne HDL 64E Lidar
• 64 laser beams
• 26.8° vertical FoV
• 0.4° vertical resolution

Figure 3.1: The measurement platform.
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Scenario 1: Deák square

Scenario 2: Kálvin square

Scenario 3: Fővám square

Measurement path

Figure 3.2: The data collection path for the SZTAKIBudapest dataset.

rotation frequency from different downtown areas of Budapest, where high-

density, geo-referred point cloud maps are also recorded by a Riegl VMX450

MLS scanner. The measurement platform of our AV is displayed in Fig. 3.1.

PointGrey cameras were also attached to the platform but they were only used

for visual verification in this thesis. The Benchmark contains measurements

from three different road scenarios, each one covering a path of around 300

meters (see Fig. 3.2) with reference MLS data.

3.1.1 Offline preprocessing of the prior MLS maps

The raw, noisy and dense MLS point clouds may include several measure-

ment segments which do not contain relevant information for vehicle naviga-

tion (e.g. many ground points, regions of large building facades, re-located

or dynamic objects). First, to reduce the map’s size and redundancy, we se-

mantically segmented the raw MLS point clouds as shown in Fig. 3.3 and kept

only regions of static object classes (pillar-like, street furniture, vegetation and

facade), whose appearance do not vary significantly over time, and should be

17

10.15774/PPKE.ITK.2024.002



Chapter 3. Datasets related to the thesis

(a) Captured raw MLS data (b) Segmentation results based on [19]

Figure 3.3: Results of the offline MLS data segmentation, Budapest, Hungary. Color codes:

facade (black), ground (dark gray), pedestrian (purple), blurred object (blue), street furniture

(hell gray), tall column (mid gray), vegetation (green), vehicle (orange).

also present in empty street segments. Note that this step can be performed in

an offline pre-processing stage, either in manual or in automatic manner [19].

Next, we extracted object samples from these static class regions by 3D Eu-

clidean clustering [24] and we described each static landmark object with the

following parameters:

• Global coordinates (x,y,z) of the object’s 3D bounding box corner points

(24 parameters)

• Yaw orientation of the object (1 parameter)

• Label of the object class (1 parameter)

• Size of the object’s 3D bounding box: width, depth, height and volume

(4 parameters)

C1(x1,y1,z1)

C2(x2,y2,z2)

C4(x4,y4,z4)

C3(x3,y3,z3)

C5(x5,y5,z5)

C6(x6,y6,z6)

C8(x8,y8,z8)

C7(x7,y7,z7)

Figure 3.4: Extracted corner points of a tall column object sample from the MLS map.
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With this feature extraction, we reduced the number of points describing an

MLS object from a few tens of thousands to 30 parameters (see Fig. 3.4),

enabling quick high-level access to the map objects for example for fast local-

ization.

3.1.2 Manual annotation and labelling

For enabling quantitative evaluation, we performed manual annotations

for each related task described in the following paragraphs to provide pseudo

ground truth (GT) information.

For the point cloud registration task, we constructed pseudo GT informa-

tion by manually aligning uniformly selected point cloud frames to the global

MLS point cloud at each scenario. While as main drawback here, the manual

alignment definitely has some uncertainty, as there is no determinable ,,best”

alignment between the significantly different point sets, we will use this evalua-

tion in combination with other error metrics as well to measure the efficiency of

different alignment algorithms, such as the modified Hausdorff distance (MHD)

or median point distance (MPD).

For the global localization task, pseudo GT information was constructed

by manually aligning a full point cloud sequence with consecutive frames to

the global MLS point cloud at one scenario that contained several significantly

occluded objects.

For the change detection task, we annotated uniformly selected Lidar point

cloud measurement frames from each test scenario, and provided pseudo GT

information in a semi-automatic manner. First, we performed an approximate

offline registration between the RMB and MLS frames using the Iterative Clos-

est Point (ICP) [25] algorithm, then we applied an automated nearest neighbor

search based classification with a small distance threshold (5 cm) as an initial

segmentation result. Thereafter, the labeling of the different change regions

(especially on the region borders) in the selected Lidar frames was manually

revised using a user-friendly 3D point cloud annotator tool developed by Nagy

et al. [19]. Hereby we distinguished three change classes by manual labeling:

• Dynamic changes that refer either to moving street objects such as traffic

participants or slowly changing objects such as temporal (e.g., barriers)

or static scene elements like a re-located bus station or kiosk.
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• Seasonal changes, which regions are typical for vegetation areas. These

regions are segmented as vegetation in the MLS data, and may have

modified appearance during the different time periods/seasons.

• Unchanged regions, which contain static environment parts. These re-

gions are also present in the MLS data.

For the object detection task, we uniformly selected Lidar point cloud mea-

surement frames from heavy traffic road sections of the test scenarios – in

average 5 vehicles and 16 pedestrians in each selected frame –, and labelled

the pseudo GT information manually.

3.2 Lidar-densification benchmarks

As mentioned in the Introduction, when we are dealing with real NRCS

Lidar measurement sequences, it is challenging to provide dense, spatially pre-

cise GT depth information for real data due to the independent movements of

dynamic objects of the scene including the ego-motion of the robot or vehicle.

For this reason, we constructed a synthetic range image dataset called Livox-

CARLA from a realistic virtual world using the CARLA simulator [26, 27],

where we simulated the behaviour of the Livox AVIA NRCS Lidar sensor

(Fig. 2.6). The virtual world allows us to extract dense, spatially precise depth

information, used as GT for the Lidar’s sparse, rosetta patterned samples.

3.2.1 The synthetic LivoxCarla dataset

During data recording, we generated several dynamic objects (vehicles,

pedestrians) in the CARLA virtual world. Then, we constructed our capturing

platform which was a simulated vehicle that was dynamically moving in the

virtual world as realistically as possible. For example, the vehicle was moving

with a typical speed and acceleration in an urban environment, it was stopping

at red lights or by pedestrian crossing. During data extraction, a synthetic

NRCS sensor was placed by default on the front-top of the capturing vehicle

and was pointing forwards. To augment the extractable information (e.g., due

to varying ground level), the sensor’s position was randomly rotated along

the up axis by [−22.5◦, 22.5◦], and its height was randomly adjusted between

[1.5m, 2.5m]. We simulated several runs, from where we randomly exported 5
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(a) Example sparse depth image generation by a simulated NRCS Lidar

(b) Example generation of the ground truth depth image

Figure 3.5: The construction process of the LivoxCARLA dataset.

consecutive dense depth images (these were not affected by any distortion or

blurring) from the sensor’s position, each after 200 ms. These squared images

were covering the full field of view of the sensor. Then, to simulate realistic

Livox AVIA measurements, the dense depth images were sampled with the

rosetta scanning pattern of the Livox AVIA sensor (Fig. 3.5(a)). We extracted

these patterns from test measurements with the real sensor device. The ground

truth was generated for each sample using the mask with the full field of view

of the Livox AVIA sensor (see Fig. 3.5(b)).

Our final LivoxCARLA dataset consists of 11726 randomly selected input-

output range image pairs, from which 10000 were split for training, 500 as

validation and 1226 for testing. Each pair consists of 400 × 400 images: the

input range images were generated with NRCS-characteristics by a Livox AVIA

sensor model by 200 ms integration windows (with ca. 40% FoV coverage),

while a high-resolution ground truth range image was sampled by each fifth

input frame.
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3.2.2 The LivoxBudapest real-world dataset

Besides the LivoxCARLA dataset, we also collected real measurement se-

quences from Budapest. In these experiments, we used the Livox AVIA sensor

mounted on the front-top of our test vehicle (see Fig. 3.6(a)) on a driving path

of total 5.5 kilometers in both speedways and in the city center. Similarly to

synthetic data generation, the real test vehicle was continuously moving dur-

ing the measurements, while many different traffic participants were captured.

Although this real dataset, referred as LivoxBudapest, does not include GT

data, it enables us to validate the effectiveness of the proposed algorithm in

real environment.

(a) Sensor setup on the test vehicle (b) Sparse sample data

Figure 3.6: The sensor setup of the capturing platform and a sample sparse frame from the

LivoxBudapest test data.
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Chapter 4

Map-Lidar fusion for real-time

urban scene analysis

This chapter presents a new method for urban scene analysis through fus-

ing Lidar point clouds with significantly different density characteristics. The

consecutive steps of the proposed method are briefly summarized in Fig. 4.1.

We start with accurately registering the actual RMB measurement to the seg-

mented MLS reference model. Hereby we propose a new object-based coarse-

to-fine alignment algorithm, which significantly speeds up the process while

offline segmentation

Proposed algorithm

Depth domain

Multimodal 

RMB-MLS registration

Real-time RMB data

Map generation

Semantic 3D Reference MapRaw MLS data

3D domain projection

MRF
backprojection

Multimodal 

RMB-MLS change detection

Figure 4.1: The workflow of the proposed method.
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keeping the registration accuracy high. Next, we demonstrate an efficient uti-

lization of the introduced registration technique for accurate and robust pose

tracking. Then, we perform change detection between the registered RMB and

MLS point clouds by a Markov Random Field-based new classification model.

In addition, we demonstrate a possible application of the extracted change map

for dynamic object detection in Advanced Driving Assistant Systems (ADAS).

4.1 Localization as cross-source point cloud reg-

istration

In this section, a novel cross-source point cloud registration algorithm is in-

troduced, which can improve the alignment of the sparse RMB measurements

to the dense MLS data, where conventional point level registration or key-

point/segment matching strategies fail. The proposed method assumes that

an AV is moving on a (locally) fairly flat surface, and provide a fast 4DoF coarse

alignment by matching static objects of the scene, while the exact 6DoF align-

ment is calculated after a point-level refinement step. The clear advantages

of the new method are quantitatively demonstrated against various reference

techniques using the SZTAKIBudapest Benchmark.

4.1.1 Related work in point cloud registration

In the field of point cloud registration [28], coarse-to-fine alignment strate-

gies are considered as standard approaches [29]. Hereby the coarse-alignment

process is usually based on matching corresponding 3D feature points or char-

acteristic primitives extracted from the point clouds [30], while the fine-align-

ment step aims to minimize distances between points within the overlapping

point cloud regions by an iterative process. As discussed in [30], general coarse-

alignment methods consist of two main steps:

1. efficient keypoint detection [31], followed by meaningful and discrimina-

tive keypoint description [32],

2. executing an iterative process for finding correspondences on a solving

platform.
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4.1.1.1 Dense-dense registration

For dense MLS data, general handcrafted [31, 33, 34] and learning-based

[35, 36] detectors can be directly used to extract keypoints [37]. However,

the adaption of such methods often fails for sparse, inhomogeneous and noisy

RMB data [38]. The usage of popular feature descriptors based on normal

vectors, curvature, density, and pairwise point-to-point distances in local re-

gions [32, 39] cannot enrich the information in cross-modal scenarios, since

such parameters are significantly different regarding the RMB and MLS point

clouds. Therefore, the lack of pairable feature points in the two compared

point clouds results that correspondence-based iterative solving platforms like

classical RANSAC [40] approaches or even the very recent TEASER++ [41]

cannot provide accurate solutions.

4.1.1.2 Sparse-sparse registration

Further methods [42,43] focus on region-based point cloud alignment. The

method by Douillard et al. [42] solves data mapping by matching segments

instead of points across different RMB scans. This approach can efficiently

match sparse and small RMB segments with similar point characteristics, but

it induces significant computational complexity: around five to fifteen seconds

is needed even for such small RMB data pairs, while the running time grows

rapidly by using larger point clouds. The SegMap [43] approach matches seg-

ments from a few consecutive RMB scans (local map) to a global 3D map with

high accuracy. This technique builds first a dynamic voxel grid from the point

clouds, then segments the voxels and extracts geometry-based or data-driven

features from both segmented clouds. Finally, it finds correspondences in the

feature space. However, matching these features correctly is extremely sensi-

tive to the differences in the point cloud characteristics. While according to

the experiments in [43], the method works robustly when the global map is

generated from the same sensor data as the aligned RMB measurements (e.g.

in Simultaneous Localization and Mapping (SLAM) tasks), the method’s ex-

tension to different sensor modalities is yet to be solved [43]. Using dense MLS

point clouds and sparse RMB data, we cannot extract corresponding segments

based on similar feature contexts, which fact we experimentally demonstrate

in Sec. 4.1.3.
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4.1.1.3 Cross-source sparse-dense registration

There are methods addressing directly the problem of registering cross-

source point clouds [44], which is more challenging due to varying noise, the

large number of outliers and the significantly different density characteris-

tics [45]. To improve on point-level correspondences, the Geometric Constraint

Tensor-based registration (GCTR) approach [46] uses triplet point similarities,

and solves the optimization problem in the tensor space by an iterative pro-

cess. However, its computation time remains around 1-2 minutes for match-

ing simple indoor scan pairs, making it unfeasible for real-time applications.

Instead of relying on point-point correspondences, the Feature-metric regis-

tration (FMR) method [47] solves the cross-source registration problem by

minimizing a feature-metric projection error, however, the density differences

of its aligned point clouds are less significant than in our RMB-MLS scenario.

4.1.1.4 Registration refinement

For point level registration, which is usually applied in a refinement step

after the coarse alignment, the Iterative Closest Point (ICP) [48] is a frequently

adopted algorithm with several improvements [49, 50]. However, all of these

variants perform local error minimization, thus they demand a high-quality

initial estimation for the alignment otherwise they tend to get stuck in local

minima. In practice, a position error of several meters does not satisfy this

requirement, moreover, the computational time is considerably increased for

scans with poor initial alignments.

4.1.2 Proposed point cloud registration method

We developed a cross-source RMB to MLS point cloud registration tech-

nique to align the RMB point scans to the reference MLS model, which can

compensate initial position errors up to several meters, expecting that in dense

urban environments with poor GPS coverage, the initial position estimation

of an AV might be notably inaccurate. Since we intend to use the RMB point

cloud stream recorded by a moving vehicle for real-time decision support, the

RMB Lidar point cloud should be fully automatically processed and matched

to the MLS model. On the other hand, we can exploit here that in the pre-

liminary segmented MLS point clouds, the ground regions are separated, and
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various abstract landmark objects (e.g. pillar-like entities or short street fur-

niture instances) are extracted and labeled (Fig. 4.2(b)) in advance according

to Sec. 3.1.1. The steps of the algorithm are discussed in the next parts of this

section.

4.1.2.1 Ground removal and object separation in the RMB point

cloud

The initial step of the registration process is object segmentation in the

RMB Lidar frames. Due to the limited resolution and inhomogeneous density

of the RMB point clouds which can mislead even state-of-the-art object detec-

tors [51], we use here a geometry-based approach for point cloud segmentation

proposed by Börcs et al. [52]. First, we apply a fast 2D grid-based ground -

obstacle separation in the RMB input point cloud, by classifying each cell on

an estimated ground surface based on local point density and point elevation

difference features as follows: We fit a regular 2D grid with 0.2 meter rectangle

(a) Separated objects in a RMB scan (b) Static objects in the MLS data

Figure 4.2: Possible landmark objects in the same scene extracted from the RMB (a) and

MLS (b) point clouds for the transformation estimation. Each object candidate is displayed

with a different color.
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width – parameter optimized to urban environment according to [52] – onto

the Pz horizontal plane of the RMB Lidar point cloud’s local Euclidean coor-

dinate system. We assign each point to the corresponding cell that contains its

projection to Pz. We mark each cell as ground candidate where the differences

of the observed maximal and minimal point elevation values are lower than

10 centimeters, which condition allows up to 26◦ ground slope within the cell.

Next, we obtain a local elevation map by averaging the point elevation values

for each previously marked ground candidate cell. To eliminate outlier values

from the elevation map, resulted by flat surfaces such as car roofs, we apply

a median filter considering the neighbouring ground cells. For the remaining

non-ground cells – which presumptively contain the obstacles of the scene –

the local ground elevation value z0 is interpolated using the elevation values

of the neighbouring ground cells. For each non-ground cell, all points with

elevation zp are denoted as non-ground points, where zp− z0 > τ (used τ = 10

centimeters according to [52]).

Next, we cluster all corresponding non-ground points of the RMB Lidar

frame to separate individual object candidates with a region growing algorithm

on the 2D cell map, where empty cells act as stopping criteria. Although in

this way, some adjacent objects may be merged together (see in Fig. 4.2(a))

due to the limited resolution of the grid, this approach is around a hundred

times faster [52] than conventional 3D Euclidean clustering algorithms such as

the Connected Component Analysis [24], while it can efficiently separate even

nearby objects. In our approach, for ensuring fast processing and robustness,

this step does not perform any attempt on object classification: as a result,

we only extract a set of 3D blobs that may represent various moving or static

obstacles in the urban environment.

4.1.2.2 Transformation estimation

Next, we estimate an optimal transformation to align the sparse RMB

scan to the MLS reference model. As a key idea, instead of aligning the raw

point clouds, we aim to register the frames via an object-level voting algorithm,

which matches the previously extracted landmark objects of the MLS data and

the separated objects from the RMB scan (Fig. 4.3). Here a major challenge

is that in the automatically segmented RMB Lidar frames one should expect

plenty of spurious objects which cannot be matched to the MLS landmarks:

28

10.15774/PPKE.ITK.2024.002



Chapter 4. Map-Lidar fusion for real-time urban scene analysis

Figure 4.3: Displaying the corresponding RMB-MLS object pairs estimated by the proposed

method, based on the generalized Hough transform-based schema [53]. RMB points are dis-

played with red, object pairs are marked by blue arrows, some outlier objects are circled by

black. (For clear visualization, a scene sample with relatively few moving objects has been

chosen here.)

the RMB frames may include many dynamic objects, and further artifacts

can be caused by partially extracted entities due to occlusions. For quickly

matching the two object sets which typically contain many objects (often a few

dozen) with possibly a large ratio (up to 80%) of outliers, we turned to a robust

generalized Hough transform-based technique, that proved earlier efficient for

different sorts of complex assignment problems such as fingerprint minutiae

matching [53].

First, we rely on the available GPS signals to initially align the actual

RMB point cloud frame to the reference coordinate system of the MLS data.

This initial alignment is usually notably inaccurate, which we enhance first at

a coarse level, by searching for an optimized rigid transformation with a 3D

translation and a rotation component between the point clouds. The trans-

lation component (∆x,∆y,∆z) compensates for the GPS-based offset error,
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while – based on experiments – the rotation component can be fairly modeled

by a single rotation value (θ) around the upright axis of the vehicle. As a

consequence, we model the optimal coarse transform by a 4× 4 homogeneous

matrix as shown in the following equation:

T∆x,∆y,∆z,θ =


cos θ sin θ 0 ∆x

− sin θ cos θ 0 ∆y

0 0 1 ∆z

0 0 0 1


Next, we find the optimal parameters of this T∆x,∆y,∆z,θ transformation in

three steps, presented in the following subsections.

a) Semantic compatibility constraints As described in Chapter 3.1, the

MLS-based 3D reference map contains separated tall pillar-like and shorter

street furniture object point clouds, which can be used as landmark objects

by the AVs. For these landmarks, we prescribe the following compatibility

constraints:

• a detected RMB object (see Sec. 4.1.2.1) is compatible with a pillar-like

MLS object if the vertical side length of its bounding box is more than

twice of its width and depth parameters,

• a RMB object is compatible with a street furniture object if the ratio of

their bounding volumes is between [0.75, 1.25].

In the upcoming transformation estimation step, we will only consider the votes

of compatible object pairs, to decrease the effects of outliers and speed up the

process. Note that the impacts of false matches generated by dynamic objects

of the RMB point clouds will be eliminated later through global parameter

optimization.

b) Keypoint selection Since the detected objects are not pointwise, ap-

propriate keypoint extraction is a critical step which process should remain

robust in the considered crossmodal RMB-MLS scenario, where several ob-

jects are only partially scanned, the object appearances in the RMB frames

are different from the corresponding MLS objects, and they may also vary

scan by scan. We have formerly investigated various keypoint selection strate-

gies and experienced that an 8-keypoint strategy [54] provided the best result,
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where, as keypoints, we choose the eight corners of the objects’ 3D bounding

boxes.

c) Optimal parameter estimation We approximate the transformation

which aligns the RMB and MLS point clouds via compatible keypoint pairs.

First, we collect the extracted RMB and MLS objects into two object sets

marked by ORMB and OMLS, where each object is described by 8 keypoints

(i.e., bounding box corners). Then we adopted the generalized 4D Hough

transform [53] to obtain an optimal transformation between the RMB and

MLS -based keypoint sets, by a voting algorithm (Fig. 4.3).

To restrict the search space of transformations, we allow maximum offsets

of ±60◦ for rotation (θ), ±12 meters for planar translation (∆x and ∆y), and

±2 meters for vertical translation (∆z). As required by the Hough schema [53],

the parameter space is discretized with step sizes of 0.2 meters for translation

and 0.25◦ for rotation, which choice enables both reasonable coarse alignment

and quick computation. The votes of the possible parameter quartets are

accumulated in a 4D array Φ[∆x,∆y,∆z, θ], which is initialized with zero

values.

The optimization step searches for possible correspondences between the

Algorithm 1 The proposed coarse registration method.

1: procedure CoarseAlignment(ORMB,OMLS)

2: Reset the 4D accumulator array Φ

3: for all oRMB, oMLS ∈ ORMB ×OMLS do

4: if compatible(oRMB, oMLS) then

5: for i = 1 : 8 do

6: ki
RMB ← oRMB

7: ki
MLS ← oMLS

8: for all θ ∈ [−60◦, 60◦] do
9: ki∗

RMB ← Rotθ · ki
RMB

10: [∆x,∆y,∆z]← ki
MLS − ki∗

RMB

11: Φ[∆x,∆y,∆z, θ]← Φ[∆x,∆y,∆z, θ] + 1

12: ∆x∗,∆y∗,∆z∗, θ∗ ← FindMaximum(Φ)

13: T ← ∆x∗,∆y∗,∆z∗, θ∗

14: return T
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keypoints of all compatible object pairs (oRMB, oMLS) ∈ ORMB × OMLS. For a

given keypoint couple kRMB, kMLS we increase the evidence of all T∆x,∆y,∆z,θ

mappings, which move kRMB to kMLS. More specifically, for every possi-

ble θ′ ∈ [−60◦,+60◦] value, we rotate kRMB by θ′ first, then the following

[∆x′,∆y′,∆z′]T offset is computed: ∆x′

∆y′

∆z′

 = kMLS −

 cos θ′ sin θ′ 0

− sin θ′ cos θ′ 0

0 0 1

 kRMB

Next, we vote for the calculated T∆x′,∆y′,∆z′,θ′ transform so that we in-

crease the Φ[∆x′,∆y′,∆z′, θ′] element of the accumulator array by one (see

Algorithm 1). After iterating through the whole parameter space, the optimal

T∆x∗,∆y∗,∆z∗,θ∗ transform is defined as follows:

(∆x∗,∆y∗,∆z∗, θ∗) = argmax
∆x,∆y,∆z,θ

Φ[∆x,∆y,∆z, θ]

4.1.2.3 Registration refinement

While acknowledging its robustness, the precision of the object-based reg-

istration technique is affected by the discretization step of the translation and

rotation parameters, constraints on the modeled rigid transformation, and by

issues of object bounding box fitting on partially detected objects (Fig. 4.4(c)).

However, this coarse alignment step can provide an efficient initialization for

a point level refinement algorithm, such as the ICP [48], which we execute

for point cloud segments corresponding to aligned object pairs only. The final

transformation is taken as:

Tfinal = TICP ·T∆x∗,∆y∗,∆z∗,θ∗

Although the application of the ICP algorithm induces additional compu-

tation, by reducing the number of alignable points through object compat-

ibility criteria checking, and by ensuring low initial alignment error by the

proposed coarse registration algorithm, the whole process needs remarkably –

with 1-2 orders of magnitude – less computational time compared to matching

raw complete point cloud scans, while keeping the registration accuracy high

(Fig. 4.4(b), (d)).
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(a) Initial alignment, t ≈ 4.17 m translation

and θ ≈ −51◦ rotation error

(b) Results of the proposed registration algo-

rithm

(c) Results of the coarse alignment in case of

an uneven road surface

(d) Results after the point level refinement

Figure 4.4: Results of the proposed point cloud registration algorithm. Subfigures (c) and

(d) refer to the same area circled by black in subfigure (b). Color codes: RMB points are

shown with red, the segmented MLS regions are marked by various colors depending on their

semantic classes: facade (black), vegetation (green), street furniture (dark grey), pillar-like

column (light grey).

4.1.3 Evaluation

This section presents various numerical and qualitative results on the intro-

duced SZTAKIBudapest Benchmark, which demonstrate the efficiency of the

proposed cross-source point cloud registration technique and its superiority

versus the state-of-the-art reference approaches.

First, to justify the need for developing a new registration algorithm for

the crossmodal RMB and MLS data alignment task, we demonstrate the lim-

itations of methods based on existing keypoint selection strategies (discussed

in Sec. 4.1.1) adopted for the sparse RMB Lidar and dense MLS point clouds,

respectively. As shown in Table 4.1, the numbers of keypoints extracted from

given object clusters (such as short and tall pillars, tree trunks, etc.) are in

different orders of magnitude in point clouds captured by the different sensors,

while Fig. 4.5 (a)-(d) show visually that we are unable to detect the same or

even similar keypoints from the sparse RMB and dense MLS scans of a 3D
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(a) Harris 3D (b) SIFT 3D (c) ISS 3D (d) RSKDD-Net (e) Proposed

Figure 4.5: 3D keypoint selection strategies for registration on the same object stored in the

MLS (top) and RMB point cloud (bottom).

street object. The RSKDD-Net [36] strategy extracts visually the less differ-

ent keypoints from the two point clouds, however, their similarity is still not

enough for proper registration (see also Table 4.3 and 4.4).

Among the region-based methods, we also tested the SegMap [43] approach

adopted to the RMB and MLS data (Fig. 4.6). Although the method extracts

correctly the point cloud segments of most standalone static landmark objects

in the RMB data (red points), it fails to find correct correspondences between

segments of the RMB and MLS point clouds (black arrows) due to their local

Method
Extracted keypoints per cluster

MLS cloud RMB cloud

Harris 3D 10-20 -

SIFT 3D 30-50 -

ISS 3D 100+ 1-10

RSKDD-Net 5-20 0-5

Table 4.1: Typical numbers of the extracted keypoints by different handcrafted and learning-

based methods in MLS and RMB point clouds
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Figure 4.6: False correspondences (black arrows) using the SegMap approach [43] between

the sparse RMB local map (displayed by red) and dense MLS global map (shown by blue).

contextual differences (especially in point density).

We evaluated the proposed Hough space-based registration technique on

the SZTAKIBudapest dataset. The efficiency of the algorithm can be demon-

strated by qualitative examples, even in cases of very large initial alignment

errors (see Fig. 4.4). For quantitative analysis, the SZTAKIBudapest Bench-

mark contains manually aligned pseudo GT transformation matrices, which

enables direct comparison in the rigid transformation’s independent parame-

ters (three rotation and three translation components), similarly as in the work

of Park et al. [55]. However, this manner of comparison has some limitations,

as in several cases the error of only a single parameter can significantly distort

the final transformation. Moreover, the manual registration process definitely

includes some uncertainties (up to 10-20 cm translation, 0.5-1◦ rotation). For

this reason, we calculated two further point-to-point distance metrics [56] to

measure how well our transformed RMB frames can fit the global MLS seg-

ments. First, we considered the Modified Hausdorff Distance (MHD) [57, 58]

between the PRMB and PMLS obstacle clouds:

QMHD(PRMB,PMLS) =
1

#PRMB

∑
p∈PRMB

min
q∈PMLS

||p− q||

Here #P marks the number of points in set P . However, for some scenes with
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Scene
Initial avg. QMHD [m] QMPD [m] Comp.

error init. coarse fine init. coarse fine time*

Deák 1.4m, -54.98◦ 5.558 0.681 0.631 3.140 0.059 0.019 1.583

Fővám 2.2m, 53.04◦ 4.853 1.092 0.956 2.147 0.161 0.019 2.317

Kálvin 3.6m, 38.53◦ 5.504 0.872 0.745 3.384 0.285 0.038 3.272

Average 2.4m, 48.85◦ 5.298 0.882 0.779 2.873 0.164 0.025 2.594

*with sequential CPU implementation, in [s]

Table 4.2: Quantitative results of the proposed registration algorithm by MHD and MDP

rates

many dynamic objects (including large vehicles), the QMHD metrics proved to

be less relevant regarding the evaluation of the results, due to many outlier

values which were accumulated. Therefore, we also turned to an alternative

measure referred to as Median Point Distance (MPD), which ranks the points

in PRMB by their min
q
||p−q|| values and the median distance over all p ∈ PRMB

is calculated:

QMPD(PRMB, PMLS) = Med
p∈PRMB

min
q∈PMLS

||p− q||

Note that the calculation processes of both MHD and MPD are unsuper-

vised, thus they can be considered as relative quality measures rather than

metric error values.

Table 4.2 displays the MHD and MPD rates for the three different scenes

of the SZTAKIBudapest Benchmark, calculated at different stages of the pro-

posed two-step registration algorithm. We can see that both quality values

are significantly reduced by the process, and in all test scenarios, the final

observed MPD error values are around 1-3 cm. Note that high registration

accuracy can also be verified by qualitative analysis (see Fig. 4.4).

Table 4.3 and 4.4 presents a detailed quantitative comparison between the

proposed method and different reference approaches for point cloud registra-

tion on the SZTAKIBudapest Benchmark. Quality measures provided here

comprise both the differences in the transformation’s independent parameters

(Table 4.3) and the point distance-based MHD and MPD error rates (Ta-

ble 4.4). For each method, the GPS position was taken as an initial alignment.

Based on the experiments, the one-step least square optimization [28] can de-

crease the overall point distances but completely fails to find the optimal po-
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Method
Absolute error compared to pseudo GT transformation

∆rx [°] ∆ry [°] ∆rz [°] ∆tx [m] ∆ty [m] ∆tz [m]

GPS baseline 1.831 1.492 48.784 1.485 5.999 1.103

SegMap -a -a -a -a -a -a

RSKDD-Net 94.037 6.670 76.047 9.466 15.065 1.241

Least-Square 89.335 9.117 85.655 5.516 5.493 0.627

ICP 1.951 2.170 30.778 2.023 5.411 0.608

RANSAC with FPFH 19.921 2.434 7.263 3.518 7.422 0.853

TEASER++ 5.522 1.664 12.350 1.613 5.477 1.162

FMR 9.062 4.544 19.105 5.137 5.234 1.180

Proposed coarse 1.831 1.492 0.812 0.199 0.273 0.333

Proposed with ICP 0.598 0.959 0.333 0.069 0.154 0.183
a failed to find correspondences

Table 4.3: Comparative evaluation of various point cloud registration methods and the pro-

posed approach compared to GT

sition and orientation when the density characteristics of the two point clouds

significantly differ. Similarly, the RSKDD-Net [36] method cannot improve

the original alignment due to the lack of extractable keypoint correspondences

(see Fig. 4.5(d)). The high rotation errors of these methods [28, 36] along

the x (∆rx) and z-axes (∆rz) in Table 4.3 correspond to the large percent

of test cases where the alignable point clouds were falsely flipped horizontally

or vertically, respectively. The FMR [47] method found false feature matches

derived from the local point-distribution differences of the point sets, resulting

in higher translation errors along the x and y-axes. The ICP algorithm [48] –

which aims to minimize locally the errors – failed to converge from the poor

GPS-based position in around 75% of the test frames, and for the remaining

cases, the accurate (< 10 cm) registration needed 3-4 minutes computation

time for a single frame.

For the further global registration techniques, like the RANSAC [40] and

TEASER++ [41] have been applied as follows: first, the two point clouds were

uniformly downsampled, then the Fast Point Feature Histogram (FPFH) [32]

feature descriptors were calculated to extract the local geometric properties of

the point neighbourhoods and the correspondences were detected by querying

the nearest neighbours in the 33-dimensional FPFH feature space. Although

these approaches could reduce both the position and orientation errors, they
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Method
Distance-based evaluation

Computation time [s]
QMHD [m] QMPD [m]

GPS baseline 5.298 2.873 -

SegMap -a -a -a

RSKDD-Net 2.968 2.789 0.048b

Least-Square 2.510 2.176 0.364

ICP 1.483 0.700 239.768c

RANSAC with FPFH 2.318 1.877 0.793

TEASER++ 1.818 1.134 3.849

FMR 3.392 3.387 25.596c

Proposed coarse 0.882 0.164 0.102

Proposed with ICP 0.779 0.025 2.594c

a failed to find correspondences b GPU-accelerated impl. (on CPU: 1.0844 [s])
c Sequential CPU impl. (GPU-acceleratable)

Table 4.4: Comparative evaluation of various point cloud registration methods and the pro-

posed approach by distance-based errors and computation time.

turned out to be less accurate than the proposed method due to many outliers,

which were eliminated by the proposed approach with the voting scheme. Note

that the RANSAC-based registration also rotated the point clouds upside down

in around 10% of the test frames, resulting in relatively higher rotation error

along the x-axis (∆rx).

Regarding the computation time, the coarse alignment step of the proposed

algorithm can work with around 10 fps on a desktop environment with an Intel

Core i7-7700K 4.2 GHz CPU, while the fine alignment steps need currently 2-4

seconds, both on sequential CPU implementation (see the last column of Table

4.4). However, a recent study [59] show that using parallel implementation of

the correspondence search in ICP, one can reduce its computational time with

one order of magnitude on multi-core CPU (OpenMP) and with two orders

of magnitude on GPU (CUDA). These hardware-accelerated implementations

can make the proposed algorithm eligible for real-time applications.
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4.2 Lidar pose tracking by matching static ob-

jects

In this section, we propose a real-time, robust pose estimation and tracking

technique in temporally occluded urban environment for AVs using sparse

RMB Lidar and low accuracy GPS measurements, with respect to prior high

density localization maps obtained from MLS point clouds. This approach

relies on the registration algorithm which was introduced earlier in Sec. 4.1.

First, assuming that we can extract the local ground information from the map,

we estimate the 3DoF pose of the vehicle from the RMB-MLS registration

results. Then, we effectively integrate the estimated pose information into

a dynamic vehicle model based Kalman filter. The advantage of the new

method is qualitatively and quantitatively demonstrated in a large-scale urban

scenario [3], using the SZTAKIBudapest Benchmark.

4.2.1 Related work in pose tracking

Robot or vehicle localization and tracking given a prior map is a hot topic

in the literature [60]. In general, we can distinguish methods addressing global

localization or pose estimation (when no prior pose is available), and pose

tracking, when the vehicle starts from a known pose which is updated over

time.

In the field of pose tracking, the majority of existing methods uses Lidar

odometry information [61] by incrementally aligning consecutive Lidar point

cloud measurements mostly using a variant of the Iterative Closest Point (ICP)

[25] algorithm, and determining the relative pose of the moving vehicle at

each iteration. Some methods integrate Lidar odometry with IMU sensors for

more accurate results [62, 63]. As these methods integrate small incremental

motions over time, they are bound to drift-effect in large-scale scenarios, which

is typically reduced by loop closure detection.

Tackling the problem of global localization in large-scale urban environment

with poor GPS coverage, the pose estimation problem can be described as

a point cloud registration between the Lidar-measurements and map data,

starting from a poor initial alignment [1]. As a general overview of point cloud

registration algorithms were already discussed in Sec. 4.1.1.

The closest solution to our addressed scenario is the SegMap [43] technique,
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which detects wall segments of the corresponding Lidar and map regions, and

describes these regions using geometric or data-driven features. On the other

hand, similar features are hard to extract for segments captured with different

sensor modalities, as experimentally shown in Sec. 4.1.3, while the lack of close

wall segments (i.e., in wide open spaces, or due to occlusions) can mislead this

method as well. Following a different approach, we aim to match pillar-like

objects (poles, traffic lights, signs, etc.) of the scenes in real time, which

sorts of objects are typically present in urban regions. In addition, we also

introduce an efficient pose tracking method to tackle featureless measurement

frames (e.g., due to temporal occlusions by moving objects).

4.2.2 Proposed pose tracking method

We developed a real-time, robust pose estimation and tracking technique

for AVs with respect to prior MLS localization maps, using sparse onboard

RMB Lidar and low-accuracy GPS measurements. As a preliminary step, we

efficiently extract and describe the static objects of the MLS data by their geo-

metric and semantic properties. This process was described earlier in Sec. 3.1.1.

Next, for estimating the optimal pose of the vehicle, we adopt a simplified ver-

sion of the robust transformation algorithm proposed in Sec. 4.1 to align the

RMB Lidar data and the extracted static objects of the MLS map. Finally,

from the optimal transformation – assuming locally planar surfaces – we ex-

tract the 3DoF pose of the vehicle (x,y,θ), which parameters we track by a

constant velocity model-based position-only-measured (POM) Kalman filter

to effectively deal with temporal occlusions.

4.2.2.1 Pose estimation of the moving vehicle

First, similarly as in Section 4.1, we use the available, usually notably

inaccurate GPS signal for initially positioning the actual RMB point cloud

frame’s center in the global coordinate system of the MLS map. Assuming

that the local ground plane information is available from the map, we search

for an optimized rigid transformation with a 2D translation and a rotation

component between the point clouds. The translation component (∆x,∆y)

compensates for the originally unknown position error of the GPS sensor, while

– based on experiments – the rotation component can be approximated by the
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yaw rotation angle (∆θ). In summary, we model the optimal transform as

follows:

T∆x,∆y,∆θ

(
x

y

)
=

[
cos∆θ − sin∆θ

sin∆θ cos∆θ

](
x

y

)
+

[
∆x

∆y

]
Next, we find the optimal parameters of this T∆x,∆y,∆θ transformation via

extracted keypoint pairs. First, we collect the extracted pillar-like RMB Lidar

and MLS map objects into two sets denoted by ORMB and OMLS. Then, we

describe each object candidate by 8 keypoints (i.e. bounding box corners), and

adopt the generalized 3D Hough transform to determine the optimal transfor-

mation between the RMB andMLS -based keypoint sets, by a voting algorithm.

First, for limiting the parameter space, we allow maximum offsets of ±60◦

for the yaw rotation (∆θ) and ±12 meters for planar translation (∆x and ∆y)

to tackle with the GPS inaccuracies. As required by the Hough schema, we

discretize the transformation space between the minimal and maximal allowed

values of each parameter, using 0.4 meters for the translation components

and 0.5◦ degrees for rotation. This setup enables both reasonably accurate

resolution and quick computation. Next, we allocate a three-dimensional array

A[∆x,∆y, θ] with zero initial values to summarize the votes of the possible

parameter triplets.

During the voting process, we search for possible keypoint correspondences

between all pillar-like object pairs (oRMB, oMLS) ∈ ORMB ×OMLS. For a given

keypoint couple kRMB, kMLS we add a vote for all possibleT∆x,∆y,∆θ transforms,

which map kRMB to kMLS. More specifically, we iterate over all the discrete

∆θ values, and for each ∆θ′ we rotate kRMB by ∆θ′ first, and calculate the

corresponding translation vector [∆x′,∆y′]T as follows:[
∆x′

∆y′

]
= kMLS −

[
cos∆θ′ − sin∆θ′

sin∆θ′ cos∆θ′

]
kRMB

Next, we vote for the calculated T∆x′,∆y′,θ′ transform so that we increase

the A[∆x′,∆y′, θ′] element of the accumulator array by one. After iterating

through the whole parameter space, the optimal T∆x∗,∆y∗,θ∗ transform can be

extracted as follows:

(∆x∗,∆y∗,∆θ∗) = argmax
∆x,∆y,∆θ

A[∆x,∆y,∆θ]
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Finally, we make an acceptance decision of calculated transform based on

a minimum number of votes:

A(T) = true if and only if A[∆x∗,∆y∗,∆θ∗] > t

We experimentally set t = 5, which means that either one static object is

matched by both upper and lower corner points or at least two static objects

are paired. In case of an accepted transform, the estimated pose of the vehicle

can be calculated as follows:

x∗ = xGPS +∆x∗

y∗ = yGPS +∆y∗

θ∗ = θGPS +∆θ∗

4.2.2.2 Pose tracking

Although we experienced that the above pose estimation method works

robustly even in sparse scenes covering only a few (5-10, depending on the

scene characteristics) pillar-like objects, its accuracy is limited in scenarios

without a sufficient number of matchable landmark object pairs. To overcome

this problem, we track the estimated pose parameters by a constant velocity

(CV) model based Kalman filter, whose true state vector is defined as follows:

xt =
(
xt yt θt vxt vyt wθt

)T
Here xt, yt and θt are the planar position and yaw orientation and vxt, vyt

and wθt are the velocities of the vehicle, respectively. As the CV model assumes

permanent velocity within a short observation period, the model’s dynamics

can be considered as follows:

xtk = Φxtk−1 +wk,

Here xtk denotes the true state at time kT , T is the sampling interval deter-

mined by the applied RMB Lidar sensor’s spin rate, wk is the process noise,
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and Φ is the transition matrix from kT to (k + 1)T , which is defined as:

Φ =



1 0 0 T 0 0

0 1 0 0 T 0

0 0 1 0 0 T

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


Next, we integrate the Lidar-perceived planar position and yaw orientation

values into this model dynamics, so that after each accepted transformation

(A(T) = true), we use the estimated poses (x∗,y∗,θ∗) as new measurements as

follows:

zk = Hxtk + vk,

Here zk = (x∗, y∗, θ∗) denotes the measurement vector, H denotes the mea-

surement matrix, and vk is the measurement noise. As our model is position-

only-measured, H is:

H =
(
1 1 1 0 0 0

)
Finally, we sequentially predict and estimate the state vectors based on the

previous state values and measurements via the Kalman filter equations:

x̃k = Φx̂k−1

x̂k = x̃k +Kk(zk −Hx̃k)

where x̃k and x̂k are the predicted, respectively estimated state vectors by

the Kalman filter, whileKk denotes the Kalman gain that minimizes the errors

in the estimated positions and velocities. If the Lidar-based estimation of the

pose transformation is not accepted (i.e. A(T) = false in Sec. 4.2.2.1), we only

execute the prediction step, while the state vector re-estimation is skipped.

4.2.3 Evaluation

We evaluated the proposed pose tracking technique on a heavily occluded

sequence from the SZTAKIBudapest Benchmark, in a pathway of around 0.6

km. During quantitative evaluation, we compared the results of the proposed

model to available pseudo GT information, generated through manually align-

ing the RMB Lidar frames to the global MLS point clouds. As evaluation
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Figure 4.7: Position (D) and orientation (dθ) error of the tracked poses versus ground truth

information, demonstrating the superiority of the proposed method.

metrics, we calculated the mean absolute error (MAE) for each estimated pose

parameter: position errors along the x-axis (dx) and y-axis (dy), and the yaw

orientation error (dθ). For two-dimensional position error, we also calculated

the average Euclidean distance (D) between the estimated and GT planar

positions (x,y) of the vehicle. For comparative experiments, we developed a

baseline, only GPS-based Kalman filter and adopted as Lidar-based frame-

wise pose estimation method the previously proposed registration algorithm

(Sec. 4.1) without tracking, besides the proposed improvement. The overall

numerical results are summarized in Table 4.5.

Fig. 4.7 displays a sequence of error rates calculated for 180 consecutive

time frames from the test scenario, covering a driven path of approximately
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Figure 4.8: Estimated trajectories of the different methods and the ground truth path.

300 meters. During this drive, frames containing large moving objects (tram,

bus) with significant occlusions were recorded, while the trajectory of the ego

vehicle was turning to left of around 20 degrees. In the pose estimation step,

20% of the calculated transforms were dropped due to the lack of enough

pairable objects. The planar trajectories estimated by the different methods

can be also visually compared in Fig. 4.8.

Method dx [m] dy [m] D [m] dθ [°]
Raw GPS 3.4214 3.2428 4.9288 29.768

GPS-only Kalman filter 1.5184 0.7691 1.8004 2.1962

Frame-wise pose estimation 0.5852 0.5628 0.9029 1.6131

Proposed method 0.4850 0.4349 0.7304 1.0592

Table 4.5: Quantitative summary of the pose parameter errors
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From the results of Table 4.5 and Fig. 4.7, we can conclude that using

the frame-wise Lidar-based pose estimation we can significantly improve the

accuracy of the GPS-only positioning, reducing the average location error from

around 5 meters to 1 meter. However, the value of the error is still strongly

fluctuating frame-by-frame without considering the vehicle dynamics (see Fig.

4.7). The proposed joint method can largely overcome this artifact by effi-

ciently integrating the Lidar-perceived pose information into the Kalman fil-

ter based dynamic model of the moving vehicle, achieving an average global

position error of around 70 centimeters and orientation error around 1° in

approximately only 40-50 milliseconds.

Regarding the computation time of the whole workflow, the proposed me-

thod can operate in real-time, as it runs with 20-25 fps on an Intel Core

i7-7700K 4.2 GHz CPU without parallelization. The presented result may also

serve as a fast and accurate initial alignment for an ICP-based [25] point level

registration algorithm in occluded environment (which can also run in real-

time with parallel implementation), that may decrease the location error to a

few centimeters.

4.3 RangeMRF: Range image-based cross-sou-

rce change detection

In this section, an efficient Markov Random Field-based [64] change ex-

traction step is proposed between the registered RMB and MLS point clouds,

which exploits the fact that due to geometric considerations of mapping with

the given sensor configuration, the essence of the problem can be solved quickly

in the 2D range image domain without information loss. The clear advantages

of the new method are quantitatively demonstrated against various reference

techniques using the SZTAKIBudapest Benchmark.

4.3.1 Related work in point cloud change detection

In the field of point cloud-based change detection, the majority of the ex-

isting methods can be adopted for MLS-MLS data comparison tasks [65, 66],

where the two point clouds are captured with the same laser scanner [65] show-

ing similar and locally homogeneous density characteristics. In practice, two
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different scannings of the same scene never detect the same surface points of

the objects, thus there are point-level deflections between the scanned models

even if the surfaces are perfectly aligned. However, using the same MLS sensor,

change detection can be approximated by pointwise comparison steps in the

3D space, performing a preliminary uniform voxel-based downsampling [67], or

applying locally adaptive [68] or parametric [69] radius thresholds. Neverthe-

less, the usability of any point-level distances strongly depends on the density

of the point clouds [66], and it can be largely misleading during the analysis of

multimodal data, like in an RMB-MLS scenario. Alternative methods like [70]

use segment-level comparison, where an object is marked as change if a given

percentage of its segment points have no neighbours. Voelsen et al. [71] com-

bine this approach with segment classification to integrate semantic informa-

tion in the change detection process. These methods demand accurate object

extraction (and detailed classification) from the point sets, which is challeng-

ing in sparse RMB data [52]. To handle irregular point density, Xiao et al. [66]

combine point-to-triangle distance calculation, ray-tracing, and occupancy grid

generation. Although this method can effectively deal with occlusions and pen-

etrable MLS objects, the triangulation step may mean a bottleneck in terms of

computational speed and robustness, especially in noisy point cloud segments.

Instead of using rays, Liu et al. [72] perform an occupancy technique along a

regular voxel grid, and identify the changed regions based on the inconsistent

voxels. As the main drawback, the above approaches work similarly for all

point segments: On one hand, with parameter settings yielding high sensitiv-

ity, they produce many false-positive detections for sparse and noisy segments

of the RMB scans. On the other hand, with low sensitivity, they might ignore

crucial regions containing only a few points (e.g., pedestrians with only 10-40

points), which issue will be demonstrated in Sec. 4.3.3.

4.3.2 Proposed change detection method

After accurately registering the RMB-MLS measurements, the proposed

method, called RangeMRF, detects changes in 2D range images derived from

the point clouds. As key advantages of using a compact range image repre-

sentation, the proposed method is notably quick, meanwhile, it can robustly

handle the significantly different characteristics of the two point sets so that

we define the RMB data-based (IRMB) and the MLS range images (IMLS) over
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the same discrete pixel lattice R. Since we search for changes caused by mov-

ing or removed/added scene objects, before range image mapping, we remove

ground points, yielding two obstacle clouds denoted by PRMB and PMLS, which

we wish to compare.

Exploiting the principle of operation of RMB Lidar sensors, the obstacle

cloud PRMB of a considered RMB frame can be represented as a range im-

age IRMB in a straightforward way. Here the laser emitters and sensors are

vertically arranged, and each sensor scans the environment along a circular

trajectory of 360◦ (see Fig. 1.2). Within a time frame, the consecutive range

measurements of the ith sensor are stored in the ith row of the IRMB image.

This transform is geometrically equivalent to converting the representation of

the point cloud from the 3D Descartes to a spherical polar coordinate system,

where the polar direction and azimuth angles correspond to the horizontal and

(a) Raw range image generated from an RMB point cloud scan

(b) Interpolated range image (IRMB) from subfigure (a)

(c) Reference range image projected from the MLS data (IMLS)

(d) Vegetation label propagated from the semantic MLS data (LMLS)

Figure 4.9: Example input data of the proposed RangeMRF model. Subfigures (a)-(c) are

depth images where brighter pixels denote closer distance, and black pixels contain no mea-

surements. Subfigure (d) displays semantic labels of the MLS data, where vegetation is

marked by green.

48

10.15774/PPKE.ITK.2024.002



Chapter 4. Map-Lidar fusion for real-time urban scene analysis

vertical pixel coordinates, and the distance is encoded in the corresponding

pixel value. As a result of discretization, the range values of some image pix-

els might be undefined, which issue is handled by interpolation (Fig. 4.9(a),

(b)). Apart from these issues, with using an appropriate, sensor-specific image

resolution (used 1042× 64 in the thesis), the conversion of the point clouds to

2D range images is reversible, without causing information loss.

We derive the IMLS background range map from the 3D MLS measure-

ment (PMLS) by projection. Relying on the previously introduced point cloud

registration step, we emit simulated rays into the MLS point cloud from the

estimated actual center position of the AV mounted RMB Lidar, and project

the point distances to a spherical surface, on which we stretch an image lattice

R having the same size and resolution parameters as the IRMB range image.

Hereby, utilizing that the reference MLS cloud is semantically segmented, we

assign to each pixel s ∈ R besides its calculated range value IMLS(s) a binary

vegetation indicator label LMLS(s) ∈ {V, ̸ V } based on the semantic class of

the corresponding projected MLS point (Fig. 4.9(c), (d)).

In the next step, we construct a Markov Random Field (MRF)-based model

for efficient estimation of the changes between the RMB Lidar’s IRMB and

the MLS-based IMLS range images, with also considering the LMLS vegetation

indicator map (Algorithm 2). The output change map of the MRF model is

denoted by CRMB.

By assuming the presence of purely solid-shaped objects in the scene (such

as vehicles, pedestrians, traffic signs), change detection could be considered as

a binary classification problem with foreground (i.e. changes) and background

(unchanged regions) classes, with applying background subtraction for fore-

ground extraction. It is essential here to recognize even small changes between

Algorithm 2 The main steps of the proposed RangeMRF change detection

algorithm, using a Markov Random Field model in the range image domain.

1: procedure RangeMRF(PRMB,PMLS)

2: IRMB ← PRMB

3: IMLS,LMLS
projection←−−−−−− PMLS

4: d, δ ← (IRMB, IMLS, LMLS)

5: CRMB = MRF (d, δ)

6: return CRMB
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the inputs, such as pedestrians close to a bus station, therefore, this detection

process must work with high sensitivity. However, we experienced that in this

approach several false/irrelevant change predictions may occur, especially in

vegetation regions, whose appearance widely varies in time, across different

seasons. To overcome this artifact, we introduced a third class, called seasonal

change. In summary, in the proposed change detection step, we distinguish

three classes: (a) seasonal changes (S) in vegetation regions, (b) foreground

changes (F ) caused by moving objects or changed/re-located static street fur-

niture elements, and (c) unchanged background (B). By handling the vege-

tation areas in a specific manner with reduced sensitivity, we may lose some

information in extreme situations such as pedestrians hiding in trees or bushes,

however, these cases are very rare and less relevant for analyzing traffic sce-

narios. Furthermore, the proposed method will be able to sharply recognize

pedestrians standing near stations or facades, while also eliminating several

false hits in vegetation areas.

Formally, the goal is to perform the following mapping:

CRMB = MRF (IRMB, IMLS, LMLS) ,

where CRMB(s) ∈ {F, S,B} for all s ∈ R.

To set up the MRF energy function, we define two distance values first

which can give us reliable information about separating the different classes:

• The geometric distance d(s, s′) represents the depth difference between

the corresponding range values of a given pixel s in the IRMB and s′ in

the IMLS images, respectively, which is calculated as follows:

d(s, s′) = |IRMB(s)− IMLS(s
′)|.

• The vegetation distance δ(s) informs us if the current pixel s is likely

in vegetation regions. This parameter is calculated as the L2 distance

between the locations of a given s pixel in IRMB and the nearest pixel s′

in IMLS which has a vegetation label:

δ(s) =
√

(sx − s′x)
2 + (sy − s′y)

2,

where pixel s′(s′x, s
′
y) fulfills that LMLS(s

′) = V , and the L2 distance

calculated as
√

(sx − s′x)
2 + (sy − s′y)

2 between (s, s′) is minimal among

all nearby pixels.
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(a) Seasonal change (S)

(b) Foreground change (F )

(c) Unchanged background (B)

Figure 4.10: The distribution of distance values (d,δ) and the applied fitness functions

(marked with black) for each change class.

Next, for every pixel in the range image lattice R, we define fitness scores

for each class as functions of the above-described d geometric and δ vegetation

distance values, in order to measure how a given pixel s fits the different classes

using expert knowledge-based soft constraints. The types of the functions

were chosen by experiments, by investigating the empirical distributions of the

distance values within different regions of the SZTAKIBudapest dataset, which

is demonstrated in Fig. 4.10.

Dynamic foreground regions (F ) should typically have increasing fitness

scores with growing geometric distances (d(s, s)) between the corresponding

pixel range values in the IRMB and IMLS maps. This soft constraint can be

modeled by a logistic function with zero midpoint (d0 = 0) and two parameters:

maximum value (L) and steepness (k):

FF (s) =
L

1 + e−k(d(s,s)−d0)
.

On the contrary, static background (B) pixels have high fitness for small

geometric distances, which allows us to use the same logistic function with a

negative steepness parameter:
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Parameter/Class F B S

Geometric distance d(s, s)≫ 0 d(s, s)→ 0 d(s, s′) ≈ 0

Vegetation distance - - δ(s, s′) ≈ 0

Fitness function logistic logistic 2D Gaussian

Parameters L, k L,−k σd, σδ
Parameter dimension 2 0∗ 2

∗The same L, k parameters are used for the F and B classes.

Table 4.6: Fitness functions and their parameters

FB(s) =
L

1 + ek(d(s,s)−d0)

Seasonal change regions (S) have high fitness scores if and only if both the

geometric distance term and the spatial distance to the closest vegetation pixel

are near to zero. Formally, this constraint can be described by a 2D Gaussian

function with zero means (µd, µδ = 0) and predefined small standard deviation

(σd, σδ) parameters (Fig. 4.10):

FS(s) =
1

2πσdσδ

e
−
[(

d(s,s′)−µd
2σd

)2

+
(

δ(s)−µδ
2σδ

)2
]

where pixel s′ denotes the nearest vegetation pixel to a given pixel s. The

chosen fitness functions and parameters are also summarized in Table 4.6.

The proposed change detection algorithm assigns a unique label ls ∈ {F, S,B}
to every s ∈ R pixel of the lattice, which minimize a Potts-like energy function:

E =
∑
s∈R

− log(Fls(s)) +
∑
s∈R

∑
s∗∈Ns

β · 1{ls ̸= ls∗}

where β > 0 is responsible for obtaining smooth, connected regions in the

segmented image, and Ns denotes the eight-neighbourhood of pixel s. The

MRF’s output 2D change map is taken as CRMB(s) = ls ∀s ∈ R.

For the minimization of the MRF energy function E, a quick graph-cut

based optimization method has been adopted [73], which provides a high-

quality three-class change map ({F, S,B}) in real time as demonstrated in

Fig. 4.11(b). As the last step, the labels available in the range image domain

should be projected back to the corresponding points of the RMB Lidar point

cloud (Fig. 4.11(a)). Fig. 4.11(b) and (a) show results for the same scene in

the 2D and 3D domains, respectively.
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(a) Change map in the 3D space

(b) Change map: output of the MRF in the range domain (CRMB)

Figure 4.11: Result of the change detection process (a) in the 3D space and (b) in the range

image domain, about the same area. The pixels/points for static background are displayed

by blue, for dynamic change by red, and for seasonal change by green.

4.3.3 Evaluation

This subsection presents various numerical and qualitative results on the

introduced SZTAKIBudapest Benchmark, which demonstrate the efficiency of

the proposed cross-source change detection technique and its superiority versus

the state-of-the-art reference approaches. During evaluation, each change de-

tection algorithm takes as input registered RMB and MLS point clouds, as a re-

sult of the previously discussed point set alignment. Since the SZTAKIBudapest

Benchmark contains pseudo GT labels for the changed regions, we have also

performed here quantitative evaluation at point level, so that we compared the

labeled output RMB data to the manual annotation of the point cloud.
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Figure 4.12: The behavior of the proposed method using multiple parameter combinations

(L,k,σd, σδ,β).

4.3.3.1 MRF parameter settings

During the evaluation, first, we compared more than 30000 parameter com-

binations in a multi-level five-dimensional grid search in order to optimize the

parameters (L,k,σd, σδ,β) of the MRF model. The ROC curve of the results

of different setups is summarized in Fig. 4.12. We achieved the best perfor-

mance using the MRF smoothness parameter β = 0.5, the logistic function

with L = 0.01, k = 2.0 and the Gaussian function with deviation parameters

σd = 1.4 and σδ = 2.5.

4.3.3.2 Implementation of the reference methods

Since to our best knowledge the proposed RangeMRF method is the first

approach dedicated to the RMB-MLS crossmodal change detection task, we

selected and adopted reference techniques from the methods described in Sec.

4.3.1, which were proposed earlier for comparing registered MLS point clouds.

First, we implemented a fixed radius (r = 15 cm based on [70]) nearest

neighbour (NN) search [70] between segments of the two point clouds. We
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Figure 4.13: The behavior of the point level radius nearest neighbour (NN) search [68, 69]

using multiple r parameters. As a balanced solution, r = 30 cm was chosen.

labeled each segment of the RMB data as foreground (F) if 25% of its points

have no neighbours, otherwise, we propagated the label of the neighbouring

MLS points to the corresponding segment (background (B) or vegetation (V)).

Next, we implemented the radius search at point level which is used by [68,69]:

Each point of the RMB is labeled as F if the distance to the nearest MLS point

is higher than r, otherwise the label of the neighbouring point is propagated.

We tested this method with multiple r radius lengths (see Fig. 4.13). At

small radius, the method failed to compensate the measurement noise and

the variance of vegetation areas in the RMB data, while with higher radius

values it produces a significantly increasing number of false-negative points.

For numerical comparison, we applied an optimally balanced solution for both

classes (r = 30 cm). To overcome the above-mentioned trade-off, we also

implemented a point-to-triangle search based on [66]: for each point in the

RMB data, we constructed a triangle surface from its 10 nearest points and
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calculated the distance (d = 30 cm applied based on [66]) of the given point

to the nearest triangle.

Finally, we also fitted a 3D voxel array [72] to the aligned point clouds and

classified the given RMB points as foreground (F ) if its voxel was empty in the

MLS point cloud. Otherwise, the label of the MLS point was propagated. We

evaluated this technique with various w voxel size parameters (Fig. 4.14) and

experienced that for the RMB-MLS data samples it provides the most efficient

results with w = 100 cm settings, which also gave the best trade-off between

the accuracy and computational time.

Figure 4.14: The behavior of the voxel-based reference method [72] using multiple w param-

eters. The optimal solution for both classes is with w = 100 cm.

4.3.3.3 Comparative results

While we have observed that in point cloud regions with several large,

non-contacting vehicle objects, the reference techniques have similarly high
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accuracy as the proposed method, we have experienced notable advantages of

the RangeMRF model on challenging situations captured in cluttered sidewalk

regions, containing multiple pedestrians and a wide variation of static objects,

such as benches, boxes, columns (see Fig. 4.15). For this reason, we have

focused the quantitative comparison of the methods on the cluttered street

regions. Results are summarized in Table 4.7 displaying precision, recall, and

F1-score metrics calculated for all approaches.

In these experiments, we have measured the lowest F1-scores with the seg-

ment level NN technique [70]. As main drawback here, the extracted segments

often merge small dynamic traffic participants and large static environment

parts. Therefore, such mixed regions were predicted falsely as unchanged re-

gions, resulting in low recall values during the evaluation.

Performing the radius search at point level [68, 69] rather than across seg-

ments produced better results, however, this point level approach could not

compensate for the irregular density characteristics of the RMB data. The

voxel-based approach [72] outperformed both techniques regarding the F1-

score metrics. However, all of them are not or just partially able to find pedes-

trians staying near to the static object (with a distance under voxel size, or

under radius length, respectively), yielding many false-negative points. Con-

versely, the proposed RangeMRF model is able to distinguish the static and

dynamic point regions, which difference is demonstrated by a few qualitative

samples in Fig. 4.15 as well. By applying the method of [66], which compares

points to nearest triangles, we could remarkably reduce the number of false-

negative hits. However, building a surface from the neighbours of each point

is a time-consuming step, the computation of one measurement frame takes

here around 3-4 minutes using an Intel Core i7-7700K CPU@4.2GHz desktop

Method Precision Recall F1-score Computation time [s]

Segment-NN 0.8549 0.4834 0.6176 0.5649

Point-NN 0.9763 0.5982 0.7419 1.2934

Point-Triangle 0.9011 0.7993 0.8472 215.78

VOXEL 0.8017 0.7902 0.7959 2.5176

RangeMRF 0.8695 0.8769 0.8732 0.1426

Table 4.7: Comparative evaluation of various change detection methods and the proposed

RangeMRF approach in cluttered areas for the Foreground change class (F).
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(a) Camera images

(for visual check)

(b) Reference area in

the MLS map

(c) Voxel-based

change detection [72]

(d) Proposed change

detection

Figure 4.15: Change detection results in crowded sidewalk areas, with the presence of many

static and dynamic objects. Camera images of column (a) were taken synchronously with the

RMB Lidar points clouds, but they are only used for visual verification. Purely Lidar-based

detection results are shown in column (c) for a reference method, and in column (d) for

the proposed method: red points correspond to dynamic change (vehicle, tram, pedestrians,

further objects missing from the map: ticket station, benches), blue points present static

environment parts. (Note: shading the red color in the second row is only applied for better

visualization.)

computer.

The proposed RangeMRF model’s segmentation step, which works in the

range image domain of each frame, needs around 145 milliseconds, while the

voxel-based approach takes around 2 (respectively 7) seconds for a given frame

with parameter setting w = 100 cm (respectively w = 10 cm) using the same

computer setup.
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In summary, Fig. 4.11, Fig. 4.15, and Table 4.7 confirm the efficiency of the

proposed RangeMRF method in real-world scenarios. We have quantitatively

demonstrated its advantage versus the reference models, which produced either

at least 7% lower F1-score rates on cluttered point clouds regions [68–70, 72],

or they needed a significantly longer computational time [66].

4.4 Map-guided object-level scene analysis

Estimating the change mask is often a first step towards more ambitious

goals of scene understanding, such as identifying and tracking all dynamic ob-

jects in the environment. In this section, we demonstrate that using the pro-

posed cross-source RMB-MLS registration and change detection algorithms,

we can achieve a notable performance improvement even for a state-of-the-

art Lidar-based object detector [4, 5]. Comparative tests are provided in high

traffic road sections of the SZTAKIBudapest Benchmark, and we achieved an

advantage of 5.96% in precision, 9.21% in recall and 7.93% in F1-score metrics

compared to the state of the art.

4.4.1 Related work in Lidar-based object detection

During the past few years, many geometric [52] and deep learning [51,74–77]

based algorithms appeared in the literature for dynamic object detection. They

operate on raw RMB Lidar frames and provide as output sets of oriented

bounding boxes for various dynamic object categories such as vehicles, pedes-

trians or bicycles. However, due to the sparseness of the RMB Lidar mea-

surements, there are a number of limitations of these approaches, especially in

complex, crowded scenarios with many traffic participants.

On one hand, many false positive hits can be detected in point cloud regions

containing static scene objects with similar appearance and context parameters

to the dynamic target objects (see Fig. 4.16). On the other hand, the point

cloud blobs of several dynamic objects can be occluded or merged with static

street furniture elements, hiding them from the attention of the detector, which

may cause many false negative predictions.

Exploiting prior information from city maps for improved object detection

is a quite new research area, with only a few related techniques in the literature

[78, 79]. The HDNET [78] approach uses a prior road map with local ground-
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Figure 4.16: Falsely detected object samples overlapping with the background map. Color

codes: predicted vehicle (red box), predicted pedestrian (blue box).

height data as reference, which helps in eliminating false object candidates

detected out of the road, or above/under the ground level. The MapFusion [79]

method extract features from three HD map layers (driveable areas, walkway,

parking area) to exploit information about the structure of the roads. However,

none of them deal with the confusion of dynamic objects with static entities

from the map, and therefore they cannot adjust the missing object rate.

Our goal is to overcome this limitation, so we proposed a novel method to

directly exploit 3D information from the scene.

4.4.2 Proposed method

We propose a method that takes a sparse RMB Lidar frame and the refer-

ence area of a 3D point cloud map as input and outputs the dynamic objects

of the scene. Initially, we apply a traditional Lidar-based object detection al-

gorithm to predict a set of object candidates in the current RMB Lidar frame.

As a basis of comparison, we have chosen the PointPillars [51] state-of-the-art

object detection method, which can predict object-candidates from multiple

classes, together with their 3D oriented bounding boxes and class confidence

values.

To refine the output of the object detection, we accurately register the in-

put RMB Lidar point cloud to the prior MLS map by the cross-source point

cloud registration algorithm introduced previously in Sec. 4.1. After the align-

ment, we apply a map-based, probabilistic validation step against the MLS

model [4], to remove false positive object predictions, such as a vehicle de-
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RMB Lidar data

MLS map
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Figure 4.17: Workflow of the proposed approach.

tected in the pedestrian area of a tram stop. This step will be introduced in

Sec. 4.4.2.1. Next, to eliminate the false negatives, we subtract the MLS map

and the already detected dynamic objects from the actual Lidar frame using

the change detection technique proposed in Sec. 4.3. Finally, we extract object

candidate blobs in the remaining dynamic regions, and we attempt to iden-

tify these previously undetected dynamic objects by a Support Vector Machine

(SVM)-based blob classifier. This step is described in Sec. 4.4.2.2. A high-level

overview of the proposed method is displayed in Fig. 4.17.

4.4.2.1 False positive object removal by map-based validation

False positive objects often overlap with static obstacles of the background

scene, thus they can be identified through analyzing their location in the reg-

istered 3D map. We propose a 2D probabilistic approach to manage this

problem whose main steps are summarized in Fig. 4.18. First, taking a top-

view analysis, we project both the RMB Lidar and the registered map point

clouds to a discrete grid on the ground plane, with a resolution of 10 cm.

Thereafter, we assign to each (i, j) cell two competing potentials describing

the foreground (Pfg(i, j)) and background likelihoods (Pbg(i, j)). Foreground

values are determined by the object detection output: for each cell covered

by an object candidate, we take Pfg(i, j) ∈ [0, 1] as the prediction score (i.e.,

confidence value) of the object detection network regarding the given object.

The remaining cells receive Pfg(i, j) = 0. On the other hand, the background

likelihoods are calculated from the projected MLS point cloud. If cell (i, j) is

61

10.15774/PPKE.ITK.2024.002



Chapter 4. Map-Lidar fusion for real-time urban scene analysis

Segmented MLS map Top-view potential map

� t 
• 

• • ., 

. 

• . 

• • ;1 ,.
• • 
• • ,, 
• • 
. • 
. • 

..... 
• 
. 

• • ' •,, .. 

ie. 
. 

• 

• 
. 

. 

. 

' 
. 

• 

. 

. 

. 

... 
.. • 

----
Object removal

• • 

• - 11 
• 

., •. 
. 

• • • 

• • 
• . 

• . 

. 

• . 

• 
, 

. • -·C' 

• 

1 

1 . .,
1 

• 

• 
• 

, l 
• 

• 
• 

• • 

• 
• 

conf = 1 

conf = 0 

Prediction confidence Final object mask Object predictions

Figure 4.18: Overview of the proposed false positive object removal step.

occluded by a static obstacle in the MLS map, we set Pbg(i, j) = 1, while for

cells near to the boundaries of static objects we use a distance-based Gaussian

attenuation in the Pbg until 1 meter in any directions (with variance parameter

σ = 10). For the remaining cells, we set Pbg(i, j) = 0.

Using the constructed likelihood maps, we remove all object candidates,

which cover any cell (i, j), where Pbg(i, j) ≥ Pfg(i, j). Note that the adopted

Gaussian soft boundary also ensures robustness of the approach against small

registration errors.

4.4.2.2 Search for missing objects via change detection

On the other hand, for reducing the number of false negative objects, we

subtract the MLS point cloud map from the actual Lidar frame using our

RangeMRF change detection algorithm (Sec. 4.3). In this way, many previ-

ously undetected dynamic objects can be distinguished from the static scene

elements that closely surround them (e.g. pedestrians from the bus stop, see

also Fig. 4.15(a)), and then they can be separated by a region growing algo-
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No. Description Dim

f1 Number of points included in the object 1

f2 The minimum distance to the object center 3

f3 3D covariance matrix of the object points 6

f4 Principal component of the object 3

f5 3D bounding box sizes (height, width, depth) 3

Table 4.8: Feature vector used for SVM classification

rithm [52]. Finally, we identify the previously undetected objects of interest

by a Support Vector Machine [80] based blob-classifier [4], which classifies the

blobs based on the set of features listed in Table 4.8. After classification,

the blobs labeled as vehicles or pedestrians are added to the list of detected

objects.

4.4.3 Evaluation

As a baseline method, we have chosen the PointPillars [51] state-of-the-

art object detection method. We have trained PointPillars on the KITTI

[8] 3D object detection benchmark and some annotated samples from our

SZTAKIBudapest dataset.

For quantitative evaluation, we have selected five heavy traffic road sec-

tions from the SZTAKIBudapest Benchmark. From each location, the evalu-

ation dataset contains 50 different frames; and in average 5 vehicles and 16

pedestrians are present in a single time frame. The numerical performance re-

sults compared to the original PointPillars [51] output are summarized in Ta-

ble 4.9. By combining our proposed change detection model with the selected

Class Precision Recall F1-score

PointPillars [51] baseline

Pedestrian 0.9562 0.6742 0.7908

Vehicle 0.7519 0.8819 0.8111

Both 0.8875 0.7222 0.7964

PointPillars [51] with our Pedestrian 0.9460 0.8443 0.8752

proposed map-based Vehicle 0.9502 0.8819 0.9138

improvements Both 0.9471 0.8143 0.8757

Table 4.9: Object-level evaluation with the PointPillars [51]
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Detected
cars by OD

Removed
false hits

Detected
pedestrians 

Added
pedestrians

Figure 4.19: Improving PointPillars [51] based object detection (OD) in a complex scene.

The correct initial object predictions are marked by red and blue for cars and pedestrians,

respectively. Yellow box marks a falsely detected object, which was removed by us using map

information, green boxes show pedestrians erroneously ignored by OD, but found after using

our change detection approach.

object detection approach, we are able to significantly increase the number of

recognized pedestrians and decrease the number of falsely predicted vehicles,

improving the F1-score for each class with around 10%.

Fig. 4.19 displays a qualitative comparison of PointPillars alone and with

our proposed correction method. In this scene, the proposed model provides us

a comprehensive scene interpretation, although several vehicles and pedestrians

are jointly present.

4.5 Implementation details and sample codes

All the developed algorithms for point cloud handling and processing were

implemented in the C++ [108] programming language with the OpenCV [109]
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and PCL [110] libraries. The reference PointPillars [51] neural network model

was implemented and trained in the Python [111] programming language with

the Pytorch [112] framework.

At the time of publication, the registration and change detection datasets

and sample codes were publicly available at the following link: www.github.

com/sztaki-geocomp/Lidar-SCU.

4.6 Conclusion of the chapter

This chapter presented a novel method for urban scene analysis between

point clouds with significantly different density characteristics. The proposed

algorithms can be used to localize sparse and instantly sensed point cloud

data captured by AVs in a high-density 3D point cloud map with an accuracy

of up to a few centimeters in median point distance. We also proposed a

robust novel pose estimation and tracking algorithm, which operates with 20-

25 fps by combining the introduced registration technique with a Kalman-filter.

Based on the registered point clouds, we proposed a Markov Random Field

model that can separate different sources of changes with an overall F1-score

of 92% for complete RMB point cloud frames and 87% for complex sidewalk

areas. We provided several experiments to show the advantages of the new

methods versus the state of the art, and we also introduced an ADAS example

as a possible efficient industrial utilization of the change detection results for

dynamic object detection. We estimate that with a parallel implementation of

many substeps, the whole workflow can run with around 5-10 fps.

65

10.15774/PPKE.ITK.2024.002

www.github.com/sztaki-geocomp/Lidar-SCU
www.github.com/sztaki-geocomp/Lidar-SCU


Chapter 5

Real-time densification of sparse

Lidar data

Lidar-based range measurements are widely represented by depth images [6],

where, as the main advantage, they enable to adopt 2D convolution operations

and effective image-based neural network architectures [81,82] during data pro-

cessing. However, the data captured by Lidars is often very sparse, while its

characteristics may vary depending on the sensors’ scanning technology which

results sparse and incomplete depth images which are challenging to interpret.

In this context, depth completion algorithms focus on the problem to estimate

(a) Large integration window (t∆ = 1 s) re-

sults in blurred dynamic objects

(b) Narrow integration window (t∆ = 200

ms) results in a too sparse depth map

Figure 5.1: A dynamic scene captured by a NRCS Lidar with different t∆ integration win-

dows. A large integration time (a) induces several blurring artifacts, while a narrow inte-

gration window (b) yields the loss of details. Blurred pedestrians are marked by red ellipses.
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dense depth images from the Lidar-acquired sparse range data.

In this chapter, we propose a novel depth completion algorithm, which

utilizes measurements of a non-repetitive circular scanning Lidar. A special

challenge for NRCS Lidars is to efficiently balance between the spatial and

the temporal resolution of the recorded range data using a suitable integration

window [22].

On one hand, as shown in Fig. 5.1(a), allowing larger integration time

(t∆ > 1 s), the laser beams cover a higher proportion (around 90%) of the FoV

yielding high spatial measurement resolution. However, the potential ego-

motion of the Lidar’s platform (e.g., vehicle or robot) and the dynamic objects

in the surrounding area induce various artifacts, such as blurred shapes of

the observed vehicles, pedestrians or buildings, which phenomena complicate

dynamic event analysis. On the other hand, if the measurements are collected

within a narrow time window (e.g., in 200 ms) they are spatially more precise,

however, the resulting point clouds are notably sparse (around 48k points, up

to 40% FoV coverage), which fact yields a significant loss of details across the

spatial dimension of the FoV (see Fig. 5.1(b)).

In this chapter, we aim to overcome the above-mentioned challenges caused

by the spatio-temporal trade-off of the NRCS Lidar based perception, and

propose a novel deep learning based approach for densifying sparse NRCS Li-

dar data while keeping its spatial accuracy high. As the main contribution

of the chapter, we propose a novel deep neural network called ST-DepthNet,

which extends the classical U-Net architecture with a spatio-temporal encoder

branch for utilizing consecutive sparse measurements captured by NRCS Li-

dars. Our model produces spatially precise high-density depth data using a

spatial decoder branch following effective temporal pooling steps. We qualita-

tively and quantitatively evaluate the proposed algorithm on our constructed

LivoxCARLA and LivoxBudapest datasets, and experimentally demonstrate

its advantages against two state-of-the-art reference methods.

5.1 Outline of the proposed method

Our proposed spatio-temporal (ST) deep neural network called ST-Depth-

Net (Fig. 5.2) operates in the range domain and expects as input multiple

sparse depth maps captured consecutively in time by a NRCS Lidar equipped
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on a moving platform, with using a narrow (i.e., 200 ms) integration window

for each frame. As output, the network provides a dense, high-quality range

image of the same FoV, which does not reflect the sensor’s original scanning

artifacts (i.e., visible trails of the circular scanning pattern). The architecture

of ST-DepthNet was directly designed to exploit both spatial and temporal

patterns in the input NRCS data for depth completion, by extending a U-

Net-like architecture [81, 83] with Conv2DLSTM [82] layers. Conv2DLSTM

layers [82] are often used for tasks involving sequential data that also have a

spatial component (e.g., video processing). They combine a two-dimensional

convolutional (Conv2D) and a Long Short-Term Memory (LSTM) layer [84]

to process both spatial and sequential information simultaneously. Therefore,

they allow the models to learn spatial features from each frame using Conv2D

operations while considering the temporal context and dependencies between

frames using LSTM-like mechanisms.

5.2 Related work in depth completion

In this section, we present a study of the state-of-the-art depth completion

techniques and challenges. In the past few years, research on Lidar-based

approaches emerged as a hot topic in the literature, due to the availability of

popular public datasets like the KITTI Depth Completion Benchmark [85],

which contains over 93 thousand RGB images with the corresponding rotating

multi-beam Lidar projected sparse depth measurements.

Therefore, the majority of the recent methods focus on completing depth

maps obtained from RMB Lidars fused with camera images as guidance to

recover the pixels with missing depth measurements [86,87]. However, images

may not provide eligible information in cases of sudden illumination changes

[87] or in low-light environments [88]. In these cases, depth completion must

be performed solely based on sparse Lidar range measurement samples, which

includes significantly harder challenges [89].

First, without relying on external sources (e.g., high-resolution RGB im-

ages), edges and other finely textured structures on the generated depth images

are often missing, blurred or distorted [89, 90]. In [89], global and local depth

variations are separated based on the fact that in the wavelet representation

of the images, the fine structures appear in the high-frequency domain while
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the global regions are defined by the low-frequency coefficients. In order to

exploit this phenomenon, they introduce a frequency-based recurrent depth co-

efficient refinement scheme. The difficulty of data upsampling near the edges

also appears in the work of Savkin [90], where feature extraction by an edge

convolution layer is used to strengthen the precision at fine 3D structures. In

our approach, we recover the fine structures by adding an appropriate edge-

loss term [91] to our loss function, instead of performing edge enhancement by

a dedicated sub-network.

Second, a limitation of many existing depth completion methods is that

they generate new range values for all image pixels, instead of filling only

the missing information [27]. Therefore the Implicit Lidar Network by Kwon

et al. [27] learns the weights of an interpolation function for 3D point cloud

completion, thus the original measurements are not modified and only the

missing points are estimated. For similar reasons, our solution connects the

last sparse input image to the output by a direct skip connection to force

our proposed model to keep the original sparse, but precise range map and

complete the missing regions, instead of overwriting the whole input image

with completely new values.

The most closely related methods to our approach that focus on Lidar-only

depth completion are [92] which effectively combines morphological operations

and bilateral filtering, and [88] that investigates different sampling strategies

for training a generative adversarial network. However, as our experiments

show in Sec. 5.4, both approaches are highly sensitive to the measurement

characteristics of the applied Lidar sensor and fail to accurately compensate

for the irregular, non-repetitive sampling pattern of NRCS Lidars. As NRCS

Lidars are relatively new to the market, to the best of our knowledge, this

thesis is the first to provide a dataset and method utilizing information for

depth completion propagated from their measurements.

5.3 The proposed depth completion method

The goal of the proposed solution is to produce a high-quality, dense and

spatially precise point cloud stream from measurements of a single NRCS Lidar

sensor. Our approach consists of two main steps: First, the consecutive mea-

surements of the NRCS Lidar are grouped to form discrete time frames, using
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a narrow, 200 ms integration window (up to 40% FoV coverage in each frame).

Thereafter, within a frame, the distances of the measured 3D field points from

the sensor are assigned to corresponding pixels in a high-resolution range im-

age. By each actual time frame, the last five collected depth images (covering

together around 95% of the FoV) are fed to the ST-DepthNet depth completion

network, which composes a high-quality range image as output, with almost

100% FoV coverage, also eliminating the motion blurring artifacts. The output

high-quality range image can be backprojected to the 3D space as well.

5.3.1 Range image generation

In our approach, the captured sparse point clouds (collected within t∆ =

200 ms) are converted from the Cartesian (x,y,z) to the spherical (distance,

azimuth, elevation) polar coordinate system. Then, a 2D pixel lattice is gen-

erated by quantizing the horizontal (azimuth) and vertical (elevation) FoVs.

In the resulting range images, the horizontal and vertical pixel coordinates

represent the polar azimuth and elevation angles, while the pixel’s depth value

encodes the distance of the corresponding point.

In our experiments, we exploit the parameters of the Livox AVIA NRCS

Lidar sensor [22]. The sensor’s FoV is mapped onto a 400× 400 pixel lattice,

which resolution (5.6 px/◦) yields both high spatial accuracy and reasonable

computational requirements. As experienced, the density of the recorded valid

range values is decreasing towards the peripheral regions of the range image

due to the nature of the circular scanning technique: the scanning pattern

crosses the optical center of the sensor significantly more frequently, than the

FoV’s perimeter, making the central regions of the range images densely filled,

and leaving peripheral areas notably sparse (see Fig. 2.6 and 5.1). As a result

of using an integration time window of 200 ms for collecting the consecutive

time frames, around 60% of the range image pixels receive undefined range

values. Such a level of sparseness of the range image makes it difficult to

efficiently visualize the data or to perform scene analysis, emerging the need

for the proposed depth estimation approach.
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Sparse input images Dense output image
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Strided ConvLSTM
(spatial and recurrent)
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+

1x400x400

+ Add layer
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Figure 5.2: The architecture of the proposed ST-DepthNet network.

5.3.2 ST-DepthNet architecture

Next, we use a range image sequence acquired by the NRCS Lidar as input

to the proposed ST-DepthNet deep neural network (Fig. 5.2). As discussed

earlier, sparse measurement frames collected in 200 ms time windows cover

only a low proportion of the defined 400 × 400 range image lattice. On the

other hand, using a 1 s time frame, the collected point set covers almost fully

the sensor’s FoV (Fig. 2.6), but it is affected by motion blur. Nevertheless,

we can expect that the measurements from the last 1 s time interval always

contain dense range information from the scene. Thus to also prevent blurring,

we take five consecutive ,,sparse” range images (each one recorded in 200 ms)

as our network’s input.

Since the main goal is to generate a high-quality output image from the

sparse range image inputs, we have adopted an image-to-image U-Net [81] like

architecture. The original U-Net neural network [81] is characterized by its

U-shaped architecture, which consists of an encoder and a decoder part with

skip connections. The encoder part typically contains several convolutional

layers followed by pooling layers (e.g., max-pooling) that progressively reduce

the spatial dimensions of the input image while learning hierarchical features.

The decoder part consists of upsampling layers (e.g., transposed convolutions

or bilinear upsampling) that gradually increase the spatial dimensions of the

feature map. The decoder’s goal is to produce an output image with the same
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spatial dimensions as the input image. Meanwhile, at each hierarchical level,

the skip connections connect the corresponding layers between the encoder and

decoder and concatenate feature maps at each spatial resolution. This allows

the network to preserve fine-grained details during the decoder process and

helps in capturing both low-level and high-level features.

In the proposed model, we extended the encoder part of a U-Net network

enabling to exploit temporal connections where the input is an image sequence,

by utilizing Conv2DLSTM layers presented first in [82]. Let us introduce a

regular Long-Short Term Memory (LSTM) cell, which has a memory state Ct

and a final stateHt. At each timestep t, the memory is updated as a function of

its current input Xt, previous final state Ht−1 based on an input gate it, while

the propagation of its previous value Ct−1 depends on a forget gate ft. The

propagation of the memory state Ct to the final stateHt depends on the output

gate ot. In each dependency, from state α to β, there is a weight term Wαβ and

a bias term bα. A Conv2DLSTM cell operates similarly to a regular LSTM

cell, with an extension that the input Xt, memory state Ct and final state Ht

with their respective gates (it,ft,ot) are 3D tensors – with one temporal and

two spatial dimensions – and both the spatial and recurrent transformations

are convolutional (marked by ∗) and not element-wise (marked by ◦), making

it able to propagate spatio-temporal features:

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗Xt +Whc ∗Ht−1 + bc)

it = σ(Wxi ∗Xt +Whi ∗Ht−1 +Wci ◦ Ct−1 + bi)

ft = σ(Wxf ∗Xt +Whf ∗Ht−1 +Wcf ◦ Ct−1 + bf )

ot = σ(Wxo ∗Xt +Who ∗Ht−1 +Wco ◦ Ct + bo)

Ht = ot ◦ tanh(Ct)

Hence, in our proposed approach, we keep a spatio-temporal three-dimensio-

nal (two spatial and one temporal) encoder branch at the whole left side of

the U-Net structure. On the other hand, the decoder branch of our proposed

network is purely two-dimensional, in order to accurately restore the single

output image of our interest. Skip connections at each level are performed

by recurrent pooling utilizing the last output of a Conv2DLSTM layer which

represents features of the last 200 ms measurement.

As an extra modification, we directly connect the last input image to our

output. With this extension, which is also supported by our ablation experi-
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ments (see Sec. 5.4), we can exploit that the last and most up-to-date input

image contains spatially precise depth data, and therefore, the proposed net-

work only has to learn the missing regions of the range image [27].

5.3.3 Training process

The proposed ST-DepthNet network is responsible for learning and pre-

dicting a high-density range image using a sparse input range image sequence.

To deal with the challenging artifacts presented in Sec. 5.2, our loss function

L is composed of three main components.

First, we calculate the L1 Loss (LL1) as the mean absolute error between

the generated and the GT depth images to force detailed, pixel-level accurate

predictions. Second, we adopt the structure similarity index measure (LSSIM)

proposed by [93], which quantifies the perceived difference in luminance, con-

trast and structural information between the predicted and GT depth images

using a variety of known properties of the human visual system. Third, we

also utilize a smoothness or edge loss term (LEDGE) specifically proposed for

depth images by [91], which induces sharp contours on the generated images,

thus spatially precise boundaries are enforced between objects in the 3D space.

Our final loss function can be expressed therefore as follows:

L = α1LSSIM + α2LL1 + α3LEDGE.

Following a parameter optimization step (see Sec. 5.4), α1 = 0.7, α2 = 1.4

and α3 = 1.5 were used in the final model. The loss function was minimized

by the Adam optimizer [94]. The learning rate was set to 0.0002 and the

decay rate of the first moment to 0.5. We have trained our model on the

LivoxCARLA dataset for 10 epochs which took around 27 hours on a NVidia

GeForce GTX 1080 Ti graphical processing unit (GPU).

5.4 Experiments

We have quantitatively evaluated the proposed method using the Livox-

Carla dataset, exploiting its sparse input–dense output range image pairs gen-

erated by a simulated car-mounted NRCS Lidar sensor during virtual drives in

dense city environments with several dynamic traffic participants (humans, ve-

hicles, bikes). Besides quantitative validation, we also evaluated qualitatively
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the performance of the proposed method on real data using the LivoxBudapest

dataset. Both datasets are introduced earlier in Sec. 3.2.

5.4.1 Evaluation metrics

During quantitative analysis, we performed evaluation in both 2D and 3D,

analysing the generated range images, and the backprojected 3D point clouds,

respectively.

5.4.1.1 2D errors

For measuring the similarity between the generated range images to the

GT, we adopted the following metrics from the KITTI Depth Completion

Benchmark [85]:

• RMSE: Root mean squared error [mm]

RMSE =

√
1

N

∑N

i=1

(
IPi
− IGTi

)2
• MAE: Mean absolute error [mm]

MAE =
∑N

i=1

∣∣∣IPi
− IGTi

∣∣∣
• iRMSE: RMSE of the inverse depth [1/km]

iRMSE =

√
1

N

∑N

i=1

( 1

IPi

− 1

IGTi

)2
• iMAE: MAE of the inverse depth [1/km]

iMAE =
∑N

i=1

∣∣∣ 1
IPi

− 1

IGTi

∣∣∣
In the above equations, IPi

denotes the ith pixel of the image generated

by the actual method, while IGTi
is the ith pixel of the corresponding GT

image. N denotes the number of pixels, in our case N = 400× 400. Using the

two direct depth-based errors (RMSE, MAE), we can compare the absolute

accuracy of depth estimates in meters. However, in some cases, for example

the large errors for distant objects can disproportionately affect the overall

error value using these metrics. On the other hand, the inverse depth-based

errors (iRMSE, iMAE) focus on relative error improvements and may be more

relevant in scenes with objects at varying distances. Motivated by this, in the

upcoming experiments, we used both depth and inverse depth-based errors.
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5.4.1.2 3D errors

Besides range image based evaluation, we also compared the generated

point clouds to the reference model in the 3D space. Let us denote the GT

and a predicted point cloud by PGT and PP, and the number of points in

PGT and PP by #PGT and #PP, respectively. We evaluate the quality of the

predicted point cloud with respect to the GT data using the symmetric nor-

malized Chamfer distance (NCD) and normalized median distance (NMD) [1],

while these evaluation measures are also used to compare the performance of

different baseline algorithms in the 3D space:

SP =
∑
p∈PP

min
q∈PGT

||p− q||2

SGT =
∑

q∈PGT

min
p∈PP

||p− q||2

MP = Med
p∈PP

min
q∈PGT

√
||p− q||2

MGT = Med
q∈PGT

min
p∈PP

√
||p− q||2

QNCD(PP, PGT) =

√
1

2

( SP

#PP

+
SGT

#PGT

)
QNMD(PP, PGT) =

1

2

(
MP +MGT

)
5.4.2 Ablation study and hyperparameters

For optimizing the network structure, we investigated the effect of how deep

the proposed model integrates temporal information in the network architec-

ture. In the first setup (No fusion), we trained the network without utilizing

temporal data and considering only the measurements from the last 200 ms. In

the second setup (Early fusion), we fused the multitemporal information only

in the first Conv2DLSTM layer and the remaining layers remained pure spatial

convolutions. Finally, as proposed, we propagated the temporal information

through the whole feature downscaling branch (Late fusion). Furthermore,

in each setup, we examined the effect of including/excluding U-Net-like skip

connections in the network (Inner levels) and to directly bind the last input

and the output depth image (Output). According to our comparative results

displayed in Table 5.1, the proposed late fusion approach produced the small-
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Temporal fusion Skip connections RMSE ↓ MAE ↓
X X 3512.95 1549.36
X Inner levels 3367.75 1353.49
X Inner levels+Output 2869.84 1383.10

Early X 2969.22 883.92
Early Inner levels 2767.87 832.87
Early Inner levels+Output 2129.39 686.34
Late X 2672.20 800.16
Late Inner levels 1897.99 523.57
Late Inner levels+Output 1799.16 440.42

Table 5.1: An ablation study of the proposed ST-DepthNet architecture

est RMSE and MAE values, while allowing direct skip connections between

the latest sparse input frame and the predicted output significantly improved

on the results at each temporal setup. Using these connections, the network

learns to complete the missing regions of the sensor’s sparse range map, while

keeping high fidelity to the accurate range measurements from the last 200 ms

time frame.

Next, we also performed hyperparameter optimization steps in the final late

fusion based model where we compared different weight combinations of the

L loss function’s subterms. The most relevant configurations are summarized

in Table 5.2. First, using a relatively higher weight for the LSSIM loss term

results in smoothed edges and blurred fine structures and therefore it produces

higher RMSE and MAE errors. On the other hand, if the weight of LSSIM is

significantly smaller than the weight of LL1, image regions with uniform depth

remain noisy, resulting again in higher RMSE and MAE rates. As a good

balance, we experienced that an optimal ratio between the weights of LSSIM

and LL1 is around 1 : 2. Second, based on a dozen experiments, the point level

LL1 and edge based LEDGE loss terms are in the best balance with a weight

ratio of around 1 : 1.

Output skip layer α1 α2 α3 RMSE ↓ MAE ↓
X 0.85 1.00 0.90 4267.88 1494.07
X 0.85 1.00 1.00 3871.45 1366.16
X 0.60 2.50 2.50 2938.23 1512.53
X 0.70 1.00 1.20 2000.33 541.06
X 0.70 1.40 1.50 1897.99 523.57
✓ 0.70 1.40 1.50 1799.16 440.42

Table 5.2: Different hyperparameter setups for the final model
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Please note that although we initially performed multiple trainings with

each parameter and network architecture setup, we did not experience sig-

nificant differences between the results of the different runs. These strong

trends made unnecessary the need for multiple runs at every parameter setup.

Therefore, Table 5.1 and Table 5.2 display the results of single training runs.

5.4.3 Reference methods

We have compared the results of the proposed ST-DepthNet model to re-

lated approaches published in the recent years. Note that the majority of

existing methods [85–87] relies on fused Lidar based sparse depth maps and

dense RGB images, therefore we cannot directly compare the proposed method

to them, as we address Lidar-only scenarios. As the first baseline for compar-

ison, we investigated how the sensor itself can produce high density images,

by allowing a large integration window (t∆ = 1 s) to cover a high proportion

(> 95%) of the FoV. We refer to this method from now on as Large integration.

As the second reference, we adopted an improved version of the method pre-

sented in [92], called hereafter as IP-Basic++, by optimizing its morphological

operations to our irregular NRCS data and extending it with bilateral blurring.

We have chosen as the third reference the approach of [88], called henceforward

Sparse-to-Dense, which is proposed directly for Lidar-only perception, and we

trained it on our LivoxCarla dataset, with the parameters described in [88].

To adopt the latter method to our dataset, we changed the size of the input

layer from 480× 480 to our range image lattice 400× 400.

5.4.4 Comparative results

Next, we compare the ST-DepthNet to the above three reference methods

on the LivoxCarla test set, in both 2D range image based and 3D point cloud

based representations.

The overall mean values of the calculated 2D error rates are displayed in

Table 5.3. Regarding all numerical quality measures, the performances of the

Large integration and the Sparse-to-Dense [88] approaches are quite similar,

the IP-Basic++ [92] works better in average, while the proposed ST-DepthNet

significantly outperforms all of them, reducing their RMSE errors by more

than 1 meter.
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(a) IP-Basic++ [92] (b) Sparse-to-Dense [88]

(c) Proposed ST-DepthNet (d) Ground truth

Figure 5.3: Fine structures (marked by green ellipses) recognized by the proposed ST-

DepthNet approach, but remained partly or fully unrecognized (merged to wall or background)

by the reference IP-Basic++ [92] and Sparse-to-Dense [88] approaches with respect to the

ground truth data.

First, we can observe that the main sources for large errors of the Large

integration method are the movement of the capturing platform and the pres-

ence of dynamic objects of the scene. Second, the IP-Basic++ [92] approach

predicts missing depth values more robustly on large, homogeneous surfaces,

Method iRMSE↓ iMAE↓ RMSE↓ MAE↓
Large integration 74.745 21.12 4259.83 1119.41

IP-Basic++ [92] 170.02 24.31 2918.33 574.99

Sparse-to-Dense [88] 493.65 151.55 4583.75 1672.79

ST-DepthNet 59.46 15.94 1799.16 440.42

Table 5.3: Comparative results between 2D range images
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Method QNMD[mm]↓ QNCD[mm]↓
Large integration 1754.12 3830.62

IP-Basic++ [92] 1072.60 2241.69

Sparse-to-Dense [88] 4466.14 6065.44

ST-DepthNet 687.36 1718.53

Table 5.4: Comparative results in the 3D space

but fails estimating the fine details. Third, the depth image estimation by the

Sparse-to-Dense [88] method keeps the trails of the circular scanning pattern

of the NRCS sensor still visible, while scene objects and finely textured regions

are often merged with their background. Fig. 5.3 demonstrates these limita-

tions of [88] and [92] on a range image sample, where the proposed method

performs significantly better.

We conducted further analysis in the 3D domain, by comparing the 3D

ground truth scene models to point clouds backprojected from the range im-

ages generated by the proposed and reference methods. Errors obtained by

calculating the symmetric Normalized Chamfer and Median Distance metrics

are displayed in Table 5.4. As shown, the error of the proposed method is the

smallest, by a margin of around a half meter regarding both metrics. Note

that, while Large integration seems to work better than Sparse-to-Dense in

3D, this observation is mainly the consequence of the fact that object regions

affected by motion blur can still have points close to GT in the 3D space, and

vice versa.

5.4.5 Analysis on real measurements

Beyond a comprehensive numerical evaluation on our synthetic LivoxCarla

dataset, we also validated the proposed method on real Lidar measurement

sequences of the LivoxBudapest set, supporting its future real-life application.

The LivoxBudapest test set contains three different scenarios: two path-

way recordings from the city center (a boulevard and a narrow street), both

around 1 km long, and a speedway section near the city, recorded on a path

of around 3.5 km. Fig. 5.4 displays selected relevant sample frames from the

three scenarios. We can observe that similarly to the experiments with syn-

thetic data, the IP-Basic++ [92] approach robustly completes missing values

in case of larger surfaces (walls, ground areas and even vehicles), but fails to
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(a) Sparse input data captured in a 200 ms time window

(b) RGB image for visual reference only

(c) Large integration time (t∆ = 1 s)

(d) IP-Basic++ [92]

e) Sparse-to-Dense [88]

(f) Proposed ST-DepthNet

Figure 5.4: Results on real measurements from the LivoxBudapest test set. Accurately pre-

dicted fine object structures by ST-DepthNet are highlighted with green ellipses.
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Method/ score↑ Boulevard Narrow st. Speedway Mean

Sparse input data 2.95 2.75 2.60 2.76
Large integration 4.30 4.45 3.75 4.17

IP-Basic++ [92] 5.75 5.65 5.60 5.67

Sparse-to-Dense [88] 6.10 6.35 6.40 6.28

ST-DepthNet 7.15 7.20 6.65 7.00

Table 5.5: Comparative survey results on real measurements

accurately estimate fine structures. For example, pedestrians in the first col-

umn of Fig. 5.4(d) are blurred into one object, while traffic lights and signs

are partly merged to the background in the second and fourth columns of

Fig. 5.4(d). The Sparse-to-Dense method cannot eliminate the rosetta pat-

terns of the input Lidar measurements, which are typically visible on ground

and wall areas (e.g., second column in Fig. 5.4(e)). The tendency of merg-

ing fine structures into larger surfaces is also notable: In the first and third

columns of Fig. 5.4(e), vehicles and pedestrians are falsely merged to the wall

behind them. Such artefacts can mean critical problems for urban scene un-

derstanding tasks, while as shown, they are handled better by the proposed

ST-DepthNet approach (see regions marked by green). The Sparse-to-Dense

method heavily blurs other fine structures (columns, traffic signs and lights,

etc.) as well, as displayed in Fig. 5.4(e). Moreover, while objects close to the

sensor are usually well recognizable for the human eye, they are often predicted

at inaccurate distances with this method (e.g., cyclist in the second column

of Fig. 5.4(e)). As for the Large integration method, it performs significantly

worse on real data than on the simulated samples: its generated range images

are extremely noisy, and if the platform is moving, structures are barely rec-

ognizable. Note that by large integration time the regions of moving street

objects become blurred even if the Lidar platform is static.

Besides the above qualitative analysis, we conducted a survey for visual

verification of the generated depth image streams, by asking 20 computer vision

related experts to rate the quality of the input and the output of each method

in all three videos with scores between 1 and 9, where 9 is the best possible

score. The results provided in Table 5.5 confirm that the test subjects found

the proposed method significantly better than the reference techniques.

In summary, the proposed ST-DepthNet method can better compensate

for both the noisiness and the sampling pattern of the sensor data, while the
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predicted distance values of dynamic objects or background scene structures

are more accurate than in the depth maps of the reference approaches.

Regarding the computation time, for the prediction of a single for 400 ×
400 depth image frame, the ST-DepthNet method needs 100 ms on an Intel

Core i7-7700K CPU@4.2GHz desktop computer utilizing an NVidia GeForce

GTX 1080 Ti GPU. The whole workflow (depth image generation, completion

and visualization of the results) runs with 5 fps on an AMD Ryzen 7-6800H

CPU@(8x3.2GHz) laptop computer utilizing an NVidia Geforce RTX 3070

GPU with 8GB memory, which enables real-time processing, since we collect

each depth image within 200 ms.

5.5 Implementation details and sample codes

The process of generating depth images from point cloud scans was imple-

mented in the C++ [108] programming language using the OpenCV [109] and

PCL [110] libraries. The proposed ST-DepthNet neural network model was

implemented and trained in the Python [111] programming language with the

Keras [113] framework. The real-time demonstration of the whole workflow

was implemented in the Robot Operating System [114].

At the time of publication, the depth completion datasets and sample codes

were publicly available at the following link: www.github.com/sztaki-geocomp/

ST-DepthNet.

5.6 Conclusion of the chapter

In this chapter a novel depth completion method called ST-DepthNet was

proposed, which is capable of creating high-density depth images from sparse

consecutive depth maps acquired by a NRCS Lidar. For training and quanti-

tative evaluation, we constructed a new synthetic Benchmark set called Livox-

Carla, and we shown that our approach outperforms two state-of-the-art ref-

erence methods. The usability of the proposed method on real NRCS mea-

surement data has also been demonstrated using our recorded LivoxBudapest

real-life dataset. In the future, the aim is to use the proposed method in intel-

ligent robot and vehicle platforms, for improving the limited spatial resolution

of NRCS Lidars.
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Chapter 6

Conclusion and Outlook

6.1 Summary of contributions

This thesis presented novel methods for real-time environment analysis

using low-resolution Lidar point cloud measurements.

In Chapter 4, we have presented a new method for urban scene analysis,

which comprises 3D point cloud registration and change detection through

fusing Lidar point clouds with significantly different density characteristics.

The introduced method is able to extract dynamic scene segments (traffic par-

ticipants or urban renewal regions) and seasonal changes (vegetation regions)

from real-time 3D measurements captured by a Rotating Multi-beam (RMB)

Lidar sensor mounted onto the top of a moving vehicle. As reference data,

we relied on a dense point cloud-based environment model provided by Mo-

bile Laser Scanning (MLS) systems. The proposed approach is composed of

multiple novel steps. First, a novel cross-source point cloud registration algo-

rithm was introduced, which can improve the alignment of the sparse RMB

measurements to the dense MLS data, where conventional point-level regis-

tration or keypoint/segment matching strategies fail. Second, related to this,

a real-time pose tracking approach was presented by integrating the registra-

tion results in a Kalman-filter-based dynamic vehicle model. Third, an efficient

Markov Random Field-based change extraction step was implemented between

the registered point clouds, which exploits the fact that due to geometric con-

siderations of mapping with the given sensor configuration, the essence of the

problem can be solved quickly in the 2D range image domain without infor-

mation loss. Finally, an efficient utilization of the proposed change detection
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approach was demonstrated for enhancing the performance of state-of-the-art

Lidar-based object detection. Experimental evaluations were conducted on a

new Benchmark set that contains three different heavy traffic road sections in

city center areas covering in total nearly 1 km long pathway sections. Using the

new Benchmark, we have quantitatively demonstrated the clear advantages of

the new method against various reference techniques.

In Chapter 5, we introduced a novel depth image completion technique

based on sparse consecutive measurements of a non-repetitive circular scanning

(NRCS) Lidar, demonstrating the capabilities of a new, compact, and accessi-

ble sensor technology for dense range mapping of highly dynamic scenes. The

proposed deep neural network called ST-DepthNet is composed of a spatio-

temporally (ST) extended U-Net architecture, which takes a sparse range data

sequence as input and produces a dense depth image stream of the same field-

of-view ensuring a high level of spatial details and accuracy. For evaluation,

we have constructed a new urban dataset, that – to our best knowledge as the

first open Benchmark in this field – comprises various simulated and real-world

NRCS Lidar data samples, allowing us to simultaneously train our model on

synthetic data with ground truth, and to validate the result via real NRCS

Lidar measurements. Using this new dataset, we have shown the superiority

of our method against a densified depth map obtained from the raw sensor

stream, and against two independent state-of-the-art Lidar-only depth com-

pletion methods [88,92].

6.2 Open problems and future research

With our original goals and our accomplished contributions in mind, we

now mention some open challenges and provide three different directions for

interesting future research.

6.2.1 Automatic HD map generation from raw MLS

point cloud measurements

In industrial practice, vector-based high-definition (HD) maps are often

adopted to augment the AVs’ limited RMB measurements with prior be-

liefs [15], as they store precise and high-quality metadata about the static

parts of the environment [16]. Nevertheless, the creation and maintenance of
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these HD maps need continuous attendance of human operators [95], more-

over, the vectorization process may also drop out relevant point-level details.

Following a different approach, in Chapter 4 of this dissertation, we utilized of-

fline integrated Mobile Laser Scanning (MLS) measurements for this purpose.

However, these point clouds could also be used to automatically create highly

detailed vector maps [96]. This process however induces several challenges.

First, to create vector maps, the raw Lidar point cloud data needs to be

segmented and classified into different objects like roads, buildings, vegetation

areas, and obstacles. Recent deep learning-based point cloud classification ap-

proaches such as the PointNet++ [97] or SPLATNet [98] offer promising ways

to automate this process on various sorts of artificial or real scanning-based

point clouds. However, dealing with urban MLS data a number of particular

challenges appear – such as the phantom effect caused by independent object

motions – , while the raw Lidar measurements are typically noisy due to var-

ious factors like rain or dust as well. The work of Nagy et al. [19] addressed

exactly these challenges and produced promising results.

Second, assuming accurate and proper segmentation and classification of

objects in the MLS cloud, extracting 3D models from the structures are also

challenging, especially for objects with complex shapes and features. More-

over, detecting and representing vegetation and overhead structures like trees,

bridges, and power lines can be complicated [99], as they often have irregu-

lar shapes. In the literature, recent methods [96, 100] therefore focus on the

automatic generation of driving lines or lanes from the MLS point clouds and

do not deal with 3D obstacles or buildings in the environment. An automatic

vectorization of these 3D structures is still highly challenging and it would be

a great contribution to this field.

Third, HD maps need to be updated regularly to reflect changes in the

environment. Automating the update process to account for new construction,

road changes, or other alterations is also a non-trivial task while it could spare

a lot of money and manual work for the industry. It would be an interesting

and challenging task to investigate how the output of the proposed change

detection algorithm could contribute to automatically updating the MLS point

cloud maps.
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6.2.2 Dynamic object detection by fusing semantic layer

and obstacle information

In Sec. 4.4, we introduced a workflow to demonstrate that using the out-

put of the proposed cross-source registration and change detection method,

we can improve even on the state-of-the-art PointPillars [51] object detector

using simple, explainable rules. On the other hand, this approach could be

further combined with other information like the type of change (vegetation -

long term, dynamic - short term, etc.) and semantic information from the ref-

erence 3D map (e.g., vegetation, building, etc.). Also, since there are also HD

maps more and more widely available in the industry, a complex method could

include additional road structure information from HD maps (e.g., walk areas,

driveable areas, etc.) to further improve the accuracy of the object detection

and to provide an additional level of verification.

6.2.3 Temporal upscaling of spatially densified sparse

Lidar measurements

In Chapter 5, we proposed a new method for the spatial densification of

sparse measurements of a non-rotating circular scanning Lidar, by increasing

the sensor’s field-of-view coverage from around 40% to almost 100%. As the

main limitation of the proposed technique, to have a reasonable spatial resolu-

tion of the raw Lidar depth data, we integrated our measurements within a 200

millisecond time window that results in a temporal resolution of 5 fps. Accord-

ing to our experiments, collecting the Lidar measurements with smaller time

windows resulted in too sparse point clouds with a lack of spatial features. On

the other hand, there are recent methods that focus on the temporal upscal-

ing of Lidar point cloud measurements, using camera-based depth estimation

techniques [101] or joint Lidar-camera approaches [102].

In this context, it would be a challenging task to apply temporal upscaling

to the generated dense depth data stream, without the usage of reference

camera images to further increase its temporal resolution, using interpolation

or frame prediction techniques adopted from RGB video analysis methods.

The End.
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Appendix A

Summary of the Thesis

This dissertation presents novel methods for real-time environment analysis

using low-resolution Lidar point cloud measurements. I studied two different

research problems: In the first topic, I focused on the fusion of onboard RMB

and offline MLS data modalities for advanced urban scene analysis. I presented

(i) a novel object-based point cloud matching algorithm for Lidar-based fast

self-localization, and an extension of this algorithm by integrating its results

to a Kalman-filter for accurate pose tracking, (ii) a novel change detection

algorithm for low-level scene segmentation, and (iii) a high-level application of

the above methods for improved dynamic object detection. In the second topic,

I focused on the densification of sparse NRCS Lidar measurements without

any prior information and I presented a novel depth completion method for

enhancing the quality of sparse and noisy depth measurement data in real-time.

All proposed methods have been evaluated in real-life urban traffic scenarios

and experimentally compared against the state of the art, showing significant

advantages.

A.1 New scientific results

1. Thesis: I have proposed a new method for change detection,

which comprises 3D point cloud registration and point-level change

segmentation through fusing Lidar point clouds with significantly

different density characteristics. I have constructed a new urban

dataset by a state-of-the-art rotating multi-beam (RMB) Lidar scan-

ner (with a point density of around 50-500 points/ m2) and an
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up-to-date Mobile Laser Scanning (MLS) system (more than 5000

points/m2). Using this new dataset, I have quantitatively demon-

strated the advantage of the proposed algorithm against various

state-of-the-art reference techniques.

Published in [1] [3] [4] [5]

This thesis deals with three consecutive subtasks: First, a cross-source

point cloud registration is performed to precisely align the sparse RMB and

dense MLS data, and a utilization of this algorithm is introduced for tracking

the pose of the capturing vehicle in real time, even in partially occluded and

dynamic environment. Second, a cross-source change detection algorithm is

proposed for finding every point that changed since the map creation. Third,

a new method is introduced by utilizing the output of the change detection

technique for improved dynamic object detection.

1.1. I have proposed a novel approach for the registration of sparse RMB

Lidar and dense MLS point clouds with a relatively poor initial alignment,

which consists of a coarse pre-alignment step through detecting and matching

landmark object candidates using geometry-based feature points from the whole

scene, and a point-level refinement step that calculates the accurate transforma-

tion matrix based on the matched objects’ local point cloud segments for reduc-

ing the computational need. I have demonstrated the advantage of the proposed

algorithm against various state-of-the-art reference techniques in urban scenes,

by comparing translation and rotation errors calculated by the decomposition

of each transformation matrix and the manually labelled ground truth (GT),

and by measuring point distances between the registered point clouds. I have

shown an efficient utilization of the introduced algorithm for pose tracking, by

estimating the planar pose of the vehicle from the object-matching result and

fusing it in a constant velocity model-based Kalman filter.

Several point cloud registration algorithms exist in the literature that per-

form correspondences between features of handcrafted [31, 33, 34] or learning-

based [35, 36] keypoints, segments [42, 43] or points [48–50]. In the addressed

cross-source application, the main challenge is that the RMB Lidar frames are

too sparse for extracting meaningful 3D keypoints (which work between dense

MLS point clouds), while the MLS point clouds are in several regions 100-

1000 times denser than the corresponding RMB measurement segments which

misleads the general segment level matching processes. Following a different
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approach, as the first contribution, instead of aligning the original point clouds,

I have separated and matched landmark objects in the RMB Lidar frames and

from the MLS map. Here, as a remaining challenge, many falsely detected

object candidates can present (e.g., traffic participants, partially occluded ob-

jects), which may result in a possibly large ratio of outlier matches. To handle

their effect, I have applied the voting schema of the generalized Hough trans-

form. As the second contribution, I have used the coarse alignment step to

initialize the point-level Iterative Closest Point algorithm [25], which I have ex-

ecuted only for point cloud segments corresponding to the previously aligned

object pairs. In comparison to six different point cloud registration meth-

ods [28,36,40,41,47,48], the median value of point-level distances is decreased

by 1–2 orders of magnitude by the proposed approach.

To overcome the problem of heavily occluded scenarios without a sufficient

number of matchable object pairs, I have extracted the planar (3DoF) pose

(planar position and yaw orientation) of the capturing vehicle from the result of

the object matching process and integrated the estimated pose parameters by a

constant velocity (CV) model-based Kalman filter. Starting from a poor GPS-

based positioning with 5-10 meters error, the proposed pose tracking approach

is able to reduce the location error of the vehicle by one order of magnitude

and to keep the yaw angle error around 1◦ during its whole trajectory without

considerable drift, while running in real time (20-25 Hz).

1.2. I have proposed a new Markov Random Field-based approach (Range-

MRF) for multi-class change extraction and classification (dynamic, seasonal,

or no change) between registered RMB and MLS point clouds using 2D range

image representations. I have demonstrated the advantage of the proposed

algorithm against various state-of-the-art reference methods by qualitative and

quantitative evaluations.

Three-dimensional change detection is a highly discussed topic in the lit-

erature [66], however, existing point [68, 69], segment [70] or voxel [72] based

methods cannot handle well when the characteristics of the two comparable

point sets are significantly different. In the addressed scenario, they show

notable trade-off between false positive (e.g., noise, vegetation changes) and

false negative hits (i.e., loss of details). As the first advantage, the proposed

RangeMRF method detects changes between 2D range images derived from

the point clouds. Using a compact range image representation, the proposed
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method is notably quick, meanwhile, it can robustly handle the significantly

different density characteristics of the two point sets by containing only rel-

evant parts of the dense MLS data. Second, I have applied a Markov Ran-

dom Field model, which is highly robust though noisy measurement data.

Third, I have distinguished three classes in the segmentation model: seasonal

changes in vegetation regions, foreground changes caused by moving objects

or changed/re-located static street furniture elements, and unchanged back-

ground regions. By handling the vegetation areas with a specific sensitivity,

the proposed method can eliminate several false hits in vegetation areas, while

it is able to sharply recognize even small foreground changes (i.e., pedestri-

ans standing near stations or facades) between the input point clouds. In

comparison to four reference techniques [66, 69, 70, 72], the proposed method

outperforms them either in F1-scores (by around 10-25%) or in computational

complexity, running 10–1000 times faster.

1.3. I have proposed a new method to utilize the introduced change detection

approach for improving the performance of Lidar-only dynamic object detection

algorithms. I have demonstrated in high-traffic road sections that the proposed

approach can efficiently balance the precision and recall values with significant

overall improvement for both vehicles and pedestrians, using a state-of-the-art

object detection method.

Real-time dynamic object detection in 3D sparse point clouds is a hot topic

in autonomous driving with several geometric [52] and deep learning [51,74–77]

based algorithms in the literature. However, there are a number of limitations

of these approaches: False positive hits may appear in point cloud regions

containing static scene objects with similar appearance and context param-

eters to the focused dynamic scene objects, while the point cloud blobs of

several dynamic objects can be heavily merged or occluded by static street

furniture elements, yielding many unrecognized traffic participants. I have

proposed a new approach that utilizes dense MLS maps in order to decrease

in parallel both the false negative and false positive hits of object detection al-

gorithms. The proposed approach includes a map-based object validation, the

introduced cross-source change extraction, and an object-level change analysis

step between registered RMB and MLS map data. As a basis of comparison,

I have chosen the PointPillars [51] state-of-the-art object detection method,

with which the proposed method achieved an improvement of 5.96% in preci-
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sion, 9.21% in recall and 7.93% in F1-score metrics on our own dataset.

2. Thesis: I have proposed a novel depth completion method from

sparse consecutive measurements of a non-repetitive circular scan-

ning (NRCS) Lidar using a deep learning model (ST-DepthNet). I

have constructed a new urban dataset that comprises various sim-

ulated and real-world NRCS Lidar data samples. Using this new

dataset, I have qualitatively and quantitatively demonstrated the

superiority of the proposed method against a densified depth map

obtained from the raw sensor stream, and against two independent

state-of-the-art Lidar-only depth completion algorithms.

Published in [2], [7]

This thesis deals with efficient data-driven completion of NRCS Lidar data.

Due to their non-repetitive scanning technology, NRCS Lidars are able to map

different areas of their field of view (FoV) from a given scanning position in

consecutive times [22]. The main challenge of analysing their point cloud

streams is to efficiently balance between the spatial and the temporal resolu-

tion of the recorded range data using a suitable integration window. Allowing

a larger integration time (e.g., 1 s) yields high spatial measurement resolu-

tion with various artifacts, such as blurred shapes of the observed vehicles,

pedestrians or buildings, which phenomena complicate dynamic event analy-

sis, while a narrow time window (e.g., 200 ms) yields spatially more precise

but notably sparse measurements with a significant loss of spatial details. To

overcome this spatio-temporal trade-off of the NRCS Lidar-based perception,

I have proposed a novel deep learning-based approach for the densification of

sparse NRCS Lidar depth data streams while keeping their temporal resolution

and spatial accuracy high.

2.1. I have proposed a new training framework for the densification of

3D data streams provided by NRCS Lidars, by mapping their consecutive point

cloud measurements to sparse 2D depth images, each collected within 200 ms to

enable 40% field-of-view coverage. I have constructed a new synthetic dataset

which contains depth images acquired by simulating the behaviour of a NRCS

Lidar, and high-quality dense depth images for each sparse sample exploiting

the complete spatial information of the virtual world. I have extended the

dataset with sparse real samples using the same depth image representation

and I have made them both publicly available. The proposed framework enables
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to train and to test depth completion algorithms on synthetic scenarios, and to

validate their reliability in real-world data as well.

For the 2D representation, I have converted the captured sparse point

clouds of the Livox AVIA NRCS Lidar sensor from the Cartesian (x, y, z)

to the spherical (distance, azimuth, elevation) polar coordinate system, then

the horizontal and vertical FoVs were quantized onto a 400× 400 pixel lattice

using an integration time window of 200 ms for collecting the consecutive time

frames. By this approach, around 60% of the range image pixels receive un-

defined range values, however, they are not notably effected by blurring and

this representation permits the use of two-dimensional convolutional neural

networks to fill in the missing structural information in the image domain.

As higher integration time induces blurred silhouettes due to the independent

movements of dynamic objects of the scene including the ego robot or vehi-

cle, it is challenging to provide dense, spatially precise GT depth information

for real data. Therefore, besides the real measurements, I have constructed a

synthetic range image dataset from a realistic virtual world using the CARLA

simulator [26], where the behaviour of the Livox AVIA NRCS Lidar sensor

was implemented. The virtual world allows to extract dense, spatially precise

depth information, used as GT for the Lidar’s sparse depth sample data.

2.2. I have proposed a new depth completion deep neural network called ST-

DepthNet, which extends the classical U-Net architecture with a spatio-temporal

downscaling branch for utilizing five consecutive sparse measurements captured

by NRCS Lidars and produces spatially precise high-density depth data in real

time. I have demonstrated the advantage of the proposed algorithm against the

state of the art in both synthetic and real-world scenarios.

First, I have exploited that using the applied Livox AVIA sensor, a time

interval of 1 s contains enough dense range information from the scene with

almost full FoV coverage. Thus, I have taken five consecutive sparse depth

images – each one recorded in 200 ms – as the network’s input to have enough

information about the complete FoV. To accurately restore the single output

image, I have adopted an image-to-image U-Net [81] architecture and I have ex-

tended the downscaling part of the U-Net network by utilizing Conv2DLSTM

layers [82] to exploit temporal connections between the features derived from

the input image sequence. Second, the upscaling branch of the proposed net-

work remained purely two-dimensional and skip connections at each level were
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Appendix A. Summary of the Thesis

performed by recurrent pooling utilizing the last output of a Conv2DLSTM

layer which represents features of the last 200 ms measurement. Third, I have

directly connected the last input image to the output to exploit that the last

and most up-to-date input image contains spatially precise points, and there-

fore, the network only has to learn the missing regions of the range image. I

have trained the model on the introduced synthetic dataset and I have quan-

titatively shown that the proposed approach outperforms two state-of-the-art

reference methods [88,92] on synthetic data, reducing their root-mean-squared

error (RMSE) by more than 1 meter in the range domain, and achieving around

a half meter less error in the 3D domain by the normalized Chamfer distance

and median distance. For real NRCS measurement data, a survey from 20 com-

puter vision-related experts demonstrated that the proposed method performs

significantly better than the reference techniques.

A.2 Application of the results

All the developed algorithms can be used in advanced perception platforms

of mobile robots and intelligent vehicles equipped with RMB or NRCS Lidar

sensors. The first thesis can be applied in urban environment where detailed

3D point cloud maps are available about the city for assisting vehicles that

are equipped with a RMB Lidar and a GPS receiver. The proposed methods

can contribute to map-based real-time scene understanding like accurate self-

localization and pose tracking, change-based scene segmentation and improved

dynamic object detection. The second thesis can be applied for robot or vehicle

platforms that are equipped with a NRCS Lidar sensor to produce accurate

and dense depth maps from the environment while keeping high temporal

resolution, which can be a crucial middle step for more advanced scene under-

standing or mapping. As part of my Cooperative Doctoral Program, many of

the proposed algorithms directly contributed to R&D projects conducted with

the participation of the Institute for Computer Science and Control (SZTAKI)

and the Pázmány Péter Catholic University (PPCU), and we also submitted

two patent applications related to the methods.
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List of Abbreviations

2D Two-dimensional

3D Three-dimensional

ADAS Advanced Driving Assistant System

AV Autonomous Vehicle

CNN Convolutional Neural Network

CPU Central Processing Unit

CV Constant Velocity

DoF Degree of Freedom

FoV Field of View

GIS Geo-Information System

GPS Global Positioning System

GPU Graphical Processing Unit

GT Ground Truth

HD High Definition

ICP Iterative Closest Point

IMU Inertial Measurement Unit

Lidar Light Detection and Ranging

LSTM Long-Short Term Memory
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MAE Mean Absolute Error

MHD Modified Hausdorff Distance

MLS Mobile Laser Scanning

MPD Median Point Distance

MRF Markov Random Field

NCD Normalized Chamfer Distance

NIR Near Infrared

NMD Normalized Median Distance

NN Nearest Neighbor

NRCS Non-repetitive Circular Scanning

OD Object Detection

POM Position-only-Measured

Radar Radio detection and ranging

RANSAC Random Sample Consensus

RMB Rotating Multi-beam

RMSE Root Mean Squared Error

SLAM Simultaneous Localization and Mapping

ST Spatio-temporal

SVM Support Vector Machine

SWIR Short-wave Infrared

TLS Terrestrial Laser Scanning

ToF Time-of-Flight

TIR Thermal Infrared
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