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Abstract

In this thesis, novel deep learning-based models for automatic anal-

ysis and inpainting 2D images and 3D structures are proposed. The

proposed methods are primarily focused toward two specific use cases:

(i) Inpainting 2D images of masonry walls in archaeology, and civil

engineering applications, (ii) Filling up the missing regions in point

clouds of 3D models acquired using Mobile Laser Scanning (MLS) sys-

tems. The proposed methods have been evaluated on large databases

containing a variety of synthetic and real-world scenarios. We have

compared the proposed approaches to state-of-the-art methods, and

the results demonstrate significant advantages over recent state-of-

the-art approaches.
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Chapter 1

Introduction

Over the past ten years, deep learning networks have yielded exceptional success

in a variety of computer vision tasks (segmentation, classification, object detec-

tions, etc.) across a wide range of fields, including manufacturing, autonomous

driving, healthcare, archaeology, and civil engineering. However, currently avail-

able techniques are still far away from human-level performance [8], due to a

variety of reasons, including the low resolution of the used sensors, occlusions,

and the limited number of viewpoints used during scanning.

Occlusions may occur under several conditions in machine perception and

computer vision applications, whether Lidars, cameras, or multiple sensor tech-

nologies are employed. Given that the camera/Lidar – from a fixed viewpoint

– can only observe one side of the object being investigated, self-occlusions can

occur even in situations with a single object. Moreover, occlusions may be found

in a variety of complicated circumstances, for example if a part of an object is

outside the field of view or when one or multiple objects occlude each other in

the scene.

In object recognition applications, deep neural networks [9, 10] are still behind

humans in the presence of occlusion [11, 12], as detection failure rate increases

with the increase of the occlusion level. When the degree of occlusion exceeds

50%, objects can hardly be detected [13]. On the other hand, human minds are

adept at predicting the invisible components of the scene by observing the visible

ones.

In real-life complex situations, occlusion is a major challenge for many sorts

1
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2 1. INTRODUCTION

of image processing tasks. We can here mention applications like object detec-

tion in Advanced Driving Assistance Systems (ADAS), where it is challenging to

accurately detect pedestrians or cars when they are partially occluded, especially

in crowded scenes. In remote sensing images, the presence of clouds and their

shadows can affect the quality of processing these images in several applications

[14, 15]. Hence, to make good use of such images, assuming that the background

of the occluded parts follows the same pattern as the visible parts of the image,

inpainting algorithms can be trained in such cases to remove the occluded regions

and fill them with the expected elements (such as road network, vegetation and

built-in structures).

Similar concerns can be seen in the context of archaeology and civil engineer-

ing applications, where investigating masonry buildings necessitates the precise

outlining of their structural components, which are frequently covered up by ob-

jects like decorative elements, wall sculptures, or vegetation.

Therefore, occlusion-aware networks have been thoroughly investigated in a

variety of fields, including pedestrian detection [16], object tracking [17], face

detection [18], and car detection [19].

In contrast to optical cameras, 3D sensors are less restricted by lighting and

illumination, and can get accurate 3D geometric data from the scene. Hence,

their usage in environmental perception is expanding rapidly.

However, considering both indoor and outdoor mobile mapping platforms,

the scanning platforms equipped with 3D sensors cannot access specific locations

to scan certain objects from all sides, resulting in incomplete point cloud rep-

resentations. Therefore, point cloud completion – the estimation of an object’s

full shape from point sets that only partially describe its geometry – becomes a

fundamental key challenge in numerous computer vision and robotic tasks, such

as virtual reality (VR)/ augmented reality (AR) applications, and simultaneous

localization and mapping (SLAM).

This thesis deals with two selected tasks from the problem family, in which

automated occlusion or missing region detection is applied to either 2D images

or 3D point clouds, and inpainting networks are then used to reconstruct the

occluded/missing portions based on the observable information from the scene.
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(a) Input (b) Segmentation image (c) Inpainted structure (d) Inpainted Image

Figure 1.1: Results of the proposed method [1] on two selected samples (Topic 1)

In the following, I give a brief description of the investigated research problems

which will be explained in more details in the following chapters of the thesis.

• Topic 1 - Deep learning-based masonry wall image analysis focus-

ing on inpainting the occluded regions:

Image-based analysis and documentation of man-built structures is a core step

of many applications, including archeology, cultural heritage preservation, archi-

tecture and civil engineering. The surveyors in these processes need to extract

comprehensive information about the studied sites, among others about the cur-

rent conditions, types of appropriate treatment, and the expected consequences

of any intervention. During the investigation of building masonry, accurate de-

tection and outlining of their structural components is a key initial step of the

documentation process. However in a real-world scenario, the wall structure is

invisible in some image segments due to occlusion by various objects such as

vegetation (see examples in Figure. 1.1(a)), or in damaged wall parts in archaeo-

logical applications. A possible way for virtually filling in the missing part of the
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(a) Input image (b) Mortar-brick map

(c) Style

(d) Our output

(e) Style

(f) Our output

Figure 1.2: Wall-to-wall style transfer samples, the first row shows the inputs: (a) wall
image. (b) Mortar-brick map. The second row represents the style image and our
output side by side (Topic 1).

image is the application of image inpainting techniques. The proposed method

provides a blind inpainting algorithm for masonry wall images, performing the

automatic detection and virtual completion of occluded or damaged wall regions,

and a brick segmentation leading to an accurate model of the wall structure.

Our method robustly deals with a wide range of the wall structural compo-

nents and accurately detects various kinds of possible occlusion or damage effects.

For this purpose, we propose a three-stage deep neural network that com-

prises a U-Net-based sub-network for wall segmentation into brick, mortar and

occluded regions, which is followed by a two-stage adversarial inpainting model.

The first adversarial network predicts the schematic mortar-brick pattern of the

occluded areas based on the observed wall structure, giving structural informa-

tion that is essential for archeological and architectural applications Finally, the

second adversarial network predicts the RGB pixel values yielding a realistic vi-
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sual experience for the observer. The proposed algorithm works in an end-to-end

manner without assuming any user interaction and it does not require any specific

pre-information about the wall structure or the occluding objects.

The outputs of our algorithm (see Figure. 1.1(b–d)) allow archaeologists to

comprehend the wall structure of the unseen areas and give a more accurate repre-

sentation that may help in reassembling wall fragments. Moreover, the technique

may be utilized in a variety of scenarios in which archaeologists need to change

portions of a degraded wall that have been dirty or have lost their original color

over time, using style characteristics derived from undamaged wall parts. The

algorithm can be used when archaeologists want to build virtual representations

of destroyed historical sites, and aim to transfer a selected wall pattern onto a

manually sketched wall layout (see Figure. 1.2).

• Topic 2 - Multi-view based point cloud completion network for

mobile laser scanning data:

Recently, point clouds acquired by 3D scanning systems are widely used in

industrial applications. Yet, due to factors like occlusions, light reflections, and

limited viewing angles, scanned point clouds of several objects generally lack

sufficient detail to adequately represent their full shapes. Therefore, completing

the missing information is an essential step in several machine perception and

computer vision applications. For instance, creating a 3D point cloud of the

complete environment facilitates route planning and decision making in robot

applications. In addition, a full 3D representation of the underground mining

areas is needed for accurate safety monitoring [20]. When it comes to autonomous

driving, a high-resolution 3D representation of the surroundings is required for

an accurate and reliable self-localization.

In this topic, we propose a multi-view based approach for completing vehicle

point clouds extracted from Riegl VMX-450 MLS scanner measurements. The

proposed method utilizes as input preliminary segmented object point clouds ac-

quired by mobile laser scanning. We introduce a new representation for the input

point cloud obtained by projections from several viewpoints; in which the geome-

try and color information is stored in a six-channel, 2D images for each viewpoint.

Then, we fill in the blanks areas using a 2D convolutional neural network, The
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(a) Input (right side view) (b) Input (left side view) (c) Our result

Figure 1.3: Results of the proposed method [2] on two partial point cloud samples
(Topic 2).

completed images are then reprojected into the 3D space in order to build a 3D

point cloud depicting the whole shape of the object under study (see Figure 1.3).

We have tested our proposed method both on a new synthetic benchmark set de-

rived from ShapNet [114] which is a widely used public dataset, and on real-world

MLS measurements. We have shown the efficiency and robustness of the method

by comparing the model against different state-of-the-art methods.

In the following, we present the outline of the thesis. In Chapter 2 we pro-

pose a novel deep learning based approach for inpainting 2D images of masonry

walls. The Chapter is organized as follows: In Section 2.1, we introduce the

topic by focusing on the problem statement and the objective of the proposed

methodology. Section 2.2 summarizes previous works related to state-of-the-art

wall image delineation, image inpainting and style transfer algorithms; Section

2.3 shows the data the we worked on and details about the way we generate and

augment it; Section 2.4 introduces our proposed method in details; Section 2.5

presents the experimental results and a details discussion about it is presented;

Section 2.6 provides an ablation study of the adopted technique. finally, Section

2.7 summarizes the conclusions of our chapter. In Chapter 3, we propose a novel

multi-view based network for 3D point cloud completion. The organization of this

chapter is as follows: In Section 3.1 we address the topic by concentrating on the

explanation of the problem and the purpose of the proposed approach. Section
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3.2 provides a summary of prior work on state-of-the-art 3D shape completion

methods, and multi-view based approaches; Section 3.3 demonstrates data gen-

eration technique; In Section 3.4, we introduce our proposed method in technical

details; Section 3.5 displays the experimental results; Section 3.6 provides an

ablation study of the proposed method, and Section 3.7 concludes the chapter

with a summary of its study results. An overview and last thoughts are included

in the Conclusions section of the thesis. Appendix A begins with an overview

of Lidar technology, followed by some additional technical and implementation

details about the deep learning models used in this thesis. while Appendix B

summarizes the used abbreviations.
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Chapter 2

Deep Learning-Based Masonry
Wall Image Analysis

This chapter introduces a novel deep learning-based fully automatic approach

for the semantic analysis and documentation of masonry wall images, performing

in parallel automatic detection and virtual completion of occluded or damaged

wall regions, and brick segmentation leading to an accurate model of the wall

structure. The network predicts the schematic mortar-brick pattern of the oc-

cluded areas based on the observed wall structure, providing in itself valuable

structural information for archaeological and architectural applications. More-

over, it predicts the pixels’ color values yielding a realistic visual experience for

the observer. Furthermore, the network can be used for texture transfer: one can

change the texture style of a given wall image, based on another wall image. For

training and testing the network, a new manually annotated dataset for masonry

wall analysis is also introduced in this chapter, which is used to evaluate the

proposed approach, and to compare our solution to various reference techniques

proposed for the same objectives.

9
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10 2. MASONRY WALL IMAGE ANALYSIS

2.1 Introduction

Over the past years, we have observed a significant shift to digital technologies in

Cultural Heritage (CH) preservation applications. The representation of CH sites

and artifacts by 2D images, 3D point clouds or mesh models allows the specialists

to use Machine learning (ML) and Deep learning (DL) algorithms to solve several

relevant tasks at a high level in a short time. Application examples range from

semantic segmentation of 3D point clouds for recognizing historical architectural

elements [21], to the detection of historic mining pits [22], reassembling ancient

decorated fragments [23], or classification of various segments of monuments [24].

Although many recent cultural heritage documentation and visualization tech-

niques rely on 3D point cloud data, 2D image-based documentation has still a

particular significance, due to the simplicity of data acquisition, and relatively low

cost of large-scale dataset generation for deep learning-based methods. Image-

based analysis has recently shown a great potential in studying architectural

structures, ancient artifacts, and archaeological sites: we can find several ap-

proaches on the classification of biface artifacts, architectural features, and his-

torical items [51, 52, 53], and also on digital object reconstruction of historical

monuments and materials [54, 55].

2.1.1 Problem Statement

The maintenance of walls is a critical step for the preservation of buildings. Sur-

veyors usually separate and categorize firstly the composing materials of walls

either as main components (regular or irregular stones, bricks, concrete blocks,

ashlars, etc.) or as joints (mortars, chalk, clay, etc.). In this chapter, for simpler

discussion the term brick is used henceforward to describe the primary units of

any type, and the term mortar is used to describe the joints. By investigat-

ing masonry walls of buildings, bricks are considered as the vital components of

the masonry structures. Accurate detection and separation of bricks is a crucial

initial step in various applications, such as stability analysis for civil engineering

[58, 59], brick reconstruction [82], managing the damage in architectural buildings

[56, 57], and in the fields of heritage restoration and maintenance [60].
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2.1 Introduction 11

Various ancient heritage sites have experienced several conversions over time,

and many of their archaeologically relevant parts have been ruined or occluded

by various objects such as decorative elements, wall sculptures, and vegetation.

Reassembling these damaged/occluded areas is an essential task for archaeologists

studying and preserving these ancient monuments. Such structure estimation

should be based on a deep analysis of the pattern of the visible wall segments.

2.1.2 Aim of the Chapter

To address the above challenges, we propose an end-to-end deep learning-based

algorithm for masonry wall image analysis and virtual structure recovery. More

specifically, given as input an image of a wall partially occluded by various ir-

regular objects, our algorithm solves the following tasks in a fully automatic way

(see also Figure 2.1):

1. We detect the regions of the occluding objects, or other irregular wall com-

ponents, such as holes, windows, damaged parts.

2. We predict the brick-mortar pattern and the wall color texture in the hidden

regions, based on the observable global wall texture.

3. We extract the accurate brick contours both in the originally visible and in

the artificially inpainted regions, leading to a strong structural representa-

tion of the wall.

First for the input wall images (Figure 2.1a) a U-Net [25] based algorithm

is applied in a pre-processing step, whose output is a segmentation map with

three classes, corresponding to brick, mortar, and irregular/occluded regions (see

Figure 2.1b). This step is followed by an inpainting (completion) stage where two

Generative Adversarial Networks (GANs) are adopted consecutively. The first

GAN completes the missing/broken mortar segments, yielding a fully connected

mortar structure. Thereafter, the second GAN estimates the RGB color values

of all pixels corresponding to the wall (Figure 2.1c). Finally, we segment the

inpainted wall image using the watershed algorithm, yielding the accurate outlines

of the individual brick instances (Figure 2.1d).
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12 2. MASONRY WALL IMAGE ANALYSIS

(a) Input (b) U-Net output (c) Inpainted im. (d) Seg. output

Figure 2.1: Results of our proposed method on two selected images: (a) Input: wall
image occluded by irregular objects (b) Result of preliminary brick-mortar-occluded
region separation (c) Generated inpainted image (d) Final segmentation result for the
inpainted image.

Furthermore, the model has been used to deal with style transfer and artificial

coloring of schematic wall sketch maps. In particular, one can replace the coloring

style (e.g. color and texture pattern of the bricks) of a wall image, with another

wall’s style, while maintaining the wall’s original structural integrity. Given two

images as inputs: a content image which is a color wall image or a binary image

for the wall structure, and a style image which is a different wall image, the

goal is to create a new image that incorporates both the structure of the content

image and the texture style of the style image (see Fig. 2.18 and Fig. 2.19). For

both use-cases, our proposed algorithms are freely available for testing on our

laboratory’s public website1.

Due to the lack of existing masonry wall datasets usable for our purpose, we

collected various images from modern and ancient walls and created our dataset

in order to train the networks and validate our proposed approach.

1http://imgproc.mplab.sztaki.hu/masonrydemo.
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The motivation of the research work presented in this chapter was on one

hand to develop a robust wall segmentation algorithm that can deal with different

structural elements (stones, bricks ashlar, etc.), and accurately detecting various

kinds of possible occlusion or damage effects (cement plaster, biofilms [81]). The

output of our segmentation step can support civil engineers and archaeologists

while studying the condition and stability of the wall during maintenance, doc-

umentation or estimation of the necessary degree of protection. On the other

hand, our proposed inpainting step can support the planning of the reconstruc-

tion or renovation work (both in virtual or real applications), by predicting and

visualizing the possible wall segments in damaged or invisible regions.

2.2 Related Work

Nowadays, there is an increasing need for efficient automated processing in cul-

tural heritage applications, since manual documentation is time and resource

consuming, and the accuracy is highly dependent on the experience of the ex-

perts. Developing an automatic method to analyze widely diverse masonry wall

images is considered as a challenging task for various reasons [62]: issues should

be addressed related to occlusions, lighting and shadows effects, we must expect

a significant variety of possible shape, texture, and size parameters of the bricks

and surrounding mortar regions, moreover, the texture can even vary within con-

nected wall fragments, if it consists of multiple components built in different

centuries from different materials .

In this section, we highlight three essential challenges linked to the discussed

research topic, and provide a brief summary of recent image segmentation meth-

ods utilized for masonry wall delineation. Following that, we give an overview on

the state-of-the-art in image inpainting techniques, focusing on their suitability

for the task of completing the wall images. Finally, we discuss recent research on

style transfer methods.

2.2.1 Masonry Wall Delineation

The literature presents several wall image delineation algorithms, that achieved

good results for specific wall types. In an earlier study [67] adopt various pixel-
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based and object-oriented image processing technologies for detecting and char-

acterizing the structural damage in historical buildings based on multi-spectral

measurements. Oses et. al. [65] focus on the classification of built heritage ma-

sonry for determining the necessary degree of protection in different buildings,

using an automatic image-based delineation method. Riveiro et. al. [61] present

an automatic color-based algorithm for segmenting masonry structures, based on

an improved marker-controlled Watershed. However, this later algorithm [61]

purely focuses on the morphological analysis of quasi-periodic masonry walls,

where the geometry of masonry courses follows horizontal rows, which condition

does not hold very often - especially for ancient walls. Sithole et. al. [62] propose

a semi-automatic segmentation algorithm to detect the bricks in masonry walls,

working on 3D point cloud data obtained by laser scanning. Although using such

data sources becomes widespread in archeology and architecture nowadays, the

2D image based investigation addressed in this paper still has significance in par-

ticular for processing archive measurements, or in situations when long scanning

surveys are not feasible. Since the method of [62] is based on the 3D triangulation

of the 3D point cloud, reflectance, and RGB triplets, it cannot be suit to 2D data

in a straightforward way. Similar issues appear by the work of Bosché et. al.

[66], who introduce a method that simultaneously considers 3D information both

in global and local levels for segmenting the walls into regions corresponding to

bricks and mortar joints. Kajatin et. al. [63] suggested -based on a combina-

tion of machine learning techniques- a method that employs a weighted voting

mechanism to combine the separate segmentation outputs of eight classifiers be-

fore executing a threshold operation to produce the final binary segmentation.

Idjaton et. al. [64] presents a method for automatically doing stone-by-stone

segmentation on large cultural heritage structures. On an image dataset of two

Renaissance-style castles, two convolutional neural networks are compared with

traditional edge detection or thresholding techniques.

While deep learning (DL) algorithms have achieved remarkable success in var-

ious computer vision applications (segmentation, classification, detections, etc.)

in a wide range of fields from medical images [70], scene understandings [71] or

autonomous driving [74], we only find a few references yet for application of DL

methods in architecture or cultural heritage documentation. In addition, existing
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methods [68, 69] use deep learning rather for classification of the available images

of the architectural heritage, instead of segmentation and feature extraction for

detailed analysis.

2.2.2 Inpainting Algorithms

Image inpainting is a process where damaged, noisy, or missing parts of a picture

are filled in to present a complete image. Existing image inpainting methods can

be divided into two main groups called non-blind and blind techniques. In non-

blind inpainting approaches the masks of the missing regions are given in advance

to the algorithm, which requires cumbersome user intervention in complex scenes.

In blind inpainting techniques the algorithm has to automatically define the pixels

that are corrupted and have to be completed, i.e., the mask is also automatically

extracted. The state-of-the-art blind inpainting algorithms [29, 32, 33] use strong

assumptions regarding the shape and source of the occluded regions: they focus

for example on the removal of scratches or texts which can be efficiently detected

through low-level image features. However these techniques often fail in cases of

multiple occluding objects with different shapes and textures appearing in various

positions inside the image.

Our selected problem needs a significantly different blind inpainting approach

from the existing ones: the occluded or damaged image regions may exhibit a

high variety, however, we can assume that the background, which is a wall im-

age, follows a regular pattern. In real-world wall images, the bricks and mortars

form typical (but for each wall possibly different) texture patterns, and the oc-

cluded/damaged parts appear as irregular regions in the input images.

Diffusion-based methods [37, 38] and patch-based techniques [35, 36, 80] are

traditional methods that use local image features or descriptors to inpaint the

missing parts. However, such techniques lack the accuracy when the occluded

parts are large, and they may produce miss-alignments for thin structures such

as wall mortar (see Figure 2.2b–d, the results of a patch-based technique [80]).

Large datasets are needed to train the recently proposed deep learning mod-

els [27, 30, 26], which inpaint the images after training and learning a hidden

feature representation. A generative multi-column convolutional neural network
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(a) Input 1 (b) Output 1 (c) Input 2 (d) Output 2

Figure 2.2: Patch-based technique [80] results for two wall samples, (a,c) inputs photos
with holes that should be inpainted, (b,d) the results, we can see the miss-alignments
problem of the mortar lines.

(GMCNN) model [76] was proposed with three sub-networks, namely the gen-

erator, the global and local discriminator, and a pre-trained VGG model [44].

This approach deals in parallel with global texture properties and local details

by using a confidence driven reconstruction loss and diversified Markov random

field regularization, respectively. A multi-output approach [31] is introduced to

generate multiple image inpainting solutions with two GAN-based [39] parallel

paths: the first path is reconstructive aiming at inpainting the image according

to the Ground Truth map, while the other path is generative, which generates

multiple solutions.

The EdgeConnect [28] approach uses a two-stage adversarial network that

completes the missing regions according to an edge map generated in the first

stage. Initial edge information should be provided to this algorithm which is

based on either the Canny detector [46] or the Holistically-Nested Edge Detec-

tion algorithm (HED) [45]. However, if we apply this method for the masonry

wall inpainting application, non of these two edges generators [46, 45] can pro-

vide semantic structural information about the walls, since their performance is

sensitive to the internal edges inside the brick or mortar regions, creating several

false edges which are not related to the pattern of the wall structure. Moreover,

the outputs of both edge generators [46, 45] strongly depend on some threshold

values, which should be adaptively adjusted over a wall image. To demonstrate

these limitations, we show the outputs of the Canny edge detector (applied with

two different threshold values), and the HED algorithm in Figure 2.3b–d for a
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selected masonry wall sample image. As explained later in details, one of the

key components of our proposed method will be using an efficient, U-Net based

delineation algorithm as a preprocessing step, whose output will approximate the

manually segmented binary brick-mortar mask of the wall (see Figure 2.3e,f).

(a) Input
Image

(b) Canny
σ = 0.1

(c) Canny
σ = 0.4

(d) HED
Output

(e) Ours
Output

(f) Expected
Output

Figure 2.3: Wall delineation: comparison of state-of-the-art edge detectors to our pro-
posed U-Net based approach, and to the Ground Truth (GT).

2.2.3 Style Transfer Algorithms

Style transfer approaches combine two images (a content image and a style im-

age) so that the resulting output image keeps the content image’s fundamental

elements while appearing to be painted in the style of the reference style image. Li

and Wand proposed a patch-based non-parametric Markov Random Field (MRF)

approach [83], which has been proved to be effective in preserving coherent tex-

tures in complex images, however it worked less efficiently with non-textured

styles. [84] combines independent network components to learn the correspond-

ing content and style information, and uses a StyleBank layer which comprises

mid-level convolutional filters to individually learn different styles, where style is

coupled to a set of parameters. This algorithm provides the advantage of learning

a new style as well as a flexible control over style fusion. However, it has a number

of weaknesses, including the lack of details in the result images. Li et al. [85]

attempt to use a sequence of feature transformations to transfer arbitrary styles

without the need for style learning. However, when the used feature vector has

a large dimension, the expensive matrix calculation in whitening and colouring

modifications becomes a limitation. In contrast to the existing state-of-the-art

algorithms, our solution uses a preliminary phase to extract the content wall im-
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age’s dominant structure, then we add the target wall image style to the model

in a direct manner, as it will be detailed later in Sec. 2.4.4.

2.3 Dataset Generation

We have constructed a new manually annotated dataset for training and eval-

uating the proposed algorithm for the aforementioned problems. The dataset

contains images of facades and masonry walls, either from historical or contem-

porary buildings. As demonstrated in Figure 2.4, several different types of wall

structures are included, for example three types of rubble masonry (Random,

Square, Dry), and two types of ashlar (Fine, Rough). Even within a given class,

the different samples may show highly variable characteristics, both regarding the

parameters of the bricks (shape, size and color), and the mortar regions (thin,

thick, or completely missing). In addition, the images are taken from different

viewpoints in different lighting conditions, and contain shadow effects in some

cases.

Using a large dataset plays an essential role to achieve efficient performance

and generalization ability of deep learning methods. On the other hand, dataset

generation is in our case particularly costly. First, for both training and quan-

titative evaluation of the brick-mortar segmentation step, we need to manually

prepare a binary delineation mask (denoted henceforward by Iwall ftr) for each wall

image of the dataset, where as shown in the bottom row of Figure 2.4, background

(black pixels) represents the regions of mortar, and foreground (white pixels) rep-

resents the bricks. In addition, for training and numerical quality investigation

of the inpainting step, we also need to be aware of the accurate occlusion mask,

and we have to know the original wall pattern, which could be observable without

the occluding object. However, such sort of information is not available, when

working with natural images with real occlusions or damaged wall parts, as shown

in Figure 2.1.

For ensuring in parallel the efficiency and generality of the proposed approach,

and the tractable cost of the training data generation process, we have used a

combination of real and semi-synthetic images, and we took the advantages of

various sorts of data augmentation techniques.
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Our dataset is based on 532 different wall images of size 512 × 512, which are

divided among the training set (310 images), and three test sets (222 images).

The training dataset is based on 310 occlusion-free wall images, where for each

image we also prepared a manually segmented Iwall ftr binary brick-mortar mask

(see examples in Figure 2.4). For training, the occlusions are simulated using

synthetic objects during data augmentation, so that the augmentation process

consists of two phases:

(i) Offline augmentation: 7 modified images are created for each base image

using the following transformations: (a) horizontal flip, (b) vertical flip,

(c) both vertical and horizontal flips, (d) adding Gaussian noise (e) ran-

domly increasing the average brightness, (f) randomly decreasing the aver-

age brightness, and (g) adding random shadows.

(ii) Online synthetic occlusion and data augmentation [41]: each image pro-

duced in the previous step is augmented online (during the training) by

occluding the wall image Iwall with a random number (from 1 and 8) of

objects (represented by Ioclud), chosen from a set of 2490 non human sam-

ples of the Pascal VOC dataset [42]. With these parameter settings, we

generated both moderately, and heavily occluded data samples. As demon-

strated in Figure 2.5 (a,b) the result of this synthetic occlusion process is

the Iin image, which is used as the input of the proposed approach. We

also generate a target (Ground Truth) image for training and testing the

image segmentation step, so that we combine the binary delineation map

(Iwall ftr) and the mask of the chosen occluding objects in a three-class im-

age Iwall ftr oclud (see Figure 2.5b), which has the labels mortar (black), brick

(white), and occlusion (gray) . Afterward, we used the Imgaug library [43]

to apply Gaussian noise, cropping/padding, perspective transformations,

contrast changes, and affine transformations for each image.

Our test image collection is composed of three subsets:

• Test Set (1): We used 123 occlusion-free wall images and simulated occlu-

sions by synthetic objects, as detailed later in Section 2.5. We only remark

that here both the wall images and the synthetic objects were different
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(a) Random (b) Square (c) Dry (d) Fine (e) Rough

Figure 2.4: Sample base images from our dataset (top row), and the Ground Truth
brick-mortar delineation maps (bottom row). Wall types: (a) Random rubble masonry,
(b) Square rubble masonry, (c) Dry rubble masonry, (d) Ashlar fine, (e) Ashlar rough.

from the ones used to augment the training samples. A few synthesized

test examples are shown in the first rows of Figures 2.8 and 2.9.

• Test Set (2): We took 47 additional wall images with real occlusions and

with available Ground Truth (GT) data in ancient sites of Budapest, Hun-

gary. In these experiments, we mounted our camera to a fixed tripod, and

captured image pairs of walls from the same positions with and without the

presence of occluding objects (see the second rows in Figures 2.8 and 2.9).

• Test Set (3): For demonstrating the usability of the proposed techniques in

real-life, we used 52 wall pictures:

– 25 photos of various walls with real occlusions or damaged segments

are downloaded from the web (see examples in Figure 2.1).

– 27 masonry wall images from ancient archaeological sites in Syria are

used to evaluate the inpainting and the segmentation steps of our

proposed algorithm.

Note that since Test Set (1) and Test Set (2) contain both occluded and

occlusion free images from the same site, they can be used in numerical evaluation

of the proposed algorithm. On the other hand, Test Set (3) can be only used in
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Figure 2.5: Dataflow of our algorithm. (a) Data augmentation by adding synthetic
occlusion (b) Pre-processing Stage (U-Net network): the input Iin contains a wall im-
age with occluding objects, the output Iu out is expected to be similar to the target
Iwall ftr oclud (the delineation map of the wall occluded by various objects). (c) Inpaint-
ing Stage - Hidden Feature Generator G1: the input consist of the masked image of
Iin, the masked extracted delineation map, and the mask of the occluding objects. The
output is the predicted delineation map of the complete wall structure. (d) Inpainting
Stage - Image Completion G2: the inputs are the color image of the wall, the occlusion
mask and the predicted delineation map; the output is the inpainted image. (e) Seg-
mentation Stage (Watershed Transform): the input is the predicted delineation map,
the output is the bricks’ instance level segmentation map. (f ) Brick segmentation map
superimposed to the inpainted image output (Iout).

qualitative surveys, however these images may demonstrate well the strength of

the technique in real applications.

The wall images and the manually annotated masks used in the dataset

are available at the website of the authors (http://mplab.sztaki.hu/geocomp/

masonryWallAnalysis).

2.4 Proposed Approach

The main goals of the proposed method are (i) to automatically extract the indi-

vidual brick instances of masonry wall images, (ii) to detect occluded or damaged

wall segments, and (iii) to fill in the occluded/missing regions by a realistic pre-

diction of the brick-mortar pattern.
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The complete workflow is demonstrated in Figure 2.5. We assume that the

input of the algorithm is a masonry wall image Iin which is partially occluded

by one or several foreground objects. Our method provides multiple outputs: a

color image of the reconstructed wall IG2 out, the binary brick-mortar delination

map Iwsh out of IG1 out, and the contours of the individual bricks. These outputs

can be superimposed yielding a segmented color image Iout of Figure 2.5f.

The proposed approach is composed of three main stages as shown in Figure

2.5:

1. Pre-processing stage (Figure 2.5b): taking an input image Iin two outputs

are extracted: the delineation map of the observed visible bricks, and the

mask of the occluding objects or damaged wall regions.

2. Inpainting: this stage has two steps, the first one completes the delineation

map in the occluded image parts (Figure 2.5c), and the second one predicts

RGB color values in these regions (Figure 2.5d).

3. Segmentation (Figure 2.5e): this stage aims to separate the mortar from

the brick regions in the inpainted wall image, and extract the accurate brick

contours.

The inpainting stage has been modified to fit two wall images and the objective

here is to transform the style form an image to another. In the next sections,

we discuss the main three stages of the proposed method and the style transfer

network.

2.4.1 Pre-Processing Stage

The goal of this step is twofold: extracting the delineation structure by separa-

tion of the bricks from the mortar regions, and detecting the masks of possibly

occluded wall parts which should be inpainted in the consecutive steps.

As shown in Figure 2.5b, the segmentation step is realized by a U-Net deep

neural network [25], which consists of two main parts. The encoder part encodes

the input image Iin into a compact feature representation, and the decoder part

decodes these features into an image Iu out that represents the predicted classes. In
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our implementation, a pre-trained Resnet50 [9] encoder is adopted in the encoder

step, and a three-class image Iwall ftr oclud is used as the target of this network,

whose labels represent brick (white), mortar (black) and occluded (gray) regions.

From the Iu out output, we derive two binary auxiliary images: Imask is the binary

mask of the occluded pixels according to the prediction; and Iftr mskd is a mask of

the predicted bricks in the observed wall regions, where both the occluded and

the brick pixels receive white labels, while the mortar pixels are black.

The network is trained using the Adam optimizer [40] over a joint loss ℓu net

that consists of a cross-entropy loss and a feature-matching loss term. The cross-

entropy loss ℓCro is applied to measure the difference between the probability

distributions of the classes of the U-Net output Iu out and the target Iwall ftr oclud,

while the feature-matching loss ℓftr mat contributes to the training of the Inpaint-

ing Stage as described in Section 2.4.2.1:

ℓu net = λ1
1 ℓCro + λ1

2 ℓftr mat, (2.1)

where λ1
1 and λ1

2 are regularization parameters which are modified during the

training process.

During the training phase, the F1u net value is calculated as the average of the

F1-scores for the three classes (Brick, mortar and the occluded objects), which is

used as a confidence number for modifying the weights in the subsequent network

component of the Inpainting Stage.In our experiment, we choose for the first

epochs λ1
1 = 1, λ1

2 = 0, and for the last epochs λ1
1 = 1, λ1

2 = 0.1.

2.4.2 Inpainting Stage

This stage is composed of two main sub-steps. First, the Hidden Feature Gen-

erator completes the mortar pixels in the area covered by the white regions of

the predicted Imask image, based on the mortar pattern observed in the Iftr mskd

mask. Second, the Image Completion step predicts the RGB color values of the

pixels marked as occluded in the Imask image, depending on the color information

of the Iwall mskd image restricted to the non-occluded regions, and the structural

wall features extracted from the IG1 out map within the occluded regions.

The inpainting stage is based on two different generative adversarial networks

(GAN), where each one consists of generator/discriminator components. The
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generator architecture follows the model proposed by [49], which achieved im-

pressive results in image-to-image translation [34] and in image inpainting [28].

The generator is comprised of encoders which down-sample the inputs twice,

followed by residual blocks and decoders that upsample the results back to the

original size. The discriminator architecture follows the 70 × 70 PatchGAN [34],

which determines whether overlapping image patches of size 70 × 70 are real or

not. In Figure 2.5, G1 and D1 represent the Generator and Discriminator of the

Hidden Feature Generator stage, and G2 and D2 represent the Generator and

Discriminator of the Image Completion stage.

2.4.2.1 Hidden Feature Generator

For creating the inputs of the first generator (G1), three images are used: the two

output images of the pre-processing stage (Imask, Iftr mskd), and Ig in mskd, which

is the masked grayscale version of the input image. The output of G1, IG1 out

represents the predicted wall structure, completing Iftr mskd with brick outlines

under the occlusion mask regions. The first discriminator D1 predicts whether

the predicted wall features are real or not, based on the inputs IG1 out and Iwall ftr,

both ones conditioned on the grayscale wall image Ig wall.

The network is trained by the adversarial loss and the feature-matching loss,

which are both weighted by the F1u net-score that reveals the accuracy of the

pre-processing stage:

min
G1

max
D1

ℓG1 = min
G1

(
F1u net(λ

2
1 max

D1
ℓadv1 + λ2

2 ℓftr mat)
)
. (2.2)

The adversarial loss ℓadv1 is formulated as a two-player zero-sum game between

the Generator network G1 and the Discriminator network D1 where the generator

attempts to minimize the Eq. (3.3), while the discriminator tries to maximize it:

ℓadv1 = E(Iwall ftr ,Ig wall)

[
log

(
D1(Iwall ftr, Ig wall)

)]
+ E(IG1 out,Ig wall)

[
log

(
1 −D1(IG1 out, Ig wall)

)] (2.3)

The feature matching loss ℓftr mat [28] is used to make the training process stable

by forcing the generator to produce results with representations as close as possi-

ble to the real images. To increase the stability of the training stage, the Spectral
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Normalization (SN) [47] is applied for both the generator and the discriminator,

scaling down the weight matrices by their respective largest singular values. In

our experiment, we choose: λ2
1 = 1, λ2

2 = 10.

2.4.2.2 Image Completion

The input of the second generator, G2 combines both the masked wall image

(Iwall mskd) and the output of the first generator (IG1 out). The aim of the G2

generator is creating an output image IG2 out which is filled with predicted color

information in the masked regions (see Figure 2.5d). The inputs of the discrimi-

nator D2 are IG2 out and Iwall and its goal is to predict whether the color intensity

is true or not. The network is trained over a joint loss that consists of L1 loss,

adversarial loss, perceptual loss, and style loss.

The adversarial loss ℓadv2 has the same function as described in Section 2.4.2.1.

The L1 loss ℓL1 is applied to measure the distance between the algorithm output

Iout and the target Iwall, which is applied in the non-masked area ℓL1 and in the

masked area ℓL1hole, respectively. While the perceptual loss ℓperc [28, 49] is applied

to make the results perceptually more similar to the input images, the style loss

ℓsty [28, 48] is used to transfer the input style onto the output. The TV loss ℓTV is

used to smooth the output in the border areas of the mask. Each loss is weighted

by a regularization parameter as described by the following equation:

ℓG2 = λ3
1 ℓL1 + λ3

2 ℓL1hole + λ3
3 ℓadv2 + λ3

4 ℓperc + λ3
5 ℓsty + λ3

6 ℓTV . (2.4)

In our experiment, we choose: λ3
1 = 1, λ3

2 = 5, λ3
3 = 0.1, λ3

4 = 0.1, λ3
5 = 250,

λ3
6 = 0.1/S, where S refers to the image size (here S = 256 × 256), the first fifth

parameters were chosen based on [28], and the last one parameters were chosen

to balance the impact of each loss.Appendix A includes more information on the

model’s architecture, loss functions, and training strategy.

2.4.3 Segmentation Stage

The last stage of the proposed algorithm is responsible for extracting the accurate

outlines of the brick instances, relying on the previously obtained Hidden Fea-

ture Generator delineation map IG1 out. Although the delineation maps are quite
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Figure 2.6: Dataflow of the Segmentation Stage, which extracts the accurate brick
contours on the inpainted wall images.

reliable, they might be noisy near to the brick boundaries, and we can observe

that some bricks are contacting, making simple connected component analysis

(CCA) based separation prone to errors. To overcome these problems, we apply

a marker based watershed [75] segmentation for robust brick separation.

The dataflow of the segmentation stage is described at Figure 2.6, where first,

we calculate the inverse distance transform (IDT) map of the obtained delineation

map (IG1 out). Our aim is to extract a single compact seed region within each

brick instance, which can be used as internal marker for the watershed algorithm.

Since the IDT map may have several false local minima, we apply the H-minima

transform [73], which suppresses all minima under a given H-value. Then, we

apply flooding from the obtained H-minima regions, so that we consider the

inverse of IG1 out (i.e., all mortar or non-wall pixels) as an external marker map,

whose pixels cannot be assigned to any bricks. Finally the obtained brick contours

can be displayed over the Image Completion output (see Iout).

2.4.4 Style Transfer

The goal of the style transfer component is to fill or modify the wall’s texture

style based on an image of another wall or wall segment. The workflow of this

procedure is presented in Figure 2.7. The style of the input image Iin is changed
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to match the style of another wall image sample called the style image Istyle.

Archaeologists can use this algorithm to modify some degraded segments of the

studied wall that have become soiled or lost its original color over time due to

environmental factors, relying in various style features extracted from the intact

wall regions.

The proposed style transfer procedure uses the same G1 and G2 network

components, that were previously introduced in the wall analysis section (Sec.

2.4.2). Here the image completion network G2 has two inputs: the first one is

the G1 generator’s output IG1 out, which is a brick-mortar separation map that

includes the predicted complete wall structure for the processed wall image Iin

(including both the originally visible and occluded wall components). The second

input is the style image Istyle, which is represented by an occlusion-free colored wall

image with a different texture style. The network extracts a representation for

the texture style of Istyle and transfers it to the predicted brick-mortar separation

map IG1 out, resulting in a new image IG2 out, that is a color image reflecting the

structure of Iin and the style of Istyle.

Note that apart from changing the style of existing wall images (see Figure

2.18), we can also directly feed in a binary brick-mortar map to the network for

applications where we initially have a binary sketch of the wall only, and intend

to paint it using the style from another wall image (see Figure 2.19).

To use the same trained network as in the previous wall analysis application

and to avoid the need for any additional training for the G2 generator, which is

originally trained to paint exclusively the occluded (i.e. masked) regions of its

input image (see Figure 2.5), we add here virtual masks to the style images. The

joint usage of two binary virtual masks - which are inverted variants of each other

- ensures that the entire target image will be filled with the texture of the style

image, so that the style image is fed twice to the network, each time with one of

the masks.

2.5 Experimental Results and Evaluation

We evaluated the proposed algorithm step by step, both via quantitative tests

and an extensive qualitative survey, using the test data collection introduced in
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Figure 2.7: Dataflow of the Style Transfer application

Section 2.3. Our test data collection consists of three test sets, where the first

two sets can be used in quantitative evaluation.

As mentioned in Section 2.3, test Set (1) was constructed by simulating occlu-

sions on 123 different (occlusion-free) wall images, so that neither the wall images

nor the occluding objects have been used during the training stage. More specif-

ically, as occluding objects, we used a set of 545 different person images from

the Pascal VOC dataset [42], and by random scaling we ensured that each one

of the generated synthetic objects covers from 2% to 10% of the area of the wall

image (see examples in the first rows of Figures 2.8 and 2.9). For each base wall

image of this test subset, we generated five test images (Iin), so that the number

of the occluding objects varies from 1 to 5 in a given test image. As a result, the

augmented image set of Test Set (1) was divided into five groups depending on

the number of the occluding objects.

Test Set (2) contains image pairs of walls taken from the same camera position,

where the first image contains real occluding objects, while the second image

shows only the pure wall without these objects (see the second rows in Figures

2.8 and 2.9). In this way the second image can be considered as a Ground Truth

for the inpainting technique. We recall here that the process for capturing these

images was discussed in Section 2.3.
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In the following sections, we present evaluation results for each stage of the

algorithm.

2.5.1 Occlusion Detection in the Pre-Processing Stage

The pre-processing stage classifies the pixels of the input image into three classes:

brick, mortar, and regions of occluding object. Since brick-mortar separation is

also part of the final segmentation stage, we will detail that issue later during the

discussion of Section 2.5.3, and here we only focus on the accuracy of occlusion

mask extraction.

Both for Test Set (1) and Test Set (2), we compare the occlusion mask estima-

tion provided by the U-Net (i.e., gray pixels in Iu out) to the corresponding Ground

Truth (GT) mask derived from the reference map Iwall ftr oclud, as demonstrated in

Figure 2.5b. Note that for images from Test Set (1), this mask is automatically

derived during synthetic data augmentation in the same manner as described for

training data generation in Section 2.3 (ii). On the other hand, for Test Set (2)

the GT masks of the occluding (real) objects are manually segmented.

Taking the GT masks as reference, we calculate the pixel-level Precision (Pr)

and Recall (Rc) values for the detected occlusion masks, and derive the F1-score

as the harmonic mean of Pr and Rc.

The results are reported in Table 2.1, where for Test Set (1) (Synthetic) we

also present separately the results within the five sub-groups depending on the

number of occluding objects. The last row (Real) corresponds to the results in

Test Set (2). For qualitative demonstration of this experiment, in Figure 2.8 we

can compare the silhouette masks of the occluding objects extracted from the U-

Net network output, and the Ground Truth occlusion mask (see a sample image

from the Synthetic Test Set (1) in the first row, and one from the Real Test Set

(2) in the second row).

The numerical results in Table 2.1 confirm the efficiency of our algorithm in

detecting the occluded regions of the images. For all considered configurations,

the recall rates of the occluded areas surpass 83%, ensuring that the real out-

lier regions (which should be inpainted) are found with a high confidence rate.

Since the network also extracts some false occlusions, the measured F1-scores are
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(a) Input (b) U-Net Output (c) Extracted Mask (d) GT

Figure 2.8: Pre-processing Stage results: (a) Input: wall image occluded by irregular
objects (first row: synthetic occluding objects, second row: real occluding objects),
(b) U-Net output with brick, mortar and occluded classes (c) automatically estimated
occlusion masks, (d) Ground Truth (GT).

Table 2.1: Evaluation of occlusion mask extraction in the Pre-processing Stage for Test
Set (1) and (2).

Test set num. of obj. Precision Recall F1-score

(1) - Synthetic

one 52.84 83.90 58.99
two 70.15 88.38 75.06
three 77.36 89.58 81.49
four 80.51 89.48 83.38
five 83.93 89.71 85.88

average 72.95 88.22 76.96
(2) - Real - 78.32 92.87 83.63
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between 58% and 85%. However, the observed relatively lower precision does

not cause critical problems in our application, since false positives only implicate

some unnecessarily inpainted image regions, but during the qualitative tests of

the upcoming inpainting step, we usually did not notice visual errors in these

regions (see the discussion in Section 2.5.4).

We can also notice from Table 2.1, that by increasing the number of occluding

objects, the precision (thus also the F1-score) increases due to less false alarms.

Based on further qualitative analysis (see also the discussion in Section 2.5.4)

we can confirm, that the U-Net network can detect the occluding objects with

high accuracy as nearly all of the virtually added irregular objects or the real

occluding objects have been correctly detected.

2.5.2 Quantitative Evaluation of the Inpainting Stage

In this stage, two output maps are extracted sequentially, the hidden feature

generator output, and the image completion output, each will be addressed indi-

vidually in the following sections:

2.5.2.1 Hidden Feature Generator Output

The first result of the Inpainting Stage is the G1 output which is a binary classi-

fication mask showing the prediction of the mortar and the brick regions in the

occluded areas. Figure 2.9c shows the output of G1 where the blue pixels indicate

the predicted mortar pixels in the masked region, while the Ground Truth mortar

regions are provided as a reference in Figure 2.9d. Since the result of this step is

a structure delineation mask, which directly affects the brick segmentation stage,

corresponding numerical results will be presented in Section 2.5.3.

2.5.2.2 Image Completion Output

The second result of the Inpainting Stage is the G2 output, which is an inpainted

color image IG2 out that should be compared to the original occlusion-free wall

image Iwall. For evaluating this step, we compared our method to state-of-the-art

inpainting algorithms. Since (as mentioned in Section 2.2.2) existing blind im-

age inpainting algorithms have significantly different purposes from our approach
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(a) Input (b) U-Net Output (c) G1 Output (d) GT

Figure 2.9: Structure inpainting results (first GAN): (a) Input: wall image occluded
by irregular objects (first row: synthetic occluding objects, second row: real occluding
objects), (b) U-Net output, (c) G1 output: inpainted mortar-brick map (predicted
mortar pixels in blue), (d) Ground Truth (GT).
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(such as text or scratch removal), we found a direct comparison with them less

relevant. Therefore, in this specific comparative experiment, we used our ap-

proach in a non-blind manner and compared it to three non-blind algorithms:

the Generative Multi-column Convolutional Neural Network (GMCNN) [76], the

Pluralistic Image Completion [31], and the Canny based EdgeConnect [28].

In the training stage, for a fair comparison, an offline augmentation step was

used in order to train all algorithms on the same dataset. We used the Augmentor

library [50] for randomly rotating the images up to ±25◦, and randomly applying

horizontal and vertical flipping transforms, zooming up to 15% of the image size,

and changing the contrast of the images, yielding altogether 10,000 augmented

images. Moreover, during the training phase, for simulating the missing pixels

(i.e., holes or occluded regions that should be inpainted in the images), we used

the same masks for all inpainting algorithms. These masks are derived from two

different sources: (i) Irregular external masks from a publicly available inpainting

mask set [27] which contains masks with and without holes close to the image

borders, with a varying hole-to-image area ratios from 0% to 60%. (ii) Regular

square shaped masks of fixed sizes (25% of total image pixels) centered at a

random location within the image.

In the evaluation stage, randomly chosen external masks were adopted from

the mask set proposed by [27]. More specifically, we chose 5 subsets of masks

according to their hole-to-image area ratios: ((0%, 10%], (10%, 20%], (20%, 30%],

(30%, 40%], (40%, 50%]). Thereafter, we overlaid occlusion-free wall images from

the Test Set (1) with the selected/generated masks, to obtain the input images of

all inpainting algorithms during this comparison (see also Figure 2.10, first row).

As mentioned in [27], there is no straightforward numerical metric to evaluate

the image inpainting results due to the existence of many possible solutions.

Nevertheless, we calculated the same evaluation metrics as usually applied in the

literature [27, 28]:

(1) Peak Signal-to-Noise Ratio (PSNR).

(2) Structural Similarity Index (SSIM) [78] with a window size of 11.

(3) Relative L1 error.
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(4) FID (Fechet Inception Distance) Score [77]: shows usually a high correlation

with the human visual judgment, and used to evaluate GANs algorithms.

Table 2.2: Comparison of our inpainting results to three state-of-the-art non-blind
inpainting algorithms. Notation: ↑ Higher is better. ↓ Lower is better.

Metrics Mask GMCNN[76] Pluralistic [31] EdgeConnect [28] Our

PSNR ↑

0-10% 23.59 25.88 32.19 31.62
10-20% 22.25 23.92 27.73 27.16
20-30% 21.08 22.38 24.95 24.34
30-40% 20.11 21.23 23.09 22.46
40-50% 19.26 20.19 21.50 20.91

SSIM ↑

0-10% 82.01 86.81 96.62 96.25
10-20% 75.46 79.73 91.41 90.52
20-30% 67.73 71.26 84.01 82.46
30-40% 60.03 62.48 75.29 73.44
40-50% 50.98 51.85 64.72 62.20

L1 ↓

0-10% 5.12 3.61 0.56 0.57
10-20% 5.77 4.34 1.33 1.37
20-30% 6.58 5.20 2.39 2.47
30-40% 7.37 6.03 3.49 3.59
40-50% 8.25 7.00 4.73 4.91

FID-score ↓

0-10% 66.65 43.51 8.88 8.42
10-20% 84.69 56.23 21.56 21.49
20-30% 107.64 75.90 42.32 41.87
30-40% 134.82 87.23 62.89 60.68
40-50% 157.12 108.58 88.10 86.20

Table 2.2 shows the numerical results of the inpainting algorithms for each

mask subset, and in Figure 2.10 we can visually compare the results of the consid-

ered GMCNN, Pluralistic and EdgeConnect methods to the proposed approach

and to the Ground Truth.

Both the qualitative and quantitative results demonstrate that our approach

outperforms the GMCNN and Pluralistic techniques, while the numerical evalua-

tion rates of the proposed approach are very similar to EdgeConnect. While our

FID-Scores (which is considered as the most important parameter) are slightly

better, yet we found that these results do not provide a reliable basis for compar-

ison.
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For this reason, we have also performed a qualitative comparative survey

between EdgeConnect and the proposed method so that for 25 different input

images we showed the output pairs in a random order to 93 independent observes

and asked them to choose the better ones without receiving any information about

the generating method, and without using any time limitation. The participants

of the survey were selected having different job backgrounds, but most of them

were working in the fields of architecture or archaeology (Figure 2.11a displays the

distribution of the different fields of expertize among the participants). Figure

2.11b shows for each test image the percentage of the answers, which marked

our proposed algorithm’s output better than EdgeConnect’s result. This survey

proved the clear superiority of our proposed method, since in 18 images out of

25 our approach received more votes than the reference method, and even in

cases when our technique lost, the margin was quite small, which means that

both approaches were judged as almost equally good. By summarizing all votes

on all images, our method outperformed the Canny-based EdgeConnect with a

significant margin: 58.59% vs. 41.41%.

The above tendencies are also demonstrated in Figure 2.12 for two selected

images. On one hand, the numerical results of EdgeConnect are very close to our

figures (EdgeCon/Ours PSNR: 27.02/25.95, SSIM: 86.67/85.16, L1: 1.46/1.67).

On the other hand, we can visually notice that our algorithm reconstructs a

significantly better mortar network, which is a key advantage for archaeologist

aiming to understand how the wall was built. The superiority of our algorithm

over the Canny-based EdgeConnect approach may be largely originated from the

fact, that our method is trained to make a clear separation between the mortar

and the bricks in the pre-processing stage, even in difficult situations such as

densely textured wall images or walls with shadows effects. In such cases the

Canny detector provides notably noisy and incomplete edge maps which fools the

consecutive inpainting step.

2.5.3 Quantitative Evaluation of the Segmentation Stage

We evaluated the results of the brick segmentation step for the images of Test Set

(1) (synthetic—123 images), and Test Set (2) (real—47 images), since in these
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Figure 2.10: Comparing our method to three non-blind state-of-the-art inpainting al-
gorithms for four samples in the test dataset shown in the different columns. First
row: input images with synthetic occlusions, Second row: GMCNN output [76], Third
row: Pluralistic Image Inpainting output [31], Fourth row: Canny based EdgeConnect
output [28], Fifth row: output of our proposed approach, Sixth row: Ground Truth.
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(a) Participants by experi-
ence.

(b) Our algorithm’s winning % for each image.

Figure 2.11: Qualitative comparison results of the EdgeConnect and the proposed
method using 25 selected test images. In the survey, 93 people participated with differ-
ent background (see (a,b) shows for each image the percentage of the answers, which
marked the proposed algorithm’s output better than EdgeConnect’s result.

(a) Masked Input (b) EdgeConnect (c) Ours (d) GT

Figure 2.12: Comparison of the Canny based EdgeConnect algorithm [28] to the results
of our proposed method and to the reference GT. Circles highlight differences between
the two methods’ efficiency in reconstructing realistic brick outlines.
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(a) Raw input images

(b) Results of Riveiro’s delineation method

(c) Results of Oses’ delineation method

(d) Results of the proposed U-Net-based delineation

(e) The ground truth binary brick vs. mortar mask

Figure 2.13: Comparison between the-state-of-the-art delineation methods and our
method; (a) images; (b) Riveiro’s method; (c) Oses’ method; (d) Our U-Net based
delineation output; (e) Ground truth
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test sets, the background wall images are also available. we separately analyze

the efficiency of the delineation step, and the final brick segmentation results.

2.5.3.1 Delineation Step Output

First, we start with the discussion of the delineation step, where we compare

pixel-wise the output map of our U-Net component and other state-of-the-art

methods [61, 65] (see Figure 2.13(b)-(d)) to the expected Ground Truth masks

(Figure2.13(e)). Since the correctness of the structure can be better described

by the pixel-level accuracy of the thinner mortar regions, we calculate pixel-level

Precision (Pr) and Recall (Rc) values from the viewpoints of the mortar pixels,

and take the F1-score as the harmonic mean of Pr and Rc.

Demonstrative sample results of using the state-of-the-art delineation meth-

ods and our method are shown in Figure 2.13, and the corresponding quantitative

evaluation values are provided in Table. 2.3. We can confirm, that the proposed

U-Net based method can detect the outlines of the bricks with high accuracy

(above 80%) for any types of walls, significantly surpassing the reference meth-

ods, which suffer both from false detection and misdetection effects. While the

reference techniques show better results by processing photos of walls with regu-

larly shaped and aligned bricks, their performance is drastically degraded for the

irregularly structured stone walls. In summary, we found neither of the two refer-

ence methods [65], [61] capable for providing efficient markers for the Watershed

process.

Table 2.3: Evaluation of the delineation step. Comparison of state-of-the-art methods
and our proposed U-Net-based approach.

Method F1-score (%) Precision (%) Recall(%)
Riveiro method [61] 23.65 37.04 17.71
Oses method [65] 22.58 39.57 16.91
Proposed method 81.57 81.16 82.14
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2.5.3.2 Segmentation Stage Output

Second, we measure the segmentation accuracy for the occlusion-free wall images.

In this evaluation step, we measure the algorithm’s performance in two different

ways: we investigate how many bricks have been correctly (or erroneously) de-

tected, and also assess the accuracy of the extracted brick outlines. For this

reason, we calculate both (i) object level and (ii) pixel level metrics. First of all,

an unambiguous assignment is taken between the detected bricks (DB) and the

Ground Truth (GT) bricks (i.e., every GT object is matched to at most one DB

candidate). To find the optimal assignment we use the Hungarian algorithm [72],

where for a given DB and GT object pair the quality of matching is proportional

to the intersection of union (IOU) between them, and we only take into account

the pairs that have IOU higher than a pre-defined threshold 0.5. Thereafter,

object and pixel level matching rates are calculated as follows:

(i) At object (brick) level, we count the number of True Positive (TP), False

Positive (FP) and False Negative (FN) hits, and compute the object level

precision, recall and F1-score values. Here TP corresponds to the number

detected bricks (DBs) which are correctly matched to the corresponding GT

objects, FP refers to DBs which do not have GT pair, while FN includes

GT objects without any matches among the DBs.

(ii) At pixel level, for each correctly matched DB-GT object pair, we consider

the pixels of their intersection as True Positive (TP) hits, the pixels that are

in the predicted brick but not in the GT as False Positive (FP), and pixels

of the GT object missing from the DB as False Negative (FN). Thereafter

we compute the pixel level evaluation metrics precision, recall and F1-score

and the intersection of unions (IOU). Finally the evaluation metric values

for the individual objects are averaged over all bricks, by weighting each

brick with its total area.

Table. 2.4 shows the quantitative object and pixel level results of the com-

plete workflow for different wall categories. We can conclude that our algorithm

provides high quality output for all categories of the test dataset, as the brick

and pixel level F1-scores are measured in almost every cases between 76% and
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97%. The best results are naturally observed for the ashlar fine subset, which

contains high contrasted photos of modern buildings with simple and regular

brick layouts. However, as both qualitative and quantitative examples shows,

the proposed method can generally handle very different masonry types, and it

shows graceful degradation in cases of more challenging samples, such as random

masonry.

Table 2.4: Evaluation of brick segmentation. Object (brick) and pixel level precision,
recall, F1-score and IOU values for the augmented test dataset.

Type
No. of
(augm)
images

Recall(%) Precision(%) F1-score(%) IOU(%)
Brick
level

Pixel
level

Brick
level

Pixel
level

Brick
level

Pixel
level

Pixel
level

Random 304 83.80 82.08 77.69 83.03 79.93 81.87 71.31
Square 411 85.23 78.35 69.87 86.10 75.56 78.85 69.91
Dry 375 84.97 85.04 73.54 87.47 77.74 85.36 76.66
Fine 268 97.53 96.43 97.67 92.18 97.58 94.19 89.12
Rough 244 81.47 84.19 79.57 78.34 79.87 81.92 69.38
Average 1602 86.38 84.53 78.34 85.67 81.23 83.98 74.88

Thereafter, we also evaluate the accuracy of brick segment prediction in the

occluded regions, by investigating the accuracy of the segmentation module in

these regions. For the synthetic test set, we investigate the performance as a

function of the number of occluding objects, moreover, we test the algorithm for

the images with real occlusions (Test Set (2)).

Table 2.5 shows the quantitative object and pixel level results of the segmenta-

tion stage. The results confirm the efficiency of our algorithm for brick prediction

in the occluded regions, as the F1-scores at both brick and pixel levels are in each

case above 67%. Note that the observed results are slightly weaker for the im-

ages with real occlusions (Test Set (2)), which is caused by two factors. First,

in these images the area of the occluding objects is relatively large (more than

30%). Second, the occluding objects form large connected regions, which yields

a more challenging scenario than adding 5 smaller synthetic objects to different

parts of the wall image, as we did in the experiment with artificial occlusions.

It is important to notice that the Ground Truth is not the only reference that

our result could be compared to, as there might be many valid realistic solutions.
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Table 2.5: Evaluation of brick segmentation. Object and pixel level precision, recall,
F1-score and IOU values for the Test Set (1) using different numbers (0-5) of synthetic
occluding objects; and results on Test Set (2) with real occlusions.

Test
Num.
of obj.

Recall (%) Precision (%) F1-score (%) IOU (%)

Brick Pixel Brick Pixel Birck Pixel Pixel

Set (1)

no occl. 82.79 76.58 73.11 85.14 76.62 78.20 70.24
one 83.85 76.54 73.39 85.42 77.25 78.14 70.49
two 82.89 76.11 72.91 85.12 76.56 77.70 69.54

three 83.35 76.20 73.08 85.27 76.84 77.84 69.19
four 82.28 75.15 71.65 84.15 75.63 77.00 68.21
five 81.47 74.69 71.93 82.85 75.47 76.26 67.01

Set (2)
no occl. 79.76 72.78 70.73 80.57 74.44 74.18 63.78

with Obj 67.56 66.25 72.26 71.84 69.22 67.44 54.04

However, both the quantitative results and the qualitative examples show that

the proposed method can generally handle very different masonry types with high

efficiency.

The prediction results show graceful degradation in cases of more challenging

samples, such as random masonry, as the wall could take any pattern and all the

predicting patterns in the occluding regions can be considered as a real pattern

(see Figure 2.9). Expected outputs are more definite when we are dealing with

square rubble masonry or ashlar masonry categories where the pattern is specific

and well predictable (see the first and third rows in Figure 2.14).

2.5.4 Qualitative Results

In this section, we discuss further qualitative results demonstrating the usability

of the proposed approach in various real application environments.

Figure 2.14 shows the results of occlusion detection, brick-mortar structure

segmentation and prediction, and inpainting for real images from Test Set (3).

The first image displays a wall from Budapest, where a street plate occludes a

few bricks. Here exploiting the quite regular wall texture and the high image

contrast, all the three demonstrated steps proved to be notably efficient. The

second and third images contain ancient masonry walls from Syria occluded by

some vegetation. We can observe that several plants were detected as occluded

DOI:10.15774/PPKE.ITK.2023.007



2.5 Experimental Results and Evaluation 43

(a) Input (b) Mask (c) G1 Output (d) Inpainting result

Figure 2.14: Results of the proposed algorithm (inpainting step) on real scenes with
real occlusions (first row: a wall in Budapest, last two rows: ancient walls in Syria).

regions and appropriately inpainted, while the wall’s structure has also been

correctly delineated and reconstructed. Note that such delineation results (i.e.,

outputs of the G1 component) can be directly used in many engineering and

archeology applications, such as analysis of excavation sites or maintenance of

buildings. On the other hand, we can also notice a number of further issues in

these images, which are worth for attention. First, due to the low contrast of the

second image (middle row), not all mortar regions could have been extracted, but

this fact does not cause significant degradation in the inpainting results. Second,

some vegetation regions are left unchanged, which artifact can only be eliminated

with involving further features during the training. Third, in the last row, the
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(a) Input (b) Mask (c) Ours (d) GT

Figure 2.15: Results of the brick segmentation step of the proposed algorithm on real
scenes for ancient walls in Syria.

algorithm also filled in a door, which was identified as an occluded or damaged

wall region. To avoid such phenomena, special elements, such as doors, windows

or ledges could be recognized by other external object recognizer modules [79],

and masked during the inpainting process.

Figure 2.15 shows further brick segmentation results for some occlusion-free

archeological wall images (also from Test Set (3)), which have challenging struc-

tures with diverse brick shapes and special layouts. Moreover the first and second

images also have some low contrasted regions which makes brick separation no-

tably difficult. First we can observe that the delineation step (second column)

is highly successful even under these challenging circumstances. Moreover, even

in cases where touching bricks were merged into a single connected blob in the

delineation map, the watershed based segmentation step managed to separate

them as shown in the final output (third column), which is notably close to the

manually marked Ground Truth (fourth column).
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Next we introduce a possible extension of our algorithm which offers an addi-

tional feature, making our approach unique among the existing inpainting tech-

niques. We give the users the flexibility to draw and design their own perspective

of the mortar-brick pattern in the hidden (occluded) areas via simple sketch

drawings. Then the inpainting stage uses this manually completed delineation

map as input to produce the colored version of the reconstructed wall image,

whose texture style follows the style of the unoccluded wall segments, meantime

the pattern defined by the sketch drawing also appears in the inpainted region.

This feature allows the archaeologists to easily imagine the wall structure of the

hidden parts which might also help in reassembling the wall elements through

a better visualization. Figure 2.16 demonstrates the above described process.

First, we assume that some regions of the wall are hidden (see white pixels in

Figure 2.16a). Thereafter, we allow the user to modify the delineation map by

hand, adding new mortar regions which are shown in red in Figure 2.16b. Finally

the algorithm completes the wall elements with realistic results (Figure 2.16c),

which works even if the user draws unexpected or non-realistic wall structures as

shown in the second and third rows of the figure.

For a brief summary, Figure 2.17 demonstrates the results of our proposed

algorithm step by step. The first row shows selected input wall images which

contain various occluding objects (synthetic occluding objects in the first two

columns, and real ones in the last two columns). The second row displays the

output of the pre-processing stage where occluding objects are shown in gray,

and bricks in white. The third row is the G1 output where the predicted mortar

pixels under the occluded regions are shown with blue color, and the forth row

displays the output of the inpainting stage which is an inpainted color image.

The fifth row shows the output of the brick segmentation stage, which is followed

by the Ground Truth, i.e., the original wall image without any occluding objects.

In the first example (see the first column), the pre-processing step predicts

some segments of the yellow line as occluding objects, due to their outlier color

values compared to other segments of the wall. The false positive occlusion

predictions naturally affect the final results, however, as shown by this example,

the inpainting result is yet realistic, and the brick segmentation output is almost

perfect here. In the second and third columns, the bricks of the walls follow
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(a) Input images
(b) Hand-drawn mor-
tars (c) Output

Figure 2.16: Inpainting results with utilizing simple sketch drawings (shown by red in
the middle column) created by experts for mortar structure estimation in the occluded
regions.

less regular patterns, but even in these complex cases, the proposed algorithm

predicts efficient mortar-bricks maps and realistic inpainted color images of the

walls. Moreover, the brick segmentation results are of high quality in the non-

occluded regions, despite the high variety in the shapes of the brick components.

The wall in the fourth (last) column follows a periodic and highly contrasted

pattern, thus the pre-processing stage is able to separate the mortar, brick and

occlusion regions very efficiently. Some minor mistakes appear only in the bottom-

right corner, where the color of the occluding person’s lower leg is quite similar

the one of the frequent brick colors in the image.
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Based on the above discussed qualitative and quantitative results, we can

conclude that our algorithm provides high quality inpainting and segmentation

outputs for different wall patterns and structures, in cases of various possible

occluding objects.

2.5.5 Style Transfer Results

In Figure 2.18, we show results for the style transfer application, where we present

two different content image samples in the first row, and each of them is trans-

formed in the process using two different style images. (The style images and the

corresponding style transfer results are displayed side by side in the second and

third rows.)

Next, we present the results of transforming a binary brick-mortar map to

a wall image. Figure 2.19 displays two brick-mortar sketch maps, which can be

drawn even by hand. Each of them is transformed to different colored wall images

using two distinct style images, and the results are shown in the last two rows.

We can observe in both Figure 2.18 and 2.19 how the algorithm manged

to paint the style texture of the style image onto the brick-mortar pattern of

the processed image or the hand drawn sketch map, so that the mortar regions

efficiently match the color of the mortar, and the appearances of the brick regions

match the brick texture of the style image. However there are a few error cases

when some neighboring bricks are merged into a large brick object in the image

as shown in the center part of Figure 2.18(d).

In image inpainting tasks there are usually many alternative solutions. There-

fore, similarly to our user survey regarding the image inpainting in Sec. 2.5.2.2,

we conducted a user survey to assess our proposed style transfer approach. Us-

ing 15 different style images and 15 content images (9 color wall images and 6

brick-mortar maps), we generated 15 stylized images by our network. We showed

the outputs to 28 test subjects displaying the images side-by-side with the style

images, and asked them to vote whether they find the result of our style transfer

network visually appropriate or not. 18 out of 28 participants said that more

than 66% of the seen images were transformed appropriately; 10 out of 15 images

received more than 66% votes that it has been transferred appropriately. By
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Figure 2.17: Results of the proposed algorithm step by step for four samples in the
test dataset, first row: input images with occluding objects (first two images: synthetic
occlusions, last two images: real occlusions), second row: U-net output, third row:
IG1 out output, fourth row: segmentation output, fifth row: GT.
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Input images

(a) Style

(b) Our output

(c) Style

(d) Our output

Figure 2.18: Wall to wall style transfer samples, first row shows the input images,
second and third rows represent the style image and our output side by side.
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Input brick-mortar delineation maps

(a) Style

(b) Our output

(c) Style

(d) Our output

Figure 2.19: brick-mortar map to a wall style transfer samples.

DOI:10.15774/PPKE.ITK.2023.007



2.6 Ablation Studies 51

(a) U-Net based mask (b) CCA labeling (c) Prop. Watershed

Figure 2.20: Comparison of the brick segmentation results with connected component
analysis (CCA) and the proposed Watershed technique based on the same U-Net mask.

summarizing all votes on all images, 70.47% (296/420) images were considered

being transferred correctly.

2.6 Ablation Studies

In this section, we present ablation studies to support our decisions regard-

ing model construction and to provide further information about the employed

method.

2.6.1 Watershed as a Post-processing Step

The necessity of applying the marker based Watershed process instead of us-

ing a simple connected component analysis (CCA) approach becomes evident by

checking Figure 2.20 and Table 2.5. Figure 2.20 displays for a sample region the

brick segmentation result by CCA and by the proposed Watershed algorithm in
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parallel. As shown, if some mortar sections are missing or misdetected, neigh-

boring bricks can be erroneously merged into the same object by CCA, while

the Watershed approach efficiently handles these situations. Table 2.6 confirms

that such effects may also cause notable differences in quantitative performance

parameters, especially for rough ashlar walls.

Table 2.6: Object (brick) level F1-scores of connected component analysis (CCA) and
the proposed Watershed technique for brick segmentation using in both cases our U-Net
based delineation maps as input.

The method Random Square Dry Fine Rough Average
CCA 77.46 77.44 76.23 95.76 67.02 78.63
Prop. Watershed 79.93 75.56 77.74 97.58 79.87 81.23

2.6.2 Hidden Feature Generator Impact

The main goal of the G1 Hidden Feature Generator is to generate mortar and

brick regions with a similar pattern to the observable wall segments. Here in this

section, we compare our reconstructed delineation map IG1 out, and (as reference)

the generated edge map of the Canny based EdgeConnect algorithm, to the GT

delineation map Iwall ftr. It should be noted, that since EdgeConnect is a non-

blind method, by this comparison we used our U-Net based occlusion masks

for both EdgeConnect and our proposed technique. Qualitative test results are

shown in Figure 2.21, which clearly demonstrates the superiority of our proposed

method over the Canny based reference approach. Moreover, we can see here two

limitations of EdgeConnect: in the first row, we can find a densely textured image

of a stone wall, whose edge map is notably noisy leading to a poor delineation

result. In the second row the shadow causes both false and missing Canny edges,

which effect fools the consecutive inpainting step. On the other hand, our method

provides in both cases a clear distinction between the bricks and mortar regions,

since the model has been trained for such cases as well.

We also performed quantitative comparison at this stage, by calculating the

pixel-level Precision (Pr), Recall (Rc) and F1-score values for the predicted mor-

tar regions in the area covered by the occlusion mask. Here we compared both

DOI:10.15774/PPKE.ITK.2023.007



2.7 Conclusions of the Chapter 53

Table 2.7: Numerical comparison of the Canny-based delineation algorithm of the Edge-
Connect approach, and the Hidden Feature generator of our method for wall structure
prediction

obj. Precision (%) Recal(%) F1-score(%)
EdgeCon. Ours EdgeCon. Ours EdgeCon. Ours

Synthetic 34.02 59.57 12.89 52.06 16.60 53.37
Real 27.89 40.11 5.85 38.40 8.29 37.83

EdgeConnect’s and our results to the GT delineation map Iwall ftr. Table 2.7.

shows the average of the obtained Pr, Rc, and F1-scores in the test data set, con-

sidering both the synthetic and the real test samples. Note that due to multiple

possible solutions for structure inpainting even our outputs do not exactly match

the GT (38-53% F1-score), however they are significantly more correlated with

the hand-labeled mask, than the maps of the Canny based technique (8-17%).

Note that to fairly compare our technique to EdgeConnect, we had to separately

train the U-Net component from the remaining parts of the network. When we

switched back to using our end-to-end approach, we observed that the results

have slightly improved: for example the F1-scores measured in Table 2.7 for real

images increased from 37.83% to 39.1%. Apart from these numerical measures,

the visual results of Figure 2.21 confirm that our approach is able to predict

robustly and efficiently the mortar-brick structure in the occluded areas. It is

important to emphasize, the accuracy of predicting the mortar in missing areas

largely influences the generation of realistic color images in the subsequent Im-

age Completion step. For these reasons, we regard the efficiency of the Hidden

Feature Generator as a significant by-product of our research work.

2.7 Conclusions of the Chapter

This chapter introduced a new end-to-end wall image analysis and style transfer

from one wall to another. Our network has two different ways of utilization: in

the first one, the algorithm detects the occluded or damaged wall parts based on

a single image, and inpaints the missing segment with the expected wall elements.

In addition, the method also provides an instance level brick segmentation output
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(a) Input (b) EdgeCon. (c) Our G1 (d) GT

Figure 2.21: Comparison of the delineation mask of EdgeConnect to our method
(IG1 out) and to the Ground Truth (GT, Iwall ftr).

for the inpainted wall image. Our method consists of three stages. The first, pre-

processing stage adopts a U-Net based module, which separates the brick, mortar

and occluded regions of the input image. This preliminary segmentation serves

as input of the inpainting stage, which consists of two GAN based networks: the

first one is responsible for wall structure compilation; while the second one for

the color image generation task. The last stage uses the watershed algorithm

which fulfills accurate brick segmentation for the complete wall. The algorithm’s

second application involves altering the second GAN’s inputs to fit two different

wall images.

We have shown by various quantitative and qualitative experiments that for

the selected problem the proposed approach significantly surpasses the state-

of-the-art general inpainting algorithms, moreover, the segmentation process is

highly general and largely robust against various artifacts appearing in real-life

applications.
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Chapter 3

MVPCC-Net: Multi-View Based
Point Cloud Completion Network
for MLS Data

This chapter introduces a novel multi view-based method for completing high-

resolution 3D point clouds of partial object shapes obtained by mobile laser scan-

ning (MLS) platforms. The proposed approach estimates both the geometry and

color cues of the missing or incomplete object segments, by projecting the 3D

input point cloud by multiple virtual cameras, and performing 2D inpainting in

the image domains of the different views. In contrast to existing state-of-the-art

methods, the proposed method can generate point clouds consisting of a variable

number of points, depending on the detailedness of the input measurement, which

property highly facilitates the efficient processing of MLS data with inhomoge-

neous point density. For training and quantitative evaluation of the proposed

method, a new point cloud dataset is introduced, which consists of both syn-

thetic point clouds of four different street objects with accurate ground truth,

and real MLS measurements of partially or fully scanned vehicles.

55
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3.1 Introduction

As a result of the rapid advancement of 3D data acquisition technology and

the decreasing prices of 3D sensors, point clouds have become widely available

formats for representing the three-dimensional environment in various robotics,

surveillance, and autonomous driving applications. On the other hand, point

clouds collected by real scanners frequently provide only partial shapes of the

scanned items due to low sensor resolution, occlusions, and the limited number

of viewpoints used during scanning. Therefore point cloud completion, i.e. the

estimation of an object’s full shape from point sets which only partially describe

its geometry, is a fundamental key challenge in numerous computer vision and

robotic tasks, such as virtual reality (VR)/ augmented reality (AR) applications

[88], object tracking and simultaneous localization and mapping (SLAM) [89,

119].

3.1.1 Problem Statement

Figure 3.1: MLS data and our results on vehicle shape completion: (a) MLS data from
a Budapest street showing numerous incomplete car shapes, (b) Partial car shapes
obtained by semantic point cloud segmentation [110] from the MLS scene, (c) Our
results for completing the car shapes.

Mobile laser scanning (MLS) platforms equipped with time synchronized Lidar

sensors and navigation units can produce very dense and feature-rich point clouds

for urban areas, as shown in Figure 3.1(a). However, due to the fact that the

scanning vehicle can only move on the road, the point cloud models collected for

many field objects have incomplete shapes. For example, the sidewalk sides of the
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parking vehicles are typically missing from the scanned scene models (Figure 3.1).

Exploiting that available semantic point cloud segmentation methods [110, 115]

can efficiently separate regions of different object classes in an MLS scene, we

address in this paper the task of filling the missing regions of selected MLS object

shapes to create a more realistic representation of the real environment. For

example, from vehicle regions segmented from the raw MLS point cloud (Figure

3.1(b)), we aim to derive completed vehicle point cloud models (Figure 3.1(c)).

Existing point cloud completion methods apply various approaches to address

the underlying unstructured nature of the point clouds, such as voxelization [99],

intermediary 3D grids [102], or directly processing the point cloud [112] with the

PointNet encoder [115]. These techniques have achieved remarkable success in

terms of estimating complete geometric models of various object shapes. However,

the obtained 3D point cloud models are often only roughly detailed, because the

above methods are restricted to provide outputs with a fixed constant number of

points, regardless of the size, shape complexity, or resolution of the input point

cloud measurement segment corresponding to a given object.

In order to apply the aforementioned techniques [99, 102, 112] to MLS data,

the input point cloud should be spatially downsampled, yielding as output simpli-

fied object shape models with significantly lower point density and less geometric

detailedness compared to the genuine Lidar measurements. Moreover, a typically

featured test scenario of these methods focuses on generating realistic object

shapes from only a few (e.g. less than 15) measurement points, which task has

a large degree of freedom in terms of the possible acceptable solutions: these

use-cases are more connected to shape generation than shape completion.

3.1.2 Aim of the Chapter

In this chapter, we introduce a point cloud completion algorithm that can handle

the unstructured nature, and maintain the high resolution of the MLS measure-

ment data. To address the above challenges, we propose the Multi-View Based

Point Cloud Completion Network (MVPCC-Net), a network designed to gener-

ate dense and detailed 3D object models from partial point cloud measurements.
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The algorithm encodes the input 3D point cloud by a set of sparsely filled multi-

channel images representing both geometry and color information available from

the sensor data. This approach allows us to use 2D Convolutional Neural Net-

works (CNNs) for filling in the missing structural and color information in the

2D image domain. Thereafter, the inpainted multi-view grid maps are fused to

produce dense 3D point clouds representing the completed object shapes.

In addition, we present here a novel point cloud dataset which consists in part

of synthetic data, and in part of real colored MLS point clouds of partially or

fully scanned vehicles, captured by a car-mounted mobile laser scanning system

in Budapest, Hungary. Since by processing real MLS street measurements, we

cannot rely on accurate ground truth models, our method was trained on the

synthetic part of the dataset derived from ShapeNet [114] for four street object

classes. The ShapeNet-based point clouds are used as well for quantitative com-

parison of our technique versus various state-of-the-art methods. On the other

hand, we also demonstrate that with using an additional network component

for orientation adjustment of the input point clouds, the MVPCC-Net trained

on purely synthetic data can be directly applied for completing real MLS object

samples without the need of any additional fine-tuning step.

3.2 Related Work

Numerous deep learning approaches have been developed for 3D point cloud

processing. In volumetric approaches, point clouds are voxelized using a 3D

grid which is taken as input of a three-dimensional convolutional neural network.

Multi-view techniques project 3D point clouds to several planes from various

perspectives and extract view-wise information. The PointNet method [115] and

its extensions [103] directly process the point clouds using a symmetric function,

which allows the network to tolerate uncertainty in the order of points, and

accurately captures both global and local properties of a point cloud.

In this section we provide a methodological review on state-of-the-art algo-

rithms used for 3D shape completion and on multi-view approaches for point

cloud processing.
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3.2.1 3D Shape Completion Methods

3D shape completion methods can be categorized into three main groups: Geometry-

based approaches [122] have effectively been utilized to repair small holes on point

clouds, using geometric restrictions such as local surface or volumetric smooth-

ness. Template-based approaches [123] deform or reconstruct 3D point clouds

that correspond to the most similar templates detected in a 3D shape database.

Learning-based approaches have been widely adopted by 3D point cloud com-

pletion techniques due to the availability of synthetic public datasets like ShapeNet.

PointNet is utilized as an encoder in multiple state-of-the-art techniques [112,

118, 113, 101] with various types of decoders: FoldingNet’s decoder [101] warps

a predefined 2D grid so that it fits the input point cloud, by using two successive

three-layer perceptrons. The Point Completion Network (PCN) [112] employs

two-stage decoders that combine the advantages of fully-connected and folding-

based decoders. Extending the PCN network, the Vehicle Points Completion-Net

(VPC-Net) [113] combines the partial inputs with the PCN’s decoder outputs to

construct more homogeneous point clouds with finer-grained information. TopNet

[118] includes a decoder that generates point clouds in a hierarchical structure,

where each point operates as a branch of a tree. SoftPoolNet [100] provides a two-

stage, multi-resolution architecture for completing point clouds by substituting

max pooling with softmax function in order to retain local information. The 3D-

Encoder-Predictor Network (3D-EPN) uses directly a volumetric representation

of 3D point clouds [99]. However, converting point clouds to 3D volumes yields

data quantization, which step can remove many fine-grained details. For this

reason, in the Gridding Residual Network (GRNet) [102] 3D grids are proposed

to regularize unstructured point clouds while keeping their context and structure

detailed. The recent PoinTr [106] method and its extension called AdaPoinTr

[107] consider the point cloud completion issue as a set-to-set translation prob-

lem, so they transform the point clouds into a sequence of point proxies, then

they use a Transformer encoder-decoder architecture for point cloud completion.

A topology-aware method called LAKeNet [104] fills in the missing parts of the

3D point cloud’s structure by using three steps: aligned keypoint localization,

surface skeleton generation, and shape refinement. SeedFormer [109] introduces
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a novel Upsample Transformer with a new shape representation (Patch Seeds) to

preserve both regional information and global structures. Snowflake Point De-

convolution (SPD) is an approach developed by SnowflakeNet [108] to complete

the shape of the point cloud, where child points are generated progressively from

selected parent points.

However, all of the above methods use Chamfer Distance (CD) as training loss,

thus that they minimize the mean of local point-to-point distances between the

predicted and the ground truth point clouds, which process does not guarantee

the effective characterization of shape similarity [102].

3.2.2 Multi-view based Approaches

Multi-view based approaches have recently shown their efficiency in several tasks,

including classification [98, 120] and segmentation [96, 97, 121], moreover, recon-

structing 3D shapes from a single image or a series of images is an active research

area with different applications in robotics, and in virtual/augmented reality. Ex-

isting approaches adopt various output representations. A voxel-based output is

provided by [95], where a 2D convolutional neural network encodes 2D images

into a latent representation, which is subsequently decoded into 3D object shapes

by a 3D convolutional neural network. The Point Set Generation Network [93] de-

rives a point-based output, so that a set of unordered points is directly extracted

from a single image. Lin et al. [94] present pseudo-rendered depth images as

output and construct dense 3D objects by re-projecting them.

Image and point cloud fusion-based techniques have also been proposed for

3D shape completion recently. The View-guided Point Cloud completion method

(ViPC) [91] relies on auxiliary RGB image data for point cloud completion, as-

suming that the input image contains structural information for the missing shape

part. Similarly, the Cross-modal Shape-transfer model (CSDN) [92] combines the

image and point cloud information in expressing a full shape.

3.3 Data Generation

While supervised deep learning-based algorithms require extensive training data,

collecting proper 3D point cloud measurements for our method from real-world
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environments – including both incomplete and complete or manually completed

object shapes – is highly challenging and resource intensive. To circumvent these

limitations, we trained and quantitatively evaluated our model using synthetic

data, which consists of pairs of partial and complete point cloud models of various

3D object shapes, so that the incomplete point clouds can be used as input of

our method, while the complete shapes of the same objects as ground truth. In

addition, we extensively tested our trained shape completion network on real-

world (incomplete) Mobile Laser Scanning (MLS) measurements. We provide

access to both the synthetic and real data used in our tests in a novel public

dataset for the scientific community.

3.3.1 Synthetic Data

Recent works [112, 118, 113] utilized ShapeNet [114], a large-scale 3D synthetic

dataset to construct the training data, deriving point clouds from meshes available

in ShapeNet by sampling a predefined number of points. However, point cloud

models generated in this way often cannot be considered as efficient references for

real MLS data, since, for example, they may also contain various internal object

structures which are occluded during an outdoor scanning process.

To address the above issue, we used the approach described by [90] to generate

the (Ground Truth) 3D point clouds of objects from their complete mesh models.

First we render a model based on projections of the mesh to discrete 2D lattices

from distinct viewpoints, which are re-projected in the next step to the object’s

coordinate system. We set the resolution of the lattice of projection so that for

each object we produce a dense, colored point cloud that accurately depicts even

fine visible surfaces. Henceforward we refer to this point cloud as fine GT, where

the different object models may consist of a variable number of points depending

on the detailedness of the shape’s mesh model.

Next we generate incomplete point cloud models for the objects of interest,

which can be used as input of our algorithm during training and also in the

test phase for quantitative evaluation. Here the previously created point clouds

models of the complete object shapes are projected by a subset of the above

defined virtual cameras, and the views of the selected cameras are re-projected in
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the 3D space. In this way we can synthesize partial object point cloud samples,

that represent only points visible from the selected virtual cameras.

As processing urban MLS data is the primary goal of our approach, we selected

four object categories from ShapeNet, that are relevant for street scenarios: car,

bus, motorcycle, and train. Since a MLS system captures a scene from the top

of a scanning vehicle, it often cannot capture the bottom part of street objects.

Therefore by simulated MLS point cloud generation, we did not place upward

looking virtual cameras to the ground plane, we applied instead several side-view

and downward facing cameras around the object.

Our synthetic dataset contains in total 4918 distinct models, of which 4580

objects are used to train our model and 338 ones are used for evaluation. Twenty

partial samples were generated for each complete object shape using twenty dis-

tinct perspectives, yielding a training set of 91,600 objects and a test set of 6760

samples. Some partial object samples of the new dataset are shown in the first

column of Figure 3.3, while the last column of the same figure demonstrates the

corresponding complete point clouds used as ground truth.

Technically, our deep neural network is trained using a set of 2D six-channel

images, which are derived from the partial and complete point cloud samples

by projections in advance. To prepare the data, in the preprocessing phase, we

generate twenty images from twenty distinct perspectives, while in the training

phase, we follow a preliminary fixed view selection strategy - presented in Sec.

3.6.1 - which ensures that the selected views evenly surround all sides of the

object.

3.3.2 MLS Data

Apart from synthetic training and test data generation, we also created a real-

world test set that consists of (mostly partial) vehicle point clouds extracted from

measurements of a Riegl VMX-450 MLS scanner. The raw MLS test data was

provided by the City Council’s Road Management Department (Budapest Közút

Zrt.) in Budapest, Hungary. For ensuring accurately segmented vehicles in the

new test set, we utilized a user friendly 3D point cloud annotator tool described in
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[110]. In the preprocessing phase, each object sample was scaled and transformed

to fit within a 3D box with coordinates between -0.5 and 0.5.

Our real MLS data collection consists of 424 object samples in total. On one

hand, 370 point clouds represent partial vehicle shapes, where the scans of the

complete objects are not available in the MLS data, thus they can only be used for

qualitative analysis of the proposed technique (see Fig. 3.5). On the other hand,

54 samples depict almost entire vehicle shapes (see Figure 3.4 (g)), which can

be also used as ground truth similarly to the synthetic models presented in Sec.

3.3.1. Here we generated four partial point cloud samples from each complete

MLS vehicle shape, each one was created by reprojecting an image created from

a single virtual camera position, which was located in the front, behind, to the

right, or to the left of the selected object of interest (see Figure 3.4 (a)). Note that

while the synthetic dataset has a quite homogeneous point cloud characteristic, we

can observe notable point density variations within the set of real MLS samples.

In our dataset, an input MLS point cloud representing an incomplete car shape

consists of – in average – 31K points, and their size range varies between 2K and

130K points, while the complete car point clouds contain 35K points in average,

spanning the range of 15K–72K points.

3.4 Proposed Approach

The main goal of the proposed 3D point cloud completion approach is to trans-

form a point cloud segment representing only a portion of an object into a point

cloud describing the entire object shape. For uniform treatment, we initially en-

sure that the incomplete input point cloud segments are scaled and reshaped to

fit inside a 3D unit bounding box with point coordinates in the range of [-0.5,

0.5].

As shown in Figure 3.2, our method implements three sequential steps: (a)

Calculation of a multi-view image-based representation of the incomplete point

cloud measurement, (b) Shape and color completion in the 2D image domains

using an inpainting network, and (c) Re-projection of the inpainted multi-view

images to obtain a completed 3D point cloud model of the object of interest. The

three main steps are introduced in the following subsections in detail.
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Figure 3.2: Dataflow of our algorithm: (a) Multi-view projection: incomplete point
cloud measurement is represented as multi-view images, each view is recorded as a
six-channel image with RGB color information and XYZ geometry information; (b)
Completion model: it completes the shape and color information in the 2D image
domain; (c) Re-projection: the inpainted multi-view images are reprojected into the
3D space to generate a completed 3D point cloud model of the object.

3.4.1 Multi-view 3D Representation

Let us denote by Pin the input point cloud of Nin points, representing a single,

partially scanned scene object:

Pin = {pn}Nin
n=1,

where each point pn is associated to a 6D descriptor comprising three location

coordinates (XYZ) in the point cloud’s local Descartes coordinate system, and

three color coordinates (RGB).

In the first step, the point cloud Pin is mapped to different 2D grids from a

variety of perspectives: multi-view 2D images are captured by a set of V virtual

cameras located at predetermined positions around the object’s 3D bounding box.

Henceforward, v ∈ {1, . . . , V } refers to the index of a selected view. Assuming

that the position and orientation of each virtual camera are known, the view-

transformation for each camera v can be described by a Rv rotation matrix and a

tv translation matrix, which can be analytically calculated. Thereafter, the input
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point cloud Pin can be transformed to the reference coordinate system of camera

v as follows:

qvn = Rv · pn + tv, n = 1, . . . , Nin; v = 1, . . . , V (3.1)

where qvn denotes vth the camera coordinates corresponding to point pn ∈ Pin.

Next, each point is projected onto the camera plane using the virtual cameras’

projection matrix K, which is determined by the intrinsic camera parameters:

(xv
n, y

v
n) = K · qvn n = 1, . . . , Nin; v = 1, . . . , V (3.2)

The intrinsic settings of the cameras are adjusted to ensure that the objects of

the training dataset are entirely contained within the considered image windows,

while the coverage rate of the projected regions in the images is maximized. The

result of Eq. (3.2) is a 2D pixel position (xv
n, y

v
n) on the image plane of camera v.

To keep the genuine 3D geometric (XYZ) and 3D color (RGB) information from

in the original point cloud Pin, we store the point projections in a six-channel

image Ivin associated with each view v. More specifically, if point pn is projected

to pixel (xv
n, y

v
n) in view v, the values of the different image channels at the given

pixel of Ivin are equal to the concerning (XYZRGB) coordinates of pn.

Note that by projecting 3D point clouds to 2D images, multiple points might

be projected to the same pixel of a given image lattice. We handle this issue

by sorting these points by their distances from the given camera, and we only

retain the closest points, keeping only the exposed portion of the object from the

camera perspective. The presence of multiple cameras from different directions

will ensure that the object points visible from any viewpoint will be represented

by one or multiple projected images.

On the other hand, following the above procedure, the different Ivin camera

images will be only sparsely filled, containing several pixels without any point

projections: by these pixels we set zero values for all channels.

In summary, as shown in Figure 3.2(a), this step derives a collection of mul-

tichannel images, that can be directly processed by 2D CNN architectures (see

Sec. 3.4.2). Each camera records a six-channel image, comprising geometry (XYZ

channels) and color (RGB channels) information, however the geometry is directly
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stored in the point cloud’s original Descartes coordinat system. As a result, a

point projected to multiple virtual camera planes will have the same geometrical

coordinates in each view image. We demonstrate later in Sec. 3.4.3 that this

property is highly beneficial during the 3D point cloud re-projection phase of the

process.

3.4.2 Completion Model

The second main step of the proposed approach (see Figure 3.2(b)) performs

structure and color inpainting of the missing object regions in the domain of the

six-channel Ivin images generated from different viewpoints in the previous phase.

The resulting inpainted images will later guide the generation of the final 3D

point cloud in the last step (Sec. 3.4.3).

Our method uses a Generative Adversarial Network (GAN) [39] architecture,

that consists of the Generator (G) and Discriminator (D) networks.

Our Generator implements three subsequent steps:

(i) First, we use a shared encoder for all views, which applies two-stage down-

sampling followed by using eight residual blocks to separately encode each

of the six-channel images Ivin associated with view v to its own view-level

latent feature cube fv of size 64 × 64 × 256, for v ∈ {1, . . . , V }.

(ii) The intermediate feature fusion phase employs (3×3) convolutions, followed

by a ReLU activation function, to fuse all the view-level features denoted by

[f1, f2, . . . , fV ] into a single global feature cube F of the same size as each

fv. The global feature is expected to facilitate the transmission of shared

characteristics between distinct viewpoints.

(iii) In the third step, we take each view-level latent feature fv, and concate-

nate it to the global feature F calculated in the previous phase, obtaining a

f̂v = [fv, F ] extended feature cube of size of size 64×64×512 for each view

v ∈ {1, . . . , V }. Next, the shared decoder processes the different view’s f̂v

features sequentially, so that each f̂v is upsampled to the size of the original

Ivin image using dilated convolutions, with a dilation factor of two. The

output of the decoder is an inpainted Ivout image, with the same size and
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six-channel format (i.e. XYZRGB channels) as the encoder input Ivin. Let

us observe, that although the decoder generates the different Ivout images

separately for the different views, the decoder’s input features contain in-

formation from all views via the F global feature component of f̂v, thus

cross-view fusion is implicitly implemented at this step.

Next, the six-channel Ivout images predicted by the Generator are presented to

the Shared Discriminator, whose task is to decide whether they are real or fake.

The discriminator architecture is based on the 70 × 70 PatchGAN [34], which

determines whether overlapping image patches of size 70 × 70 are real or not.

For model training, we follow a supervised approach using Ground Truth (GT)

images projected from complete object models, as detailed in Sec. 3.3. In the

training phase, we attempt to ensure that for each view v the six-channel image

Ivout = G(Ivin) predicted by the Generator, becomes as similar to the GT image

Ivgt as feasible. The network is trained using a combined loss function consisting

of six subterms: smooth L1 loss, adversarial loss, perceptual loss [49], style loss

[48], binary cross entropy loss and Total Variation loss [117] as detailed in the

following.

The smooth L1 loss term ℓL1 is used to keep the distance low between the

algorithm’s six-channel image output and the corresponding (GT) target image.

Smooth L1 loss combines the benefits of L1-loss and L2-loss by providing stable

gradients when the distance is high, while it reduces the oscillations when the

distance is small [86].

The adversarial loss ℓadv is also applied to all channels of the generated Ivout

image. It is presented as a zero-sum competition between the generator and

discriminator networks so that the generator attempts to minimize the value

defined by Eq. (3.3), while the discriminator attempts to increase it:

ℓadv = E{Ivgt}
[

log
(
D(

V∑
v=0

Ivgt)
)]

+ E{Ivout}
[

log
(
1 −D(G(

V∑
v=0

Ivin))
)]

(3.3)

The perceptual loss ℓperc and style loss ℓsty terms are calculated exclusively

for the RGB color image channels to make them perceptually and stylistically

more similar to the GT’s coloring. The binary cross entropy ℓLcro measures the
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difference between two binary masks defined by non-zero pixels in the output im-

age Ivout and the ground truth Ivgt, respectively. Finally, the Total Variation (TV)

loss ℓTV - which promotes spatially smooth output images - is utilized to smooth

the geometric output channels. The Generator ’s combined loss function ℓG is

derived from the above defined six subterms, with using λ1, . . . , λ6 regularization

parameters:

ℓG = λ1 ℓL1 + λ2 ℓadv + λ3 ℓperc + λ4 ℓsty + λ5 ℓLcro + λ6 ℓTV (3.4)

For our experiments, the following regularization hyperparameters of the loss

function are used: λ1 = 50, λ2 = 0.1, λ3 = 250, λ4 = 0.1, λ5 = 0.1, λ6 = 0.1/S,

where S refers to the image size (here S = 256×256). The first three parameters

were chosen based on [28], and the last three parameters were chosen to balance

the impact of each loss. More details about the model structure, the used loss

functions, and the training strategy are presented in Appendix A

3.4.3 Re-projection

As a result of the previous step, a set of inpainted six-channel images are available,

which represent the projections of the object shape from various viewpoints. Each

non-zero pixel in each view image encodes a 3D point in the object’s coordinate

system, where the geometry channels determine the given point’s normalized

XYZ Descartes coordinates, and the color channels define the associated RGB

value. Consequently, the completed point cloud of the object can be derived in a

straightforward way by re-projecting all points stored in the V different views one

after another to the same 3D space (see Figure 3.2(c)). Let us observe that this

process admits generating output point clouds that consist of a variable number

of points. More specifically, the number of points added to the incomplete input

point cloud is determined by the total number of inpainted pixels in the view

images.

During this stage of the algorithm, two post-processing steps are applied for

enhancing the quality of the generated point cloud. First, since we observed that

re-projecting the boundary pixels of the objects from the different image views

results in noisy points surrounding the 3D shape, we slightly erode the foreground
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regions of the inpainted images before executing the re-projection. Second, we

also employ a statistical outlier filter [111] to eliminate further outliers from the

final point cloud.

3.5 Experimental Results and Evaluation

We have trained and evaluated the proposed technique using our new dataset

introduced in Sec. 3.3, which consists of both synthetic and real MLS object

point cloud samples. In this section, we present a detailed quantitative and

qualitative performance analysis, and comparison versus various state-of-the-art

reference methods.

3.5.1 Evaluation Methodology

Since the output of the proposed method is a colored point cloud, we separately

evaluate the quality of object geometry prediction and the realistic nature of RGB

color estimation.

We perform the geometric assessment of the object shapes against various

state-of-the-art 3D point cloud completion approaches in the point cloud’s local

3D coordinate system, so that we compare each predicted point cloud (Ppred)

to the corresponding ground-truth point cloud (Pgt). There is no good numer-

ical metric to evaluate such completion 3D point completion results due to the

existence of many possible solutions, Nevertheless for quantitative analysis, we

rely on the Chamfer Distance (CD) and the F1-score, which are two frequently

used measures for comparing the similarity of two sets of points [100, 102].The

Chamfer Distance is calculated by searching for the closest point pairs between

the predicted point cloud Ppred and the corresponding ground truth Pgt in two

directions, as described by Eq. (3.5).

DCD(Ppred,Pgt) =
1

2Npred

∑
p∈Ppred

min
q∈Pgt

||p− q||22 +
1

2Ngt

∑
q∈Pgt

min
p∈Ppred

||p− q||22 (3.5)

where Npred and Ngt denote the number of points in Ppred and in Pgt, respectively;

and ||p− q||22 stands for the Euclidean distance between the locations of points p

and q.
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For considering an alternative geometric accuracy measure of point cloud com-

pletion, we also calculate the F1-score, which considers as a match any pair of

points whose distance is less than a given distance threshold τ . The F1-score

(F1) as a function of τ is computed as follows:

F1(τ) =
2 · Prτ · Rcτ
Prτ + Rcτ

(3.6)

where Prτ and Rcτ stand for Precision and Recall, for a given threshold τ :

Prτ =
1

Npred

∑
p∈Ppred

[
min
q∈Pgt

||p− q|| < τ
]

(3.7)

Rcτ =
1

Ngt

∑
q∈Pgt

[
min

p∈Ppred

||p− q|| < τ
]
, (3.8)

where based on [102] we adopted the threshold τ = 0, 01, commonly used for

normalized point coordinates.

In contrast to 3D geometry analysis, we can mainly rely on qualitative tests for

evaluating the color prediction of the proposed method, which can be performed

either in the 3D point cloud space (Sec. 3.5.3), or in the 2D image domain of

the individual views (Sec. 3.6). Since the considered reference methods only deal

with geometry completion, they cannot be involved here in the comparative tests.

Generally, the assessment of RGB image inpainting is regarded as a highly

subjective process, where we cannot find any straightforward numerical metric

for evaluation of the results [27]. However, there are a number of standard eval-

uation metrics used in literature which we also adopt here, including the Peak

Signal-to-Noise Ratio (PSNR), the Structural Similarity Index (SSIM) [78], and

the Relative L1 error [27]. We will calculate the later measures in the ablation

experiments (Sec. 3.6), where we analyze their dependency on various settings of

the proposed model.

3.5.2 Comparative Evaluation on Synthetic Data

In the first part of the evaluation process, we use the synthetic dataset presented

in Sec. 3.3.1 for testing our method, and for comparing it to four recent state-of-

the-art 3D point cloud completion algorithms: TopNet [118], GRNet [102], PCN

[112] and VPC-Net [113].
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For providing a fair comparison, a number of careful considerations should be

taken. First, while our proposed model is able to process and generate object

point clouds that consist of a variable number of points, the above mentioned

reference methods are limited to produce point cloud outputs with a fixed size

of 16,384 points. For this reason, apart from using the high density fine GT

described in Sec. 3.3.1 for training our proposed MVPCC-Net, we also generated

a downsampled version of each object’s ground truth point cloud using the Far-

thest Point Sampling technique [116]. The downsampled point clouds - referred

henceforward as coarse GT samples – consist of exactly 16,384 points, thus they

can be used for training the reference approaches.

Second, since the reference methods exclusively deal with geometry informa-

tion, in these experiments we also limited our model’s training and evaluation

only considering the XYZ channels. For this reason, during this comparison, we

ignored the RGB channels, and we used the perceptual loss and the style loss

terms exceptionally for the XYZ channels (with a learning rate of 10−4).

The qualities of the completed object shapes are characterized by the geo-

metric evaluation parameters defined in Section 3.5.1. Comparative results are

provided in Table 3.1 and Table 3.2, using as quality measures the mean Chamfer

Distance and the mean F1-score over the test set, respectively. Here we used the

proposed MVPCC-Net model with four views (V = 4), which proved to be the

most efficient settings in our ablation experiments, as detailed later in Sec. 3.6.1.

To demonstrate that the relative performances of the considered techniques are

fairly stable regardless of how detailed reference point clouds are used as ground

truth, we calculated the geometric evaluation metrics for both the fine GT and

coarse GT samples, which results are shown side by side in Tables 3.1 and 3.2.

Given that the denser fine GT samples have more points than the coarse GT

objects, it is evident that the CD error rates associated with the fine GT are

generally lower (and the F1-scores are higher) than the results connected to the

coarse GT regarding each method.

The superiority of our method’s coarse GT -related results demonstrates its

efficacy in recreating the global structure of the objects under study (i.e, size and

shape of their main components). On the other hand, our MVPCC-Net approach

is also superior at reconstructing local features and fine geometric structures
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appearing only in denser point clouds: This observation is supported by our

efficient fine GT -related numerical rates, and also by comparative qualitative

results shown in Figure 3.3, which displays for various sample objects the input

partial point clouds, the results of all considered techniques, and the fine GT as

a reference.

(a) Input (b) TopNet (c) GRNet (d) PCN (e) VPC (f) Seed (g) Snow (h) Ours (i) GT

Figure 3.3: Qualitative results on the synthetic dataset, where we present the input
partial point cloud, the results of the references methods, PCN, TopNet, GRNet, VPC-
Net, SeedFormer, SnowflakeNet,Our results, and the GT stands for the complete 3D
object.

3.5.3 Comparative Evaluation on Real MLS data

In the second phase of the experiments, we evaluate the performance of the

proposed approach and the reference techniques on real MLS point cloud samples,

presented in Sec. 3.3.2. Due to the lack of sufficient number of (complete)

training samples among the available MLS object point clouds, we use here the

MVPCC-Net with weight parameters trained on synthetic data in the previous

test phase.

However, by replacing synthetic point cloud inputs with real MLS measure-

ments we have to deal with a practical issue: While in synthetic datasets stan-
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Table 3.1: Evaluation of our algorithm’s geometric accuracy compared to the state-
of-the-art algorithms on the synthetic dataset using Chamfer Distance (×10−3) ↓.
By each object category, the first column refers to the comparison with the coarse GT
(16384 points), while the second column represents the comparison results to the fine
GT, the best results are highlighted in bold.

Method
Buses

1440 samples
Cars

4680 samples
Motorcycles
180 samples

Trains
480 samples

Overall
6780 samples

Coarse GT Fine GT Coarse GT Fine GT Coarse GT Fine GT Coarse GT Fine GT Coarse GT Fine GT

TopNet [118] 7.254 6.514 10.724 8.189 19.362 18.976 10.264 9.919 10.184 8.242
GRNeT [102] 7.776 7.153 8.596 7.807 9.077 8.675 7.149 7.544 8.332 7.672

PCN [112] 5.870 5.130 7.549 6.107 13.326 12.869 7.257 6.823 7.325 6.129
VPC-Net [113] 4.688 3.965 6.666 5.604 9.945 9.531 5.935 5.512 6.281 5.353

SeedFormer [109] 6.592 5.922 7.609 6.685 8.524 8.074 6.737 6.243 7.355 6.528
SnowflakeNet [108] 4.94 4.202 6.101 5.274 8.232 7.883 5.516 5.102 5.869 5.103

Ours 5.113 4.333 5.813 4.702 8.448 7.928 5.853 5.309 5.737 4.752

Table 3.2: Evaluation of our algorithm’s geometric accuracy compared to the state-of-
the-art algorithms on the synthetic testing dataset, F1-score (%) ↑, The first number
is a comparison with the coarse GT (16384 points), while the second number represents
a comparison with the fine GT, the best results are highlighted in bold.

Method
Buses

1440 samples
Cars

4680 samples
Motorcycles
180 samples

Trains
480 samples

Overall
6780 samples

Coarse GT Fine GT Coarse GT Fine GT Coarse GT Fine GT Coarse GT Fine GT Coarse GT Fine GT

TopNet [118] 82.06 82.85 69.56 73.31 24.85 25.95 64.70 64.91 70.68 73.48
GRNeT [102] 76.73 78.42 72.25 75.37 69.20 70.75 77.68 78.70 73.50 76.13

PCN [112] 89.74 90.96 83.79 86.99 49.35 51.17 80.49 81.29 83.91 86.47
VPC-Net [113] 95.50 96.22 87.63 89.57 66.89 68.23 87.56 88.12 88.75 90.31

SeedFormer [109] 85.62 86.80 81.03 84.28 75.22 76.86 84.71 85.59 82.11 84.71
SnowflakeNet [108] 94.01 94.83 88.34 90.23 74.85 75.89 89.79 90.12 89.28 90.77

Ours 92.64 93.70 89.61 91.89 76.46 77.58 88.22 88.99 89.81 91.68

Table 3.3: Evaluation of our algorithm’s geometric accuracy compared to the state-of-
the-art algorithms on the real MLS object samples, using Chamfer Distance (CD,
×10−3)↓, and F1-score (%)↑

Method ↓CD ↑F1-score (%) ↑F1-score (%)
(×10−3) τ = 0.01 τ = 0.005

TopNet [118] 12.725 52.87 14.10
GRNet [102] 10.185 67.73 31.47
PCN [112] 10.410 67.25 31.72

VPC-Net [113] 7.563 80.77 51.62
SeedFormer [109] 8.248 77.61 36.11

SnowflakeNet [108] 8.487 79,23 46.28
Ours 6.962 80.75 58.28
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(a) Input (b) TopNet (c) GRNet (d) PCN (e) VPC (f) Seed (g) Snow (h) Ours (i) GT

Figure 3.4: Qualitative results on Real-world dataset, where we present the input
partial point cloud, and the results of the references methods, PCN, TopNet, VPC-
Net, SeedFormer, SnowflakeNet, Our results, and the GT stands for the complete 3D
object

dardized objects alignments can be ensured (e.g. the forward direction of vehicles

is equal to one of the axes in their local Descartes coordinate system), object

fragments extracted from real MLS data may have arbitrary orientations. For

this reason, we proposed an additional network component for re-aligning the

input MLS point cloud segments, enabling the direct application of our model for

real measurements without the need for any additional fine-tuning, although the

model had been trained on purely synthetic data. For this purpose, we adopted a

spatial transformer network (STN) [87], which provides as output a 3×3 rotation

matrix, that can be used to rotate an input point cloud sample around its vertical

axis, so that it is transformed into a canonical orientation defined by ground truth

samples in the training phase. The STN network segment was trained indepen-

dently of the other components of the MVPCC-Net with synthetic vehicle shape

models (described in Sec. 3.3.1). The input of this training phase consists of par-

tial object point clouds rotated with randomly chosen angles around their vertical

axes, and its reference outputs are the same point cloud segments with standard

orientations, facing in the direction of the x-axes of their local coordinate system.

The aim of this training phase is to learn the transform providing an appropriate

rotation matrix for new object samples with arbitrary initial orientations.

After orientation adjustment, we tested the proposed MVPCC-Net and the

reference techniques on real MLS object samples, so that neither our model nor

other models were fine-tuned for the MLS measurements. As mentioned in Sec.

3.3.2, we have 54 completely scanned vehicle models in our MLS dataset which

can be used for quantitative evaluation in a similar manner to the synthetic data,
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while the remaining 370 MLS objects enable us to perform a qualitative study

on a widely diverse set of real vehicle point cloud measurements. Numerical and

qualitative evaluation results are shown in Table 3.3 and in Fig. 3.4 respectively,

which confirm that proposed MVPCC-Net outperforms the reference methods,

and it is capable of efficiently processing MLS measurements. As demonstrated

in Table 3.3, our model is clearly better than the other techniques regarding

the Chamfer Distance (2nd column of the table), however, the F-scores of VPC-

Net and MVPCC-Net are nearly identical with the standard distance threshold

settings τ = 0.01 (see the 3rd column). For this reason, we also calculated the

F-score values with a more strict threshold selection τ = 0.005, which choice

yielded already a clear advantage of the proposed method (4th column). We can

also conclude based on Figure 3.4 that our method is more capable of producing

dense and finely detailed point clouds which property is highly advantageous by

processing dense MLS data.

Although in Figure 3.3 and 3.4 we only visualized the geometry of the gener-

ated object point clouds, the MVPCC-Net method can also estimate RGB color

value for each point as described in Sec. 3.4. For selected MLS objects, the input-

output pairs of the proposed model are shown as colored point clouds in Figure

3.5. These qualitative results confirm, that in many different situations, both the

vehicle’s global shape and its color schema can be predicted in a realistic man-

ner, and the generated object segments fit well with the captured partial MLS

measurements both in geometry and in color. Exploiting that vehicles have in

general symmetric shapes, many components such as tail lamps or door textures

are efficiently transformed from one side to the other one. On the other hand,

the proposed method is also successful in predicting completely missing frontal

or back regions, where symmetry-based shape completion cannot be performed.

As a limitation, some erroneously textured areas may appear in different vehicle

regions, which phenomenon is in part a consequence of texture errors in the raw

MLS measurements.
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(a) Input (b) Our result (c) Input (d) Our result

Figure 3.5: Results of the proposed method with MLS point clouds acquired using a
Riegl VMX Mobile Laser Scanner.

(a) Input#1 (b) Output#1 (c) Input#2 (d) Output#2

Figure 3.6: Results of the proposed approach on the Shapenet datasetâs asymmetrical
sofa objects. For the same item, each row shows the input and our method’s output
from two viewing angles.

DOI:10.15774/PPKE.ITK.2023.007



3.5 Experimental Results and Evaluation 77

3.5.4 Completion Results for Asymmetric Objects

While the objects investigated in the previous sections have symmetric geom-

etry, the proposed method is not limited to dealing with such object shapes.

Since asymmetrical objects are usually considered more challenging for shape

completion methods, we also investigated how our MVPCC-Net is able to com-

plete partial point clouds of sofa objects. The sofa dataset was generated from

ShapeNet in a similar manner as described in Sec. 3.3.1 for vehicles. For this

experiment, we used 2930 training objects and 43 test samples for validation.

The results of shape completion for three sample sofa objects are displayed

in Figure 3.6, where each row shows the same input point cloud from two dif-

ferent perspectives, alongside the predicted object shapes. The results confirm

at a proof-of-concept level that our model can also generate realistic results for

asymmetrically shaped items.

3.5.5 Computational Time

In this section, we present an experimental study about the execution time of

each individual step of the proposed algorithm. Our experiments were performed

on a personal computer (PC) with AMD Ryzen 9 5900X 12-Core Processor, 32-

GB RAM and a NVIDIA GeForce RTX 3060 Ti GPU. We run the proposed

MVPCC-Net model with four views (V = 4) on 216 real MLS samples described

in Sec. 3.3.2. The completion model part was executed on the GPU, while the

remaining steps have been implemented for CPU. Table 3.4 presents the mea-

sured average execution time per object in milliseconds (ms), for the consecutive

steps of our proposed shape prediction workflow. As the results show, with our

method the mean total computing time for a sample object was around 55 ms.

As for the reference techniques, we tested two methods [109, 108] on the same

PC configuration as our model, and their execution time varied between 28–48

ms for the different MLS object samples. Note that as shown in Table 3.4, al-

most half the processing efforts in our model correspond to the statistical outlier

filter [111], which step can be significantly accelerated further by using a GPU-

based implementation [105]. The remaining considered reference methods were
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tested on slightly different hardware platforms, nevertheless the experienced run-

ning times were largely similar to our model. We should also emphasize, that

in the targeted MLS data processing application, real-time operation is usually

not a strict requirement, thus we regard the speed of our algorithm adequate for

applicability.

Table 3.4: Execution Time for each step of our algorithm in milliseconds (ms). The
time is measured on an NVIDIA GeForce RTX 3060 Ti GPU with batch size of 1.

NO. views Projection Completion model Re-projection Filter Overall
Encoder Fusion Decoder

4 views 6.311 10.493 0.132 4.514 7.933 25.621 55.004

3.6 Ablation Studies

The proposed MVPCC-Net model consists of various components and it contains

a number of hyperparameters which influence its performance. To support our

decisions regarding model design, and provide more information about parameter

settings, we present ablation studies in this section, wherein each experiment

we train our model with the car shape training dataset until the convergence

(using a learning rate of 10−4), and we validate the model performance on the

corresponding test set.

3.6.1 Optimal Settings of the Number of Views

In this section, we examine further the performance of the proposed method on

colored incomplete point cloud inputs, and study the impact of changing the

number of views with respect to the geometry and coloring of the completed

point cloud output.

Figure 3.7 displays the results per view as images for a sample vehicle object,

using a total of V = 10 views in the proposed model. Each row displays the

input, our model’s output, and the ground truth for the corresponding view. As

shown in the first three columns of Figure 3.7, the results depict realistic color

predictions, with color characteristics matching on both sides of the vehicle (see

rows 9 and 10), while realistic tail lamps can be observed on the vehicle’s rear

end (see in rows 1, 2, and 5), and the texturing style of the wheels also looks real
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Figure 3.7: Result of the XYZRGB channels from ten views for a partial input point
cloud. For each row: (a) RGB input, (b) RGB output, (c) RGB GT, (d) XYZ input,
(e) XYZ output, (f) XYZ GT.
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Table 3.5: Effects of view aggregation. Results on a test set of synthetic data (car
shape), PSNR↑, SSIM↑, MAE↓ on color channels, Chamfer Distance (10−3) ↓,
F1-score (%) ↑ on geometric accuracy.

No. views 2D Color Images 3D Geometry
PSNR ↑ SSIM ↑ MAE ↓ CD (×10−3) ↓ F1-score (%) ↑

3 views 25.03 0.9013 0.0860 6.937 81.31
4 views 24.95 0.8969 0.0892 6.585 83.07
5 views 22.67 0.7803 0.1768 7.45 80.67
6 views 21.44 0.7063 0.2340 8.28 76.03
7 views 20.11 0.6367 0.2768 11.214 65.08
8 views 19.42 0.5908 0.2968 9.19 73.16
10 views 18.40 0.5342 0.3689 13.697 63.54

(see rows 1-4). The color images of the last three columns of Figure 3.7 visualize

the shape geometry, so that the normalized XYZ coordinate values stored in

the geometry channels are displayed as pseudo geometry images. These results

demonstrate that the model is able to accurately predict the shape of the car,

and even details such as predicted wheels and mirrors are visible in the output.

In the next phase of the analysis, we trained and tested the proposed model

with increasing the number of views one by one from three to ten. The views are

chosen in the order indicated by the consecutive rows in Figure 3.7, for example,

the four-view configuration uses the images shown in the first four rows.

Table 3.5 presents quantitative results of our model with different numbers

of views for the whole car shape test dataset, using various metrics for geometry

and color evaluation defined in Sec. 3.5.1. These experiments confirm that we

can obtain the most accurate 3D geometry prediction by using in total four

different viewpoints (following the settings of the first four views in Figure 3.7).

While additional views yield a higher point density output point cloud, they

also cause additional noisy points surrounding the object shape, reducing the

accuracy of shape estimation. This phenomenon is shown in Table 3.5, where

the Chamfer Distance increases (and the F-score decreases) in cases of more than

four viewpoints.

We can observe similar tendencies regarding color estimation based on Table

3.5 and Figure 3.8: Using more than four views yields weaker performance rates,

and we can also see noisier texture by six or eight views via visual verification
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(Figure 3.8(d),(e)). Note that although according to Table 3.5 the best color-

based evaluation rates are obtained by three views, such a configuration still

generates incomplete object shapes (Figure 3.8(b)), leading to larger geometric

error values (see CD and F1-score rates in Table 3.5).

(a) Input (b) 3 views (c) 4 views (d) 6 views (e) 8 views

Figure 3.8: Effects of view aggregation. Results of the proposed method with different
number of views: (a) Input, our model results using three, four, six, and eight views
are shown in (b)-(e) respectively.

3.6.2 View Fusion Strategies

In this section, we compare the view fusion strategy introduced in Sec. 3.4.2 to

a straightforward early fusion technique used as baseline model, where the Ivin

images of all v views are concatenated into a single input data cube for the en-

coder, while the decoder generates all output views in one step. On the contrary,

our method implements a late fusion approach, which generates first a separate

feature representation fv for each view v by a shared encoder, thereafter a Fea-

ture Fusion network component generates a global feature F from the view-level

features which is used by a shared decoder to produce the inpainted images per

view in a sequential process. The block diagrams of the above defined early and

late fusion approaches are shown in Figure 3.9.

Next, we conducted experiments for comparing the efficiency of the early

fusion to the late fusion strategies in the MVPCC-Net model. As input, we

considered on the one hand measurements with color and geometry channels

(XYZRGB), and on the other hand, pure shape data containing geometry chan-

nels only (XYZ). The obtained results regarding 3D geometric accuracy over the

car shape set are presented in Table 3.6, while Figure 3.10 shows the results of
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(a) Early fusion

(b) Late fusion

Figure 3.9: Types of fusions, (a) Early fusion method, (b) Late fusion method.

(a) Input (b) Early (XYZ) (c) Early XYZRGB (d) Late XYZ (e) Late XYZRGB

Figure 3.10: Effects of Fusion strategies. Results of the proposed method with different
fusion strategies: (a) Input, our model results using (b) early fusion method on geom-
etry channels, (c) early fusion method on color and geometry channels, (d) late fusion
method on geometry channels, (e) late fusion method on color and geometry channels

the different fusion strategies for two sample objects, where we present the point

cloud results without displaying RGB color for enabling better visual comparison

of the object geometries. The quantitative and qualitative results confirm that the

proposed late fusion approach outperforms the early fusion baseline technique for

both types of input data (XYZ and XYZRGB). Regarding the geometric param-

eters, the models purely considering XYZ channels yield in general better results,

which fact indicates that generating colored point clouds comes with some degra-

dation of the shape geometry. On the other hand, adding RGB information to

the early fusion approach yields a significantly larger reduction of the geometric

accuracy, than by using the late fusion technique, where we can only observe a

slight negative effect on the accuracy of the predicted object shape.
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Table 3.6: Effect of various fusion strategies, Results on a testing set of synthetic data
(car shape), Chamfer Distance (×10−3) ↓, F1-score (%) ↑ on geometric accuracy.

Fusion method CD (×10−3) ↓ F1-score (%) ↑
Early fusion (XYZ) 5.735 87.33

Early fusion (XYZRGB) 11.792 69.29
Late fusion (XYZ) 5.315 89.04

Late fusion (XYZRGB) 6.585 83.07

3.6.3 Re-projection Filter Parameters

This section demonstrates the significance of applying the erosion and outlier

filters as post processing steps of the view re-projection phase (Sec. 3.4.3), and

we also justify here the filters’ parameter selection strategy.

(a) Input (b) Not used (c) 1× 1 (d) 3× 3 (e) 5× 5

Figure 3.11: Analysis of the effect of using the erosion operation in post-processing: (a)
input point cloud, (b) result without using the erosion operation, (c)-(e) results using
erosion operation with kernel sizes 1 × 1, 3× 3 and 5× 5, respectively.

In the following experiment, we test the proposed MVPCC-Net model with

four views, and purely geometric (XYZ) input data, so that we calculate the

geometric CD and F1-score values for the output point clouds provided by the

re-projection step with various filter parameters.

We start with the analysis of using the erosion operator, where we evaluate

the results in four configurations: first without using the erosion step, thereafter

with implementing the erosion with square shaped kernels of sizes 1×1, 3×3, and

5 × 5, respectively. Based on the results presented in Table 3.7 and Figure 3.11,

we can conclude that by applying the erosion operator we can get a smoothed

output point cloud, where several noisy points around the investigated object’s

shape are removed. Since by increasing the kernel size to 5 × 5, we can often

observe the removal of some real object components, we decided to use the 3 × 3

kernel, which choice also corresponds to the best evaluation rates in Table 3.7.
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(a) Input (b) No SOF (c) σ=8 (d) σ=5 (e) σ=2

Figure 3.12: Analysis of the effect of using Statistical Outlier Filter (SOF) as a post-
processing step: (a) input point cloud, (b) results without using SOF, (c)-(e) results
using SOF with standard deviation rates σ = 8, 5 and 2, respectively.

Table 3.7: Analysis of the effect of using erosion operation as a post-processing step
with different kernel sizes

Kernel size CD (×10−3) ↓ F1-score (%) ↑
Not used 5.583 88.69
(1 × 1) 5.335 88.89
(3 × 3) 5.315 89.04
(5 × 5) 5.371 88.84

Next, we demonstrate the significance of the Statistical Outlier Filter (SOF).

Figure 3.12(b) shows the results without SOF, while Figure 3.12(c)-(e) display the

output point clouds using the statistical outlier filter with its standard deviation

parameter σ equal to 8, 5, and 2, respectively. We can see that the filter can

remove several noisy points around the object boundary, while the number of the

filtered points increases by decreasing the standard deviation rate.

Applying the statistical outlier filter as the last step of our algorithm has a

significant impact on the geometric accuracy of the final results: according to

Table 3.8, both the CD ad F1-score rates can be improved by around 2%. We

can also observe that using SOF with a standard deviation of σ = 8 decreases

the CD by removing a large number of noisy points, whereas selecting a σ = 5

improves the F1-score while it maintains the CD nearly unchanged compared to

the case of σ = 8. Using a standard deviation of σ = 2 we experience a minor

rise in the F1-score at the expense of a significant decrease in CD. Based on the

above experiments, in our final model we applied the statistical outlier filter with

a standard deviation of σ = 5 in order to obtain a reasonable balance between

the CD score and the F1-score evaluation rates.
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Table 3.8: Analysis of the effect of using Statistical Outlier Filter (SOF) as a post-
processing step with different standard deviation (σ) parameters

Settings CD (×10−3) ↓ F1-score (%) ↑
No SOF 7.076 86.86

σ = 8 5.311 88.99
σ = 5 5.315 89.04
σ = 2 5.349 89.05

3.7 Conclusion of the Chapter

In this chapter, we proposed a novel method for completing colored 3D point

clouds representing various incomplete object shapes. We focus on generating

models of street objects based on Mobile Laser Scanning measurements, where

a key requirement is to keep the high detailness of the input data. Our method

generates first multiple projections of the incomplete input point cloud by vir-

tual cameras positioned around the object of interest. Thereafter the sparsely

filled multichannel view images are completed in the 2D domain, and they are

reassembled in the 3D space, resulting in dense point clouds of the whole object.

It has been demonstrated by quantitative and qualitative experiments both on

synthetic and on real-world MLS data that the new method is applicable and

it outperforms various state-of-the-art techniques in terms of geometric shape

accuracy, realistic RGB coloring, and preserving high resolution.
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Chapter 4

Conclusions of the Thesis

This dissertation introduces novel approaches for inpainting occluded regions in

2D images and 3D structures in real machine perception and computer vision

applications. We studied two different research problems: inapinting and seg-

menting wall images that may include occluded areas, and completing the 3D

shape of partially Lidar-scanned objects. Models based on deep convolutional

neural networks and a novel data format have been developed to overcome the

presented difficulties. It has been shown quantitatively and qualitatively that the

proposed approaches outperform state-of-the-art techniques, as well as perform-

ing properly in real world applications.

4.1 New Scientific Results

1. Thesis: I have proposed a novel masonry wall image analysis and
virtual structure recovery technique. The introduced approach auto-
matically segments the wall structure and inpaints possible wall seg-
ments in the observed occluded/damaged regions. I have experimen-
tally demonstrated that the proposed technique outperforms recently
published models with the same objectives in terms of various wall
structure and visual color metrics.

Published in [1][3][4][6]

This thesis deals with three selected tasks: First robust wall segmentation

algorithm is performed to separate various sorts of structural elements (stones,

bricks, ashlar, etc.) from the mortar regions, and it can also detect the occluded

87
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and damaged wall regions. The second task is predicting and visualizing potential

wall segments in the occluded/damaged wall regions. In the third task, a new style

transfer technique is proposed between two wall images by filling or modifying

the texture style of one wall based on another wall.

All of the aforementioned procedures are publicly available for testing on the

following user-friendly website: http://imgproc.mplab.sztaki.hu/masonrydemo

1.1. I have developed a technique for separating the bricks from the mortar in
masonry wall images and obtaining accurate brick structures. The proposed
method uses the U-Net-based delineation output as robust markers for the
Watershed algorithm. I have shown the importance of employing the marker-
based Watershed process rather than a basic connected component analysis
(CCA) approach. Moreover, I have experimentally demonstrated that the
proposed technique surpasses the most recent wall segmentation techniques.

Several segmentation approaches exist in the literature [61, 65, 67]; however,

the majority of them solely focus on the morphological analysis of quasi-periodic

masonry walls, where the geometry of masonry courses follows horizontal rows,

a condition that does not hold very often, particularly for ancient walls. I have

designed a method that is adaptable to a large variety of wall structures, including

both historic wall structures and modern building facades. I have shown that

the proposed approach significantly surpasses earlier available solutions, and it

is largely robust against various noise effects, different illumination conditions,

changes in viewpoints, and varying masonry types. In addition, I have shown,

using both quantitative and qualitative experiments, that the proposed technique

can identify a wide variety of possible occluding objects with high accuracy.

To train and test the proposed network, I have created a new annotated

dataset based on 532 different wall images. I have made the dataset publicly

available in the following website:

http://mplab.sztaki.hu/geocomp/masonryWallAnalysis

1.2. I have proposed a novel blind masonry wall image inpainting technique,
performing the automatic detection and virtual completion of occluded or
damaged wall regions. The proposed method works in an end-to-end man-
ner, starting with a segmentation step that detects the occluded regions and
the wall structure in the visible areas, it then proceeds by two consecutive in-
painting stages: wall feature completion, and color image completion. I have
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demonstrated the advantages of using domain specific semantic segmenta-
tion information (mortar-brick features) over low feature information (such
as Canny-based edge information) as a preprocessing step of the inpainting
stage for obtaining realistic wall structures in the occluded areas. More-
over, I have experimentally shown that the results of the proposed technique
significantly suppress the state-of-the-art inpainting algorithms in terms of
FID-score and human visual judgment for masonry wall image inpainting
applications.

The main goal of the proposed algorithm is to efficiently complete missing

wall regions with realistic mortar-brick structure and color information. The

proposed automatic method works in an end-to-end manner with a U-Net based

model for detecting of the occluding segments, followed by two Generative Adver-

sarial Networks (GANs) applied consecutively. The first GAN utilizes as input the

segmentation results presented in Thesis 1.1, and completes the missing/broken

brick and mortar segments yielding a complete wall structure mask with a con-

nected mortar network. Thereafter, the second GAN estimates the RGB color

values of the pixels in the predicted mortar-brick regions. I have demonstrated,

through quantitative and qualitative comparisons, that the method is superior to

other state-of-the-art techniques for inpainting realistic wall structures and color

textures in terms of FID-score and human visual judgment.

1.3. I have proposed a new technique for style transfer between two different
walls. The algorithm replaces the coloring style of a wall image, with another
wall’s style, while maintaining the wall’s original structural integrity. I have
provided a comprehensive qualitative evaluation to demonstrate the benefits
of our approach in wall-to-wall style transfer.

I have modified the second GAN proposed in Thesis 1.2 and adapted it for

the wall image style transfer tasks in order to transfer the texture and color style

from one image to another wall structure. This approach requires two images as

inputs: the first one is the content image which is a color wall image or a bi-

nary image for the wall structure, and the second image is the style image which

is a different wall image. The goal is to create a new image that incorporates

both the structure of the content image and the texture style of the style im-

age. I have demonstrated, through a number of qualitative experiments, that the

proposed method is significantly robust under different circumstances, in various
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applications.

2. Thesis: I have proposed a novel Multi-View Based Point Cloud Com-
pletion Network (MVPCC-Net) for completing colored 3D point clouds
representing various incomplete object shapes. I have demonstrated by
quantitative and qualitative experiments both on synthetic and real-
world MLS data that the proposed method outperforms various state-
of-the-art 3D point cloud completion techniques.

Published in [2][5]

Mobile laser scanning (MLS) is an emerging technology for generating ex-

tremely dense and very precise 3D point clouds for urban environments; yet,

because the scanning vehicle can only operate on roads, many point clouds of

field items have incomplete shapes.

State-of-the-art point cloud completion methods [99, 102, 112, 118] have demon-

strated success in estimating full geometric models of various object shapes. How-

ever, 3D point cloud models obtained by previous approaches represent only

coarsely detailed object shapes, because the aforementioned methods are limited

to providing outputs with a constant fixed number of points.

I have introduced a novel multi view-based approach for completing high-

resolution 3D point clouds of partial object shapes obtained by MLS platforms,

which is able to preserve the genuine high level of detailedness of partial point

cloud shapes obtained by real MLS systems. I have proved through quantitative

and qualitative experiments on the provided dataset that our method outperforms

state-of-the-art techniques in reconstructing the local fine geometric structures

and predicting the overall shape of the objects.

2.1. I have proposed a new approach for encoding the unstructured 3D point
cloud data from several surrounding perspectives into a set of regular multi-
channel 2D images comprising both geometry and color information. This
representation permits the use of 2D Convolutional Neural Networks (CNNs)
to fill in the missing structural and color information in the image domain,
and afterward it enables the creation of a dense colored 3D point cloud
representing the full object’s shape.To experimentally validate the proposed
approach I have constructed a new database that consists of both synthetic
and real MLS data and I have made it publicly available.

Previous point cloud completion methods employ various techniques to deal
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with the fundamental unorganized character of the point clouds, such as vox-

elization [99], intermediary 3D grids [102], or directly processing the point cloud

[112, 118], with the PointNet encoder [115]. In order to apply the aforementioned

data representations with feasible computational requirements to MLS data, the

input point cloud must be spatially downsampled, resulting in simplified object

shape models with substantially lower point density and less geometric informa-

tion than the original MLS measurements. To complete the missing regions of

MLS measurement data and to keep its high resolution, I have proposed a new

representation of the point cloud data in which the input point cloud is repre-

sented as a collection of sparsely filled multi-channel images that capture from

multiple angles and convey the geometry and color information. This represen-

tation facilitates the usage of 2D Convolutional Neural Networks (CNNs) and

simplifies the fusion of color and geometry information. The proposed deep neu-

ral network is trained on this new data representation and the results are then

reprojected to a 3D point cloud. I have demonstrated the effectiveness of this

representation by presenting quantitative and qualitative results that verify the

accuracy and density of the output point cloud.

For training and quantitative evaluation of the proposed method, I have pro-

vided a new point cloud dataset consisting of both synthetic point clouds of four

different street object classes with accurate ground truth, and real MLS measure-

ments of partially or fully scanned vehicles. I have demonstrated by quantitative

and qualitative experiments both on synthetic and real-world MLS data that

the proposed method is applicable and it outperforms various state-of-the-art

techniques in terms of geometric shape accuracy, realistic RGB coloring, and

preserving high resolution.

2.2. I have proposed a late fusion-based technique for fusing the view-level
features generated from several perspectives around the object. The pro-
posed method provides a robust global feature for transmitting shared char-
acteristics between distinct viewpoints. I have demonstrated by quantitative
and qualitative results that the proposed approach outperforms the early
fusion baseline technique both for pure geometric data samples (XYZ), and
for colored point clouds (XYZRGB).

Existing multi-view based methods use an early fusion technique, where all

projected images from all views are concatenated into a single input data for the
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encoder, while the decoder generates all output views in one step. On the con-

trary, my proposed method uses a late fusion strategy, whereby a shared encoder

is used to build a view-level feature representation for each view separately, and

then a feature fusion network component is used to create a global feature from

the view-level features. The shared decoder receives the global feature and the

view-level features in a certain order to generate the view-level output images

that constitute the whole 3D point cloud.

I have quantitatively and qualitatively demonstrated that adding RGB infor-

mation to the early fusion based method reduces the geometric accuracy notably

more than the late fusion based method, where we notice just a minor decrease

in the accuracy of the predicted object shape.

4.2 Application of the Results

All the developed algorithms can be used by various up-to-date or future com-

puter vision systems. The first thesis can be applied to various image-based

documentation and survey applications in archeology, architecture, or civil engi-

neering, where brick segmentation is considered as an important initial step in

the analysis of masonry wall images. Image-based analysis of man-built struc-

tures is considered as a core step of many applications, such as stability analysis

in civil engineering, condition estimation and damage detection of buildings in

architecture, digital documentation in archeology or maintenance and restoration

in cultural heritage preservation.

The 3D point cloud completion method presented in the second thesis is useful

in a wide variety of computer vision and robotic activities where full scene repre-

sentation is needed for improved scene visualization, such as VR/AR applications,

self-driving, and surveillance applications.
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4.3 Implementation Details

The main platform for point cloud handling and processing was implemented in

Python3 and Open3D while the neural network models were implemented and

trained in Python3 with Pytorch/ Keras frameworks. The hardware set up for

training contains two Nvidia Geforce RTX 3060 Ti GPU with 16 GB device

memory and 64 GB main memory.
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Appendix A

Supplementary Material

A.1 Lidar Technology

Lidar – Light Detection and Ranging – is a laser based remote sensing technology,

which is increasingly used for several applications, such as autonomous vehicles,

aerial inspection, forestry and land management and robotics. The technique is

based on the remote measurement of an item utilizing a light beam transmitted

to the object and reflected to the transmitter, and the distance between the

Lidar system and the target is determined by the duration of flight of the light

produced. The output of the measurement is a highly accurate 3D point cloud

with coordinates in a local or global coordinate system, depending on the kind

of Lidar device and the application domain.

Figure A.1: Riegl VMX-450 mobile mapping system.

Riegl VMX-450 (Figure A.1) was used in Chapter 3 for data acquisition in

this thesis, the Lidar mounted on the roof of a moving vehicle can provide highly

detailed, precise, and feature-rich information about the 3D environment even
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Notation Definition
Qk-s (1 × 1) Convolution-BatchNorm-ReLU layer
Wk-s (3 × 3) Convolution-BatchNorm-ReLU layer
Tk-s (7 × 7) Convolution-BatchNorm-ReLU layer
Mk-s (3 × 3) Convolution-InstanceNorm-ReLU layer
Dk-s (4 × 4) Convolution-InstanceNorm-ReLU layer
Ck-s (7 × 7) Convolution-InstanceNorm-ReLU layer

with reflection padding
Rk-s (3 × 3) Convolution-SpectralNorm-InstanceNorm-

ReLU layer with residual block across all layers
and dilated convolution in the first layer

Uk-s (4 × 4) Convolution-InstanceNorm-ReLU layer
with transpose convolution for up-sampling

Vk-s (4 × 4) Convolution-SpectralNorm-LeakyReLU
layer

Table A.1: Notation of the used layers in the thesis

at high speeds. The system incorporates two RIEGL VQ-450 laser scanners, an

inertial measurement unit (IMU), a global navigation satellite system (GNSS),

and up to six digital cameras. The system offers rapid 3D data collection with

high accuracy and high resolution, which may serve as a foundation for various

applications including mapping of transportation infrastructure, city modeling,

fast mapping of construction sites, surveying of mining, and network planning.

A.2 Deep Learning Network Parameters

In this section, we provide additional technical information regarding the net-

works utilized in the thesis, including the structure of the networks, the loss

functions used, and the training technique.

A.2.1 Network Architectures

We provide the architectures of the networks utilized in the thesis following the

naming convention described in [28, 49].
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Table A.1 represents the notations used to describe the used layers, where k

stands for the number of filters and s stands for the used stride. Each network

will be addressed individually in the following sections:

A.2.1.1 Pre-Processing Stage

The network used in Section 2.4.1 for the pre-processing stage is a U-Net based

network, It is an encoder-decoder-based model including skip connection ( i.e.

the layers in the encoder part are skip connected and concatenated with layers in

the decoder part). The encoder structure follows a Resnet50 [9] encoder structure

which can be described as follows:

T64-2,
(
(3 × 3) Max Pool, s=2

)
, 3× (Q64-2, W64-1, Q256-1 ), 4× (Q128-

2, W128-1, Q512-1 ), 6× (Q256-2, W256-1, Q1024-1 ), 3× (Q512-2, W512-1,

Q2048-1 ).

The decoder structure follows an inverse of the encoder structure with trans-

pose convolution for up-sampling.

A.2.1.2 Generators

The architecture of the used Generators in Section 2.4.2 are adopted from the

model proposed by [49], which follows the following structure:

C64-1, D128-2, D256-2, R256-1, R256-1, R256-1, R256-1, R256-1, R256-1,

R256-1, R256-1, U128-2, U64-2, Ck-1.

The final layer Ck-1 varies depending on the generator. In the Hidden Feature

Generator G1 described in Section 2.4.2.1, Ck-1 has a channel size of 1 (k = 1)

with sigmoid activation. In the Image Completion Generator G2 described in

Section 2.4.2.2, Ck-1 has a channel size of 3 (k =3) with tanh activation for the

prediction of RGB pixel intensities.

In addition, we add Spectral Normalization for all layers of G1. Spectral

normalization (SN) [47] further stabilizes training by scaling down weight matrices

by their respective largest singular values, effectively restricting the Lipschitz

constant of the network to one. Although this was originally proposed to be used

only on the discriminator, recent work [129] suggests that the generator can also

benefit from SN by suppressing sudden changes in parameter and gradient values.

Therefore, we apply SN to both the generator and discriminator.
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The generator used in Chapter 3 is related to the number of views selected to

encode the input point cloud, and the architecture of it as follows:

Nviews×
(
C64-1, D128-2, D256-2, R256-1, R256-1, R256-1, R256-1, R256-1,

R256-1, R256-1, R256-1,
)
, M256-1, Nviews×

(
U128-2, U64-2, C6-1.

)
.

Where the Nviews is the number of views. The final channel has 6 channels

which are the XYZ geometry information, and the RGB color information for

each view.

A.2.1.3 Discriminators

The discriminators used in the thesis have the same architecture which is based

on the 70 × 70 PatchGAN [34, 126], the architecture is as follows:

V64-2, V128-2, V256-2, V512-1, V1-1

The final convolution layer produces scores predicting whether 70 × 70 over-

lapping image patches are real or fake. LeakyReLU [124] is employed with slope

0.2.

A.2.2 Loss Functions

The Perceptual loss [49] measures high-level perceptual and semantic differences

between images by defining a distance measure between activation maps of a

pre-defined network, which are presented in Equation A.1.

ℓperc = E
[∑

i

1

Ni

||ϕi(Iwall) − ϕi(IG2 out)||
]

(A.1)

where ϕi is the activation map of the ith layer of a pre-trained network. In this

thesis, we used the activation map of the VGG19 network pre-trained on the

ImageNet dataset [125] from layers relu1 1, relu2 1, relu3 1, relu4 1 and relu5 1.

These activation maps are also used to compute the style loss [48] which measures

the differences between the covariances of the activation maps.

The style loss is defined as

ℓsty = Ej

[
||Gϕ

j (Iwall) −Gϕ
j (IG2 out)||

]
(A.2)

where Gϕ
j is a Cj × Cj Gram matrix constructed from activation maps ϕj
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It was determined that outputs were severely pixelated and noisy when just

perceptual and style losses were optimized. To address this problem, the Total

variation loss was developed, which maintains spatial continuity and smoothness

in the generated image to prevent noisy and overly-pixelated results. The Total

variation loss is the total of the absolute differences between nearby pixel values

in the input images; it quantifies the amount of noise in images. as defined in the

following:

ℓtv =
n−1∑
i

|(I(i+1,j)) − (I(i,j)) +
n−1∑
i

|(I(i,j+1)) − (I(i,j))| (A.3)

In the Hidden Feature Generator step, the perceptual loss [49] - where activa-

tion maps are compared with those from the pre-trained VGG network can not

be used, since the VGG network is not trained to produce two classes (mortar

and bricks) images, It doesn’t provide the result we were looking for this stage.

Therefore, the feature-matching loss ℓFM is used so that it compares the activation

maps in the intermediate layer of the discriminator. Using the feature-matching

loss stabilizes the training process by forcing the generator to produce results

with representations that are similar to real images.

The feature matching loss ℓFM is defined as

ℓFM =
L∑
i=1

1

Ni

||D(i)
1 (Iwall ftr) −D

(i)
1 (IG1 out)|| (A.4)

where L is the final convolution layer of the discriminator, Ni is the number

of elements in the i’th activation layer, and D
(i)
1 is the activation in the i’th layer

of the discriminator.

A.2.3 Normalization Strategy

This section highlights the normalization techniques employed while training the

networks presented in the thesis. Normalization refers to a scaling technique

method in which data points x are shifted and re-scaled by its mean µ and

standard deviation σ respectively.

x̂ =
x− µ

σ
(A.5)
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A.2.3.1 Batch Normalization

Given a feature map of dimensions N ×C ×H ×W , where N = Batch size, C =

Number of filters (channels) in the layer, H = Height of the activation map, W =

Width of the activation map. By using the batch normalization technique [127],

the mean and variance are computed for each individual channel over all samples

and both spatial dimensions, as presented in the Equations A.6, A.7 respectively.

Each network layer is normalized based on these computed values as provided in

Equation A.8, where ϵ is an arbitrarily small constant added to the denominator

for numerical stability.

µc =
1

NHW

N∑
i=1

H∑
j=1

W∑
k=1

xicjk (A.6)

σ2
c =

1

NHW

N∑
i=1

H∑
j=1

W∑
k=1

(xicjk − µc)
2 (A.7)

x̂ =
x− µc√
σ2
c + ϵ

(A.8)

A.2.3.2 Instance Normalization

By using the instance normalization technique [128], the mean and variance are

calculated for each individual channel for each individual sample across both

spatial dimensions, as presented in the Equations A.9, A.10 respectively, and the

layers of the networks are re-centered and re-scaled based on Equation A.11.

µnc =
1

HW

H∑
j=1

W∑
k=1

xncjk (A.9)

σ2
nc =

1

HW

H∑
j=1

W∑
k=1

(xicjk − µnc)
2 (A.10)

x̂ =
x− µnc√
σ2
nc + ϵ

(A.11)
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A.2.4 Training Setup and Strategy

In this section, we present the training methodology and the optimization strategy

of the networks presented in the thesis

A.2.4.1 Training Setup of the Networks used in Chapter 2

For the training phase, the three sub-networks (U-Net, G1, G2) can interact

through shared dependencies in their loss functions. However, this model leads

to a highly complex optimization problem, with large computational and memory

requirements. Particularly, we had to manage to fit into the GPU memory during

the training process. For these reasons, in the initial training phase, the three

networks were separately trained, providing an efficient initial weight-set for the

upcoming joint optimization steps. Thereafter the first two networks (U-Net, G1)

were trained together, so that the the F1u net F1-score of the U-Net output was

used as a confidence value to weight the loss function of G1 (see Equation (2.2) in

Section 2.4.2.1), and the feature matching loss ℓftr mat of G1 was used to update

the U-Net weights (see Equation (2.1) in Section 2.4.1). For all stages in the

network, the Adam optimizer parameters were set as β1 = 0 and β2 = 0.9.

A.2.4.2 Training Setup of the Networks used in Chapter 3

PyTorch is used to implement the proposed completion network, which is trained

on 256 × 256 images. As an optimization algorithm, we employ the Adam opti-

mizer [40] with the settings β1 = 0 and β2 = 0.9. The default batch size is 4, but

when the number of selected views is greater than five, the batch size is reduced

to 1, so that the computation can be completed on the GPU, and the weights are

only updated in every four iterations. The model is trained in three sessions in

which the learning rate parameter, which determines the step size at each itera-

tion while moving toward a minimum of the loss function, is gradually decreased:

in each section, we train the model until converges, while using learning rates

10−4, 10−5, and 10−6 respectively. In the loss function, the TV loss term is only

used in the last two sections.
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Appendix B

Summary of Abbreviations

Chapter 1
ADAS Advanced Driving Assistance Systems
VR Virtual Reality
AR Augmented Reality
SLAM Simultaneous Localization And Mapping

Chapter 2
CH Cultural Heritage
DCH Digital Cultural Heritage
DL Deep Learning
ML Machine Learning
GAN Generative Adversarial Networks
HED Holistically-Nested Edge Detection
IDT inverse distance transform
GT Ground Turth
Pr Precision
Rc Recall
TP True Positive
FP False Positive
FN False Negative
IOU intersection of union
PSNR Peak Signal-to-Noise Ratio
SSIM Structural Similarity Index
FID Frechet Inception Distance

Chapter 3
MLS Mobile Laser Scanning
VR Virtual Reality
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AR Augmented Reality
SLAM Simultaneous Localization And Mapping
CNNs Convolutional Neural Networks
PCN Point Completion Network
VPC-Net Vehicle Points Completion-Net
3D-EPN 3D-Encoder-Predictor Network
GRNet Gridding Residual Network
CD Chamefer Distance
ViPC View-guided Point Cloud
CSDN Cross-model Shape-transfer model Distance
GT Ground Truth
TV Total Variation
PSNR Peak Signal-to-Noise Ratio
SSIM Structural Similarity Index
STN Spatial Transformer Network
SOF Statistical Outlier Filter

Chapter 4
CCA Connected Component Analysis
GAN Generative Adversarial Networks
VR/AR Virtual Reality/Augmented Reality
GPU Graphics Processing Unit

Appendix A
IMU Inertial Measurement Unit
GNSS Global Navigation Satellite System
SN Spectral Normalization
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p. 416â432, Springer-Verlag, 2022. 3.2.1, 3.1, 3.2, 3.3, 3.5.5

DOI:10.15774/PPKE.ITK.2023.007



119

[110] B. Nagy and C. Benedek, “3D CNN-Based Semantic Labeling Approach

for Mobile Laser Scanning Data,” IEEE Sensors Journal, vol. 19, no. 21,

pp. 10034–10045, 2019. (document), 3.1, 3.1.1, 3.3.2

[111] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A modern library for 3D

data processing,” arXiv:1801.09847, 2018. 3.4.3, 3.5.5

[112] W. Yuan, T. Khot, D. Held, C. Mertz, and M. Hebert, “PCN: Point

Completion Network,” in International Conference on 3D Vision (3DV),

pp. 728–737, 2018. 3.1.1, 3.2.1, 3.3.1, 3.5.2, 3.1, 3.2, 3.3, 4.1, 4.1

[113] Y. Xia, Y. Xu, C. Wang, and U. Stilla, “VPC-Net: Completion of 3D

vehicles from MLS point clouds,” ISPRS Journal of Photogrammetry and

Remote Sensing, vol. 174, pp. 166–181, 2021. 3.2.1, 3.3.1, 3.5.2, 3.1, 3.2,

3.3

[114] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li,

S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and F. Yu, “ShapeNet:

An Information-Rich 3D Model Repository,” Tech. Rep. arXiv:1512.03012

[cs.GR], Stanford University — Princeton University — Toyota Technolog-

ical Institute at Chicago, 2015. 1, 3.1.2, 3.3.1

[115] R. Q. Charles, H. Su, M. Kaichun, and L. J. Guibas, “PointNet:

Deep Learning on Point Sets for 3D Classification and Segmentation,”

in IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 77–85, 2017. 3.1.1, 3.2, 4.1

[116] C. Moenning and N. A. Dodgson, “Fast Marching farthest point sampling,”

in Eurographics - Posters, Eurographics Association, 2003. 3.5.2

[117] K. Vanjigounder, K. Narayanankutty, and S. Veni, “Performance Compar-

ison of Total Variation based Image Regularization Algorithms,” Interna-

tional Journal on Advanced Science, Engineering and Information Technol-

ogy, vol. 6, no. 4, pp. 419–425, 2016. 3.4.2

DOI:10.15774/PPKE.ITK.2023.007



120 REFERENCES

[118] L. P. Tchapmi, V. Kosaraju, H. Rezatofighi, I. Reid, and S. Savarese, “Top-

Net: Structural Point Cloud Decoder,” in IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR), pp. 383–392, 2019. 3.2.1,

3.3.1, 3.5.2, 3.1, 3.2, 3.3, 4.1, 4.1

[119] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping:

part I,” IEEE Robotics Automation Magazine, vol. 13, no. 2, pp. 99–110,

2006. 3.1

[120] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view Con-

volutional Neural Networks for 3D Shape Recognition,” in IEEE/CVF In-

ternational Conference on Computer Vision (ICCV), pp. 945–953, 2015.

3.2.2

[121] F. J. Lawin, M. Danelljan, P. Tosteberg, G. Bhat, F. S. Khan, and M. Fels-

berg, “Deep Projective 3D Semantic Segmentation,” in Computer Analy-

sis of Images and Patterns, pp. 95–107, Springer International Publishing,

2017. 3.2.2

[122] A. Tagliasacchi, M. Olson, H. Zhang, G. Hamarneh, and D. Cohen-Or,

“VASE: Volume-Aware Surface Evolution for Surface Reconstruction from

Incomplete Point Clouds,” Computer Graphics Forum, 2011. 3.2.1

[123] J. Rock, T. Gupta, J. Thorsen, J. Gwak, D. Shin, and D. Hoiem, “Complet-

ing 3D object shape from one depth image,” in IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), pp. 2484–2493, 2015.

3.2.1

[124] A. Maas, A. Hannun, and A. Ng, “Rectifier nonlinearities improve neural

network acoustic models,” in Proceedings of the International Conference

on Machine Learning, (Atlanta, Georgia), 2013. A.2.1.3

[125] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “Ima-

geNet Large Scale Visual Recognition Challenge,” International Journal of

Computer Vision, vol. 115, pp. 211–252, Apr 2015. A.2.2

DOI:10.15774/PPKE.ITK.2023.007



121

[126] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image transla-

tion with conditional adversarial networks,” in IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), pp. 5967–5976, 2017.

A.2.1.3

[127] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network

training by reducing internal covariate shift,” in Proceedings of the 32nd

International Conference on International Conference on Machine Learning

- Volume 37, ICML’15, p. 448â456, JMLR.org, 2015. A.2.3.1
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