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Abstract 
 

Current EEG research has enriched our literature and societies with many prospects for fruitful 
applications. This sophisticated yet simple device allows monitoring of the human brain in 
various states for clinical applications and cognitive science studies. It can accurately identify 
the distinct sleep stages or the depth of anaesthesia and identifies seizures and other 
neurological disorders to diagnose neurodegenerative diseases and track their progression. 
Other methods reveal robust EEG correlations with cognitive processes associated with 
working memory, mental calculations, and selective attention. EEG is essential in measuring 
coma depth or determining cerebral death. It is also used in neurofeedback rehabilitation and 
psychopharmacology studies, perception, awareness, language production and comprehension, 
structure vs function in the brain, spatial navigation, alertness monitoring, depression, and 
mental state studies. 

Since its first inception by Hans Berger almost a century ago, EEG has carried a massive burden 
in its core ideology, an irony to question telepathy, the dichotomy of whether it is actual or not, 
or to study higher brain abilities, mind genesis, cognition, and consciousness. Or as in the 
concept of (BCI), an acronym for Brain Computer Interface, that has fascinated researchers all 
around the world, to have the ability to read, interpret and control thoughts or control machines 
through thoughts instinctively and intuitively, restoring abilities, skills and control for people 
with disabilities who lost motor functions, providing alternative new means and tools for those 
with severe neuromuscular disorders, paraplegia, amyotrophic lateral sclerosis (ALS), locked-
in syndrome (LIS), cerebral palsy, amputation, or trauma. More benefits would also be 
harnessed for non-medical applications in gaming, polygraphy, and personal identification. 

BCI research is one of the most interdisciplinary and multidisciplinary subjects in 
contemporary neuroscience and engineering. It falls at the intersection of many fields as it 
combines mathematics, biology, physics, physiology and psychology, medicine, information 
technology, computer science, biomaterials, and the mainstream engineering disciplines of 
electrical, mechanical, and electronic engineering, in addition to biochemistry, signal 
processing, machine learning, statistics, control theory and more. 

EEG is the most prominent candidate to realize BCI Sensorimotor Imagery (MI) Systems due 
to the non-invasive nature of data acquisition, low cost of fabrication, and a high degree of 
mobility and portability, which makes it the preferred module among researchers rather than 
the bulky and expensive functional Magnetic Resonance Imaging (fMRI) and 
Magnetoencephalography (MEG). Aiming to replace, restore, enhance, or improve the natural 
Central Nervous System (CNS) output to foster healthcare service and improve life quality. 
Different signal analysis methods, feature extraction, dimension reduction, and classification 
have been proposed. Our goal of having a plug-and-play system driven and enabled by 
oscillatory brain waves and rhythms is still in its early stages of research and exploration.  
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Chapter 1: Introduction 
 

1.1 A glimpse into EEG History 
 

 The story must begin with the name Hans Berger (1873-1941), A clinician and a 
Professor of Neuropsychiatry at the University of Jena in Germany. In 1924, he discovered that 
electrical signals emanated by the human brain could be recorded from the scalp. After five 
years of further study, Berger published the first of 14 articles; all of them titled "Uber das 
Elektrenkephalogramm des Menschen", translating to ["On the Electroencephalogram of 
man"] establishing electroencephalography (EEG) as an essential tool for brain research and 
clinical diagnosis [1]. 

Berger's efforts followed the work of Richard Caton (1842-1926), a pediatrician from 
Liverpool, who worked to explore the electrical phenomena of the exposed cerebral 
hemispheres of rabbits, cats, and monkeys. Caton presented his findings in 1875 with a concise 
report in the British Medical Journal. Caton found distinct variations in brain currents 
increasing during sleep and vanishing after death. He also noted that the external surface of the 
grey matter was positive in relation to the cerebrum's deep structures, and the cerebrum's 
fluctuating currents seem to relate to the underlying function. Caton deserves credit for his 
pioneer work on evoked potentials and the discovery of the oscillating potentials that constitute 
the EEG. Though, he never pursued his line of inquiry any further and dropped out of EEG 
research [2]. 

 
Figure 1: Scientists reported on brain electrical activity. From left to right: Richard Caton (1842-1926) from 
Liverpool, Hans Berger (1873-1941) from Jena and Adolf Beck (1863-1942) from Kraków. 

Concurrent with Caton's work in the 1870s, a more significant impact on the neuroscientific 
world than Caton's demonstration of the electrical activity of the brain was the capability of the 
human cerebral cortex to be electrically stimulated, which was rediscovered by Gustav Fritsch 
(1838-1927) and Julius Eduard Hitzig (1838–1907) in a joint study in 1870 which had been 
reported by Giovanni Aldini earlier the 19th century [2].  
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Vasili Yakovlevich Danilevsky (1852-1939) defended his thesis titled "Investigations into the 
Physiology of the Brain" in 1877, written at the University of Kharkiv. This endeavor was 
based on spontaneous electrical activity and electrical stimulation in the brains of animals. 
Thus, Danilevsky gave full credit to Caton's priority in 1891. Danilevsky was disappointed as 
he expected a better correlation between the brain's spontaneous electrical activity with psychic 
and emotional processes. He remained profoundly involved in brain physiology and published 
an extensive textbook on human physiology in 1915 [2]. 

 Caton's report passed unnoticed and remained unknown for many years, as the subject 
of brain waves lay dormant until the 1890s. Adolf Beck (1863-1939) was a Polish physiologist 
who investigated the spontaneous electrical activity of the brain in rabbits and dogs. He 
observed the disappearance of rhythmical oscillations when the eyes were stimulated with light 
and thus became a forerunner of Berger's discovery of alpha-blocking. Beck published his work 
in Centralblatt in 1890. Napoleon Cybulski (1854-1919), Beck's teacher in Krakow and an 
eminent leader in general physiology, presented experimental EEG studies in graphical form 
using a galvanometer with a photographic attachment. He provided EEG evidence of an 
epileptic seizure in a dog caused by electrical stimulation [3]. 

 
Figure 2: Neminsky’s electrocerebrogram. In the upper record, the first photographs to be published of 
electroencephalograms as Neminsky shows the brain potentials of a curarized dog [2]. 

EEG research was flourishing in Eastern European countries compared to the West of Europe, 
and the achievements of neuroscientists and physiologists of Eastern Europe concerning the 
brain and its electrical activity demonstrate their independent observations and discoveries. 
The cortical response to electrical stimulation probably was a special incentive for studying its 
spontaneous electrical phenomena. Two Russian physiologists conducted further studies: Pavel 
Yurevich Kaufman (1877-1951) and Vladimir Vladimirovich Pravdich-Neminsky (1879-
1952). Kaufman studied the effects of cortical electrical stimulation and viewed epileptic 
attacks as associated with abnormal electrical discharges. Neminsky recorded electrical brain 
activity from the dura and the intact skull of dogs with the string galvanometer. He published 
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the first pictorial demonstration of EEG in 1912, shown in Figure (2) above, two years earlier 
than Cybulski's tracings. Furthermore, he coined the term electro-Cerebro-gram, which Berger 
rejected purely for linguistic reasons [2]. 

Einthoven's introduction of the string galvanometer in 1903, a sensitive instrument that 
required photographic recording, became the standard instrument for Electrocardiography 
(ECG) at the turn of the century. Berger's first records were taken using a string galvanometer 
with non-polarizable pad electrodes on the skin over the skull defect. Later, needle electrodes, 
silver foil, or extracutaneous lead were used. In 1926, Berger substituted the Edelmann string 
galvanometer with the more sensitive Siemens double-coil galvanometer and, later on, with an 
oscillograph and an amplifier constructed for Berger by Siemens. All records were taken on 
photographic paper, upon which a moving mirror projected a light beam; these movements 
reflected the fluctuations of the cerebral potentials [2] [4].  

Berger recorded the human EEG tracings using a bipolar configuration technique with frontal-
occipital leads for his one-channel EEG tracings, simultaneous ECG recording, and a time 
marker, as shown in Figure (3). Berger always supported this photographic recording method, 
even when the ink writing apparatus had been developed. Between 1926 and 1929, Berger 
obtained good records for the alpha waves. Still, the data was often uncertain. Nevertheless, 
after innumerable checks and counterchecks on all possible artifact sources, he was convinced 
that the potential fluctuations were of genuinely cerebral origin and could be recorded from the 
area of the skull defects and healthy people with intact skulls. Berger finally published his first 
report on the human electroencephalogram in 1929 [8] [9].  

 
Figure 3:The first human EEG recording obtained by Hans Berger in 1925 from his son Klaus in the upper 
tracing. From Berger’s Publication 1929. Berger has investigated the rhythm in a very large number of subjects 
in different conditions, e.g., sleep, anesthesia, drug intoxication, etc., and has reported certain instances of a slow 
rate associated with pathological states of the brain [4]. 

In meticulous and carefully designed experiments, Berger obsessively and painstakingly 
identified and eliminated all causes of artifacts that may contaminate an EEG recording. He 
successfully proved the cerebral origin of the waves he recorded with exquisite thoroughness. 
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Berger described the Alpha rhythm and Beta rhythm terms, which he introduced and proved 
that they could not be attributed to any cardiac, vascular, respiratory, circulatory, muscular or 
cutaneous currents nor any vibratory movements of the head. Therefore, these waveforms can 
only originate from the brain and constitute, in the true sense of the word, the 
electroencephalogram of man [1] [2]. 

On the other hand, Berger was intensely absorbed by the changes in the EEG accompanying 
alterations in the psychological state, both normal and abnormal; hence, his second major 
contribution was the EEG study of the phenomena of attention and its effect on the EEG, as 
well as his investigations on the EEG changes in general anesthesia, epilepsy, asphyxia, insulin 
coma, postictal coma and stupor and various forms of dementia and psychosis [1] [6].  

Strangely enough, Berger’s bold report of 1929 produced no waves in the scientific community; 
the idea that these signals do indeed originate in the brain was not immediately accepted. Berger 
was ridiculed, and his discovery was treated with disdain and disbelief until his findings were 
replicated and confirmed by Lord Edgar Douglas Adrian (1889-1977), Baron of Cambridge 
and his fellow researcher Sir Bryan Harold Cabot Matthews (1906-1986) in their 1934 
publication titled “The Berger Rhythm: Potential Changes from The Occipital Lobes in Man” 
[5]. Moreover, only after that did the scientific community become interested in EEG 
technology. Since then, medical and scientific applications of EEG have proven to be of 
considerable importance. Lord Adrian was already a neurophysiologist of great prestige when 
he confirmed Berger’s data, as he won the Nobel prize in 1932. Sir Matthews was Adrian’s 
brilliant electronic engineer. The latter invented two essential pieces of technology: The 
Matthews oscillograph for capturing nerve activity and the differential amplifier for high gain 
low noise recording of electrical activity in biological systems [2] [7]. 

 Eventually, recognition came at last as Berger was invited to an international congress 
of psychologists in Paris in 1937; this was the high point of his career. He was somewhat 
overwhelmed and perplexed by his recognition outside Germany. Berger's relationship with the 
government could have been better; at the earliest convenience, in 1938, he was abruptly made 
a professor emeritus and forced into retirement. Consequently, Berger developed severe 
depression, which remained undiagnosed. He ended his life on the 1st of June 1941, at 68 [6]. 

Berger's reports on the human EEG contained studies of fluctuation of consciousness, the first 
recording of sleep spindles, the effect of hypoxia on the human brain, and variety of diffuse 

Figure 4: Records of the Berger rhythm made with pad electrodes on the head. The development of the rhythm 
in the absence of visual activity [5]. 
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and localized brain disorders, and even some predictions on epileptic discharges. EEG 
interested him as the expression of the integrated activity of the whole brain. It is fascinating 
that as early as a century ago, Berger already speculated about the possibility of permanent 
structural changes induced by ongoing cortical activity, a natural outcome of diffuse cortical 
inhibition in attention states. Berger thought of the cortical alpha rhythm as a diffuse and 
homogeneous cortical process driven by a subcortical pacemaker in the thalamus or nearby 
upper brainstem [7]. 

Lastly, trying to end this section gracefully, Berger was a very complex person and investigator, 
an extremely meticulous and conscientious person, shy, vulnerable and sensitive yet a strict 
authoritarian hard-working professor. However, Berger also pursued an unscientific 
perspective on the nature of the EEG and telepathy. The driving force behind his research was 
the quest for the nature of mental energy ("psychical energy"), thought to be a partial product 
of metabolic energies, electricity and temperature being the other two. His contemporaries 
regarded him as an amateur because he may not have excelled as a clinician or psychiatrist. 
Nevertheless, it was the psychoneurophysiologist Berger who voyaged to search for mental 
energy and found the EEG. Even though the EEG is not precisely what Berger assumed, his 
contribution was the greatest in the history of EEG [1] [9]. 

Among other EEG pioneers were Herbert Jasper (1906-1999) and Wilder Penfield (1891-
1976), famous for their studies of patient response to electrical stimulation of cortical tissue. 
Penfield and Jasper carried out numerous EEG studies of epilepsy surgery patients. Frederic 
Bremer (1892-1982) also quickly recognized the usefulness of EEG methods in the 
experimental investigation of the brain with his publication "Cerebral and Cerebellar 
Potentials" in 1958, and also Grey Walter (1910-1977) who was the first to assign the term 
"delta waves" to particular types of slow waves recorded in the EEG of humans [2] [8] [11]. 

1.2 Aims and motive 
This thesis aims to emphasize the role of EEG in clinical diagnosis, neurorehabilitation, 
cognitive sciences, psychopharmacology and sleep research, perception, awareness, attention 
and memory, language production, spatial navigation, alertness monitoring, and BCIs. EEG is 
typically used to diagnose or monitor conditions such as epilepsy, sleep disorders, and brain 
damage. The patterns and frequencies of the brain waves recorded by the EEG can provide 
insight into the functioning of the brain and its responses to various stimuli. 

EEG-based BCI refers to a technology that interfaces with the human brain to translate 
electrical activity generated by neurons into commands that control a computer or a variety of 
other devices and assistive technologies, exoskeletons and robotic devices. The central goal of 
BCI research and development is for people severely disabled by neuromuscular disorders such 
as (ALS), stroke, spinal cord injury (SPI), cerebral palsy, multiple sclerosis, and muscular 
dystrophy. BCI systems would allow individuals with physical disabilities or locked-in 
syndrome to interact with the world using their brain activity, bypassing their physical 
limitations and improving their quality of life, subsequently enabling them to live enjoyable 
and productive lives if provided with effective assistive technology.  
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Several challenges come with using and designing EEG-based BCI systems, including low 
signal-to-noise ratio (SNR), variability in brain signals, and the need for calibration and 
parameterization, in addition to the complexity of processing and interpreting neural signals. 
However, with improvements in signal processing and machine learning algorithms, EEG-
based BCI systems are becoming more reliable and accurate. However, the rapid increase in 
BCI research has exposed an underappreciated problem: BCI Illiteracy. This problem remains 
unresolved across all major BCI approaches (P300, SSVEP, and ERD/ERS). 

This work explores Convolutional Neural Networks (CNNs), which have been proven decisive 
for EEG signal classification and used intensively by many researchers for multi-class EEG 
Motor Imagery (MI) signal classification. This dissertation also comments on using EEG as a 
medium to construct BCIs and addresses current challenges. Three datasets are included in the 
evaluation process: Physionet, BCI Competition IV-2a and MTA-TTK, a private dataset 
belonging to Pázmány Péter Catholic University. Our results propose that CNN designs and 
Deep Learning (DL) algorithms are fit for implementing feature extraction and classification; 
using fewer channels and feature vectors would also reduce the computational complexity and 
increase the classifier models' speed and accuracy. 

1.3 Thesis Structure 
Chapter 2 overviews brain structure anatomy and physiology; Chapter 3 provides 
neurophysiology terminology. Chapter 4 presents EEG and its signal characteristics and their 
application in clinical and cognitive research as the other Data Acquisition Systems (DAQs) 
modalities used to implement BCIs. Datasets description, Methods, Materials and Results are 
presented in Chapter 5, with a brief discussion that concludes the dissertation.  
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Chapter 2: Overview of Human Brain Anatomy 
 

 For a long time, the Brain has fascinated scientists, philosophers, engineers, and 
psychologists. The delicate and enormous tasks that a relatively small organ can execute are 
amazingly sophisticated; judgements and reasoning, mood swings, Consciousness, 
subconsciousness, sleep, dreams, hallucinations, emotions, learning, awareness of self, and the 
unique and individualized experience of being oneself and reaching high to the soul; All Have 
been related to brain functionality. In our path of understanding the ways of the Brain, different 
approaches and tools have been exploited, such as anatomical dissections, physiologic and 
biological studies, chemical neurotransmitter studies, trial and error with disorders, surgeries 
and medications, and recently capital equipment like Computed tomography (CT), functional 
Magnetic Resonance Imaging (fMRI), Magnetoencephalography (MEG) in addition to EEG 
studies are used to explore the structure versus functionality of the Brain. These tools have 
immensely developed and accelerated the fields of neuroscience, psychophysiology, and 
cognitive neurophysiology. 

 
Figure 5: Major brain regions. The diagram depicts some of the major regions of the human brain. The medulla, 
pons, and midbrain comprise the brain stem and convey most of the information from the brain to the body. The 
thalamus and the hypothalamus comprise the diencephalon; the former relays sensory information to the brain, 
while the latter regulates basic needs. At the base of the brain is the cerebellum, which plays an active role in the 
coordination of movements. [15] 

2.1 Nervous System and Brain Structure  
 The Central Nervous System (CNS) is composed of the brain and the spinal cord. It is 
differentiated from the peripheral nervous system (PNS), composed of the peripheral nerves, 
ganglia, sensory receptors, and the autonomic nervous system (ANS). The ANS is subdivided 
into sympathetic and parasympathetic components. It consists of neurons that innervate 
secretory glands and cardiac and smooth muscle and primarily control the internal 
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environment. The PNS mainly brings sensory inputs to the CNS and carries motor outputs to 
the rest of the body [15] [16] [17]. 

CNS activity comprises the electrophysiological, neurochemical, and metabolic phenomena 
such as neuronal action potentials, synaptic potentials, neurotransmitter releases, and oxygen 
consumption that occurs continually in the CNS. These phenomena can be monitored by 
measuring electric or magnetic fields, hemoglobin oxygenation, and other parameters 
employing sensors on the scalp, the brain's surface, or within the brain. The brain comprises 
three primary divisions: the Cerebrum, the Cerebellum, and the Brainstem, all included in the 
neurocranium (the Skull). The cerebrum consists of two cerebral hemispheres, right and left, 
separated by the longitudinal fissure and interconnected mainly by the corpus callosum 
[13][14]. 

 
Figure 6: Major divisions of the human cerebral cortex in dorsal (from above) and lateral views. The four 

major lobes are (frontal, parietal, occipital, and temporal) [17]. 
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Each hemisphere has three surfaces (lateral, medial, and basal). Meninges cover the brain (Pia 
mater, Arachnoid mater, and Dura mater consecutively from inward out). In mammals, the 
cerebrum comprises the outer grey matter, the cerebral cortex (or neocortex). The cortex is a 
thin, folded structure of wrinkled grey matter, varying in thickness from about 2 to 5 mm, 
having a total surface area of roughly 1600 to 4000 cm2 and containing about 1011 neurons 
(nerve cells) where cortical neurons are strongly interconnected. It is thought to be responsible 
for the nervous system's higher functions. The gyrus is the ridge of one of those wrinkles, and 
a sulcus is a groove between two gyri [12]. 

 
Figure 7: The lateral aspect of the left cerebral, indicating the major gyri and sulci [16] 

Several other deeper grey-matter structures exist beneath the cortex, the subcortical areas, 
including the brainstem, basal ganglia, cerebellum, and thalamus. The cerebellum, which sits 
on top and to the back of the brainstem, has long been associated with the fine control of muscle 
movements. More recently, the cerebellum has been shown to play additional roles in cognition 
[13] [16]. 

The brain's white matter consists of the many nerve fibers that interconnect the various cortical 
areas and connect the cortex to subcortical areas and vice versa. The brainstem is the structure 
through which nerve fibers relay signals in both directions between the spinal cord and higher 
brain centers. The thalamus is a relay station and a crucial integrating center for all sensory 
input to the cortex except smell (olfaction) [17]. 

Grey matter is distinguished from white matter because it contains numerous cell bodies and 
few myelinated axons. In contrast, the white matter has relatively few cell bodies and is 
composed chiefly of long myelinated axons. Grey matter is distributed in the cortex, 
cerebellum, brainstem, and basal ganglia. White matter is formed by the fibers connecting the 
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cortex with sub-cortical structures and the spine. It is possible to recognize the different tracts 
of white matter between the distinct grey matter structures. The Grey matter – White matter 
duality extends to the spinal cord [6] [12] [17]. There are three different kinds of fibers that 
form white matter: 

I. Association fibers interconnect different cortex regions within the same hemisphere. 

II. Commissural fibers interconnect corresponding areas of the two hemispheres across the 
midline. The primary white fiber “motorway” interconnecting the hemispheres is the 
corpus callosum, formed by more than 200 million fibers. 

III. Projection fibers are supero-inferiorly orientated, connecting the cortex with the 
subcortical structures and spinal cord. An exemplary projection system is a 
corticospinal tract, constituting the pyramidal system. 

The brain has cavities within its substance named Ventricles. There are two lateral ventricles 
and single third and fourth ventricles. These cavities are filled with Cerebrospinal Fluid (CSF), 
The volume of which is around 150-200 cc [13] [14], depicted in Figure (8) below. The CSF 
has many purposes [18], which includes: 

I. Buoyancy: The actual mass of the brain is about 1400-1500 g. However, when 
suspended in CSF, its mass is equivalent to 25-50 g. (Archimedes law: Any body 
entirely or partially submerged in a fluid is acted upon by an upward, upthrust or 
buoyant force, the magnitude of which is equivalent to the weight of the fluid displaced 
by the body). 

II. Protection: It acts as a shock absorber. 

III. Prevention of Brain ischemia. 

IV. Clearing waste metabolism. 

 
Figure 8:  The ventricular system. A, Anterior view. B, Left lateral view [13]. 
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2.1.1 Frontal lobe 
 The frontal lobe is the biggest lobe of the human brain, about one-third of the 
hemispheres. The central sulcus forms its posterior border, whilst its inferior border is the 
lateral sulcus. On the surface of the convexity of the frontal lobe, it is possible to recognize a 
vertical sulcus, the precentral sulcus; between the central sulcus and the precentral sulcus lies 
the precentral gyrus [13] [15] [17]. 

 
Figure 9: Frontal, Parietal, Temporal and Occipital lobes of brain, Separated by Central, Lateral and Parito-

Occipital sulci [Creative Commons Attribution 4.0]. 

In the frontal lobe of the dominant hemisphere lies Broca’s area (areas 44 and 45 of 
Broadmann) reference Figure (10), which is the motor speech area. The precentral gyrus, the 
so-called “primary motor cortex”, is involved in the motor function of the contralateral side of 
the body. The motor cortex contains a defined body map and an area involved in sphincter 
control (voluntary control of bladder function). 

The Premotor cortex is involved in the planning of movement, supplementary motor areas 
influence the generation and control of movement, and the eye-field cortex is involved in 
controlling the movements of the eyes. Moreover, the frontal lobe is involved in higher 
cognitive functions (orientation, attention, planning, personality, emotionality, sexual 
behaviour, mental processes, and working memory) [13]. 

The basal nuclei have a crucial function associated with planning movements. On the lateral 
surface of the cerebrum, we can identify two essential Sulci, the Central sulcus of Rolando and 
the lateral sulcus [19]. The parieto-occipital sulcus is the third vital sulcus to be identified. 
Identifying the prominent sulci on the surface of the cerebrum allows for discernment of the 
cerebral lobes: frontal, parietal, temporal and occipital lobes, as well as the insular lobe, hidden 
in the depth of the Sylvian fissure [20]. 
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2.1.2 Parietal lobe 
Korbinian Brodmann (1868 -1918), a German neurologist, extensively studied the microscopic 
anatomy and the cytoarchitecture of the cerebral cortex and divided the cortex into 52 separate 
regions based on the histology of the cortex. His work resulted in a classification system known 
as Brodmann’s areas, shown in Figure (10) below, which is still used today to describe the 
anatomical distinctions within the cortex. To our interest, areas 1,2,3,4 & 6 are the areas of 
motor and premotor activity and motor imagery. They lie on the lateral surface of the frontal 
lobe, anterior to the central gyrus. Due to their superficial location relative to brain structures, 
they are the most amenable to EEG signal recording [13]. 

 
Figure 10: The lateral (A) and medial (B) surfaces of the left cerebral hemisphere depicting Brodmann’s areas 
[13]. 

The Parietal lobe is located between the central sulcus, the parietooccipital line, and the 
posterior ramus of the lateral sulcus. The postcentral gyrus, the somatosensory cortex, is the 
cortical strip between the central sulcus and the postcentral sulcus. The somatosensory area of 
the cortex contains a defined body map (somatosensory homunculus). Lesions of primary 
somatic areas (areas 1, 2, and 3 of Broadmann) may give rise to contralateral impairment of 
touch, pressure, and proprioception [13] [14] [17]. 

Karl Wernicke (1848-1905), a German physician and neurologist, is credited with showing that 
damage to the back part of the temporal lobe of the left hemisphere could produce difficulties 
in understanding speech; similarly, problems in reading and writing were identified in some 
patients and were shown to result from damage to the left hemisphere, not from damage to the 
right hemisphere. “Wernicke’s speech region” is also contained within the parietal lobe. Lesions 
involving the Wernicke’s region result in receptive (or fluent) aphasia, in which the patient 
fluently articulates meaningless words. The parietal lobe also has some vestibular areas and 
many associative regions, such as those involved in planning, executing, and monitoring 
movements [15] [17] [21]. 
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Figure 11: Lobar boundaries and nomenclature. A Lateral surface left side. The central sulcus separates the 
frontal from the parietal lobes. The Sylvian fissure separates the frontal from the temporal lobes [13]. 

A specific syndrome related to the dysfunction of the parietal lobe (angular and supramarginal 
gyri of the dominant hemisphere) is the Gerstmann syndrome [22], with Anomia (inability to 
name objects), Alexia (inability to understand written or printed language), Acalculia (inability 
to perform arithmetic operations), Agraphia (inability to write), finger agnosia, and inability to 
coordinate left and right hand sides. In the dominant hemisphere, the opercular and triangular 
parts of the inferior gyrus correspond to Broca’s area, which is responsible for the production 
of spoken language [23] [24]. 

 
Figure 12: The lateral surface of the left cerebral hemisphere shows the frontal eye field (parts of areas 6, 8, 9), 
the motor speech (Broca’s) area (areas 44, 45) and Wernicke’s area. The perimeter of these areas is delineated 
by an interrupted line to indicate uncertainty as to their precise extent. [13] 
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2.1.3 Temporal lobe 
The temporal lobe is mainly involved in auditory functions and the integration of complex 
information. The temporopolar cortex of the temporal lobe is a paralimbic structure. Lesions 
of the auditory cortex (areas 41 and 42 of Broadmann) may affect hearing or cause auditory 
aphasia, where the patient can hear but does not understand [13] [17]. 

2.1.4 Occipital lobe 
The most significant sulcus of the occipital lobe is visible on its medial surface, the calcarine 
sulcus, where the granular cortex of the visual areas is located. The occipital lobe functions are 
essentially visual, with all the vision-related specific functions: shape processing, colour 
perception, three-dimensional reconstructions of objects, etc. Among other particular signs 
related to lesions of the occipital lobe, central blindness, central colour blindness 
(Achromatopsia), selective difficulty in identifying faces (Prosopagnosia), and dysfunction in 
perceiving movements (Cortical Akinetopsia) [13] [17].  

 
Figure 13: Lobes of the brain on the lateral surface 16] 

2.1.5 Limbic lobe  
 The elements of the limbic system are mainly concerned with memory and the 
emotional aspects of behaviour and provide an affective overtone to conscious experience and 
an interface with subcortical areas, such as the hypothalamus, through which widespread 
physiological activities are integrated. Other cortical areas, primarily within the frontal region, 
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are concerned with the highest aspects of cognitive function and contribute to personality, 
judgment, foresight and planning [13] [15]. 

 
Figure 14: The Limbic System [Creative Commons Attribution 4.0] 

The limbic lobe contains the cortical structures on the most medial edge of the hemisphere, 
with its surrounding paralimbic system, beneath the corpus callosum. The hippocampal 
formation, amygdala, septum pellucidum, hypothalamus, and central olfactory system form the 
limbic system. The Insula, cingulate gyrus and part of the orbitofrontal cortex form the 
paralimbic belt. Limbus means edge or border; the descriptive term limbic was first used in the 
sixteenth century but is more usually associated with Broca, who described the cingulate and 
parahippocampal gyri as the greater limbic lobe and considered the different sulci that limited 
these two gyri as parts of a single sulcus that he called the limbic sulcus [15] [17]. 

2.1.6 Insular lobe 
The insular lobe sometimes called the Insula, insular cortex or “The Island of Reil”, is situated 
deep within the folds of the cortex. It is a paralimbic structure formed by the mesocortex, a 
transitional cortex between the neocortex and the archicortex of the limbic system, which 
includes the floor of the lateral sulcus. This brain region remains a mystery. Its location deep 
within the brain makes it difficult to explore, and until recent decades, doctors had little 
understanding of its purpose. That is changing, thanks partly to better brain imaging 
technologies, but much remains to be understood about this vital brain structure. The Insula is 
highly connected with all the brain and basal ganglia regions and is involved in many different 
functions [13], including: 

I. Visceromotor control (e.g., gastrointestinal motility, respiration, heart control),    

II. Viscerosensory functions (abdominal sensations, nausea), 

III. Taste, olfaction, vestibular, somatosensory, and higher psychological functions [14]. 
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Figure 15: The Insula is embedded in the brain, and the separation of parietal and frontal cortices will reveal it. 

Functions of the Insula are involuntary and related to visceral functions [1314]. 

 
Figure 16: The hand motor activation site, corresponds to a knob-like cortical area of the contralateral precentral 
gyrus, which in MRI axial planes usually resembles an inverted omega shape (the area within the red circle) and 
may be identified by its relationship to the posterior end of the superior frontal sulcus. Abbreviations: PreCG, 
precentral gyrus; PreCS, precentral sulcus; SFS, superior frontal sulcus [13].  
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Figure 17: The motor homunculus showing proportional somatotopic representation in the primary motor area, 
derived by Wilder Penfield, illustrating the effects of electrical stimulation of the cortex of human neurosurgical 
patients [17]. 

2.2 Hippocampus 
 The hippocampus (hippocampus proper, Ammon's horn) is a convex elevation, 
approximately 5 cm long, within the parahippocampal gyrus inside the lateral ventricle's 
inferior (temporal) horn. Macroscopically, it can be divided into a head, a body, and a tail. 
Anteriorly, the head is expanded and bears two or three shallow grooves (pes hippocampi). The 
main outflow bundle of the hippocampus, the fornix, wraps around the thalamus. The 
hippocampus is believed to be involved in regulating emotions and storing long-term 
memories, making those memories resistant to forgetting, though this is a matter of debate. It 
is also thought to play an essential role in spatial processing and navigation, as the entorhinal 
cortex has reciprocal connections with the hippocampus and neocortical regions [25]. 

The medial temporal lobe cortex includes major subdivisions of the limbic system, such as the 
hippocampus and entorhinal cortex. Areas of the neocortex adjacent to these limbic regions are 
grouped as medial temporal association cortex. Nuclei of the amygdala project to and receive 
fibres from neocortical areas, predominantly of the temporal lobe and possibly the inferior 
parietal cortex. The density of these pathways increases towards the temporal lobe [20] [24] 
[26]. 
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2.3 Amygdala 
 The amygdala (amygdaloid nuclear complex) is an almond-shaped structure formed by 
a group of lateral, central and basal nuclei lying in the dorsomedial temporal pole, anterior to 
the hippocampus. Laterally, the amygdala lies close to the optic tract. The amygdala primarily 
processes emotions and memories associated with fear and pleasure. Other recognizable 
structures on the Medial surface are the Uncus, Mammilary bodies, the Fornix, and the 
Cingulum [27] [28]. These are beyond the scope of this dissertation. The amygdaloid complex 
has pervasive and rich connections with many areas of the neocortex in unimodal and 
polymodal regions of the frontal, cingulate, insular and temporal neocortices. The amygdala 
receives a rich monoaminergic innervation and numerous projections from the brainstem [29]. 

 
Figure 18:  Location of the basal ganglia deep within the cerebral cortex. [17] 

2.4 Basal Ganglia, Diencephalon & the Thalamus  
 The major subcortical areas of the brain that interact with the cortex and are intimately 
involved in motor and sensory function include the: thalamus, brainstem, basal ganglia and 
cerebellum [6] [13] [17]. In the center of the basal surface, one can visualize the optic system 
(optic nerves, optic chiasm, and optic tracts), mammillary bodies, tuber cinereum, uncus, and 
ventral surface of the brainstem. The basal ganglia are a group of cell masses, “grey matter in 
the central core of the hemispheres”, mainly the Caudate nucleus, Putamen, Globus pallidus, 
Claustrum and some small nuclei. The basal forebrain nuclei serve as the primary location for 
acetylcholine production, which modulates the overall activity of the cortex, possibly leading 
to greater attention to sensory stimuli [17]. The putamen and the caudate nucleus, called the 
striatum, are mainly involved in motor control and the mechanism of learning, cognition, and 
memory. The caudate nucleus is a C-shaped structure wrapped around the thalamus, involved 
in reward, pleasure, addiction, fear, and the placebo effect. Globus pallidus is involved with 
the “extrapyramidal system” for motor control. The progressive elucidation of the anatomy of 
basal ganglia and the pathophysiology of motor disorders has revealed a close functional 
interrelationship between the two systems [13] [17]. 
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Figure 19: The principal parts of the diencephalon and Corpus callosum basal ganglia, coronal section [13].  

The Diencephalon lies deep beneath the cerebrum and constitutes the walls of the third 
ventricle. The Pineal gland of the Epithalamus, Thalamus and Hypothalamus is collectively 
known as Diencephalon. All neural tracts out or into the cerebrum pass through the 
Diencephalon except for the olfactory pathway, which connects directly with the cerebrum. 
The Diencephalon is formed by four distinct longitudinal zones (to aid in remembering all the 
structures with the name “thalamus”), which are the epithalamus, dorsal thalamus, ventral 
thalamus, and Hypothalamus. The pineal gland is involved in the production of melatonin, 
which occurs during the night [13].  

The thalamus is a large, ovoid nuclear complex in the Diencephalon. It is located below the 
cortex and deep within the cerebrum. It serves as a processing and distribution center, relaying 
and regulating information from and between the cerebral cortex, brainstem, spinal cord, and 
other subcortical structures, including the basal ganglia and cerebellum. The thalamus plays a 
crucial role in many brain functions and activities. It is involved in consciousness, circadian 
rhythm, memory, and sensory and motor functions. The projection to the thalamus from the 
cortex is precisely reciprocal; each cortical area is topographically organized to all sites in the 
thalamus from which it receives an input [13] [17]. 

The Hypothalamus is an essential organ for life, involved in a series of autonomic, endocrine, 
and behavioural functions maintaining wake/sleep cycles, thermoregulation, hydro electrolytic 
balance, reproduction, food ingestion, agonistic and sexual behaviour. Also involved in 
memory and emotions as part of the limbic system. Our increasing understanding of the role 
of the thalamus provides insights into pathological disorders of the brain. It is opening the 
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possibility of targeting its constituent nuclei to treat various disorders, including epilepsy, 
Parkinson’s disease, Huntington’s disease, pain, and psychiatric disorders [17]. 

2.5 Pyramidal / Extrapyramidal 
 The motor tracts can be functionally divided into two major groups; Pyramidal tracts; 
originate in the cerebral cortex, carrying motor fibers to the spinal cord and brainstem. They 
are responsible for the voluntary control of the musculature of the body and face. 
Extrapyramidal; originates in the brainstem, carrying motor fibers to the spinal cord. They are 
responsible for the involuntary and autonomic control of all musculatures, such as muscle tone, 
balance, posture, and locomotion. The claustrum is a thin sheet of grey matter hidden under the 
neocortex. (“claustrum” means in Latin “hidden away”), interconnected with all the brain areas 
except the auditory regions. The exact function of the claustrum is unknown [6] [12] [14] [17]. 

2.6 Brainstem 
In vertebrate anatomy, the brainstem is the most inferior portion of the brain, situated in the 
posterior cranial fossa, adjoining and structurally continuous with the brain, cerebellum, and 
spinal cord. It gives rise to cranial nerves 3 through 12, which provide the primary motor and 
sensory innervation to the face and neck. Though small, it is a vital part of the brain, as damage 
to the brainstem is often devastating and life-threatening. The main parts of the brain that 
communicate with the peripheral nervous system pass through the brainstem. This includes the 
corticospinal tract (motor), the posterior column-medial lemniscus pathway (vibration, delicate 
touch, sensation, and proprioception) and the spinothalamic tract (pain, temperature, itch, and 
simple touch) [30] [37]. 

 
Figure 20: view of the midbrain, pons, medulla, and spinal cord; the cerebellum lies behind the pons and 

medulla [17] [Creative Commons Attribution 4.0] 

The brainstem plays a role in regulating cardiac and respiratory functions. It regulates the CNS 
and is pivotal in maintaining consciousness and regulating the sleep cycle. The three 
components of the brainstem are the medulla oblongata, midbrain, and pons [17]. The medulla 
oblongata is the lower half of the brainstem, continuous with the spinal cord. The medulla 
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contains the cardiac, respiratory, vomiting, and vasomotor centers regulating heart rate, 
breathing, and blood pressure. From the medulla oblongata arise four cranial nerves: 

I. Cranial nerve IX (glossopharyngeal nerve) controls swallowing, taste, and saliva 
production. 

II. Cranial nerve X (vagus nerve) plays a role in breathing, heart function, digestion, and 
hormones. 

III. Cranial nerve XI (accessory nerve) controls the upper back and neck muscles. 

IV. Cranial nerve XII (hypoglossal nerve) controls tongue movement, speech, and 
swallowing [13] [20]. 

The midbrain is associated with vision, hearing, motor control, sleep and wake cycles, 
alertness, and temperature regulation. Oculomotor & Trochlear cranial nerves (III & IV) 
originate from the midbrain. Both are related to eyeball movement and Pupil sphincter control 
(III), which are responsible for accommodation to light. 

The pons lies between the medulla oblongata and the midbrain. The pons is a structure located 
on the brainstem, named after the Latin word for “bridge.” It contains nuclei that relay signals 
from the forebrain to the cerebellum, along with nuclei that deal primarily with sleep, 
respiration, swallowing, bladder control, hearing, equilibrium, taste, eye movement, facial 
expressions, facial sensation, and posture. Within the pons is the pneumotaxic center, a nucleus 
that regulates the change from inspiration to expiration. The pons also contains the sleep 
paralysis center of the brain and plays a role in generating dreams. Several cranial nerve nuclei 
are present in the pons [13] [17]. 

2.7 Cerebellum 
“little brain” lies in the posterior cranial fossa, formed of two hemispheres and a midline 
structure called the cerebellar vermis. It has convolutions and sulci like the cerebrum. The 
Purkinje cells, the cerebellar output neurons, are among the giant neurons in the CNS. The 
cerebellum has been viewed as a motor structure involved in producing smooth, coordinated 
movements and in motor learning and adaptation. Responsible for comparing information from 
the cerebrum with sensory feedback from the periphery through the spinal cord. It is essential 
to fine-tune the movement details and coordinate the limbs and limb segments so that complex 
movements occur smoothly and automatically [12]. 

The cerebrum also sends information to the Thalamus, which usually communicates motor 
commands; this involves interactions with the cerebellum and other nuclei in the brainstem. 
Also, the primary output of the basal nuclei is to the Thalamus, which relays that output to the 
cerebral cortex [13]. Three pairs of peduncles connect the cerebellum: The inferior cerebellar 
peduncle, which connects mainly the cerebellum to the spinal cord. The middle cerebellar 
peduncle connects to the pons, and the superior cerebellar peduncle connects to the Thalamus. 
People with cerebellum disorders can still move, but their movements lack normal 
coordination; these characteristic deficits are collectively known as ataxia. [17]. 
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Chapter 3: Background on Neurophysiology 
3.1 The Neuron 
 Neurons are considered the basic functional computational units within the human 
nervous system. A single neuron consists of a dendrite, a body, an axon and axonal terminals. 
A neuron can be considered a leaky bag of charged liquid as a crude approximation. The neuron 
membrane comprises an impermeable lipid bilayer except for openings called ionic channels 
that selectively allow the passage of ions [37]. 

Neurons are structurally complex cells with long fibrous extensions specialized to receive and 
transmit information, conducting it over considerable distances. The neuron's cell body is only 
a tiny part of the neuron where the nucleus resides, termed as Soma. It gives rise to a texture 
of branches called dendrites, which spread out within the spinal cord to receive the bioelectric 
signals passed along from other neuron cells and pass them into the Soma. The axon is a thin 
fiber that rises from the Soma and is specialized in transmitting signals over long distances 
within the body, acting as a transmission path. The propagation of information within the 
nervous system depends on rapid electrical signals [13] [30]. 

 
Figure 21: Although nerve cells throughout the CNS take hundreds of unique forms and shapes, most cells have 
standard cellular components. Shown here are the major structural features of an idealized neuron: dendrites 
(receiving synapses from other cells), the cell body, the axon hillock, myelination, an axon, and the axon terminals 
(forming synapses onto other cells) [30][37] 

The action potential is a self-propagating depolarization signal that carries messages over long 
distances along axons in the nervous system. It is a brief (about 1 msec) explosive reversal of 
the neuronal membrane potential. The Resting membrane potential of a neuronal cell ranges 
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between -40 & -90 mV with respect to the Extracellular fluid potential, which is assigned a 
voltage of zero by convention. Excitation of a cell starts with an action potential that is 
elucidated with the influx of Na ions through gating channels into the neuronal body. Once the 
transmembrane potential exceeds the Threshold point (probably around -20 mV), the action 
potential ensues, and the cell is depolarized [30] [31]. 

Cations (+) and anions (−) are distributed unevenly across the neuronal cell membrane because 
the membrane is differentially permeable to these ions. The uneven distribution depends on the 
forces of charge separation and diffusion. The membrane's permeability to ions changes with 
depolarization (toward 0) or hyperpolarization (away from 0). The extracellular concentrations 
of Na+ and Cl− of 145 and 105 mEq/L, respectively, are high compared to the intracellular 
concentrations of 15 and 8 mEq/L. The extracellular concentration of K+ of 3.5 mEq/L is low 
compared to the intracellular concentration of 130 mEq/L. The resting potential of neurons is 
close to the equilibrium potential for K+. Na+ is actively pumped out of the cell in exchange 
for the inward pumping of K+ by the Na+ - K+ -ATPase membrane pump. Equivalent diagrams 
for Na+, K+, and Cl−are illustrated in the figure below [32]. 

 
Figure 22: Intracellular and extracellular fluids Ionic concentration [30] [31]. 

When a cell is subjected to a stimulus, some amount of Na+ crosses the membrane; if the 
transmembrane potential does not reach the threshold point, the action potential is aborted; if 
it reaches this point, the action potential will "start". Then Na+ influx will facilitate the opening 
of additional Na+ channels, leading to an avalanche of Na+ influx. This fast, strongly nonlinear 
event will depolarize the membrane so that the inside becomes positive by about 20 millivolts 
as if the battery was reversed temporally.  

This fast-depolarizing event is portrayed by the rising phase of the action potential (figure 23 
below). At this voltage level, the process stops due to the inactivation of Na+ channels. After 
the depolarization has ended and propagated in the same sequence of Na+ influx across the 
axon, the cell will reverse to its resting state. To regain the resting voltage across the membrane 
more rapidly, neurons opt for another strategy: they regain charge and "reorient the ions" 
Voltage-dependent K+ channels are activated and quickly repolarize the cell. This fast 
repolarization is the falling phase of the action potential (Figure 23 below). Thus, the positive 
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charge created by the influx of Na+ is compensated for by the rapid efflux of equal charges 
carried by K+. This push-pull process, active during the action potential, takes about a 
millisecond (absolute refractoriness) and limits the maximum firing rate of the neuron [33] [34] 
[37]. 

 
Figure 23: A general action potential waveform. Depolarization, repolarization, hyperpolarization, and 
overshoot changes in membrane potential are shown in relation to the resting membrane potential (horizontal 
red line) [30][37] 

After repolarization, hyperpolarization and restoration of the resting potential, the cell is called 
to be in the refractory period, when further stimulation will not elucidate a new action potential. 
Because the action potential appeared as a short, large-amplitude event on the early chart 
recorders, investigators called the action potential a "spike." So, when we refer to a spiking or 
firing neuron, we mean that the neuron gives rise to action potentials. In contrast to the 
megahertz speed of computers, the speed of spike transmission by neurons is limited to a 
maximum of a few hundred events per second [32]. 

The characteristics of the action potential are: 

• Action potentials are triggered by depolarization, which is a reduction in membrane 
potential. 

• A threshold level of depolarization must be reached to trigger an action potential. 

• Action potentials are (all - or - none) events. 

• The amplitude of an action potential is independent of the strength of the stimulus. 

• An action potential propagates without decrement throughout a neuron. 

• The membrane potential reverses charge at the peak of an action potential to become 
positive inside. 
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• The absolute refractory period is brief after a neuron fires an action potential, during 
which it is impossible for the neuron to fire another. Typically, the membrane must be 
depolarized by about 10 – 20 mV in order to trigger an action potential [15] [31]. 

 

Figure 24: The types of change in electrical potential that can be recorded across the cell membrane of a motor 
neuron at the points indicated. Excitatory and inhibitory synapses on the surfaces of the dendrites and soma cause 
local graded changes of potential that summate at the axon hillock and may initiate a series of all-or-none action 
potentials, which in turn are conducted along the axon to the effector terminals [13]. 

Neurons can be divided according to the type of information they relay into: 

• Afferent (sensory); these convey information from tissue and organs to CNS. 

• Efferent (motor or secretory); these convey orders from CNS to peripheral tissue. 

• Interneurons (processors); connect various cells within CNS to form networks. 

The number ratio of these distinct types is around 1:10:200.000, respectively. Most of the 
neurons in the CNS are either clustered into nuclei, columns or layers or dispersed within grey 
matter. Neurons in the PNS are confined to the ganglia. Irrespective of location, neurons share 
many general features. Neurons exhibit significant variability in their size and shape. Cell 
bodies range from 5 to 100 µm diameter. Their surface areas are extensive because most 
neurons display numerous branched cell processes. Dendrites conduct electrical signals 
towards a soma, whereas axons conduct impulses away from it. It is worth mentioning that 
action potentials propagate in only a one-way direction across the neuronal cell [6] [12] [13] 
[14] [15].  
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Figure 25: The variety of shapes of neurons and their processes. The inset shows a human multipolar retinal 
ganglion cell, filled with fluorescent dye by microinjection [13]. 

Besides neurons, the CNS comprises large populations of non-neuronal cells, known as 
neuroglia or glia cells, that are critical for maintaining cerebral tissue hemostasis, forming 
myelin, which plays an integral role in facilitating rapid signal transmission, providing physical 
and nutritional support to neurons, cleaning up brain debris, and structural scaffolding to hold 
neurons in place. Furthermore, though neuroglia do not generate action potentials, they convey 
information encoded as transient changes in the intracellular environment [13] [17]. 

Glia interact with neurons differently; their two-way communication is essential for regular 
brain activity. The glial population in the CNS consists of microglia and macroglia; the latter 
is subdivided into oligodendrocytes and astrocytes. The principal glial cell in the PNS is the 
Schwann cell. The ratio of these cells is different among different regions, but approximately 
it is around three glial cells per neuron in the cerebral cortex [13] [17].  

3.2 Synaptic Potentials  
Neurons form connections between themselves (e.g., via synapses, chemical or electrical 
outputs), which is the primary mechanism for information transfer within the CNS. Chemical 
transmission of information is widespread along CNS, e.g., dopamine in basal ganglia, 
serotonin in the limbic system and acetylcholine, adrenaline and noradrenaline in the 
autonomic system. We are focusing on electrical transmission as it is the measurable variable 
in EEG recordings related to our study [6] [13] [15]. 
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In the neuron-to-neuron synapse, the presynaptic terminal is specialized to release a chemical 
substance, appropriately called a neurotransmitter, which then binds to specialized receptors 
on the postsynaptic side. All cortical pyramidal cells release glutamate, which depolarizes and 
discharges the target neurons; therefore, glutamate is referred to as an excitatory 
neurotransmitter. In contrast, GABA typically hyperpolarizes the postsynaptic resting 
membrane, which is why GABA’s effect is called inhibitory. Neurotransmitters exert their 
effect by binding to receptors that reside in the membrane of the postsynaptic neuron [13] [16] 
[17].  

3.3 Extracellular Currents 
The synaptic inputs to a neuron are of two types: those that produce excitatory postsynaptic 
potentials (EPSPs) across the membrane of the target neuron, thereby making it easier for the 
target neuron to fire an action potential, and the inhibitory postsynaptic potentials (IPSPs), 
which act oppositely on the output neuron. EPSPs produce local membrane current sinks with 
corresponding distributed passive sources to preserve current conservation. IPSPs produce 
local membrane current sources with more distant distributed passive sinks. In addition, several 
other interaction mechanisms not involving action potentials have been discovered by 
neurophysiologists. Much of our conscious experience must involve the interaction of cortical 
neurons in some largely unknown manner. The cortex is also believed to be the structure that 
generates most of the electric potential measured on the scalp [6] [12]. 

Excitatory currents flow inward and outward into and away from the neuronal cell. The passive 
outward current far away from the synapse is a return current. Inhibitory loop currents flow in 
the opposite direction. The current flowing across the external resistance of the extra-neuronal 
space sums with the loop currents of neighboring neurons to constitute the local mean field or 
local field potential [6] [35] [36]. 

The low resistance or "shunting" effect of the extracellular fluid, the membranes of neurons, 
glia, and blood vessels, and the slow movement of ions attenuate current propagation in the 
extra-neuronal space. Passive neuron acts as a capacitive low-pass filter; this attenuation is 
quite discriminative: it affects fast-rising events, such as the extracellular spikes, much more 
than slowly undulating voltages. As a result, the effects of postsynaptic potentials can propagate 
much farther in the extracellular space than spikes do. Furthermore, because of their longer 
duration, EPSPs and IPSPs have a much higher chance of occurring in a temporally overlapping 
manner than the very brief action potentials. Finally, EPSPs and IPSPs are displayed by many 
more neurons than spikes because only a minority of neurons reach the spike threshold at any 
instant in time. For these reasons, the contribution of action potentials to the local field, 
especially to the scalp EEG, is negligible. In short, extracellular fields arise because the slow 
EPSPs and IPSPs allow for the temporal summation of currents of relatively synchronously 
activated neurons [6] [12]. 

The current flow between two sites can be calculated from the voltage difference and resistance 
using Ohm's law. The current density is the difference between these currents, which is a 
vector, reflecting the rate of current flow in a given direction through the unit surface or volume 
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(measured in amperes per square meter for a surface and amperes per cubic meter for a volume) 
[6] [12]. 

Current density is the current entering a volume of extracellular space divided by the volume. 
Current density on the scalp (a measure of the volume conduction of current generated by the 
neurons through the skull) is sensitive mainly to superficial sources and insensitive to deep 
current sources in the brain. Scalp current density is the spatial derivative of current flowing 
into and through the scalp. Current density depends on both the electric field strength and the 
conductivity (σ) of the brain. Conductance is a factor of both conductivity and the shape of the 
volume. Conductivity is inversely proportional to resistivity. The average resistivity of white 
matter is ∼ 700 Ω. cm, and grey matter's is ∼ 300 Ω.cm. The proportion of fibers, therefore, 
significantly affects tissue resistivity [12].  

The source localization problem or the "inverse problem" is the task of recovering the elements 
and location of the neural field generators based on the spatially averaged activity detected by 
the scalp electrodes does not have a unique solution. The difficulty of source localization has 
to do with the low resistivity of neuronal tissue to electrical current flow, the capacitive currents 
produced by the lipid cell membranes, and the distorting and attenuating effects of glia, blood 
vessels, pia, dura, skull, scalp muscles, and skin. As a result, the EEG, recorded by a single 
electrode, is a spatially smoothed version of the local field potentials under a scalp surface and, 
under most conditions, has little discernible relationship with the specific patterns of activity 
of the neurons that generate it [6] [12]. 

The spatiotemporal integration problem of neuronal activity is similar to the statistical 
mechanics of physics in that the typical average behaviour replaces the specific details of the 
neuronal interactions. The EEG recorded from the scalp samples mostly the synaptic activity 
that occurs in the superficial layers of the cortex. The contribution of deeper layers is scaled 
down substantially, whereas the contribution of neuronal activity from below the cortex, in 
most cases, is virtually negligible. This "fish-eye lens" scaling feature of the scalp EEG is the 
major theoretical limitation for improving its spatial resolution [6] [12]. 

3.4 Divergence & Convergence. 
Transported information “diverges” to multiple brain regions to have a global impact or 
“converge” on a single cell or group of similar cells (e.g., nuclei or ganglion) to activate or 
inhibit a given neural function. Divergence of neural information can occur via axon collaterals, 
which make such information accessible simultaneously to various parts of the CNS. For 
example, arousal from sleep results from a significant divergence of neuronal excitation arising 
from the Reticular activating system (RAS) to the rest of the brain. While in convergence, 
thousands of axon collaterals can converge onto the cell body of a single neuron. Convergence 
allows a neuron to process or integrate incoming excitatory and inhibitory signals occurring at 
its membrane within a short period of time (msec) [13] [17]. 

 

DOI:10.15774/PPKE.ITK.2024.004



29 
 

Chapter 4: EEG and Brain-Computer Interfaces (BCIs) 
 

4.1 The electroencephalogram (EEG) 
The ionic currents traverse the cell membrane of neurons and give rise to biopotentials. These 
electrical signals can be recorded with specialized instrumentation to assess physiological 
function, conducting neuroscience research, and even provide a novel communication medium 
through brain-computer interfaces (BCIs) [6] [12] [17]. 

Electrical recordings from the head's outer surface demonstrate continuous electrical activities 
within various underlying cortex regions. Both the intensities and patterns of these electrical 
activities are significantly determined by the overall levels of regional excitations, in other 
words, changes in the brain's electrical fields [2] [6] [38]. 

 
Figure 26: Cortical surface regions where alpha rhythms were recorded in a large population of epilepsy surgery 
patients arc indicated by wavy lines. Dotted region near the central motor strip indicates beta activity. From 
Nunez adapted from Jasper and Penfield (1949) [12]. 

The EEG is a dynamic non-invasive, relatively inexpensive technique used to monitor the state 
of the brain. Despite the tremendous progress in structural and functional brain imaging over 
the last decades, scalp EEG has remained an indispensable diagnostic tool for studying 
physiologic and pathologic cerebral activity. An EEG is simply a record of the brain's electrical 
activities, recorded as a set of surface potentials by placing electrodes on the scalp [36] [39]. 

Neuroscientists have always longed for a method with a sufficient spatial and temporal 
resolution to monitor the ever-changing patterns of brain activity. The definition of "sufficient" 
in this context is a complex issue, and to acquire precisely a brain activity without seriously 
interfering with it while compromising between spatial and temporal resolution, is indeed a 
dilemma [6] [12]. The desired temporal resolution is the concordance of the wave with the 
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speed of neurons, that is, on the millisecond scale. The desired spatial resolution, which means 
better localization of the source of any specific signal, depends on the goal of the investigation 
and expands from the global scale of the brain down to the spines of individual neurons. No 
current method can continuously zoom from the decimeter to the micrometer scale, which is 
why several approaches are being used, often in combination [6] [12]. 

EEG activity is a non-stationary, non-linear, non-deterministic, non-Gaussian, stochastic, and 
chaotic process. EEG signals have a high temporal resolution, poor spatial resolution, and 
discriminative spectral features. Data acquisition is affected by the skin-electrode interface, 
electrode material, configuration, and reference, in addition to motion artifacts like EMG, 
EOG, ECG, swallowing, breathing, power line interference, cross talk, volume conduction, 
posture, state, mood of the subject and else more of intrinsic and extrinsic sources of artifacts. 
[32] [35] [37] [39]. 

 
Figure 27: Scalp measurements vs ECoG and MEA recordings (The degree of invasiveness vs spatial resolution 

and localized measurements) [17]. 

These characteristics of scalp EEG depend not only on the nature and location of the current 
sources but also on the electrical and geometrical properties of the brain, skull, and scalp. The 
connection between surface and depth events is thus intimately dependent on the physics of 
electric field behaviour in biological tissue. Physical principles directly apply to neural tissue; 
we only need to interpret variables and consider tissue properties to provide a good picture of 
head volume conduction and how it relates to broader issues concerning EEG, brain dynamics, 
cell assemblies, cognition, motor and behaviour [6] [12]. 

As mentioned, an EEG can be recorded as a set of surface potentials by placing electrodes on 
the scalp. In a recording application, the electrode couples galvanically to capture the local 
field potential. The dimensions, geometry, and composition are paramount to design 
requirements. Signal degradation due to inferior electrode design or placement is unlikely to 
be ameliorated by design improvements in blocks further down the signal chain, thus avoiding 
garbage-in garbage-out (GIGO) scenarios that give inaccurate data or unreliable results. Both 
conductive-gel and sponge-saline electrode systems (wet electrodes) are used. The sponge-
saline electrodes are easier to apply but have limited recording time (about an hour) because 
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impedances rise as the sponges dry. Dry electrode technology is also now available. The 
electrodes themselves are usually metallic and made from tin (Sn), silver/silver chloride 
(Ag/AgCl), gold (Au), or platinum (Pt) [35] [36]. 

Any voltage measurement requires both a recording electrode and a reference electrode. EEG 
practitioners have long been perplexed about finding a proper reference electrode for EEG 
recordings. Reference recordings involve choosing some fixed location, typically an ear, 
mastoid, or neck site, and recording all potentials with respect to this static site. The number of 
electrodes applied varies between 8 to 256. Increasing the number of recording sites is valid 
only up to a limit because scalp electrodes placed too close together will sense the same 
electrical fields without further enhancing spatial resolution [6] [37]. 

 
Figure 28: The human brain. (b) Section of cerebral cortex showing microcurrent sources due to synaptic and 
action potentials. (c) Each scalp EEG electrode records space averages over many square centimeters of cortical 
sources. A four-second epoch of alpha rhythm and its corresponding power amplitude [12]. 

The monitored signals range between 0 and 300 µV, and their frequencies range from 0.5 to 
approximately 50 Hz. The characteristics of the recorded waves, and the EEG patterns, are 
(after subtraction of artifacts) highly dependent on the degree of activities within the cerebral 
cortex. The features of these waves change markedly between states of wakefulness, sleep, and 
coma [35]. Even in a healthy individual, EEG patterns are often irregular, but distinct patterns 
do appear under certain conditions [15] [35]. 
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Figure 29: The standard 10–20 montage indicated by the 21 electrodes in black circles. The 10–10 montage consists of the 
21 electrodes of the 10–20 montage (black circles) plus 53 additional electrodes indicated in grey. The black dots and the 
open circles indicate the different electrodes of the 10–5 montage. Note that electrodes on the right side have even numbers, 
electrodes on the left side have odd numbers, and electrodes along the midline are indicated by z. [17] 

The principal waveforms recorded in the EEG are: 

I. Delta rhythm: < 3.5 Hz originates solely within the cortex, frontal and central location; 
these typically occur during deep sleep, infancy, and severe organic brain disease 
(throughout the cortex). Not prominent in wakefulness, generalized in a coma or toxic 
state. 

II. Theta rhythm: 4-7 Hz elicited during emotional stress, disappointment, and frustration 
associated with the parietal and temporal lobe's central location, constant but not 
prominent when awake and active, and sometimes generalized when drowsy. 

III. Alpha rhythm: 8-13 Hz, during quiet wakefulness, rested state. Predominant activity in 
adults in resting state with eyes closed. Rhythmic waves are often recorded from the 
occipital region and sometimes from the parietal and frontal areas. Occur during 
consciousness and are attenuated by visual and other sensory stimuli. The waves tend 
to disappear in sleeping or attentive patients. A sub-band of Alpha, the mu-band (10–
13 Hz), is affected by imagery, such as imagined limb movements. It has the same range 
as an Alpha but is associated mainly with the motor cortex and focused over the 
premotor and sensorimotor cortex. The mu-band modulation is used in building brain-
machine interfaces for prosthesis control. Normal resting alpha rhythms may be 
substantially reduced in amplitude by eye-opening, drowsiness, and, in many subjects, 
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moderate to complex mental tasks. Like most EEG phenomena, Alpha rhythms exhibit 
an inverse relationship between amplitude and frequency. For example, 
hyperventilation and some drugs like alcohol may cause a reduction of Alpha 
frequencies together with increased amplitudes [12] [17]. 

IV. Beta rhythm: 14–25 Hz; Mainly recorded from parietal and frontal cortical regions. 
Activation patterns of CNS typically occur when a person is under tension, prominent 
in wakefulness, seen in light sleep, and intense mental activity, stress, anxiety or 
tension. 

V. Gamma rhythm: >30 Hz; The gamma rhythm is associated with the active information 
processing state of the cortex. This rhythm can be observed during finger movements 
with an electrode at the sensorimotor area connected to a high-sensitivity recording 
device. These qualitative labels are often applied based only on visual inspection or by 
counting zero crossings. They must be carefully used because actual EEG is composed 
of a mixture of multiple frequency components, as revealed more clearly by spectral 
analysis [6] [38]. 

 

Figure 30: EEG Frequency Bands [37]. 
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4.2 Survey of EEG applications 

 
Figure 31: Survey of EEG applications. adapted from Nunez [12] 

Survey of EEG Applications in research and clinical diagnosis: 

➢ Epilepsy Monitoring: The EEG can confirm the diagnosis of epilepsy and, depending 
on the particular pattern of seizure, define the evident seizure type, localize seizure 
origin and assist in experimental cortical excision of the epileptic focus. 

➢ Sleep Studies: In relaxation or drowsiness, alpha activity rises; if the subject sleeps, the 
power of lower frequency bands increases. The area of sleep studies is one of the 
success stories of EEG. Sleep staging is very clearly reflected in a very reactive EEG. 
Sleep is categorized into two broad types: Non-Rapid Eye Movement (NREM) sleep 
and Rapid Eye Movement (REM) sleep. NREM and REM occur in alternating cycles; 
NREM is further divided into stages I, II, III, and IV. The last two stages correspond to 
deeper sleep, where slow delta waves are shown in higher proportions. With these 
slower dominant frequencies, responsiveness to stimuli decreases, and so these are 
indicative of deep sleep. Stage I sleep is typified by slowing disintegration into varying 
or increasing irregularities. Thus, EEG monitoring finds extensive use in investigating 
sleep disorders and physiology [2] [6]. 

DOI:10.15774/PPKE.ITK.2024.004



35 
 

➢ Brain-Computer Interface (BCI): As the EEG procedure is noninvasive and painless, it 
is widely used to study the brain organization of cognitive processes such as perception, 
memory, attention, language, and emotion in normal adults and children. The BCI is a 
communication system that only recognizes a user’s commands from their brainwaves 
and reacts according to them. Simple tasks can consist of desired motion of a cursor, or 
a pointer displayed on the screen only through the subject’s imaging of the movement 
of his hand. As a consequence of the imaging process, specific characteristics of the 
brain waves are altered and, thus, recorded so a computer can use them for the user’s 
command recognition, e.g., desynchronizing the motor-associated mu waves or altering 
specific event-related potentials (ERPs) [15] [17] [35] [47] [51]. 

➢ EEG Biofeedback: Biofeedback machines create different mind states (e.g., relaxation, 
top performance) by practically manipulating the brain waves into desired frequency 
bands through repetitive visual and audio stimuli. Signal analysis methods are needed 
to interpret the rhythms. 

➢ Monitoring alertness, coma, and cerebral death. 

➢ Locating areas of damage following head injury, stroke, and tumor. 

➢ Testing afferent pathways (by evoked potentials). 

➢ Monitoring cognitive engagement (alpha rhythm). 

➢ Controlling anesthesia depth (servo anesthesia). 

➢ Testing drugs for convulsive effects. 

➢ Investigating mental disorders. 

➢ Providing a hybrid data recording system together with other imaging modalities [2] 
[35]. 

4.3 Recordings from Single Neurons In Vitro  
Neurons are complex devices. Understanding the biophysical properties of individual neurons 
would significantly enhance understanding of their collective behaviour in networks. 
Characterization of individual neurons is especially critical in brain regions built from various 
neuron types. Most of our knowledge about the biophysical properties of neurons is derived 
from experiments carried out in brain slice preparations in vitro [6]. Although the brain slice 
method compromises brain circuits, it provides unprecedented spatial resolution, precision, and 
pharmacological specificity for the examination of the biophysical and molecular properties of 
the cell membrane. Brain slices allow recording from local neural circuits [6] [12] [13]. 

4.4 EEG and Local Field Potential Recording Methods (Depth Electrode 
(ECoG) and Subdural Grid Recordings) 
The local field potential (i.e., local mean field), recorded at any given site in or outside the 
brain, reflects the linear sum of numerous overlapping fields generated by current sources and 
sinks distributed along multiple cells. Local field potentials are usually recorded by small-sized 
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electrodes, e.g., a wire tip placed in the depth of the brain. They reflect the transmembrane 
activity of neurons in a more confined space than the scalp EEG. By definition, local field 
potential and EEG are synonymous terms, but for historical reasons, EEG usually refers to 
scalp-recording field potentials [6] [40].  

Depending on the size and placement of the electrode, the volume of neurons that contributes 
to the measured signal varies substantially. With very fine electrodes, activity recorded by 
electrodes placed directly on the brain surface is called an electrocorticogram (ECoG). The 
local field potential reflects the synaptic activity of tens to thousands of nearby neurons. If the 
electrode is small enough and placed close to the cell bodies of neurons, extracellular spikes 
can also be recorded. Therefore, in such a small volume of neuronal tissue, one often finds a 
statistical relationship between local field potentials, reflecting mainly input signals (EPSPs 
and IPSPs) and the spike outputs of neurons. However, the reliability of such a relationship 
progressively decreases with increasing the electrode size by lumping together electric fields 
from increasingly larger numbers of neurons [12]. This is why the scalp EEG, a spatially 
smoothed version of the local field potential at numerous contiguous sites, has a relatively poor 
relationship with the spiking activity of individual neurons. However, this is not the case under 
epileptic conditions when neurons can synchronize within the duration of action potentials. The 
synchronously discharging neurons create local fields, known as compound or "population" 
spikes [6] [40] [12]. 

 
Figure 32: The generation of electroencephalogram (EEG) network oscillations. EEG signals are generated by 
the integration of neural activity at multiple spatial (A) and temporal (B) scales [41]. 

The subdural grid electrode is a less invasive approach that yields localization effectiveness 
somewhere between scalp recording and intracerebral electrodes. The grid, a flexible strip with 
20–64 rectangularly arranged electrodes, is introduced subdurally. Although inserting the grid 
by removing a bone flap in the skull and placing it on the cortical surface requires surgery, its 
implantation and removal are less invasive and less risky than deep wire electrodes [42] [42].  
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Electrocorticography (ECoG) is a related modality to EEG, which measures brain biopotentials 
directly on the surface of the cerebral cortex. Although surgically invasive, the decreased 
distance from the neural sources allows ECoG to distinguish faster and smaller nuclei of brain 
activity at higher spatial and temporal resolutions [6] [42]. The amplitude of the ECoG recorded 
by the grid electrodes is larger than that of the scalp EEG and has a broader frequency 
bandwidth and higher signal-to-noise ratio. The signals provide better spatial localization 
because the electrodes integrate activity from a smaller brain area and are essentially free of 
muscle, eye movement, and other artifacts ubiquitously present in the scalp EEG. Although 
these are superior features, the invasive grid electrode recording technique cannot be used for 
research in healthy humans because of ethical considerations. Fortunately, another method can 
noninvasively increase the spatial resolution while keeping the advantage of the outstanding 
temporal resolution of the EEG. This technique monitors the brain's magnetic rather than 
electric fields [43] [44]. 

 
Figure 33: Spatiotemporal characteristics of neural biopotential signals [37] 

4.5 Magnetoencephalography (MEG) 
Electricity needs a conductor to propagate; as air is a poor conductor, brain currents do not go 
beyond the scalp. However, the voltage changes created by neuronal cells accompany magnetic 
field changes. These electromagnetic currents also can be detected and recorded. The magnetic 
fields that emanate from the brain are only one hundred million to one billionth of the strength 
of Earth's magnetic field (or < 0.5 Pico tesla). The sensor detecting such weak signals is a 
SQUID (superconducting quantum interference device). This device operates at–270°C; 
helium is required in the SQUID to chill the coils to superconducting temperatures. In essence, 
it consists of a superconductive loop. The SQUID MEG recording requires a laboratory setting. 
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A modern MEG system is equipped with up to ∼300 gradiometers evenly distributed in a 
helmet shape with an average distance between sensors of 1∼2 cm. The detector coils are 
placed as close to each other as possible, forming a spherical honeycomb-like pattern 
concentric with the head. This helmet structure is also necessary to provide shielding from 
external magnetic signals, including the Earth's magnetic field [6] [17] [45]. 

A practical advantage of MEG is that no electrodes need to be attached to the scalp because the 
magnetic field emerges from the brain through the skull without distortion. In contrast to the 
EEG, the MEG signal reflects predominantly intracellular currents. For this reason, MEG and 
EEG see different types of activity. The spatial resolution of MEG is better than that of the 
EEG (ideally less than a centimeter), mainly because, in contrast to the EEG, the magnetic 
fields are not scattered and distorted by inhomogeneities of the skull and scalp. Nevertheless, 
this technology is still under development as the instrumentation necessary is more 
sophisticated and expensive. MEG source localization still needs to be more accurate; even 
under ideal conditions, the improved spatial resolution of MEG is insufficient to obtain 
information about local circuits and layer-differential effects in the cortex or neuronal spikes 
[45] [46]. 

4.6 Functional Magnetic Resonance Imaging (fMRI) 
The method is based on detecting and analysing magnetic resonance energy from specific 
points in a tissue volume. The MRI technique provides far better images than other scanning 
technologies. Traditional MRI is based on the behaviour of Hydrogen atoms of water, which 
can align in an orderly way when placed inside a strong magnetic field. In practice, a short 
pulse of RF energy perturbs these tiny magnets from their preferred alignment. As they return 
to their original position, they give off small amounts of energy that can be detected and 
amplified with a "receiver coil" placed directly around the head [17] [47]. 

Because grey matter and white matter contain different amounts of water, this difference 
generates a contrast between the surface of the neocortex and the underlying white matter and 
other areas of the brain that can be used to provide a detailed image of the brain. However, 
while the MRI method offers exquisite details about the brain's structure, even for deep 
structures like the amygdala, it does not tell us anything about neuronal activity [15].  

As previously mentioned, active neurons consume a lot of energy. In areas with high neuronal 
activity, this results in a significant difference between the concentration of the oxygenated 
haemoglobin in the arterial blood and the deoxygenated haemoglobin in the venous outflow. 
The BOLD (Blood Oxygenation Level Dependent) method can assess these local magnetic 
field inhomogeneities. When neurons are activated, increases in blood flow are associated with 
increases in local glucose metabolism and oxygen consumption, so the changes in local 
deoxyhemoglobin concentration are reflected in the brightness of the MRI image voxels at each 
time point, hence, (fMRI), which uses the BOLD method, can measure neuronal activity 
indirectly [6] [12] [49]. 

Nevertheless, as with any technique, fMRI has its limitations. The first limitation concerns the 
general statement that "fMRI measures neuronal activity." Neuronal activity has numerous 
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components, including intrinsic oscillations, EPSPs, IPSPs in principal cells and inhibitory 
interneurons, action potential generation and propagation along the axon, and release, binding, 
reuptake, and reprocessing of the released neurotransmitters. Which of these processes, alone 
or in combination, are responsible for the changes in BOLD has yet to be worked out. 
Alternatively, different cognitive operations in the same structures can be generated with the 
same amount of energy, with no expected change in BOLD. This reverse engineering problem 
is, of course, identical to that of the EEG and MEG. Thus, except for the significantly improved 
spatial resolution, one cannot expect more from fMRI than from EEG measurements [6] [12]. 

Another technical drawback of fMRI is its slow temporal resolution. The blood-flow response 
is delayed about half a second after neuronal activation, and the second-scale temporal 
resolution of the BOLD imaging method is excessively long for assessing the spatiotemporal 
evolution of neuronal activity across brain domains. This could affect the usefulness of fMRI 
in many BCI applications [12] [17] [47]. 

4.7 Positron Emission Tomography (PET) 
Another essential research tool for visualizing brain function is positron emission tomography 
(PET). A significant advantage of PET is that it provides information about the use and binding 
of specific chemicals, drugs, and neurotransmitters in the brain. To obtain a PET scan, the 
subject either inhales or receives an injection of a minimal amount of a radiolabeled compound, 
which then accumulates in the brain. As the radioactive atoms in the compound decay, they 
release positively charged positrons. When a positron collides with a negatively charged 
electron, they are annihilated, and two photons are emitted. The photons move in opposite 
directions and are detected by the sensor ring of the PET scanner. Reconstruction of the three-
dimensional paths of the particles provides information about the maximum accumulation or 
metabolism of the radiolabeled isotope. PET's spatial and temporal resolutions are inferior to 
fMRI [6] [12]. 

Let us pause here to add a few essential details regarding these advanced imaging methods. A 
single MEG, PET, or fMRI device weighs several tons. They are also impractical for examining 
behaviour-generated brain changes in the most frequently used small laboratory animals, such 
as rats and mice. More importantly, even the combined, simultaneous application of these 
methods must be revised to explain how neurons and neuronal assemblies make sense of the 
world and create appropriate responses in a changing environment. In the brain, specific 
behaviours emerge from the interaction of neurons and neuronal pools [6].  

4.8 Functional near-infrared spectroscopy (fNIRS) 
Functional near-infrared spectroscopy (fNIRS) is another noninvasive technique. It utilizes 
light in the near-infrared range (700 to 1000 nm) to determine localized cortical regions' 
oxygenation, blood flow, and metabolic status. It is like BOLD fMRI in terms of imaging 
contrast; it measures the hemodynamic response. It can produce relatively well-localized 
signals with a spatial resolution in centimeters and provides information related to neural 
activity. However, since the images rely on shallow-penetrating photons, NIRS operates 
effectively only for brain structures on or near the brain surface. NIRS is also inherently limited 

DOI:10.15774/PPKE.ITK.2024.004



40 
 

in its imaging contrast, which results in a temporal resolution on the order of seconds and a 
delay of several seconds for feedback [2] [6] [17]. 

4.9 Brain Computer Interfaces (BCIs) 
A BCI system measures CNS activity and converts it into artificial output that replaces, 
restores, enhances, supplements, or improves natural CNS output [17]. BCIs have emerged as 
a novel technology that connects and bridges the brain with external devices. They have been 
developed to decode human intention, leading to direct brain control of a computer or device 
without going through the natural neuromuscular pathway [47]. The central goal of BCI 
research and development is for people severely disabled by neuromuscular disorders such as 
amyotrophic lateral sclerosis (ALS), stroke, spinal cord injury, cerebral palsy, multiple 
sclerosis, and muscular dystrophies to live enjoyable and productive lives if they can be 
provided with effective assistive technology [17] [51].  

 
Figure 34: Historical events towards BCI technology [51] [51] 

In the 1960s, electroencephalographers' interest in academic institutions shifted from tracing, 
with all its waves and patterns, to automatic data analysis. Computerization was the direction, 
with tendencies reaching back to Berger's coworker Dietsch in 1932. However, it only 
flourished in the 1960s and 1970s. Cooley and Tukey (1965) have been credited with 
introducing the fast Fourier transforms (FFT) as the basis of power spectral analysis. This work 
led us into a "brave new world" of EEG computerization, but the automatization of EEG 
reading was fictional. It was found that EEG is far too complex for such automation; even 
automatic spike detection had barely reached its earliest stage [2] [6] [12]. 

The first demonstrations of BCI technology occurred in the 1960s when Grey Walter used the 
scalp-recorded EEG to control a slide projector in 1964. In the 1970s, Jacques Vidal developed 
a system that used the scalp-recorded visual evoked potential (VEP) to determine the eye gaze 
direction (i.e., the visual fixation point) in humans and thus to determine the direction in which 
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a person wanted to move a computer cursor. At that time, Vidal coined the term brain-computer 
interface. The pace and breadth of BCI research began to increase rapidly in the mid-1990s, 
and this growth has continued almost exponentially into the present. In BCIs that measure EEG 
Sensorimotor Rhythms (SMR), the user typically employs mental imagery to modulate SMR 
to produce the BCI output [17] [47] [48]. 

In 1988, Farwell and Donchin proposed the successful BCI paradigm known as the "P300 
speller", based on event-related potentials (ERP) in response to a specific event or stimulus 
[49] [54]. Wolpaw and his colleagues developed a BCI for 1D cursor control based on operant 
conditioning in 1991 [50] [55]. Gert Pfurtscheller and his team were developing another BCI-
based SMR, in which users had to explicitly imagine left or right-hand movements that were 
translated into a command for the computer by using machine learning; this defined the motor 
imagery (MI)–based BCIs [56] [57]. Niels Birbaumer and his colleagues worked on a third 
type of BCI paradigm based on slow cortical potential (SCP) [47] [51]. SCP is caused by shifts 
in the dendritic depolarization levels of pyramidal neurons in the cortex. Negative SCP 
generally reflects cortical activation, while positive SCP reflects reduced activation. Yet, 
Brendan Allison and others have lately rejected this type owing to generally inferior 
performances [59] [60]. 

 
Figure 35: Classification of BCI systems [47]. 

In general, BCI systems can be categorized as either [(invasive vs non-invasive) (endogenous 
vs exogenous) (or synchronous vs asynchronous) (active, reactive, or passive) (evoked vs 
spontaneous) and hybrid] depending on the recording method, brain signal pattern, stimulus 
modality, mode and strategy of operation. Considering the user's attention, efforts, 
cognitive/mental state, and engagement [17] [47] [49]. 

A system-level description can usually be formulated with a block diagram describing the 
major components required for realization in hardware and software. Neural biopotentials are 
sensed through a specialized electrode and an analogue front-end (AFE), which contains 
amplifiers and analogue signal processing circuits conditioning the signal for subsequent 
digitization by an analogue-to-digital converter (ADC).  
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Sampling must be performed to digitize the signal without changing the continuous signal's 
statistical properties. EEG can be sampled at equidistant time intervals. The sampling 
frequency choice is based on The Nyquist-Shannon sampling theorem to find the minimum 
acceptable sampling rate. "It states that perfect reconstruction can be achieved only by 
sampling the analogue signal at a rate at least double the highest frequency of the analogue 
signal". This threshold is the Nyquist sampling rate (Nyquist criterion or Nyquist limit). 
Suppose the sampling rate for a particular signal is less than the Nyquist sampling rate; in that 
case, the information contained in the sequence of samples is distorted and not representative 
of the actual spectral characteristics of the original signal (aliasing). A sampling rate above 
double the Nyquist limit is acceptable but unnecessary and will require more data storage space. 
This way, the entire EEG signal (Ensemble) is represented as Realizations (Samples) at 
Sequential moments [36]. 

Quantization approximates a continuous signal using discrete symbols or integer values. The 
digitized EEG signal values can be considered realizations of one stochastic variable and may 
be characterized when a histogram assumes stationarity. Calculations of a probability 
distribution, mean, standard deviation, skewness & Kurtosis may help analyze the signal. A 
complete description of the properties of the signal generated by a random process can be 
achieved by specifying the joint probability density function (PDF). A simpler alternative to 
this description is to compute some averages characteristic of the signal, such as covariance, 
correlations, and spectra. These averages do not necessarily describe a stochastic signal 
completely, but they may be beneficial for a general description of signals such as EEG. Digital 
signal processing (DSP) may further condition the signal or extract relevant physiological 
information. The digital output data stream can then be logged for local storage or wirelessly 
transmitted for further external processing [35] [36] [37] [47] [48]. 

BCI signal processing aims to extract features from the acquired signals and translate them into 
logical control commands for BCI applications. A feature in a signal can be viewed as a 
reflection of a specific aspect of the physiology and anatomy of the nervous system. Based on 
this definition, the goal of feature extraction for BCI applications is to obtain features that 
accurately and reliably reflect the intent of the BCI user. Artifact/Noise removal and signal 
enhancement are required to minimize the noise in the signal and are essential to understand 
its sources; different Feature Extraction methods, in addition to Feature selection and 
dimensionality reduction, are part of the process of promoting neuroplasticity to restore lost 
function and to analyze sleep spindles and K complexes, which are challenging to diagnose 
automatically, probably because of their large variability [6] [12] [17] [35] [37].  

However, the translation of intent into action depends on the expression of the intention in the 
form of measurable signals. Each signal acquisition method is associated with an inherent 
spatial and temporal resolution. EEG is the most prevalent, popular and promising signal 
acquisition method for BCIs; even though it has a low spatial resolution, it has excellent 
temporal resolution and zero clinical risk. Also, increased mobility and portability, in addition 
to being low cost and feasible to manufacture, make it favoured among researchers. Signals 
from 2,4 or 8 up to 256 electrodes can be measured at the same time [17] [49] [51]. 
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Figure 36: Overview of a general BCI system framework [47]. 

So, a BCI system has four main components: 

I. Signal acquisition, 

II. Feature extraction,  

III. Feature translation, and  

IV. Classification to device output commands or neurofeedback training paradigm [15] [17] 
[50]. 

4.9.1 Event related Potentials (ERPs) 
Exogenous ERPs are responses that occur in the EEG at a fixed time after a particular visual, 
auditory, or somatosensory stimulus. The most common way to derive ERP from EEG 
recording is by aligning the signals according to the stimulus onset and averaging them. 
Exogenous ERPs generally have shorter latency and are determined almost entirely by the 
evoking stimulus In comparison, Endogenous ERPs have longer latency. They are determined 
by spontaneous concurrent brain activity (the nature of the task in which the BCI user is 
engaged in) as in MI studies. ERPs reflect the activity in the ongoing EEG phase locked by the 
stimuli. The ERP most commonly used in BCIs is the visual evoked potential (VEP), which 
occurs in response to a visual stimulus. One frequently used VEP is the steady-state visual 
evoked potential (SSVEP). It depends on the user's gaze direction and thus requires muscle 
control [15] [17] [51]. 

The P300 is an endogenous ERP component in the EEG and occurs in the 'oddball paradigm' 
context [17] [49] [51]. This ERP component is a natural response and is thus especially useful 
in cases where sufficient training time is unavailable or the user cannot be easily trained. P300-
based BCIs are the only BCIs in daily use by severely disabled people in their homes [61].  

The P300 speller uses EEG to detect and analyze the P300 wave, a signal in the brain associated 
with cognitive processing, selective attention, and decision-making in the brain, particularly 
the recognition of essential stimuli, such as a target among distractors. When using the P300 
speller, the user is presented with a matrix of letters or symbols on a computer screen and 
instructed to focus on the desired letter or symbol as it flashes in a random sequence. As the 
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brain responds to the target stimulus, the P300 wave is detected by the EEG and translated into 
a selection on the computer screen [15] [17].  

The P300 speller has effectively enabled communication and improved the quality of life for 
individuals with severe motor impairments. However, it requires significant concentration and 
training to use effectively and may only be suitable for some as it may accompany 
uncomfortable fatigue and workload. Advances in BCI technology continue to improve the 
accuracy and ease of use of the P300 speller and other BCIs, offering hope for improved 
communication options for individuals with disabilities. The P300 speller technology has 
demonstrated high accuracy rates, with users able to type at speeds of up to 10 characters per 
minute. It has been mainly used for communication but has potential in virtual gaming and 
neuro-rehabilitation applications. The P300 speller was first developed in the 1980s and has 
undergone significant refinement and optimization, resulting in various versions of the system. 
The technology is being continuously developed and improved, with ongoing research focused 
on enhancing its usability, reliability, and accessibility for individuals with diverse needs and 
abilities [56] [51] [57] [58]. 

ERD/ERS is a time-locked ERP associated with sensory stimulation or mental imagery tasks. 
Task-related modulation in SMR usually manifests as an amplitude decrease in the low-
frequency components (alpha/beta band), also known as Event-Related 
Desynchronization (ERD), a decrease in oscillatory activity. In contrast, an amplitude increase 
in mu and gamma frequency bands is known as Event-Related Synchronization (ERS) that 
occurs before movement onset. Such characteristic changes in EEG rhythms can be used to 
classify brain states relating to the planning/imagining of different types of limb movement. 
This is the basis of neural control in BCIs [53] [56] [51] [57] [58]. 

Voluntary movements result in a circumscribed desynchronization in the upper alpha and lower 
beta bands, localized over sensorimotor areas. The desynchronization starts over the 
contralateral Rolandic region and becomes bilaterally symmetrical with movement execution. 
The contralateral mu desync's time course is almost identical in swift and slow movements, 
starting more than 2 seconds before movement onset. ERD and ERS phenomena are found with 
EEG and MEG recordings [17] [51] [56] [58]. Also, mental imagery can produce replicable 
EEG patterns in primary sensorimotor areas. This is per the concept that motor imagery is 
realized via the same brain structures involved in the programming and execution of actual 
movements [56] [58]. 

An increased widespread ERD could result from the involvement of a more extensive neural 
network in information processing. Due, for example, to increased task complexity or the need 
for more effort and attention. Moreover, with training, people can learn to increase and decrease 
sensorimotor rhythm amplitude. However, a substantial training period is typically required for 
users to develop the skill to maintain and manipulate various mental states to enable control. 
This can be pretty demanding for users, especially disabled users [64] [68]. 
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Figure 37 Superposition of different band power versus time courses triggered to brisk finger movement offset. 
The duration of the index finger extension and flexion was 0.2 seconds. Note the relatively long-lasting mu rhythm 
(10 to 12 Hz) desynchronization starting about 2 seconds before movement onset, the postmovement beta (14 to 
18 Hz) ERS following a beta ERD and the short-lasting power increase around 40 Hz before movement onset. 
ERD and ERS from one normal subject during self-paced voluntary movement. EEG recorded from C3. The 
results for three frequency bands are shown: alpha band (mu) 10–12 Hz ERD; beta 14–18 Hz ERD–ERS, and 
gamma 36–40 Hz ERS. (From Pfurtscheller et al. 1993)  [17] [56] [58]. 

Techniques used to extract ERD and ERS from raw EEG signals [15] [35] [57]. 

I. First, the raw EEG signal from each trial is bandpass filtered. 

II. Second, the amplitude samples are squared to obtain the power samples. 

III. Third, the power samples are averaged across all trials. 

IV. Finally, variability is reduced, and the graph is smoothed by averaging samples over 
time. 

Noise can be captured from neural sources when the brain signals not related to the target signal 
are recorded or non-neural sources such as lousy electrode contact or signals from EMG, eye 
movements electrooculography (EOG), and heart muscle activity (electrocardiography 
(ECG)), cross talk and power line interference. Mechanical effects from electrode or cable 
movement typically induce low-frequency (<2 Hz) oscillations, abrupt baseline shifts, or high-
frequency transients.  

To remove such artifacts and obtain a Clean EEG signal [17] [35] [39]: 

• Simple instructions to the user not to use facial muscles can help. 

• Trials that contain such artifacts can be disregarded. 

• Use a low-pass filter set to ensure the removal of power at frequencies above the 
Nyquist criterion or notch filters. 
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• Mathematical operations such as amplitude windows, linear transformations and 
component analyses are also used for artifact removal. 

A bandpass filter preserves signal power within a specified continuous frequency range while 
attenuating signal power outside of this range. A notch filter is the converse of a bandpass filter; 
it attenuates signal power within a specified continuous frequency range while preserving 
signal power outside of this range [17] [35]. 

High-pass Spatial filters enhance the Signal to Noise ratio (SNR). The bipolar derivation 
calculates the first spatial derivative and emphasizes the difference in the voltage gradient in a 
particular direction. Moreover, the surface Laplacian improves spatial resolution by making 
the electrode more sensitive to activity from superficial, radial, and localized sources 
underneath the electrode and less sensitive to activity from deep or broadly distributed sources. 
It can be approximated by subtracting the average of the signal at four surrounding nodes from 
the signal at the node of interest. It is the second derivative of the spatial voltage distribution 
and, thus, is an effective spatial high-pass filter [6] [35]. 

4.9.2 Time-Frequency Analysis 
The exact characteristics of EEG signals are, in general terms, unpredictable. One cannot 
precisely foresee an EEG wave's amplitude or duration. Therefore, an EEG signal is a 
realization of a random and stochastic process. Obeying Maxwell's and Ohm's laws, brain fields 
have a direction and magnitude; therefore, they must be represented as vector functions. It is 
possible to determine some statistical measures of EEG signals that show considerable 
regularity, such as an average amplitude or frequency. This is a general characteristic of random 
processes, characterized by probability distributions and their moments (e.g. mean, variance, 
skewness, and Kurtosis) or by frequency spectra or correlation functions [6] [35] [35].  

Such description implies a mathematical, but not a biophysical model, modern mathematical 
tools are used to analyze EEG signals, assuming that signal generation can be described using 
sets of complex Nonlinear Differential Equations such as Correlation Dimensions. This field 
of mathematical research is called "Deterministic Chaos". Thus, it is difficult to distinguish 
whether EEG signals are generated randomly or by high-dimensional nonlinear deterministic 
processes [6] [12]. 

A fundamental signal feature is simply a direct measurement of the signal (e.g., the voltage 
difference between a pair of electrodes at a particular time after a stimulus). By themselves, 
fundamental signal features usually provide limited information. Hence, it is more common for 
BCIs to use features that are linear or nonlinear combinations, ratios, statistical measures, or 
other transformations of multiple fundamental features detected at multiple electrodes and time 
points. If selected appropriately, such complex features can reflect the user's desires more 
accurately than the fundamental features. Most features used in BCI applications are based on 
spatial, temporal, and spectral analyses of brain signals or their relationships. This set of 
features is referred to as a feature vector [17] [30]. 

DOI:10.15774/PPKE.ITK.2024.004



47 
 

The most appropriate method for analyzing brain signals would be a “time-frequency analysis” 
algorithm that would describe changes in all frequencies as a function of time. However, 
frequency and time cannot be mixed; mathematically, they are orthogonal. This 
counterintuitive relationship explains why the two major classes of analytical tools used for 
analyzing brain signals are the “frequency domain analysis” and “time domain analysis” [6]. 
Fourier transform theory assumes that the signal is analyzed for an infinite duration, which 
expresses a waveform as a weighted sum of sines and cosines. It decomposes or separates a 
waveform or function into sinusoids of different frequencies that sum to the original waveform. 
After the signal is decomposed into sine waves, a compressed representation of the relative 
dominance of the various frequencies can be constructed. This frequency versus incidence 
illustration or the autocorrelation function is the power spectrum. It gives the distribution of 
the squared amplitude of different frequency components [6] [12] [17] [35]. 

The Fourier method transforms the signal defined in the time domain, into one defined in the 
frequency domain. Although this representation ignores the temporal variation of the EEG 
signal, it provides a quantitative answer regarding the power relationship between the 
frequencies. The inverse relationship between oscillation classes and the magnitude of neuronal 
recruitment offers some interesting clues about the brain’s long-time and large-scale behaviour, 
as slow rhythms involve a vast number of cells that can be “heard” over a long distance. In 
contrast, localized fast oscillations involve only a small fraction of neurons and may be 
conveyed only to a few partners. Furthermore, faster waves are attenuated more than slow 
waves. The “loudness” feature of the various network oscillations can be quantified easily by 
Fourier analysis [6] [12].  

A significant advance in computing power spectra has been achieved by introducing a new 
algorithm for computing the discrete Fourier transform, the fast Fourier transform (FFT). The 
short-time Fourier transform (STFT) is a practical solution to the time versus frequency 
orthogonality issue, quantifying frequency content changes over time. This modified analysis 
divides the brain signal into multiple short epochs, and the Fourier transform is calculated for 
each epoch. The successive spectra can display the evolution of frequency content with time. 
The STFT is a compromise of joint time-frequency analysis. A wide temporal window will give 
good frequency resolution but poor time resolution. In contrast, a narrow window will give 
good time resolution but poor frequency resolution. Accepting this compromise, this modified 
method can analyze short sequential epochs, and the frequency structure can be displayed as a 
function of time [6] [12] [17] [35]. 

Another popular way of analyzing short-time segments of selected EEG patterns is called 
“wavelet” analysis. The wave refers to the fact that this function is oscillatory; the diminutive 
form refers to the fact that this (window) function is of finite length or a fast-decaying, 
oscillating waveform. The wavelet transform refers to the representation of a signal in terms of 
a finite length. Rather than analyzing the distribution of all frequencies, the wavelet first selects 
a “frequency of interest.” Therefore, all wavelet transforms are forms of time-frequency 
representation. Wavelet transforms broadly classified into the discrete wavelet transform 
(DWT) and the continuous wavelet transform (CWT) [12] [35]. 
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Coherence is a measure of phase covariance, quantified as the cross-spectrum of two signals 
divided by the product of the two auto spectra. Because it measures spectral covariance, it 
cannot reliably separate amplitude and phase contributions. Phase-locking statistics can 
quantify phase coherence between two signals independent of the amplitudes of the respective 
signals. Phase-locking or phase-coupling can also occur between oscillatory and non-
oscillatory events, such as phase-locked discharge of irregularly spiking neurons and an 
oscillator. Cross-frequency phase synchrony can occur between two or more oscillators of 
different integer frequencies when the oscillators are phase-locked at multiple cycles. If two 
oscillators differ in frequency and cannot fix their phases, they can produce a transient and 
systematic interaction called phase precession or retardation [6]. 
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Chapter 5: Datasets, Materials, Methods & Results 
 

5.1 Datasets description  
Three different data sets were used in our method's evaluation process, the Physionet EEG 
Motor Movement/ MI Dataset, which the developers of the BCI2000 system recorded. It has a 
64-electrode EEG setup, sampled at 160 Hz. The data contains recordings of motor execution, 
as well as MI tasks. There are recordings from 109 different subjects performing two different 
MI tasks (left/right fist or both fists/feet) in two-minute runs of each MI of the two tasks. One 
trial consists of 2 s rest, 4 s of cued MI, and again 2 s of rest before the next trial starts [78]. 

The BCI Competition IV-2a dataset is also publicly available. It contains recordings from nine 
subjects who performed four motor imagery tasks (Left Hand, Right Hand, Both Feet and 
Tongue). The data collection is divided into short runs, each containing 48 trials of each motor 
imagery activity. The data was collected in two sessions in two days, comprising six runs per 
session with a short break between them. So, the data contains 288 trials of each motor imagery 
activity. The EEG data were recorded with 22 Ag/AgCl electrodes arranged in a standard 10-
20 system, sampled at 250 Hz and band pass-filtered between 0.5 And 100 Hz. The amplifier 
sensitivity was set to 100 microvolts. An additional 50 Hz notch filter was enabled to suppress 
line noise. In addition, three mono-polar Electrooculography (EOG) channels were recorded 
and sampled at 250 Hz [79]. 

The third dataset used in this research is the MTA-TTK dataset from the Hungarian Academy 
of Sciences, which belongs to Peter Pazmany Catholic University. It contains 25 recording 
subjects, 63 EEG sensor channels, and a 500 Hz sampling frequency. Five classes were 
considered: rest, imagined movements of the left hand, right hand, left leg, and right leg. No 
filtering was applied to the original raw signals; however, a 0.5-Hz low-pass filter removes the 
DC component from the signal and enhances its accuracy. 

5.2 Materials 
The following Python Packages were used:  

• MNE: an open-source Python package for exploring, visualizing, and analyzing human 
neurophysiological data: MEG and EEG and more. 

• Numpy, Scipy, Sklearn & Keras. 

• Tensorflow: An end-to-end machine learning platform. 

• Matplotlib: A library for creating static, animated, and interactive visualizations. 
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Figure 38: TTK dataset - raw data 

 
Figure 39: TTK dataset - Filtered data 

5.3 Methods 
A BCI translation algorithm uses features extracted from brain signals to produce device 
commands that convey the user's intent. The core component of an effective translation 
algorithm is an appropriate model. A model is a mathematical abstraction of the relationship 
between independent variables (i.e., brain signal features) and dependent variables (i.e., the 
user's intent as expressed by the BCI outputs). The two other components of a translation 
algorithm are the method for selecting the features used by the model and determining the 
model's parameters and weights. The primary goal in developing a translation algorithm is to 
maximize its ability to generalize to new data since BCIs must operate online in real-time. 
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Although helpful in developing an algorithm, more than success in post hoc data analysis is 
required to yield the development and use of adaptive translation algorithms [17]. 

Classification algorithms depend on the label output type, whether learning is supervised or 
unsupervised, and whether the algorithm is statistical or non-statistical. Statistical algorithms 
can be further categorized as generative or discriminative. The algorithms in supervised 
classification procedures predicting categorical labels are Linear discriminant analysis (LDA), 
Support vector machine (SVM), Decision trees, Naive Bayes classifier, Logistic regression, K-
nearest-neighbor (kNN) algorithms, Kernel estimation, Neural networks (NN), Linear 
regression, Gaussian process regression, Kalman filters and more [35]. 

Unsupervised classification attempts to find inherent patterns for unlabeled data that can then 
be used to determine the correct output value for new data instances. Some standard algorithms 
of unsupervised machine learning classification are K-means clustering, Hierarchical 
clustering, Principal Component Analysis (PCA), Kernel Principal Component Analysis 
(Kernel PCA), Hidden Markov Models, Independent Component Analysis (ICA), Categorical 
mixture model, etc. Semi-supervised learning is a combination of the two classification 
procedures [37]. 

Principal Component Analysis (PCA) is a well-established method for feature extraction and 
dimensionality reduction in which the dimensional data is represented in a lower-dimensional 
space. Such a representation would reduce the degrees of freedom and the space and time 
complexities. Independent Component Analysis (ICA) helps segregate the brain and non-brain 
components from the acquired EEG. It converts random signals with multiple variables into 
one, which measures the frequency strength at a time. They properly visualize the EEG waves 
to get the frequency wave bands [6] [83]. 

Common Spatial Pattern (CSP) is a signal processing technique used in neuroscience and 
machine learning to enhance EEG, MEG, fMRI and ECoG data information. CSP is a 
supervised machine learning method that exploits the information about differences in brain 
signals between cognitive tasks/states or motor commands. It involves finding the spatial filters 
that maximize the contrast of variance in brain signals between two classes of conditions.  

CSP has been shown to improve the classification accuracy and speed of BCI systems, which 
can be applied to assistive technology for people with motor disabilities or to enhance the 
performance of healthy individuals in tasks requiring neurofeedback training. CSP has been 
successfully applied in various BCI applications, including motor imagery, speech recognition, 
and emotion recognition. It has also been used in clinical applications, such as detecting 
seizures in epilepsy patients and diagnosing Alzheimer's disease. One of the advantages of CSP 
is that it is a data-driven method, meaning that it can be applied to any EEG data without 
requiring prior knowledge of the underlying neural mechanisms or signal characteristics. 
However, it does require a sufficient amount of training data to learn the optimal spatial filters 
[17] [35]. 
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Overall, CSP is a powerful technique for feature extraction in EEG-based BCIs. Its 
effectiveness in enhancing the SNR and increasing classification accuracy has been 
demonstrated in various neuroscience and machine learning applications. 

Support vector machine (SVM) is a supervised machine learning algorithm that can be used for 
classification, regression or outlier detection purposes. The algorithm was developed by 
Vladimir Vapnik and his team in the 1990s. The basic idea behind SVM is to find the optimal 
hyperplane that separates the different classes by maximizing the margin between them. The 
margin is the distance between the hyperplane and the closest data points from each class, and 
SVM finds the hyperplane that maximizes this distance [84]. 

SVM works by transforming the input data into a higher-dimensional space using a kernel 
function, which allows it to identify complex nonlinear relationships between the features. The 
most commonly used kernels are linear, polynomial and radial basis functions (RBF) or 
sigmoid functions. SVMs can be used for both linear and nonlinear classification. It effectively 
handles noise and outliers in data and can be used for binary and multi-class classification 
problems. Additionally, SVM has a regularization parameter that can be used to control 
overfitting and improve generalization performance [85]. 

Nevertheless, SVM can be sensitive to kernel function and hyperparameters, which requires 
careful tuning. Moreover, the training time of SVM can be slow in high-dimensional datasets, 
which can be computationally expensive, especially for large datasets. However, various 
optimization techniques, such as stochastic gradient descent, have been developed to overcome 
this issue. In summary, SVM is a robust and widely used algorithm in machine learning, and it 
has been shown to perform well in various applications [86]. 

While conventional methods like LDA, AR, KNN, CSP along variants of different filter banks 
and augmentation strategies, SVMs, Riemannian, Laplacian and Bayesian methods, have made 
significant progress in terms of classification accuracy, deep transfer learning-based systems 
have shown the potential to outperform them. Deep learning (DL) techniques, especially 
convolutional neural networks (CNNs), have been extensively used in the field of BCI motor 
imagery (MI) signal analysis for their high classification accuracy and simple construction 
procedure. Many trials were conducted using a combination of a long short-term memory 
(LSTM) network and a spatial CNN, or a multiscale fusion CNN based on an attention 
mechanism, separable convolution, depth-wise convolution, or temporal convolution network 
(TCNs). Compared to CNNs, RNNs were originally used to model data that involve sequential 
characteristics such as time series, language modeling, and speech synthesis, to name a few. 
Because of their ability to model sequential dependencies, RNNs are a natural choice to use for 
EEG-based BCI, where brain signals are treated as time series.  Trade-offs must be invected in 
selecting from these general family models. Complex models fit existing data better than 
simple models, but they may not generalize as well to new data. Limiting the model to only the 
most relevant signal features often improve its generalization ability [17] [37] [74]. 
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Figure 40: Basic CNN structure 

CNN is a deep neural network that is renowned for image processing applications. The 
convolution operation takes place by applying multiple filters to the data to extract features 
generating feature maps from the data set. Following up is typically a pooling operation in 
which the dimensionality of feature maps is reduced. Therefore, CNN proved very useful in 
classifying motor imagery signals since the raw EEG signal can be used directly as an input 
without needing a preprocessing stage, like a WT. A CNN model can be integrated within a 
BCI-based system for real-time applications. Nevertheless, it depends on the software 
development kit available to perform predictions and commands [37] [35]. 

Tuning Deep Neural Networks can help improve a deep learning model's classification 
accuracy or generalization capabilities. Batch normalization is typically applied to normalize 
intermediate representations between layers, improving generalization and accuracy, especially 
for CNNs. Dropout layers combat overfitting by randomly disabling a certain percentage of 
neurons in a layer; this ensures that a network learns generalized features rather than relying 
on individual neural connections. Dropout is only used during the training phase and turned off 
for validation and testing. Regularization is also used to reduce overfitting by penalizing 
weights. Data augmentation aims to produce more training data from available data artificially. 
In the case of image data, it is possible to rotate, scale or flip the images without changing the 
meaning. By feeding augmented data to the network, the network learns some degree of 
invariance to this type of image transformation [75] [76] [92]. 

Thesis 1  
“In this research, I co-created a software code utilizing Python named Coleeg, an open-
source initiative for facilitating the evaluation of EEG signal classification using neural 
networks. It is a platform to compare the performance of different CNN architectures 
[80].” 

First, we systematically studied the following models: 

• [Basic] represents the simplest neural network model with only one layer and no 
convolution. This model is not suggested for real-life applications but rather for 
performance comparison. 

• [CNN1D], which performs convolution along the time axis only. 
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• [CNN2D], where time and sensor channels are considered for two-dimensional 
convolution. 

• [CNN3D and TimeDist] are video classification models that convert the sensor 
channels into a 2D image that changes with time. 3D convolution and time-distributed 
2D convolution are used in CNN3D and TimeDist models, respectively. A simplified 
diagram for the proposed models is shown below (Fig 39). 

• We also added the models [EEGNet] [81], [ShallowConvNet], and [DeepConvNet] [82] 
proposed in the literature. 

 
Figure 41: A simplified diagram for the models: a Basic. b CNN1D. c CNN2D. d CNN3D. e TimeDist 

 
Figure 42: 2D Mapping visualization of Physionet dataset sensors 

Three arrays are produced from reading each dataset:  

• data_x, which contains time samples obtained from the dataset with the following 
dimensions: time-epochs x time-samples x sensors x frequency-bands.  

• data_y contains the class label corresponding to each time epoch.  
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• data_index has two columns; the first is the index of the first epoch for each subject, 
and the second is the subject number. 

5.4 Results 
The models CNN2D, CNN3D, and TimeDist show low accuracy while having high training 
times, and this might be because of the increased complexity of the models, which makes them 
tend to have an over-fitting problem and require more training time. The ShallowConvNet 
architecture was designed specifically to extract log band power features; in situations where 
the dominant feature is signal amplitude, as in ERP BCIs, ShallowConvNet performance 
tended to suffer. The opposite situation occurred with DeepConvNet; its architecture was 
designed to be a general-purpose architecture not restricted to specific feature types, such as 
extracting frequency features, so its performance was lower when frequency power was the 
dominant feature. 

Table 1: Physionet accuracy values 

 Basic 1D 2D 3D LSTM EEGNet Shallow-
ConvNet 

Deep-
ConvNet 

CNN1D_MF 

Accuracy 40.6 % 52.5% 52.2% 51.6% 47.0 % 53.9% 53.8% 54.3% 58.0 

Time 20:28 28:06 1:19:27 6:15:55 2:29:41 1:20:13 1:12:41 48:38 42:20 

 
Figure 43: Average Accuracies for Physionet dataset 
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Table 2: BCI Competition IV-2a accuracy values 

 Basic 1D 2D 3D LSTM EEGNet Shallow-
ConvNet 

Deep-
ConvNet 

CNN1D_MF 

Accuracy 54.1%  65.1 % 59.5 % 60.7% 55.1% 64.7 % 65.1 % 68.3 % 69.2 % 

Time 10:12 14:38 31:27 2:24:09 1:06:49 23:46 19:01 2:49 17:01 

 
Figure 44: Average accuracies for BCI Competition IV-2a dataset 

Then we modified the CNN1D model to have a multiband frequency input CNN1D_MF; doing 
so has improved the accuracy significantly. Any other model can accept multiple frequency 
band inputs. However, only the CNN1D model has been considered because it performs best 
among other proposed models. The subbands are 0.5–8.0 Hz, coinciding with the combined 
delta (δ) and theta (θ) waves. The band 8.0–13.0 Hz contains the alpha (α) rhythm, while the 
band 13.0–40.0 Hz coincides with the beta (β) wave and some of the lower parts of the gamma 
(γ) wave. A finite impulse response (FIR) filter with a linear phase and Hamming window 
define the bands. Results are presented in Tables 1 and 2 for the Physionet and BCI competition 
IV-2a datasets, respectively. 

Thesis 2  
“I present a novel “Multifrequency Band Fusion Method (MFBF)” for EEG MI decoding. 
Its mechanism divides the signal spectrum into multiple frequency bands and feeds each 
band into duplicates of the selected CNN model. All the model duplicates are then 
concatenated to give the required classification.” 
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Figure 45: MFBF method illustration 

The CNN1D model and the frequency bands mentioned above were used in the experimental 
evaluation to form the CNN1D-MFBF model. Considering two scenarios, it was evaluated 
against the EEGNet-fusion model on the three datasets. The first one is where no multiband 
filtering is used, and it was applied to the CNN1D and the EEGNet-fusion models. The second 
scenario is applied to the CNN1D and CNN1D-MFBF models. The preprocessing applied to 
the EEG signals was resampling all datasets to 100 Hz. The data were also normalized to have 
zero mean and a standard deviation of 1. The results are shown below in Tables 3, 4 and 5 
siding their corresponding figures. 

Table 3: Physionet accuracy values 

 CNN1D 

No multiband 
filtering 

CNN1D 

With multiband 
filtering 

CNN1D_MFBF 

With multiband 
filtering 

EEGNET_fusion 

No multiband 
filtering 

Accuracy 52.2 57.9 58.7 57.0 

Time 0:38:15 0:59:48 1:22:18 8:32:04 

 
Figure 46: mean Accuracies for Physionet dataset 
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Table 4: BCI Competition IV-2a accuracy values 

 CNN1D 

No multiband 
filtering 

CNN1D 

With multiband 
filtering 

CNN1D_MFBF 

With multiband 
filtering 

EEGNET_fusion 

No multiband 
filtering 

Accuracy 65.0 68.1 72.8 73.5 

Time 0:12:51 0:17:55 0:24:16 2:12:00 

 
Figure 47: Mean accuracies for BCI Competition IV-2a dataset 

 

Table 5: MTA-TTK 

 CNN1D 

No multiband 
filtering 

CNN1D 

With multiband 
filtering 

CNN1D_MFBF 

With multiband 
filtering 

EEGNET_fusion 

No multiband 
filtering 

Accuracy 37.3 42.5 47.6 45.1 

Time 0:25:57 0:36:28 0:56:59 4:53:15 
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Figure 48: Mean accuracies for MTA-TTK dataset 

Our experimental result shows that CNN1D_MFBF has the best accuracy and training time 
performance, as it takes advantage of the convolution process while keeping the model as 
simple as possible. They also show that applying multiple filter bands on the input data 
increases the accuracy results significantly, mainly due to data augmentation. Additional 
minimal improvement in accuracy was obtained by using 4 s of the trial time instead of 2 s and 
performing cross-validation for every subject at the expense of increased computational time 
and cost. 

Coleeg has matured to provide many utility functions that facilitate dealing with different 
datasets and models, such as applying different filter bands, applying notch filters, resampling 
data, specifying included and excluded subjects, classes and shuffling, visualization and 
augmentation features were also added along the choice, to use local runtime, which allows 
researchers to utilize the power of local hardware and overcome the limitations imposed by 
Colab-hosted runtime, in addition to evaluation metrics, like Cohen Kappa, specificity and 
sensitivity and plotting the results and saving the plots as pdf files [80]. 

5.5 Discussion 

Most EEG-based BCIs use the P300 evoked potential, sensorimotor rhythms (SMRs), or 
steady-state visual evoked potential (SSVEP). All three BCI types can help to restore essential 
communication and control to people with severe neuromuscular disabilities. At present, their 
capabilities are limited. Improved EEG recording methods are needed to provide stable, high-
quality signals in all environments, be comfortable, and be easy to use. New dry-electrode 
systems have considerable promise. Improved signal analysis algorithms that can consistently 
maintain accurate performance are also required. While much algorithmic development has 
relied on offline analyses of archival data, online testing of new algorithms is essential because 
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it considers the ongoing adaptive interactions between the user and the BCI. BCIs, particularly 
SMR-based BCIs, also show promise as new methods for enhancing functional recovery for 
people with strokes or other chronic disorders. Several strategies for using BCIs to induce 
beneficial plasticity are under study. Evidence that these methods can enhance recovery beyond 
what can be achieved by conventional methods alone is just beginning to emerge [90] [109]. 

Recent advances in digital recording and signal processing, together with the leaps in 
computational power, are expected to spawn a revolution in the processing of measurements 
of brain activities, primarily EEGs and ERPs. This will enable the implementation of more 
complicated denoising techniques of ERP than ensemble averaging and more complicated EEG 
quantification analysis methods than the amplitude and frequencies, including nonlinear 
dynamics and higher-order statistics [17]. Furthermore, this will help implement various 
techniques describing the interactions between different regions of the brain, which offer more 
insights into the functional neural networks in the brain [69]. 

Current DL-based EEG classification studies aim to improve classification accuracies, 
proposing a new way to interpret the features and enhancing real-time feasibility. The ability 
of DL models to properly clean the artifacts and learn from neurological signals still needs to 
be improved and needs further research. It is crucial in EEG to understand what was learned in 
the model because the end goal of EEG-based studies is to understand the brain and utilize the 
signals extracted from the brain. Many studies still need to open-source the data and code, 
which would be vital in increasing replicability. Open sourcing the data could also help the 
community train the DL model and transfer the knowledge to a target domain where such a 
large dataset is unavailable [89] [90]. 

End-to-end DL classification in EEG data processing and modelling pipeline has the potential 
to remove the necessity of preprocessing that tends to rely on either specific domain knowledge 
or visual interpretation by experts. Also, it allows us to focus on one optimization model from 
the beginning to the end. However, at the current stage, end-to-end is still difficult without a 
thorough analysis of how and what the DL is learning and relying on to make decisions and 
proper interpretation and decoding [90]. 

DL for EEG neural classification is still in the emerging stage. There is growing interest in 
increasing the reliability and usability of such models with the intent of using them for real-
time implementation. However, no real-time implementations currently employ these deep 
learning models for EEG decoding tasks. Several attempts to analyze EEG signals using 
CNN models were postulated. Many showed promising accuracy results concerning motor 
imagery and laterality of motion. None proved superior or reliable, but experiments are 
ongoing, searching for better, well-formed software to extract more information from EEG 
signals [51] [90] [92].  

EEG has several benefits compared to other imaging techniques. The most prominent benefit 
of EEG is its excellent time resolution; that is, it can take hundreds to thousands of snapshots 
of electrical activity across multiple sensors within a single second. EEG is an ideal technology 
for studying the precise time course of cognitive and emotional dynamics, most occurring 
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within tens of milliseconds. The second reason that EEG is an advantageous technique for 
studying neurocognitive processes is that it allows the direct measure of neural activity. EEG 
signals directly reflect biophysical phenomena occurring in neuron populations. This is a clear 
advantage over other methods, such as fMRI, that do not directly measure neural activity but 
introduce an extra relationship between what is measured (changes in blood flow in the case of 
fMRI) and the actual neural activity. Finally, EEG is non-invasive, and the required equipment 
is relatively cheap, portable and relatively easy to operate [6] [12]. 

On the other hand, the main disadvantage of EEG is its poor spatial resolution. Neural activity 
is conducted through the brain volume to the scalp and electrodes by volume conduction. The 
concept of volume conduction carries important implications for surface EEG measurements 
as currents are not restricted to the immediate neighborhood of the source, and the electrical 
activity measured between electrodes has more to do with their orientation to the actual 
generator than with the proximity of the electrodes to the generator. Because the skull is a poor 
conductor, current tends to "splash off of it", and each electrode receives signals from millions 
of neurons, reducing potential spatial localization. This is exacerbated by the fact that the head 
tissues' conductivities vary across individuals and within the same individual due to variations 
in age, disease state, and environmental factors. The inference of the location of the current 
sources from electrode voltage measurements on the scalp is known as the EEG inverse 
problem. It is comparable to reconstructing an object from its shadow; only generic features 
are uniquely determined [6] [12] [17] [47]. 

EEG is also very sensitive to subject movement and external noise. Electrodes used in EEG 
recording do not discriminate the electrical signals they receive. Intrinsic and extrinsic Artifacts 
contaminate the recordings in both temporal and spectral domains within a wide frequency 
band. The internal source of artifacts may be due to the subject's physiological activities (e.g., 
eye movement, electrocardiographic activity, sweat or muscle artifacts) or their movement. 
External sources of artifacts are environmental interferences such as power line interference, 
improper contacts between electrodes and skin, or interferences from recording equipment and 
cable movement [6] [12] [17] [47]. 

Four criteria are a must for a system to function as a BCI system:  

• The system must rely on activity recorded directly from the brain.  

• Intentional control: At least one recordable brain signal, which can be intentionally 
modulated, must provide input to the BCI (electrical potentials, magnetic fields or 
hemodynamic changes).  

• Real-time processing: Signal processing must occur online and yield a communication 
or control signal.  

• Feedback: The user must obtain feedback about the success or failure of his/her efforts 
to communicate or control.  

The primary goal has been to introduce and articulate a framework capable of synthesizing 
some results and theories in motor control, imagery, perception, and perhaps even cognition 
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and language rather than providing compelling data for its adoption. These considerations are 
not theoretically insignificant but are also quite far from conclusive. BCI development relies 
heavily on offline analyses of data gathered during BCI operations or various open-loop 
psychophysiological studies. These analyses can be instrumental and imperative in comparing 
different models, feature selection, and parameterization methods and testing alternative 
algorithms. 

 

5.6 Conclusion 
 

The path of the signal: 
 
"Brain – scalp-electrode interface – electrodes (composition material, specifications and 
configuration) – Amplification and Filtering (Analog circuitry) – ADC – Signal processing 
(Artifact removing – Feature extraction, dimension reduction, feature selection and 
classification) – then to application circuit (Digital/analogue commands) leading to 
intention decoding & neuro-control". 
 

BCI is an emerging field where EEG techniques are used as a direct nonmuscular 
communication channel between the brain and the external world. BCI research and 
development is a highly complex, interdisciplinary, and demanding endeavour that depends on 
carefully evaluating and comparing many different brain signals, signal processing methods, 
and output devices. Most current BCI systems' inflexibility, unreliability and limited 
capabilities significantly pose a considerable challenge for designers and users alike. A few 
people with severe disabilities already use a BCI for essential communication and control in 
their daily lives. With better signal-acquisition hardware, clear clinical validation, viable 
dissemination models, and increased reliability, BCIs may become an essential new 
communication and control technology for people with disabilities and possibly the general 
population [17]. 

The present report sheds light on the difficulties encountered in BCI technology. Problems in 
the field today are accuracy, reliability, and number of commands, Bandwidth as the 
Information Transfer rate (ITR) (i.e., speed of the system) and new applications and paradigms, 
and lack of shared codes. Users' comfort needs to be addressed as cognitive workload and 
mental fatigue may appear as side effects of using the system. Calibration is also challenging 
in BCI because the SNR is unfavorable, and the subject-to-subject variability is immense. 

Visual ERP-based BCIs often have the advantage that the stimulus presentation mode leads to 
a unique structure of the collected brain signal data, which supervised and unsupervised 
learning methods may exploit. Without significant improvements, the real-life usefulness of 
BCIs will, at best, remain limited to only the most basic communication functions for those 
with the most severe disabilities. In current BCIs, the BCI, rather than the user, typically 
determines when output is produced. Ideally, BCIs should be self-paced so that the BCI is 
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always available, and the user's brain signals alone control when the BCI output is produced 
[66]. 

EEG phenomena's complexity requires computer simulations to understand the underlying 
generation processes. New tools for studying nonlinear dynamic systems have been introduced 
in this domain of theoretical neurophysiology. Furthermore, the availability of powerful 
computer tools opens new possibilities for modelling complex membrane phenomena and 
network properties. Academic studies are justified if combined with experimental 
investigations (hence, offline and online examinations, invasive and noninvasive techniques). 
In this way, one may obtain new insights about the generation of EEG patterns and formulate 
hypotheses to be tested under experimental conditions. In the last decades, a shift of attention 
from models describing the behaviour of neuronal networks in the temporal domain toward 
models considering complex networks' spatial and spectral properties has occurred. The person 
interested in interpreting the EEG must draw conclusions based on the brainwaves' frequency, 
amplitude, morphology, and spatial distribution. However, the diversity of EEG patterns cannot 
be wholly explained by any single mathematical or biological model available today. Therefore, 
EEG interpretation remains a phenomenological medical discipline with undoubted prospects 
in the BCI domain. 

 

 

‘It remains sadly true that most of our present understanding of mind would remain as valid 
and useful if, for all we knew, the cranium were stuffed with cotton wadding’ [96] [97]. 
[Ralph Gerard (1949), Robert Maxwell Young (1970), Christopher Lawrence (2021)] 
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