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Abstract 
The tiny regulatory network motifs that make up bigger, more complicated signaling 

pathways are the fundamental units of any physiological pathways. There are mainly two 

types of regulatory motifs known as feedforward and feedback loops. While a feedback 

loop operates in both ways, the feedforward loop only operates in single direction. 

Because feedforward loops are such efficient network motifs inside a living system, they 

are able to alter the behavior of the system such that it can react to a set of predetermined 

criteria. In contrast, feedback loops are designed to operate in such a manner that they 

modify the dynamic behavior of the individual components in order to keep the behavior 

of the system stable. Furthermore, a feedback loop can appear in the form of either a 

switch or an oscillator. Significant biological circuits, for instance, the cell cycle, gene 

regulation, circadian rhythms, and so on, make application of the qualities of these two 

dynamical network motifs. 

Given the enormity of network topologies, many ways to investigate their dynamical 

features have been proposed. In my thesis, I examine the small basic networks to get a 

better understanding of these complicated dynamics. 

Because of the biochemical noise, a live cell normally functions in a noisy environment, 

and the influence of the noise might potentially modify the dynamics and outcomes. 

Despite various stochastic sources, physiological processes work accurately. What 

makes signaling pathways accurate and robust despite noise? Do regulatory motif 

topologies play an important role? In my thesis, I investigate how various kinds of 

feedforward and feedback loops generate robust reactions. I elaborate on the unique 

qualities of circadian oscillations such as temperature compensation and noise resilience. 

I also made steps in uncovering the key controllers of the circadian oscillatory network 

enabling temperature compensation. 

A theoretical approach has been followed during the course of this study. Consequently, 

in order to investigate the dynamical properties of these tiny motifs, I have carried out 

mathematical modeling and simulations with the aid of the software programs MATLAB 

and Kaemika. A systematic approach has been carried out to understand the dynamical 

behavior of small regulatory network motifs like feedforward and feedback loops. 
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1.1. Overview  
Computational and systems biology nowadays largely rely on biological network 

analysis. Physiological functions may now be better understood because of systems 

analysis, which gives a unified understanding to explain the interrelationships between 

various parts of complex networks. In the biological context, cells include a variety of 

mechanisms to carry out certain physiological functions. Furthermore, biological 

pathways are dynamic on both the evolutionary timescale and the much shorter 

physiological timescale [1]. Different metabolites, including genes, mRNAs, proteins, 

etc., encompass the biological process at diverse spatial and temporal domains [2,3].  

With the advent of high-throughput technology, biologists now see the cell as a big and 

complex system made up of many smaller systems that are widely interconnected. 

"Network motifs," which are tiny biological repeating units [4,5], form a core regulatory 

network. The dynamical activity that is responsible for global biochemical functions is 

intimately linked to the architecture of these network motifs. Thus, it is evident that 

studying these network topologies is crucial to comprehending the intricate dynamic 

nature of biological processes. 

In nature, the interaction time of any biological process is random [6,7]. Cells often 

modify the outcomes due to the presence of chemical noise. In order to govern metabolic 

pathways, it is necessary to understand numerous sources of stochasticity and how the 

network topology responds to the noise. Thus, stochastic modeling is the ideal way to 

depict dynamic network analysis [8]. 

1.2. Scope of the Research 
Cells, combine many processes in order to execute distinct functions. To coordinate with 

external signals, these systems adapt or transform their responses through a succession 

of molecular events such as chemical reactions. Cell signaling is a fundamental 

mechanism that all biological systems employ to communicate to their surroundings [9]. 

Multicellular organisms operate effectively because of the well-coordinated signaling 

pathways. In signaling pathways, biomolecules such as genes, mRNAs, transcription 

factors (TFs), and proteins interact with each other and lead to functional and structural 

variations in expression levels [10].   
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Small regulatory network motifs are the building blocks of larger, more complex 

signaling pathways. Feedforward loops (FFLs) [4,5] and feedback loops [11,12] are two 

distinct forms of regulatory motifs that are categorized according to the type of regulation 

that exists between the two regulators involved. It is important to note that whereas the 

feedforward loop works in one direction, a feedback loop works in both directions. 

Motifs' dynamical behavior may be altered by their connections to one another in a bigger 

network [13,14]. This shows that the study of the isolated network motifs is not adequate 

to explain the overall dynamic characteristics of a biological function.  

FFLs are such an effective network motifs in a biological system that they change the 

system’s behavior in order to respond to a preset criteria. FFLs are not always isolated; 

instead, they are paired with other FFLs (coupled FFLs) [15,16] and this changes their 

noise-reduction abilities, making them a better noise reducer.  

On the other hand, feedback loops function in such a way that they adjust the dynamics 

of the individual units so that the system's behavior can be maintained. Depending on the 

network's design, feedback loops may either be a switch or an oscillator. There are 

various biological processes that depend on oscillators, including the cell cycle and the 

circadian clock [17]. Temperature compensation [18] is one of the most well-known 

essential features of circadian oscillator. The exact mechanisms by which the clock 

maintains a temperature-compensated and a robust circadian oscillatory network are still 

a mystery.  

Furthermore, the mathematical modelling and representation of dynamical systems 

makes it feasible to conduct research on the analysis of the dynamical properties of 

networks. Computer science and biology work hand in hand to cope with the growing 

volume of biological data. To describe biological systems, certain algorithms and 

statistical analysis can be useful.  

Stochasticity, also known as chemical noise, is inherent in chemical processes and may 

interfere with and influence the result. The purpose of this thesis is to comprehend the 

dynamic characteristics of various regulatory networks and their behavioral changes 

towards the noisy environment. In this thesis, robustness of these networks has been 

tested systematically. This dissertation includes an in-depth investigation of the 

robustness of feedback loops in a circadian oscillator as well as an understanding of how 

DOI:10.15774/PPKE.ITK.2023.004



Chapter 1 
 

4 
 

temperature compensation works. This thesis tries to unravel the mystery associated with 

the dynamical features of various regulatory networks.  

1.3. Outline of the Thesis 
The study objectives and views have been laid forth in this first chapter. It describes how 

network architecture influences their biological function. An interdisciplinary approach 

to dynamic network analysis has been suggested. Furthermore, the scope of this study 

and the contributions to this research have been outlined in this chapter as well.  

The second chapter briefly describes about the earlier studies related to this thesis. It has 

depicted different network architectures associated with various biological functions. 

The description of a biological dynamical system has been presented in terms of inter-

disciplinary subjects including mathematics, physics, chemistry, biology, statistics, and 

computer simulations. 

The methods are explained in the third chapter. This section discusses the theoretical 

approaches used and the commercial software programs MATLAB and Kaemika, which 

were used to perform analyses on the models presented in chapters 4 and 5. 

The first result section, chapter 4, investigates feedforward loops systematically when 

they are present in isolated or coupled form. Extensive research has been conducted to 

determine whether or not these systems have the capacity to reduce noise without 

compromising their signal transducing capabilities. It is shown that the network topology 

and logical gate of some isolated and coupled feedforward loops are advantageous for 

signal transduction and noise reduction. Both temperature compensation and robustness 

to cellular noise, two fundamental properties of the circadian clock, are discussed in the 

second result section, chapter 5. The existence of such time-delayed negative feedback 

mechanisms in the regulatory pathway causes the majority of circadian oscillations. 

Cyanobacteria's circadian rhythm, on the other hand, is governed by an oscillator with a 

powerful positive feedback loop. The purpose is to look at the robustness and temperature 

adjustment capabilities of circadian clocks using network design with positive and 

negative feedbacks. 

In conclusion, this work is summarized in chapter 6, which also discusses the importance 

of the aforementioned research to the overall project. In its final section, it provides an 

overview of potential future research avenues that are a direct result of this dissertation. 
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2.1. Dynamics of Biological Processes 
The cell is the smallest and the most fundamental unit of life. Multicellular organisms 

are just as common as single-celled ones. Humans, for example, contain around 1014 cells 

arranged into approximately 200 tissues [3].  Biological operations are regulated by 

chemical reactions that take place in molecular networks. These wireless molecular 

networks enable proteins, RNA, DNA, and small molecules to interact with one another 

and carry out signaling and energy transfer processes. A comprehensive understanding 

of the dynamical behaviors and properties of biological processes is always challenging. 

The complexity arises when cells integrate a multitude of activities to perform 

specialized roles. 

The individual functions of discrete entities cannot explain the overall behavior of 

biological processes [19]. Integrative insights are a valuable tool for comprehending the 

function of biological processes. Technological advancements and increased cross-talk 

across many disciplines of study are driving the integrated approach. The amalgamation 

of the concepts of physics, chemistry, biology, and mathematics along with technology 

helps to unveil the properties of dynamical biological networks. The representation of 

biological networks as dynamical mathematical models, in fact, facilitated the analysis 

of their dynamical characteristics [8]. Theoretical computer science and algorithmic 

applications [20,21] can also be used to shed insight on the problem of understanding 

biological systems. 

The biological molecular networks exhibit strong non-linear behavior due to a large 

number of coupled interactions between molecular species [22]. Certain small recurrent 

patterns of interactions between entities resulted in the same dynamical behaviors, but 

not always in the same biological functions [4,23,24]. These recurrent patterns are known 

as network motifs. Network motifs are frequently used to build the main regulatory 

networks that govern cellular processes. As a result, studying these network motifs is 

critical for understanding the wider complex network pathways of the biological system 

and its activities. 

Feedback [11,12] and feedforward loops [4,5] are the most typical network motifs. These 

are depicted as dynamic phenomena in which quantities like protein, RNA, metabolites, 

and other cell substances are considered as functions of time. The numerous components 

of a system and their interactions are best described as networks, which are primarily 
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depicted as graphs with thousands of nodes connecting to thousands of vertices. Nodes 

in these networks represent any type of biological units, such as proteins, while edges 

describe biochemical interactions, such as activation or inhibition [25]. Interactions 

between nodes can be either unidirectional or bidirectional. The dynamical aspects of 

complex biological networks can be deciphered by knowing the dynamical properties of 

such building blocks. 

2.2. Classifications of Network Motifs 
This section focuses on network motif classifications. All of these motifs are important 

in biological systems. It is worthwhile to investigate regulatory motifs in molecular 

control systems and their potential functional importance in signal processing and output 

creation. 

2.2.1. Simple Regulations 
Production and decay interactions are the most basic kind of rules. Production is 

continually increasing the amount of a molecular species X in the system, whereas decay 

is consistently removing this species from the system (Figure 2.1).  

 

Figure 2.1: Illustration of simple interactions.  

Production (A) and decay (B) processes are shown in the top panel. The bottom panel represents two 

fundamental modes of direct interactions- the activation process (known as a transducer) (C) and the 

inhibition process (known as an inverter) (D). The pointed arrow represents activation, whereas the blunt-

headed arrow denotes inhibition. 

There is another kind of simple regulation, which is termed direct interaction. Direct 

interactions occur when two molecular species, such as X and Y, interact with unfixed 
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concentrations. This mechanism of direct interaction is separated into two subcategories: 

transducer and inverter. In the case of a transducer, X activates Y, but in the case of an 

inverter, X inhibits Y (Figure 2.1). The sign of the signal is retained for transducers, 

whereas it is reversed for inverters. In signal-transduction and transcription processes, 

both transducer and inverter systems are prevalent [4,24]. 

2.2.2. Feedback Loops 
The autoregulation process is one of the most basic types of feedback regulation. A 

molecular species X auto-activates or auto-inhibits its own activity. An example of auto-

activation (Figure 2.2A, B) is when a transcription factor induces the transcription of its 

own gene. In the post translational modifications, auto-inhibition is a common example.  

 

Figure 2.2: Influence diagram of feedback loops.  

In the upper panel, the autoregulation processes are shown. Autoregulation refers to either autoactivation 

(A) or autoinhibition (B). The middle panel shows two forms of  Positive Feedback Loops (PFB): pure 

PFB (C) with all positive interactions and a double negative feedback loop (DNFB) (D) with two mutual 

inhibitory interactions resulting in an overall positive effect. The schematic diagram of a Negative 

Feedback Loop (NFB) is shown in the lower panel (E), with two species linked by activatory and inhibitory 

interactions. The pointed arrow indicates activation, whereas the blunt-headed arrow implies inhibition.  

The two molecular species that promote each other's activity are classic examples of 

feedback loops. There are two different kinds of feedback loops: positive (Figure 2.2C, 

D) and negative (Figure 2.2E). Positive feedback loops (PFB) boost the production of 

the species engaged in the loop. That is, molecular species govern production in the same 

way that they are regulated. This PFB can be either a mutual activatory (known as a 
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purely positive feedback loop) or mutual inhibitory (known as double negative feedback 

(DNFB) loop). A negative feedback loop (NFB) is one, in which the output and input 

nodes provide opposing functions.  

The feedback loop can function as a switch or as an oscillator. Because of the presence 

of an ultrasensitive signal and a positive feedback loop, two stable steady states (known 

as ON/OFF states) can be formed. This will lead to a switch like behavior, known as 

Bistable switches. These PFB loops play critical roles in cell fate decisions. Negative 

feedback loops (NFB) maintain homeostasis and can cause oscillations. Sustained 

oscillation is produced by the combination of PFB and NFB loops.  

Time course simulations provide a visualization of the dynamical nature of these network 

motifs. Biological processes progress from a transitory to a stable state. These stable 

states can be of two types: sustained oscillators, often known as limit cycles in 

mathematics, or steady states. A steady behavior means that the system's state does not 

change over time. According to Lyapunov functions [26], this is known as a fixed 

attractor. A sustained oscillator has steady behavior since it repeats the same pattern 

throughout time and is known as a periodic attractor [26,27]. 

2.2.2.1. Bistable Switch 
Non-linearity and PFB loops are essential for a system to be a bistable switch [26]. 

Bistable systems are very important in molecular signaling pathways. These switches can 

convert a gradient signal to a binary (on / off) response. Along with the signal level 

changes the response of a bistable switch shifts between the high and low activation states 

[27]. A bistable switch has both stable and unstable states [26]. Bifurcation points are the 

precise locations where a system's stability shifts, i.e. when a molecular species 

transitions from being stable to unstable or vice versa. In bistable systems, these points 

are known as saddle-nodes (SN), where a saddle is an unstable state, and a node is a 

stable state. Hysteresis is a significant feature observed in bistable systems. Hysteresis 

maintains the system in the switched state even in the absence of a continuous signal, 

making it resistant to signal perturbations or noise [26,27]. The diagram of a bistable 

switch has been shown in Figure 2.3. The equations for the DNFL-d [28] model and the 

parameter values are taken from the article published by Chakravarty, S.; Barik, D [28].  
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Figure 2.3: Bifurcation diagram of a bistable switch.  

For a bifurcation parameter (KX) the bifurcation diagram of a DNFL-d model is shown. The solid red lines 

represent NX's stable state, while the black solid line represents the unstable state. The hysteresis loop is 

shown by the dashed arrow-line that circles the NX states. The bistable zone is shown by the blue shade. 

Two saddle-node points SN1 and SN2 are indicated in the diagram. The mathematical model and the 

parameter values are chosen from the article by Chakravarty et al. [28]. 

2.2.2.2. Oscillators and Limit Cycles 
There are many instances of oscillatory dynamics in the biological system. These 

oscillations are sometimes referred to as the limit cycle in mathematics [26,27]. 

Oscillatory behaviors result in periodicity since they are repetitive. In a biological 

context, non-linearity and NFB loops are directly connected to the formation of 

oscillatory dynamics. For biological systems, the emergence of an oscillatory rhythm is 

a very beneficial characteristic. Time and spatial oscillations are present all across nature 

and are essential to dynamic biological activities. Oscillations may be seen in a number 

of biological processes, including circadian rhythms, the cell cycle, and various 

metabolic activities [29]. 

One of these oscillators, the circadian oscillator [30], is important because it works as a 

biological timekeeper [31]. Almost every living creature has a 24-hour internal clock. 

Along with temperature compensation [18], the circadian clock has several other 

important characteristics such as tunability, entrainment, and robustness [32]. 

Temperature compensation refers to the general constancy of the period at various 

constant temperatures.  
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There are two types of oscillators: sustained oscillations and damped oscillations [27]. 

The amplitude of damped oscillations decreases and finally converges to a steady state. 

This steady state is located between the higher and lower activity thresholds and 

represents an optimum intermediate value. This is called homeostasis. On the other hand, 

the repeating character and, consequently, the periodicity of a sustained oscillation 

persist sufficiently for longer time periods. Damped oscillations ideally need (i) a strong 

cooperative feedback regulations and (ii) equivalent timeframes on the two arrows. The 

dynamical equations and the time trajectory for the damped and the sustained oscillations 

are shown in Figure 2.4. This example has been taken from the book chapter written by 

Brian Ingalls [27].  

 

Figure 2.4: An oscillator's topology creates damped and sustained oscillations.  

Wiring diagram of an oscillator is shown (A). This is an example of Selkov's substrate depletion network 

[33], which is a substrate depletion-driven oscillator with the simplest positive feedback loop caused by 

S2's autocatalytic activity. Despite the fact that this is not a typical negative feedback loop, in this scenario, 

S2 tends to remove S1. The ODEs mathematically explain the network (B). Time course image for damped 

oscillation is shown (C). The parameter values for damped oscillation are : K0 = 8, K1 = 1, K2 = 5, K = 1, 

n = 2 (AU). Time course trajectory for the sustained oscillation is shown (D). The parameters associated 

with sustained oscillation are : K0 = 8, K1 = 1, K2 = 5, K = 1, n = 2.5 (AU). 

Furthermore, sustained oscillations can be categorized into two types: delayed and 

relaxation oscillators. A positive feedback loop provides delay to a system. Positive 

feedback in biological systems may cause a two-node negative feedback loop to exhibit 

sustained oscillations. The lag in the delayed oscillators can be modeled by introducing 
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multiple intermediatory steps. The durations for various steps in delayed oscillators are 

equal [27]. Whereas in the case of relaxation oscillators, the time scale of the NFB loop 

must be much slower than that of the PFB loop [27]. Unlike the more symmetrical pulses 

of delayed oscillators, this form of oscillation often features asymmetric pulse patterns 

with gradual building at beginning, then fast buildup when positive feedback starts to 

dominate, and a quick drop. The time course simulation of the relaxation and delayed 

oscillators are presented in Figure 2.5.   

 

Figure 2.5: Two kinds of sustained oscillators.  

Time course diagram for delayed oscillation is shown (A) with the parameter values: K0 = 8, K1 = 1, K2 = 

5, K = 1, n = 2 (AU). Time course diagram for a relaxation oscillator is represented (B). The parameters 

associated with relaxation oscillation are : K0 = 8, K1 = 0.1, K2 = 5, K = 1, n = 2.5 (AU). The network 

topology and mathematical ODEs are same as shown in Figure 2.4A and 2.4B respectively.   

2.2.3. Feedforward Loop 
A feedforward loop (FFL) is a type of signaling network pattern in which a target gene 

Z is regulated directly (direct arm) by an input transcription factor (TF), X, or indirectly 

(indirect arm) by an intermediary TF, Y. There are two kinds of FFL – coherent (cFFL) 

and incoherent (iFFL). Coherent FFLs encompass themes in which the net impact of 

direct regulation (from X to Z) is the same as the net effect of indirect regulation (through 

Y). Incoherent FFLs are described as topologies in which the direct regulation (from X 

to Z) is the inverse of the indirect regulation (through Y). The FFLs are classified into 

eight types based on diverse combinations of positive and negative rules, four of which 
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are coherent and four of which are incoherent shown in Figure 2.6. A coherent FFL can 

function as a noise filter while simultaneously displaying the delay mechanism. 

Incoherent FFLs are sign-sensitive accelerators with the ability to function as pulsers. 

These network topologies cannot be observed in isolation since they are seen in biology 

in coupled forms. These coupled feedforward loop topologies have been discussed in the 

chapter 4.  Immune cells, for example, are governed by feedforward loops which are both 

coherent and incoherent [15]. Another example of coupling between particular FFLs in 

biology is the mitogen activated protein kinases (MAPK) pathway [16]. Noise may be 

reduced by using linear MAPK pathways [34]. According to earlier studies [35,36], a 

network containing posttranslational modification through phosphorylation and 

dephosphorylation reactions may also reduce noise. It has been discovered that c1FFL 

functions as a low-pass filter that reduces noise. 

 

Figure 2.6: Feedforward loops.  

The coherent feedforward loop (cFFL) and incoherent feedforward loop (iFFL) are presented in subplots 

(A and B), where cFFL has the same net effect on the direct and indirect arms (i.e. both arms are positive), 

whereas iFFL has the opposite net effect on the direct and indirect arms (i.e. one arm is positive while 

other is negative). The four possible coherent feedforward loops (cFFL) are shown at the top panel (C). 

The four different incoherent feedforward loops (iFFL) are shown at the bottom panel (D). 

2.3. Understanding Network Topologies 
In the next subsections I will discuss network topologies in depth and explain how to 

mathematically model such networks. 
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2.3.1. Chemical Reaction Networks (CRN) 
Chemical reaction networks offer a straightforward framework for representing 

complicated dynamical systems such as those found in inorganic chemistry, 

biochemistry, and systems biology [37,38]. A chemical reaction network is made up of 

a number of reactants, a number of products, and a number of reactions [39]. For a better 

understanding, a basic reaction scheme can be illustrated in Figure 2.7. In the following 

influence diagram, A and B are connected by the PFB loop, and A is synthesized from 

S. A, and B proceeds for self-degradation reactions. 

 

Figure 2.7: Wiring diagram of a network.  

A and B are connected through a positive feedback loop (PFB). A is directly produced from S. B is 

influencing its own level positively by converting A to B, and A is doing the reverse, converting A to itself. 

This systems is a combination of these two pure positive feedback loops and the positive feedback, based 

on the antagonism of A and B, how they inhibit each other. This systems was termed as Direct Competition 

earlier [20]. A and B both  can be degraded followed by mass action kinetics. The direct reactions (synthesis 

and degradation) are shown by solid arrows, while the indirect reactions (here, the positive influence) are 

represented by dashed arrows. 

The set of chemical reactions connected with it is as follows: 

𝑆 
𝑘𝑜
→  𝐴 

𝐴 + 𝐵 
𝑘1
→  2𝐵 

𝐵 + 𝐴 
𝑘−1
→  2𝐴 

𝐴 
ϒ1
→  Ф 

𝐵 
ϒ2
→  Ф 
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2.3.2. Mathematical Modeling and ODE  
Dynamical mathematical modeling may easily convey mechanistic features of a network 

architecture. Ordinary Differential Equation (ODE) represents the dynamical properties 

of biological network topologies. The concentration of molecular species changes over 

time, and it is represented by ODEs. Each equation represents a molecular species, with 

positive values representing production and negative terms representing decay.  

Rate of change of A = + rate of production of A – rate of degradation of A 

An ODE is made up of parameters and state variables. State variable refers to molecular 

species that change throughout time. A chemical reaction has defined parameters that are 

generally reliant on biological variables such as temperature, activation energy, or 

reaction velocity (kinetic rates) [27]. This dependency can be easily understood from the 

mathematical expression of the Arrhenius Equation [18] (In section 3.1.2., the Arrhenius 

Equation is introduced in more details.).  

For the above CRN the ODE for A can be represented as follows – 

𝑑𝐴

𝑑𝑡
= 𝑘𝑜 ⋅ 𝑆 + 𝑘−1 ⋅ 𝐵 ⋅ 𝐴 − 𝑘1 ⋅ 𝐴 ⋅ 𝐵 − ϒ1 ⋅ 𝐴 

(2.1) 

Where, S,B,A are the state variables and 𝑘𝑜 , 𝑘1, 𝑘−1, ϒ1 are the fixed parameters.  

Steady state approximation can be used to determine the precise solution of state 

variables. Setting 𝑑𝐴
𝑑𝑡
= 0 yields the steady state (SS) equation of A. 

2.3.3. Kinetics of Biological Processes 
The kinetics of any biological process can be used to interpret it. The dynamical behavior 

of network motifs may be described using the network diagram and chemical kinetics. A 

series of chemical processes can be used to determine the network architecture. Chemical 

reactions describe the molecular species and their interactions. Mass-action kinetics, 

enzyme kinetics, and hill equations can all be used to describe the mathematical 

connection between molecular species. 

The behavior of reactants and products in an elementary chemical reaction is described 

by mass action. This phenomenon is described by mass action kinetics as an equation in 

DOI:10.15774/PPKE.ITK.2023.004



Chapter 2 
 

17 
 

which the velocity or rate of a chemical reaction is exactly proportional to the 

concentration of the reactants [40,41]. According to the law of Mass-Action Kinetics, the 

rate of the reaction 𝐴 + 𝐵 
𝑘𝑟𝑎𝑡𝑒
→    𝐶, is 𝑘𝑟𝑎𝑡𝑒 ⋅ [𝐴] ⋅ [𝐵]. 

Michaelis-Menten Kinetics is a model that accounts for enzyme kinetics. The model 

illustrates how an enzyme (E) can induce kinetic rate enhancement in a product (P) 

generation process and how reaction rates rely on the substrate (S) concentrations [42]. 

The substrate binding to the enzyme is a reversible process, but the product formation 

pathway is irreversible.  

𝐸 + 𝑆 ⇋ 𝐸𝑆 
𝑘𝑐𝑎𝑡
→   𝐸 + 𝑃 

 

 

Figure 2.8: Michaelis-Menten kinetics.  

In panel (A) time course simulation of substrate (S), enzyme (E), saturated enzyme (ES), and the product 

(P) has been shown in blue, red, green, and yellow colored lines,  respectively. According to the Michaelis-

Menten law, the saturation curve displays how the concentration of the substrate in enzyme kinetics 

changes over the reaction rate (B). 

The product (P) formation can be mathematically expressed as follows (assuming that 

the concentration of enzymes is substantially lower than the concentration of substrates.): 

𝑑[𝑃]

𝑑𝑡
= 𝑘𝑐𝑎𝑡 ⋅ [𝐸𝑜] ⋅

[𝑆]

𝑘𝑚 + [𝑆]
 

(2.2) 
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Where 𝑘𝑐𝑎𝑡 denotes the catalytic rate constant, [𝐸𝑜] and [𝑆] represent the total amount of 

enzyme and the substrate concentration respectively. 𝑣𝑚𝑎𝑥  can be represented as 

following: 

𝑣𝑚𝑎𝑥 = 𝑘𝑐𝑎𝑡 ⋅ [𝐸𝑜] 

(2.3) 

The 𝑘𝑚  value is the substrate concentration at which half of the enzymes bind the 

substrate (Figure 2.8B). The change in product concentration over time is hyperbolic in 

nature (Figure 2.8A).  

For [𝑆]<< [𝑘𝑚], the rate of reaction is proportional to the concentration of the substrate, 

and it follows first-order kinetics. For [𝑆] >> [𝑘𝑚], the rate of the reaction becomes 

independent of [S] and it follows zero-order kinetics.  

The Hill equation is widely used to calculate the number of ligand molecules needed to 

bind to a receptor and cause a functional effect. Non-linear sigmoidal dose–response 

interactions are described by the Hill equation [43,44]. The rate of change of activity of 

Y can be described by the following ODE when a transcription factor X regulates the 

targeted gene Y either positively or negatively, as in X ->/| Y . 

𝑑𝑌

𝑑𝑡
= 𝑘0 + 𝑓(𝑋) − ϒ𝑌 ⋅ 𝑌 

(2.4)  

In the above equation 𝑘0 is the basal synthesis rate of Y. This is also known as the non-

zero minimal expression rate. 𝑓(𝑋) is the regulated synthesis rate of Y and ϒ𝑌 is the self-

degradation rate of Y. According to the Hill function, for X->Y situations 

𝑓(𝑋) =
𝑘𝑀𝑎𝑥 ⋅ 𝑋

𝑛

𝐾𝑛 + 𝑋𝑛
 

(2.5) 

For X-| Y situation, the 𝑓(𝑋) can be written as follows  

𝑓(𝑋) =
𝑘𝑀𝑎𝑥
𝐾𝑛 + 𝑋𝑛

 

(2.6) 
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The maximum expression rate of the targeted gene Y is given by 𝑘𝑀𝑎𝑥. The activation 

coefficient, or 𝐾, is the amount of X required to influence gene Y. The parameter n 

denotes the Hill coefficient, which governs the Hill function's steepness 

(Ultrasensitivity). With increasing n, the steepness of the Hill function rises (Figure 2.9). 

This n also describes the co-operativity effect. If n < 1, there is negative cooperation; if 

n > 1, there is positive cooperation; and if n = 1, there is no cooperativity. When 

cooperativity is absent (n = 1), the sigmoidal curve turns into a hyperbolic curve, and the 

Hill equation resembles Michaelis-Menten kinetics (Figure 2.9). 

 

Figure 2.9: Hill kinetics.  

As the substrate concentration rises, so does the proportion of ligand bound to it, as seen in the graph. Here 

n is the Hill co-efficient. In this graph each of these lines have different Hill co-efficient values (n). At 

n=1, the curve (in red color) resemblances with the Michaelis-Menten plot.  

For multi-step post-translational modification processes [45–49], mass action kinetics 

can be implemented instead of the Hill equation. For a multi-step phosphorylation 

process like the following,  

𝑋

𝑘𝑝
⇄
𝑘𝑝𝑝

𝑋𝑝
𝑘𝑝
⇄
𝑘𝑝𝑝

 𝑋𝑝𝑝 

the phosphorylation process is carried out by the kinase (𝑘𝑝). As a result, each individual 

phosphorylation event can be modeled using the law of mass action, like 𝑘𝑝 ⋅ 𝑋 , 𝑘𝑝 ⋅ 𝑋𝑝 
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and 𝑘𝑝 ⋅ 𝑋𝑝𝑝 [45–49]. The dephosphorylation reaction is carried out by the phosphates 

(𝑘𝑝𝑝). The mass action law for the dephosphorylation reaction will be , like 𝑘𝑝𝑝 ⋅ 𝑋𝑝𝑝 

and 𝑘𝑝𝑝 ⋅ 𝑋𝑝 . Using mass action kinetics to a two site phosphorylation 

dephosphorylation process , the protein abundance curve has the shape of a sigmoid, 

which is the same as the "s-shaped" curve that comes from the Hill equation with a Hill 

coefficient of 2 [37].  

2.4. Stochasticity in Biology 
The biological processes are often influenced by the inherent stochasticity. Biological 

noise can be explained in terms of cell-to-cell variation found in groups of genetically 

identically cells. If two genetically identical cells are maintained under similar 

environmental circumstances, a gene will not yield the same quantity of mRNAs and 

proteins over time [44,50–54]. The low copy number of different biological metabolites 

like genes, mRNAs, proteins, transcription factors (TF) cause a biological process to be 

discrete and random (Figure 2.10).  

 

Figure 2.10: Numbers associated with biological process.  
Copy number variation as an example throughout the metabolic hierarchy. Stochasticity makes it 

impossible to simulate accurately using ODEs the low copy numbers that occur at the genome to proteome 

levels. This graphic has been inspired from Martin Holub’s page 

(https://www.martinholub.com/eth/code/2018/04/15/stochsim.html).  
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The amplitude of the noise is governed by transcription rate, regulatory dynamics, and 

genetic variables. Significant amounts of the total variance are caused by stochasticity 

that is ingrained in the biochemical process of gene expression (intrinsic noise) and 

variations in other cellular components (extrinsic noise). The illustration of the cellular 

noise can be understood from Figure 2.11. 

 

Figure 2.11: Interpretation of cellular noise. 

 Each data point represents the amount of expression of two in silico reporter genes, cyan fluorescent 

protein (cfp) (shown with green dots) and yellow fluorescent protein (yfp) (shown with blue dots). The 

scatter plot depicts the cell population. When two reporter genes become anti-correlated, intrinsic noise 

appears as a spread of dots perpendicular to the main diagonal. Extrinsic noise, on the other hand, makes 

the expression of the two reporter genes positively correlated and shows up along the main diagonal. The 

inspiration for this plot came from the publication by Ramsey et al. [55], which was influenced by the 

article by Elowitz et al. [51]. 

2.4.1. Extrinsic Noise 
Extrinsic noise exists as a cause of variations or noise in the population of isogenic cells. 

These sources of noise differ in genetically similar cells in terms of shape, size, cell cycle 

stage, cytoplasm density, physical cellular environment (temperature, pressure, pH), and 

number of interacting molecules. Experiments in Escherichia coli reveal the presence of 

both external and intrinsic noise sources (Figure 2.12). In the presence of extrinsic noise, 

two distinct genes tagged with cyan (cfp) and yellow (yfp) alleles of the green fluorescent 

protein and regulated by identical promoters only show that each cell has the same 

DOI:10.15774/PPKE.ITK.2023.004



Chapter 2 
 

22 
 

quantity of both proteins, though the amount varies from cell to cell [51] (Figure 2.12, 

top panel).  

2.4.2. Intrinsic Noise 
The degree to which two identical copies of a gene do not correlate with each other when 

they are present in the same intracellular environment is known as the intrinsic noise for 

that gene. Due to the discrete chemical reactions and low copy number of the reacting 

species, intrinsic noise arises. The intrinsic noise in an isogenic cell population leads to 

population heterogeneity. As a result, a fraction of cells expresses more or less of one 

type of fluorescent protein than the other and the expression levels of the two different 

fluorescence strains become uncorrelated (Figure 2.12, bottom panel).  

 

Figure 2.12: Illustrating extrinsic and intrinsic noise.  

Two reporter genes yfp (shown in red) and cfp (shown in green) are regulated by the identical promoter. 

The fluorescence intensity of yfp and cfp is the same in the absence of intrinsic noise inside a single cell 

(indicated in yellow color, (top, right)). There will be overall variation in the fluorescence intensity due to 

the presence of extrinsic noise. The graph (top, left) suggests that the two promoter genes will be well 

coordinated. Intrinsic noise inside a single cell causes yfp and cfp fluorescence intensities to vary, leading 

in some green and some red colored cells (bottom, right). Due to the presence of intrinsic noise the graph 

will be also uncorrelated (bottom, left). The illustration has been borrowed from the article by Elowitz et 

al. [51]. 
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2.5. Mathematical Representation of Stochastic System 
Because the reactions occur stochastically, there is no single solution that properly 

anticipates the population's evolution. There are several possibilities. Thus, in the 

presence of noise, the chemical reactions of a system can be represented by the Chemical 

Master Equation (CME) [56–58]. A CME is a representation of the probability that a 

system will be in a specific state. The CME is considered as a Markovian jump process 

because it accounts for two jump processes: achieving the current state from the prior 

state and departing the current state.  

In a well stirred homogeneous mixture of molecular species {S1,….,SN}, where N ≥ 1, 

chemical interactions take place within a fixed volume Ω and at a constant temperature. 

The reactions and the dynamical states are represented as {R1,….,RM} (where M ≥ 1) 

and X(t) = {X1(t),…., XN(t)} (where Xi(t) = number of Si molecules at time t). Here, aj is 

the propensity (i.e. tendency) for the Rj reaction in the infinitesimal time interval dt. This 

value indicates how likely a reaction will occur at a particular time. Consider νji = number 

of Si molecules change when Rj reactions take place (where j =1,….,M and i=1,….,N). 

The CME can be represented as follows- 

𝑑𝑃(𝑋, 𝑡)

𝑑𝑡
=∑[𝑎𝑗(𝑋 − ν𝑗)𝑃(𝑋 − ν𝑗) − 𝑎𝑗(𝑋)𝑃(𝑋)]

𝑀

𝑗=1

 

(2.7) 

                                                              arriving term       departing term 

Here, P(X, t) is the probabilistic information of the state X(t) meaning that it is the 

probability of the system to attain a specific discrete state in an infinitesimal time interval 

between t and t + dt. Solving the CME is always challenging due to its high 

dimensionality that adds complexity to the system. There are several alternative 

approaches that bypass the problem, such as the Gillespie algorithm, Chemical Langevin 

Equation, Linear Noise Approximation, and so on. 

2.5.1. Gillespie Algorithm 
The Gillespie Algorithm [59] is also known as the Stochastic Simulation Algorithm 

(SSA) or the 'next reaction' method. Considering the reactions to be Markovian, the 

reason it is called the "next reaction" method is that it calculates the time of triggering 
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the next reaction based on the current state. One way for numerically solving a CME is 

the Gillespie algorithm. For a stochastic equation system with known reaction rates, the 

Gillespie method generates alternative solutions (a collection of stochastic trajectories) 

and calculates the statistical mean of those stochastic trajectories.  

 

Figure 2.13: Gillespie algorithm.  

The flow chart represents the simulation algorithm proposed by Gillespie for stochastic simulation and the 

idea of the flowchart have been borrowed from the article by Palanichamy et al. [60].  

Consider M to be the total number of reaction channels; N to be the total number of 

chemical species; aj(X) to be the reaction propensities (displayed in the flowchart Figure 

2.13); Xi(t) to be the time evolved single-valued state function; Cj to be the intrinsic rate 

constant [61] that depends on the physicochemical properties of reactants, bond 

formation, temperature, reaction volume (for each reaction j);  hj to be the extrinsic 

reaction rate factor [61] that depends on the number of the reactant combinations (for 

each reaction j);  and Ƭ to be the arbitrarily chosen time when the next reaction occurs. 

How the SSA functions may be readily explained using a simple flowchart shown in 

Figure 2.13. 

2.5.2. Chemical Langevin Equation 
Another alternative method for solving the CME is Chemical Langevin Equation (CLE) 

[56,62]. This comprises of a set of coupled stochastic differential equations that describe 
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the time course of each molecular species. A feature of this approach is that it 

demonstrates that, as opposed to relying on a constant system size parameter, the 

equation's validity is dependent on the time varying propensities. CLE explains the 

accurate connection between the deterministic rate equations and the stochastic CME. If 

N is the number of molecular species, M is the total number of reactions, X(t) is the state 

variable (X(t)=X1(t),…,XN(t) i.e. Xi(t) where i=1,2,…,N), am(X(t)) is the reaction 

propensity, ν𝑚  is the vector that denotes the state change, dt is the macroscopic 

infinitesimal time, and Nm(t) is the ‘unit normal’ random variable then the standard form 

of CLE can be represented as following [63]: 

𝑋(𝑡 + 𝑑𝑡) − 𝑋(𝑡) = ∑ ν𝑚a𝑚(𝑋(𝑡))𝑑𝑡
𝑀
𝑚=1 +∑ ν𝑚√𝑎𝑚(𝑋(𝑡))𝑁𝑚(𝑡)√𝑑𝑡 

𝑀
m=1 , 

(2.8)  

Introducing a volume term (Ω) to express the above equation in terms of intensive 

variables (i.e. 𝑍𝑖(𝑡) =
𝑋𝑖(𝑡)

𝛺
), the chemical Langevin equation (CLE) can be written as 

follows: 

𝑍(𝑡 + 𝑑𝑡) − 𝑍(𝑡) = ∑ ν𝑚 a𝑚̃(𝑍(𝑡))𝑑𝑡
𝑀
𝑚=1 +

1

√𝛺
∑ ν𝑚√ a𝑚̃(𝑍(𝑡))𝑁𝑚(𝑡)√𝑑𝑡
𝑀
m=1 , 

(2.9)  

Here, a𝑚(𝑋) → 𝛺 a𝑚̃(𝑍) at thermodynamic limit. 

So, the chemical Langevin equation (CLE) is a prominent approximation approach 

because it can represent temporal variations caused by the intrinsic stochasticity of the 

chemical process. In the next subsection, I am going to discuss the ‘Linear Noise 

Approximation’ method, which is another approximation method of the CME. 

2.5.3. Linear Noise Approximation 
Linear Noise Approximation (LNA) [63] is used to determine how a biological network 

propagates noise and how much it perturbs the system from a deterministic perspective. 

CME can be solved by LNA technique. The LNA of the CME is also known as the linear 

Fokker-Planck equation [64]. The LNA technique achieves a probabilistic logic for 

CRNs that allows reasoning about probability and expectation and indicates the variance 

of the linear combinations of the species population [65].  
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Figure 2.14: Linear Noise Approximation.  

The flow chart represents the strategy of solving linear noise approximation (LNA).  

A simple approach to deriving the LNA can be done by the system size expansion of Van 

Kampen. In this procedure, small parameters associated with the system’s volume have 

been taken into consideration, such that it can represent the trajectory of a small 

stochastic fluctuation to a deterministic trajectory [66]. The infinite-order of Kramer's 

Moyal equation has not been considered in this straightforward method. The CLE, which 

is analogous to the Fokker Planck equation, was chosen as the starting point for this 

simplified LNA derivation approach. A flowchart can easily describe the simple 

derivation strategy for LNA calculation (Figure 2.14). 

The works of  Wallace et al. [63] and Cardelli et al. [65] offer an in-

depth numerical solution of LNA from CLE, where random events are considered as 

Gaussian processes and happen in a continuous time. Thus, the noise ξ  (t) in that 

approach is assumed to be white uncorrelated noise. Followed by the ansatz (𝑖. 𝑒. 𝑍(𝑡) =

𝑍̂(𝑡) +
1

√𝛺
ξ(𝑡)), where the intensive state variable ( 𝑍(𝑡)) can be represented in terms of 

a deterministic part (𝑍̂(𝑡)) and a random part associated with volume terms ( 1
√𝛺

ξ(𝑡)),  

and plugging that into the CLE equation (Equation 2.9) gives the first step to solve LNA 

[63]. The extensive study by Wallace et al. [63] leads to the simple expression for LNA 

as: 

[ξ(𝑡 + 𝑑𝑡) − ξ(𝑡)] = 

∑( ∑ ν𝑚

𝑀

𝑚=1

f𝑚𝑘(𝑡) )

𝑁

𝑘=1

ξ
𝑘
(𝑡)dt + ∑ ν𝑚√ a𝑚̃(𝑍̂(𝑡))𝑁𝑚(𝑡)√𝑑𝑡

𝑀

m=1

 

(2.10) 
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Here,  fmk(t) =
∂ am̃(z)

∂zk
|z=Ẑ(t) (for m = 1,…., M; k = 1,…,N) is how the propensity of a 

particular reaction changes in the presence of noise, ν𝑚 is the state change indicator, Nm 

is the independent white noise variable.  

On this note, a successful computer simulation method for LNA of any chemical reaction 

network has been provided by Cardelli et al. [65]. 

Previous discussions have made it evident that identifying the tiny network motifs 

involved in the analysis of the dynamical biological network is the first step. The next 

step is to mathematically model these random biological processes. Analyzing the 

dynamical behavior of various network motifs is greatly aided by the use of various 

computer simulation techniques.  

In the next chapter, I will discuss the commercial tools that can be used to analyze 

dynamical network motifs.   
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The network analysis and the time course simulation covered in Chapters 4 and 5 have 

been carried out using various commercial tools. In this chapter, I am going to discuss 

about these tools that simulate the codes that I have written for the network motifs that 

are described in chapters 4 and 5.  

3.1. Software Tools for Network Analysis 
The computational study of complex networks provides approaches that are quick, 

reliable, and cost-effective [67]. The practice of modelling is a technique to solve 

problems that may be applied to real-world systems. The real challenge is in recreating 

and figuring out what happened based on what we know and what we don't know [68]. 

There has been a significant uptick in the use of ODE models for the investigation of 

biological systems. Various commercial applications provide a framework for doing 

fundamental dynamical analysis, including simulations, graphics, static perspective 

(object-oriented modelling, such as class diagrams or entity diagrams) [67] and stability 

analysis.  

In this dissertation, Kaemika and MATLAB have been widely applied for network 

analysis. These two applications provide excellent deterministic as well as stochastic 

simulation results. In the upcoming sections, will provide a brief discussion of these two 

tools, Kaemika and MATLAB.  

3.1.1. Kaemika 
Kaemika is a functional programing language that provides a graphical interpretation of 

chemical reaction simulations [69]. It is an educational Microsoft tools, developed by 

Luca Cardelli. Kaemika is built up based on C# language [69]. In addition to 

deterministic and stochastic simulations, it provides techniques for visualizing digital 

microfluidics. Within the context of this framework, the mass action kinetics may be 

easily defined in terms of algebraic functions. On the other hand, the Hill equation, the 

Arrhenius equation, and other non-linear equations can be written in terms of basic 

transcendental functions. With the assistance of the Kaemika tools, it is possible to 

complete the linear noise approximation [63] (LNA) in a single shot in order to carry out 

stochastic simulation. The LNA simulation provides a variety of statistical measures 
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[70], including standard deviations, coefficients of variation, variances, fano factors, and 

more.  

The following examples provide a clear explanation of how to operate the Kaemika tools. 

1. Kaemika Example-1 : Deterministic Simulation, Time Course Analysis  

A. Reactions With Mass Action Kinetics 

Consider an oscillatory network proposed by Selkov [33]. The network diagram is shown 

in Figure 2.4A. Earlier I have used non-linear equations (Figure 2.4B) to represent the 

network mathematically. Now I am going to use the simple mass action kinetics for the 

oscillatory network displayed in Figure 2.4A and simulate it with Kaemika tool.  

// Define Rate Constant 

number K0 = 0.01 

number K1 = 0.001 

number K = 5 

number K2 = 0.1 

// Define Species and Initial Conditions 

species {S1,S2} 

amount S1 @ 0.5 M 

amount S2 @ 0.01 M 

// Reactions 

Ø -> S1  {K0} // background synthesis of S1 

S1 -> S2  {K1} // S1 synthesizes S2 

S1 + S2 + S2 -> 3S2  {K} // S2 activates its own synthesis and inhibits S1 

S2 -> Ø {K2} // self-degradation of S2 

// Plot Species 

report S1, S2 

// Equilibrium Time 

equilibrate for 1000 
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Figure 3.1A depicts the time course of this network motif simulated by Kaemika. 

Kaemika also represents the chemical reaction influences graphically (bottom, right 

panel of Figure 3.1A).  

 

Figure 3.1: Implementing linear and non-linear kinetics on Kaemika.  

(A) The code for the network motif shown in Figure 2.4A is displayed on the left-hand panel.  The panel 

in the upper right-hand corner illustrates the oscillatory analysis of the model's time course. S1 and S2's 

oscillations are depicted in red and green color, respectively. The bottom right panel graphically represents 
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the response score for both S1 and S2. The parameter values for the simulation is K0 = 0.01, K1 = 0.001, K 

= 5, K2 = 0.1 (AU). 

(B) The code displays how to implement non-linear kinetics in Kaemika. The panel in the upper right-hand 

corner shows the time course simulation results. Enzyme (E), Pi and Pa are plotted with yellow, cyan, and 

parrot-green color, respectively. The maximal reaction rate (Vmax), Michaelis constant (Km) and Hill rate 

are displayed with red, dark-green, and blue color, respectively. The bottom right panel graphically 

displays the influence of enzyme (E) on the variables. The parameter values for the simulation are on = 1, 

off = 1, cat = 1, Etot = 1, n = 2 (AU). 

B. Reactions With Non-Linear Kinetics 

Consider a network in which the inactive form of P (Pi) is converted into the active form 

of P (Pa) by an enzyme E, and it follows a non-linear Hill-like function. The reaction can 

be as follows: 

𝑃𝑖

𝑜𝑛
⇄
𝑜𝑓𝑓

𝑃𝑎 

By using the Kaemika tool, the code can be written as follows: 

number on = 1      // forward reaction rate 

number off = 1     // backward reaction rate 

number cat = 1     // product production rate 

number Etot = 1   // initial and total amount of enzyme 

number n = 2      // hill co-efficient 

// Declare Species 

species {E,Pi,Pa}   

amount E @ Etot M  // enzyme 

amount Pi @ 10 M // inactive form of P 

amount Pa @ 0 M  // active form of P 

// Following constants 

number Vmax = cat · Etot 

number Km = (off+cat)/on 

report Vmax as "Vmax", Km as "Km" // plot variables 

// Define Hill function 

function HF(flow Pi) {  

   (Vmax·Pi^n)/(Km+Pi^n)  

}  

DOI:10.15774/PPKE.ITK.2023.004



Chapter 3 
 

33 
 

// Overall Reaction 

E + Pi -> {{ HF(Pi) }} E + Pa  

report HF(Pi) as "Hill rate", E, Pi, Pa // plot species 

equilibrate for 30 // simulation final time 

 

Figure 3.1B shows the simulation results of this network motif from Kaemika. Kaemika 

also displays the chemical reaction influence network graphically (bottom, right panel of 

Figure 3.1B).  

Moving on to the next example, a demonstration of the use of Kaemika for LNA is 

shown, followed by the computation of a statistical quantities, such as the standard 

deviation (σ). 

 

2. Example-2 : Stochastic Simulation via LNA calculations 

 

Figure 3.2:  c1-OR-FFL diagram.  

The diagram represents the type-1 coherent FFL in an OR connection (A). Here, Y and Z are 

phosphorylated by the kinase Xa. Ya phosphorylates Z as well. (B) X, Y, and Z undergo post-translational 

modification in the presence of kinase (K) and phosphatase (PP). 

Consider a coherent type-1 feedforward loop with OR type connections (c1-OR-FFL), 

shown in Figure 3.2.  In this network, Xa is regulated by the noisy input (S). Xa influences 

Ya. Both Xa and Ya influence the output (Za) via direct and indirect arms, respectively. 

Here I consider FFLs, where regulation happens at the post-translational level. Post-

translational modifications are considered for Xa, Ya and Za. These contain activation and 
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inactivation processes, but slower synthesis and degradation steps are omitted. In this 

example, the input (S) is changing with time. The FFL nodes Xa, Ya, and Za will change 

over time and follow the input pattern as the input (S) changes over time (Figure 3.3).  

Once again, the standard deviation can be calculated with a simple click of a button 

(Figure 3.4B). Figure 3.4A shows additional choices for each statistical quantity 

estimation.  

 

 

Figure 3.3: Variation of all variables with a staircase-like change in input (S) with time.  

The reaction scheme for the network motif shown in Figure 3.2 is written on the left-hand panel.  The 

right-hand panel shows the time evolution of the input (S, shown in red) and other FFL nodes Xa (shown 

in green), Ya (shown in blue), and Za (output, shown in yellow) using Kaemika. 
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Figure 3.4: Statistical Analysis using Kaemika.  

Panel A shows how the standard deviation (σ)  changes at each layer for the network topology shown in 

Figure 3.2. Panel B shows the different statistical measurements that are available in Kaemika and plots 

mean ± standard deviation with shading for each variable.  

3.1.2. MATLAB 
The subjects like physics, chemistry, mathematics, and all branches of engineering make 

extensive use of the computational tool MATLAB. Its use may be found across the 

scientific and engineering communities. MATLAB is an acronym for “MATrix 

LABoratory” [71]. MATLAB was initially built to provide accessibility to matrix 

software created by the LINPACK (linear system package) and EISPACK (Eigen system 

package) projects. MathWorks developed MATLAB. MATLAB has a high level 

programing skill. It gives excellent graphic visualization in addition to programming and 

numerical computations. To assist in numerical calculations, numerical methods, and 
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graphic representation, MATLAB has various built-in functions and commands. A 

toolbox is a collection of programs in MATLAB that are used for certain applications 

such as control theory, signal processing, optimizations, and so on. APIs (Application 

Program Interfaces) in MATLAB let users write codes in other programming languages, 

like C/C++ and Fortran, that interact directly with MATLAB [71].  

1. Example-1: Deterministic simulation, and Period of Oscillation Calculation 

In relation to this thesis, the following example clearly demonstrates the use of 

MATLAB. This is an example of a deterministic computation. Consider an NFB in which 

X facilitates in the synthesis of Y while Y inhibits the synthesis of X. The goal is to 

compute the period of oscillations at temperatures ranging from 283 to 313 Kelvin. To 

correlate the reaction rates with temperature, I used the Arrhenius equation [72] to 

represent the reaction rates as a function of temperature. The reaction rates increase with 

temperature, according to Arrhenius equations [73,74]. As temperatures increase, it is 

believed that oscillating periods would decrease [75]. The Arrhenius equation displayed 

in the following example of MATLAB function file can be expressed as follows: 

𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 = 𝐴𝑒 ⋅ 𝑒
−𝐸
𝑅⋅𝑇 

(3.1) 

where  𝐴𝑒 =  pre-exponential factor for all rates (AU),  R = universal gas constant = 

8.3144598 J.K-1.mol-1, E = activation energy for the reaction, and T = Temperature is 

measured in Kelvin. 

 

Figure 3.5: NFB Loop topology. 

When X has a positive effect on the synthesis of Y while Y has an inhibitory effect on the synthesis of X, 

we have a NFB loop. 
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For a NFB topology [76] (Figure 3.5) the ODEs are as following- 

𝑑𝑋

𝑑𝑡
=
𝑎1 ⋅ 𝑘

𝑘 + 𝑌
−
𝑑1 ⋅ 𝑋

𝑘1 + 𝑋
 

(3.2)  

𝑑𝑌

𝑑𝑡
= 𝑎2 ⋅ 𝑋 −

𝑑2 ⋅ 𝑌

𝑘2 + 𝑌
 

(3.3)  

 

To begin, a function environment has been constructed so that the models can be defined. 

 

function dcdt = NFL(t,c,Temp) 

% variables stored within array 

X = c(1); 

Y = c(2); 

% parameters are defined based on Arrhenius Equation : 𝑟𝑎𝑡𝑒 = 𝐴𝑒. 𝑒
−𝐸𝑎×1000

8.3144598×𝑇𝑒𝑚𝑝 

% 𝐴𝑒 = pre-exponential factor, 𝐸𝑎 = activation energy, Temp = Temperature in 

Kelvin 

k1 = 383.83.*exp(-(31.8565.*10^3)/(8.3144598.*Temp));  

k2 = 383.83.*exp(-(31.8565.*10^3)/(8.3144598.*Temp));  

d1 = 383.83.*exp(-(14.7420.*10^3)/(8.3144598.*Temp));  

d2 = 383.83.*exp(-(14.7420.*10^3)/(8.3144598.*Temp));  

k = 383.83.*exp(-(12.*10^3)/(8.3144598.*Temp));  

a1 = 383.83.*exp(-(14.01.*10^3)/(8.3144598.*Temp));  

a2 = 383.83.*exp(-(17.9420.*10^3)/(8.3144598.*Temp));  

% initialization  

dcdt = zeros(2,1); 

% differential equations 

dcdt(1) = (((a1.*k)./(k+Y)) - ((d1.*X)./(k1+X))); 

dcdt(2) = ((a2.*X) - ((d2.*Y)./(k2+Y))); 
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The main file calls function files and performs analysis and visualization. The main 

program file can be written as follows- 

 
t0 = 0;                        % initial time 

tf = 1150;                   % final time 

tspan = t0:0.02:tf;      % Step length  

css = [1 0]';                % initial condition for X and Y 

Temp = zeros(7,1);    % array for saving Temperature 

X_val = zeros(length(tspan),7);    % array for X 

Y_val = zeros(length(tspan),7);     % array for Y 

% Iteration starts , Loop for the Temperature 

for i=1:7 

    i 

    Temp(i,1)=278+5*i; 

[t,c]=ode45(@(t,c) NFL(t,c,Temp(i,1)),tspan,css); % ODE solver 

% Plot 

figure(2) 

plot(t,c(:,1),'.-','Color',[rand,rand,rand],'DisplayName','X') 

hold on 

plot(t,c(:,2),'.-','Color',[rand,rand,rand],'DisplayName','Y') 

X_val(:,i) = c(:,1); 

Y_val(:,i) = c(:,2); 

% calculation of period of oscillation for each temperature value 

[peakval,locval]=findpeaks(X_val(:,i),t); 

period(:,i) = mean(diff(locval)); 

period1 = period; 

end 

 

The graphic visualization of the oscillatory behavior of X at seven different temperature 

is shown in Figure 3.6. 
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Figure 3.6: MATLAB screen.  

MATLAB displays a panel in which the analysis is visualized (top). An array for the period of oscillations 

at various temperatures is provided on the middle panel (under a VARIABLE pop-up window). The 

oscillations associated with seven different temperatures are plotted with distinct colors (bottom panel, 

legend). 
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2. Example-2: Analysis of Extrinsic Noise through parameter variations 

In the following, I will describe the approach I used to add extrinsic noise to the model 

and solving it in MATLAB. In order to take into account extrinsic noise, I was checking 

how variability in parameter values perturb simulation outcome. Several simulations 

needed to be conducted, each with a different set of parameter values centered around 

the nominal value. To achieve this, a random generator is required to get the distribution 

of randomly chosen parameter values around the nominal value ( from a log normal 

distribution). 

 

 

Figure 3.7: Random number generator.  

The MATLAB code demonstrates how to produce 10 random numbers with 30 (AU2) variance and a mean 

of 383.83 (AU) from a log normal distribution (left hand side). The histogram of these randomly distributed 

numbers is shown in the right panel. 

To test the effects of extrinsic noise on this example, I have, produced for example 10 

independent random sets of all parameters associated with the model shown in Figure 

3.7. The numbers are drawn at random from a log normal distribution with a variance of 

30 (AU2) and a mean value of 383.83 (AU). The MATLAB code to create this is 

represented in Figure 3.7.  
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In the main MATLAB file, these sets of random values and the function file have been 

called. The aim is to calculate the period of oscillations at seven different temperatures, 

with each parameter having ten randomly chosen values.  

The function file can be written as follows: 

function dcdt = NFL(t,c,Temp,... 

    Ae_k1,Ae_k2,Ae_d1,... 

    Ae_d2,Ae_k,Ae_a1,Ae_a2) 

% variables stored within array 

X = c(1); 

Y = c(2); 

% parameters are defined based on Arrhenius Equation : 𝑟𝑎𝑡𝑒 = 𝐴𝑒. 𝑒
−𝐸𝑎×1000

8.3144598×𝑇𝑒𝑚𝑝 

% 𝐴𝑒 = pre-exponential factor, 𝐸𝑎 = activation energy, Temp = Temperature in 

Kelvin, 𝐴𝑒 is chosen randomly from a log normal distribution. 

k1 = Ae_k1.*exp(-(31.8565.*10^3)/(8.3144598.*Temp)); %Ae_k1: random set 

k2 = Ae_k2.*exp(-(31.8565.*10^3)/(8.3144598.*Temp)); %Ae_k2: random set 

d1 = Ae_d1.*exp(-(14.7420.*10^3)/(8.3144598.*Temp)); %Ae_d1: random set  

d2 = Ae_d2.*exp(-(14.7420.*10^3)/(8.3144598.*Temp)); %Ae_d2: random set 

k = Ae_k.*exp(-(12.*10^3)/(8.3144598.*Temp)); %Ae_k: random set 

a1 = Ae_a1.*exp(-(14.01.*10^3)/(8.3144598.*Temp)); %Ae_a1: random set  

a2 = Ae_a2.*exp(-(17.9420.*10^3)/(8.3144598.*Temp)); %Ae_a2: random set 

% initialization  

dcdt = zeros(2,1); 

% differential equations 

dcdt(1) = (((a1.*k)./(k+Y)) - ((d1.*X)./(k1+X))); 

dcdt(2) = ((a2.*X) - ((d2.*Y)./(k2+Y))); 

 

The scheme for the main MATLAB file is described below: 

t0 = 0;        % initial time 

tf = 1150;     % final time 

tspan = t0:0.02:tf;  % step length 

css = [1 0]';      % initial conditions of X and Y 

% load random parameters  

load 'Ae_k1.dat'; 

load 'Ae_k2.dat'; 

load 'Ae_d1.dat'; 

load 'Ae_d2.dat'; 

load 'Ae_k.dat'; 
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load 'Ae_a1.dat'; 

load 'Ae_a2.dat'; 

% Loop for the parameter starts  

for q=1:length(Ae_k) 

    q 

Ae_k1(q,1)=Ae_k1(q); 

Ae_k2(q,1)=Ae_k2(q); 

Ae_d1(q,1)=Ae_d1(q); 

Ae_d2(q,1)=Ae_d2(q); 

Ae_k(q,1)=Ae_k(q); 

Ae_a1(q,1)=Ae_a1(q); 

Ae_a2(q,1)=Ae_a2(q); 

Temp = zeros(7,1); 

X_val = zeros(length(tspan),7); 

Y_val = zeros(length(tspan),7); 

% Loop for the temperature starts  

for i=1:7 

    i 

    Temp(i,1)=278+5*i; 

[t,c]=ode45(@(t,c) NFL(t,c,Temp(i,1),Ae_k1(q,1),... 

    Ae_k2(q,1),Ae_d1(q,1),Ae_d2(q,1),... 

    Ae_k(q,1),Ae_a1(q,1),Ae_a2(q,1)),tspan,css); % ODE solve 

X_val(:,i) = c(:,1); 

Y_val(:,i) = c(:,2); 

% Period of oscillation calculation 

[peakval,locval]=findpeaks(X_val(:,i),t); 

period(:,i) = mean(diff(locval)); 

end                  % End of temperature loop  

period1(:,q) = period; 

end                  % End of parameter loop 

 

Finally, the output data (period of oscillation) is added into the diagrams in order to fully 

characterize the oscillatory behavior in the presence of extrinsic noise. The graphical 

representation for the calculation is shown in Figure 3.8. For extrinsic noise analysis 

shown in later chapters of this thesis I have created 1000 parameter sets to test the effects 

of extrinsic noise. 
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Figure 3.8: Calculation of period of oscillation for randomly chosen parameter set.  

Here the period of oscillation has been plotted against the number of observations. Each of these 

observation points reflects parameter sets that were arbitrarily chosen.  Different colored lines represent 

seven distinct temperatures.  

3. Example-3: Stochastic Analysis for Intrinsic Noise 

In this part, I will present the method I used to perform the Gillespie simulation on a NFB 

topology (Figure 3.5) and solve it in MATLAB in the presence of inherent noise. The 

ODEs (Equation 3.2, Equation 3.3) for this network are non-linear and do not follow 

mass action kinetics. So, this is not a classic example of Gillespie simulation because all 

the elementary reactions follow mass action kinetics. But here I want to simulate this 

network (Figure 3.5) in the classical Gillespie way, followed by the idea of an article by 

Gonze et al. [77]. Equations 3.2 and 3.3 are represented in terms of molecular numbers 

as below by introducing a volume scaling factor ‘Vs’: 

 

𝑑𝑁𝑋
𝑑𝑡

=
𝑎1 ⋅ 𝑘 ⋅ 𝑉𝑠

𝟐

𝑘 ⋅ 𝑉𝑠 +𝑁𝑌
−
𝑑1 ⋅ 𝑁𝑋 ⋅ 𝑉𝑠
𝑘1 ⋅ 𝑉𝑠 + 𝑁𝑋

 

(3.4)  
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𝑑𝑁𝑌
𝑑𝑡

= 𝑎2 ⋅ 𝑁𝑋 −
𝑑2 ⋅ 𝑁𝑌 ⋅ 𝑉𝑠
𝑘2 ⋅ 𝑉𝑠 + 𝑁𝑌

 

(3.5)  

The scheme for the Gillespie simulation [59]  in MATLAB is described below: 

% Gillespie algorithm 

% Rate constants declare 

clear 

clc 

t = 0.0; % initial time 

t_end = 1150.0; % final time 

t_sample = 0.02; % sampling time 

Nr = 4; % number of trajectory 

Vs = 100; % scaling factor 

t_run = t_end/t_sample+1; 

k1=0.001; 

k2=0.001; 

d1=1.0003; 

d2=1.0003; 

k=3.0253; 

a1=1.3442; 

a2=0.2749; 

% Initialization 

j = 1.0; % counter for time  

NX = 1.0*Vs; % initial X represented in numbers 

NY = 0.0*Vs; % initial Y represented in numbers 

% loop for trajectory starts 

for q=1:Nr     

%  Initial states before starting SSA 

q 

t_array(j,q)=t;   

X_array(j,q)=NX;  

Y_array(j,q)=NY; 

% Reaction Propensities 

while t < t_end 

p1 = (a1.*k.*Vs.^2)./(k.*Vs+NY); % in numbers 

p2 = (d1.*NX.*Vs)./(k1.*Vs+NX); % in numbers 

p3 = a2.*NX; % in numbers 
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p4 = (d2.*NY.*Vs)./(k2.*Vs+NY); % in numbers 

h = [p1 p2 p3 p4]; 

%combined reaction propensities 

    h0 = sum(h); 

    if h0<=0 

        h0=0.000000001; 

    end 

    r1=0+rand*(1-0); 

            if (r1<=0) 

                r1=0.00000001; 

            end 

%time update 

     t_next = ((1/h0)*(log(1/r1))); 

     t = t + t_next; 

%determine next reaction 

       i=1; mu=0; amu=0; r2=rand; 

         while amu < r2*h0 

              mu = mu + 1; 

              amu = amu + h(i);  

              i = i + 1; 

         end 

%reactions 

if mu == 1 

        NX = NX + 1; 

    elseif mu == 2 

        NX = NX - 1; 

    elseif mu == 3 

        NY = NY + 1; 

    elseif mu == 4 

        NY = NY - 1; 

end 

% avoid neg or zero values of the species     

if NX<=0 

NX=0.000001; 

end 

if NY<=0 

NY=0.000001; 

end 

%store/output time and species  

if t >= j*t_sample 
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     j=j+1; 

     t_array(j,q)=t; 

     X_array(j,q)=NX; 

     Y_array(j,q)=NY;  

end 

end % SSA ends here 

j=1.0; % reset time counter 

t=0.0; % reset initial time 

NX=X_array(1,q); % NX update 

NY=Y_array(1,q); % NY update 

end  % trajectory loop ends 

% Plot NX 

figure(1) 

hold on; 

plot(t_array,X_array) 

 

Oscillatory time evolutions from the four simulation runs have been plotted with distinct 

colors and shown in Figure 3.9.  

 

Figure 3.9: Gillespie simulation using MATLAB.  

Here the oscillations have been plotted against the number of observations ( four different observations). 

Each of these observation are represented with four  different colors.  
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4.1. Biological Process and Cellular Noise 
Noise in biological systems is caused by random variations in molecular levels [78–80]. 

In such a dynamic molecular environment, cells must make critical judgments, and their 

decision-making process must be capable of controlling stochastic fluctuations. When 

the random fluctuations are created by low-copy number molecules, it is called intrinsic 

noise. Extrinsic noises [81–83], on the other hand, can be generated by the dynamic 

environment that surrounds cells [84]. The intrinsic noise within a system correlate with 

the inverse of the square root of the number of molecules [85].  Because of the resulting 

changes in molecular numbers, systems regulated by low-abundant molecules may 

experience increased noise. A common example is gene expression, in which a small 

number of copies of transcription factors control the transcription of multiple genes [86]. 

Biochemical systems have also been shown to use signal processing techniques like low-

pass filters that transduce lower-frequency signals and eliminate higher-frequency ones 

[87]. Following the idea of low-pass filters, I have explored how isolated and coupled 

feedforward loops reduce noise. 

4.2. Isolated and Coupled FFLs 
In a breakthrough study by Mangan et. al [88] revealed that feedforward loop (FFL) can 

be of two types: coherent FFL (cFFL) and incoherent FFL (iFFL). Type-1 coherent FFL 

(c1FFL), which includes activation steps only, is the most prevalent three-component 

FFL motif found across a wide range of biological systems. In fact, these network 

topologies can't be seen in isolated forms because they are found in coupled forms in 

biology. For example, immune cells are controlled by coherent and incoherent 

feedforward loops that are coupled to each other [15]. The mitogen activated protein 

kinase (MAPK) pathway is common in post-translational regulatory networks sometimes 

show examples of coupling between certain FFLs [16].  

There are two types of coupled feedforward loops: multi-input coupled feedforward 

loops (minp-FFLs) (Figure 4.1C, 4.3C), and multi-intermediate coupled feedforward 

loops (mint-FFLs) (Figure 4.1D, 4.3D). It is possible for the coupled FFLs to be 

completely coherent, completely incoherent, or a combination of both coherent and 

incoherent, based upon the signs of interactions. Figure 4.1 presents 48 potential isolated 

FFL networks as well as coupled FFL networks that were identified. In order to conduct 
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a systematic comparison analysis, four linear chain models with simple positive or 

negative influence running through the three-component topology were considered, as 

illustrated in Figure 4.1B. 

 

Figure 4.1: Coupled and Isolated FFL topologies. 

(A) Isolated FFLs: The graphic depicts isolated feedforward loops that are fully coherent (left) or fully 

incoherent (right). Logical gates AND/OR are considered here. There are twelve different types of logical 

connection (Figure 4.2A). The letters ‘c’ and ‘i’ stand for coherent and incoherent, respectively. The 

number adjacent to ‘c’/ ‘I’, denotes the model type. For example, c1 is a type 1 coherent model, whereas 

i4 is a type 4 incoherent model. Red and green arrows represent inhibition and activation processes, 
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respectively. Xa is controlled by a noisy input S, which then affects the intermediate (Ya) and the output 

(Za) through the direct and indirect pathways. 

 

(B) Chain models: The graphic depicts all kinds of chain models that are feasible. The noisy input (S) acts 

as a regulator for Xa, which in turn has an influence on Ya. The output (Za) is then regulated by Ya. 

(C) Multi-input coupled FFLs (minp-FFLs): All the possible minp-FFL topologies are shown here. Minp-

FFL is divided into three types- fully coherent (left), mixed coherent and incoherent (middle), and fully 

incoherent (right) FFLs. Input (S) activates nodes X1a and X2a simultaneously. Through direct arms Ya is 

influenced by X1a and X2a. The output (Za) is influenced by X1a and X2a through the indirect arms. By 

considering logical connectivity, there can be four types of gates: pure AND, pure OR, upper-AND-lower-

OR (uAND-lOR), and upper-OR-lower-AND (uOR-lAND) (Figure 4.2C). In this diagram, green arrows 

indicate activation, while red arrows indicate inhibition.  

(D) Multi-intermediate coupled FFLs (mint-FFLs): Here the networks are classified as either purely 

coherent (left), a combination of coherent and incoherent (middle), or purely incoherent (right). Xa is 

governed by the noisy input (S). Y1a, Y2a, and the output (Za) are controlled by Xa via direct and indirect 

arms respectively. The green arrows indicate activation, while the red arrows indicate inhibition. Only pure 

AND/OR types of logical gates can be constructed here (Figure 4.2D).  

4.2.1. Description of Investigated Models 
Posttranslational modifications involving activation and inhibitory processes were taken 

into account while developing the investigated networks. I consider, posttranslational 

modifications, including phosphorylation and dephosphorylation, that occur at various 

sites on biomolecules with rates equal to kp and kpp. Two varieties of each model are 

taken into account. In one-step posttranslational modification motifs, there exists a single 

mass-action transition from active to inactive forms, but in two-step posttranslational 

modification networks, the change occurs through an intermediary step. Back-and-forth 

enzyme kinetics, which are also called Goldbeter-Koshland switches [45,89,90], have 

the same kind of dynamics as these two-step processes.  

Initially, a correlated noisy input signal is chosen that has a super-Poissonian [91] 

distribution (Fano factor > 1) (Figure 4.3F). To do this, two copies of a noisy input (S) 

has been created from a deterministic signal A+, which has 5 steps as shown in Figure 

4.3F. At a rate equals to ka, the stochastic input signal (S) activates the node X into Xa. 

Then Xa influences Y with a rate equals to k1. This might be either inhibitory or 

activatory. If activation takes place Y becomes Ya and for inhibition Ya becomes Y. The 

output (Z) is influenced by Ya and Xa with the rate constants equal to k2 and k3 

DOI:10.15774/PPKE.ITK.2023.004



Chapter 4 
 

51 
 

respectively. When Z is turned on, it becomes Za, which is the active form of Z. When Z 

is turned off, it becomes Z, which is the inactive form of Z. All the reaction parameters 

are designed in such a way that no species approaches the minimum (0 AU) or maximum 

(60 AU) concentration values. This is done to avoid both the signal loss and noise 

cancellation from saturation.  

4.2.2. Different Kinds of Logical Gates 
When multiple molecules interact with a downstream component, the two inputs may 

impact the target either individually (known as OR gate) or jointly (known as AND gate). 

The only logical gates obtainable to mint-FFLs and isolated FFLs are AND/OR. For 

minp-FFLs there are four possible logical gates: completely AND, completely OR, 

upper-AND-lower-OR (uAND-lOR), and upper-OR-lower-AND (uOR-lAND) (Figure 

4.3E). Both OR and AND gates may be considered if the incoming signals have the same 

sign impact upon the target molecule. In contrast, when the influences include opposite 

effects, only a single type of gate can be taken into consideration, which is not a true 

AND or a true OR gate but is functioning more like an OR gate.  

In OR type of connectivity X1a and X2a can act independently to activate Y with a rate 

constant value k1 as follows: 

𝑋1𝑎 + 𝑌 → {𝑘1} 𝑋1𝑎 + 𝑌𝑎 

𝑋2𝑎 + 𝑌 → {𝑘1} 𝑋2𝑎 + 𝑌𝑎 

The ODE for the above-mentioned two reactions can be written as follows: 

𝑑𝑌𝑎
𝑑𝑡
= 𝑘1 ∙ 𝑋1𝑎 + 𝑘1 ∙ 𝑋2𝑎 

(4.1) 

I include a complex formation step in the case of AND models, such that the overall 

conversion rate between both the AND and OR gated models would remain the same. 

For reference, instead of employing choosing a rate equals to 0.5⋅ k1 rate (to fit with the 

maximum rate attainable in an OR model),, when X1a and X2a simultaneously activate Y 

with a rate constant parameter value k1, I have included the complex formation step as 

follows: 

𝑋1𝑎 + 𝑋2𝑎{200} ↔ {200}𝐶1 
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With a high conversion rate (equals to 200) the complex C1 is formed. Due to the fast 

reversable reaction, the equilibrium between the steady states of X2a, X1a and C1 are 

always maintained. Following that, the complex C1 operates on Y at a constant rate k1 

as follows:  

𝑌 +  𝐶1 → {𝑘1} 𝐶1 + 𝑌𝑎 

Like this, the complex C1 carry forward the information of both X2a and X1a. The relevant 

ODEs for these two reactions are as follows: 

𝑑𝐶1

𝑑𝑡
= 200 ∙ 𝑋1𝑎 ∙ 𝑋2𝑎 − 200 ∙ 𝐶1 

(4.2) 

 

𝑑𝑌𝑎
𝑑𝑡
= 𝑘1 ∙ 𝐶1 

(4.3) 

 

In this chapter, I explored 68 potential FFL combinations and compared their behavior 

to 12 isolated FFLs and 4 linear chain models. Figure 4.2 depicts the possible logical 

gates for the network motifs shown in Figure 4.1.  
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Figure 4.2: Logical gates.  

All the possible logic gates for the isolated FFLs (A), chain models (B), minp-FFLs (C) and mint-FFL (D) 

are shown.  
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4.3. FFLs Towards Noise Reduction 
Numerous network topologies are effective in reducing noise in biology. Among them 

NFB loop has been often seen as a noise reducer [23,92,93]. There are several signaling 

pathways that may filter the noise through membrane receptor activation, therefore 

mRNA regulation is not the sole mechanism that can minimize noise [94]. One such 

signaling pathway that can reduce noise is the linear MAPK pathway [34]. MAPK 

pathway and other networks with posttranslational modification can also reduce noise 

[95,96]. Engineering concepts were brought into biology to demonstrate the potential 

low-pass filtering function of biological networks. Normal network patterns that could 

be used to filter out noise were found. Among these, FFL got a lot of attention [97]. It 

has been found that c1FFL works as a low-pass filter that minimizes noise [35,36]. The 

annihilation module consists of two molecules that have correlated synthesis and 

coordinated degradation (Figure 4.3B), which acts as an effective noise reducing motif 

but adds a delay to the system. The annihilation module coupled with an iFFL produces 

a very efficient noise cancelling annihilation filter with zero additional delays [87]. This 

idea has inspired to investigate the noise reduction properties in a coupled FFL system.  

An effective strong noise reducer will remove noise from the system while also lowering 

signal transduction capabilities [98,99]. A signal processing pathway should limit the 

noise that affects cells while yet being able to react to important changes [100]. Low-

pass filters will facilitate with this, but a proper application in biological context is still 

missing. In this chapter, all kinds of feasible coupled FFLs have been compared with the 

isolated FFL and linear chain models in terms of noise reduction and signal transduction 

abilities. The research takes into account posttranslational changes that can activate or 

inhibit molecules in every layer of the FFLs.  

4.4. Estimation of Noise 
The assessment of noise is crucial for a systematic study of the noise reduction 

capabilities of various FFLs. Numerous numerical simulation techniques exist for 

estimating noise. Among these methods, the LNA is a quick approach for approximating 

CRNs [65]. I performed LNA on the models to compute the distribution of every species 

using the 'Kaemika' software. The codes for each network have been uploaded in GitHub 

(https://github.com/SuchanaChakravarty/Noise-Reduction-Properties-of-Coupled-and-
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isolated-Feed-Forward-Loops.). The Kaemika tool is available for download from all 

application stores (http://lucacardelli.name/). 

 

Figure 4.3: Networks and effects of noise on input and output.  

Network topology of isolated FFL (A), annihilation motif (B), coupled minp-FFL (that partially resembles 

with annihilation module) (C) and coupled mint-FFL (D) are shown. 4 possible logical gates for coupled 

minp-FFL have been displayed (E). For the noisy input (S), the % CV and fano factor values at each of the 

5 steps have been shown. (F). Across all the input levels, the mean output levels and the estimated noise 

for the output are recorded. This indicates a lower fano factor and % CV value for the output (G). 

parameters are k1=k2=k3=1, kp=10, kpp=40, ka=5.  

For the purpose of quantifying noise, the percentile coefficient of variation (% CV) for 

each model has been evaluated. Fano factor quantifies signal’s noise, however, CV is a 

more accurate indicator for the signal to noise ratio. This is really important in signal 

transduction; and hence, the values are displayed over the plots in Figure 4.3F, G. For 

any random process, standard deviation over the mean is known as coefficient of 

variation [70,101]. Poisson noise seems to have a fano factor equals to 1 and a CV equals 

to (mean value)-1/2. When the value for fano factor or CV is low, it means that the system 

is less noisy. The slope obtained from a mean output vs mean input plot is described as 
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a signal transduction capacity. Signal transmission is better when the slope is higher, and 

signal inversion is what happens when the slope has negative value.  

4.5. Comparison of Noisiness Among Isolated FFLs and 

Chain Models 

 

Figure 4.4: Noise attenuation and signal transduction abilities of linear chain models and isolated 

FFLs. 

For all the species one-step posttranslational modification has been considered. Subplot (A) and (B) display 

the average input- average output relation of the coherent and incoherent isolated FFLs respectively. (C) 

To test the noise attenuation skills of the isolate FFLs, the % CV of the output has been plotted for each 5-

step noisy input (Figure 4.3F). At input = 6, the slopes from panels A, B, and Figure 4.5 for isolated FFLs 

and chain models, respectively, are plotted against the % CV (D). This shows how well each network 

works at getting rid of noise and transmitting signals. Here the parameter values are : k1=k2=k3=1, kp=10, 

kpp=40, ka=5. 

The linear chain models (Figure 4.1B) resemble the classical MAPK signaling pathways. 

This type of simple signaling cascades can also reduce noise to some extent. As a 

reference point, I compared these linear chain models to FFL networks. Both iFFL and 

cFFL may have negative or positive slopes based on the sign of the indicated interactions 

(Figure 4.4A, B). Lower % CV values of the outputs than the input suggests that these 

networks can act as a noise filter (Figure 4.4C). A higher input value leads to a lower % 

CV, as the mean of the molecules increases along with the input value, resulting in less 

noise. For an input value of 6, the %CVs of the isolated FFLs and linear chain models 

are plotted (Figure 4.4D) against the slopes obtained from Figure 4.4A, Figure 4.4B and 
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Figure 4.5. This tells how to compare FFLs in terms of signal transduction and noise 

attenuation. 

 

Figure 4.5: Correlation plot of linear chain models. 

The graph shows the relationship between the output and the input for chain models. Figure 4.3F shows 

the noisy input that passed into the system. The plot indicates the slope values for each of the networks. 

Parameter values are : k1=k2=k3=1, kp=10, kpp=40, ka=5 and the species undergo one-step posttranslational 

modification. 

It is intriguing that a lower CV value (less noise) correlates with greater signal 

transduction value (high slope value). The c1-OR network works the best in both cases, 

which is not surprising since it has been shown to work well, as both a low-pass filter 

[102] and a great signal transducer [99]. In a small network, the existence of non-linearity 

via active and inactive states might result in a noise filter. Among the chain models, only 

type-1 chain model demonstrates little signal transduction ability (Figure 4.4D). The rest 

are having negligible signal transmitting capacity. Type-1 chain motif resembles with 

MAPK regulation. Type-1 chain model exhibits ultra-sensitivity [103], and can minimize 

noise. It can also convert a signal transducer to an analog-digital converter.  

4.6. Comparison of Noisiness Among Coupled FFLs  
Often, signaling pathways do not work alone. There is the possibility of having various 

combinations of FFLs that can act as a noise filter modules while simultaneously having 
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good signal transduction capacity. In order to have a systemic analysis, I have tested the 

signal transduction and noise reduction abilities of all the possible combinations of FFLs. 

 

Figure 4.6: Correlation plot of coupled minp-FFLs.  

The graph displays the relationship between the output and the input for minp-FFLs. Figure 4.3F depicts 

the stochastic input that passed into the models. The plot indicates the slope values for each of the networks 

calculated by linear regression process. Parameter values are : k1=k2=k3=1, kp=10, kpp=40, ka=5 and the 

species undergo one-step posttranslational modification. Each model falls into one of three categories: 

completely coherent (A), combined coherent and incoherent (B), and completely incoherent (C). All 4 

possible logical gates (OR, AND, upper-OR-lower-AND (uOR-lAND), and upper-AND-lower-OR 

(uAND-lOR)) are taken into consideration.  

By taking into account different permutation combinations, I've been able to model 42 

different coupled minp-FFLs and 26 different coupled mint-FFLs. Output input 
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correlation plots have been shown for these 42 coupled minp-FFLs (Figure 4.6) and 26 

mint-FFLs (Figure 4.7).  

 

Figure 4.7: Correlation plot of coupled mint-FFLs.  

The correlation plot displays the relationship between the output and the input for mint-FFLs. Figure 4.3F 

shows the noisy input that passed into the networks. The plot indicates the slope values for each of the 

networks calculated by linear regression process. Parameter values are : k1=k2=k3=1, kp=10, kpp=40, ka=5 

and the species undergo one-step posttranslational modification. Each model falls into one of three 

categories: truly coherent (A), mixed coherent and incoherent (B), and truly incoherent (C). All 2 possible 

logical gates (OR, AND) are considered here.   

The percentile coefficient of variation (% CV) has been displayed (Figure 4.8) against 

the slope values of these network motifs obtained from the input-output relationship plots 

(Figure 4.6, Figure 4.7). This also given an essence of the behavioral changes of signal 

transduction capacity towards noise for the coupled FFLs. Notably, there is a typical 
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negative relation between the % CV and the slope values. For the fact, networks with 

greater noise reduction also exhibit higher signal transduction. Coherent minp-FFLs are 

the highest-performing network architectures. A system in which all responses activate 

their targets species, and both the arms act independently is the most effective noise 

suppressor (c1c1-minp-OR FFL). The best signal transducer is also a coherent minp-

FFL. However, in this case, the longer branch consists of two inverted inhibitory 

responses (c4c4-minp-OR FFL). Further, it can be inferred that coupling two FFLs at an 

input level results in stronger noise suppression than coupling the similar FFLs at an 

intermediate step (Figure 4.8A and Figure 4.8B).  

 

Figure 4.8: The ability of coupled FFLs to transduce signals and attenuate noise. 

To demonstrate how each coupled minp-FFL (A) and mint-FFL (B) system operates in noise suppression 

and signal transduction, the % CV of each coupled FFL is computed at input = 6 and displayed against the 

slopes obtained from the correlation plots shown in Figure 4.6 and Figure 4.7. Parameter values are : 

k1=k2=k3=1, kp=10, kpp=40, ka=5 and one-step posttranslational modification case have been considered.  
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4.7. Coupled FFLs vs Isolated FFLs 
 

 

Figure 4.9: Comparison of the top performing FFL motifs in terms of noise reduction and signal 

transduction. 

In this figure, the top performing isolated and coupled FFL networks are presented (A). The noise reduction 

efficacy of all of these models is presented in the panel (B-J). Figure 4.3F shows the noisy input that passed 

into the networks. Statistical quantities like, mean, ± standard deviations (shaded region), % CV, and slope 

values of all these networks' outputs are indicated in the plots. All simulations are performed using preset 

parameter values: k1=k2=k3=1, kp=10, kpp=40, ka=5 and one-step posttranslational modifications. 
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The goal of this research is to determine the function of coupled FFLs in noise reduction 

and signal transduction capability. To come up with the best approach, I compared the 

noise filtering and signal transduction properties of coupled FFLs to those of isolated 

FFLs. When comparing Figures 4.4D and 4.8, it is clear that coupled FFLs have higher 

noise-reduction capabilities than isolated FFLs. To examine the top performing 

isolated and coupled FFL motifs in further detail (Figure 4.9A), the mean, standard 

deviations (shaded region), % CV, and slope values of all these networks' outputs (Figure 

4.9B-J) are displayed. The usual input changes (Figure 4.3F) are implemented to all the 

networks in this case, and the results reveal that c1c1-minp-FFL-OR is the best noise 

filter (having a lowest  % CV) and c4c4-minp-OR is best signal transducer (with highest 

value for slope). The fundamental incoherent type 4  FFL performs well too, and its many 

combinations with coherent type 1 FFL result in a best-performing coupled FFL when 

the two FFLs vary. Large negative slope values imply that inverted signal transduction 

is effective. Type 2 coherent FFL (c2) acts as a good signal transducer inverter and also 

possesses noise filtering abilities.  

4.8. Good vs Bad FFLs 
Among different network topologies of coupled and isolated FFLs, it is worthwhile to be 

able to distinguish between the networks that work well in terms of noise attenuation and 

signal transduction. From Figures 4.4D and 4.8, the good and the bad FFLs in terms of 

noise reduction can be identified. Noise analyses (% CV) in each layer of these good and 

bad FFLs indicate a significant differences. In good noise filters, noise decreases along 

the lower levels of FFLs (with minor variations in case of incoherent FFLs), but in case 

of poor noise filters, the intermediate layer (i.e. species Y) has the best noise reducing 

capacity (Figure 4.10). In this study we examined isolated FFLs: c1-OR (Figure 4.10A), 

c3-OR (Figure 4.10B), minp-FFLs: c1c1-minp-OR (Figure 4.10C), c3c3-minp-OR 

(Figure 4.10D), and mint-FFLs: c1i4-mint-OR (Figure 4.10E), c3i2-mint-OR (Figure 

4.10F). This result demonstrates that networks that are thought to be poor noise reducers 

may still be detected in biology when significant signals are utilized for cross-talking 

from intermediate layers of pathways [104].  This implies that excellent noise-reducing 

models at the output nodes are efficient in noise attenuation since the noise decreases as 

the signal advances through lower levels of FFLs.  
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Figure 4.10: Noise filtering capabilities among good and bad performing FFLs.  

When the input level equals 6, the % CV of every species associated with the best noise-filter (A,C,E) and 

the worst noise-filter (B,D,F) are presented in panels (A,C,E) and (B,D,F), respectively. Consider 

parameter values: k1=k2=k3=1, kp=10, kpp=40, ka=5 and one-step posttranslational modifications. 

4.9. Studying Noise Reduction Capabilities of FFLs While 

Altering Level of Noise in Input 
Based on the previous part, I was able to differentiate between FFLs that perform better 

or worse in terms of noise reduction and signal transduction capability. The next question 

is what causes certain FFLs to do well in noise reduction while others perform poorly in 

this job. That is why I perturbed the input with a greater or smaller levels of noise to 

comprehend the significant variations in the noisiness at the output nodes. The noisiness 

at the input level has been provided by a molecule that was produced in doublets, and 

this results in a super-Poissonian distributed noise. Later, by altering the synthesis 

kinetics and rate I was able to generate a lower and a higher level of noise at the input 

(shown below at the Increased and Decreased Scenario respectively). 
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There are no significant differences in the level of noise for the output level when the 

input has been altered with smaller and larger levels of noise (Figure 4.11). When the 

degree of input noise is raised, three copies of S have been formed, but when it is dropped, 

only one copy of S has been made. The rate of production of these following reactions 

needs to be scaled in a manner that will hold the average input level value unchanged. 

This phenomenon has been described below- 

Original Scenario: 

A⁺ -> S + S + A⁺, original rate constant = 200 

Decreased Scenario: 

A⁺ -> S + A⁺, rate constant for this reaction needs to be doubled of the original rate so 

that the steady state value of the input remains unchanged.  

Increased Scenario: 

A⁺ -> S + S + S + A⁺, rate constant for this reaction will be 2/3 times of the original rate 

in order to keep the steady state value of the input same.  

The figure demonstrates that the noise that occurs at each level of posttranslational 

modification to FFLs is a characteristic that is intrinsic to them and is not much 

influenced by the noise that occurs at the input nodes. This result is true for models that 

perform well in terms of noise reduction, but it does not hold true for models that perform 

poorly. For the poor noise reducer models, the intermediate nodes reduce noise more 

effectively than the output nodes (Figure 4.11).  
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Figure 4.11: Estimated noise in every level of the best and worst noise filtering networks.  

Demonstrated how noise propagates along the pathways for c1-OR (A,B,C), c3-OR (D,E,F), c1c1-minp-

FFL (G,H,I),  c3c3-minp-FFL (J,K,L), c1i4-mint-FFL (M,N,O), and c3i2-mint-FFL (P,Q,R)  models by 

raising (right panel) and reducing (left panel) the degree of noise in the input and comparing it to the initial 

noisy input (middle panel). The estimation has been done at input = 6 and parameter set is k1=k2=k3=1, 

kp=10, kpp=40, ka=5. Single step posttranslational modification is considered.  
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4.10. Comparing Noise Filtering Properties Among FFLs 

containing AND and OR logical Gates 
I previously discussed the good and bad noise reducer FFL models. Now I would like to 

explore more about the type of connectivity between the network nodes that can be the 

key factor in controlling the noise. So, in this section, I compared FFL networks with 

AND or OR logical connection to see which kind of logical gates is superior for noise 

reduction for a certain model (Figure 4.12). It is worth noting that combined FFLs with 

AND logical gates have a lower noise reduction abilities than the models having OR 

gates (Figure 4.13, Figure 4.14). It's more difficult to observe this pattern in the busier 

image Figure 4.8, but the same connection holds true for all models, particularly when 

assessing effective and poor noise reducers (Figure 4.12). Level of noise in the 

input  goes down to lower levels of the motif through simultaneous influence in coupled 

FFLs, and these correlating noises increase their combined impact when they merge at 

the output nodes via an AND gate. This apparent increase in the noise appears to be 

mitigated when the network has a OR gate.  

 

Figure 4.12: A comparison of the noise minimizing characteristics of FFLs with OR and AND logic 

gates.  

The data from Figure 4.4D and Figure 4.8 are shown here to illustrate how the % CV of networks driven 

by OR gates compare to that of networks including AND gates. Networks that incorporate OR gates have 

a lower coefficient of variation (%CV) than those that contain AND gates (placed at the below of the 

diagonal). This result is valid for all types of FFLs, including isolated FFLs (A), minp-FFLs (B), and mint-

FFLs (C). The models which have both the AND and OR type of connectivity is plotted here. The 

estimation has been done at input = 6 and parameter set is k1=k2=k3=1, kp=10, kpp=40, ka=5. Single step 

posttranslational modification is considered.  
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4.11. Impact of One-Step and Two-Step Posttranslational 

Modification on Noise Reduction 
Up until this point, I have only taken into account one -step modification process 

involving active and inactive states throughout all of the layers of the FFL networks. It 

is common for posttranslational signal transduction pathway networks to operate with 

several sites of modification, which may result in extremely non-linear behavior [48,49]. 

A version of the model has been developed in which every species passes through two-

step modification and is triggered by a same activator. This version of the network will 

be used to assess whether or not multisite modifications increase the performance of 

FFLs. Based on a study of the input-output relationship slopes and the % CV generated 

by these motifs and comparable networks with single changes, it has been shown that 

multisite modification enhances both signal transduction and % CV (Figure 4.13). 

Therefore, the noise-reduction skills of FFLs are not improved by multisite modification 

(Figure 4.14), while the signal-transducing capacities of FFL motifs are improved by 

multisite modification. 

 

Figure 4.13: Comparison of FFLs with one-step and two-step modification.  

The slope of the input-output relationship and the % CV data from Figure 4.4D and Figure 4.8 are 

displayed along with the comparable models that undergo two-step modification processes before being 

activated at each layer. Two-step modification process have a greater % CV than one-step modification 

for isolated FFLs (A), coupled minp-FFL (B), and coupled mint-FFL (C). The estimation has been done at 

input = 6 and parameter set is k1=k2=k3=1, kp=10, kpp=40, ka=5. 
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Figure 4.14: The estimated noise in one-step vs two-step posttranslational modification networks. 

As shown on the axis, the inputs to all of the networks have been changed, and the % CV of the output is 

plotted. The plot includes (A) isolated FFL, (B) minp-FFL and (C) mint-FFL networks. The parameter set 

is k1=k2=k3=1, kp=10, kpp=40, ka=5. Here are the outcomes of one-step (circle shaped point with solid line) 

and two-step (square shaped point with solid line) posttranslational modifications in each subplot. Each 

network is illustrated by a distinct colour, with different shaped markers.  

The Figure 4.14 suggests that c1c1-minp-OR is a more effective in noise reduction than 

the c1c1-minp-2s-OR network (Figure 4.14B). It is also clear that OR-type of connection 

is less noisy than AND-type of connection. This is valid for isolated-FFL (A) as well as 

for coupled mint-FFL (C). In addition, it is possible to assert that the coupled minp-FFL 

(c1c1-minp-OR) (B) is the most effective noise filter when contrasted with the other 

options (A, C).  

4.12. Noise Reduction and Signal Transduction Capabilities 

of Coupled FFLs With Varied Parameters 
The noise reduction capability comparison of FFLs was performed with a parameter set, 

where all rates were equal to 1. I was investigating models where posttranslational 

modifications of molecules were considered. Each molecule was considered to be present 

at a total concentration of 60 AU. To ensure that noise reduction is not resulting from 

saturation at this level by either the active or inactive forms, I had to choose parameters 

(Figure 4.15B) to ensure that stochastic simulations almost never hit the maximal (Figure 

4.15C)  or minimal (Figure 4.15A) abundance levels. The simplest (all rates equal 1) 

parameter combination matched this requirement, but a random parameter search cannot 

be performed without running to this problem. Another parameter set could be chosen, 

where all rates are slowed down, but steady states do not change. An analysis with a five-
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fold slower rate (k1 = k2 = k3 = 0.2) has been performed to understand how such change 

in parameter values impact the overall trends of coupled FFLs. 

 

Figure 4.15: Stochastic time course analysis of a coupled FFL network. 

The figure shows the stochastic time course analysis of the c1c1-minp-OR (Figure 4.1C) coupled FFL 

network at three distinct parameter sets, which are mentioned inside each subplot. Gillespie method was 

used to perform stochastic simulations. Here subplots A and C show the stochastic time course analysis of 

the output where the abundance hits the minimum (i.e. 0 AU) and maximum (i.e. 60 AU) levels, 

respectively. Subplot B depicts a stochastic time course study of the same network motif, with the output 

being distant from the maximum and lowest abundance levels. 

When comparing the results with the original parameter set and the five-fold decreased 

parameter set we can see that the trend of differences between the various FFL models 

remain the same. In case of minp-FFL, c1c1-minp-OR is the best (with a largest slope 

value), and c2c2-minp-OR is the worst (with a smallest slope value) model for signal 

transduction at the reduced parameter values as well (Figure 4.16A). Again for minp-

FFL, c1c1-minp-OR is still the best (lowest % CV), and c3c3-minp-OR is still the worst 

(highest % CV) model for noise attenuation (Figure 4.16B). 
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Figure 4.16: Noise reduction and signal transduction capacity of minp-FFLs. 

A, slope obtained from input-output relations for two different parameter sets (k1=k2=k3=1, kp=10, kpp=40, 

ka=5; and k1=k2=k3=0.2, kp=10, kpp=40, ka=5) are plotted against each other for all the possible coupled 

minp-FFLs. At input = 6, the % CV of each combined minp-FFL has been calculated.  In the panel B, 

calculated % CV for two different parameter sets are plotted against each other for all the possible coupled 

minp-FFLs.  

Among mint-FFLs, the trend still remains the same, with a small change in ranking as 

the best model for signal transduction with reduced parameter values is c1c1-mint-OR, 

and the worst model is c2c2-mint-OR (Figure 4.17A). With both sets of parameter values, 

the best and worst models for noise reduction in the case of mint-FFL are the same, c1c1-

mint-OR and c3c3-mint-OR, respectively (Figure 4.17B). 
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Figure 4.17: Noise reduction and signal transduction capacity of mint-FFL. 

In the panel A, slope value obtained from input-output relations for two different parameter sets 

(k1=k2=k3=1, kp=10, kpp=40, ka=5; and k1=k2=k3=0.2, kp=10, kpp=40, ka=5) are plotted against each other 

for all the possible coupled mint-FFLs. At input = 6, the % CV of each coupled mint-FFL has been 

calculated.  In the panel B, calculated % CV for two different parameter sets are plotted against each other 

for all the possible coupled mint-FFLs.  

By changing parameter values, the general trends for noise reduction across various 

coupled FFLs stay the same (Figure 4.16, Figure 4.17). A slight difference can be 

observed in signal transduction capacity among coupled FFL (Figure 4.16, Figure 4.17). 

With five times slower parameter values (k1=k2=k3=0.2), the c1c1-minp-OR and c1c1-

mint-OR models perform best, whereas with the original values (k1=k2=k3=1), the c4c4-

minp-OR and c4c4-mint-OR models function best for signal transduction.  
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4.13. Summary 
Despite the fact that biological systems are noisy, they are robust and make dependable 

choices when incorporating environmental data [105]. By triggering posttranslational 

changes on downstream molecules, signaling pathways enable a quick response to 

ligand-extracellular receptor interaction. MAPK networks have been intensively studied 

by mathematical modeling [103,106,107] and its dynamical behavior and signal 

transduction capacities have been studied a lot. Simultaneously, FFLs were studied using 

comparable methods to learn about their adaptive and noise-filtering and behaviors 

[88,108,109]. The combination of these two ideas motivates  to investigate how 

combined three-layer posttranslational signaling module may conduct signal 

transduction and noise reduction. 

A thorough analysis of all potential FFL combinations revealed that connected 

FFLs  improve the noise reducing  and signal transducing ability than the corresponding 

isolated FFLs. This is particularly true if OR gates are used in circuits with several inputs. 

Posttranslational modifications include multiple states [48,103]. It has been shown that 

these extremely non-linear processes enhance the FFL-based signal transduction 

capacity, but also decrease their noise filtering capacities.  

Several intriguing characteristics emerge from the analysis: The FFLs that have shown 

the greatest ability for signal transduction have an activatory direct path that runs from 

input node to output node (Figure 4.4D and Figure 4.8). This indicates that in order to 

achieve optimal signal transduction, node X ought to directly activate node Z. It has also 

been discovered that successful signal transduction may take place when the input node 

X inhibits the activity of at least a single copy of the intermediatory species Y and output 

gates obey an OR logic. All of these statements are valid for the FFLs that have the 

maximum capacity for signal transduction, including c4-OR, c4c4-mint-OR, c1i4-mint-

OR, c4i1-minp-OR, and c4c4-minp-OR. However, effective noise reduction may be 

demonstrated in FFLs having the same activatory direct path between node X and 

node Z, but this is supplemented with a reaction in which Z is being activated by Y 

(Figure 4.4D and Figure 4.8) and once more, multi-input processes use an OR logic. It’s 

found that i4-OR, c1-OR, c1i4-mint-OR, c1c1-mint-OR, c1c1-minp-OR, and c1i4-minp-

OR  FFLs are the best noise filters. 
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There are various limitations to this study. It has been considered that total protein 

abundance at every level to be similar but even though the abundance rises at each level 

for the higher signal amplification [106]. The investigation was confined to the 

connection of two FFLs, while signalling circuits contain substantially more crosstalk 

[110]. The systematic research gives a comprehensive assessment of the noise lowering 

and signal processing capacity of coupled FFLs regardless of these constraints. 

According to the findings of the research, particularly combined FFLs of coherent type-

1 and type-4 and incoherent type-4 with OR connectivity, have the potential to perform 

admirably both as the noise reducers and as the signal transducers. It is expected that the 

fabrication of such coupled FFL motifs might bring up new potential for better 

controlling signal transduction and noise in synthetic biology [111].
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5.1. Oscillations in Biological Processes  
Oscillations may be seen in both the biological and physical worlds. Biological 

oscillations can be seen in a variety of important biological processes [112]. To name 

just a few examples: cell cycles [113], the response of pacemaker cells [114–116], 

calcium oscillations [117], circadian rhythms [30,118,119], hormone secretion [120], 

responses of transcription factor [121–125], and fertility cycles [126]. The existence of a 

negative feedback (NFB) loop plus a delay in all these systems cause oscillations to form 

[76]. Oscillations need not just non-linear reaction kinetics, but also opposing chemical 

reactions with properly balanced timescales, as shown in a research by Novak et al. [29].  

Circadian oscillations are one of the most common biological oscillation types because 

most organisms' internal clocks are synchronized with environmental variations in the 

day/night cycle. A clock that runs internally in almost all living things has a free-running 

period of about 24 hours [127]. The circadian clock acts as an accurate biological 

timekeeper despite the existence of metabolic variations [31]. An investigation into the 

nitrogen-fixation ability of the cyanobacterium Synechococcus sp. offered the first strong 

evidence for prokaryotic circadian rhythms [128]. Genetic studies of the Neurospora 

crassa [129], model filamentous fungus and the fruit fly Drosophila melanogaster [118], 

which were later applied to mammals [130], showed that circadian oscillations are made 

at the molecular level. In mammals, the fundamental clock genes (Per1, Per2, Per3, 

Cry1, Cry2, Clock, Bmal1, Rev-erbα, and Rorα) control rhythmic gene expression and 

the physiological aspects of circadian rhythms [131,132]. Three scientists (Jeffrey Hall, 

Michael Rosbash, and Michael Young) were awarded the 2017 Nobel Prize in 

Physiology or Medicine for their discoveries into the mechanisms underlying circadian 

clocks [17]. Maintaining a generally constant period despite changes in temperature is 

known as temperature compensation [18,133], and it is one of the well-known basic 

features of circadian period homeostasis. Another distinguishing aspect of a circadian 

oscillator has been its resistance to random oscillations [32,134]. The network 

architecture or underlying mechanisms that influence temperature compensation and 

circadian rhythm resilience are still largely unknown.  

Researchers have come up with detailed mathematical models to explain how the 

circadian oscillator works. Some models include a minimal number of species and 

interactions to produce robust oscillations. The basic mathematical model for limit cycle 
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oscillations due to negative feedback in gene expression was developed by Goodwin 

[135–137]. Further research indicates that the existence of positive feedback (PFB) in 

the circadian clock regulates the peak concentration of proteins [138]. Sustained 

oscillation may also result from the combination of a PFB and substrate depletion 

reaction [33]. Later research has shown that the existence of PFB promotes the resilience 

of circadian oscillation. PFB causes oscillation in the NFB loops without needing a large 

cooperativity coefficient (at least a Hill coefficient of 8, what is needed in a pure, three 

component NFB system) [139]. The Hill coefficient may be decreased further by 

including additional variables in an NFB network. Positive feedback may be classified 

into three types based on the underlying principle: self-activation, cross-activation, and 

Michaelis-Menten degradation [140]. According to Ferrell et al., a circadian oscillatory 

system with interconnected positive and negative feedback seems to be more suitable for 

producing oscillations with variable frequency and constant amplitude [113].  

Many previous and contemporary studies [113,141–143] have led to a better 

understanding of the molecular regulatory systems that drive biological oscillations, as 

well as their advantageous properties such temperature compensation, robustness, 

tunability, and entrainment [144]. According to the Arrhenius law [72], rate of the 

reaction increases with temperature [72–74]. As a consequence, oscillation periods are 

anticipated to decrease as temperatures increase [75]. The circadian clock, on the other 

hand, is temperature compensated, and the period is generally independent of 

temperature within such a physiological range [75,145,146]. The fundamental purpose 

of this research is to examine essential aspects of primary circadian oscillator pathways 

in order to identify networks that are critical for oscillation period resilience and 

temperature adaptation. 

5.2. Outline of Investigated Models 
I describe and compare four vastly different minimalistic models for circadian 

oscillations to acquire a better grasp of the essential dynamical aspects of circadian 

rhythms. Most biological clocks [147] depend on transcriptional-translational NFB loops 

(TTFL), according to the literature [148,149]. In comparison, the circadian clock [131] 

of cyanobacteria is determined by the post-translational modifications of a single protein 

species. This makes the cyanobacterial clock a post-translational oscillator (PTO), which 

itself is regulated by a positive feedback mechanism [149,150]. This PTO is controlled 
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by the three clock proteins in S. elongatus: KaiA, KaiB, and KaiC. In addition, 

temperature compensated oscillations may be seen when the cyanobacterial circadian 

clock is observed in an in vitro environment [151]. In order to achieve sustained 

oscillation, the components KaiA, KaiB, and KaiC as well as adenosine triphosphate 

(ATP) were all combined in this experiment. During the day and night, different forms 

of KaiC are produced, and different proteins bind to them in vivo. The KaiC subunit is a 

hexamer, and it has two sites where phosphorylation may take place (T432 and S431; 

abbreviated as T and S). Over the course of 24 hours, the phosphorylated and 

dephosphorylated states cycle through the following states [128]: U (two states are 

unphosphorylated) → T (S/pT, single state is phosphorylated) → ST (pS/pT, two states 

are phosphorylated) → S (pS/T, single state is phosphorylated) → U (where p holds for 

the phosphorylated site). KaiC autophosphorylates during the day and dephosphorylates 

during the night via the same active domain. Rust et al. [152] conclude that KaiA makes 

the auto kinase activity of KaiC go up, while KaiB makes the auto phosphatase activity 

go up [153,154]. Kinetic and biochemical data suggest that one of those phospho forms 

inhibits KaiA activity by associating with KaiB, therefore offering the essential feedback 

required to maintain circadian oscillations [152]. I have taken into account the complex 

model proposed by Rust et al., which has several PFB loops. This network is referred to 

as cyano-KaiABC in the rest of the chapter (Figure 5.1A).  

For this theoretical analysis, I also look at the "conservative Goodwin oscillator," which 

is a simple and quite a well-studied example of a two-component [76] negative-feedback 

loop network (Figure 5.1B). The model can be also considered as the simple version of 

the TTFL [155]. In this particular implementation of the Two-Variable-Goodwin-NFB 

network, mRNA, denoted by the variable X, is first transcribed from a gene before being 

translated into a protein (denoted by the variable Y). The latter acts as a repressor, 

suppressing mRNA synthesis. I considered the modified version of two-variable 

Goodwin model equations in conjunction with Michaelis–Menten degradation kinetics 

[76] instead of zeroth-order degradation to avoid the possibility of getting negative 

concentration values for the variables.  

Hernansaiz et al. [156] proposed an alternative for Rust's model [152] that contains all 

mass action reactions but a combination of positive and negative feedback to broaden the 

concept of positive-plus-negative feedback oscillators while simplifying the kinetics. In 

this concept, a single molecule goes through four distinct chemically altered states 
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depending on the amount of modifications: none (OO), single (OP/PO), or double (PP). 

This core regulation connects with a two-state molecule (A and B). The oscillating 

network is termed combined positive-plus-negative feedback (cPNFB) (Figure 5.1C).  

 

Figure 5.1: Oscillatory networks with positive and negative feedback. 

Schematic illustration of Rust's cyanobacterial oscillatory system in KaiABC (cyano-KaiABC), which 

works through many positive feedback loops (A); Goodwin's negative feedback loop between two species 

(Two-Variable-Goodwin-NFB) (B); a single molecule with both positive and negative feedback that passes 

through four chemically changed states while communicating with an outside molecule with two states (A 

and B) (cPNFB) (C); and Selkov's substrate depletion oscillatory system (Selkov-PFB), which has the 

basic positive feedback loop and is driven by substrate depletion (D). The green and red arrows show the 

reactions of activation (phosphorylation) and inhibition (dephosphorylation) respectively. Processes that 

are inhibited are shown by arrows with flat heads, while processes that are activated are shown by arrows 

with pointed heads. A dual arrows in both ways represent the reversible reactions. The direct responses 

(synthesis/degradation, phosphorylation/dephosphorylation) are shown with solid arrows, whereas the 

regulatory interactions (activation/inhibition) are shown with dashed arrows. The parameters that are 

highlighted with blue color are the ones that have been fixed in the models shown in Figure 5.9 and yellow 

highlighted rates are further fixed in the analysis shown at Figure 5.14. 

I studied Selkov's substrate depletion system to examine a PFB induced oscillator. I 

named the network Selkov-PFB (Figure 5.1D). This network displays a simple kinetics 

of an open single- enzyme (phosphofructokinase) that generates self-oscillations in 
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glycolysis due to the existence of substrate suppression and product activation events 

[33]. I examined an oscillator that depends exclusively on positive feedback and excludes 

a direct NFB loop in the context of circadian clock models. Still, in this example, I see 

that although Y has a positive influence on U, U has a negative effect on Y (by converting 

it to U), resulting in the predicted opposite signed cross effects required to cause 

oscillations. 

Figure 5.2 depicts the time course diagram for such oscillatory networks when they are 

subjected to a temperature of 298 K. At 298 Kelvin, the period of oscillation for each of 

the models is around 24 hours. When it comes to the design of regulatory networks, this 

will make it possible to get a deeper understanding of the impacts of the fundamental 

components of a circadian clock, such as the circadian clock's robustness and temperature 

compensation. The codes for each network have been uploaded in GitHub 

(https://github.com/SuchanaChakravarty/Systematic-analysis-of-NFB-PFB-loops-for-

robustness-temperature-compensation-in-circadian-rhythm.git). 

 

Figure 5.2: Diagram showing the time evolution for each of the four examined oscillatory networks, 

based on Figure 5.1.  

The graph depicts the time evolution of species concentrations for such four oscillators cyano-KaiABC 

(A), Two-Variable-Goodwin-NFB (B), cPNFB (C), and Selkov-PFB (D). The simulations are conducted 

at 298 K. Table-5.1, Table-5.2, Table-5.3 and Table-5.4 show the initial concentrations of the species as 

well as the parameters.  
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5.3. Mathematical Models of Four Oscillatory Networks 
The mathematical equations for all these four simple circadian oscillatory networks, 

which include temperature dependency terms for each parameter, are provided below. 

All these dynamical equations are simulated in Matlab (version R2021b) using ODE45 

solver tools. 

5.3.1. ODE for cyano-KaiABC Model 
This model's dynamical equations as well as the parameter values have been obtained 

from the article by Rust et al. [152].  

If U refers to the unphosphorylated form, T to the threonine phosphorylated form of kaiC, 

D to the doubly phosphorylated form of kaiC (=ST), and S to the serine phosphorylated 

form of kaiC, then  

𝑈 = 𝑘𝑎𝑖𝐶 − 𝑇 − 𝐷 − 𝑆 

(5.1)  

 

𝑘𝑎𝑖𝐴 = 𝐴 = 𝑚𝑎𝑥 (0, 𝐴 − 2 ⋅ 𝑆) 

(5.2) 

𝑘𝑖𝑗 = 𝑘𝑖𝑗
0 + 𝑘𝑖𝑗

𝐴 ⋅
𝐴

𝑘ℎ𝑎𝑙𝑓 + 𝐴
 

(5.3)  

Here, i,j ε {U,T,D,S}. 

𝑑𝑇

𝑑𝑡
= 𝑘𝑈𝑇 ∙ 𝑈 + 𝑘𝐷𝑇 ∙ 𝑆𝑇 − 𝑘𝑇𝑈 ∙ 𝑇 − 𝑘𝑇𝐷 ∙ 𝑇 

(5.4)  
𝑑𝑆𝑇

𝑑𝑡
= 𝑘𝑇𝐷 ∙ 𝑇 + 𝑘𝑆𝐷 ∙ 𝑆 − 𝑘𝐷𝑇 ∙ 𝑆𝑇 − 𝑘𝐷𝑆 ∙ 𝑆𝑇 

(5.5)  

𝑑𝑆

𝑑𝑡
= 𝑘𝑈𝑆 ∙ 𝑈 + 𝑘𝐷𝑆 ∙ 𝑆𝑇 − 𝑘𝑆𝑈 ∙ 𝑆 − 𝑘𝑆𝐷 ∙ 𝑆 

(5.6)  
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5.3.2. ODE for Two-Variable-Goodwin-NFB Model 
These dynamical equations are obtained from Gonze et al. [76], which is credited as the 

original source. The network's parameters are altered so that the oscillation period is 24 

hours at a temperature of 298 K.  

𝑑𝑋

𝑑𝑡
=
𝛼1 ⋅ 𝑘

𝑘 + 𝑌
−
ȣ1 ⋅ 𝑋

𝑘1 + 𝑋
 

(5.7)  

𝑑𝑌

𝑑𝑡
= 𝛼2 ⋅ 𝑋 −

ȣ2 ⋅ 𝑌

𝑘2 + 𝑌
 

(5.8)  

5.3.3. ODE for cPNFB Model 
These ODEs are obtained from the article by Hernansaiz et al. [156]. The network's 

parameters are altered in such a manner that the oscillation period is now 24 hours at a 

temperature of 298 K. 

𝑑𝑂𝑂

𝑑𝑡
= 𝑘02 ⋅ 𝐵 ⋅ 𝑃𝑃 + 𝑑1 ⋅ 𝑂𝑂 ⋅ 𝑃𝑂 − 𝑘01 ⋅ 𝐴 ⋅ 𝑂𝑂 − 𝑝0 ⋅ 𝑂𝑂 ⋅ 𝑃𝑃 

(5.9)  

𝑑𝑃𝑃

𝑑𝑡
= 𝑘01 ⋅ 𝐴 ⋅ 𝑂𝑂 + 𝑝3 ⋅ 𝑂𝑃 ⋅ 𝑃𝑃 − 𝑘02 ⋅ 𝐵 ⋅ 𝑃𝑃 − 𝑑2 ⋅ 𝑂𝑂 ⋅ 𝑃𝑃 

(5.10)  

𝑑𝑂𝑃

𝑑𝑡
= 𝑝0 ⋅ 𝑂𝑂 ⋅ 𝑃𝑃 − 𝑝3 ⋅ 𝑂𝑃 ⋅ 𝑃𝑃 

(5.11)  

𝑑𝑃𝑂

𝑑𝑡
= 𝑑2 ⋅ 𝑂𝑂 ⋅ 𝑃𝑃 − 𝑑1 ⋅ 𝑂𝑂 ⋅ 𝑃𝑂 

(5.12)  

𝑑𝐵

𝑑𝑡
= 𝑘03 ⋅ 𝐴 ⋅ 𝑃𝑃 − 𝑘04 ⋅ 𝐵 ⋅ 𝑂𝑂 

(5.13)  

𝑑𝐴

𝑑𝑡
= 𝑘04 ⋅ 𝐵 ⋅ 𝑂𝑂 − 𝑘03 ⋅ 𝐴 ⋅ 𝑃𝑃 

(5.14)  
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5.3.4. ODE for Selkov-PFB Model 
The ODEs for this model are adapted from SEL'KOV's original publication [33]. The 

parameters of this model were adjusted such that the oscillation period is 24 hours at 298 

K. 

𝑑𝑌

𝑑𝑡
= 𝑘1 − 𝑘2 ⋅ 𝑌 − 𝑘3 ⋅ 𝑈

2 ⋅ 𝑌 

(5.15)  
𝑑𝑈

𝑑𝑡
= 𝑘2 ∙ 𝑌 + 𝑘3 ∙ 𝑈

2 ∙ 𝑌 − 𝑘4 ∙ 𝑈 

(5.16) 

5.4. Parameters Relevant for Models Discussed in Chapter 5 
The temperature dependency of the reaction rates can be represented in the form of 

Arrhenius equations, as follows:  

𝑟𝑎𝑡𝑒 = 𝐴𝑒 ∙ 𝑒
−𝐸
𝑅∙𝑇 

(5.17) 

Here, for all the reaction rates Ae is the pre-exponential factor, and Ae = 383.83 (Arbitrary 

Unit, ‘AU’) [18]. For robustness study the value of Ae is randomly selected. R is the 

universal gas constant and R = 8.3144598 J.K-1.mol-1. Also, T = Temperature in Kelvin.  

Table-5.1: Parameter combinations for cyano-KaiABC network.  

Parameter values are for the corresponding equations 5.1-5.6.  

 

 

ii. Activation Energy (E) in KJ/mol 
𝐤𝐃𝐒
𝐀  𝐤𝐒𝐔

𝐀  
17.57 19.74 

i. Activation Energy (E) in KJ/mol 
𝐤𝐡𝐚𝐥𝐟 𝐤𝐔𝐓

𝐀  𝐤𝐃𝐓
𝐀  𝐤𝐓𝐔

𝟎  𝐤𝐓𝐔
𝐀  

16.83 16.57 19.09 18.61 21.00 
 

𝐤𝐒𝐃
𝐀  𝐤𝐃𝐒

𝟎  𝐤𝐔𝐒
𝐀  𝐤𝐒𝐔

𝟎  𝐤𝐓𝐃
𝐀  

16.43 17.64 22.01 20.21 18.57 
 

Rates (AU) 
𝐤𝐔𝐓
𝟎  𝐤𝐃𝐓

𝟎  𝐤𝐓𝐃
𝟎  𝐤𝐒𝐃

𝟎  𝐤𝐔𝐒
𝟎  

0 0 0 0 0 
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Rust et al. [152] made the suggestion that their model should include some negative rates. 

In order to account for them, the Arrhenius equation has to be modified to read as follows: 

𝑟𝑎𝑡𝑒 = 𝐴𝑒 ⋅ (−𝑒
−𝐸

𝑅.𝑇) (highlighted boxes indicated, Table-5.1-ii) 

(5.18)  

 

 

 

At a temperature of 298 Kelvin, the true reaction rates for the cyano-KaiABC motif may 

be expressed as follows: 

 

Table-5.2: Parameter combinations for Two-Variable-Goodwin-NFB network.  

Parameter values are for the corresponding equations 5.7-5.8.  

i. Activation Energy (E) in KJ/mol 
k1 k2 ȣ1 ȣ2 k α1 α2 

31.8565 31.8565 14.7420 14.7420 12 14.01 17.9420 
 

At a temperature of 298 Kelvin, the real reaction rate for this Two-Variable-Goodwin-

NFB network may be expressed as follows: 

ii. Reaction Rate ( AU) at temperature 298 K 
k1 k2 ȣ1 ȣ2 k α1 α2 

0.001 0.001 1.0003 1.0003 3.0253 1.3442 0.2749 
 

 

 

 

iii. Initial Concentration (AU) 
KaiC KaiA T ST S 

3.4 1.3 0.68 1.36 0.34 

iv. Reaction Rate ( AU) at temperature 298 K  
𝐤𝐡𝐚𝐥𝐟 𝐤𝐔𝐓

𝐀  𝐤𝐃𝐓
𝐀  𝐤𝐓𝐔

𝟎  𝐤𝐓𝐔
𝐀  𝐤𝐒𝐃

𝐀  𝐤𝐃𝐒
𝟎  𝐤𝐔𝐒

𝐀  𝐤𝐒𝐔
𝟎  

0.4302 0.4793 0.1731 0.2101 0.0799 0.5059 0.3101 0.0533 0.11 
 

𝐤𝐓𝐃
𝐀  𝐤𝐔𝐓

𝟎  𝐤𝐃𝐓
𝟎  𝐤𝐓𝐃

𝟎  𝐤𝐒𝐃
𝟎  𝐤𝐔𝐒

𝟎  𝐤𝐃𝐒
𝐀  𝐤𝐒𝐔

𝐀   
0.2130 0 0 0 0 0 -0.3195 -0.1331  

iii. Initial Concentration (AU) 

X Y 
1 0 
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Table-5.3: Parameter combinations for cPNFB network.  

Parameter values are for the corresponding equations 5.9-5.14.  

i. Activation Energy (E) in KJ/mol 
p0 p3 d1 d2 k01 k02 k03 k04 

6.45 10 10 6.45 21.55 21.55 21.55 21.55 
 

At a temperature of 298 Kelvin, the real reaction rate for this cPNFB network may be 

expressed as follows: 

ii. Reaction Rate ( AU) at temperature 298 K 
p0 p3 d1 d2 k01 k02 k03 k04 

28.417 6.7816 6.7816 28.417 0.0641 0.0641 0.0641 0.0641 
 

iii. Initial Concentrations (AU) 
OO PP OP PO B A 

2 1 0 0 2 1 
 

Table-5.4: Parameter combinations for Selkov-PFB network. 

 Parameter values are for the corresponding equations 5.15-5.16.  

i. Activation Energy (E) in KJ/mol 
k1 k2 k3 k4 

21.5 27.5 5.1768 14.8691 
 

At a temperature of 298 Kelvin, the true reaction rates for the Selkov-PFB motif may be 

expressed as follows: 

ii. Reaction Rate ( AU) at temperature 298 K 
k1 k2 k3 k4 

0.0654 0.0058 47.5057 0.9503 
 

iii. Initial Concentration (AU) 
Y U 

0.48 0.0075 
 

5.5. Studying the Robustness of Four Oscillatory Models  
To generate oscillations with a duration of 24 hours, the four examined models need 

unique parameter combinations (Table-5.1, Table-5.2, Table-5.3 and Table-5.4). 

Maintaining this time in a noisy biochemical environment is critical from a physiological 
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standpoint. I explore how the durations of oscillations react to parameter changes in the 

four analyzed models. In order to measure the robustness of biological systems against 

the extrinsic fluctuations in parameters, I have generated 1000 random parameter 

combinations from a log normal distribution of all of the models' parameters (randomly 

chosen multiplicative factor from a log normal distribution with mean value equals to 1  

and standard deviation equals to 0.0142 for all parameters). This was done in order to 

follow earlier ideas [157,158] regarding the measurement of the robustness of biological 

networks.  

5.5.1. Incorporation of Variability into the Models 
For all rates in each model, I picked 1000 random pre-exponential components (Ae) from 

a log normal distribution with a mean value of 383.83 (AU) and a variance equals to 30 

((AU)2).  

The following MATLAB code (https://www.mathworks.com/help/stats/lognrnd.html) is 

provided for this purpose:  

% Log-Normal Distribution with Variance = 30 (A.U)2 and mean = 383.83 (A.U) 

m = 383.83;   % mean value of Ae 

v = 30;    % variance of Ae 

mu = log((m^2)/sqrt(v+m^2))  % mean of the logarithmic values 

sigma = sqrt(log(v/(m^2)+1))   % standard deviation of the logarithmic values 

% For generating random numbers 

r = lognrnd(mu,sigma,[1000, 1]); 

% end 

 

Adding a multiplicative factor to the pre-exponential value results in a degree of 

uncertainty in the reaction rates, as shown in Figure 5.3. I applied the ratio of these 

randomly chosen pre-exponential values to the average pre-exponential value to calculate 

these multiplicative factors. Small differences in all of these multiplicative components 

(mean ±  standard deviation, 1 ± 0.0142) may add up to a large overall variance for all 

response rates. 
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Figure 5.3: A multiplicative factor histogram for pre-exponential values is drawn randomly from a 

log normal distribution. 

 A log normal distribution is used to choose pre-exponential (Ae) values arbitrarily. Above, in blue, is a 

histogram depicting the logarithmic scale of the multiplicative factors used to the average pre-exponential 

value for generating random numbers. 

5.5.2. Estimation of Noise 
I have estimated total parameter variation by following the research [157,158] that 

appeared earlier and the Bayesian Information Criterion (BIC) in order to assess the noise 

that is present in each oscillatory networks.  

5.5.2.1. Estimation of Total Parameter Variation 

I figured out how much the random choice of parameters changed the total parameter 

variation by taking the arithmetic mean of how far each parameter was from its nominal 

value (marked as true below) [157]:  

𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 =

∑ | 
𝑅𝑎𝑡𝑒𝑟𝑎𝑛𝑑𝑜𝑚𝑖 − 𝑅𝑎𝑡𝑒𝑡𝑟𝑢𝑒𝑖

𝑅𝑎𝑡𝑒𝑡𝑟𝑢𝑒𝑖
 |𝑘

𝑖=1

k
 

(5.19)  

Here, k equals the total number of parameters in each oscillatory model.  
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Figure 5.4: Period of oscillation in relation to the total parameter fluctuations for the four types of 

oscillatory systems. 

The figure shows how the duration of oscillations varies in accordance with the total parameter changes 

for the four separate oscillatory systems shown in Figure 5.1. For 1000 randomly chosen parameter 

combinations, at 298K, the four distinct models are plotted in different colors. The inset on the upper left 

records the percentage value of the co-efficient of variation (% CV) along with the matching colors for all 

networks for 200 sampled parameter sets for each between 0.005 and 0.015 (0.005 < Total parameter 

variation < 0.015 , shown by the dashed rectangular box). Table-5.1, Table-5.2, Table-5.3 and Table-5.4 

provide descriptions of the various parameters. 

Since the arithmetic mean is expressed in this case as a ratio, it is effectively a unitless 

quantity whose value relies upon this number of parameters perturbed. 

In Figure 5.4, the arithmetic mean of these reaction rates is plotted against the oscillation 

periods, and the figure reveals that Two-Variable-Goodwin-NFB model has a larger 

distribution, but the cPNFB model has a smaller distribution with regard to the period of 

oscillation. 

In order to make a more accurate quantitative comparison of the networks' ability to 

tolerate extrinsic noise, I have computed the percentage coefficient variation (% CV) of 

period of oscillations across a small range of parameter variations. According to the 

percentage value of the coefficient of variation (% CV), the Two-Variable-Goodwin-

NFB system is the noisiest network (% CV = 1.8571).  
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Figure 5.5: Examining the robustness of the four oscillatory networks. 

Column (A) depicts the how the oscillation period changes in relation to the total parameter changes in 

four oscillatory models (Figure 5.1) with 1000 randomly selected points at 7 distinct temperatures. The 

models are identified by 4 different colors, and the seven varied temperatures are denoted by distinct 

shaped markers. Table-5.1, Table-5.2, Table-5.3 and Table-5.4 have a listing of the initial concentrations 

of each of the substances as well as the parameters. The fluctuation of the percentage coefficient of 

variation (% CV, also known as standard deviation over the mean) with temperature is shown in panel B. 

This change is shown for each of these four oscillatory networks (Figure 5.1). The percentage coefficient 

of variation, also known as % CV, has been estimated based on the period of oscillation shown in Figure 

5.5A for a total of 200 sampled parameter sets, each of which fell between 0.005 and 0.015 (0.005 < Total 

parameter variation < 0.015 , shown by the dashed rectangular box). 

To put it another way, the Two-Variable-Goodwin-NFB network with the lowest level 

of robustness, while the combined positive and negative feedback (cPNFB) network has 

the highest level of robustness. In addition to this, I have broadened the scope of my 

study of the oscillation period in terms of total parameter variation to include seven 

distinct temperatures ranging between 283K and 313K (Figure 5.5A). 

Because my investigation did not concentrate on any one organism, I used a broad range 

of temperatures. Cyanobacteria, for example, can withstand a wide variety of 

temperatures [159–161]. In Figure 5.5B, I demonstrate how the percentile coefficient of 

variation (% CV) of oscillation period changes relates to temperature variations in four 

distinct oscillatory networks (displayed in Figure 5.1).  
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Throughout all the temperatures, the cPNFB model has the least variation in periods, 

whereas the Two-Variable-Goodwin-NFB network has the most variation in oscillation 

periods. This is valid for all the parameter fluctuations between 283 K and 313 K 

temperature. Just the robustness of cyano-KaiABC motif is temperature sensitive, whilst 

others seem to be temperature independent (Figure 5.5B). 

5.5.2.2. Estimation of Bayesian Information Criterion (BIC) 
Even though they have different numbers of parameters, the Selkov-PFB model (which 

has the lowest number of total parameters, 4) and the cyano-KaiABC model (which has 

the greatest number of total parameters, at 12) have similar distributions (shown in Figure 

5.4).  I questioned if the total parameter numbers had an impact on a model's ability to 

cancel out noise. It's indeed common practice to compare motifs with different parameter 

numbers using the Bayesian Information Criterion (BIC). It is primarily employed to 

evaluate models and determine which one best fits an observation while taking into 

account the number of fitted parameters in each model. As a result, BIC is a strategy that 

punishes more complicated models by applying a penalty based on the total number of 

parameters the model evaluates. When parameters are randomly chosen, a model with a 

lower BIC value exhibits lower variations from the mean response, making up for the 

possibility that bigger models are more noise-resistant.  

The BIC was determined using the following method: 

𝐵𝐼𝐶 = 𝑛 ⋅ log(𝑆𝑆𝐸) − 𝑛 ⋅ log(𝑛) + 𝑘 ⋅ log (𝑛) 

(5.20)  

Here k is the total number of parameters in a model, n is the sample size (I have taken 

into account n = 200 random parameter sets in a constrained total parameter variation 

domain), and SSE is the sum squared error. I determined the SSE to be as follows: 

𝑆𝑆𝐸 =∑(𝑌𝑟𝑎𝑛𝑑𝑜𝑚 − 𝑌𝑎𝑣𝑒𝑟𝑎𝑔𝑒)
2

𝑛

𝑖=1

 

(5.21)  

Pursuing this thought, I investigated the relationship between the BIC of several models 

meeting the specified 24 hour period of oscillations at various temperatures (Figure 5.6). 
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Regardless of its difference in size from others, the Two-Variable-Goodwin-NFB 

network is still the noisiest at the most values of temperatures (shows the largest value 

of BIC). In this investigation, the tiny Selkov-PFB and cPNFB models exhibit the 

smallest noise to parameter alterations. As a result, although the number of parameters 

seems to have no effect on the robustness evaluation, it seems that the existence of 

positive feedback in a system leads to a decreased level of noise (Figure 5.6). This 

contradicts conventional assertions about the function of negative and positive feedback 

loops in noise reduction and increase, respectively [162]. Despite the fact that negative 

feedback is recognized to be a noise-reducing model [4], it has been found that the Two-

Variable-Goodwin-NFB network is the least resilient. In the next sections, I will explore 

if negative feedback may aid in the temperature compensation property of a circadian 

clock network. 

 

Figure 5.6: The Bayesian Information Criterion (BIC) of these four networks has been examined at 

different temperatures.  

The BIC has been shown against different temperatures for every model (Figure 5.1). The Two-Variable-

Goodwin-NFB network has the highest value of BIC above 298K. The analysis sample size is 200, and 

each set correlates to 0.005 < Total parameter variation < 0.015 (displayed in Figure 5.4 and Figure 5.5). 

Table-5.1, Table-5.2, Table-5.3 and Table-5.4 show the initial concentrations of the elements as well as 

the parameters. 
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5.6. Studying the Temperature Compensation Characteristics 

of Four Oscillatory Models  
When I examine the temperature dependency of robustness (Figure 5.5), I observe that 

the networks' average period changes with changes in temperature, but the magnitude of 

this shift varies amongst the four models. I have measured the values of these biological 

oscillators' temperature coefficients (Q10) in order to get an assessment of the temperature 

compensation capabilities that they possess [163,164]. Simplifying the computation 

allows us to focus on variations in period duration, as shown below [164]- 

𝑄10 =
𝑃𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑇 (𝑖𝑛 𝐾)

𝑃𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (𝑇 + 10) (𝑖𝑛 𝐾)
 

(5.22)  

It is necessary for circadian oscillators to have temperature compensation built into them 

so that they can keep their period of around 24 hours. I have displayed, for each of the 

four models, how the oscillation periods vary in response to changes in temperature 

(Figure 5.7). Although I can see how all of these networks compensate for temperature 

variations, I still see a significant influence of temperature fluctuations on the periods of 

oscillation. 

 

Figure 5.7: Temperature dependence of oscillation period.  

In all four models (shown in Figure 5.1), the oscillation period decreases as the temperature increases. The 

Q10 values between the temperature 293K and 303K for every motif are also included in the table inset on 

the upper right. The parameters are presented in the Table-5.1, Table-5.2, Table-5.3 and Table-5.4. 
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The Two-Variable-Goodwin-NFB network has the least Q10 value in Figure 5.7, 

indicating that it is greater temperature compensated compared to the other 3 models. 

The pattern also reveals that as the temperature increases, the length of the period for all 

four motifs reduces. Two-Variable-Goodwin-NFB succeeds at temperature 

compensation but fails miserably at robustness (Figure 5.4). Given that all of the models 

are inadequately temperature compensated, further claims may need to be evaluated.  

5.6.1. Temperature Insensitive Individual Reactions 
Rather than expecting kinetic rate responses to temperature changes to compensate for 

oscillation period changes [165], I assume that a single reaction could be temperature 

insensitive, resulting in a significant impact on compensating period alterations 

[18,73,166]. Adapting concepts from Hong et al. [167] and observations that a crucial 

circadian clock reaction is insensitive to temperature changes [168,169], I have examined 

what occurs when I fix the rates of one reaction but letting all others to react to a change 

in temperature.  

 

Figure 5.8: Temperature dependence of periods of oscillation if a single reaction is independent of 

temperature.  

The graph depicts how periods of oscillation fluctuate with temperature in each of the four oscillatory 

models (Figure 5.1) when such rate of a single reaction gets fixed (as specified in the legend), but all others 

are allowed to response to temperature variations. Each of these reactions connected with each motif are 

analyzed. Table-5.1, Table-5.2, Table-5.3 and Table-5.4 show the initial concentrations of the elements as 
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well as the parameters. Some of the models fail to depict oscillations at high and low temperatures, 

resulting in periods of zero. 

Finding the reactions that could be in charge of temperature compensation in different 

oscillatory networks is the aim of this study. When a single reaction rate is constant, I 

have investigated how much the oscillation periods vary with temperature in pure NFB 

and pure PFB motifs (plotted in Figure 5.8B and Figure 5.8D, respectively). I have also 

tested this in complicated oscillatory networks with various combinations of negative 

and positive feedback loops (Figures 5.8A and 5.8C).  

Figure 5.9 displays the best-performing models in which a single rate is considered to 

be independent of temperature while the rest react to changes in temperature. When the 

α2 rate of the Two-Variable-Goodwin-NFB motif, is temperature resistant, it is possible 

to draw the conclusion that this model performs better than the others (Figure 5.9). The 

pace at which the activator X causes the production of its own inhibitor, Y, is known as 

the α2 reaction rate (highlighted with blue color on Figure 5.1B).  

 

Figure 5.9: Dependency of periods of oscillation if the rate of a single reaction is independent of 

temperature. 

The graph shows how much the periods of oscillation vary with temperature across all four analyzed 

oscillatory networks (Figure 5.1), during which a single reaction rate is fixed (indicated in the legend), 

while all other rates are responsive to temperature variations. The parameters are shown in Table-5.1, 
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Table-5.2, Table-5.3 and Table-5.4. The image also depicts the Q10 values for each model, which range 

from 293K to 303K. Figure 5.1 depicts the fixed parameters which are shaded with blue color boxes. 

Even if they have progressed on their Q10 values, the other models are still very sensitive 

to variations in temperature. With rate 𝑘𝐷𝑆0  constant (the rate at which the dual 

phosphorylated state 'ST' switches to the single phosphorylated state 'S', 

highlighted with blue color in Figure 5.1A), Rust's cyanobacterial circadian oscillator 

network shows a temperature dependency curve with a rise in the length of the period at 

higher temperatures.  

5.6.2. Considering Two Temperature Independent reactions  
Considering the two reaction rates to be temperature independent, I believe that oscillator 

periods will be strongly temperature compensated. For Two-Variable-Goodwin-NFB 

model, cyano-KaiABC model, cPNFB model, and Selkov-PFB model, Figures 5.10-5.13 

illustrate all conceivable combinations of two temperature compensated parameters.  

 

Figure 5.10: Oscillation Periods for the Two-Variable-Goodwin-NFB model where two 

reaction rates remain temperature independent.  

The figures (A-E) show how much the durations of oscillations in Two-Variable-Goodwin-NFB 

model fluctuate with temperature when the two  rates are independent of temperature (as mentioned in the 

legend) and the others are permitted to respond to changes in temperature. All feasible reaction rate 
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combinations connected with this model are analyzed. Table-5.2 lists the initial concentrations of 

components as well as the parameters. 

 
Figure 5.11: Oscillation Periods for the cyano-KaiABC model where two reaction rates remain 

temperature independent.  

The subfigures (A-I) show how much the durations of oscillations in cyano-KaiABC model fluctuate with 

temperature when the two  rates are independent of temperature (as mentioned in the legend) and the others 

are permitted to respond to changes in temperature. All feasible reaction rate combinations connected with 
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this model are analyzed. Table-5.1 lists the initial concentrations of components as well as the parameters. 

A few systems fail to show oscillations at high or low temperatures, resulting in missing points on Figure 

5.12. 

 
Figure 5.12: Oscillation Periods for the cPNFB model where two reaction rates remain temperature 

independent.  

The subfigures (A-E) show how much the durations of oscillations in cPNFB model fluctuate with 

temperature when the two  rates are independent of temperature (as mentioned in the legend) and the others 

are permitted to respond to changes in temperature. All feasible reaction rate combinations connected with 

this model are analyzed. Table-5.3 lists the initial concentrations of components as well as the parameters.  

 

Figure 5.13: Oscillation Periods for the Selkov-PFB model where two reaction rates remain 

temperature independent.  

The figure shows how much the durations of oscillations in Selkov-PFB model fluctuate with temperature 

when the two  rates are independent of temperature (as mentioned in the legend) and the others are 
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permitted to respond to changes in temperature. All feasible reaction rate combinations connected with this 

model are analyzed. Table-5.4 lists the initial concentrations of components as well as the parameters.  

Only such parameter combinations that result in the lowest Q10 values have been shown 

in Figure 5.14, which uses data from Figures 5.10-5.13 as its source material.  

 

Figure 5.14: If two processes are temperature change resistant, the temperature dependence of the 

oscillation periods.  

When the rates of chemical reactions are concurrently fixed (as stated in the legend), but the others are free 

to adjust to temperature changes, the picture illustrates how much the period of oscillations in the four 

oscillatory motifs (Figure 5.1) varies with temperature. Only the parameter combinations that result in the 

lowest Q10 values are displayed here. Table-5.1, Table-5.2, Table-5.3 and Table-5.4 include parameters. 

The second and principal fixed parameters (Figure 5.9) are shown in the Figure 5.1 with the yellow and 

blue colored boxes, respectively. 

Two-Variable-Goodwin-NFB (illustrated in the red color) and cPNFB (illustrated in 

the blue color) plots show the projected reduction in the period for the temperature rise 

(Figure 5.14). The Selkov-PFB model (illustrated in yellow), on the other hand, has just 

4 parameters, and it appears that if I set two of them, the other two may be pretty 

adequately temperature compensated, although the period grows as a function of the 

temperature. The cyano-KaiABC network (plotted in green) is the most complex 

network in this investigation, with a complicated temperature sensitivity that indicates a 

minimum at 24 hours. The cyano-KaiABC network works well between temperatures of 

283K and 298K; however, at 303K, the oscillation period starts to diverge considerably 

from 24 hours.  
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By considering Figures 5.9 and 5.14, it can be seen that the Two-Variable-Goodwin-NFB 

model with the single temperature insensitive parameter (α2) performs almost equally to 

such two-parameter fixed scenario (k1-α2) whereas the other three networks show 

additional gains for second rate fixing (the reaction rates are labeled by blue and yellow 

colors on Figure 5.1). It can be shown that the Two-Variable-Goodwin-NFB model's α2 

rate controls the negative feedback loop directly. For the  cyano-KaiABC and cPNFB 

networks, the rate of the reaction, which must be temperature independent, is also 

negative feedback loop controllers. Since there is no NFB loop in the Selkov-PFB, so the 

most important parameter appears to be the one that governs the synthesis of the 

PFB loop's substrate. Even yet, some gains in temperature adjustment can be noted 

across all models because to the addition of a second biochemical reaction rate. Because 

of the lower values of Q10 shown in Figure 5.14, the oscillation periods are more 

temperature compensated than those shown in  Figure 5.9, where only a single rate was 

held constant throughout all of the models. 

5.7. Differentiating the Impacts of Negative and Positive 

Feedbacks 

 

Figure 5.15: PFB oscillator in the Selkov model with an extra NFB loop.  

The oscillatory network's schematic diagram (A). The dotted green arrowhead (k3) represents the intrinsic 

autocatalytic positive feedback in a Selkov model, while the dotted red line with a blunt head represents 

the external extra negative feedback (k5). k3 and k5 rates are marked in blue because they were changed. 

(B) Oscillation period varies with temperature in the instances of strong NFB - weak PFB (red), weak NFB 

- strong PFB (yellow), and strong NFB - strong PFB (blue).  (C) Robustness, expressed in terms of 
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percentile coefficient of variation (%CV) at different temperatures for the three separate examples 

described in panel B. Table-5.5 contains a list of parameters. 

Because the four examined networks have varying kinetics and complexity (Figure 5.1), 

the research has been extended with the Selkov-like PFB-based network with an extra 

NFB loop in order to establish a systematic method for understanding the function of 

negative and positive feedback in the temperature compensation and robustness 

analysis of circadian clock models (Figure 5.15A).  

5.7.1. ODE for Selkov-like PFB Framework With an Extra 

NFB Loop 
The following is the mathematical representation of the Selkov-like PFB framework with 

an extra NFB loop (Figure 5.15A): 

𝑑𝑌

𝑑𝑡
=  

𝑘1
1 + 𝑘5 ⋅ 𝑈

 − 𝑘2 ⋅ 𝑌 − 𝑘3 ⋅ 𝑈
2 ⋅  𝑌 

(5.23)  

𝑑𝑈

𝑑𝑡
=  𝑘2 ⋅ 𝑌 + 𝑘3 ⋅ 𝑈

2 ⋅  𝑌 − 𝑘4 ⋅ 𝑈 

(5.24)  

In this case, the conventional Selkov model's intrinsic activatory autocatalytic positive-

feedback action on the species U is represented by k3 (Figure 5.1D). By preventing the 

synthesis of substance Y at a rate equal to k5, U displays an additional NFB. The total 

number of parameters (k) in this model is equal to 5 as a result of the extra NFB. 

The preceding mathematical equation may be represented in terms of the number of 

molecules by including a scaling factor (𝑉𝑠 ) on both sides of the equation. For the 

robustness analysis shown in Figure 5.17, I used the Gillespie technique [59] and the 

corresponding equation: 

𝑑𝑁𝑌
𝑑𝑡

=  
𝑘1 ∙  𝑉𝑠

2

𝑉𝑠 + 𝑘5 ⋅ 𝑁𝑈
 − 𝑘2 ⋅ 𝑁𝑌 − 𝑘3 ⋅ (

𝑁𝑈
𝑉𝑠
)2 ⋅  𝑁𝑌 

(5.25)  

𝑑𝑁𝑈
𝑑𝑡

=  𝑘2 ⋅ 𝑁𝑌 + 𝑘3 ⋅ (
𝑁𝑈
𝑉𝑠
)2 ⋅  𝑁𝑌 − 𝑘4 ⋅ 𝑁𝑈 

(5.26)  
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5.7.2. Parameter values for Selkov-like PFB Framework With 

an Extra NFB Loop 
Low k3 or k5 values result in estimated response rates that are typically one-fifteenth of 

those for higher k3 or k5 values. The system will have a dominant NFB (strong NFB - 

weak PFB) if k3 is low and k5 is high, while the system will possess a dominant PFB if 

k3 is big and k5 is low (weak NFB – strong PFB). The system will reflect the combined 

impact of a PFB and an NFB when both rates are high and equal (strong NFB – strong 

PFB). 

Table-5.5: Parameter combinations for Selkov-like PFB Framework with an Extra NFB Loop 

network. 

The parameters for the 3 examples shown in Figures 5.15B-C,  5.16, and 5.17 taking into account the 

Arrhenius rate law presented in Section 5.4, are listed here. 

 

Cases i. Activation Energy (E) in KJ/mol 
Small k3 - Large k5 

 
k1 k2 k3 k4 k5 

16.35 27.5 12.0203 14.8691 5.17 
      

Large k3 - Small k5 
 

k1 k2 k3 k4 k5 
21.5 27.5 5.17 14.8691 12.0203 

      
Large k3 - Large k5 

 
k1 k2 k3 k4 k5 

20.877 27.5 5.17 14.8691 5.17 
 

Cases ii. Reaction Rate ( AU) at temperature 298 K 
Small k3 - Large k5 

 
k1 k2 k3 k4 k5 

0.2325 0.0058 3 0.9503 47.63 
      

Large k3 - Small k5 
 

k1 k2 k3 k4 k5 
0.0691 0.0058 47.63 0.9503 3 

      
Large k3 - Large k5 

 
k1 k2 k3 k4 k5 

0.0841 0.0058 47.63 0.9503 47.63 
 

iii. Initial Concentration (AU) 
Y U 

0.48 0.0075 
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5.7.3. Robustness and Temperature Compensation Analysis 

for Selkov-like PFB Framework With an Extra NFB Loop 

The four explored models had different sizes (in Figure 5.1), which indicates ambiguity 

toward robustness analysis (Figure 5.4, Figure 5.5, Figure 5.6). To guarantee that the 

compared models have comparable size and kinetics, I maintain the network size 

constant and alter the intensity of a single rate for the positive (k3) and negative feedback 

loops (k5) (parameter values are shown in the Table-5.5, and rate constants at 298K are 

indicated in the Table-5.5).  

 

Figure 5.16: The connection among total parameter variations and period of oscillation for a Selkov-

like PFB framework with an extra NFB loop. 

 The graph demonstrates how the oscillation periods change in relation to total parameter variations 

(Section 5.5.2.1.) in an oscillatory system (Figure 5.15A) for 1000 randomly selected points at 7 distinct 

temperatures. The three distinct examples (Table-5.5) that correspond to the system (Figure 5.15A) are 

denoted by three distinct colors, and the different 7 temperatures are denoted with differently shaped 

markers. Table-5.5 shows the initial concentrations of molecules as well as the parameters. 
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The temperature compensation study of the combined network (Figure 5.15B) reveals 

that combining the strong NFB with the weak PFB (the small k3-large k5 instance, 

displayed in red line) results in better temperature compensation (lower Q10 values) than 

any of the other possible combinations (Figure 5.15B). This is consistent with the 

previous results (Figure 5.7), which show that negative feedback enhances temperature 

compensation. 

A robustness study in presence of extrinsic noise [51] (Figure 5.15C, Figure 5.16) reveals 

that network robustness is strongly temperature dependent. The coupling between 

positive and negative feedback loops (in blue color) has the lowest temperature 

dependency on noise, but the strong PFB solely (large k3-small k5 instance, with yellow 

line) exhibits less robustness.  

An intriguing result is that at higher temperatures, strong NFB (small k3-large k5 instance, 

using red line) is less robust (Figure 5.15C). This is most likely because at higher 

temperatures, quicker response rates lower feedback loop delays, resulting in a more 

difficult to sustain period. 

The result that negative feedback may increase noise contradicts previous studies that 

indicated negative feedback loops might reduce noise [4]. However, they were 

previously examined for inherent intrinsic noise [51], not extrinsic noise, what was 

studied here. To check the effects of intrinsic noise on the studied model, the equations 

of the coupled Selkov-like positive-negative feedback model (Figure 5.15A) were 

converted to individual reactions and the model simulated by a Gillespie solver (Methods 

Section 3.1.2., Example-3). Stochastic simulations of such a system at different low 

molecular abundance levels show that at 298 K, a strong NFB with a weak PFB (small 

k3-large k5) combination is the most resilient against the intrinsic noise generated by 

smaller molecular abundances (displayed in Figure 5.17). It can be concluded that in the 

presence of intrinsic noise, NFB reduces noise better, whereas in the presence of extrinsic 

noise, it seems PFB is a better noise reducer. 
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Figure 5.17: Analysis of such Selkov-like positive feedback oscillator model with an extra negative 
feedback loop, taking into account the effects of intrinsic noise. 

 Time course trajectory examples of species U (Figure 5.15A) with involved scaling factor of Gillespie 

simulation fixed to 100 and (B, D, F) or 1000 at temperature 298 K. For 100 cycles, the percentage of co-

efficient of variations (%CV) and mean period (μ) at 298 K were determined and shown at the top of each 

panel. Table-5.5 contains a list of parameters.  

5.8. Summary 
The processes of temperature compensation in biological oscillators are still not fully 

understood. This study has shown that temperature compensation and resilience of 

circadian oscillators are mutually exclusive properties of circadian clocks. Figure 5.4 and 

Figure 5.7 make it abundantly evident that the Two-Variable-Goodwin-NFB model is 

the least resilient for parameter variations (it holds a high % CV value for 

oscillation periods), but it is better in temperature compensation (it has a lower Q10 

value) compared to the other models. The cPNFB circadian oscillatory network, in 

contrast, provides the most robustness and least temperature compensation (Figures 5.4, 

5.5 and 5.7). These are the two extreme instances of resilience and temperature 

compensation among the four oscillatory models that I have analyzed. Based on this 

systematic study of coupled positive and negative feedback systems (Figure 5.15), it can 

be concluded that pure NFB cannot effectively reduce extrinsic noise in a system (Two-

Variable-Goodwin-NFB), whereas the availability of a PFB enhances the robustness of 

a system (at high temperatures) without greatly lowering the temperature compensating 
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capabilities of a negative feedback loop, in presence of extrinsic noise. In contrast, NFB 

enhances the system's resiliency against intrinsic noise (Figure 5.17) [4,51]. 

The cyano-KaiABC model that was developed by Rust et al. [152] is a very complicated 

model that includes highly non-linear dynamics, as well as both negative and positive 

feedbacks. This model does a fair job of compensating for temperature when both 𝑘𝐷𝑆0  

and 𝑘𝑆𝑈0  are held constant (Figure 5.14), but despite having the maximum number of 

parameters (k=12), it is neither the most temperature compensated or best robust system 

available. In addition, it is assumed that such linear mass action kinetics in the case of a 

cPNFB circadian oscillatory system might be the differentiating factor for its behavior 

that is the least noisy, especially in comparison to the other models, which have non-

linear terms that might amplify any noise that is present in the network (Section 5.3.1. 

and 5.3.3. ). Even at low input signal levels, mass-action kinetics gives accuracy, but 

non-linear dynamics like Hill or Michaelis-Menten fail accuracy owing to overly 

complex combinations and scaling factors of multiple reaction rates utilized to describe 

the kinetics [170].  

Avello et al. [171] explored temperature compensation using minimalistic models 

of  plant circadian clock with varying levels of complexity. This comprehensive study 

uncovered that negative feedback loops are required for adequate temperature 

compensation, and that combining positive and negative feedback loops might result in 

decreased noise in circadian clocks. It can also be observed that temperature independent 

reactions, which is critical for negative feedback loops, may assist the whole system in 

driving temperature compensated oscillations. These findings may help clarify why the 

circadian clock in higher eukaryotes is driven by a conventional delayed negative 

feedback loop, whereas the circadian oscillator in cyanobacteria in-vitro is positive 

feedback-based KaiC system, and temperature compensation is accomplished through 

the temperature independent key reactions in that system [165]. These findings also 

confirm previous findings that positive feedback might strengthen the circadian clock 

[113,167].  

On the molecular level, feedback loops may be built in a variety of ways [172]. Feedback 

may either promote activation or inhibition processes, or both. Furthermore, the exact 

dynamics of oscillators may be affected by reaction kinetics. I studied a large range of 

such systems here, but only one combination model was rigorously validated (Figures 
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5.15, 5.17). Thus, my approach has limits and might be broadened by investigating the 

impacts of different kinetics, regulatory effects, and baseline reaction rates. 

Despite these constraints, the suggested model engineering and comparison 

methodologies may be effective in the design of synthetic circuits that must withstand 

environmental perturbations such as temperature changes. This might be applicable to 

cyanobacteria species engineering strategies for biomass production, incorporating light 

harvesting [173]. This work is expected to help this growing scientific area even more.
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In this dissertation, I looked into how different types of feedforward and feedback loops 

can lead to robust responses. I showed that, when it comes to noise reduction and signal 

transduction, combined FFLs are better than isolated FFLs. 

I studied unique properties of circadian oscillations, such as temperature compensation 

and noise attenuation. I also took steps to find the key controllers of the circadian 

oscillatory network that allow temperature compensation.  

This section summarizes the key contributions of this study. The potential pathways for 

further investigation have been also suggested. For each thesis point, the appropriate 

section, figure number, and corresponding publications are indicated. 

6.1. New Scientific Results 
Thesis 1a.  I have discovered that coupled feedforward loops (FFLs) outperformed 

isolated feedforward loops in terms of robustness and signal transduction. 

Related publications: [J1], [C1], [C2], [C3] 

I performed LNA simulations with two different kinds of FFLs: coupled and isolated. 

The percentile coefficient of variation (% CV) measures noise, and the slope values of 

the networks (Figure 4.1) generated from the input-output plots (Figures 4.4C, 4.5, 4.6, 

and 4.7) assess signal transduction capability. Interestingly, there is a typical inverse 

relationship between the percentage CV and the slope values. A greater % CV indicates 

inadequate noise reduction, but a higher slope value indicates improved signal 

transduction capabilities. I demonstrated that coupled FFLs are better at reducing noise 

than isolated FFLs by comparing Figures 4.4D and 4.8. I've shown in Figure 4.9 that 

coupled FFLs transmit signals more effectively than isolated FFLs.  

Thesis 1b. I have been able to distinguish between FFLs that perform better at 

minimizing noise and signal transduction based on their network architecture. 

Related publications: [J1], [C1], [C2], [C3] 

I have shown a number of fascinating traits that come out of the analysis: All of the FFLs 

(Figure 4.1) with the higher signal transduction capacity have an activatory direct 

connection between the input and output nodes (Figure 4.4D and Figure 4.8). This 

suggests that node X should directly activate the node Z to provide the best signal 

transduction. Successful signal transduction occurs when input node X suppresses at least 
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one copy of intermediate species Y and output gates follow OR logic. All of these claims 

are true for FFLs with maximal signal transduction capability, including c4-OR, c4c4-

mint-OR, c1i4-mint-OR, and c4i1-minp-OR.  

Effective noise reduction may be shown in FFLs with the same activatory direct channel 

between nodes X and Z, but this is augmented by a reaction in which Z is activated by Y 

(Figure 4.4D and Figure 4.8) and follows OR logic. The best FFLs are i4-OR, c1-OR, 

c1i4-mint-OR, c1c1-mint-OR, and c1i4-minp-OR.  

In excellent noise filters, noise reduces down the lower levels of FFLs (with slight 

differences in incoherent FFLs), while in bad noise filters, species Y has the highest 

noise-reducing performance (Figure 4.10). Excellent noise-reducing models at output 

nodes are effective in noise removal because noise lowers as the signal progresses 

through lower levels of FFLs.  

Based on this study, coherent type-1 and type-4 and incoherent type-4 with OR 

connection can perform well as noise reducers and signal transducers. Figure 4.10 depicts 

the best and worst FFLs in regard to their noise reduction capacity. In this scenario, the 

standard input alterations (Figure 4.3F) are applied to all networks, and the results show 

that c1c1-minp-FFL-OR is the best noise filter (with the lowest % CV) and c4c4-minp-

OR is the best signal transducer (with highest value for slope).  

Thesis 1c. I discovered that the FFLs' noise reducing capability trends remained 

unchanged even with the addition of stochastic input signal. 

Related publications: [J1], [C1], [C2], [C3] 

Noise through each level of posttranslational modification to FFLs is inherent and 

unaffected by noise at the input nodes. Therefore, changing the input noise level 

maintains the conclusion's consistency (Thesis 1a., Thesis 1b.) at all levels of the models 

(Figure 4.11). 

Thesis 1d. I discovered that OR gates in FFLs are better than AND gates in terms 

of noise reduction. 

Related publications: [J1], [C1], [C2], [C3] 

FFLs with AND logical gates reduce noise less than those with OR gates (Figure 4.13, 

Figure 4.14). This trend is harder to see in Figure 4.8, but it remains true for all models, 
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especially when comparing successful and ineffective noise reducers (Figure 4.12). 

Through simultaneous effect in coupled FFLs, the degree of noise in the input decreases 

to lower levels of the motif, and these associated noises enhance their overall effect when 

they integrate at the output nodes through an AND gate. When the network has an OR 

gate, this apparent rise in noise seems to be minimized. 

Thesis 1e. I evaluated one-step and two-step post translational modification in FFLs 

and discovered that multisite modification improves signal transduction but 

decrease noise reduction capability.  

Related publications: [J1], [C1], [C2], [C3] 

I have shown that multisite alteration improves both signal transduction and % CV based 

on an analysis of the input-output correlation slopes and the % CV produced by these 

motifs and equivalent networks with single modifications (Figure 4.13). As a result, 

multisite alteration does not increase FFLs' noise-reduction abilities (Figure 4.14), but it 

does improve FFL motifs' signal transducing abilities. 

Thesis 2a. I have investigated four distinct oscillatory modules and identified that 

the delayed negative feedback loop model is the least robust, while a model 

combining positive and negative feedbacks is the most robust among the four 

investigated ones. 

Related publications: [J2], [C4], [C5] 

In Figures 5.4 and 5.5B, I have demonstrated that the Two-Variable-Goodwin-NFB 

network (delayed NFB model) is the least resistant (it has a high% CV value for 

oscillation periods), while cPNFB models (which is a combination of positive and 

negative feedback loops) have the lowest noise to parameter changes. Irrespective of the 

size, the Two-Variable-Goodwin-NFB architecture is the noisiest at the majority of 

temperature values (which indicates the highest value of BIC). In this study, parameter 

changes cause the least amount of noise in the Selkov-PFB and cPNFB models, which 

are smaller in size. 
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Thesis 2b. I have discovered that the delayed negative feedback loop model is better 

at temperature compensation, while the model combining positive and negative 

feedbacks shows the least temperature compensation from the four investigated 

models.  

Related publications: [J2], [C4], [C5] 

In Figure 5.7, I showed that the Two-Variable-Goodwin-NFB model is better at 

temperature compensation because its Q10 value is lower, while the cPNFB circadian 

oscillatory network is the worst at temperature compensation because its Q10 value is 

higher. 

Thesis 2c. I have found that in all the investigated cases, temperature-insensitive 

parameters are either direct or indirect controllers of negative feedback.  

Related publications: [J2], [C4], [C5] 

I have shown, with the help of Figures 5.9, that the temperature insensitive rate (the α2 

rate) of the Two-Variable-Goodwin-NFB model directly controls the negative feedback 

loop. The parameter, which must be temperature insensitive, is also a negative feedback 

loop controller for both the cyano-KaiABC (the 𝑘𝐷𝑆0  rate) and cPNFB (the k01) networks. 

Since the Selkov-PFB lacks an NFB loop, the most essential parameter is the PFB loop's 

substrate synthesis (k1 rate).  

I also observed that the Two-Variable-Goodwin-NFB model with a single temperature 

insensitive parameter (α2) performs nearly as well as a two-parameter fixed scenario (k1- 

α2), while the other three networks exhibit extra improvements for second rate fixing. 

According to Figure 5.14's lower Q10 values, the oscillation periods are more temperature 

compensated than in Figure 5.9, when only one rate was temperature 

independent throughout all models. 

6.2. Future Perspectives 
In this thesis, I have thoroughly investigated and performed systematic analysis of 

network motifs comprising of feedforward and feedback loops to study their diverse 

dynamical behaviors. Using mathematical modeling and computer simulations, I have 

explored the noise reduction and signal transduction properties of isolated and coupled 

feedforward loops which is explained in detail in Chapter 4 in this thesis. I found that the 
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coupled feedforward loops are more efficient in noise reduction as well as in signal 

transduction compared to the isolated networks. In future, one could expand these 

networks by increasing the number of coupling units in the feedforward loops and 

explore their properties in noise reduction and signal transduction. It is essential to 

comprehend the dynamical characteristics of several larger physiological pathways, and 

this knowledge can be gained by looking at smaller regulatory network motifs. The 

resilience of the system's ability to operate in the face of chemical noise precisely and 

effectively is greatly influenced by the architecture of the regulatory motifs. 

I have also investigated the properties of various feedback loops involved in the circadian 

oscillatory system in terms of their ability to robustness to noise and temperature 

compensation which I have discussed in detail in Chapter 5. This prospective topic of 

research might focus on the synthetic development of these oscillatory systems as well 

as the importance of in vivo systems in understanding circadian clocks in living 

organisms, particularly mammals. One might investigate how effectively a circadian 

oscillator can be modified in terms of robustness and temperature compensation in vivo 

by altering the relevant biological reaction rates mentioned in Chapter 5. The answers to 

these fundamental problems, which were derived from the previous theoretical study, 

may be found in a wet research laboratory. Feedback may either activate or inhibit 

processes, or both. Furthermore, response kinetics may influence the precise dynamics 

of oscillators. Future work will be able to forecast the robustness analysis and 

temperature compensation studies for negative feedbacks with different kinds of 

connection and kinetics. The next stage of this study might be a comparison of linear and 

non-linear kinetics systems while changing the decay rates and introducing delay to the 

system. 

As discussed previously, regulatory network motifs form the basic functional unit of the 

large complex molecular network of a biological system. It is therefore crucial to study 

and explore the architectural significance of regulatory network motifs in order to acquire 

insights into the mechanisms of biological systems, including industrial and clinical 

biosensing applications, human disease, and thereby uncover new therapeutic 

approaches. I hope that my findings will aid in the advancement of these scientific 

domains and the creation of broadly used reverse engineering application. 
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