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1 .Introduction

The process of extracting and tracking of human figures in image-sequences is a key
issue for video surveillance and video-indexing applications. The need for automated
person identification systems strongly motivates this interest. The process can be
broken down into the following steps: detection [51], tracking, classification [52] and
identification [53][82] of human movement or gait. There are several approaches for
each of these sub-problems. A useful and popular approach is based on silhouette
analysis [55] with spatio-temporal representation, where the goal 1s to achieve an
invariant representation of the detected object. In [82] symmetries of the silhouette are
utilized as a gait parameter for person-identification. Other methods focus on the legs
[56] and periodicity of human movements [51][57]. We present a simple motion
pattern generation and extraction method, which extracts and tracks the symmetries of
objects using the images of exactly two legs walking. This task is a binary
classification problem: the periodicity of human walking, together with the
characteristic human shape of the target, provides key differences which enable us to
distinguish pedestrians from the motion patterns of other objects. Our approach uses
the motion information contained in video sequences, so that the extracted motion
patterns consist information about the spatio-temporal changes of a moving object.
Reflections and cast shadow in surveillance videos usually cause problems in
image analysis [29]. This is because it appears in the foreground mask extracted by
using an adaptive background model e.g. [30]. In turn, the inaccurate mask reduces
the performance of the further image-processing steps. Consequently, techniques for
the avoidance of such disturbances constitute an active current research area [29][31].
Construction of an accurate geometric model of the camera-mirror scene forms the
basis for our ultimate goal, namely the integration of the model and statistics into a
foreground-extraction method which is more reliable than previous approaches. We
present a method which integrates the estimated geometric model and the extracted
statistics to enable removal of the pixels related to reflection and cast shadow. Our

goal is not to present an all-in-one algorithm for shadow detection, but the main idea
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1s to clamp features into a probabilistic framework. During evaluation outdoor
sequences will be used, which is impaired by strong shadow and showing pedestrians.

In recent years there has been a dramatic increase in the number of video
surveillance systems in use; and these have in turn generated a large quantity of
archived video recordings, which are usually stored without any image-processing. In
most cases for such recordings one does not know the relative and global geometrical
properties of the surveillance cameras. Despite this, there is a striking lack of
publications concerning the extraction of geometric characteristics from images
contained in video recordings. We may note that this task is much simplified in the
case where some known test object is used during system calibration. In this
dissertation however a statistical framework is introduced which allows us, without
such calibration to derive the horizontal vanishing line (VL).

In videos captured by analog surveillance cameras the contrast and focus are
often badly adjusted, and thus precise measurements are not possible in individual
frames. This consideration led to our concept of summarizing the information from a
sequence of a number of frames (as many as possible) in order to achieve higher
accuracy in the averaged retrieved information. The only information that is used is
the change-mask of moving objects, or more generally the change-detection
(binarized intensity-change) mask. This is the basic information that can be extracted
from a video sequence without making any a priori assumptions about scene content.
Both the empirical and the theoretical results confirm that the method is robust and is
fairly insensitive to inaccuracy of the motion-mask. Furthermore, the method has no
requirement for any time-consuming preprocessing steps (e.g. object detection,
tracking or motion analysis). Another advantage of the method is that it is capable of
working on low frame-rate videos, since the relevant parameter for the statistical
information extraction is not the refresh rate itself, but rather the total frame-count of
the processed sequence.

We introduce a novel exploitation of the so-called co-motion statistics of a
video sequence, and demonstrate the method’s robustness for correspondence
detection. In [7], co-motion statistics were used for image-registration (homography
estimation) and the method was tested in images of outdoor scenes. In contrast to [7]

the statistics have been investigated in a model-based framework in this work. We
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have introduced a theoretical investigation of the method's robustness. Happily, the

analysis supports our empirical confidence in this statistical method.
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2.Examined geometrical models

The camera’s sensor array reflects a 2D image about the 3D real word. This
transformation 1s a projection onto the camera plane. Despite the information loss
after the 3D to 2D transformation the 2D image still contains useful description about
the scene geometry.

This chapter describes the investigated geometrical models and their properties with
the basic computational methods. We will show the most important properties of

models with the explanation of usual computation techniques.
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2.1. Plane homography

Registration between partially overlapping wide baseline views of the same scene is
an important task in a number of applications involving multi-camera systems, such
as stereovision, three-dimensional reconstruction, or object tracking/observation in
surveillance systems [7][59].

Registration between non-overlapping views is still a challenge and it is only solved
in special cases [60][61][62]. It will be shown experimentally that, in case of linear
motion, our feature detection method provide usable information for registration of
non-overlapping views. The cameras in this test are pointed in opposite directions and

they are mounted on different sides of the same wall.

2.1.1. Overlapping views

The problem can be summarized as follows: given a set of points x; in a view and a
corresponding set of points x’; in another view, we need to compute the projective
transformation (2D homography) that takes each element x; to x’; (vectors are in
homogenous form). The problem is to compute a 3x3 matrix, H (point map), such

that:

x'= Hx 2.1
This computation can be accomplished in several ways; details can be found in [24].

To solve the problem, we need at least four point-correspondences.

2.1.2. Non-overlapping views

In our surveillance system, there is a non-overlapping camera configuration where the
persons walk from the view of “entrance” camera to the view of “main hall” camera.
The motion from one view to the other is rectilinear in this configuration and the
following computation is utilizing this property.

The computation differs from the overlapping case because corresponding points
could not be detected. An alternative way to determine the matrix H is the use of line

correspondences instead of point correspondences [24]. This approach needs the

-14-
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assumption that the motion 1s along a straight line and these line fragments may be

detected in both views. Equation (2.2) formulates the problem to compute matrix H:
IL=HTI (2.2)
Where H (inverse-transpose) is the line map corresponding to the point map H and /

is a three elements vector representation of a line in 2D defined by the join of two

points. The points lie on the line /=/4 B C] when satisfy the equation:

Ax+By+C=0 (2.3)
The line sets built from two successive walk-steps (a walk cycle) which define two
points on the ground-plane, thus the parameters of the line across these points can be
calculated directly. The matrix equation with a minimal solution requires four

corresponding lines in general position.

2.2. Vanishing point in a single view

Sets of parallel lines in 3D space are projected into a 2D image obtained with a pin-
hole camera to a set of concurrent lines. The meeting point of these lines in the image
plane, 1s called a vanishing point, and may eventually belong to the line at infinity of
the image plane in the case of 3D lines parallel to the image plane.

The determination of the position of the vanishing point [23] (or focus of expansion,
FOE [24], or mirror pole [25]) in case of a skew-symmetric fundamental matrix is a
task that has rarely been the object of investigation, especially for cases where the
mput is a noisy outdoor video sequence which contains a planar reflective surface, or
of shadows cast on the ground-plane. The importance of this task lies in the fact that
knowledge of the position of the vanishing point (henceforward: VP) enables the
geometrical modeling of secondary images visible in a planar reflective surface.
These situations occur frequently in surveillance videos, and they inevitably cause
problems in further image-processing steps and reduce the processing system's
performance. Most previous publications which have focused on the use of a mirror to
accomplish the 3-D reconstruction task have done so only for an indoor scene
[23][25][26]; moreover, most of these works have relied on hand-selected point
correspondences.

A principal theoretical foundation in handling this aspect of the topic is the mirror-

stereo theorem. This posits that the view of a scene containing a mirror taken with a
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projective camera is equivalent to a combination of two views from two projective
cameras; and hence that traditional processing methods for two-view stereo images
can be applied [26]. Here the second camera is termed a virtual camera. Thus the
determination of the model i1s equivalent to defining the geometrical connection
(transformation) between the two views; which in turn is equivalent to VP estimation
in a camera-mirror case. Shafer in ref. [72] points out that an object and its cast
shadow share a similar geometrical relationship to that found in the camera-mirror
case. The approach we introduce therefore applies to the cast-shadow case as well,;
and we describe practical results using input from a real-life video test-sequence
which demonstrate the applicability of our method in this situation.

Since the determination of the model is equivalent to defining the transformation
between the original and the virtual views in camera-mirror case, this point-to-line
transformation may be determined by using corresponding point pairs in the two

VIEWS.

2.2.1. Mirror pole in camera-mirror scenes

This section introduces the mathematical description of the geometric model related
to a camera-mirror scene. The properties will however be derived using an algebraic
approach, rather than a geometric one [26]. The notations and interpretations that we
use are based on the published book of Hartley and Zisserman [24].

Figure 2.1 shows in diagrammatic form a common case of a reflective surface (e.g. a
mirror), denoted by Q. which lies in the (x-y) plane (right-handed system). C denotes
the camera center, and the image plane is denoted by IT(3-D points are mapped to
this plane via central projection). The uppercase bold letters (e.g. X) denote 3-D

point coordinates (in vector form), the elements of which will be denoted by
X =[x, xz,x3]f. The lowercase bold letters are the 2-D points (in vector form) on the

camera plane. Note that these coordinates are not homogenous. The homogenous

vectors are designated by an overbar, e.g. X, which corresponds to X according to

. - T . . . .
the transformation X > X = [xl_,xz,x3,1] , While the reverse transformation is given

by X o X=[5/%,.% /.5 /%] .
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e

Figure 2.1: Simple model for reflective surface: C = [c“ €y, ]T is the camera center and IT is the

plane for central projection (image plane). An arbitrary 3-D point X has a virtual point pair
because of the mirror plane (Q), and termed by X', likewise C’'. Consistently, the 2-D points in
the image are x, X' and c¢'.

Without loss of generality, in the following relationships we assume that the original
points lie on the positive side of the z axis, thus the third coordinate is always positive

for all original pomts (e.g. ¢; >0). In the diagram the two angles o and /g are
included angles of 3-D vectors, defined by a = CC'«CX' and b= CC'«CX.
In our model the camera is a general projective camera [24]. The matrix P denotes the

camera which maps world points x to image points x according to:

x=PX (2.4)
Note that the camera center is the 1-dimensional right null-space C of P:

PC=0 (2.5)

Furthermore, we introduce the notation that the columns of P are p, :

Pu P P Pu pf
P=|py Py Py DPul|=|P; (2.6)

T

Py Ppn Pz Pu Ps

The effect of mirror QQ may be described by the following coordinate transformation:

X' = MX 2.7)

where M is a 3x3 matrix or a 4x4 matrix in case of homogenous coordinates:

-17-
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10 0 0
1 0 0
- o1 0 o0
M={0 1 0 |andM= (2.8)
00 -10
00 -1
00 0 1

This transformation is the reflection in the (x-y) plane which operates only on the z

coordinate. Thus, the image point of the virtual point X' generated by the reflection is

%' =PX' =PMX (2.9)
We start the algebraic derivation of the model similar fashion to the work of Xu and
Zhang [32]. The ray back-projected from x by P is obtained by solving (2.4). The
solution is given as a 3-D line in parametric form (the ray is parametrized by the

scalar A):
X(A)=Px+AC (2.10)

where P’ is the pseudo inverse of P (i.e. PP" =1). The epipolar line is the line
joining the projections of two reflected points: C' and X'. These projected points are
expressed by using (2.7) and the equation of the epipolar line is determined by the

cross product:

1= (PMC)x(PMP*X) = FX (2.11)
where F is the fundamental matrix. This formula defines a point-line map, thus the F
may be expressed by

F =(PMC)x(PMP*)=[¥] PMP* (2.12)

where the notion [a])< in general form is defined by [24] as follows:

0 -a a,
[a] =| &z 0 —q (2.13)
—a a 0

Thus, the cross product is related to skew-symmetric matrices according to the

equivalence [24]:

axb=[a] b (2.14)
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Model properties

In the next subsections two main properties of camera-mirror scene geometry will be
discussed. These properties play an important role in the subsequent sections: model
parameter estimation and foreground classification.

Property 1. The fundamental matrix corresponding to the original image and the

virtual image in a camera-mirror scene is of the form F :[c’]x, where ¢'is the

vanishing point (VP). Consequently, F has 2 degrees of freedom and is identified with

the VP.

Proof. The key step is the expression of x" in terms of x based on (2.4) and (2.9) thus:
X' = PMX = PX-2p,x, (2.15)

By substituting this formula into (2.12) and utilizing the definition of the camera center

(2.5), F may be written as

F =(PNC)x(PMP")=(PC—2p,c,)x(PP* ~2p.pi") = ~2¢,p, (I ~2p,pi")

(2.16)
The next step employs the following relationship:
—2¢;p, % (2psp3” ) = —4epy x psp;” = —4c;0p37 =0 (2.17)
Substituting this into (2.16) the final formula for F emerges as:
F =2¢,[ps], =[], (2.18)

From this formula we see that F is skew-symmetric and is formed from the VP. O
Note that the layout of F is similar to (2.13):

0 -1 g
F=| 1 0 —q (2.19)
- cd 0

2 1

In case of skew symmetric matrix F the fundamental constraint may be transformed
mnto the collinearity constraint: namely that the points x, x" and ¢’ lie on a common

line. This follows directly from the rewritten form of the fundamental constraint:
X FX, =X/ (E’xiz):<il,é'><i2):0 (2.20)
where X, and X, are an arbitrary corresponding point pair (x and () denote the

cross product and the dot product, respectively.). In this formula the homogenous
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forms of the vectors are used. Because of the fact that the cross product of the vectors
expresses the equation of a straight line through these two points, and furthermore
that the dot product is a simple substitution into this line equation, the whole
expression becomes zero when the third point lies on the line defined by the two
points.

In summary, the first property states that the geometric model of a camera-mirror
scene can be defined with a 2-D point, namely with the vanishing point which is the
parameter of the model.

Property 2. From a given corresponding point pair, the nearest point to the VP is the
reflection of the second point.

Proof. This statement may seem obvious, but nevertheless we shall give a short proof.

The statement 1s equivalent to
e —x1> e -] @2
where ||x|| denotes the Euclidian length of vector x. The simplest form can be derived

based on the angles indicated in Figure 2.1: a < f. It can be justified by using some

elementary linear algebra. O
The mmportance of this property lies in the fact that knowledge of the position of the
VP makes it possible to decide whether a given point is truly the reflection of another

point, 1.e. whether they form a corresponding point pair.

2.2.2. Light direction in case of cast shadow

For most outdoor situations, the direction of daylight shadows is controlled by the
position of sun. Because the rays of sunlight are essentially parallel, they converge in

an infinite vanishing point.
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Solar point

Object

Shadow Sh
Light vanishing poinN v

Figure 2.2: Geometry of shadow: the three points; object (original), shadow and vanishing point

are collinear. Because in outdoor cases the distance of the light source from the object casting the

shadow is near infinity, the knowledge of a common direction (V) is sufficient instead of position
of vanishing point.

Because of the far vanishing point the geometrical model may be simplified; the
knowledge of a direction (2D wvector) 1s enough for the estimation of shadow region.
Details about the geometry can be found in [72]. In our previous work we have
described a method to compute the vanishing point in case of camera-mirror setting
using motion statistics [1].

The importance of knowledge of the light vanishing point lies in the fact that it simply
enables the integration of geometrical constraint into the shadow detection process.
Obviously, the shadow point must lie on the line going through the original point with
direction v .

Note that, v has unit length: ||17*' || = 1. Unfortunately, this geometrical model is not

enough for the exact determination of the corresponding shadow point, because it is a
point-to-line transformation instead of a point-to-point analogy. Accordingly, we will
use this extra knowledge together with other features (colour, motion etc.) to achieve

a better classification results.
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2.3. Vanishing line parametrization

Parallel planes in a 3-dimensional space intersect a plane at infinity in a common line,
and the image of this line is the horizontal vanishing line, or horizon. Geometrically
the vanishing line is constructed, by intersecting the image with a plane parallel to the
scene plane through the camera caneter. The vanishing line (VL) depends only on the
orientation of the camera. The following three examples demonstrate the usefulness
of horizon [24]:

e The plane’s orientation relative to the camera may be determined from its

vanishing line.
e The plane may be metrically rectified given only its vanishing line.
e The angle between two scene planes can be determined from their vanishing

lines.

Thus, the vanishing line is useful for camera orientation and extrinsic parameter
determination [45]. A common way to determine the vanishing line of a scene plane is
first to determine the vanishing points for two sets of lines parallel to the plane, and
then to construct the line through the two vanishing line.

For still images [46], it can be successfully determined only when there are detectable
parallel lines; and in image-sequences, only when certain assumptions are satisfied
which enable us to detect and track known objects [45]. In summary, most of the
published still-image based methods are unsuitable for processing the images of a
typical surveillance scene. Furthermore, in typical surveillance scenes of public places
the assumptions on which the video-based methods are posited are not satisfied.

In summary, the determination of the vanishing line is possible with knowledge of at
least two vanishing points (these lie in the VL); thus three corresponding line
segments (e.g. derived from the height of a given person in the image), or else known

parallel lines in the same plane, are necessary.
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3.Extraction of motion characteristics

The use of still images for the extraction of correspondences is limited. This is
because the additional information about the scene provided by image sequences is
lost. Hereby the implementation of classification and feature extraction tasks are more
complicated. Then again the scene dynamics provide useful information without using
appearance based image analysis or matching.

In this chapter we show that, the human motion and the co-motion statistics can be
extracted robustly from video sequences. This section presents a walk detection
method using non-linear classification and a model based approach for the processing
of motion statistics. These methods extract the basic spatial (2D) information for the

introduced geometrical model computation.
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3.1. Detection of gait characteristics in videos

The main aim of the section is to present a method for the detection of human walking
in videos and for the extraction of gait features. Our feature extraction method, which
is based on method proposed in [2], utilizes extended third-level symmetries of the
edge map to detect and track structural changes of moving objects in video sequences.
In [2] we introduced a novel walk detection algorithm in stable experimental
conditions that is able to detect pedestrians by recognizing their characteristic
symmetry patterns, using Kernel Fisher Discriminant Analysis (KFDA technique).
This method is based on detecting the moving leg pairs and developing the symmetry
based approach in [2] for more robust cases: independence of noise and the varying
frame rate [58]. We apply an invariant and effective data representation in the
Eigenwalk space, based on spline interpolation and a dimension-reduction technique.
Here we present a more established pattern classification method based on the
continuous interpolation of the symmetry patterns. A more robust classification is
carried out via Support Vector Machine (SVM) with Gaussian kernel function.

For testing the efficiency and the robustness of the above feature extraction method it
has been applied for camera registration. The features we used (concurrent walk-
steps, and leading-leg identity) seem to be beneficial to provide data (matching
points) for the estimation of transformation between two different camera views of
the same scene. The accuracy of the registration results proves the usefulness of

detected features.

The basis of our algorithms is the ability to detect human movements. The main steps
of the algorithm are

¢ Background subtraction, change-detection

e Edgemap detection and symmetry computation (first level)

e Extension of symmetry computation up to three levels (L3S)

e Temporal tracking using reconstructed masks
Samples of the image processing steps are shown in Figure 3.1, which illustrates the
results of the algorithmic procedures up to the stage of symmetry pattern extraction

from the reconstructed masks.
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The assumptions we use are
e The camera is in arbitrary static position.
e The image motion can be from more than one person.
e The image capture rate 1s at least 10fps.
e The height of each “target” person is at least 100 pixels.

e Leg-opening is visible in most cases.
3.1.1. Walk detection in EigenWalk space

Svmmetry pattern extraction

Symmetry is a basic geometric attribute, and most objects have a characteristic
symmetry-map. This unique and invariant property leads to the applicability of
symmetries in our approach for image-processing.

The medial axis is formally defined as the closure of the locus of centers of maximal
spheres that are at least tangent to the surface at two places. The symmetry set is a
related representation, which makes explicit more of the symmetries of the shape by
removing the maximality condition [80]. The Generalized Symmetry Operator [90]
applies distance weight function (affected by spacing), a phase weight function
(affected by edge direction), and a logarithmic mapping of points’ intensity. A large
variety of numerical techniques have been developed to extract medial axis from a 2D
shape [80]; thinning methods, which iteratively peel off the surface in the discrete
domain while maintaining object topology. The skeleton is a linear pattern
representation that is generally recognized as a good shape descriptor. An effective
implemented skeleton algorithm by using binary pyramid is called multiscale skeleton
[78]. These techniques require a fully segmented, and connected object. The
availability of efficient distance transform algorithms has led to ridge-following
algorithms that view the medial axis as ridges of the distance map. Another class of
methods casts the surface as the level set of an embedded object and finds the weak
solutions of a PDE which models the wave propagation process whose singularities

yield the medial axis.
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Figure 3.1: Overview of feature extraction steps: a) Image from input sequence. b) Result of
change-detection. c) Filtered Canny edge map. d) First level symmetries. e) Second level

symmetries. f) Third-level symmetries (L.3S). g) Reconstructed masks from symmetries. h)
Tracking, showing coherent masks in the sequence (of 7 frames). i) Symmetry pattern (of 25
frames).
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Background subtraction

An elementary method to reduce the computation cost of methods using motion
information derived from static-position cameras i1s background subtraction (or
change-detection), that is, remove all but what are important artifacts, see Figure
3.1(b). Implementing a more sophisticated method for background subtraction is a
challenging task [31] [30]. We have therefore implemented a mixed solution; the
algorithm can be selected from one of two methods: either a simple running as default
(as used in Figure 3.1(b)): or a Gaussian-mixture model [30] in case of noisy outdoor
scenes. In our trials, most of the problems were caused by shadows. For shadow
removal we used the method of [31], which is a modification of the well known

SAKBOT algorithm [63].

Horizontal symmetry extraction

Our symmetry detection method [2] is based on the use of morphological operators to
simulate spreading waves from the edges. In that pedestrian detection approach, only
horizontal morphological operators are used to extract the symmetries.

The mathematical definition of this kind of symmetry extraction is similar to skeleton
algorithm [64] with distance definition of taking into account only the x (horizontal)
coordinates instead of Euclidean distance. Thus, it is possible to recover the original
edge map given its symmetry map and the distance of each symmetry point to its edge
point [64].

As illustrated in Figure 3.1, the symmetry concept can be extended by iterative
operations. The symmetry of the Level 1 symmetry map (Figure 3.1(d)) is the Level 2
symmetry (Figure 3.1(e)); and the symmetry of the Level 2 map is the Level 3
symmetry (L3S), as shown in Figure 3.1(f).

The symmetry axis describes well global and local structural properties of an object
(even non-rigid). Higher order symmetries are used to describe local structure
reflecting the overall complexity of an object. L3S is a representative feature of
objects having two coherent objects with two parallel edges. Typically, humans’ legs
are such objects. Thus, L3S can be used to indicate them.

Our symmetry-extraction method is less sensitive to edge fragmentation than the
original “skeleton” method is. Nevertheless, the L3Ss contain an accumulation of

fragments from the preceding symmetry levels. To reduce this error we use vertical
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morphological closing operators at each level of processing. In addition, it is an
important factor when the objects are small and near to one another on the image. The
vertically-oriented kernels help to avoid possible confusion with nearby neighbouring
symmetries. In contrast to the horizontal method the circle-based spreading produces
several small and overhanging axes which lead to unusable higher level symmetries

as 1llustrated in Figure 3.2.
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Figure 3.2: The Level 1 and Level 2 symmetry maps derived using 2D wave spreading (not
optimal circle).

Figure 3.3 shows the steps of the algorithm where /nput means the binary input image
(Canny edge map), Symmetry means a binary image with the detected symmetries,
SizeY(I) and SizeX{(I) mean the size of the given image / and /(x,y) means the pixel of

image 7 in X column and y row positions.

FOR y=1 TO SizeY (Input) {
PreviousX=-1;
FOR x=1 TO SizeX(Input) {
if (Input(x,y)>0) {
if (PreviousX<>-1) {
Symmetry((x+PreviousX)/2, y)=1;
J

PreviousX=x;

}

Figure 3.3: The simplified symmetry extraction algorithm on binary images

This effective algorithm scans along the lines in the edge map and places a pixel to
the symmetry map between two edge pixels. It is able to calculate one iteration on the

symmetry levels so it should run three times as the resulting symmetry map contains
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the L3S. With the implemented algorithm we achieved a processing speed of 80
frame/sec at 320x240 resolution on a 2.4GHz Pentium CPU.

Temporal tracking

In general, the image may contain a number of symmetry-samples, which have arisen
from errors in change-detection or from the complexity of the background: for
examples, see Figure 3.1(f). However, even the existence of perfect symmetries in a
single static image does not necessarily provide usable information about the image-
content; for this, we track the changes of the symmetry samples by using temporal
comparisons. We have implemented an effective tracking method using masks around
the symmetries. The algorithm generates this mask around the L.3S samples from their
radii; such masks can be seen in Figure 3.1(g). This generation procedure is similar to
reconstruction process in skeletonization [64].

The first L3S appears when the legs are opening and the last is detected just before
the legs are closed; so a symmetry-pattern of a walking person’s step corresponds to
the movement of the legs from opening to closing. The detected L3S symmetries are
filtered by their size, only symmetries 3 pixels long or longer are processed. In the
following descriptions, one cycle denotes two steps. During tracking, the algorithm
calculates the overlapping areas between symmetry masks in successive frames, and
then constructs the symmetry patterns of the largest overlapping symmetries frame by
frame as the series of symmetry samples. An overlapping mask sequence can be seen
in Figure 3.1(h), and the symmetry pattern in Figure 3.1(1). The advantage of this
simple algorithm is that it 1s tracking the complete leg movement and the associated
structural changes, instead of just tracking selected feature points on the image by
means of some optical correlation method. This inherent feature of the method
increases the stability and the robustness of the results in cases where the edges of the
target are partially “damaged” in some frames.

In our sample videos, we found that the most critical factor is the image refresh rate:

we found that the rate of at least 10 frames/second is required.

Detection of walk patterns

The extended symmetry feature gives a specific pattern when it is tracked through the

frames of 1-2 walking steps. However, it differs from other methods dealing with
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periodicity analysis [51][82] that we do not consider any specific structure in time or
in space. Moreover, we can definitely differentiate between the symmetry pattern of

walking legs and that of other parts, e.g. arms and head.

Representation and re-sampling

The extracted symmetry patterns are represented with the upper and lower end points
(2 each) of the L3S in each frame, see Figure 3.4. Thus there are four 3D (space and
time) coordinates, which correspond approximately to the “end-points” of the two

legs.

Figure 3.4: The end points used to define symmetries for the re-sampling and classification tasks.

Temporally these patterns depend both on the frame rate and the walking speed, so a
pattern usually contains data from 5-30 frames, see Figure 3.5. All the symmetries
composed of four or fewer frames are filtered out and not classified, because they are
usually produced by noisy backgrounds. Before any further analysis, the data is
normalized with respect to time for presenting an invariant description of the motion;
we perform this task with Bezier spline interpolation [65]. This technique has the
advantage that it performs two tasks: (1) data is re-sampled in a defined time interval
with a fixed-point count; (i1) noise-filtering is performed on the trajectories, which
results in a smoother symmetry pattern. The noise-cleaning is critical because in real
scenes these patterns are often damaged, see Figure 3.5. The Bezier spline (B-B
spline) [65] 1s a good choice because the effect of base points is global; so the
presence of some damaged points, coming from erroneous symmetry extraction and

unstable video frame rate, does not cause significant change in the whole trajectory.
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Figure 3.5: Original symmetry pattern and the trajectories of 9 frames. The four curves
(trajectories) are the upper and lower — both left and right - end points of the symmetry sample
expanded with its radius. The input contains severely corrupted data.

This time-extended data representation permits the integrated analysis of data
obtained from several cameras where the frame rates are different and unstable (e.g.
network cameras); the extracted features must be resampled with a continuous time-
division. The result of Bezier spline interpolation of data can be seen in Figure 3.6.
The current implementation generates 100 interpolated points of both coordinates of

every end point. These points are termed with the following vectors (each has

zpling

Figure 3.6: Interpolated trajectories of 100 points by using B-B splines (a) and B-splines (c) and
the numerically integrated surface (b) of the pattern defined by eq. (3.3). (Input data is the same
as for Figure 3.5.) The surface is formed from the interpolated upper and lower end points of
symmetries which represents the height of the visible area of leg-opening.

A popular curve interpolation method is that known as NURBS (Non Rational B-
Spline). This is an extended B-spline method, and the base points have local effect.
However, for our application it has drawbacks: its computation cost is higher than for
the Bezier-spline method, and the results may be less good. The results of an 8th-
order B-spline processing, on the same input data as before, are shown in Figure
3.6(c). Note that the damaged data gives a less smooth output than the previous
method.
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Dimension reduction

The interpolated 3D (XYT) points are rearranged into a row-vector with dimension of

800 (because it is the concatenation of the eight vectors of coordinates):

X=[X,515. 5.5, 55,5, 5,1 (3.1)
The linearity of the time coordinate makes a smooth time-division (time is linearly
related to the successive samples thanks to the re-sampling). Consequently, we can
omit this coordinate; it has no discriminative information content. After we center the
patterns for both the x and y, both coordinates are normalized using a constant chosen
such that max(y)= 1 and min(y)=—1; we do this because we have found that the y-size
of the patterns varies less than does the x-size. We do not normalize with individual
coefficients for x and y, since in that case the information content of the ratio of x and
y values would be lost.
A well-known technique for dimension reduction is the PCA method [66]. To find the
principal components of the distribution of the feature space we first obtain the mean
and the covariance matrix (X) of the data set. Then we can compute N<rank(X)
nonzero eigenvalues and the associated eigenvectors of X based on SVD. The
eigenvectors associated with a small number of the largest eigenvalues correspond to
large changes in training patterns; thus a transformed matrix can be constructed from
eigenvectors to project the original data into a parametric eigenspace with a
drastically reduced number of dimensions. We considered the space spanned by the 3
most significant eigenvectors of the covariance matrix of the interpolated data set that
account for 93% of the variation in the input space: we call this the Eigenwalk space.

The associated eigenvectors form the eigenspace transformation matrix.

0.08 01

0.1

0.06
0.04¢

0.02¢

260 460 ﬁlI]l] 800 0 200 400 600 800 o 200 400 600 800
Figure 3.7: The first three eigenvectors obtained by PCA training.

From Figure 3.7 we can see that these eigen-walks are periodic, which reveals the
construction method of raw data. Furthermore we can determine that the dominant

information is the horizontal (x) directional motion of lower end points (first eigen-
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vector) and walk has a characteristic symmetry on the vertical (y) directional motion

of end points (second eigen-vector).
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Figure 3.8: “Walk” and “non-walk” patterns in the eigenspace. Where V,,V, and V, are first

three the eigen-vectors.

Figure 3.8 demonstrates the results using the test-set of labeled “walk™ and “non-
walk” symmetry patterns. This drastically reduced number of dimensions greatly
assists in increasing the classification speed, which is an important factor in real-time

applications.

Non-linear classification of symmetry patterns

Level 3 symmetries can also appear in other parts of the image, not only between the
legs: and the tracking method also collects all of these related symmetries, see Figure
3.1(f). Walk patterns lie on a non-linearly shaped manifold in the eigenspace, see
Figure 3.8. The classification process is carried out via non-linear method, namely
Support Vector Machine (SVM) [67] with radial basis kernel function:

[F=F
k(¥.5)=e (3.2)

The training data set, assembled from indoor video sequences, contained 750 “walk”
and 14200 “non-walk™ patterns in the eigenspace. The parameter (c) was determined
in the interval 0.1-6.0; from this an optimal value 1s 0.4 (see Figure 3.9) where the
valid classification rate 1s 93.8% on the training set with 217 support vectors. Our
main goal was to reliably detect human movements, but at the same time with a false-

positive (5.2%) detection rate as small as possible (the false-negative rate was 1.0%).
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Figure 3.9: Relation between the kernel parameter and the classification error rate for the
Gaussian kernel.

Figure 3.10 shows a typical surveillance video shot, demonstrating the detected L3S
patterns containing noises and real walking patterns. For similar image sequences the
number of detected L.3Ss is about 10-40, from which real walking patterns are about

1-5 with the above detection ratio.
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Figure 3.10: Representative indoor shot: a) L3S, b) output of tracking c) detected walk patterns.
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3.1.2. Identification of leading leg

According to our terminology, the leading leg is the “standing” leg, which at that
instant carries the person’s weight (see Figure 3.11(b) and (c¢)). In this section we
present a method to determine, from one detected walk cycle (two consecutive steps),
whether the leading leg is the right or the left leg by estimating 2D direction of walk
and the “ratio” of consecutive walk patterns.

The 2D motion vector on the image-plane, and the walker’s gait-period, can be
extracted directly from the detected patterns: we estimate the motion vector by fitting
a regression line to the last half-trajectory of the lower two points of the pattern.

The non-rigid human body during a walking cycle has a useful property, which assists
us in recognizing the leading leg. Depending on the 3D walk-direction, and on which
1s currently the leading leg, one leg or the other practically obscures the visible area

between the legs (Figure 3.11(b) and (¢)).

Figure 3.11: a) An image showing the location of the derived symmetry pattern (marked with
white border; “x” marks a feature-point. b), c¢) Illustrations of our definition of “leading leg”; the
“standing” or leading leg is the right leg in b), and the left leg in c) (legs highlighted manually).
d), e) The detected patterns for the same steps as shown in b) and c); the 2D direction is bottom-
left to upper-right (case 2 in Table 3-I).

During one cycle, the left leg and right leg in turn are in the leading position. The
above-described method can detect one step. To connect two successive steps as one
walk-cycle, we calculate the 2D displacement vector of a detected step, and then
search for another step (walk pattern) in the estimated 2D position and at a time-point
after a forecasted walk-period.

During a walk-cycle (two consecutive steps, see Figure 3.11(d) and (e)) the ratio of
the visible leg-opening areas, together with the 2D direction on the image-plane, can
be used to identify which is the leading leg. The visible leg-opening area is
approximated by the surface defined by symmetries between the legs from

consecutive frames. To measure the area between the legs, we used a numerical
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integral of the surface defined by the interpolated patterns (3.3) (see Figure 3.6(b)).
The area of surface was approximated by dividing it into triangles and summing areas

of triangles:

area =
i=1

(3.3)

['II(FU ()= 7 @)= (7 (7 +1) =7 () + ]
."(FU (i + 1)_ ‘P_:L (i))x (FL (f + 1)_ FL (I)]|

where n=100, the number of interpolated points and, r; and r; are the upper and lower

midpoints of the interpolated patterns (see Figure 3.4):

- (I_):{xl(i)+x3(i)__vl(r')+y3(i)}a(I_):{xz(r’)+x4(i);y2(f)+}’4(r’)] (3.4)

u

! 2 ) 2 2 2
where the running index 7 1s along the trajectories of the symmetry pattern.
Table 3-I summarizes the relationship between the leading leg and the ratio of
surfaces from two successive patterns. A limitation of the described method is that it
cannot identify the leading leg when the motion is parallel to the camera plane, since

in such cases the areas are nearly equal (cases 3, 4 and 9, 10 in Table 3-I).

TABLE 3-I: SURFACE DEPENDENCIES ON 2D WALK-DIRECTION AND LEADING LEG.

Case 2D Dir Leading Leg Ratio

r
TS
SN B
AN
?0 - i:_:%tht -
A 2

3.1.3. Experimental results

Careful implementation of the method with the new filtering and detection step
resulted in 10-15 msec processing speed for a symmetry pattern, on a state of the art
desktop PC. The number of extracted symmetries affects the speed of filtering
damaged points (interpolation). Hence, the processing speed depends on cameras

frame rate.
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During the test we used the frame sequences as captured, recognizing walking
patterns real-time. We have tested our methods using test-inputs from both indoor and
outdoor videos, where the following factors were varied: camera viewpoint, number
of “targets”, and image-capture rate. These videos contained 420 steps and 150 walk-
cycles in the indoor scenes, and 350 steps and 110 cycles in outdoor environments.
Figure 3.12 and Figure 3.13 show sample results of symmetry pattern extraction in
various videos. As it can be seen from results the algorithm performs well in case of
very different lighting conditions, image quality, background and video frame rate
(10, 15 and 25 FPS).

Figure 3.12: Detection of symmetry patterns in various outdoor videos.
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Figure 3.13: Detection of symmetry patterns in various indoor videos.
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Figure 3.14: Detection of symmetry pattern in case of poor silhouette extraction (reflection on
ground-plane causes error).

-38-



DOI:10.15774/PPKE.ITK.2024.006

Figure 3.15: Typical problematic cases illustrate the limitations of symmetry extraction and
tracking methods: back-view, long coat, parallel overlapping and hidden legs.

There are several obvious limitations of the tracking algorithm. It is unable to detect
direct front-view walks. Also, when the leading leg covers the rear leg, the
symmetries do not appear. In Figure 3.15, we summarized some practical limitations
of the symmetry tracking method.

We obtained a detection rate of 78.1% for outdoor and 89.5% for indoor videos, in
cases where the leg motion (and the leg opening) was visible (detailed results in Table

3-10).

TABLE 3-lI: EXPERIMENTAL RESULTS ON DETECTION OF WALK PATTERN

Detectio  False- False-
Method Data set n Rate Positive  Negative
KFDA [8] Training 89.2% 8.2% 2.6%
(Gaussian kernel)
SVM Training 93.8% 5.2% 1%
(Gaussian kernel)
KFDA [8] Indoor test 75.7% 15.3% 9%
SVM Indoor test 89.5% 8.9% 1.6%
SVM Outdoor test  78.1% 14.1% 7.8%
LDA Test 66.4% 22.8% 10.8%

The method could not detect “near-frontal” human movements (motion directly
toward camera, or nearly so), nor steps in two special cases where the walker is
approaching “close” (Table 3-I, 5-6 and 11-12 cases), viz.: (1) top left to bottom right,
and right leg leading; or (i1) top right to bottom left, and left leg leading. The leading
leg identification worked well, with 99% correct identification in cases where the
walk-cycle was detected correctly. This walk-detection procedure has been

implemented in the camera-system of university campus.
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3.2. Statistical evaluation of video sequences

As with most "normal" multi-camera configurations, in the camera-mirror setting the
transformation may be computed by using corresponding point pairs. A corresponding
point pair may be defined as the knowledge of the position both of the original point,
and of its transformation (in our case, its reflection). For a typical outdoor image,
small objects (such as people) visible in the field of view of the virtual camera have
textures which are low-detailed (or are missing texture altogether, for shadows); this
1s a principal reason why the extraction of correspondences is such a challenging task
in this situation. In fact, for a static image the confident identification of the image of
the virtual camera is impossible, without knowledge of the model. Fortunately
however, the use of video sequences gives the possibility of the extraction of some
additional information based on motion. The section describes a feasible method for
correspondence extraction based on motion information determined from image-

sequences.

The assumptions we use are:

e The camera is static in position

e The mirror is planar

e There is only one mirror in the image (and in case of shadows, only one, flat,
ground-plane)

e There is only one point light source; the sun

¢ The imaging surface of the camera is not parallel to the mirror surface

e There 1s sufficient motion in the video sequence to generate reliable motion-
statistics

¢ Nonlinear lens distortions can be neglected.

3.2.1. Test sequences

Video data for our tests was obtained in various environments, both indoor and
outdoor. No video filtering for image enhancement was used. The capture rate was
20 fps for all the sequences. The indoor sequences were captured using digital
cameras while analog surveillance camera was used for the outdoor videos. The test

data is derived from four video sequences (see Figure 3.16). The “Ants” and “Mice”
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sequences are recordings of indoor experimental situations containing a large
reflective surface; the first contains numerous point-like objects (ants), while in the
second there are relatively large moving objects (two mice). The other two test inputs,
the “Shop” and the “Shadow” videos, are typical outdoor surveillance sequences. The
“Shop” video presents a challenging situation: only a small part of the reflective
surface is visible; and the mirror is positioned far from the motion paths, so that the
VP i1s nearly at infinity. The results of cast-shadow geometrical modeling will be
demonstrated using the “Shadow” sequence. Table 3-III summarizes the main

properties of these video sequences.

Figure 3.16: Frames of the test videos: “Ants”, “Mice”, “Shop” and “Shadow” videos

TABLE 3-1ll: TEST SEQUENCES

Length  Resolution
(frames) (pixel)

Ants 140249 640x480

Name Description

Contains point-like moving objects, with a
plane mirror

Contains relatively large moving objects, with
a plane mirror.

Shop 200476 320x240 ?llslll})fl : small part of the reflective surface is

Shadow 70185 320x240 Cast shadow is visible on the groundplane.

Mice 25564 640x480
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3.2.2. Introducing co-motion statistics

Our correspondence-detection method is based on processing of the so-called co-
motion statistics [7]. These statistics have been successfully used for image
registration in case of wide-baseline camera pairs.

Briefly, the co-motion statistics of a point is a descriptor of spatial correlations to the
other image-points. Its algorithmic implementation is executed with the temporal
integration of motion masks; which leads to an approximation of the co-motion
statistics. Here the statistics are collected from only one camera (in contrast to the
situation in [7]), which gives us immediate accessibility to the local co-motion

statistics. These statistics come from the temporal summation of the binarized motion

masks; these are m, (x) where £ 1s the frame position and the 2-D vector x is the point

in the image. Thus:

1, where change is detected in point x

m, (X) :{ (3.9)

0, otherwise

We introduce the notation of the true foreground mask, (this is available only
theoretically, because no algorithm is able to detect the foreground without errors in

every situation):

1, where object i1s moving in point x
m, ( ):{’ ! gip (3.6)

0, otherwise
For the sake of later simplification we also introduce the notation S, the set of pixels

in the image: S :{X|XER2 and x 1s in the image}. The global motion statistics,

which is the motion intensity, is formalized with the relationship:

S m, (x)

(Because of the discrete time steps, Ar denotes the frame count of the processed
sequence.) The global motion statistics of sample videos are demonstrated in Figure

3.17.
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Figure 3.17: Global motion statistics: “Ants”, “Mice” and “Shop”. The lighter is the higher
motion frequency.

The concurrent-motion probability of an arbitrary image-point u with another image-

point x may be defined with the following conditional-probability formula:

> my (x)m, (u)
f(u,x)=P, (u]x)=- S ) (3.8)

In the implementation the above-defined f () after normalization (i.e.

Z f(u, x) =1) as a 2-D discrete PDF (probability distribution function) is assigned to

ues
every pixel in the image. It follows that there will be local maxima (peaks) in the
probability-maps in positions where motion was often detected concurrently. Sample

statistics can be seen in Figure 3.18.

Figure 3.18: Samples from co-motion statistics, for “Ants™, “Mice”, and “Shop™ sequences.

Because of the circumstance that in the currently implemented algorithm the co-
motion statistics are attached to every point in the image as a 2-D array, the resolution
of images must be reduced in order to restrict the required memory usage to a
practical figure. For the original image resolution (e.g. 640 by 480 pixels) the memory
requirement would be unmanageably large (hundreds of Gigabytes); consequently, a
reduced 80x60 pixels image resolution will be used. To demonstrate that this scaling
does not cause problems during model estimation we shall discuss the effect of the
scale factor on the accuracy of the experimental results. As we shall see, thanks to the

model-based processing of statistics a sub-pixel accuracy can be achieved using the
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automatically extracted correspondences; accuracy which is in fact commeasurable
with that of the manual results derived employing the original full resolution.

We proposed a method in [40] which overcomes the limitations of numerical
computation of statistics running on the full-sized image in a specific problem. That
non-model based method is capable to detect the common field-of-view between

cameras.

3.2.3. Modell-based processing of motion statistics

The basic assumption upon which the use of statistics for corresponding point
extraction 1s founded is that the statistics in question has to contain some information
about the position of the concurrent point. This information i1s indeed available,
because the series of detected temporal concurrent motions causes a peak in the 2-D
distribution defined by (3.8). These distributions are normal distributions because the
central limit theorem says that the cumulative distribution function of independent
random variables (each have an arbitrary probability distribution with mean and finite
variance) approaches a normal distribution [39]. In case of a visible reflective surface
two peaks are probable in the co-motion statistics, thus the PDF is modeled with a

simple Gaussian mixture model (GMM) with two components:

}_::o (u |X) ~ w;:garN (u-’ p’:ear ? Eiear ) + 1V:OHN (“9 I‘l':aﬁ ? E:OH )
=P (u |X) +P

near coll

(3.9)

(u |x), and w +w =1

coll —

where the 2-D normal distribution is defined by:

mexp(—%(x—p)fl(x—p)) (3.10)

The model parameters can be established by using the simple EM algorithm [33] or

N(x,p.X)=

one of its variants [34]. The first component in formula (3.9), with weight w .
applies to points in the near vicinity of the investigated point X, termed by P, () . The
second component (with weight w’ ) describes the far concurrent movements (e.g. in

the reflection), this component 1s denoted by P, () . It can be expressed geometrically

with

n.,,— x" >, — x". Sample co-motion statistics can be found in Figure 3.19,

where the estimated models are also displayed. Note that this model estimation is not
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“mtelligent”; a GMM 1s aligned to every PDF where two non-zero peaks are available.
This 1s why the initial set has a large number of correspondences, which include false

point pairs.

Figure 3.19: A co-motion statistics of the “Mice” and “Shop” videos is displayed as a 3-D surface
in a) and c), while their GMM estimations are in b) and d). The higher peak corresponds to
P..() and the lower one to P () .

3.2.4. Robustness analysis

The main advantage of the above described detection method based on
correspondences in co-motion statistics 1s that there i1s no need for good image
quality, nor for an accurate motion detection method (which is usually a time
consuming task). Nonetheless an important question is the method's robustness, i.e.
the effect of noise on the results obtained. The robustness can be measured by the
difference between the co-motion probabilities of the real concurrent point and of any
other arbitrary points. This is an acceptable measure because the GMM can be

estimated accurately only when the Gaussians are the most significant peaks on the
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PDF. In this section after some simplification an expression will be given which is
based on elementary probability theories.

Now we investigate a set of different 2-D points a,r and u where a is a point
corresponding to a moving object, r is its reflection point (we assume that it is

visible) and w 1s an arbitrary point in the i1mage. We can define the two independent

events: A_ (there is real motion at the given point) and B_ (the motion detector fails),

and furthermore we introduce the notations of probabilities f* and 1, respectively:

fZ=P,(m,(x)=1)=P,(4)=qand fJ =B, (m,(x) = m,(x))=PB,(B,)=p (3.11)
The parameters are the rea/ motion intensity ¢ and the error rate p (false positive and

false negative detection rates of the algorithm), respectively. The probability of

motion detected at pixel a in time 7 is:

P, (m,(a)=1)=P(4,B,+4,B,)= 1+ f1=(1-p)g+(1-q)p  (3.12)
Where the overbar indicates the reverse events. This probability reflects the defected
motion imtensity. The effect of the murror is summarized below. The conditional
probability P, (AIl |Aﬂ) (probability of the concurrent motion of original point and

reflection, see (3.8)) is equivalent to 1, because we assume that the visible point (a)

has reflection point (r ) which is also visible. Thus,

B (44)=1=q (3.13)

Similarly, when there is no object in 7 (the object is not visible),

B (44,)=f; =1-¢ (3.14)
Note that these formulas do not take account of the effect of noise. Since we assumed

that the reflection exists in every case where the object is visible, then:

P,(4 Aa):M:O::»Pm(ZI.Aa)zo (3.15)

E,(4)

Thus the joint probability (the detector works correctly, and there is motion at both

points) may be written in the form:

P(4,B,4B,)=P(4,4)P(B,)P(B,)= ;71 7r =q(1-p) (3.16)
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Furthermore, for the case where there is motion in neither of the two points, and the

detector fails at both points, we have:

P(4,B 4B, )=P(4,4)P(B,)P(B,)=F 1 fr =(1-q) P> (3.17)
Because of (3.15), it was assumed that the reflection of an original point could not be
hidden

P(4,B,4.B,)=0 (3.18)

Finally, we have the case where there is no motion at the original point but there is

some other real moving object in the plane of the mirror:

P(4BAB,)=1 11 fT =(1-q) pg(1-p) (3.19)
The conditional probability of the true co-motion probability is expressed by using the

above defined expressions, where the detected motion is present at point a (because

the algorithm collects motion information only when there is detected motion):

LAt + Rt o+ fAfa S
P (m(r)=1lm(a)=1)=2rto 02 0P -2
( () | () ) Pm(mr(a)zl)
g(1-p) +(1-q) pg(1-p)+(1-q) P’
(I-p)g+(1-q)p

Because of the motion at points u and a are uncorrelated (and the events are

(3.20)

independent of each other), the following probability expression describes the false

co-motion probability between the two points:

P, (m,(u)=1)PB,(m, (a)=1)
P (mf (a)= 1)

The proposed corresponding point extraction method works dependably when the

P, (m, (u)= l| m, (a)= 1) =

=p+q—2pqg(3.21)

probability of true co-motion (3.20) is significantly larger than the probability of false
co-motion (3.21). This difference assists us to determine the model parameters (see
(3.9)) accurately; thus the ratio of these probabilities may be regarded as an indirect

index to measure the robustness of the correspondences extraction:

P, (;',*.*f(r):lhﬁvr (a):l) _ q—pq(l+q)+p2(l—q+q2)

> 1(3.22)
P, (mf (u)zl'm, (a) l) (p+6}—2pf1') ”

}?:
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We may mention that this inequality i1s always satisfied; this is provable by
investigating the difference sum between the numerator and the denominator. Taking
the case with the larger ratio 1s an easy and accurate way to extract the GMM

parameters. The next figure demonstrates the dependencies of the ratio 7 to the

detection error rate and the motion intensity.

p datection amor rate
[=)
n

) 4 -
| §: matian intensdy o0 ol 02 03 04 05 06 07 08 03 1

pe detection enor rate g matinn irtensity
a) b)

Figure 3.20: The value of 5 with varying motion intensity and detection error rate. We
experimentally define the reasonable cases with ; > 2, see b), which shows the “good” regions.
The results point out an interesting property, namely the existence of a second area
where q>0.5 and p>0.5. In this case the motion intensity and the detection error rate
are both very high. It is equivalent to the extraction of correspondences by using the
non-moving (static) points. We can call this case "concurrent non-moving points".
Nonetheless, the utilization of this property in real scenes is difficult because there are
regions (such as the sky) where any motion rarely occurs, and consequently these

regions could be concurrent for any point. In our experience the usual condition 7 > 2

1s sufficient for the extraction of correspondences. The acceptable configurations of
parameter-space can be seen in Figure 3.20(b), where the wide range of the acceptable
p and ¢ confirm applicability of our motion statistics based method in various
environment.

Another important and practical question is the length of video sequence necessary to
produce valid results. The knowledge of the minimal length assists us to start the
optimization process at a moment when good accuracy may be achieved. An
estimation of the required length (frame count) is possible by using the Bernoulli’s

theorem or weak law of large numbers [35]:
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Al

——q
n

- SJ al-a), (3.23)

&n

The above formula estimates the probability of the deviation of relative frequency
(with k/n, where k 1s the number of positive cases n 1s the total number of cases) from
a probable value ¢ with a predefined allowable error value &. It gives an estimated
value of n» which 1s the total sample count. In our case this formula represents a way
to determine the necessary frame count to achieve the desirable co-motion statistics
when the motion probability (g ) can be estimated for the sequence. For this purpose
we have to define an appropriate error value (&) which may be computed for a given

g by using (3.22) where the condition 7 > 2 1is satisfied. In our context this condition
means that the extraction of co-motion statistics 1s possible. The last parameter to be
determined 1s y, defined by (3.23). This parameter defines the probability that the
stipulated error rate will be achieved. An acceptable value is y =0.05, which means
that the allowable error rate will be achieved in 95% of cases, and the probability that
the deviation 1s larger than the given value is smaller than 0.05. In this case the
following inequality for » 1s implied:

q(1-q)
ey

<n (3.29)

Our experiments relating to this theoretical investigation are presented in a later

section.
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3.3. Conclusions

In this chapter, we have introduced a robust pedestrian detection and gait feature
extraction method. It is able to achieve a reliable detection rate in indoor or outdoor
camera configuration and environmental conditions using an invariant and effective
data representation in the Eigenwalk space, based on spline interpolation and a
dimension-reduction technique. A novel method for leading leg identification has
been presented; this is a possible gait characteristic for walker registration between
multiple cameras capturing different views of the same target. An important goal was
to use this feature for the purpose of multiple-camera registration.

We have introduced a novel application of co-motion statistics applicable to video
sequences, which allows estimation of the vanishing-point in a geometrical model of a
view containing a plane mirror. The mirror-reflection may be replaced with the image
from a virtual projective camera. To determine the geometrical connection between
the real and the virtual views (even in a wide-baseline configuration) we made use of
the extra information that is provided by the video sequence; the necessary
corresponding point-pairs are retrieved from the concurrent-motion statistics.

In conclusion, the main advantage of our method is that it is not dependent on scene
content and it is robust in situations where manual configuration is difficult. However,
its prerequisite is that the input is available as a video sequence; and to achieve good
results a sufficiently large frame count and the presence of sufficient target motion are

necessary.
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4 Estimation of model parameters

Key steps for parameter estimation problems are the data preprocessing and the final
parameter optimization. Both steps are crucial in point of accuracy and robustness.
Most approaches use non-linear optimization after the initial guess about the
parameter vector. This is because there is no analytical form of solution, thus the use
of some searching method 1s necessary in the parameter space.

In this chapter we describe methods for outlier rejection which nature depends on the
properties of the model and the data. We will show that the model parameters can be

determined from the extracted features with notable accuracy.
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4.1. Homography computation using DL'T and
RANSAC

An automatic registration method needs a feature selection and matching algorithm
to select corresponding points between the views obtained from two cameras. In 3D
motion-based camera calibration, a major problem is to estimate the height of the
motion above the defined ground-plane. In our case, however, since we can detect the
legs in motion, their lower point can conveniently be used for registering common
points on the ground-plane.

To detect such corresponding points, we use our walk-detection and leading-leg
identification methods. Both methods provide information, which is useful
matching points between the two views: detected walk patterns must be concurrent in
both views; and, likewise, the leading leg must be the same. In both views, the central
lower points of the detected walk-patterns are the feature points (e.g. the one marked
with a black “x” in Figure 3.11(a)). Searching for its counterpart in the other view
follows the extraction of a feature point from one of the views. The algorithm
searches for con-current points by examining the timestamps of points, and for points,
which were detected during walk cycles with the same leading leg. Nevertheless,
none of these features is unique for person identification (in cases where more than
one person is visible). This fact results in some outliers in the detected points.
However, because the leading leg is a stronger feature for identification, there are
fewer outliers than if we were to use only the concurrent condition. For the estimation
of the transformation H that maps points of one camera scene onto the other, and for
rejection of outliers from the set of candidate point-pairs, we have implemented both
the simple DLT (Direct Linear Transformation) method, and its extension using the
RANSAC (RANdom SAmple Consensus) algorithm [24]. In DLT a simple linear
solution for H may be derived from the expression of (2.1). The RANSAC algorithm
partitions the data set into inliers and outliers, and also delivers an estimate of the

model H (the homography in our case).
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4.1.1. Experimental results

We evaluated the registration algorithm by using surveillance cameras placed in a
public area located in the university building. The angle between the view-axes of the
two overlapping cameras employed was nearly 90° (hence, to detect corresponding
points using standard optical methods would be difficult). In the non-overlapping

layout the two cameras are placed oppositely to each other.

Overlapping views

In our series of tests, the successfully detected and classified walk-patterns were 241
for the first camera, and 220 for the second camera (see Figure 4.1). In our system the
cameras are approximately synchronized, but there is a small temporal drift between
the walk patterns generated by each camera; hence we define a permitted time-
window for events, which are classed as “concurrent”. This time-window for
concurrent checking was 5 frames. After such checking, there remained 46 concurrent
corresponding points (S1 dataset) and 8 with the leading leg verified (S2 dataset). We
found 15 invalid points in the S1 dataset. Table 4-I summarizes the results of the
simple DLT and the RANSAC+DLT methods applied to several combinations of the
S1 and S2 datasets (cases 1 to 5). We assessed the accuracy of the computed
transformations (rightmost column) using manually-selected control points.

Because of the near-orthogonal orientation of the two cameras used for the tests, the
algorithm can rarely detect two successive walks for leading-leg identification, and
therefore there are only a few points in the S2 dataset. Nevertheless, in case 1, all the
points m S2 are correct points; and the simple DLT method can compute a good
transformation. The DLT method fails when there are outliers (as for the S1+S2
dataset), and in this case (case 2) the position error is extremely high. In cases 4 and
5, the RANSAC algorithm has managed to reject the outliers from S1, and the DLT
method then computes an appropriate transformation. In case 3, RANSAC+DLT f{ails

to give good accuracy because there are only a few points in the S2 dataset.
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c)

Figure 4.1: Transformation from the first-camera view (left) to the second (right): Detected
corresponding points, and a synthetic line-trajectory in a) and b) and alignment of views in c).

TABLE 4-1: EXPERIMENTAL RESULTS ON DATA FROM “ENTRANCE” CAMERAS (RANSAC DISTANCE
THRESHOLD IS T=0.01)

Point Correc Detected Avg. error
Case Input t . .=
s . outliers in pixel
points
Method: DLT
1 S2 8 8 - 6.4
2 S1+S2 54 39 - 250.2
Method: RANSAC+DLT
3 S2 8 8 4 12.5
4 S1+S2 54 39 25 7.8
5 S1 46 31 28 6.2

In the indoor test sequences the height of people was 115 pixels and their width was
40 pixels in average. The camera view registration is a good test bed for the
evaluation of the proposed feature extraction method. The not so high average error of
alignment (cc. 5% relative error to the height of object) with respect to the object size
proves the usability of the localized features.
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To summarize the test-results: the DLT method is fast enough to run in real-time, but
it needs an input containing only “good” points (like our S2 dataset). On the other
hand the RANSAC algorithm can successfully reject outlier points (such as contained

in our S1 dataset) but it does require much more computing time (5-20 seconds).

Non-overlapping views

In the last experiment, we aligned images of cameras with non-overlapping field of
view. The schematic map of experiment and the images of the “Main hall” and the
“Entrance” cameras are shown in Figure 4.2.

It can be seen that the field of views of the cameras are not overlapped because of the
wall between “Main hall” and “Entrance” areas but virtually they do. The estimation
of the homography 1is based on line correspondences and not on point
correspondences as in previous experiments. Two successive walk steps were
detected and a line was calculated through them.

The major assumption in this experiment is that people are moving along straight
lines from “Main hall” to “Entrance” and vice versa. Every line from one view was
paired with every line in the other view and the RANSAC algorithm was used for the

estimation of the model and rejection of outliers.

| E—

Entrance

Main hall“/

Figure 4.2: Images of “Main hall” and “Entrance” cameras with control lines on the ground
(marked with two long paper tapes) for verification. Schematic map of the experiment:
placement of cameras and their field of views.
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The results of aligned images are shown in Figure 4.3. The results are based on 235
detected walks; 42 walk cycle (two walks form a line fragment as mentioned above)
and 9 inliers left after the RANSAC has been performed. The average deviation of the
gradient of the real “paper tape™ lines was 12.5°.

Figure 4.3: Result of alignment of non-overlapping views with the highlighted control lines.
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4.2. Vanishing point determination

The determination of VP coordinates (the model parameter) is performed as the
computation of the intersection of lines defined by corresponding point-pairs. There
are several approaches for model estimation in camera systems, good surveys can be
found in [24] and [36]. The methods commonly used in 3-D reconstruction in camera-
mirror case are e.g. the data symmetrization [37][25] and searching window technique
[23]. These methods can tolerate only a small amount of noise in the point positions
(and, likewise, 1t cannot handle outliers probably). Generally, the model
determination problems need some robust estimator [24] that handles the function as
an (global) optimization task, thus there is no analytic solution [49] for such robust
parameter estimation procedures, for survey see [36].

In our implementation the parameter estimation comprises two steps. Firstly we
reduce the number of outliers, and secondly a non-linear optimization is performed
for final VP estimation. The inclusion of the information extracted from global and
co-motion statistics into the objective function conveniently provides an approach

which is slightly differs from previous methods.

4.2.1. Corresponding points in single view

The extraction of corresponding points in related image-pairs is an extensively-
studied research area in computer vision [59][24]. But despite this, the number of
specialized methods which are applicable to camera-mirror scenes is rather limited. In
[28] a method was introduced which uses the so-called support lines of the silhouettes
of the image-components in order to find corresponding point-pairs. This method
assumes that the whole 3-D mirror hull (the convex hull of the object and its mirror
image) is always visible by the camera, and that there is only one object in the scene.
In an outdoor environment, however, these assumptions are usually not satisfied. In
our approach, we do not require any sophisticated feature-detection in achieving

matching of the views.

4.2.2. Outlier rejection

Depending on the configuration of the observed scene, not every moving point will

necessarily have a visible reflection, thus there is a need for a filtering before the
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optimization step is performed. The following method enables us to exclude a

considerable proportion of these outliers (points which have no reflection).

Hear

g < <&, (4.1

coll

The required subset of § can be defined with points that satisfy the above condition:

S, = {xlx eSand P, (.|x) exists} 4.2)

For the purpose of this discrimination we make use of the orientation of the line
determined by the two points of a corresponding point pair. In case of inliers these
lines point to (or near to) the VP, thus the directions are clustered around a
characteristic value, depending on the scene setting. This is a well-known technique
for processing motion vectors in navigation tasks. For detailed description of this
technique and implementation issues we refer to [41].

For the purpose of this discrimination we make use of the included angle between the
horizontal line and the line determined by the two points of a corresponding point

pair, see figure.

Figure 4.4: Interpretation of included angle for the computation of orientation histogram of
corresponding point.

In case of inliers these lines point to (or near to) the VP, thus the directions are
clustered around a characteristic value, depending on the scene setting. To filter out
the lines that do not point in the most probable direction is straightforward, by using a
weighted histogram of angles computed by using point pairs from S,. The weighting
factor comes from the global motion statistics which assists us to prove the
dominance of the relevant point pairs:

h(k)k=l__N - Z }:; (x) (43)

x x
IE5,.0; <("lwﬂ -Mnear L S
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where we define N bins on the (0..m) interval, and the interval limits are denoted by

a, . The expression (a,b){ symbolizes the angle between the horizontal and the line

through points a and b. It is obvious that there will be one or more peaks in this
histogram. Because the pre-filtering defined by (4.1) has removed a large proportion
of outliers, the main peak in the histogram can be associated with the true inliers.

The histograms (before and after outlier rejection) and the filtered correspondences
can be seen in Figure 4.5. This simple method also works well in indoor 1mages (e.g.
our “Ants” and “Mice” sequences) because not only the points actually at the main

peak are retained in the final data set, but also the points around this peak.

Histogram of angles

WHIY

g /N R |

B W& & B 3 ® 8B
S

=

Figure 4.5: Rejection of outliers for the “Shop” sequence. Only the directions corresponding to
the main peak (mode) of the histogram (determined from the line directions) will be used for
later computations. a) before rejection (only 320 of the total 3566 point pairs are displayed), c)
after rejection (382 point pairs); b) and d) show the corresponding histograms of angles.

4.2.3. Optimization procedure

Because the VP is computed from line intersections, the remaining outliers and the
measurement errors in point coordinates cause considerable problems during
parameter estimation. The most notable problem with outdoor scenes (e.g. the “Shop”

video, see Figure 4.5(c)) is that the near parallel lines through corresponding points
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lead to large deviations in the position of line intersections. Furthermore, the near
parallel lines intersect each other only toward infinity. The method that has been
mtroduced utilizes the extra information extracted from videos: the motion statistics
and the large number of correspondences for the computation of geometric model
fitting.

In the following section we introduce the goodness-of-fit function to assess the fitting
of a possible VP position to the extracted corresponding points; the “best” VP i1s the

argument of the goodness-of-fit function at its global maximum:

VP =¢' = argmax ZPg(x)PmH(S(x,uHx) (4.4)

x5,

The function & (x,u) returns the 2-D position related to the largest value of the

Gaussian function corresponding to Pmn(v|x) where the pomts p’ . w and v are
collinear:

g(x,u):al‘glg:g}’m”(ﬂx) and <ﬁ.‘ xﬁ,i’z)zO (4.5)
Note that this expression has a closed form solution [49].
In summary, this approach enables a small shift around point ¢, (center of concurrent
area, see (3.9)) while pomt & 1s fixed. The allowable shift i1s defined with the
Gaussian distribution (p_,(.)), which is an approximation of the size of occurring

objects i point y,. This is another advantage of co-motion statistics; the admissible

error (in position) at every point may be estimated from the statistics, and the above-
described optimization method uses this information too. Figure 4.6, below, shows the

process of optimization.
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Figure 4.6: The three correspondences illustrate the optimization process. Open circles show the
initial intersections (these differ from one another). Dashed lines are those drawn fo the modified
points after optimization is completed. The meaning of vector-function 5() is demonstrated: it

returns the position on the line where the Gaussian is maximal.

Goodness-of-fit values are illustrated in Figure 4.7 with a contour graph.

b

/)

Figure 4.7: Goodness-of-fit function represented using a contour graph; the VP is marked with
“x”.
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More general criteria can be derived which enable a correction not only in p} , but in

pomnt p’  as well (this modification affects (4.4)and (4.5)). Unfortunately, after this

modification (4.5) will not have an analytic solution; thus during the optimization an
algorithmic scan would have to be run for every corresponding point pair, instead of a

simple equation substitution.

The knowledge of the VP position assists in the partitioning of the GMM components
- corresponding to an arbifrary co-motion statistics - into two parts: one for the
original point, and the other for its reflection. This is simple because using property 2
the nearest point to the VP is the reflection. A new notation is introduced in the

following conversion of (3.9):
P, (u|x):ﬂﬁg (u|x)+P@ (u|x) (4.6)

where

Mo — c’|| > 13, —c’|| . Based on this repartitioning we can define the following
pair of 2-D PDFs for motion probability; one for motion probability in the foreground
region:

Py (xF)= 2 £, (u) e (x]u) (4.7)

ues,

and the other for motion probability in the reflection region:

£, (x[F)= 3 2, (w) Py xfu) ®

ues,

4.2 4. Experimental results

Our basic motion detection method [12] is founded on the background model
introduced by Stauffer; his accurate but rather time-demanding foreground detector is
a good basis for further classification of the foreground mask. Its output has already
been mentioned in formula (3.5). The initial color-based shadow detection method is
a modification of the corresponding part of SAKBOT. The use of both the shadow

and motion mask together is possible after the following modification of (3.8):

Zr: m,(x)s,(u) 4.9
Zr“ (mi(x)+ s, (u))

fa(u.x)="P,(u|x)=
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In the formula s,(u) denotes the binarized shadow mask. There are three disjunctive

classes in this case (foreground, shadow, and background): a given point may not be
in both the foreground mask and the shadow mask.

In our experiment the error rate of the foreground detector was 2-5%; while the
simple color based shadow detector achieved nearly a 75% success rate (we
deliberately did not tune the color model parameters, in order to test the method’s
robustness). The outputs of the foreground and shadow detection algorithms are

illustrated in Figure 4.8.

Figure 4.8: Computation steps: input image, foreground and shadow masks, a co-motion statistic
and extracted correspondences in “Shadow” sequence. The corresponding points are the
extracted object-shadow point pairs after outlier rejection.

The numerical results of VP estimation are summarized in Table 4-II. The numbers of
point pairs in the processing steps and the goodness-of-fit value corresponding to the
optimized VP are displayed for 4 different test videos. The results are illustrated in
Figure 4.9, where the collinearities are observable, and which demonstrate the
accuracy achieved. (Because of the large coordinate values, the VPs themselves are

not shown 1 the images.)
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Figure 4.9: Results are demonstrated with the collinearities of VP, original point and reflected
point.

In the Table 4-II, the frue VP values are based on manual extrapolation. It is
important to note that — as is also demonstrated in the sample images — the apparent
inaccuracy in the VP’s position in case of the “Shop” video has not caused a

perceptible error in the collinearity. This is because these VPs are nearly at infinity.

TABLE 4-II: RESULTS ON MODEL OPTIMIZATION

Sequence Point# Vanishing point Fit Model
Name (S2) Initial* Optimized Ground truth error
Ants 1218 (1081,-629) (1103,-674) (1128,-676) 0.9451 0.38°
Mice 2587  (253,-237)  (256,-260)  (260,-258) 0.9614 2.06°
Shop 382 (300,106)  (675,-163) (1200,-200) 0.8623 1.06°
Shadow 3509 (-13,53)  (-1918,680) (2110,850) 0.9847 4.58°

*: The 1nitial estimate 1s given by LMS method.

Probably the larger objects (as in the “Mice” video) resulted in better goodness-of-fit
values because the allowable margin is larger than is the case for smaller objects such
as occur in the “Ants” and “Shop” sequences. In evaluation, the accuracy of the
computed VP is conspicuous for the “Ants” video: the reason is that the small and
rarely-moving objects generated accurate corresponding point pairs. The error in the
“Mice” video arises from the large objects and the “strong” projection. The relatively

large error in the “Shadow” video 1s because of the rather small track in the image
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where motion is apparent. The inlier points cluster around this track and thus did not
provide the uniform distribution in the whole image which would allow a better

result.

Limits on scale factor

In our tests, the image resolution was reduced to only 80x60 pixels. Because this step
may seem rather drastic, we also derived the model at different scales in order to
demonstrate that the scaling has no adverse effect. The results and computational
details (memory usage and computation time) are summarized in Table 4-III. As can
be seen, even a much more drastically reduced resolution does not cause inaccuracy;
the results are still near to the “true” results. This is a promising property of our
statistical method; 1t allows sub-pixel precision. These results were generated by
using a simple running-average process [44] for change detection in order to generate
the motion mask, instead of the model-based background subtraction method [12].
This change detector is less precise than the latter method but it is widely used in
common applications, and we used it exclusively for the generation of the results in
Figure 4.10. The error rate of this detector is significantly larger than that of the more
sophisticated model-based method. Thus, the results support both the robustness and
the applicability in low-resolution video streams where a simple change-detector is
used. A sample motion mask can also be seen in Figure 4.10, where the detection

errors are visible at every scale level.

TABLE 4-11l: RESULTS AT VARYING SCALE FACTORS

Resolution (pixels) 80x60 64x48 40x30 32x24 20x15
Max. memory usage

(MByte) 88 36 6 2.5 0.5
Computation time 25 20 18 15 12

(milliseconds/frame)

Mice (246,-307) (244,-311) (240,-337) (238,-358) (227,-365)
Shop*  (670,-89) (630,-60) (735,-165) (942,-107) (474,31)

*: 1n the images below the effect of a large Euclidean error on the VP position can be

VP of Sequence

seen; usually, it is negligible compared to the collinearities
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Resolution

Change detection mask

Result

80x60

64x48

40x30

32x24

20x15

Figure 4.10: Results demonstrated for different scales. In the left column sample motion masks of
“Shop” video are extracted using a simple running-average change detector; the right column
demonstrates the results of VP estimation based on such ambiguous motion masks.

Effect of processed video length

We recall that the processed frame count is important, since there is a minimal
information content which is necessary for the extraction of corresponding point pairs
and for the determination of the VP position with acceptable accuracy. The formula
(3.24) gives an estimation of the lowest necessary frame count, which in fact depends

on the motion intensity and the detection error rate. Temporally, we found that the
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motion activity was smooth in indoor videos, but rather unbalanced in outdoor videos.

The following table summarizes the numerical estimation of parameters.

TABLE 4-1V: ROBUSTNESS ANALYSIS RESULTS

Sequence name 77 q p £ n
Ants 5.37 0.0023 0.02 0.0022 9482
Mice 539 0.0678 0.05 0.0638 310
Shop 3.32 0.0093 0.05 0.0053 6560

q : mean of global motion statistics (estimated motion intensity)
n - estimation based on the substitution of p and ¢ into (3.22)
£ :based on ¢ and 7, it takes into account the condition > 2

n : necessary frame count by substituting values into (3.24)

In Table 4-IV, the estimate of p is based on subjective judgment and ¢ 1s the mean of
global motion statistics. The low value of p is realistic, because it is related to the

full image area. Furthermore, the capture rate was 20 fps in each sequence, and this is

probably the reason for the relatively low ¢ (motion intensity). The value 7 is based
on (3.22) by using the value of ¢ . It confirms that the parameters of GMM can be
established.

Finally, Figure 4.11 summarizes the results of experiments on the “Shop” sequence at
different processed frame counts. As can be seen, the value of Table 4-IV is close to
the true required frame count. In Figure 4.11, we see that when the processed
sequence length is larger than 6000 frames the VP is near to the true value. The
oscillation of the motion intensity can be seen in Figure 4.11(b), which demonstrates
that in the outdoor video the motion was not uniform. This caused the result of VP
estimation to oscillate as well, although in practice this effect is fairly inconspicuous

(~0.1°). We also found the same results on the other two sequences.
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Figure 4.11: Results on the varying processed video length (in frames) of the “Shop” sequence. a)
Global motion intensity; b) Number of extracted correspondences; ¢) Parameter of VP (in
degrees; the true value is 16.5°); d) The epipolar lines. The convergence to the valid VP is also
visible. In d) the results are displayed after 2000, 4000, 6000, ... frames, up to 80000 processed
frames.

4.3. Computation of the vanishing line

In summary, the determination of the vanishing line 1s possible with knowledge of at
least three corresponding line segments. These line segments can be computed from
the apparent height of the same object as seen at different positions (depths) on the
ground-plane. The objects may for instance be pedestrians [45], and the line segments
denote their height. However, the precise detection of such non-rigid objects is a
challenging task i outdoor images. In our framework the necessary height
information can be easily determined from the local statistics. Because the statistics
are generated from moving object masks, its model parameter — namely the
covariance matrix — is the estimation about the average size of potential objects. The

information derived from statistics i1s valid only if the following assumption is
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satisfied: there are regions where the same objects are moving with equivalent

probability (e.g. pathway or road).

4.3.1. Height estimation of average shapes

The following figure illustrates the results of motion statistics in both indoor and

outdoor sequences.

Figure 4.12: Sample frames in upper row, and raw motion statistics in the bottom row. The
corresponding point is marked by ‘x’

From this feature extraction the input for the further processing steps is the parameters

of the covariance matrix X_ in point x (see (3.9)). The dimensions and orientation of
the average shape come from the eigen-value decomposition of the covariance matrix:
vax,f = ,r'vx,i i= 152 (410)

These statistical characteristics are displayed in Figure 4.12.

' jx’l ) '

Figure 4.13: Example to shape properties: axes of normal distributions, derived from the eigen-
value decomposition of the covariance matrix.

Finally, the height measurement comes from the projection (vertical component) of

the most vertical eigenvector:
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(;{x,max: Vs max ) =arg [(25?]((’13;1 (e: Vx,l):;{x,z <e?vx,2>) Jhy=h, = A/ A max <e!vx,max>
(4.11)

where e denotes the vertical unit vector: e = [0 1] and (.) is the dot product,

respectively. These height estimations are displayed in Figure 4.14. For the sake of
later simplification we transform the indices from vector (coordinate) forme.g. x toa

simple scalar index j. Henceforward, j denotes a point in the image; viz. /4, is the
height measurement in image-point j and vector p; determines the coordinates of

point j in the image. Because the scheme (4.11) utilizes information extracted from
statistics, a more sophisticated form may be given for the height estimation which

takes into account the uncertainty:

P(i|i,) =N(h,. 1,24, ) (4.12)

where

(4.13)

Figure 4.14: Samples from height estimations in outdoor environment.
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4.3.2. Outlier rejection and error propagation

Outlier rejection

In general, without making any prior assumptions about the scene every point may be
paired to every other point. But the practical processing of this huge data-set requires
that we have an effective way to drop “outlier” points and extract information for VL.
estimation.

First, we describe simple conditions which can be used to reduce the size of the data-
set. The outlier rejection in this case is similar to dropping points where two objects
are moving but are not the same size. Let j represents an arbitrary point in the image

and k& denotes another (corresponding) point: j # &

We reckon two points as corresponding points (which is probable, where same-sized

objects are concerned) if

A
o <—L/Ft <g, (4.14)
.2 2

and

(D(vj,l,vk,l)<a (4.15)
where the notations come from the eigenvalue decomposition of the covariance
matrices of two points, see (4.10), and (D() denotes the angle between two vectors

(the deviation of eigenvectors in our case). These simple conditions lead to a set of
points where the objects have similar orientation and aspect ratio. Figure 4.15

demonstrates the point set (marked by circles) corresponding to a point (marked by

X).

Figure 4.15: Corresponding points (marked with circles) are related to an arbitrary image point
(marked by large ‘x°).

-71-



DOI:10.15774/PPKE.ITK.2024.006

After this preprocessing every point will have several probable corresponding point-
pairs. However, several outliers remain, thus we have to use all points to determine

vanishing points and an estimation about horizon.

Error propagation

An initial guess about the horizon can be computed using the height information of

corresponding points to an arbitrary point j:

Figure 4.16: Using vertical size information to get the horizon ( i}_ ) and vanishing points 3 e
The 2D point p ; is an arbitrary image point, while i and c,, are two samples for
corresponding points.

To simplify the further computations the transformation between height information
and the 2D image plane is necessary. We have to compute point coordinates in the

ground-plane, as it is demonstrated in the following figure.

ho=h

i S T

X

Ground-plane: y=0

Figure 4.17: Determination of a vanishing point, which in ideal case lies in the horizontal
vanishing line (horizon). The task may be summarized as the computation of 7 taking into
account the inaccuracy of height measurements.

The determination of d without uncertainty comes from elementary algebra:

517 P
d = h —=—=e 4.16
T (4.16)
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To derive a formula which contains the uncertainty — based on the method described
in [47] — we define the relationship between the input and the output quantity in an

implicit form. For this scheme we define the ideal input vector X and the observed
vector X . The ideal parameter vector ® and the observed 0 , respectively. The e)

and X are related through an optimisation function F (), and @ is determined by
minimising F (5{,(:)) In this phase of our method the input measurements are height
information about the objects, while the output is the estimated position of the
intersection of ground plane and the line through points (0_,}';1) and ( p?,n;;z)n see

Figure 4.17. This line-plane intersection determines one point, accordingly the input

vector 1s

X=| .1, | (4.17)
and the observation 1s

0= [3] (4.18)

The analytic curve function expressed as

~

F(X.0)=/(p,~d)~h(p,—d)=0 (4.19)

Error propagation relates the uncertainty of input measurements to the perturbation of

.

O . Let X, , be the covariance matrix of measurements:

o’ 0
Yy = & 4.20
ax { 0 J§X:| (4.20)
where
o’ +0o?
ol :% (4.21)

Based on the covariance propagation theory [48], we have

o 6_g 1
Y, =202 “ ae) } (4.22)

where 1s defined as

02(X,0)
00
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= - 4.23
%0 (ar) (ar) -
oh, oh,
Thus, we have
A2 ~
. L (md)+a
Lo =0 =0, (4.24)

The result 1s illustrated in the following figure.

d
Figure 4.18: Simulation of error propagation from input data (height estimations) into 1D
position coordinate. The two uncertainty heights are used to determine the intersection of line

through these points and the x axis. The formula for uncertainty of this intersection was
expressed by (4.24).

Finally, we have to convert the result of (4.24) into the 2D image plane. This

conversion can be accomplished by constructing a 2D covariance matrix:

g 0
¥ =UT| 2e U 425
ey .

where U is the matrix of eigen-vectors (Note that, UU” =1.):

V.
U:[N'} and (v,,v,)=0 (4.26)

i i
v

i

with eigen-vectors formed from the unit length vector through points p; and ¢, ;:

¢."P,
||ch. - pj||

While the centroid (position of vanishing point defined by points j and i) is

v, = (4.27)

determined from the estimated distance d along the line with direction v,

a,,=p,+vd (4.28)
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Thus, we have the formula for probability density of measurement noise:
P(a,[a,,)=N(a, ., 2y, | (4.29)
4.3.3. Optimization procedure in Hough space

Measurement conversion into Hough space

After the evaluation of the error propagation formula to every corresponding point
pair we will have several uncertain 2D point coordinates. These estimations represent
an initial guess about horizon, since the inliers of the data-set lie in the horizon. This
line estimation problem is well known and there are several approaches to solve it in
various cases: e.g. least squares (LS), total least squares (TLS) and Hough
transformation [49][36].

e In short, our case has the following special properties:

e Error in both coordinates in the 2D plane (x and y).

e There is correlation between the noise in the two coordinates.

e The noise covariance matrices are different for different data points

(heteroscedastic noise).

e Notable amount of outliers can be found in the dataset.
Because of these specific characteristics the line fitting 1s viewed as a global
optimisation procedure. Generally, there is no analytic solution for the cases of
heteroscedastic and correlated noise, where we assume that the noise in x is correlated
to the noise in y, furthermore, the variance of the noise is not identical for all data
points. Heteroscedastic regression problem in computer vision is studied in [49]. Both
LS and TLS methods fail when the data-set contains outliers. Line fitting on such
data-set needs a robust estimator, for survey see [36]. The Hough transform is an
effective and popular way for line-fitting [50]. In the standard version, an accumulator

array 1s used to collect the points which lie along the same line. The line is

parametrized by (6, p):

p =xcos(0)+ ysin(0) (4.30)

In this section the error propagation will be continued, and an optimal line parameter
has been determined by using non-linear optimisation procedure. Because the Hough

transformation generates sinusoidal voting patterns in the parameter space we will not
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use the same error propagation formula as in the previous section. In the end of the

section a simple formula for the error estimation in the parameter space will be given.

Let 2D point a,, = (x,., y,.) be the unknown accurate position of the i® vanishing point
introduced in the previous section. The measurements are a,, =(Xx;,¥,) based on the
error propagation formula. Due to noise, a,, # a ;:- The probability density of

measurement noise is modelled as a 2D heteroscedastic Gaussian, with correlated
noise in formula (4.29). We define the line-fitting task as finding the maximum of the

objective function:

l —algmax P > (p,)C,, (1) (4.31)

1£(6.0)

where the maximum value of probability (4.29) along the line 1 is defined by:

C,,(1)=max P(ula,,) (4.32)

J- uel
(This line 1s also parametrized by 1 ;= (éj, Yo, j) )

The optimum value is determined by unconstraint non-linear optimisation of (4.31),
the initial estimate i1s given by LMS method. The mtroduced formula handles the
outliers, thus there is no need for robust M-estimator, where the error expressions are
replaced by some saturation function [36]. We note that, the computation of (4.32) is
simple; it has analytic solution, see [49] for details. Since the residual outliers cause

an error in line-fitting, we define the error in line-fitting with a 2D Gaussian:

P(L[1,)=N(i,1,.2y, ) (4.33)

where the covariance matrix i1s defined as

Al
tan | —2 0
%, = [Ai’x ] (4.34)

0 Al

The notations are detailed in the following figure.

-76-



DOI:10.15774/PPKE.ITK.2024.006

D T

d, (aj,:'-'lj) R Alx

Figure 4.19: Demonstrating the parameters for the expression of line-fitting error (see (4.34)) in
parameter space.

The function d, (.) computes the distance between the line 1, and point a,,, while

the expected value denoted by E(.).

Thus, the guess about the horizon at point j is determined by (4.33) which describes

uncertainty in the parameter space (2D Hough-space).

Final optimisation
The estimation about the horizon and the estimation error are attached to several
points in the image. The accurate determination of horizon is carried out in parameter

space using all estimations:

1, =argmax > P.(p,)P(I|L,) (4.35)

1=(6.p) 7
It has been fulfilled with the same optimisation technique as in previous section. The
following figure displays the 2D parameter space which has been filled with

numerically computed values of (4.35).

) Hough space Hough space

Orientation
Crientation

-40 -20 0 20 40 40 0 0 a0 40
Distance Distance

a) b)

Figure 4.20: The picture in a) depicts the Hough space of outdoor scene, while b) relates to
indoor scene, respectively. The selected point is related to the most probable parameters of the
horizon.
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4.3.4. Experimental results

We performed a practical evaluation of the method in which both indoor and outdoor
videos were used as iput. The parameters introduced in the previous sections are

assigned the following values m empirical fashion: o, =0.8and o, =1.25 m (4.14),
while & =10° in (4.15). To determine the binary motion mask ((7,x)) a motion-

detection method was used which is based on the background model introduced by
Stauffer [30].

The manual extrapolation of the vanishing line is a difficult task, because: 1) there are
not enough static features for accurate alignment; and 1i1) the objects are usually too
small in case of outdoor images. The outdoor video used for testing shows not only
pedestrians, but cars as well; this 1s why the parameter configurations (distance and
orientation of the horizon line) in Hough space show scatter, see Figure 4.20(a). The
deviation from optimal parameter values i1s much smaller in indoor case, see Figure
4.20(b).

The results demonstrated by straight line in 2D coordinate space after final
optimisation of Hough space are displayed in Figure 4.21.

Figure 4.21: Horizon computation in indoor and outdoor videos.

4.4. Conclusions

A camera registration method has been presented which uses walk-parameters as
features to identify corresponding points. The features we used (concurrent walk-

steps, leading-leg identity and 2D motion vector) seem potentially to provide good
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data for the estimation of homography between two different camera views of the
same scene and an occurring configuration of non-overlapping views. The registration
method has been verified on an actual indoor camera surveillance system, and was
able to provide real-time feature (walk) detection. This efficient camera registration
proves the accuracy of the localization of our gait features.

We have shown that using the proposed algorithm it 1s feasible to compute the
horizon with good accuracy even from a real-life noisy data set which contains
several outliers. The proposed approach executes two statistical parameter

optimization steps by using the benefits of error propagation formula.
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5.Improved extraction of foreground

image mask

Moving object detection is a key issue in most computer vision applications
especially for surveillance purposes. Depending on the scene settings the cast shadow
usually generates problems while extracting moving objects (e.g. silhouettes). The
problem occurs often in outdoor scenes and indoor configurations when the floor is a
reflective surface. In most cases shadow can cause merging of objects, shape
distortion and object losses. Thus, shadow detection is critical for accurate object
detection, which is a relevant step of information extraction for further processing:
tracking, event detection [68] or traffic monitoring [63].

This section focuses on the classification of motion mask. We will show that the use
of geometrical model and statistical motion information can be integrated. The
amount of pixels related to shadow and reflection is significantly reduced in the final
foreground 1mage mask. This improved foreground mask is a good basis for further

processing steps.
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5.1. Introduction

Many approaches have been proposed in the literature that deal with shadow. A good
survey can be found in [69][29]. Most of the publications are focused on the colour
based shadow detection [63][69][31][71]. In order to remove shadow points, these
methods have defined conditions in some proper colour space.

Method, called SAKBOT, was introduced in [63]. It was developed for moving object
detection and tracking. This complex algorithm contains both colour and motion
information. Additionally, the final foreground mask is improved with knowledge-
based feedbacks. The method introduced in [70] utilizes some predefined object
model present estimation about shadow pixels near to the detected objects.
Summarising, the basic features that can be used to distinguish between shadow and
object points are: colour, texture, motion. In spite of the notable amount of
publications there is no approach which utilizes the general geometrical model of cast
shadow and includes the geometrical characteristics into the classification process.
Geometrical information is important in describing the creation of shadow. Like other
characteristics, the geometrical description is not a unique feature, so without other

features it is not sufficient for accomplishing of classification purposes in all cases.

5.2. Detection of reflections in Bayes inference

In this section we present a possible application of the determined VP and co-motion
statistics. We demonstrate the use of the derived geometric model together with the
co-motion statistics for the purpose of refining the classification of the foreground
elements of the scene (the foreground mask). The essence of this task is the removal
of those pixels from the foreground mask which correspond to reflection.

Firstly, we should explain why knowledge of the VP is not enough by itself for us to
solve this classification problem effectively. This is because of the fact that, based on
the model, only the fundamental constraint can be used, which is a point-line
transformation. This means that for the identification of the reflection related to an
arbitrary point we have to scan along the line and try to find the reflection of some

(unknown) object by using a suitable correlation measure. This is a challenging task
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in case of low-detailed reflections; but in any case, this searching demands
considerable computation time.

We shall not discuss all related issues on decision theory; we concentrate on a simple
presentation on the decision as to whether or not a given point is to be considered as
part of a reflection. The classification method we apply is based on the Bayes decision
rule [73]. Several other (more complex) methods are also available for classification;
for details see [73]. We will show how the geometric model and the statistics can be

included into the class-conditional density function. Consider the two classes:

reflection, and foreground L :{ fa.rf } Points in the motion mask belong to the

classes Y = {‘QX |x €8.9. €L.m,(x)= l} with the a prior probabilities

P(9. = fg)=P,(x|F) (5.1)
for occurrence of the foreground class, and

P(9, =1f)=P,(x|F) (5.2)
for occurrence of the reflection class (these probabilities were derived in the previous

section, see (4.7) and (4.8). Furthermore, the decision rule may be written in the form:

assign X to foreground class (9, = fg ) if

P(x|8, = f2)P(4 = fo)> P(x|&% =1f ) P(8. =1f) (5.3)

Thus, the density function for a foreground pixel is formulated as

P(x

9. = fg)= I{_lgsng(ﬂx,F)Pmﬂ (r|x)m,(r) (5.4)
This expression takes into account the possibility that a foreground pixel may have a
reflection; this information comes from (4.6) and is symbolized with the term 7, () :

The first component in (5.4) is related to the geometric model, and i1s defined by

P,(r|x.F)=N(£"F&, 1, = 0,0, ~ 2) (5.5)

It determines a line (and its surroundings) from a given point x through the VP. The
use of a normal distribution (defined in (3.10)) assists us to increase the robustness;
this 1s because we do not use a line with “one pixel” thickness, but rather a line with a

thickness of o, which enables error in VP position. Accordingly, (5.4) i1s equivalent

to the probability that expresses that x has a reflection somewhere in the image at
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frame 7. Based on the above discussion, the class-conditional function for the

"reflection" class is given by
P(x|9, :ff):mggxfi(ﬂx,F)ng (r|x)m, (r) (5.6)

Some of the 2-D probabilities and the classification results are demonstrated in Figure
5.1. Note that there are some cases when we should not make any decision during
classification [73] (e.g. those points where there is no reflection). In these
unclassifiable cases the products in (5.3) are conspicuously low. To eliminate these
points we introduce a threshold value; it was determined experimentally that 10 is a

suitable order of magnitude for this threshold for all test sequences.

b)
Y| Motion
| mask

d)
Py ()

*: selected point is marked with x in b)

Figure 5.1: Main steps of the classification process which supports the removal of reflections
from the foreground mask. For details see text.
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Finally, we have to discuss the effect of the outlier rejection steps. The resulting
subset of image points (S3) and the image scaling result in the fact that there will be
points that do not have valid co-motion statistics. In the case of these points, there is
need for interpolation by using the available valid statistics of the neighborhood

points. In the classification step we have to estimate the P(r x) and P (r|x) with

the following formulas:

) > By ()P (x[0) B ()
Prgﬂ(rlx):nec ZPg(u) o (57)
- ZPg(u)ﬂﬁg(xlu)Rﬁg(rlu)
o (¥]x) = 25— 7 (w) 09

usC

Where C is the set of the nearest neighbors of # where the co-motion statistics are
valid. This missing information can be computed straight away after the model

optimization, and thus it will not reduce the performance during classification.

5.2.1. Experimental results

Based on the manual validation, we have found that the error rate of foreground
extraction was reduced. The proposed classification evaluated only points which were
detected as foreground by [12]. The performance is characterized by the measures
proposed in [29]: ‘Detection Rate — DR’ and ‘False Alarm Rate — FAR’. These values
are obtained as follows: DR=TP/(TP+FN) and FAR=FP/(TP+FN), where TP is the
number of correctly detected object’s pixels, FN the missed object’s pixels, and FP
the reflection pixels incorrectly detected as object’s pixels. The DR and FAR rates for

three sequences are shown in Table 5-1.

TABLE 5-I: THE DRS AND FARS FOR THREE VIDEO SEQUENCES

Sequence DR FAR
name

Ants 0.991 0.031
Mice 0.892 0.075
Shop 0.822 0.120

The fundamental limitation of the classification procedure is that it is usually unable
to disjoint the motion mask in cases when the real object mask and its reflection are

linked. Figure 5.2: illustrates such situations. In summary, the results are promising in
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spite of the fact that the applied classification method is very simple. Some of the
more sophisticated methods (e.g. MRF [31]) are able to increase the accuracy; but

only with substantially higher computation cost.

b)

d)

Figure 5.2: Challenging situations of foreground segmentation in scenes from the “Mice” and
“Shop” sequences. In the detected motion mask for (a), (b) and (c), the object fuses with its
reflection. The proposed method is able to remove only a small part of the reflection.
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5.3. Shadow removal using Bayesian iteration

The goal of shadow detection is to eliminate the shadow points from the extracted
foreground mask. The foreground mask can be determined using several approaches.
Our implementation based on [30] which is a popular background modelling method

for the extraction of foreground mask. The output mask 1s defined by:

1, where change is detected
m. =
" 10, otherwise (5.9

M = {mi,i € S}

where S denotes all pixels in the image (index i corresponds to one pixel). In the
followings / determines the input image and B denotes the computed background
image, respectively. Intensity changes cause changes in object pixels as well as in cast
shadow pixels.

Thus, the initial foreground-background mask M contains both object and shadow
pixels as foreground.

The usual method to distinguish between moving cast shadow and object points is the
ivestigation of pixels in Hue-Saturation-Value (HSV) colour space [63][31]. This
pre-processing step 1s a simple filtering before higher level processing. We focus on

strong shadow in outdoor environment, thus we have implemented only the condition
related to Value (V):

. V(I.)
Lifa<—=< V(I)<0.6
=" "7V (B) ArviL)<
. (5.10)
0, otherwise

C= {Ci,f es }
Here C denotes a shadow mask with elements ¢, equal “1” for shadow pixels and “0”
otherwise, according to colour based conditions: o and B are bounds obtained from
experiments.
In our experiments this colour based method works reliable only in case of weak

shadow. If the shadow 1is strong, the ratio is around 0.4. Unfortunately, however the

ratio changes to 0.9 near to the boundary of shadow. That is why shadow elimination
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1s not possible by using only the colour information. Figure 5.3 displays the histogram

of the ratio inside the manually selected shadow mask.

-.2

“—' 02 04 0B 08 1 1.2

ratio

Figure 5.3: Difficulty of colour based shadow detection in case of strong shadow: the shadow
region has not a histogram with only one peak, and thresholds o and p are not the same for the
whole image.

Another problem is that the adaptive determination of the bounds o and B is still a
challenging task. Thus, in our implementation these values were adjusted to cover a
relatively large region of the full range (0=0.4, B=0.8). Detection results are

summarized in the following figure.

Figure S5.4: Results of colour based shadow detection: upper left-input image, upper right-
motion-detection mask, lower left-foreground mask determined by using colour features and
lower right-“worse-case” shadow mask (c=0.4, p=0.8) used for input to classification method.

(The binary masks are without morphological post-processing.)

5.3.1. Outline of the iteration scheme

The aim of classification is to decide about every foreground pixel in the initial

foreground-background mask (M) whether it 1s a foreground pixel or a shadow pixel.
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This two-classes problem is equivalent to find the probable class for an arbitrary pixel
in the given scene setting (M and C). In the literature there are several different
approaches to accomplish such classification tasks [73]. Nevertheless, in this section a
simple Bayesian iteration will be introduced. We selected this probabilistic
framework, because it is rather general and is suitable for further improvements. This
method was used successfully for blind deconvolution in [75] and [74].

We define the unknown shadow mask as

H={h.ieS} (5.11)
and foreground mask as

F={f.ieS} (5.12)

Together with definition of the detected initial foreground-background mask A (5.9),
using Bayes conditional probability formula we can get the probability of observing H

and F with given M in the following form (the formulas for F are similar):

P(h |m) Pl 1) P(h) . i,jeS (5.13)

ZP(?H |h ) (hk

Substituting this equation into the conditional probability formula, we get:

P(h)= ZP(F?,.m ) ZP( |m ) (mj.):
P(m |h ) P(h )P(m ) e (5.14)
ZJ: Zk: (mjlhk) k) > BjeS

Based on this formula the following iteration scheme can be written [12]:

R&+1 (hz ) =

) (m |h) (m )
(} )ZZP(!H |h )

Where £ is the iteration counter. We define the initial probabilities as follows,

(5.15)

v i,j.kesS

1, where m, =1

P(m,.):{ ! ,i€S (5.16)

0, otherwise

and
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1/2, where ¢, =1
(h)= _ ,iesS
0, otherwise (5.17)

P(f)=1-P(h)
During the iteration steps the values of P(f;) and P(/) will change. These
probabilities converge to stable values which describe the most probable

shadow/foreground configuration in a given motion mask. Hereby the classification

step 1s a simple decision to the most probable class:

~ |LifP(h)<P(f
fi=1. l (I’). (%) (5.18)
0, otherwise
because,
P(h)+P(f;)=1 Vie S wherem, =1 (5.19)

The key issue in the above introduced formula (5.15) 1s the determination of the

conditional probability term (P(m j|hf)). This term enables the completion of

probability model with additional knowledge about the problem. First, in case of
shadow the indices in the summarizations can be reduced. In the above-defined form
the summations are performed over the whole image. According to the geometrical
model these 2D summations may be replaced with summations along a straight line
(parameterised in 1D), direction of which i1s equal to v. This procedure is

demonstrated in Figure 5.5.

Figure 5.5: Simple geometrical constraint: including the collinearity to the conditional
probabilities. The notations are introduced in the text. The indices j and & are related to the
cyclical summarizations.

To allow this feature, a modified formula of (5.15) can be written:
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R&+1 (hz ) =

P(mr{”) |hz. )P(mr(m)
A2, hr(k,i))P(hr{k,i) ), 2

ieSand j keN
where the function r(.) returns an image point, which is computed from an initial
position (i) and a step counter (5) along the line:

r(j.i)=i+jv (5.21)
Based on this notation the expression of conditional probability may be rewritten

using two step-counters along the line:

a,(p.1)=P(my, | ) 2N (5.22)

For determination of this value, a simple formula 1s given:

df (p,f) = Gy (p.) (1) (1 - P(fr(f,.f) )) (5.23)

This expression validates only the minimal conditions; motion must be present in both

points and the shadow point must be in the colour mask (value of Crp) 1s defined by

(5.10)). The last component relates to the foreground mask, so, the probability that a
given point belongs to shadow is equivalent to the probability that the point is not a
foreground point. This extension makes connection between F and H during the
iterations.

Since, the iteration formula contains the sum of these values (and because it is a 2D

probabilistic distribution function), the normalization is necessary before use:
Zd,. (p.1)=1 (5.24)
pl

Till now, we used indices along the line without any upper and lower bounds. There is
no need to compute the sums along the full line, because we can define the probable
utmost distance between the original point and its corresponding shadow point. This
distance is symbolized by parameter » . Thus the ranges of the indices are

p==7-r

1=0.y (5.25)
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The values of d, () form a 2D pdf function. Its layout is visualized in matrix form in

Figure 5.6.

<
-7

/ 0 S

v/

Figure 5.6: Layout of matrix 4, (.) . The filled region indicates the probable non-zero elements.

This zone-structure is because the place of shadow is always relative to the original point.

After substituting (5.22) into (5.20) we get the final formula of the iteration step:

o d:(ovf)P(’”rU,f})
*%H(h")_a(h‘);Zd,.(k—j,j)P(hr[k,,-))’ (5.26)

ieSand j,k=0.y
The formulas for the foreground probabilities (P( ﬁ)) can be dertved in the same

way.

5.3.2. Experimental results

In the following, we present some samples of outdoor sequence. The first row
contains the relevant part of mput images. The second row displays the detected
motion mask, see (5.9). The further rows demonstrate the foreground and shadow

probabilities during the iteration steps.
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Sample frame #1 Sample frame #2

Input: 7

Motion mask: M

Shadow probabilities P(H) after the 5™

iteration
Foreground probabilities P(F) after the 5™
iteration

Final foreground mask 7 (see (5.1))

Figure 5.7: Experimental results on strong shadow. The final foreground mask is the output of
the classifier, for details see text.

5.4. Conclusions

Based on the estimated geometrical model a simple method has been given for the
improvement of the foreground segmentation step. This post-processing step is a
possible way to remove reflections from the previously extracted foreground mask

(determined by some arbitrary algorithm).
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We have presented an iterative Bayesian framework to determine the shadow and
foreground masks taking into account both colour and geometrical information. The
geometrical model of cast shadow 1s reduced to a simple direction (toward light
vanishing point), which assists to implement an efficient localized variant of the

iteration scheme.
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6.Summary

In Chapter 2 an overview about different geometrical scene characteristics is
presented: point and line homography, skew symmetric fundamental matrix and
horizontal vanishing line (horizon). The nature of parameter estimation tasks is also
defined including the kind and amount of necessary information for computation. The
implemented feature extraction methods were presented in Chapter 3. In detailed, the
walk detection and gait feature identification were described in Section 3.1, while
Section 3.2 summarizes the use of motion mask in a statistical framework for the
detection of spatial correspondences. A discussion about the robustness is presented
in Section 3.2.4. It was shown that the scene dynamic (moving objects) provides
stable and useful features for further processing. Chapter 4 presents detailed
descriptions about the parameter optimization approach, including outlier rejection
and explanation of objective functions. Successful evaluations on both indoor and

outdoor test videos prove the feasibility of the proposed methods.
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6.1. Methods used in the experiments

In the course of my work, theorems and assertions from the field of mathematical
statistics, numerical geometry, optimization, reported results of image and video
processing were explored.

The experiments for camera registration were performed by using the MDICam multi-
camera software system that was designed in the Analogical and Neural Computing
Laboratory. The second test environment is the PPKEyes which 1s a digital video
surveillance system that was developed in the PPKE-ITK and it is operating in the
university campus. For unique experiments I have also designed simulation systems
in Matlab. Testing of the proposed algorithms was performed on various video
sequences from personal experiments and from publicly available video databases.
For the design and testing of algorithms I have used a software toolboxes provided by
Intel.

6.2. New scientific results

The First Thesis summarizes the results that related to the use of detection of human
activity (walking) for event detection and camera registration, the Second Thesis is
about a statistical framework for geometrical scene analysis. The Third Thesis

presents results that related to the foreground image mask segmentation problem.

6.2.1. First thesis

The high-level temporal descriptor of the structural changes of a moving
non-rigid (human) object is feasible to detect the human activity

(walking) and to determine information about the gait.

I give a new method fo detect human activity and to determine a specific feature of
walking in video sequence. I have introduced the eigenwalk space which is utilizable
to detect the human walking. The proposed method is applicable to identify the

leading leg, which is a descriptor of the gait.

-95-



DOI:10.15774/PPKE.ITK.2024.006

The detection of the human activity, namely the walking is possible by classifying the
extracted temporal descriptors of object. The general criterion of walking is the
moving legs, by detecting this motion the walking is perceptible and the leading leg
can be 1dentified from two successive steps.

This information about the scene is suitable not only for the event-level analysis of
video sequences but for the registration of wide-baseline indoor camera configuration,

which is a challenging task.

Published in [3][2][151[6][17][18][20]

1. Detection of human walking using the spatio-temporal patterns of

horizontal symmetries.

I worked out a method, which is able to compute the near horizontal symmetry
axes. I have defined the symmetry levels, from which the third is characteristic
for the presence of two pair near parallel edges (legs). From this fact, the input
of the method is the binarized ridge of the edge map instead of the intensity
map or object silhouette. I worked out a method for the temporal tracking and
processing (time continuous interpolation and dimension reduction) of
symmetry segments, which is the basis for the detection of pedestrians from
walk patterns. The two classes (walk and non-walk) was separated with a non-
linear hyper-plane. This classification step was carried out by using the
Support Vector Machine (SVM) in the eigen space of walk patterns which is
called eigenwalk space. I have managed to reduce the dimensionality of walk

patterns through the linear dimension reduction technique (PCA).

2. Identification of the leading leg.

I introduced a method for the identification of leading leg from one walk cycle
(two successive steps). The non-rigid human body during a walking cycle has
a useful property, which assists us in recognizing the leading leg. Depending
on the 3D walk-direction, and on which is currently the leading leg, one leg or

the other practically obscures the visible area between the legs. During a walk-
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cycle the ratio of the visible leg-opening areas, together with the 2D direction
on the image-plane, can be used to identify which is the leading leg. I have
shown experimentally that the method is reliable and accurate. I summarized
the conditions necessary to the correct functioning.

I have listed the relationship between the leading leg and the ratio of surfaces
from two successive patterns in table form. Furthermore the limitations of the
method are also named. The leading leg as a discriminative feature is a novel

description of the gait.

3. Registration of partially overlapping and non-overlapping views by

utilizing the detected walk patterns.

I have shown experimentally that the registration of views can be done by
using the spatial position of walk patterns. I have showed that the leading leg
1s a stronger discriminative feature and the spatial accuracy of walk detection
1s sufficient for the computation of homographies.

I used known optimization procedures and I have compared the model error of
these methods. In case of non-overlapping views I utilized the line
homography and corresponding line fragments instead of point-to-point

COlTGSpODdeIlCGS.

6.2.2. Second thesis

The model-based, statistical description of the perceptible changes of
scene and environment is applicable to determine the geometrical model

of the plane-mirror, cast shadow and the horizon.

I have shown that the cumulative information which come from scene changing can
be modeled with Gaussian mixture and can be used in geometrical model estimation
problems. I worked out a framework for parametrical processing of motion statistics

and for the use in different geometrical scene analysis computations.
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The detected changes in the camera plane reflect the changes of the dynamic scene
and provide information about the position of camera and the geometrical properties
of the scene. The vertical planar surface, or shadow casts on the ground-plane occur
frequently in surveillance videos (both indoor and outdoor), and they inevitably cause
problems in further image-processing steps and reduce the processing system's
performance. A specific problem is the determination of horizontal vanishing line
(horizon) which describes the relative camera orientation to the world coordinate
system. These situations can be viewed as a geometrical optimization problem. To
solve this optimization task I retrieved the set of measurements from the parametrical
descriptors of motion statistics.

In summary, the investigated local co-motion statistics are feasible for the analysis of

camera view in case of unknown environmental conditions.

Published in [1][9][11][5][8]

1. The model based processing of motion statistics allows determination of

spatial features to sub-pixel accuracy.

I have justified experimentally that, the parametrical descriptors of motion
statistics can be used for the robust and accurate determination of 2D position
information for parameter computation tasks.

Briefly, the co-motion statistics are a numerical estimation of the concurrent
motion probability (conditional probability) of different pixels in the camera
plane. I investigated the theoretical background of the evaluation of such
statistics and I have given the condition of the parametrical description. The
analysis supports our empirical confidence in this statistical method.

Both the empirical and the theoretical results confirm that the method 1s robust
and 1s fairly insensitive to inaccuracy of the motion-mask. Based on our
investigations, the length (frame count) of video sequence necessary for the
robust extraction of correspondences may be estimated. The parameters in this
formula are the estimated motion-intensity (which is a descriptor of the scene

dynamics), and the detection error-rate of the motion-detector algorithm.
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2. Using global optimum search method for the determination of

geometrical model of camera-mirror scenes and cast shadow.

I proved that the geometrical model of planar mirror and cast shadow can be
described with a skew-symmetric (auto epipole) fundamental matrix. This
matrix determines a point-to-line transformation and it i1s formed from the
position of vanishing point (2D mirror pole).

I have defined an objective function from the geometrical features and
statistical characteristics. The model parameters are the arguments of the
objective function in its maximum, thus it leads to a global optimum search
task. I have shown experimentally the robustness and accuracy of the
proposed approach in both indoor and outdoor environmental conditions.

I have justified experimentally that the sub-pixel accuracy can be achieved.
The reduced spatial resolution of mput data does not affect the precision of
extracted features and the model parameters but enhances the running

capabilities of the implementation.

3. Determination of the horizontal vanishing line — which determines the
orientation of camera — by using the height information of objects

extracted from the motion statistics.

I have introduced a method which based on the statistical error propagation
and the measurement transformation into the model parameter space. I showed
that the computation of horizon can be originated in the same optimization
problem such the previous section but it operates in the parameter space of
lines namely in the Hough-space. It assumes that the data representation is
continuous instead of the discrete accumulator array in the Hough-space, thus
the formula of propagated error is expressed by Gaussian function. I have
shown experimentally that the estimated height of objects can be used for

horizon determination.
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6.2.3. Third thesis

Use of geometrical model for improved extraction of foreground image

mask in case of reflection and cast shadow.

I worked out video segmentation methods with the integration of geometrical
information into the decision process. I have shown experimentally that the resulted
Jforeground image mask is more accurate than the mask without using the geometrical

knowledge about the scene content.

During the processing of video sequences the basic feature extraction step is the
perception of changes and foreground objects. Reflections and cast shadows in
surveillance videos usually cause problems in image analysis. This 1s because they
appear 1n the foreground mask extracted by using an adaptive background model. In
turn, the inaccurate mask reduces the performance of the further image-processing
steps. Consequently, techniques for the avoidance of such disturbances constitute an
active current research area.

I introduced two different methods based on the estimated geometrical models; one
for the removal of strong shadow pixels and an other for the removal of reflected

pixels related to a valid foreground object, which can lead to better performance.

Published in [10][9][1]

1. The removal of object’s reflection from the foreground image mask based

on Bayes decision rule.

I have introduced the integration of the geometrical model and statistics into a
foreground-extraction method which i1s more reliable than previous
approaches. Based on the model, only the fundamental constraint can be used,
which is a point-line transformation. Because the co-motion statistics store
information about the position of concurrent points, the inclusion of the

appropriate component of the statistics into a class-conditional density
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function conveniently solves the identification of the reflection related to an
arbitrary point.

I have shown experimentally — using both indoor and outdoor videos — that the
detection error rate of foreground segmentation process can be reduced by
taking into account the presence of reflective surface and by using the

proposed post-processing method.

2. The removal of moving cast (strong) shadow from foreground image

mask.

I give a novel approach for the identification of cast shadow related to
foreground objects. The applied Bayesian iteration scheme is able to handle
the a prior information about the object-shadow configuration. The proposed
method is capable to remove the cast shadow regions from foreground image
mask 1n case of strong shadow too.

In case of shadow the motion statistics can be used for the estimation of
geometrical model only. This lack of spatial information is compensated by
using the Bayesian iteration completed with the knowledge of the geometrical
model. The proposed method uses the color based shadow segmentation in the

initialization stage.

6.3. Examples for applications

All the developed algorithms and implementations offer solutions for real
application problems.
The most important utilization of the methods is their integration into surveillance
systems. These systems need algorithm with the capability of real-time functioning
and robust operation.

The walk detection introduced in the first thesis is a useful procedure to scene
analysis and event detection in both indoor and outdoor configurations. These tasks
were implemented in the PPKEyes digital video surveillance system which is

operating in the university campus.
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In the second thesis the presented geometrical model estimation provides the
necessary information for improving the foreground image mask. It can be used to
remove the pixels related to a reflective surface. This situation is often occurred in
public places. This preprocessing step is important before using the foreground mask
in some higher level processing (object detection, feature extraction etc.).

The approaches presented in the last thesis are the applications of the
geometrical information determined in the previous thesis. Both classification

methods are novel and do not use a prior assumptions.
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