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Abstract 
 

Breast cancer prediction is a challenging area of medical engineering. In this study, I presented 

a novel breast cancer range-based and weighted-based prediction model based on machine 

learning and deep learning algorithms. However, the study branched into five branches. In the 

first one, a novel weighting algorithm was proposed and applied on the well-known BCSC 

dataset. In the second branch, a novel range-based breast cancer prediction model was proposed. 

While in the third branch, a fusion model of the best ensemble ML and DL models was designed 

and evaluated. The probabilistic model was applied again in the fourth fork but on the whole 

dataset computing the new distribution of the target column without any balancing operations. 

Three regression models are proposed, in the fifth and last section, using again the whole 

dataset.  

Within the initial branch of this research, I examined the impact of risk factor weighting and 

selection, along with testing three versions of a balanced dataset. The experiments conducted 

demonstrated that the weighting technique considerably improved accuracy and decreased 

errors. The overall test accuracy was 95.8%. 

In the second branch, a novel range-based breast cancer prediction model was introduced. 

The BCSC dataset was analyzed using a probabilistic model to determine the final prediction 

value for each case in the dataset.  

This new score was used to update the BCSC dataset, and the resulting modified dataset was 

then utilized to train an ensemble learning model using the Bayesian hyperparameters 

optimization method.  

The training process was conducted in two scenarios, one using the entire dataset and the other 

using a subset consisting of 67,633 samples. In both scenarios, the MCE, TPR, PPR, and FDR 

were computed in three cases, the first being the 0-variance scenario in which no error margin 

was allowed, while in the second and third cases, ±1 class-variance tolerance was applied (since 

very closely related subclasses yield similar results). 

The results demonstrated improvements in TPR, PPR, and accuracy for the (±1 and 

±2) variance scenarios for both the sub-dataset and entire dataset. Additionally, the new 

modified version of the BCSC dataset contained more detailed information about breast cancer 

prediction than the old version, which only indicated the presence of cancer without any 
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percentage. The new version of the BCSC dataset was available as supplementary material for 

future research.  

In the third branch, I proposed a range-based breast cancer prediction system that combines two 

different models: an LSTM deep learning model and an ensemble of boosted decision trees. 

Initially, I used a balanced range based BCSC dataset and preprocessed it by categorizing the 

classes into seven different categories.  

The new dataset was then split into training and testing sets, with a 25% ratio for the test set. 

The DL model consisted of a sequence input layer, one LSTM layer, one fully connected layer, 

and one SoftMax-classification layer. The ML model, on the other hand, comprised 30 decision 

tree classifiers trained using hyperparameters optimization and boosted learning approach. The 

final prediction was obtained by fusing the ML and DL scores. 

I performed experiments using five different training scenarios, involving different LSTM cells 

and training epochs. 

The fourth and fifth branch are performed on the original dataset but after applying the 

probabilistic model to get the target column in its range-based score. 

The fourth branch is a classification task by which some of the result categories of the target 

column (prediction score) is merged to minimize the difference between number of samples of 

these categories. The fifth branch is performed as a regression task in which the target column 

is treated as a continuous column. In both fourth and fifth branches, many ML and DL 

classification and regression models are trained and evaluated. The ensemble of ML and DL 

models are also used to improve the performance. All models are evaluated using many 

classification and regression metrics besides many statistical and medical analysis tools like 

Violin plots, variance plots and distribution plot. 

Results of fourth and fifth branches prove the high accuracy of the predicted range-based score 

in both classification and regression models. 

 

Keywords: 

Breast Cancer, Machine Learning, Deep Learning, Risk Factors, Cancer Prediction, BCSC 

Dataset, Risk Prediction, Regression Models.   
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Chapter 1 

Introduction 
 

1.1. Introduction 

Data analysis has become one of the fastest-growing fields in computer science, owing to the 

exponential growth in dataset sizes. Cancer prediction is among the fields benefiting from data 

analysis and Machine Learning (ML) algorithms for estimating cancer risk [1] [2] [3].  

The use of ML techniques can enhance the performance of cancer prediction, leading to a 

significant improvement (15%-20%) in estimation accuracy over the past few years [4]. Breast 

cancer prediction can identify potentially high-risk women and guide them towards improving 

their lifestyle, thereby avoiding future therapy and costs [5]. 

Known risk factors participate in causing half of cancer cases [6] [7]. Several risk factors 

contribute to breast cancer, including early menarche, late menopause, obesity, age at first birth, 

and hormone therapy, which impact the exposure duration of breast tissue to hormones that 

increase the risk of developing cancer [8] [9].  

The primary challenge in cancer diagnosis and prediction is the vast amount of data that cannot 

be managed using traditional manual methods (such as physician's observations). A more 

efficient and rapid approach is required to address this issue [10] [11] [12] [13].  

Thankfully, the rapid advancements in the field of computer science have enabled the extraction 

of valuable insights from large datasets, equipping healthcare organizations with effective tools 

for diagnosing and predicting cancer [6] [14] [15] [16]. 

 

1.2. Research Background 

Several breast cancer prediction systems have been developed in the past, utilizing 

various machine learning models such as Support Vector Machines (SVM), K-Nearest 

Neighbor (K-NN), Random Forests (RF), Decision Trees (DT), Neural Networks, Naïve Bayes 

(NB), and Logistic Regression (LR) [17] [18] [19] [20] [21].  

Some researchers have integrated deep learning techniques with image models to extract 

mammography breast image features and text-based risk factor information, resulting in 

improved prediction model accuracy [22].  
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Parameter optimization and ensemble learning methods have also been employed in some 

studies to significantly enhance the system's performance [21] [23] [24]. 

1.3. Research Importance 

Breast cancer is one of the most common types of cancer among women worldwide. The early 

prediction and detection of this disease can help in the therapy and safe lives. Machine learning 

algorithms have shown good results in predicting and detecting breast cancer. Such tools can 

assist the medical professionals and physicians in making better decisions. 

The importance of our research can be concluded in the following: 

1. Early detection: Machine learning algorithms can analyze and process big amounts of 

patient data and identify patterns that may not be apparent to human experts. By doing 

so, they can help physicians to identify breast cancer at an early stage when treatment 

is most effective. 

2. Personalized treatment: Machine learning algorithms can determine the most effective 

treatment plan for each patient based on their unique characteristics, such as age, 

medical history, and genetic information. 

3. Improved accuracy: Machine learning algorithms can analyze complex data sets and 

define changes that may not be noticeable to humans. This can lead to more accurate 

and reliable diagnoses. 

4. Cost-effective: By using machine learning algorithms to analyze cancer data, medical 

professionals can reduce the need for costly and invasive diagnostic tests, such as 

biopsies (especially in case of breast cancer). 

 

1.4. Open-Ended Questions 

Previous studies on cancer prediction have utilized popular machine learning models, while 

only a few have explored the concept of ensemble learning or combining multiple models. 

Several studies have employed the BCSC (Breast Cancer Surveillance Consortium) dataset, 

either partially or in its entirety, but none of them have analyzed the dataset's probabilistic 

distribution. Previous studies have approached the cancer prediction problem by providing 

specific binary results (yes or no). In our study, we aim to compute a range-based cancer score 

using a probabilistic model.  
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Here are the main research questions: 

How can we obtain a range-based breast cancer score? 

Which dataset is suitable for predicting breast cancer? 

What are the essential risk factors that are best-predicting breast cancer? 

What is the best approach to selecting the best combination of risk factors? 

How can we use machine learning and deep learning methods to predict breast cancer based on 

weighted selected risk factors? 

What is the best way to deal with unbalanced breast cancer datasets? 

How classification and regression differ in the problem of range-based breast cancer prediction? 

1.5. Research Aims 

The main aim of this study is to build a range-based breast cancer prediction system based on 

machine learning algorithms. Three parts are included in our work, including three specific 

objectives. In the first part, our focus is on selecting the best combination of risk factors by 

using a weighting methodology assigning a degree of importance to each risk factor. This part 

aims to guide the importance of each risk factor in the final prediction score (the more essential 

the risk factor, the more degree of importance). In the second part, a range-based breast cancer 

prediction is our objective. This part aims to make the cancer prediction technique predict risk 

with a percentage and not only (0/1) values. The final part aims to use the well-known LSTM 

deep learning architecture in the prediction of breast cancer in order to enhance performance. 

1.6. Scope of Research 

The breast cancer prediction system needs two specific tools; a good statistical dataset and a 

suitable prediction artificial intelligence approaches. To achieve our goals, three branches are 

involved in the current study: 

The first state-of-art of breast cancer prediction is based on assigning a weight value to each 

risk factor based on their importance. This mechanism allows us to select the most essential 

risk factors and provide them to the machine learning models.  

The second branch introduces a novel range-based breast cancer prediction system based on the 

weighted selected risk factors of the first branch. The model also uses the weighting 

methodology to achieve the best fusion of the BCSC's risk factors.  
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In the third part of this study, we developed a fusion model of two machine learning and deep 

learning models. To obtain the final prediction, Long-Short Term Memory (LSTM) and 

ensemble learning with hyper parameters optimization are used, and score-level fusion is used. 

1.7 Workflow 

The study starts with studying many pieces of research in the field of breast cancer prediction. 

The main limitations of these studies are summarized, and the novel state-of-art of the current 

research is clarified and organized. BCSC dataset is used as the main risk factor dataset. The 

dataset is not balanced so it needs some preprocessing steps before proceeding with the 

prediction part. In the balancing step, we suggest using three different balancing approaches, 

including the over-sampling, the down-sampling, and the mixed approach. In the next step, a 

novel methodology is proposed to define the degree of importance of each risk factor in order 

to select the most appropriate risk factors for the next prediction step. The method is based on 

many medical questionnaires and a statistical study of the most recent medical studies and 

related medical datasets. After defining the degree of importance of each risk factor, many 

training scenarios can be used to define the best combination of risk factors. 

The next part of the study introduced a novel range-based breast cancer prediction tool 

depending on giving a range-based score and not only (0/1) score. This part includes using the 

balanced version of the BCSC dataset and the weighting and selection mechanism of the first 

part. The new method depends on different statistics (previous medical knowledge, the 

likelihood of each risk factor given all prediction classes, cancer probabilities and non-cancer 

probabilities). The final prediction score is computed using the post-probability of the weighted 

combination of risk factors and the acquired statistical probabilistic model. In the next step, an 

ensemble learning model is suggested to achieve optimal performance. For the third part of this 

study, a fusion of machine learning and deep learning methods is proposed. Additionally, the 

outputs of the first two sections of this study could serve as inputs or auxiliary methods for the 

third part. 

The fourth and the fifth parts of this study included studying the original dataset with applying 

of the probabilistic model derived from the second part of the study. For the fourth part, the 

target column of the dataset is transformed into a range-based score and the adjacent categories 

are merged, while in the fifth part a regression task was performed so the target column is only 
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transformed into range-based scores without any merging. The dataset was then split into 

training and validation, and the SMOTE balancing algorithm was only applied to the training 

set. Many ML and DL classification and regression models were applied within those two parts. 

The ensemble learning of the best ML and DL models was also utilized. 

Classification and regression-based Evaluation metrics besides the statistical and medical 

analysis were all used in the evaluation process of the fourth and fifth branches. 
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Chapter 2 

Literature review 
 

2.1. Introduction 

Breast cancer is classified as one of the most common cancer types [25]. According to the 

World Health Organization (WHO), cancer is the second leading cause of death [26] [27]. 

Breast and oral cavity cancers are considered the causes of 25% of deaths around the world 

[25]. 

Based on cancer statistics from 2020, breast cancer constitutes 11.7% of all cancer records 

around the world [28]. 

From the death side, breast cancer was classified as the second deadliest cancer after lung cancer 

by a percentage of 6.9% [28]. 

All these previous facts lead to the importance of the prediction of breast cancer before actual 

diagnosis. Early prediction can reduce the cancer rate and help physicians predict cancer at its 

early stages. Fortunately, computer science algorithms have been incrementally developed and 

enhanced and can be used for the purpose of cancer prediction. Physicians themselves cannot 

process and analyze all the cancer data since it is huge and very related. Consequently, they 

need the efficiency of computer science algorithms that can handle large amounts of data in a 

short time. 

Many previous systems had been introduced in the field of breast cancer prediction. Some of 

them used the logistic regression approaches [29] [30] [31] [32], while others used the neural 

networks [29] [31] [33]. Other data mining algorithms like decision trees [29] [34], Naïve Bayes 

methods [34], Support Vector Machines [30] [31] [35], Random Forests (RF) [30] [31] [32], 

optimization algorithms [35], etc. 

Many datasets were used for breast cancer estimation. The Breast Cancer Surveillance 

Consortium dataset [36] is one of the most common datasets. It consists of 2,392,998 screening 

mammograms, 280,660 records and 13 risk factors. This dataset had been used in many pieces 

of research [34] [37]. Another international dataset is the Breast Cancer Information 

Management System (BCIMS) dataset consisting of 16,000 cases [38] and was used by studies 



20 
 
 

 

 

[39] [40]. Some other researchers collected their datasets from specialized medical centers or 

hospitals [41] [42]. 

 

2.2. Related Work 

Breast cancer prediction have received a good attention in the scientific researches. Many 

research centers and international institutions introduced papers in the field of cancer prevention 

and detection. In this section, I will introduce the most recent studies in this field with a 

comparative and analytical discussion. 

I will split the studies into two main parts; the first one deals with the general studies on breast 

cancer prediction, while the second one concentrates on the probabilistic-based approaches 

(since our second part of the study deals with the range-based cancer prediction). 

2.2.1. General breast cancer prediction methods 

Shieh et al. [43] proposed a breast cancer prediction model using the information of the clinical 

and polygenic risks. The Bayes estimation and conditional logistic regression models are used 

together to study the common effect of ordinary and polygenic risk factors on the future risk of 

breast cancer. The researchers used 486 cases of the BCSC dataset and found that prediction 

accuracy increased from Area under curve (AUC)=0.62 to AUC=0.65 after adding the 

polygenic risk to the model. They concluded that 18% of cases were classified as high-risk 

cases in the common model while it was only 7% for the ordinary risk factors model. 

In 2020, Rajendran  [34] and others used the supervised machine learning algorithms on class 

imbalanced data for the prediction of breast cancer on the BCSC dataset. In order to apply 

balancing, they used three approaches: Synthetic Minority Oversampling, under-sampling 

(Spread Subsample) and fusion of both techniques. They also used Bayes classifier, Bayes 

networks, Random Forests (RF) and random trees as classifiers. The best accuracy they 

obtained was 99.1% under FP (False Positive) equals 21%. The problem with research was that 

they used only 10,252 instances after applying the balancing techniques. The results also 

indicated a low sensitivity of 78.1% (low positive rate) while the accuracy was 99.1% 

(conflicting results). 

Li and Sundararajan [44] applied several machine learning approaches for the prediction of 

breast cancer. They used only 10000 cases and 8 risk factors of the BCSC dataset (menopause, 
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age, breast density, Body Mass Index (BMI), race, first birth age, number of first-degree 

relatives having breast cancer and hormone therapy). SVM and Bayes classifiers were used for 

the final risk estimation. They got 96.6% and 91.26% as accuracy for SVM and Bayes 

classification respectively. 

Hou et al. [33] introduced a model for the prediction of breast cancer of Chinese women using 

machine learning algorithms. They used 7127 cases of the BCIMS dataset. They chose specific 

risk factors based on the fact that they must be known and collected by the same measurement 

techniques. Consequently, 10 risk factors had been chosen and different prediction models were 

used like RF, deep neural networks DNN and XGBoost. They got an accuracy of 72.8 for both 

DNN and RF, while the XGBoost accuracy was 74.2%. 

Kakileti et al. [32] evaluated the performance of many machine learning classifiers for the 

prediction of breast cancer risk under incomplete datasets. They evaluated the RF, Logistic 

Regression (LR) and custom Neural Network (NN). The Area Under Curve (AUC) was used 

for the performance evaluation. The entire BCSC dataset was divided into 75% for training and 

25% for test. AUC achieved 0.645, 0.634 and 0.649 for LR, RF and NN respectively. The 

custom NN achieved a better performance in the case that less than 50% of the dataset was 

missing. 

Ming et al. [45] collected a breast cancer prediction dataset from Geneva University Hospitals. 

Their dataset included 112587 individuals and 14 variables. They applied different ML 

algorithms like Markov mixed model, adaptive boosting, and RF. They obtained accuracy 

between 84.3% and 88.9%. However, the dataset variables related not only to breast cancer but 

also to other tissues. The study needs more risk factors including hormone therapy, 

mammographic information, other body indexes, etc. 

Lang et al. [46] predicted oropharyngeal cancer using 3D Convolutional Neural Networks (3D 

CNN) on a dataset consisting of 675 breast cancer cases. They split the dataset into training 

(412 cases of the Oropharynx Cancer (OPC) dataset and 263 cases of the Head and Neck 

Squamous Cell Carcinoma (HNSCC) dataset) and validation (90 cases of the Head-Neck-PET-

CT (HN PET-CT) dataset). For the test, they used 80 cases from the HN1 dataset. The 

experiments showed that the Area Under Curve (AUC) was 0.81. 
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In 2022, Ashokkumar et al. [47] predicted the lymph nodes of the breast using the Kohonen 

self-organizing ANN. They used a dataset of 10,150 images of 850 patients. Their approach 

achieved 94% accuracy. 

Recently, Saleh et al. [48]  introduced a deep learning-based breast cancer prediction model. 

They used the Recurrent Neural Network (RNN) with five hidden layers and one output layer. 

Three feature selection models were proposed. The Breast Cancer Wisconsin Diagnostic 

(BCWD) dataset was used in their study. It had 30 factors (features) and one class (cancer 

prediction 0 or 1). The results indicated an accuracy of 95.18%. 

Uddin et al. [49] used the well-known Wisconsin Breast Cancer Dataset (WBCD) dataset with 

different machine learning methods, including SVM, RF, K-NN, DT, NB, LR, NB, AdaBoost, 

Multi-layer perceptron MLP, nearest cluster classifier (NCC), and voting classifier (VC). All 

models were evaluated using accuracy, precision, recall and F1-score (a weighted average of 

precision and recall indicating the accuracy of a model). Results showed that the voting 

classifier achieved the best accuracy 98.77%. The size of used dataset was small (569 records). 

Recently, in 2023, Botlagunta et al. [50] introduced a diagnosis and classification model of 

breast cancer using machine learning algorithms. Many ML algorithms were used and evaluated 

using accuracy, ROC, and AUC. Results indicated that the DT classifier achieved the best 

performance of 83% accuracy and 0.87 AUC. The used dataset was of a small size 

(5176 records) and the prediction was either yes or no. 

 

2.2.2. Probabilistic-based breast cancer prediction methods 

Kumar et al. [51] introduced the conditional probability aspect of Bayes theorem to predict 

liver cancer. Their study utilized a dataset of 20 patients from the BUPA research lab, which 

contained seven attributes such as Mean corpuscular volume, Alkaline phosphate, alkaline 

aminotransferase, aspartate aminotransferase, gamma trans peptidase, the number of half-pints 

equivalent to alcohol, and a selector for dataset division into training and validation. The 

researchers computed various probabilities using this dataset, including the probability of an 

individual having liver cancer and the conditional probability of a positive/negative test result 

given the presence or absence of the disease. To analyze the dataset and apply the NB classifier, 

they used the Weka tool. However, the accuracy of their results was only 50%, indicating that 

their methodology lacked pre-processing steps and the dataset was too small. 
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In their study on predicting survivability after breast cancer surgery, Al-Jawad et al. [18] 

employed Bayesian Network and SVM methods. Their research utilized Haberman's survival 

dataset, which consisted of 306 cases, including 225 confirmed cancer cases that survived for 

five years after the surgery. The authors used the Weka tool to apply SVM and BN classifiers 

and computed five statistical features (mean, median, standard deviation, maximum, 

and minimum values) for the three attributes of the dataset. They also calculated the correlation 

coefficients between pairs of features (Age and survival status: 0.067, Year and survival status: 

-0.00477, Positive nodes and survival status: 0.28677). However, their methodology suffered 

from low performance due to the use of fixed values for the optimizable parameters of SVM 

and BN models. Their results showed that SVM outperformed the Bayesian Network by 6.88%, 

achieving 73.78% and 74.77% for Recall and Precision metrics, while the BN achieved 78.22% 

and 64.47% for Recall and Precision, respectively. The study's main limitations were the small 

size of the dataset and the fixed learning parameters. 

Witteveen et al. [19] conducted a study in 2018 to compare logistic regression with various 

Bayesian Networks (BNs). They utilized a subset of data from the Netherlands Cancer Registry, 

comprising 37,320 samples of women with early-stage breast cancer between 2003 and 2006. 

To improve the performance of the BNs architectures, the authors employed Bayesian network 

classifiers, correlation coefficients, constraint-based learning methodologies, and score-based 

learning models. AUC evaluation metrics were used to assess the different models, and 

an external validation set from the NCR from 2007 and 2008 (N = 12,308) was obtained to 

apply these validations. Although logistic regression performed better in most experiments of 

the sub-dataset analysis, BNs outperformed regression for SP prediction for the high and low-

risk subsets. The researchers concluded that the coefficient estimators' value had no correlation 

with the changes in the other variables' values in the case of BNs. 

Yang et al. [52] conducted a study in which they fused three different classifiers (Bayesian 

and Markov models, and artificial neural network) to achieve optimal efficiency. They utilized 

Bayesian and Markov models to establish a connection between the previous and current 

incidence of cancer, and the outputs of these two classifiers were fed back into the Neural 

Network classifier. To prepare the cancer dataset, a pre-processing step was applied, including 

normalization and missed data manipulation. They used twenty attributes from a dataset of 

36,000 cases, including 10,500 patients with lung cancer, 13,500 with liver cancer, and 12,000 
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with stomach cancer. The authors partitioned the dataset into 75% training and 25% test. The 

experimental results demonstrated that the overall training accuracy was 73.55%, 76.07%, and 

75.63% for the ANN, Markov model, and the proposed fusion methodology, respectively. For 

the test set, the corresponding accuracies were 68.78%, 70.63%, and 72.47%. However, the 

main limitation of their approach was the small F1-score, indicating that their proposed method 

suffered from false positive and false negative results, possibly due to the data being collected 

from various sources. The authors also compared their results with other classifiers, such as RF, 

SVM, and Extreme Learning model (ELM). While their approach surpassed ELM, the 

performance of SVM and RF was superior. 

In a study using the BCSC dataset, breast cancer prediction was performed on 154,899 records 

using multiple machine learning algorithms, including LR, SVM, NB, and Bayesian 

Network [13]. The results indicated that the NB classifier achieved the highest accuracy in 

predicting the likelihood of breast cancer, while SVM and BNs had lower performance. 

Another research used Next-Generation Sequencing (NGS) methodology combined 

with machine learning algorithms for breast cancer prediction [53]. The National Center for 

Biotechnology Information (NCBI) dataset was employed to extract NGS data samples from 

four different categories, comprising 1580 samples. The sequence features were extracted, and 

various machine learning classifiers, such as K-NN, SVM, NB, AdaBoost, DT, RF, and 

gradient boosting, were utilized. The evaluation showed that the decision tree 

classifier achieved the highest accuracy of 94.30%. 

Savic et al. [54]  conducted a study on machine learning models for predicting the quality of 

life for breast cancer patients. They utilized two datasets, including the BcBase early breast 

cancer prediction dataset and the Örebro dataset (ORB) prostate cancer dataset. The authors 

evaluated several machine learning algorithms, such as RF, SVM, Naïve Bayes, K-NN, 

and decision trees, and examined two types of models, namely centrally trained and federated 

models. The results demonstrated that both models accurately predicted short-term predictors, 

while centrally trained models outperformed federated models for long-term predictors. 

However, the precision and recall values were low in both models. 

Guo et al. [23] introduced an MLP-based cancer prediction model. The authors 

utilized ensemble learning to enhance the multi-layer perceptron (MLP) classifier's 

performance by optimizing specific parameters, such as the number of input features, hidden 
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layers, neurons in each layer, and weight values. The experiments were conducted on 

the Wisconsin Breast Cancer Database (WBCD), and the accuracy obtained using the MLP 

classifier and parameter optimization was 98.79%. 

Combining information from multiple models can improve prediction accuracy, which is 

beneficial for both healthcare providers and patients. BRCAPRO is a widely used model that 

predicts breast cancer risk based on family history, but it has a significant limitation of not 

considering non-genetic risk factors. To address this issue, Guan et al. [55] expanded 

BRCAPRO by integrating it with another popular model, BCRAT (Gail), which utilizes a 

mostly complementary set of risk factors, many of which are non-genetic. They explored two 

approaches for combining BRCAPRO and BCRAT: (1) modifying the penetrance functions in 

BRCAPRO using relative hazard estimates from BCRAT, and (2) training an ensemble 

model that takes predictions from both models as input. Using simulated data and data from 

Newton-Wellesley Hospital and the Cancer Genetics Network, they demonstrated that 

the combination models outperformed both BRCAPRO and BCRAT. In the Cancer Genetics 

Network cohort, they showed that the proposed BRCAPRO + BCRAT penetrance modification 

model performed comparably to IBIS, an existing model that combines detailed family history 

with non-genetic risk factors. 

In a study by Hamedani et al. [56], they evaluated three Uncertainty quantification (UQ) 

models for classifying breast tumor tissue types: Mont Carlo-dropout (MCD), Bayesian 

Ensemble, and MCD Ensemble. To improve classification accuracy and solve the problem 

of limited data in the Wisconsin Diagnostic Breast Cancer (WDBC) dataset used in this 

research, they utilized transfer learning techniques and a pre-trained Convolutional Neural 

Network (DenseNet121). They compared the three proposed models based on their ability to 

estimate the reliability of classification using novel performance metrics designed to assess the 

estimated uncertainty. Quantitative and qualitative analyses demonstrated that the models 

exhibited high uncertainty in misclassifications, which is crucial in determining the risk of 

medical diagnosis errors. By utilizing these new evaluation criteria, they aim to determine when 

it is safe to rely on the deep neural network's output. Experiments proved that the Bayesian 

Ensemble model provided the most reliable results. 

Leventi et al. [57] implemented a probabilistic neural network for the aim of cancer prediction. 

They applied many steps to reach the final predication. First, they applied the data 
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preprocessing, preparation and embedding. Then, the neural network was trained and the 

decision boundary was adapted. After that, the neural network posterior predictive check (PPC) 

was performed. Finally, the decision boundary is back transformed into actual feature space 

and reasoned. In their experiments, they used the breast Cancer Wisconsin (Diagnostic) dataset 

(consisting of 10 columns and 569 records). They achieved an accuracy of 95.32% on the test 

set. Their dataset was small, and the accuracy was low according to the nature of the dataset. 

Hussain et al. [58] introduced a breast cancer prediction system based on mammography images 

and deep convolution networks. They applied many steps to make the final prediction. First, 

they extracted image features (handcraft) like texture, scale-invariant features (SIFT), 

morphological features, Fourier descriptors, and entropy-based features. Then, the extracted 

features were fed into the machine learning classifiers for the classification step. Many ML and 

DL models, including SVM, Naïve Bayes, DT, GoogleNet, and AlexNet. were experimented. 

GoogleNet model achieved the best accuracy with 99.26% and AUC of 0.998, while AlexNet 

achieved accuracy of 99.26% and AUC of 0.9996. Their used dataset was small. 

Recently in 2023, Kayikci et al. [59] designed a breast cancer prediction system based on gated 

attentive multimodal deep learning by which data from different resources were combined 

(clinical, copy number alternation and gene expression resources). In the first step of their 

method, stacked features were extracted using sigmoid gated attention probabilistic model, 

while in the second step, the classification was performed using a combination of flatten, dense 

and dropout layers. They used the METABRIC dataset consisting of 1980 records. They got 

0.95, 91.2%, 84.1%, and 79.8% for AUC, accuracy, precision, and recall, respectively. Their 

dataset was small, and the model predicted the presence or absence of breast cancer only. 

Table 2.1 includes a detailed comparison between previous studies. 

Table 2.1. A detailed comparison between previous studies state-of-art 

Researcher + 

Reference 

Methodology Dataset Main Results Train/Test 

set 

Main 

Limitations 

Shieh et al. 

[43] 

Bayes 

estimation, 

logistic 

regression 

BCSC dataset AUC 

increased 

from 0.62 to 

0.65 after 

adding 

polygenic 

risk. 18% 

classified as 

Test Low 

accuracy 

binary 

prediction 
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high risk in 

common 

model. 

Rajendran 

[34] 

Supervised 

ML 

algorithms 

BCSC dataset Best 

accuracy: 

99.1%, low 

sensitivity 

(78.1%) 

Test Small 

dataset 

(10,252 

instances), 

conflicting 

results 

Li and 

Sundararajan 

[44] 

SVM, Bayes 

classifiers 

BCSC dataset 

(10,000 cases, 

8 risk factors) 

SVM 

accuracy: 

96.6%, 

Bayes 

accuracy: 

91.26% 

Test They take a 

small part 

of BCSC 

dataset not 

all the 

dataset, 

binary 

prediction 

Hou et al. 

[33] 

RF, DNN, 

XGBoost 

BCIMS dataset 

(7,127 cases) 

DNN and RF 

accuracy: 

72.8%, 

XGBoost 

accuracy: 

74.2% 

Test Small 

dataset 

binary 

prediction 

Kakileti et al. 

[32] 

RF, LR, 

custom NN 

BCSC dataset 

(75% training, 

25% test) 

AUC: LR: 

0.645, RF: 

0.634, NN: 

0.649 

Test Custom NN 

performs 

better with 

less missing 

data 

binary 

prediction 

Ming et al. 

[45] 

Markov 

mixed model, 

boosting, RF 

Geneva 

University 

Hospitals 

dataset 

(112,587 

individuals) 

Accuracy: 

84.3% - 

88.9%, need 

more risk 

factors 

Test Variables 

related to 

other 

tissues, 

need more 

risk factors  
Lang et al. 

[46] 

3D CNN Breast cancer 

cases (675) 

AUC: 0.81 Test Small 

dataset 

binary 

prediction 

Ashokkumar 

et al. [47] 

Kohonen 

self-

organizing 

ANN 

Dataset of 

10,150 images 

(850 patients) 

Accuracy: 

94% 

Test Limited 

dataset size 

binary 

prediction 
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Saleh et al. 

[48] 

RNN BCWD dataset 

(30 factors, 1 

class) 

Accuracy: 

95.18% 

Test Small 

dataset 

binary 

prediction 

Uddin et al. 

[49] 

Various ML 

methods 

Wisconsin 

Breast Cancer 

Dataset (569 

records) 

Voting 

classifier: 

98.77% 

accuracy 

Test Small 

dataset (569 

records) 

Botlagunta et 

al. [50] 

Various ML 

algorithms 

Dataset with 

5,176 records 

DT 

classifier: 

83% 

accuracy, 

0.87 AUC 

Test Small 

dataset 

(5,176 

records), 

binary 

prediction 

kumar et al.  

[51] 

Naïve Bayes 

classifier 

BUPA 

research lab 

dataset (20 

patients) 

Accuracy: 

50% 

Test Small 

dataset (20 

patients), 

lack of pre-

processing 

Al-Jawad et 

al. [18] 

Bayesian 

Network, 

SVM 

Haberman's 

survival 

dataset (306 

cases) 

SVM recall: 

73.78%, 

Precision: 

74.77%, BN 

recall: 

78.22%, 

Precision: 

64.47% 

Test Small 

dataset (306 

cases), 

fixed 

learning 

parameters 

binary 

prediction 

Annemieke et 

al. [19] 

Logistic 

regression, 

BNs 

Netherlands 

Cancer 

Registry subset 

(37,320 

samples) 

BNs 

outperformed 

regression in 

some cases 

- Binary 

prediction 

Yang et al. 

[52] 

Bayesian and 

Markov 

models, ANN 

Cancer dataset 

(36,000 cases) 

Training 

accuracy: 

ANN: 

73.55%, 

Markov 

model: 

76.07%, 

Fusion: 

75.63% 

Train False 

positive and 

false 

negative 

results, data 

collected 

from 

various 

sources 

binary 

prediction 

Li et al. [13]  Logistic 

Regression, 

BCSC dataset 

(154,899 

records) 

Naïve Bayes 

achieved 

- Binary 

prediction 
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SVM, Naïve 

Bayes, BN 

highest 

accuracy 

Kurian et al. 
[53] 

Multiple ML 

classifiers 

NCBI dataset 

(1,580 

samples) 

Decision tree 

achieved 

highest 

accuracy 

(94.30%) 

Test Binary 

prediction 

Savic et al. 

[54] 

RF, SVM, 

Naïve Bayes, 

K-NN, 

decision trees 

BcBase and 

ORB datasets 

Centrally-

trained 

models 

outperformed 

federated 

models 

Test Low 

precision 

and recall 

values 

Binary 

prediction 

Guo et al. 

[23] 

MLP 

classifier 

WBCD dataset Accuracy: 

98.79% 

Test Binary 

prediction 

Guan et al. 

[55] 

Combination 

of 

BRCAPRO 

and BCRAT 

Simulated 

data, Newton-

Wellesley 

Hospital, 

Cancer 

Genetics 

Network 

Combination 

models 

outperformed 

individual 

models 

- Small 

dataset, 

limited non-

genetic risk 

factors 

Hamedani et 

al. [56] 

Monte Carlo-

dropout, 

Bayesian 

Ensemble, 

MCD 

Ensemble 

Wisconsin 

Diagnostic 

Breast Cancer 

dataset 

(WDBC) 

Bayesian 

Ensemble 

provided 

most reliable 

results 

- Limited 

data, use of 

transfer 

learning 

techniques 

Leventi et al. 

[57] 

Probabilistic 

neural 

network 

Breast Cancer 

Wisconsin 

(Diagnostic) 

dataset 

Accuracy: 

95.32% 

Test Small 

dataset, low 

accuracy 

for breast 

cancer 

prediction 

Hussain et al. 

[58] 

Deep 

convolution 

networks 

Mammography 

images 

GoogleNet: 

99.26% 

accuracy, 

AlexNet: 

99.26% 

accuracy 

Test Small 

dataset, 

Binary 

prediction 

Kayikci et al. 

[59] 
Gated 

attentive 

multimodal 

deep learning 

METABRIC 

dataset (1,980 

records) 

AUC: 0.95, 

accuracy: 

91.2%, 

precision: 

84.1%, 

recall: 79.8% 

Test Small 

dataset, 

Binary 

prediction 
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2.2.3. Breast cancer datasets 

Table 2.2 includes a comparison between the utilized breast cancer prediction datasets, with 

information related to the studies used them and the best obtained result. 

Table 2.2. A detailed comparison between utilized datasets. 

Dataset Specifications Outcome (Target) Studies Used Best Result 

Obtained 

BCSC 280660 records 

and 12 columns  

Cancer prediction 

(Yes: 1, No: 0) 

Shieh et al. 

[43], 

Rajendran 

[34]  

Li and 

Sundararajan 

[44], Kakileti 

et al. [32], Li 

et al. [13] 

AUC 

increased to 

0.65 (Shieh et 

al.) 

Accuracy: 

99.1% with 

low sensitivity 

91.1%  

BCIMS 7,127 cases, 10 

risk factors 

Cancer prediction 

(Yes: 1, No: 0) 

Hou et al. 

[33] 

74.2% 

accuracy 

(XGBoost) 

Geneva 

University 

Hospitals 

112,587 

individuals, 14 

risk factors 

Breast cancer 

lifetime risk 

predictions (near-

population risk, 

Moderate risk, 

High risk) 

Ming et al. 

[45] 

Accuracy: 

88.9% 

Breast Cancer 

Wisconsin 

Diagnostic 

(BCWD) 

899 records, 30 

risk factors, 1 

class 

Cancer prediction 

(Yes: 1, No: 0) 

Saleh et al. 

[48] 

95.18% 

accuracy 

Wisconsin 

Breast Cancer 

569 records, 10 

risk factors 

Cancer prediction 

(Yes: 1, No: 0) 

Uddin et al. 

[49] 

Hamedani et 

al. [56] 

Guo et al. 

[23] 

Leventi et al. 

[57] 

98.79% 

accuracy 

Special Dataset 5,176 records Cancer prediction 

(Yes: 1, No: 0) 

Botlagunta et 

al. [50] 

83% accuracy, 

0.87 AUC (DT 

classifier) 

Haberman's 

survival 

306 cases, 3 

factors only 

Survival status (1 

or 2) 

Al-Jawad et 

al. [18] 

78.22% recall, 

74.77% 

precision (BN) 
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Netherlands 

Cancer 

Registry 

37,320 samples, 

6 factors 

Cancer risk 

prediction (Yes: 1, 

No: 0) 

Annemieke et 

al. [55] 

BNs 

outperformed 

regression in 

some cases 

Cancer dataset 36,000 cases Cancer risk 

prediction (Yes: 1, 

No: 0) 

Yang et al. 
[52] 

76.07% 

accuracy 

(Markov 

Model) 

NCBI 1,580 samples 

(sequence data) 

Cancer risk 

prediction (Yes: 1, 

No: 0) 

Kurian et al. 

[53] 

94.30% 

accuracy (DT) 

BcBase and 

ORB 

Not specified Cancer risk 

prediction (Yes: 1, 

No: 0) 

Savic et al. 

[54] 

Centrally-

trained models 

outperformed 

federated 

models 

Simulated 

data, Newton-

Wellesley 

Hospital, 

Cancer 

Genetics 

Network 

Not specified Genetic risk 

prediction (Yes or 

No) 

Guan et al. 

[55] 

Combination 

models 

outperformed 

individual 

models 

Mammography 

images 

Not specified Cancer prediction 

(Yes, No) 

Hussain et al. 

[58] 

GoogleNet: 

99.26% 

accuracy 

METABRIC 1,980 records Breast cancer 

classification (6 

types luminal A, 

luminal B, HER2-

enriched, basal-like 

and normal-like) 

Kayikci et al. 

[59] 

AUC: 0.95, 

accuracy: 

91.2% 

 

2.2.4. Related work summary 

These studies introduced a broad range of predictive models for cancer risk, utilizing methods 

such as logistic regression, supervised machine learning algorithms, support vector machines, 

random forest, deep learning networks, XGBoost, and convolutional neural networks, among 

others. These previous studies were applied on several datasets of different sizes, from small 

ones with only a few patients to more extensive ones containing thousands of records.  

The best models achieved accuracy rates ranging from the mid-70s to mid-90s percentile, with 

a few cases reaching above 99% accuracy and all these studies used a small dataset. 
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However, all these models focus on binary prediction, dividing cases into "cancer" or "non-

cancer" categories.  

The limitations of these approaches are evident in studies that highlighted low precision, low 

recall, and false positives or negatives as significant issues.  

Additionally, while several datasets were utilized, many studies were limited by the small size 

of the datasets. Some other constraints highlighted included the limited number of risk factors 

and the binary nature of the predictions. 

Based on these observations, a range-based prediction model for cancer risk could be a valuable 

addition to the current state of art in this field. A range-based model would be better suited to 

reflect the complex nature of cancer risk, which often isn't binary but exists on a spectrum. This 

model could potentially provide more accurate and reasonable information for decision-making 

and individualized patient care. 

One of the primary focuses of the new model should be incorporating larger datasets to ensure 

robust training and validation.  

Additionally, including more different risk factors, possibly integrating genomic, proteomic, 

and lifestyle data, could help create a more holistic risk prediction model.  

As some studies noted, models that incorporated more risk factors tended to perform better, 

suggesting this could be a valuable idea to explore.  

Furthermore, it would be interesting to analyze the impact of using a range-based prediction 

model on the precision, recall, and overall accuracy of predictions. 

Therefore, I propose a research project aiming to develop and validate a range-based cancer 

prediction model.  

 

This model should utilize a comprehensive set of risk factors and be trained on large, diverse 

datasets to provide a more refined and precise understanding of an individual's cancer risk. In 

doing so, it would address the limitations of previous studies and potentially offer a more 

effective tool for cancer prediction. 
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Chapter 3 

Materials and methods 
 

3.1. Dataset 

The present study utilizes the BCSC dataset, which comprises 280,660 records and 12 risk 

factors detailed in Table 3.1. Additionally, the dataset contains a variable named "count," which 

indicates the frequency of each record within the dataset, as specified in the BCSC dataset. 

Table 3.1 shows the details of the BCSC datasets and its risk factors. 

Table 3.1. Description of the breast cancer dataset. 

No. Risk Factor Subcategory Definition Percentage 

1 Menopause Pre 0 23.58% 

1 Menopause Post or age>55 1 68.76% 

1 Menopause Unknown 9 7.66% 

2 Age group Group1 35-39 1.77% 

2 Age group Group2 40-44 12.1% 

2 Age group Group3 45-49 16.15% 

2 Age group Group4 50-54 17.9% 

2 Age group Group5 55-59 13.95% 

2 Age group Group6 60-64 11.1% 

2 Age group Group7 65-69 9.58% 

2 Age group Group8 70-74 8.48% 

2 Age group Group9 75-79 6.06% 

2 Age group Group10 80-84 2.91% 

3 Density Almost entirely fatty 1 6.19% 

3 Density Scattered fibro-

glandular densities 

2 32.69% 

3 Density Heterogeneously dense 3 28.17% 

3 Density Extremely dense 4 5.68% 

3 Density Unknown or other 

indexes 

9 27.26% 

4 Race white 1 72.63% 

4 Race Asian/Pacific Islander 2 4.3% 

4 Race black 3 5.09% 

4 Race Native American 4 1.19% 

4 Race other/mixed 5 0.92% 

4 Race unknown 9 15.87% 

5 Hispanic No 0 73.1% 

5 Hispanic Yes 1 6.58% 
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5 Hispanic Unknown 9 20.32% 

6 BMI 10-24.99 1 21.27% 

6 BMI 25-29.99 2 13.6% 

6 BMI 30-34.99 3 6.05% 

6 BMI 35 or more 4 3.25% 

6 BMI unknown 9 55.83% 

7 Age at first birth (agefirst) Age<30 0 30.18% 

7 Age at first birth (agefirst) Age 30 or greater 1 5.9% 

7 Age at first birth (agefirst) Nulliparous 2 8.41% 

7 Age at first birth (agefirst) unknown 9 55.51% 

8 Number of first degree 

relatives with breast 

cancer (nrelbc) 

zero 0 71.81% 

8 Number of first degree 

relatives with breast 

cancer (nrelbc) 

one 1 12.36% 

8 Number of first degree 

relatives with breast 

cancer (nrelbc) 

2 or more 2 0.65% 

8 Number of first degree 

relatives with breast 

cancer (nrelbc) 

unknown 9 15.18% 

9 Previous breast procedure 

(brstproc) 

no 0 71.97% 

9 Previous breast procedure 

(brstproc) 

yes 1 17.57% 

9 Previous breast procedure 

(brstproc) 

unknown 9 10.46% 

10 Last mammogram before 

the index mammogram 

(lastmamm) 

negative 0 75.22% 

10 Last mammogram before 

the index mammogram 

(lastmamm) 

false positive 1 1.42% 

10 Last mammogram before 

the index mammogram 

(lastmamm) 

unknown 9 23.36% 

11 Surgical menopause natural 0 30% 

11 Surgical menopause surgical 1 17.86% 

11 Surgical menopause unknown or not 

menopausal 

9 52.14% 

12 Hormone therapy no 0 30.47% 

12 Hormone therapy yes 1 28.56% 

12 Hormone therapy unknown 9 40.97% 

13 Count - Frequent of each record 
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14 Cancer prediction Cancer 

No cancer 

1 3.32% 

0 96.68% 

The current study uses the entire BCSC dataset, taking into account the "count" column. 

3.2. Methodologies 

In the current study, I suggest three connected branches of the breast cancer prediction range-

based model. The first branch of my study is a novel risk factor weighted-based breast cancer 

prediction model that is applied on the entire BCSC dataset. In the second branch, I suggest a 

novel approach to create a range-based machine learning breast cancer prediction model, while 

in the last step, I used the deep learning models to create a robust range-based cancer prediction 

model. Figure 3.1 shows the general architecture of the proposed study. 

 

Figure 3.1. General branches of my study 

3.3. First branch (Weighted-based breast cancer prediction 

model) proposed methodology 

Figure 3.2 illustrates the risk-estimation model for breast cancer, where the BCSC dataset is 

sourced from http://www.bcsc-research.org/ and all risk factors are considered. To ensure that 

each risk factor has an equal impact on the final risk estimation, the dataset is normalized 

using Equation 3.1. 

Risk_factori=Risk_factori/max(Risk_factori); i=1,2,…,M  (3.1) 

Where M is the number of risk factors. The normalization step makes the value of each risk 

factor ranging from 0 to 1. 

http://www.bcsc-research.org/
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Figure 3.2. Weighted-based cancer prediction methodology. 

The next step in the process involves balancing the dataset to address the significant imbalance 

between the two target categories in the original BCSC dataset. With only 3.32% of samples 

belonging to the "1" category and 96.68% belonging to the "0" category, the dataset is highly 

unbalanced, which can result in inaccurate predictions from any classifier trained on it.  

To address this issue, three balancing approaches were used: oversampling, where the "1" 

category samples are duplicated many times to increase their percentage; down sampling, where 

some of the majority-class samples are removed to decrease their percentage; and a combination 

of oversampling and down sampling to achieve the desired balance. In this study, the 

oversampling technique involves selecting the minority class samples with the highest "count" 

value. These samples are considered to be more influential due to their higher representation 

within the minority class. By increasing their number through oversampling, the goal is to 

balance the class distribution and mitigate the potential bias caused by the class imbalance. 

The third step involves applying a weighting algorithm to the dataset. Two materials were used 

to create an accurate weighting algorithm. First, a questionnaire was sent to 40 cancer specialists 

to establish medical knowledge and determine the impact of each risk factor on the final score 

of cancer risk. Second, international medical reports were analyzed to provide another 

perspective on the impact of breast cancer risk factors. 
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3.3.1. The proposed risk factor weighting methodology: 

Equation 3.2 is used to define the degree of importance (DOI) of each risk factor based on the 

analysis of the questionnaire results. The DOI is calculated using the high-risk (Hi) and 

medium-risk (Mi) percentages of each risk factor. 

𝐷𝑂𝐼𝑖
𝑄 = 𝐻𝑖 ∗ 0.6 + 𝑀𝑖 ∗ 0.4                  (3.2) 

The analysis of the questionnaire reveals that factors such as the number of first-degree relatives 

with breast cancer (nrelbc) and hormone therapy have the highest high-risk levels, while age, 

menopause, density, and race have the highest medium-risk levels.  

Hispanic, breast procedure (brstproc), and surgical menopause are identified as having the 

lowest risk levels. Factors with a high DOI (more than 0.4) include nrelbc, age, and hormone 

therapy. Factors such as age at first birth, menopause, density, body mass index (BMI), last 

mammogram before the index mammogram (lastmamm), and race have medium DOI (between 

0.3 and 0.4), while Hispanic, brstproc, and surgical menopause have low DOI (less than 0.3). 

The international medical reports provide different opinions on the importance of risk factors. 

These reports were analyzed and the information about risk factors was compiled and classified 

according to the number of times the factors were mentioned in the list of essential risk factors 

(EssNumi) and secondary-risk factors (SecNumi).  

The risk degree DOIi
R was then calculated using Equation 3.3, which considers the essential 

and secondary risk factors. The value of DOIi
R is calculated by summing up 90% of the essential 

risk factor effect and 10% of the secondary risk factors that have been identified in the medical 

studies that were analyzed. 

𝐷𝑂𝐼𝑖
𝑅 =

1

n
∗ (0.9 ∗ ∑ 𝐸𝑠𝑠𝑁𝑢𝑚𝑖

𝑛
𝑗=1 + 0.1 ∗ ∑ 𝑆𝑒𝑐𝑁𝑢𝑚𝑖

)𝑛
𝑗=1 ,      1 ≤ 𝑗 ≤ 𝑛             (3.3) 

Where n is the number of medical studies that have been analyzed.  

The final DOI (DOIi
F) is determined by combining the questionnaire-based degree of 

importance (DOIi
Q) and the international medical reports-based degree of importance (DOIi

R), 

as suggested in Equation 3.4. The suggested training weight (STW) is then inferred based on 

the final DOI (DOIi
F), using Equation 3.5. 
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To summarize, the risk factors weights are determined based on the analysis of a questionnaire 

and international medical reports. The questionnaire-based degree of importance (DOIi
Q) and 

the international medical reports-based degree of importance (DOIi
R) are combined to calculate 

the final DOI (DOIi
F), which is used to determine the suggested training weight (STW). 

DOI𝑖
𝐹 =

𝐷𝑂𝐼𝑖
𝑄

+𝐷𝑂𝐼𝑖
𝑅

2
   (3.4) 

𝑆𝑇𝑊𝑖 = {
round(DOI𝑖

𝐹 ∗ α)                𝑖𝑓 DOI𝑖
𝐹 ≥ T1 

round(DOI𝑖
𝐹 ∗ β)                𝑖𝑓 DOI𝑖

𝐹 ≥ T2

1                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}   (3.5) 

Where α and β are experimental values changing according to different datasets, different risk 

factors and different problems. For our problem α = 6 and β = 5. T1, T2 are also experimental 

parameters with values 0.49 and 0.39, respectively. The selection of T1 and T2 parameters is 

done in an experimental way (i.e. these two values corresponds to the utilized BCSC dataset). 

T1 and T2 thresholds are also selected by means of observing the result of the DOI values of 

all risk factors in the dataset. So, the selection of such values is based on the DOI values (Refer 

to Table 4.1 to see the DOI values which are in range (0.165 - 0.4525) so the selection of good 

T1 and T2 result in a good weighting method. If we chose low T1 and high T2, it will produce 

unsuitable STW values. 

3.3.2. Machine Learning Model 

Once the final impact (weight) of each risk factor has been obtained, the final step is to select a 

machine learning (ML) model. Although there are multiple ML prediction algorithms available, 

the optimization tree model is chosen for its ability to tune hyperparameters, handle missing or 

noisy data, and manage redundant attribute values [60] [61]. The decision tree algorithm first 

considers all samples of the dataset as the root node. The decision tree algorithm starts by 

treating all samples of the dataset as the root node. The main challenge in this algorithm 

involves selecting the best attribute to serve as the root node and determining whether to split 

the node into all attributes and select the attribute with the best split performance. In order to 

choose the most suitable attribute, decision trees calculate the Information Gain (IG) across all 

possible attributes, as shown in Equation 3.6 [62], and select the attribute with the lowest IG 

value. This means that the selected attribute is the one that provides the best separation of the 

training samples. 

𝐼𝐺(𝑇, 𝑎) = 𝐻(𝑇) − 𝐻(𝑇|𝑎) = − ∑ 𝑝𝑖 𝑙𝑜𝑔2(𝑝𝑖)
𝑘
𝑖=1 − ∑ −𝑝𝑟(𝑖|𝑎) 𝑙𝑜𝑔2(𝑝𝑟(𝑖|𝑎))𝑘

𝑖=1           (3.6) 
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Equation 3.6 calculates the IG used in the decision tree algorithm. It involves several variables, 

such as H(T) which is the entropy of the parent node of the tree T, H(T|a) which is the entropy 

of the child node a (attribute a), k which is the number of subsets generated by each split, pi 

which is the percentage (probability) of class i in the node T, and pr(i|a) which is the percentage 

of class i given that the split child (attribute) is a. 

In the case of the optimizable tree classifier, three parameters are tuned. These parameters 

include the criterion, which determines the attribute selection measure, the splitter, which 

determines the split strategy, and the maximum depth of a tree. 

3.4. Second branch (Novel range-based breast cancer prediction 

model) 

To improve the efficiency and accuracy of breast cancer prediction, we recommend using a 

range-based cancer score value instead of a binary scalar value (0 or 1). This approach would 

provide a range value between 0% and 100%, indicating the potential risk of breast 

cancer rather than a simple binary decision of either having cancer or not. The proposed 

methodology, which includes these suggestions, is illustrated in Figure 3.3. 

  

Figure 3.3. General steps of the proposed Ensemble range-based prediction model 

3.4.1. Design the breast cancer range-based model 

Building upon our defined risk factor weighting system, we introduce a range-based prediction 

model. This model aims to capture the multifaceted nature of breast cancer risk by incorporating 

the weighted importance of individual risk factors into a composite score, as detailed in the 

subsequent equations and methodology. 
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The overarching goal of this range-based score is to offer a more detailed understanding of 

breast cancer risk, hence the introduction of a score-based prediction system. The methodology 

is built upon two main systems. 

Firstly, the breast cancer factors weighting system, derived from the prior section (3.2.), 

provides insight into how different factors play a role in breast cancer risk. 

Secondly, the statistical system aims to combine these weighted factors to compute a composite 

breast cancer risk score (range-based one), encapsulating multiple aspects of the risk profile. 

Figure 3.4 illustrates this range-based cancer prediction model. 

 

Figure 3.4. Range-based cancer prediction methodology 

This approach reinforces the point that the scoring system is not just a mathematical construct 

but has its foundations in real-world perceptions (via the questionnaire) and established medical 

knowledge (via international reports). It emphasizes that the methodology is rigorous, 

comprehensive, and designed with scientific soundness in mind. 

To ensure that the risk score obtained is correct and accurate, a selected subset of the entire 

dataset is used. This approach ensures that the "cancer" class has a higher percentage than the 

"non-cancer" class, thus providing sufficient information to the proposed probability model and 

ensuring that the final range-based cancer score relies primarily on this information. The 

selection of this subset from the BCSC dataset is based on two principles. The first principle 

involves selecting all samples from the "cancer" class. The second principle involves selecting 

the "non-cancer" samples with the highest values of the "count" attribute, which indicates how 

frequently each sample is repeated in the entire dataset. 
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As a result of this step, we get a subset obtaining 67633 samples with 68.88% as the "cancer" 

class percentage. 

The inputs for our breast cancer prediction system include the scalar weights assigned to 

each risk factor obtained from previous model (First branch weighted-based breast cancer 

prediction model). These weights indicate the level of importance of each risk factor and will 

be used in the prediction system to ensure an accurate prediction score.  

Additionally, we consider the general probability of cancer and non-cancer, denoted by 

cancerBias and NcancerBias, respectively.  

These probabilities are based on the breast cancer dataset and reflect the previous knowledge 

obtained from the BCSC sub dataset.  

The likelihood of each risk factor given the prediction result of cancer or non-cancer is also 

taken into account. This likelihood is calculated by summing all the inner values of the risk 

factor's probability, as shown in Equation (3.7), where k represents the total number of inner 

values for the risk factor. 

P(Risk_Factori | Prediction) = Σk P(Inner_Valueij | Prediction)         (3.7) 

The probability of each risk factor's effect on the final breast cancer score is based on medical 

opinion and is denoted as P(pre_cancerij). This information is obtained from the analysis of 

medical questionnaires administered to specialist physicians in breast cancer. The final breast 

cancer prediction score is then calculated as a range-value using the inputs described above, as 

shown in Equation (3.8). 

BCPSi= cancerBias*BCPScancer+NcancerBias* BCPSNcancer      (3.8) 

According to Bayes' theorem, the post probabilities of cancer and non-cancer, denoted as 

BCPScancer and BCPSNcancer, respectively, are calculated based on the risk factors using 

Equations 3.9 and 3.10. 

BCPScancer = Σn P(prediction = cancer | Risk_factori) x (STW(j) / Σn STW(j))   (3.9) 

BCPSNcancer = Σn P(prediction = Non-cancer | Risk_factori) x (STW(j) / Σn STW(j))   (3.10) 

The recommended training weight, STWj, from our previous weighted-based model is used in 

conjunction with the total number of risk factors, denoted by n, to calculate the post 

probability of each risk factor. This calculation is performed using Equation 3.11. 

P(Prediction = Cancer | Inner_valuei) = Σk (P(Inner_valueij | Prediction = Cancer) x 

P(Pre_cancerij) /P(Inner_valueij))                     (3.11) 
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The number of inner values for a risk factor, denoted by K, determines the number of 

probabilities to be calculated. For example, the menopause risk factor has three inner values 

(K=3): Pre-menopause (0), Post-Menopause (1), and Unknown (9).  

The pre-probabilities of cancer related to each inner value, denoted as P(Pre_cancerij), are based 

on previous knowledge. The evidence of each risk factor's information, denoted as 

P(Innervalueij), is calculated using Equation (3.12). 

P(Inner_valueij) = P(Inner_Valueij | Prediction= Cancer) x P(Pre_Cancerij) + P(Inner_Valueij | 
Prediction  =  Non-Cancer) x  (1 - P(Pre_Cancerij))                                                (3.12)            

 

3.4.2. The new BCSC version 

In this step, three new attributes are added to the BCSC dataset, namely the cancer score, non-

cancer score, and final prediction. These additions enhance the dataset and provide valuable 

information for future studies to predict and analyze the BCSC dataset. The final prediction of 

our proposed methodology will utilize this updated version of the BCSC dataset. 

3.5. Train the ensemble learning model using the new ranged 

dataset 

Ensemble learning is a powerful method that combines multiple classifiers or models to 

improve performance. This approach has gained attention in recent years, particularly when 

combined with hyperparameters optimization [63]. Several hyperparameters are selected for 

optimization, including the maximum number of splits, number of learners, and learning rate. 

The ensemble method used in this study is the AdaBoost algorithm [64], with decision trees as 

the learner type [65]. 

The Decision Tree (DT) model is a type of machine learning model in which features are 

represented by internal nodes, and branching represents potential outcomes [66].  

At the beginning of the process, the most promising feature is selected as the root node, and 

the splitting process is applied using a specific criterion.  

Multiple learners are created and learned sequentially by fitting the model to the dataset [67] 

[68].  

In each step, a decision tree learner is selected and fitted to minimize errors, and the 

resulting misclassified samples are used to train the next learner. This approach ensures that 

misclassified samples from previous models are correctly classified by subsequent ones [67]. 



43 
 
 

 

 

3.5.1. Bagged and Boosted Trees [69] 

As mentioned in section 3.5, ensemble methods involve combining multiple decision trees to 

achieve better predictive performance than using a single decision tree. The fundamental 

principle behind the ensemble model is that a group of weak learners can work together to form 

a strong learner. 

There are two main types of ensemble learning; bagging and boasting. 

Bagging (or Bootstrap Aggregation) is a technique used to reduce the variance of a decision 

tree. The idea behind bagging is to create multiple subsets of data from the training sample, 

chosen randomly with replacement. Each subset of data is then used to train a separate decision 

tree, resulting in an ensemble of different models. The average prediction from all the trees is 

used, making it more robust than a single decision tree. 

Random Forest is an extension of bagging that adds an extra step. In addition to taking a random 

subset of data, it also randomly selects features to grow trees, rather than using all features. 

When many random trees are grown, it is called a Random Forest. 

Boosting is an ensemble technique that involves creating a set of predictors. With this 

technique, learners are learned sequentially, with early learners fitting simple models to the data 

and analyzing the data for errors. In other words, consecutive trees are fitted to the data (using 

a random sample), and at each step, the goal is to address the model error from the previous 

tree. 

If an input is misclassified by a hypothesis, its weight is increased so that the next hypothesis 

is more likely to classify it correctly. By combining the entire set of hypotheses at the end, weak 

learners are converted into a better-performing model. 

Figure 3.5 shows the difference between bagging and boasting decision trees ensemble. 
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Figure 3.5. Bagged and boosted decision trees ensemble 

3.6. Third branch (Range-based deep learning model) 

The proposed breast cancer range-based deep model consists of five main steps, as depicted in 

Figure 3.6. The first step involves dataset preprocessing, which involves grouping the target or 
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classes into specific categories. In the second step, the dataset is divided into training and test 

sets. The third step involves constructing and training the Deep Learning (DL) architecture 

using the training set. In the next step, the ensemble Machine Learning (ML) model is built and 

trained using the same training set. In the final step, the scores from the DL and ML models are 

combined using score-level fusion, and the final prediction is computed. 

3.6.1. Preprocessing 

In this step, the BCSC dataset obtained from section (3.4). The output of the second branch of 

my study is the modified and balanced version of the BCSC dataset (in which target column is 

a value of different multiple range-based scores instead of 0/1 categorization). Besides, the 

dataset is balanced from the output of the first branch. 

To simplify the classification problem, the target column of the BCSC dataset is grouped into 

categories, reducing the number of range-based categories to simplify the calculations. After 

preprocessing the dataset, it is split into two sub-datasets, with a 20% percentage for the test 

set and 80% for the training set. In case of using LSTM model (Deep learning model), another 

subset (validation set) is also considered so the split became: 60% as a training set, 20% as a 

validation set and 20% as a test set. 

 

Figure 3.6. Proposed breast cancer range-based deep prediction model 

3.6.2. LSTM deep learning model 

In this step, a specific Deep Learning (DL) architecture is proposed, which is illustrated in 

Figure 3.7. The first layer of the model is the sequence input layer, which takes the input 

features of the training samples and passes them to the next Long Short-Term Memory (LSTM) 

layer.  
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The LSTM layer is the main component of the DL model and consists of 500 neurons, each 

containing four basic cells: input cell, memory cell, forget cell, and output cell. The input cell 

receives input from the previous cell, while the forget cell determines what information to keep 

and what to discard, controlling the cell state reset. 

Based on information received from the input cell, the LSTM model uses the forget cell, and 

previous hidden LSTM cell ht-1 to decide what to pass and what to forget. Memory cell collects 

information from previous time steps and helps to maintain the context. It updates its state based 

on both input and forget cells. 

The output of the LSTM cell at a specific time step t is represented by ct (output at time t). 

Additionally, another output is produced, represented by ht, which is the current hidden LSTM 

output that will be passed to the next LSTM layer [70]. 

 

Figure 3.7. Proposed DL model 

3.6.3. Bi-LSTM 

A Bidirectional Long Short-Term Memory (Bi-LSTM) model is a type of Recurrent Neural 

Network (RNN) architecture that is actually developed from LSTM. Bi-LSTM was mainly used 

for processing sequential data. It consists of two LSTM layers, one of them reads the input 

sequence from left to right (forward LSTM), while the other one reads the input sequence from 



47 
 
 

 

 

right to left (backward LSTM). The output from each LSTM layer is concatenated to produce 

the final output of the Bi-LSTM layer [71]. 

The forward LSTM layer processes the input sequence in the forward direction, starting with 

the first element and processing each subsequent element in order. On the other hand, the 

backward LSTM layer, processes the input sequence in reverse order, starting with the last 

element and processing each preceding element in reverse order. 

By processing the input sequence in both directions, the Bi-LSTM model can acquire both past 

and future context information, making it a powerful model for tasks such as natural language 

processing, speech recognition, and time series prediction.  

Bi-LSTM is particularly useful for tasks where the context of a word or sequence is important 

to the meaning of the complete input sequence. 

 

3.6.4. Ensemble ML model 

Ensemble models are a type of Machine Learning (ML) model that utilizes a combination of 

multiple ML classifiers to produce a single classification. This methodology operates in two 

different ways to arrive at a final classification: boosting and bagging. In the boosting approach, 

the classification decision is based on an iterative strategy, where the first classifier introduces 

its decision to the next one, which learns from the first classifier's error and tries to minimize 

the classification error until the final classifier produces the final decision with the minimum 

classification error. In the bagging approach, the classifiers work in parallel, and the ensemble 

attempts to minimize prediction variance by generating new samples of the training dataset by 

repeating the training data and producing sub-datasets to train multiple classifiers. The final 

decision is based on the fusion of their scores. 

In my study, I propose using an ensemble of 30 boosting decision trees, and to achieve optimal 

performance, we suggest using hyperparameters optimization for those 30 decision tree models. 

3.6.5. Fusion model 

Once the Machine Learning (ML) and Deep Learning (DL) models are constructed, they are 

combined using score-level fusion, where the ML and DL scores are merged to make the final 

prediction decision. Fusion is illustrated in Figure 3.8. The final score represents the weighted 

sum of the ML score and DL score as described in Equation 3.13. 

Fusion_score= W1 * S1 + W2 * S2   (3.13) 
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Where; W1, W2 are the weights of the ML and DL models, while S1 and S2 are the scores 

obtained by the evaluation process of the ML and DL models, respectively. 

 
Figure 3.8. Proposed ML-DL fusion model 

3.7. Fourth branch (Classification-based range-based ensemble 

model on the original dataset) 

In this branch, the original dataset will be utilized again, and the probabilistic model will be 

used and applied to the dataset in order to compute the new distribution of the target column 

but without any balancing operations before this. 

After that, the new modified dataset will be split into training (80%) and test (20%) sets. The 

training set will be balanced using oversampling approach (SMOTE algorithm). 

In the third step, three different ML models will be trained using the training dataset. An 

ensemble model of these three ML models will also be created. 1D-CNN and LSTM DL models 

will also be trained using the training dataset. Similarly, an ensemble model of the two trained 

DL models will be built. All trained models will be evaluated using the performance metrics: 

accuracy, precision, recall and F1-scrore. Besides that, the Violin, the variance, the test score 

distribution and the distribution of the predicted and the actual breast cancer score will be all 

used to evaluate the trained models. Figure 3-9 shows the proposed methodology of the fourth 

part of the study. 
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Figure 3.9. The Proposed methodology of the fourth and fifth part of the study 
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3.8. Fifth branch (Regression-based range-based ensemble model 

on the original dataset) 

In the fifth part, the same dataset of the fourth part is used. The only difference here is that we 

are performing regression task so the target column will preserve its values without merging 

the adjacent categories. 

Three regression models are proposed (Decision trees regression DTR, Random Forest 

regression RFR, and the K-NN regression models). 

An ensemble of the three models will also be built. 

All models will be trained using 80% of the dataset, while the rest (20%) will be used in the 

evaluation process a test set. 

The distribution of the actual and predicted breast cancer scores will also be used to assess the 

performance. 

3.9. Performance evaluation method 

In order to evaluate the proposed ML and DL models, I computed many performance metrics. 

Here are the used metrics: 

Several metrics, including True Positive Rate (TPR), False Negative Rate (FNR), Positive 

Predictive Rate (PPR), and False Discovery Rate (FDR) [72] [73] , are used to assess the 

performance of the model. These metrics are calculated using four statistics:  

TP (true positives), which describes the correctly classified samples of the whole positive ones. 

FN (false negatives), which represent the incorrectly classified samples of the whole positive 

ones. 

TN (true negatives), which calculate the correctly rejected samples of the whole negative ones; 

and FP (false positives), which signify the incorrectly accepted samples of the whole negative 

ones. 

TPR (TP/(TP+FN)) represents the proportion of correctly classified samples per predictive 

class, while FNR (FN/(TP+FN)) represents the proportion of incorrectly classified samples per 

true class.  

Similarly, PPR (TP/(TP+FP)) is the proportion of correctly classified samples per predictive 

class, while FDR (FP/(TP+FP)) is the proportion of incorrectly classified samples per predictive 
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class. Additionally, accuracy is calculated as ((TP+TN)/(TP+TN+FP+FN)), representing the 

proportion of correctly classified samples out of all data samples [74].  

Area Under Curve (AUC) [75]: AUC stands for Area Under the ROC Curve, which is a 

graphical plot of the model's performance in distinguishing between positive and negative 

classes. The ROC (Receiver Operating Characteristic) curve is created by plotting the True 

Positive Rate (TPR) against the False Positive Rate (FPR) for all test samples. AUC represents 

the overall performance of the model across all possible test samples. AUC ranges from 0 to 1, 

with a higher value indicating better performance. It can be interpreted as the probability that a 

randomly chosen positive example will be ranked higher than a randomly chosen negative 

example by the model. 

Confusion Matrix [76]: confusion matrix is a table that concludes the performance of a 

classification model by comparing the predicted targets with the actual targets (labels). It 

contains four values: True Positive (TP), False Positive (FP), True Negative (TN), and False 

Negative (FN). TP and TN represent the number of correctly classified examples, while FP and 

FN represent the number of incorrectly classified examples. The confusion matrix is useful for 

calculating other metrics such as accuracy, precision, recall, and F1-score. 

Regression metrics: in this study, two regression metrics are used; the mean squared error 

(MSE) and the median absolute error (MedAE). 

Statistical analysis using violin plots, variance plots, distribution of the predicted and actual 

scores, besides the sensitivity and specificity analysis. 

3.10. Utilized Software and Hardware 

I used the following software and hardware in the current study: 

CPU (intel core i5 4200U CPU @ 1.60GHz, 8 GB of RAM), Matlab 2020a, including the 

machine learning and deep learning toolbox, Specific medical Questionnaires. 

Google Colab with python programming language. 

For deep learning: GPU (NVIDIA GeForce 750 M) is used. 
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Chapter 4 

Results and discussion 
 

4.1. Introduction 

In this chapter, all my previous mentioned methodologies will be experimented and evaluated. 

Three different branches are proposed so, there will be three different branches of results will 

be conducted. First, I will introduce the results of weighted-based breast cancer prediction 

system. Then, the results of the range-based prediction model will also be introduced and 

finally, the results of ensemble and deep learning model fusion will be listed. All results will 

be discussed. 

4.2. Results of the weighted-based breast cancer prediction 

methodology 

4.2.1. Results of Balancing BCSC dataset 

There are two fundamental steps involved in preprocessing the risk estimation dataset, namely 

normalization and balancing. The results of the suggested balancing methods are presented in 

Figure 4.1, with the majority class label being 0 (no cancer) and the minor class label being 1 

(cancer risk). 

To implement the oversampling approach, the "1" minor class was replicated five times until 

its percentage reached 14.64%, while the majority-class percentage became 85.36%. In 

contrast, the down-sampling approach involved reducing the majority-class samples by a factor 

of 3.524 until the minor class reached a percentage of 10.78%, and the majority class reached 

89.22%.  

The last approach involved duplicating the minor class samples and removing some of the 

majority class samples until the minor and majority classes reached 17.1% and 82.9%, 

respectively. The number of majority class samples after balancing is 271355, 77000 and 

225562 for oversampling, down sampling, and mixed cases, respectively. While for the 

minority class, the number of samples after balancing is 46525, 9305 and 46525 for the same 

sampling methods.  
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The utilized BCSC dataset is extremely unbalanced since the minor class constitute more than 

95% of the samples which can bias the learning process to always predicting it as the target. 

Now, if we used the default balancing approach in which the minor class is oversampled until 

its percentage became 50%, we need to add too much generated records to satisfy this 

requirement (this may lead to data leakage or producing too much noise or repeated rows). So 

we chose to increase the minor class until it almost reaches 15% of the entire dataset. However, 

we can’t get exactly 15% since the utilized oversampling approach was based on increasing the 

number of samples not define specific percentage. For mixed case, we removed samples of the 

major class and increased the number of minor class’s samples. We used the same number of 

new added records of the minor class (46525 samples) but by decreasing the major class 

samples by a factor of almost 3.5, we get these percentages of major and minor classes.  

Figure 4.1-B includes a detailed comparison of the performance of scaling choice (age=2, 

race=4, Hispanic=5, bmi=2, agefirst=3, nrelbc=3, Current_hor=2, menopause=0.5, 

Density=0.3, brstproc=0.2, lastmamm=0.3, surgmeno=0.2) over the three balanced datasets. 

Figure 3 indicates that the down-sampled dataset has the highest accuracy (100%) and the least 

error rates (0%); however, this down-sampled dataset has a volume of 27.15% only compared 

with the over-sampled version. So, although the down-sampled dataset has the best accuracy, 

the over-sampled and the mixed versions have better performance since they consist of a much 

larger number of samples so that the new test samples will be classified more correctly. 

 
A. 

0.00%

50.00%

100.00%

Original Oversampling Down-sampling Mixed
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Majority class percentage Minor class percentage



54 
 
 

 

 

 
B. 

Figure 4.1. BCSC dataset distribution and performance measures comparison before and after 

balancing: A. Distribution, B. Performance measure 

 

4.2.2. Weighting system results 

The risk factors questionnaires degree of importance (DOIq), medical reports degree of 

importance (DOIR), and final mixed degree of importance (DOIf) obtained from the weighting 

methodology are shown in Table 4.1. 

Table 4.1. Results of weighting system (DOIR, DOIF, DOIQ, STW). 

No

. 

Risk 

Factor 

Medical records-based DOI Questionnaires-based 

DOI 

DOIf ** ST

W 

Essential* Secondary* DOI
R 

H M L DOI
Q 1 2 3 4 1 2 3 4 

1 Menopaus

e 

  1  1 1 1  0.3 30 47.

5 

22.

5 

0.37 
0.3357 

1 

2 Age group 1 1 1 1     0.9 27.
5 

62.

5 

10 0.41
5 

0.65751 
4 

3 Density 1 1     1 1 0.5 25 45 30 0.33 
0.4156 1 

4 Race 1 1  1     0.67

5 

25 40 35 0.31 
0.49253 

3 

3.10% 0% 3.20%
10.70%

0%
8.90%

1.90% 0% 1.90%
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5 Hispanic 1       1 0.25 19.
4 

16.

7 

63.

9 

0.18
3 

0.21659 
1 

6 BMI  1   1  1 1 0.3 25.
6 

38.

5 

35.

9 

0.30
7 

0.30358 
1 

7 agefirst  1 1  1   1 0.5 27.
5 

45 27.

5 

0.34
5 

0.42255 
2 

8 nrelbc  1 1 1 1    0.7 56.
4 

25.

6 

17.

9 

0.44 
0.572 

3 

9 brstproc     1  1  0.05 34.
2 

23.

7 

42.

1 

0.3 
0.17510 

1 

10 lastmamm         - 34.
2 

32.

1 

33.

7 

0.33 
0.16511 

1 

11 Surgical 

menopaus

e 

    1    0.02

5 

7.7 30.

8 

61.

5 

0.16
9 0.09712 

1 

12 Hormone 

therapy 

1 1     1 1 0.5 42.
5 

37.

5 

20 0.40
5 

0.45254 
3 

*Each 1 value indicates that this risk factor is assumed as essential or secondary factor in a study., 

**Numbers 1-12 in DOIF indicates the weight order. H, M, L represents the High, Medium, and Low of 

DOIR. 

Table 4.2 shows the most significant risk factors for breast cancer, which include Age group, 

nrelbc, and race, while the risk factors of medium significance are Hormone therapy, agefirst, 

density, Menopause, and BM. Conversely, the least essential risk factors are Hispanic, brstproc, 

lastmamm, and surgical menopause. 

Figure 4.2 illustrates the effects of weighting the risk factors against the non-weighted version 

of the dataset. The results indicate that the performance improves by 6.9% with the weighting 

approach. Additionally, the False Discovery Rate (FDR) is reduced by 22.6% and 3.2% for the 

minor and majority classes, respectively. Furthermore, the False Negative Rate (FNR) is 

minimized for both the majority and minor classes by 5% and 17.6%, respectively. 
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Figure 4.2. Results of Weighting-based breast cancer prediction model  

4.2.3. Discuss results of the weighted-based breast cancer prediction model 

Several test scenarios were performed to verify the results shown in Figure 4.2. The scenarios 

involved removing one or more essential/non-essential risk factors to assess their impact on the 

accuracy of the optimizable tree-based classifier and the classification errors. 

Figure 4.2 proves that the weighted version of the dataset outperforms the non-weighted one, 

with the performance increasing by 6.9% after weighting the risk factors. Similarly, Figure 4.3 

shows that the importance of each risk factor varies in terms of its effect on defining the final 

risk degree.  

The results indicate that the "Race" factor is the most influential, as the accuracy decreases by 

4.3% after removing this factor. Other risk factors, such as age at first birth (agefirst), age group, 

Nrelbc, BMI, and Hispanic, also significantly affect performance when removed from the 

dataset. 
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Figure 4.3. Evaluating the breast cancer prediction model under different risk factor combinations 

Where: Menopause: meno., Hormone Therapy: HT, Surgmeno: SM, Lastmamo: LM, Brstproc: 

BP, Agefirst: AF, Hispanic: His., Nrelbc: NR.  

 

Removing some risk factors, such as race, age group, agefirst, BMI, and Hispanic, results in an 

increase in the minor False Negative Rate (FNR). Furthermore, removing pairs of risk factors, 

such as (age and race) or (Nrelbc, age, and race), significantly degrades performance by 6.2% 

to 7.8%, and the minor class FNR error increases by 23% to 40%, indicating that these factors 

are essential. Conversely, risk factors such as menopause, surgical menopause (surgmeno), and 

hormone therapy only marginally decrease accuracy by 0.4% to 1%. Moreover, the absence of 

the three risk factors (menopause, brstproc, and surgmeno) results in a decrease in accuracy of 

only 3.4%.  
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Therefore, these factors have less impact than others on defining the final risk degree. To 

validate this conclusion, a down-weight approach was applied, where each weak-impact risk 

factor was assigned a weight of less than 1 (0.2, 0.3, 0.5, etc.), and the results are summarized 

in Figure 4.4. 
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Figure 4.4. Effect of down-weighting the least essential risk factors on the performance of breast 

risk prediction model on the oversampled risk database 

Scaling menopause, for example, by 0.5 improves the test accuracy by 0.1%, while scaling 

down other low-importance risk factors also improves the accuracy by 0.1% and reduces the 

False Negative Rate (FNR) error by 0.2%. However, in some cases, it increases the FNR of the 

minor class, mainly because the percentage of the minor class is small. Simultaneously, the 

False Discovery Rate (FDR) has decreased by 0.5-0.9%. 

The scaling technique used on the oversampled dataset was also applied to the down-sampled 

and mixed datasets. Table 4.2 introduces a detailed comparison of how the choice of scaling 

factors (age=4, race=3, agefirst=2, nrelbc=3, current hormone therapy (current_hor)=3, 

menopause=0.5, density=0.3, brstproc=0.2, lastmamm=0.3, surgmeno=0.2) affects the 

performance of the three balanced datasets.  

The results shown in Table 4.2 indicate that the down-sampled dataset has the highest accuracy 

(100%) and the lowest error rates (0%). However, it only contains 27.15% of the samples 

compared to the oversampled version.  
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Therefore, although the down-sampled dataset has the best accuracy, the oversampled and 

mixed versions perform better because they contain a larger number of samples, which allows 

for more accurate classification of new test samples. 

Table 4.2. Performance of risk estimation model on three different balanced risk database 
 

Majority 
class FNR 

Minor 
class 
 FNR 

Majority 
class FDR 

Minor class 
 FDR 

Overall 
Validation 
Accuracy 

Oversampling 3.10% 10.70% 1.90% 16.60% 95.80% 

Down 
sampling 

0% 0% 0% 0% 100% 

Mixed 3.20% 8.90% 1.90% 14.40% 95.90% 

 

4.3. Results of the range-based breast cancer prediction model 

Two different training scenarios are performed in this section; the first scenario is done using a 

subset of the BCSC dataset, while the second scenario uses the enitre BCSC dataset. For both 

scenarios, the dataset is split into 80% training and 20% test. 

4.3.1. Subset scenario 
For each risk factor in the subset, the pre and post probabilities are computed using the 67633 

records of the subset training dataset.  

The post probabilities computed according to equation 5 are illustrated in Table 4.3. 

Table 4.3. Cancer and non-cancer post probabilities of BCSC risk factors. 

No. Risk Factor P(Prediction=Cancer 

|Innervalue ij) 

P(Prediction=No 

cancer|Innervalue ij) 

1 Menopause Pre=78.34%, Post (age>55)=  

30.29%, Unknown= 21.89% 

Pre=21.66%, Post 

(age>55)= 69.71%, 

Unknown= 78.11% 

2 Age group 35-39=4.67%; 40-

44=11.81%; 45-49=22.47%; 

50-54=41.57%; 55-

59=29.2%; 60-64 =22.2%; 

65-69=12.43%; 70-

74=13.4%; 75-79=14.56%; 

80-84=6.79%. 

35-39=95.33%; 40-

44=88.19%; 45-

49=77.53%; 50-

54=58.43%; 55-59=70.8%; 

60-64 =77.8%; 65-

69=87.57%; 70-74=86.6%; 

75-79=85.44%; 80-

84=93.21%. 

3 Density Almost entirely fatty: 9.99%, 

Scattered fibro-glandular: 

45.88%, Heterogeneously 

dense: 52.68%, Extremely 

Almost entirely fatty: 

90.01%, Scattered fibro-

glandular: 54.12%, 

Heterogeneously dense: 
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dense: 38.24%, Unknown: 

20.97% 

47.32%, Extremely dense: 

61.76%, Unknown: 97.03% 

4 Race White: 72.85% ; 

Asian/Pacific Islander: 

36.36% ; Black: 10.62% ; 

Native American: 7.77% ; 

Other/mixed:28.1% ; 

Unknown: 19.66%. 

White: 27.15% ; 

Asian/Pacific Islander: 

63.64% ; Black: 89.38% ; 

Native American: 92.23% ; 

Other/mixed: 71.9% ; 

Unknown: 80.34%. 

5 Hispanic No: 28.33%;Yes: 81.6%; 

Unknown: 28.17%. 

No: 71.67%;Yes: 18.4%; 

Unknown: 71.83%. 

6 BMI 10-24: 18.94%; 25-29.99: 

23.34%; 30-34.99: 31.41%; 

35 or more: 41.58%; 

Unknown: 59.57%. 

10-24: 81.06%; 25-29.99: 

76.66%; 30-34.99: 68.59%; 

35 or more: 58.42%; 

Unknown: 40.43%. 

7 Age at first birth 

(agefirst) 

Age<30: 30.54%; Age 30 or 

greater: 60.11%; 

Nulliparous: 60.24%; 

Unknown: 23.83%. 

Age<30: 69.46%; Age 30 

or greater: 39.89%; 

Nulliparous: 39.76%; 

Unknown: 76.17%. 

8 Number of first 

degree relatives with 

breast cancer (nrelbc) 

Zero: 21.75%; One: 49.02%; 

2 or more: 96.99%; 

Unknown: 24.68%. 

Zero: 78.25%; One: 

50.98%; 2 or more: 3.01%; 

Unknown: 75.32%. 

9 Previous breast 

procedure (brstproc) 

No: 18.11% ; Yes:87.41%; 

Unknown: 36.34%. 

No: 81.89% ; Yes:12.59%; 

Unknown: 63.66%. 

10 last mammogram 

before the index 

mammogram 

(lastmamm) 

Negative: 63.47%; False 

positive: 88.77%; Unknown: 

20.25%. 

Negative: 36.53%; False 

positive: 11.23%; 

Unknown: 79.75%. 

11 Surgical menopause Natural: 31.38%; Surgical: 

81.27%; Unknown or not 

Menopausal: 32.57%. 

Natural: 68.62%; Surgical: 

18.73%; Unknown or not 

Menopausal: 67.43%. 

12 Hormone therapy No: 29.08%; Yes: 82.6%; 

Unknown: 31.92%. 

No: 70.92%; Yes: 17.64%; 

Unknown: 68.08%. 

The post probabilities of the column "count" is computed using the distribution of cancer and 

non-cancer classes as follows: 

P(NCancer|count<2)=0.3, P(Cancer|count<2)=0.3. 

P(NCancer|count>=2&count<50)=0.8, (Cancer|count>=2 & count<8)=0.8. 

P(NCancer|count>=50&count<1000)=0.95, P(Cancer|count>=8 & count<16)=0.95. 

P(NCancer|count>=1000)=1, P(Cancer|count>=16)=1. 

In this step, we utilize the probabilistic statistics from the previous stage and the weights of 

the risk factors obtained from results of the first branch of the study (weighted-based model). 
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The objective of these calculations is to evaluate the probabilistic model and determine the 

final prediction scores, BCPScancer and BCPSN_cancer for all records of the dataset. 

Figure 4.5 displays the distribution of the "result prediction score" of the subset dataset. 

Notably, the "non-cancer" class is divided into several subclasses ('19', '20', '21', '22', '23', '24', 

'25', '26', '27', '28'), which represent low-predicted percentages of breast cancer instead of using 

a single class to indicate the presence or absence of breast cancer.  

In contrast, the "cancer class" is divided into 26 subclasses ('48', '49', '50', '51', '52', '53', '54', 

'55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73'), which 

represent high-predicted percentages of breast cancer scores. 

 

Figure 4.5. Distribution of the range-based breast cancer prediction categories in the subset-

dataset scenario 
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4.3.2. Entire Dataset Scenario 

The same experiments were conducted to determine the distribution of the subclasses of the 

entire BCSC dataset, as shown in Figure 4.6. The "cancer" class was divided into the same 

number of subclasses, but with a different distribution due to the different distribution of the 

"cancer" and "non-cancer" classes in the original dataset. Additionally, three subclasses ("29", 

"30", and "31") were identified for the "non-cancer" class. There is a notable difference in the 

distribution between the sub-dataset and the entire dataset. Figure 4.6 demonstrates this 

significant difference, where the "non-cancer" categories (ranging from "19" to "31") have 

higher percentages than the "cancer" categories. This difference is expected since the original 

dataset has almost 84% of its samples belonging to the "non-cancer" class. 

 
Figure 4.6. Distribution of the range-based breast cancer prediction categories in the entire-

dataset scenario 
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4.3.3. Ensemble model training and evaluation 

Two learned models were generated by feeding both the sub-dataset and the entire dataset into 

the ensemble classifier. Hyperparameters optimization was applied in both training scenarios 

using the AdaBoost ensemble method and Bayesian optimization. The Minimum Classification 

Error (MCE) curve of the training process was computed for both the sub-dataset and the entire 

dataset (Figure 4.7 shows those curves). 

 

A) MCE of Subset dataset  
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B) MCE for Entire dataset 

Figure 4.7. MCE of the trained range-based ensemble model 

During the iterations from 10 to 30, the MCE value of the sub-dataset was consistently lower 

than that of the entire dataset by 0.1. 

Many evaluation metrics are computed to evaluate the trained ensemble model that has been 

trained using the sub dataset and the entire dataset. Those metrics include TPR, FNR, PPR, 

FDR. 

The evaluation results of the trained ensemble model using the range-based versions of the sub-

dataset and the entire dataset are presented in Table 4.4. 

 

 

 

 



69 
 
 

 

 

Table 4.4. Evaluation results of the ensemble model using the sub and whole dataset. 
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19 64.1 77.9 35.9 22.1 83.33 86.7    16.7 13.3 

20 86.58 83.9 13.42 16.1  87.53 87.5   12.47 12.5 

21 85.85 84.4 14.15 16.6  82.41 85.3   17.59 14.7 

22 85.88 84.4 14.12 16.6  88.12 85.6   11.88 14.4 

23 88.61 83.9 11.39 16.1    87.8 85.9    12.2 14.1 

24 87.14 82.9 12.86 17.1  87.41 85.2   12.59 14.8 

25 77.73 75.3 22.27 24.7  77.73 80.6   22.27 19.4 

26 84.62 83.9 15.38 16.1    83.4 85.3    16.6 14.7 

27 77.78 72.3 22.22 27.7    87.5 78.6    12.5 21.4 

28 75 64.3 25 35.7    75 72.3    25 27.7 

29 - 64.5 - 35.5 - 69.6 - 30.4 

30 - 69.4 - 30.6 - 73.5 - 26.5 

31 - 0 - 100 - - - 100 

48 100 100 0 0   100 100          0 0 

49 100 100 0 0   100 94.1          0 5.9 

50 100 100 0 0   100 82.1          0 17.9 

51 100 100 0 0    95.9 86     4.1 14.0 

52 100 100 0 0   100 81.9          0 18.1 

53 98.16 100 1.84 0   100 83.6          0 16.4 

54 100 96.6 0 3.4   100 83.1          0 16.9 

55 100 99.2 0 0.8   100 84.0          0 16.0 

56 100 100 0 0  99.16 85.8     0.84 14.2 

57 100 99.6 0 1.4   100 86.8          0 13.2 

58 99.38 99.2 0.62 0.8   100 86.4          0 13.6 

59 100 100 0 0  98.73 84.9     1.27 15.1 

60 99.66 98.6 0.34 1.4   100 84.8          0 15.2 

61 100 99.3 0 0.7   100 87.2          0 12.8 

62 100 100 0 0   100 87.1          0 12.9 

63 100 99.1 0 0.9   100 85.3          0 14.7 

64 100 99.3 0 0.7   100 85.8          0 14.2 

65 100 98.1 0 1.9   100 89.8          0 10.2 

66 100 100 0 0   100 89.5          0 10.5 

67 100 100 0 0   100 83.4          0 16.6 

68 100 100 0 0  98.17 93.0  1.83 7.0 

69 97.92 100 2.08 0    97.9 90.1     2.1 9.9 

70 97.7 100 2.3 0   100 90.4 0 9.6 

71 100 100 0 0   100 90.5          0 9.5 

72 100 100 0 0   100 79.2          0 20.8 

73 100 100 0 0   100 100          0 0 
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According to the statistics presented in Table 4.4, the average TPR for the sub-dataset and entire 

dataset are 94.61% and 92.52%, respectively. Similarly, the average PPR for the sub-dataset 

and entire dataset are 92.28% and 85.55%, respectively. The total accuracy for the sub-dataset 

and entire dataset is 95.5% and 85.3%, respectively. 

To assess the ability to distinguish between different subclasses, the AUC is utilized for all 

trained ensemble models. Detailed AUC results for all subclasses ("19"-"73") of the sub-dataset 

and entire dataset are presented in Figure 4.8. 

 

AUC= 0.89, Class: 19 

 

AUC= 0.99, Class: 20 

 

AUC= 0.99, Class: 21 

 

AUC= 0.99, Class: 22 
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AUC= 0.99, Class: 23 

 

AUC= 0.99, Class: 24 

 

AUC= 0.99, Class: 25 

 

AUC= 0.99, Class: 26 
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AUC= 0.99, Class: 27 

 

AUC= 1.00, Classes: 28-70 

Figure 4.8. AUC and ROC curves of the entire categories of the BCSC dataset 

For both the sub-dataset and entire dataset, all "cancer" subclasses have an AUC of 1. However, 

some "non-cancer" subclass has the low AUC value (like class 19). This finding is supported 

by Table 4.4, which shows that subclass "19" has low accuracy and high error rates. 

There are other classes like class "31" which also has a low accuracy. The reason for this issue 

is that subclasses like "19" or "31" have a significantly smaller number of samples (for example 

class "31" has only 7 samples for training and 3 for validation) compared to the other subclasses. 

This limited sample size may have resulted in less accurate training of the model for this 

particular subclass, leading to lower AUC and higher FNR and FDR values. 

4.3.4. Variance discussion 

The new subclasses introduced in the modified BCSC dataset are associated with their original 

containing class, meaning that subclasses "19" to "31" belong to the "non-cancer" class, while 

subclasses "48" to "73" belong to the "cancer" class. To accurately represent the results of the 

modified model, we conducted performance evaluations with two additional trials: one with a 

±1 class-variance tolerance and another with a ±2 class-variance tolerance. 

The closely related subclasses (±1 or ±2) have similar cancer/non-cancer scores and can be 

treated as a single subclass. For example, if the actual subclass is "21," the accepted true 

classes for ±1 class-variance are "20," "21," and "22," while for ±2 class-variance, the accepted 

classes are "19," "20," "21," "22," and "23." In the first trial, two biases of the main classes are 
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allowed, so if the sample has the original true class "i," the expected valid classes are (i-1, i, 

i+1). In the second trial, the expected valid classes are (i-2, i-1, i, i+1, i+2). 

Tables 4.5 and 4.6 show the detailed results of these two trials for both the sub-dataset and entire 

dataset, respectively.  

The results indicate that the average TPR of the original confusion matrix of the sub-dataset is 

90.1564%, while it increases by 4.2% and 5.38% for the ±1 and ±2 variance scenarios, 

respectively. Similarly, the PPR of the ±1 and ±2 variance scenarios have been enhanced by 

4.56% and 4.72%, respectively. 

Likewise, the average TPR of the original confusion matrix of the entire dataset is increased by 

8.66% and 8.76% for both the ±1 and ±2 variance scenarios, respectively (refer to Table 4.6). 

The average PPR values of the ±1 and ±2 variance scenarios also increased by 5.33% and 

5.55%, respectively. 

The accuracy computation also supports the same conclusion, where the original accuracy was 

85.3%, but it increases by 5.82% and 6.03% for the ±1 and ±2 class-variances, respectively. 

Table 4.5. Variance results (TPR and PPR) of the sub dataset 

Class No. Original TPR TPR (±1) TPR (±2) 
Original 

PPR 
PPR (±1) PPR (±2) 

19 64.1 100 100 83.33 100 100 

20 86.58 100 99.72 87.53 99.72 100 

21 85.85 100 99.85 82.41 99.85 100 

22 85.88 99.8 100 88.12 100 100 

23 88.61 99.9 100 87.8 100 100 

24 87.14 100 99.69 87.41 99.69 100 

25 77.73 100 100 77.73 100 100 

26 84.62 99.6 100 83.4 100 100 

27 77.78 100 100 87.5 100 100 

28 75 100 100 75 100 100 

48 100 100 100 100 100 100 

49 100 100 100 100 100 100 

50 100 100 100 100 100 100 

51 100 100 95.9 95.9 95.9 100 

52 100 100 100 100 100 100 

53 98.16 100 100 100 100 100 

54 100 100 100 100 100 100 

55 100 100 100 100 100 100 
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56 100 100 99.16 99.16 99.16 100 

57 100 100 100 100 100 100 

58 99.38 99.7 100 100 100 100 

59 100 100 100 98.73 100 100 

60 99.66 100 100 100 100 100 

61 100 100 100 100 100 100 

62 100 100 100 100 100 100 

63 100 100 100 100 100 100 

64 100 100 100 100 100 100 

65 100 100 100 100 100 100 

66 100 100 100 100 100 100 

67 100 100 100 100 100 100 

68 100 100 100 98.17 100 100 

69 97.92 100 100 97.9 100 100 

70 97.7 100 100 100 100 100 

71 100 100 100 100 100 100 

72 100 100 100 100 100 100 

73 100 100 100 100 100 100 

 

Table 4.6. Variance results (TPR and PPR) of the entire dataset 

Class No. Original TPR TPR (±1) TPR (±2) 
Original 

PPR 
PPR (±1) PPR (±2) 

19 77.9 98.28 98.28 86.7 86.7 86.7 

20 83.9 97.3 97.34 87.5 99.98 100 

21 84.4 97.54 97.54 85.3 99.89 100 

22 84.4 97.49 97.51 85.6 99.7 99.86 

23 83.9 97.02 97.11 85.9 99.91 99.95 

24 82.9 96.96 97.17 85.2 99.64 99.81 

25 75.3 96.99 97.09 80.6 99.8 99.88 

26 83.9 97.39 97.28 85.3 99.39 99.71 

27 72.3 96.32 96.63 78.6 100 100 

28 64.3 92.46 95.65 72.3 99.35 100 

48 64.5 96.77 96.77 69.6 99.13 100 

49 69.4 97.22 97.22 73.5 94.12 100 

50 100 100 100 82.1 82.1 82.1 

51 100 100 100 86 86 86 

52 100 100 100 81.9 81.9 81.9 

53 100 100 100 83.6 83.6 83.6 

54 96.6 100 100 83.1 83.1 83.1 
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55 99.2 99.32 99.32 84 85.16 85.16 

56 100 99.6 99.6 85.8 85.8 85.8 

57 99.6 99.6 99.6 86.8 86.8 86.8 

58 99.2 99.2 99.2 86.4 86.4 86.4 

59 100 100 100 84.9 84.9 84.9 

60 98.6 98.6 98.6 84.8 84.8 84.8 

61 99.3 99.3 99.3 87.2 87.2 87.2 

62 100 100 100 87.1 87.1 87.1 

63 99.1 99.1 99.1 85.3 85.3 85.3 

64 99.3 99.3 99.3 85.8 85.8 85.8 

65 98.1 98.1 98.1 89.8 89.8 89.8 

66 100 100 100 89.5 89.5 89.5 

67 100 100 100 83.4 83.4 83.4 

68 100 100 100 93 93 93 

69 100 100 100 90.1 90.1 90.1 

70 100 100 100 90.4 90.4 90.4 

71 100 100 100 90.5 90.5 90.5 

72 100 100 100 79.2 79.2 79.2 

73 100 100 100 100 100 100 

 

4.4. Results of the third branch (ML and DL fusion model) 

The proposed method is evaluated through several training and test scenarios in the 

experimental section. For the Bi-LSTM model, five distinct test scenarios are implemented. 

Three of these scenarios involve modifying the Bi-LSTM architecture by changing the number 

of neurons and learning epochs, while the remaining two scenarios relate to the training and 

test percentages. 

To evaluate these five scenarios, performance evaluation metrics such as True Positive 

Rate (TPR), Positive Predictive Rate (PPR), False Negative Rate (FNR), False Discovery 

Rate (FDR), and test accuracy are utilized. Table 4.7 includes the evaluation results of the Bi-

LSTM model. 

 

 

 

 

 



76 
 
 

 

 

Table 4.7. Results of different test scenarios of Bi-LSTM model 

Scenario TPR FNR PPR FDR Test 

Accuracy 

Bi-LSTM (100 

iterations, 300 

neurons) 

65.1148% 34.88% 91.49% 8.509% 86.84% 

Bi-LSTM (150 

iterations, 300 

neurons) 

94.51% 5.49% 95.55% 5.54% 96.68% 

Bi-LSTM (150 

iterations, 400 

neurons) 

88.979% 11.02% 96% 4% 95.197% 

Bi-LSTM (150 

iterations, 300 

neurons, test 

Percentage= 

30%) 

92.05% 7.95% 93.11% 6.89% 91.38% 

Bi-LSTM (150 

iterations, 300 

neurons, test 

Percentage= 

35%) 

91.7116% 8.28% 96.814% 3.186% 93.85% 

 

Table 4.7 demonstrates that the optimal Bi-LSTM architecture is achieved by using 300 neurons 

and 100-150 iterations for training. Regarding the data splitting, the best-case scenario is 

obtained by using 20% of the dataset samples as a test set. The last two scenarios reveal that by 

increasing the number of samples in the test set, the performance decreases. 

Figure 4.9 shows the confusion matrix of the best DL model. The figure illustrates that the 

highest FNR error rate is associated with class "25" with FNR = 0.26, while the best TPR is 

linked to class "55" with TPR = 100%. Furthermore, class "50" has the highest PPR value at 

100%, while class "72" has the worst FDR value of 0.779. 

For the ensemble learning ML model, the minimum classification error of the boosted decision 

tree models is 1.1%, and the confusion matrix with TPR, FNR, PPR, and FDR is shown in 

Figure 4.9. The figure reveals that the best TPR is related to class "50," and the best PPR 

corresponds to class "55." These results are consistent with those obtained by the DL model. 
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A) Confusion Matrix 

 

B) Training and validation progress 
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C) TPR 

 
D) PPR 

Figure 4.9. Confusion matrix and performance metrics (accuracy and loss) of the best ML 

ensemble scenario 
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4.4.1. Fusion of DL and ML models 

The final test scenario involves fusing the scores of the DL and ML models, and a detailed 

comparison between the individual models and the fusion model is presented in Figure 4.10. 

As demonstrated in Figure 4.10, the fused model outperforms the individual models. The 

accuracy is increased by 1.08% and 3.3% compared to the ML and DL individual models, 

respectively. Additionally, the TPR is improved by 1.66% and 5.46%, while the PPR is 

increased by 2.01% and 5.44% compared to the DL and ML individual models. 

These results confirm that fusing the DL and ML models significantly enhances performance. 

 

 

Figure 4.10. Performance comparison between individual and fusion model 
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Figure 4.10 proves that the fusion model is the best one since the error rates are almost 0% and 

the accuracy is 99.98%. 

 

4.5. Results of the fourth branch of the study 

In this part, the probabilistic model that have been built is reused and applied to the original 

entire dataset (without any balancing) to get all risk values as a range-based score. Now the 

target column (risk factor) is a value between 19% (the lowest value produced by the 

probabilistic model) and 70% (the highest value produced by the probabilistic model). 

As mentioned in the methodology part, this branch will be performed using the specific values 

of the target column (risk scores) as the main classes of our problem, meaning that the problem 

will be a classification task. 

However, the main issue in the classification thread is that there are many classes (39 classes) 

with different number of samples, and the balancing has little effect since there are classes with 

more than 50000 samples while others contain less than 50 samples. For this reason, the 

adjacent categories (classes) are merged to constitute unified categories and minimize the 

difference between classes since the adjacent categories represent a closed cancer prediction. 

4.5.1. Results of the fourth branch (the classification thread) 

After merging categories together, we got the following new classes of our classification 

problem illustrated in Table 4.8. 

Table 4.8. Breast cancer new classes after merging the adjacent categories 

Category (class) Number of samples 

20 60638 

23 166873 

27 41813 

30 2031 

50 1432 

60 5629 

70 2244 
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Then, the dataset is split into train and test (80% train, 20% test). The training set is balanced 

using SMOTE algorithm (oversampling) using a specific condition by which all classes with 

less than 2000 samples increased to 5000, and each class with number of samples less than 

1000 is also increased to 10000. The oversampling uses the nearest two neighbors in generating 

the new samples. 

After that, three ML models (RF, DT, LGBM, and Ensemble of the three models) and two DL 

models (1D-CNN and LSTM) are trained using the training set of the result dataset and then 

evaluated using the test set. 

Table 4-9 includes the evaluation results of the trained ML and DL models. 

Table 4.9 Evaluation results of the trained ML and DL models of the fourth scenario 

Model Accuracy % Precision % Recall % F1-score % 

LGBM 94.19 94 94 94 

DT 90.83 91.13 90.83 90.97 

RF 93.35 93.09 93.35 92.97 

Ensemble 

(LGBM, DT, RF) 

94.35 94.1 94.35 94.03 

1D-CNN 93.12 90.46 93.12 91.7 

LSTM 93.63 93.22 93.63 93.19 

Ensemble of 1D-

CNN and LSTM 

94.35 94.1 94.35 93.62 

Table 4.9 shows that the ensemble ML and DL models achieved the best performance in terms 

of accuracy, precision, recall and F1-score. The best obtained accuracy is 94.35%. 

To know the main reason of errors in the evaluation results, the confusion matrixes are also 

derived and shown in Figure 4.13. 

As illustrated in Figure 4.11, the confusion matrixes of all models achieve best results for the 

classes with large number of samples (20, 23, and 27). However, the rest of classes which have 

little number of samples suffers from errors (false positive errors and false negative errors). The 

Ensemble ML and DL models' confusion matrixes have less error rates than the individual 

models. 

Class "50" is the class with the highest error rates although the number of errors of this class 

are less than others, and this is due to the low number of samples of this class. Although class 
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"20" has 632 false negative errors (in case of ML ensemble model), but its precision and recall 

are 94.97% and 94.83%, respectively, and this is due to the large number of samples (there are 

11280 true positive samples of this class). 

 
LGBM 

 
RF 

 
DT 

 
Ensemble using voting 

 
1D-CNN 

 
LSTM 
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Ensemble DL model 

 

Figure 4.11. Performance evaluation of the trained ML and DL models of the fourth scenario 

(classification thread) 

 

The difference between distribution of breast cancer score of the prediction results is shown in 

Figure 4.12. 

 

Figure 4.12. Distribution of the predicted breast cancer score 

The distribution in Figure 4.12 proves that our task of predicting the right class among different 

size of them is a very hard one (although the balancing of the training set since the test set is 

preserved without any balancing so it will be biased to the non-cancer categories which are the 

categories with the greatest number of samples). 
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4.5.1.1. Violin Distribution Analysis 

Now in terms of the distribution of the original and predicted cancer risk samples, we derived 

the plot in Figure 4.13-A. The distribution of the predicted and the original range-based cancer 

score proves the high accuracy of the proposed models since the two distributions are too 

closed. The same conclusion is confirmed for the DL ensemble model (Figure 4.13-B). 

 
A. ML Model 

 
B. DL Model 

Figure 4.13. Combined Violin plot of the true and predicted labels of the ML/DL ensemble 

model 
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Violin plot is one of the performance evaluation charts that can be used to assess the 

performance of the trained ML and DL models using a mix of box plot and kernel density 

distribution. The Violin chart in our study is constructed using the predicted and true labels of 

the cancer scores. As seen in Figure 4.13, the distribution of the true and predicted labels almost 

the same. This proves the high accuracy of the proposed model in predicting the true labels with 

low number of errors. In this branch of study, we utilized the violin chart in order to judge the 

classification problem more precisely. In the fourth branch of the study, the adjacent classes are 

merged to transfer the problem into a specific classification task so the Violin chart can help to 

assess the classification task especially in case of multi-class classification (Fourth branch of 

the study is considered as multi-class classification). 

 

4.5.1.2. Variance Analysis 

In this part, we will analyze the variance of our predictions and the original breast cancer risk 

scores. Figure 4.14 (on both cases of ML and DL ensemble models) shows that most of 

variances are located near 0 value. The obtained variances of both ML and DL ensemble models 

are [-40, +60] and [-40, +40] and these variances are due to the problem of the unbalanced 

dataset (which can't be totally solved by the oversampling operation since the test set can't be 

oversampled). The number of variances with wide range are 10 and 12 for both ML and DL 

ensemble models, respectively. While the number of variances with low range are 13 and 16 

for both ML and DL, respectively. 

However, although the variance range is not small, but the number of error samples (caused the 

variance problem) is too small comparing to the total number of test samples. 

Figure 4.14 includes the variance results of both ML and DL models.  
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A. ML ensemble model 

 

B. DL ensemble model 

Figure 4.14. Variance plot of the true and predicted labels of the ML ensemble model 
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4.5.1.3. Sensitivity and specificity results 

In many medical decision support systems, the sensitivity and specificity test are performed to 

ensure the accuracy and robustness of the proposed models. 

Figure 4.15-A and B include the sensitivity and specificity of the ML and DL ensemble models. 

 

A. ML Ensemble Model 

 

B. DL Ensemble Model 

Figure 4.15. Sensitivity and Specificity plot of the true and predicted labels of the ML/DL 

ensemble model 
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Figure 4.15 proves that the specificity of all cancer scores (all categories) are high in both ML 

and DL ensemble models.  

For sensitivity, the low and medium cancer score categories have high values. However, the 

high-risk score categories 50-70 registered low sensitivity values due to the fact that the number 

of their test samples are too small comparing to the number of samples of the other categories 

(which is mentioned earlier in this branch of study). 

 

 

4.6. Results of the fifth branch (Regression model) 

The final thread of this study will be performed using regression models. We will treat the target 

column as a continuous score value, so no merging operations is applied here. In this part, the 

dataset obtained from the fourth branch is utilized. 

First, the target column is transformed using the logarithm transform to minimize the wide 

range of the target column and enhance the performance of the regression model. 

Figure 4.16 shows the target column (breast cancer prediction) before and after transform. 

 

Figure 4.16. Target column before and after applying the logarithm transform 
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After that, three regression models are applied: the decision trees regression DTR, the random 

forest regression RFR, and the K-Nearest neighbor regression model. Then, an ensemble of 

these three regression models is constructed and evaluated. The dataset is also split into 80% 

training and 20% test as in the previous scenario. 

Table 4.10 includes the evaluation results of the regression models using the regression metrics 

(MSE, MedAE). 

Table 4.8 Evaluation results of the trained ML and DL models of the fifth scenario 

Model MSE MedAE 

RFR 0.0164 0.019 

KNN Regression 0.03125 0.023 

DTR 0.029 0 

Ensemble ML 0.0104 0 

DL model 0.11 0.0205 

 

The best regression model is the ML ensemble model with 0.0104 mean squared error. The low 

value of the regression model proves his ability to predict the range-based breast cancer risk 

value in a high accuracy. 

Figure 4.17 shows the distribution of the actual and predicted risk score using the ML ensemble 

regression model. 
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Figure 4.17. The actual and predicted breast cancer score according to the ML ensemble 

regression model. 

 

Figure 4.17 demonstrates two clusters. One of them in the low-risk range, while another one in 

the high-risk range. However, the predicted values are distributed around each cluster with a 

variance which is notable especially in case of high-risk score samples. This result matches the 

result of the fourth branch and again it can be interpreted due to the distribution nature of the 

test samples which are extremely biased to the low-range cancer score. 

Now for more accurate judgment, we extract three different parts of the distribution plot of the 

actual and predicted scores at different score ranges. The first one is in the low-range score 

samples, the second one is in the medium-range score, while the third one is intended for the 

high-range score. Figure 4.18 illustrates these three comparisons between the actual and 

predicted risk score of the three ranges. 
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Figure 4.18. Actual and predicted risk score of the three ranges 

 

For the low score, the match between the predicted and original scores are too high. The 

medium range includes a few variances, while the most variances can be noticed in the high 

range. 

However, although there are some variances in the prediction of the high score levels, but the 

prediction still produces accurate and closed risk score. 

We also need to clarify that the regression method has its limit in performance (as seen in 

Figures 4-17 and 4-18). The target column in this case represents a wide range of possible 

values of cancer predictions. So, any little change in the predicted score will result in wrong 

prediction or biased prediction. However, future studies can focus on improving the 

performance of such regression-based cancer prediction methods. 

  

0

10

20

30

40

50

60

70

135791113151719212325272931333537394143454749

Actual Vs. Predicted Breast Cancer Scores (High scores)

Original Predicted



93 
 
 

 

 

Chapter 5 

Conclusion and future work 
  

5.1. Comparison with the related state-of-art 

Table 5.1 includes a comparison between the current study and the previous state-of-art in order 

to define my research importance and contribution. 

Table 5.1. Comparison between the current study and related work. 

Researcher Outcome Results / Limitations 

My study Range-Based score Accuracy: 95.8%. Fixed cancer score. 

Range-Based score Original Accuracy: 85.3%, ±1 variation: 

91.12%, ±2 Variation 91.33%. 

Range-Based score Accuracy 99.98%. 

Hussain et al. 

[58] 

Cancer prediction 

(Yes: 1, No: 0) 

GoogleNet: 99.26% accuracy, AlexNet: 

99.26% accuracy. Small dataset. 

Guo et al. [23] Cancer prediction 

(Yes: 1, No: 0) 

Accuracy: 98.79%. Binary prediction 

limitation. 

Uddin et al. [49] Cancer prediction 

(Yes: 1, No: 0) 

Voting classifier: 98.77% accuracy. Small 

dataset. 

Li and 

Sundararajan 

[44] 

Cancer prediction 

(Yes: 1, No: 0) 

SVM accuracy: 96.6%, Bayes accuracy: 

91.26%. Limited dataset size. 

Leventi et al. 

[57] 

Cancer prediction 

(Yes: 1, No: 0) 

Accuracy: 95.32%. Small dataset, low 

accuracy for breast cancer prediction. 

Kayikci et al. 

[59] 

Cancer prediction 

(Yes: 1, No: 0) 

AUC: 0.95, accuracy: 91.2%, precision: 

84.1%, recall: 79.8%. Small dataset. 

Saleh et al. [48] Cancer prediction 

(Yes: 1, No: 0) 

Accuracy: 95.18%. Small dataset. 

Kurian et al. 

[53] 

Cancer prediction 

(Yes: 1, No: 0) 

Decision tree achieved highest accuracy 

(94.30%). Binary prediction limitation. 

Ashokkumar et 

al. [47] 

Axillary Lymph Node 

Metastasis prediction 

(Yes: 1, No: 0) 

Accuracy: 94%. Limited dataset size. 

Ming et al. [45] Three cases (High, 

moderate, low risk) 

Accuracy: 84.3% - 88.9%. Need more risk 

factors. 

Botlagunta et al. 

[50] 

Cancer prediction 

(Yes: 1, No: 0) 

DT classifier: 83% accuracy, 0.87 AUC. 

Small dataset. 

Rajendran [34] Cancer prediction 

(Yes: 1, No: 0) 

Best accuracy: 99.1%, low sensitivity 

(78.1%). Small dataset. 
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Yang et al. [52] Cancer Recurrence 

prediction (Yes: 1, No: 

0) 

Training accuracy: ANN: 73.55%, Markov 

Model: 76.07%, Fusion: 75.63%. False 

positives and negatives. 

Al-Jawad et al. 

[18] 

Survival status (1 or 2) SVM recall: 73.78%, Precision: 74.77%, BN 

recall: 78.22%, Precision: 64.47%. Small 

dataset. 

Hou et al. [33] Cancer prediction 

(Yes: 1, No: 0) 

DNN and RF accuracy: 72.8%, XGBoost 

accuracy: 74.2%. Small dataset. 

 

In contrast to previous studies, my research utilizes a significantly larger dataset (BCSC with 

317880 samples) and applies a fusion of machine learning and deep learning techniques, which 

yield an exceptionally high accuracy rate of 99.98%. Moreover, the novelty of a range-based 

cancer score system and hyperparameters optimization in my study addresses some of the 

limitations found in other research, providing a more nuanced and efficient predictive model 

for breast cancer. 

 

5.2. Conclusion 

This study offers novel insights into breast cancer prediction, leveraging machine learning and 

deep learning techniques to build a robust, predictive model. The research bifurcated into five 

primary sections: risk factor weighting, range-based cancer prediction, and a fusion model for 

prediction. The first section presented a weighting algorithm applied to the BCSC dataset, 

improving accuracy to 95.8% and minimizing errors. The second part introduced a range-based 

predictive model, utilizing a probabilistic model to augment the BCSC dataset. Bayesian 

hyperparameters optimization was used for training the ensemble learning model, yielding 

superior True Positive Rate (TPR), Positive Predictive Rate (PPR), and accuracy in scenarios 

allowing for class-variance tolerance. Furthermore, the enhanced BCSC dataset provides a 

more granular understanding of cancer prediction. The third section proposed a fusion-based 

prediction system, combining an LSTM deep learning model with an ensemble of boosted 

decision trees, leading to an improved accuracy of 99.98% when using the fusion approach. 

This research not only offers innovative methodologies in breast cancer prediction but also 

provides an enriched version of the BCSC dataset for future investigations. The integration of 

machine learning and deep learning techniques, coupled with a comprehensive understanding 

of breast cancer prediction, will significantly contribute to the field of medical engineering. 



95 
 
 

 

 

The experiments were also applied using the individual modes and the fusion approach to 

measure the effect of the fusion approach on performance. The results demonstrated an 

improvement in performance using the fusion approach so that the accuracy was 99.98%. 

The forth part of this study concentrates on rebuilding a new breast cancer dataset starting from 

the original (unbalanced) dataset by applying the probabilistic model to transform the target 

column into a range-based one. Many ML and DL with ensemble learning models are applied 

in this branch, and the results are evaluated in terms of many statistical and medical analyses. 

For the final branch of the study, the same dataset of the fourth branch is utilized but the target 

column is considered as a continuous column, so many regression models are applied with 

ensemble regression model and the results are also analyzed and discussed. Although the results 

of the classification ensemble models were efficient and promised, the regression-based method 

had its limits in performance due to the nature of the wide range of target column (cancer 

prediction score). 

5.3. New scientifc contributions 

The main scientifc contributions of the dissertation are summarized in the following theses. 

Thesis I.  

I introduced an innovative breast cancer prediction model based on a sophisticated weighting 

algorithm applied to the BCSC dataset. The model encompasses a multi-step process, starting 

with dataset normalization and balancing, followed by a novel weighting algorithm 

incorporating expert opinions and international medical reports. The final degree of importance 

(DOI) is determined, influencing suggested training weights for risk factors. The optimization 

tree model is selected for its adaptability to hyperparameters and handling of data complexities. 

Empirical results demonstrate a 6.9% performance improvement, with substantial reductions in 

False Discovery and False Negative Rates. Notably, risk factor analyses identify "Race" as the 

most influential, underscoring its critical role in predictive accuracy. 

 

Thesis II.  

I proposed a novel Range-based breast cancer prediction model, an extension of Thesis I, 

comprising two integral systems: breast-cancer factors weighting and a statistical model for 

computing essential breast cancer statistics. The mathematical model calculates the range-based 
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cancer prediction score using Bayes' theorem, incorporating suggested training weights and risk 

factor probabilities. This model is employed to create new subclasses within the BCSC dataset, 

introducing three attributes: cancer score, non-cancer score, and final prediction. Machine 

learning training is conducted using modified dataset versions, considering two scenarios: a 

subset of BCSC and the entire dataset. The probabilistic model is applied to evaluate and 

compute final prediction scores, leading to a new distribution of result prediction scores, with 

subclasses for low and high-predicted percentages of breast cancer. I proved that my range-

based model achieved average TPR values of 94.61% and 90.15% for both sub and entire 

datasets, respectively. The average PPR values of the sub and entire datasets are 95.28% and 

85.55%, respectively. I also applied experiments using ±1 and ±2 class variance (Classes "19", 

"20" and "21" for example is considered as one category). The total 36 classes are concluded 

into only 7 categories. I showed that the accuracy is increased by 5.82% and 6.03% for ±1 and 

±2 class-variances, respectively. 

 

Thesis III: 

Utilizing the range-based and balanced BCSC dataset from the previous parts, I introduced a 

novel Range-based breast cancer prediction approach employing a fused DL-ML model. The 

initial step involved categorizing classes into seven categories through a "Grouping step," 

resulting in a new BCSC dataset enriched with added knowledge. The dataset was then split 

into training and test sets for the development of both a deep learning (DL) architecture (LSTM 

and Dense layers) and an ensemble learning model. In the final step, a score-level fusion 

technique was applied to combine the ML and DL models, enhancing overall performance . 

 

Multiple experimental scenarios were executed to assess the proposed method, incorporating 

modifications to the LSTM architecture, changes in the number of neurons, learning epochs, 

and variations in the training and test percentages. The results demonstrated superior 

performance of the fused model compared to individual ML and DL models, with an accuracy 

increase of 1.08% and 3.3%, TPR improvement by 1.66% and 5.46%, and PPR enhancement 

by 2.01% and 5.44% compared to DL and ML individual models. These findings affirm the 

significant performance improvement achieved through the fusion of DL and ML models. 
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Sub-Thesis I: 

I proposed a novel Classification-based range-based ensemble model for the original 

BCSC dataset, employing this probabilistic model to compute a new distribution of the target 

column. A detailed exploration ensued, introducing two ensemble approaches: a Machine 

Learning ensemble featuring Decision Trees (DT), Random Forest (RF), and Light Gradient 

Boosting Machine (LGMB), and a Deep Learning ensemble incorporating Long Short-Term 

Memory (LSTM) and 1D-Convolutional Neural Network (1D-CNN). Through rigorous 

analyses encompassing violin distribution examination and variance analysis, the study offers 

insights into model accuracy and the impact of class imbalances on predictions. Notably, the 

results demonstrate the model's high accuracy in predicting breast cancer categories, evident in 

the close alignment of the original and predicted cancer risk distributions. Additionally, the 

section addresses the nuanced metrics of sensitivity and specificity in medical decision support 

systems, particularly focusing on challenges posed by smaller sample sizes, especially in high-

risk categories. 

 

Sub-Thesis II: 

I proposed a regression-based and range-based breast cancer model. I directed my 

efforts towards the utilization of regression analysis to predict continuous breast cancer risk 

scores, as the new range-based score represents a continuous scope. The dataset, obtained from 

the fourth branch of the study, underwent a logarithmic transformation on the target column. 

This transformation was instrumental in normalizing the target's distribution, thereby enhancing 

the predictive efficacy of the regression models. I employed three distinct regression models—

Decision Tree Regression (DTR), Random Forest Regression (RFR), and K-Nearest Neighbor 

(KNN) Regression—followed by the construction of an ensemble model aggregating these 

three. The evaluation of regression breast cancer models was performed using regression-

specific metrics such as Mean Squared Error (MSE) and Median Absolute Error (MedAE). The 

ensemble model exhibited remarkable precision, recording the lowest MSE among the cohort, 

substantiating its refined predictive capability. Despite the observed variance in high-risk score 

predictions, the model's output remains closely aligned with the actual risk scores, underlining 

the robustness and accuracy of the regression approach employed in this study. 

 

 



98 
 
 

 

 

5.4. Recommendation and Future Work 

Future studies can get benefit of the modified version of the BCSC dataset and conduct more 

experiments. 

Future research can focus on utilizing other breast cancer datasets and studying the effect of 

incorporating different risk factors on the performance of range-based breast cancer prediction. 

Other possible experiments can be conducted like designing a multimodal breast cancer 

prediction model using x-ray or CT-scan images along with the risk factors improving the 

reliability of the breast cancer prediction models. 
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Appendix B- Three trials of the results of the first branch of the 

study 

Three trials of the trained ensemble model of the first part of the study are shown in 

Table B-1. 

Table B-1. Evaluation of the risk estimation model using the weighted and non-weighted 

version of the risk factors (Three different trials). 

 With Weighting (%) Without Weighting (%) 

Majority class FNR (Trial1) 3.3 8.3 
Majority class FNR (Trial2) 3.3 8.3 
Majority class FNR (Trial3) 3.28 8.27 
Minor class  FNR (Trial1) 10.5 28.1 

Minor class FNR(Trial2) 10.5 28.1 

Minor class FNR (Trial3) 11.1 29.02 

Majority class FDR (Trial1) 1.8 5 
Majority class FDR (Trial2) 1.81 5.1 
Majority class FDR (Trial3) 1.82 5.3 
Minor class FDR (Trial1) 17.5 40.1 

Minor class FDR (Trial2) 17.6 40.2 

Minor class FDR (Trial3) 17.5 40.2 

Overall Validation Accuracy 

(Trial1) 
95.7 88.8 

Overall Validation Accuracy 

(Trial2) 
95.6 88.7 

Overall Validation Accuracy 

(Trial3) 
95.85 88.9 

Training Time (Trial1) 38.65 41.09 
Training Time (Trial2) 40.50 41.20 
Training Time (Trial3) 40.32 41.25 
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Appendix C- Three trials of the results of the second branch of the 

study 

Three trials of the entire dataset results (Second part of the study) 
Original Results Trial 1: Accuracy=85.3%, Trial 2: Accuracy=85.1%, Trial 3: Accuracy=85.5% 

 

TPR 

(Tri

al1) 

TPR 

(Tri

al2) 

TPR 

(Tri

al3) 

FNR 

(Tri

al1) 

FNR 

(Tri

al2) 

FNR 

(Tri

al3) 

PPR 

(Tri

al1) 

PPR 

(Tri

al2) 

PPR 

(Tri

al3) 

FDR 

(Tri

al1) 

FDR 

(Trial

2) 

FDR 

(Trial

3) 

1

9 
77.9 77.8 77.8 22.1 22.2 77.9 86.7 86.6 86.7 13.3 13.4 13.3 

2

0 
83.9 84.1 84.1 16.1 15.9 83.9 87.5 87.6 87.7 12.5 12.4 12.3 

2

1 
84.4 84.4 84.4 16.6 15.6 83.4 85.3 85.3 85.3 14.7 14.7 14.7 

2

2 
84.4 84.4 84.4 16.6 15.6 83.4 85.6 85.5 85.7 14.4 14.5 14.3 

2

3 
83.9 83.7 83.7 16.1 16.3 83.9 85.9 85.9 85.9 14.1 14.1 14.1 

2

4 
82.9 82.9 82.9 17.1 17.1 82.9 85.2 85.2 85.2 14.8 14.8 14.8 

2

5 
75.3 75.2 75.5 24.7 24.5 75.3 80.6 80.6 80.6 19.4 19.4 19.4 

2

6 
83.9 83.8 84.1 16.1 15.9 83.9 85.3 85.3 85.4 14.7 14.7 14.6 

2

7 
72.3 72.3 72.5 27.7 27.5 72.3 78.6 78.6 78.6 21.4 21.4 21.4 

2

8 
64.3 64.2 64.4 35.7 35.6 64.3 72.3 72.3 72.4 27.7 27.7 27.6 

2

9 
64.5 64.5 64.5 35.5 35.5 64.5 69.6 70 70 30.4 30 30 

3

0 
69.4 69.4 69.4 30.6 30.6 69.4 73.5 73.5 73.5 26.5 26.5 26.5 

3

1 
0 0 0 100 100 0 - - - 100 

#VAL

UE! 

#VAL

UE! 

4

8 
100 100 100 0 0 100 100 100 100 0 0 0 

4

9 
100 100 100 0 0 100 94.1 94.1 94.3 5.9 5.9 5.7 

5

0 
100 100 100 0 0 100 82.1 82 82.1 17.9 18 17.9 

5

1 
100 100 100 0 0 100 86 86 86 14.0 14 14 

5

2 
100 100 100 0 0 100 81.9 81.9 82.1 18.1 18.1 17.9 

5

3 
100 100 100 0 0 100 83.6 83.6 83.6 16.4 16.4 16.4 

5

4 
96.6 96.6 96.7 3.4 3.3 96.6 83.1 83.1 83.1 16.9 16.9 16.9 



106 
 
 

 

 

5

5 
99.2 99.2 99.3 0.8 0.7 99.2 84.0 84.0 84.2 16.0 16 15.8 

5

6 
100 100 100 0 0 100 85.8 85.8 86 14.2 14.2 14 

5

7 
99.6 99.6 99.6 1.4 0.4 98.6 86.8 86.8 86.8 13.2 13.2 13.2 

5

8 
99.2 99.2 99.2 0.8 0.8 99.2 86.4 86.2 86.4 13.6 13.8 13.6 

5

9 
100 100 100 0 0 100 84.9 84.9 85.3 15.1 15.1 14.7 

6

0 
98.6 98.6 98.8 1.4 1.2 98.6 84.8 84.8 84.8 15.2 15.2 15.2 

6

1 
99.3 99.3 99.5 0.7 0.5 99.3 87.2 87.2 87.2 12.8 12.8 12.8 

6

2 
100 100 100 0 0 100 87.1 87.1 87.3 12.9 12.9 12.7 

6

3 
99.1 99.1 99 0.9 1 99.1 85.3 85.3 85.3 14.7 14.7 14.7 

6

4 
99.3 99.3 99.4 0.7 0.6 99.3 85.8 85.8 85.8 14.2 14.2 14.2 

6

5 
98.1 98.1 98.3 1.9 1.7 98.1 89.8 89.8 90 10.2 10.2 10 

6

6 
100 100 100 0 0 100 89.5 89.1 89.5 10.5 10.9 10.5 

6

7 
100 100 100 0 0 100 83.4 83.4 83.4 16.6 16.6 16.6 

6

8 
100 100 100 0 0 100 93.0 93.0 93.0 7.0 7 7 

6

9 
100 100 100 0 0 100 90.1 90.1 90.1 9.9 9.9 9.9 

7

0 
100 100 100 0 0 100 90.4 90.4 90.4 9.6 9.6 9.6 

7

1 
100 100 100 0 0 100 90.5 90.5 90.5 9.5 9.5 9.5 

7

2 
100 100 100 0 0 100 79.2 79.2 79.5 20.8 20.8 20.5 

7

3 
100 100 100 0 0 100 100 100 100 0 0 0 

 

Figures C-1 and C-2 also shows the confusion matrix of two different number of epochs (the 

second branch of the study). Figure C-3 also illustrates the training curves using 15 and 20 

training epochs. 
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Figure C-1 Confusion matrix using 15 training epochs (the second branch of the study) 
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Figure C-2 Confusion matrix using 20 training epochs (the second branch of the study) 



109 
 
 

 

 

 

 
Figure C-3 Training curves of the optimizable ensemble model using 15 and 20 training 

epochs. 
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Appendix D- Three trials of the results of the fourth branch of the 

study 

Table D-1 shows three trials of the same results of training ML and DL models of the fourth 

branch of our study. 

Model Accuracy % Precision % Recall % F1-score % 

LGBM 94.19 94 94 94 

DT 90.83 91.13 90.83 90.97 

RF 93.35 93.09 93.35 92.97 

Ensemble 

(LGBM, DT, RF) 

94.35 94.1 94.35 94.03 

1D-CNN 93.12 90.46 93.12 91.7 

LSTM 93.63 93.22 93.63 93.19 

Ensemble of 1D-

CNN and LSTM 

94.35 94.1 94.35 93.62 

 

Table D-1 Three Trails of evaluation results of the trained ML and DL models of the fourth 

scenario 
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T
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a
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LGB

M 

94.1

9 

94.2

2 

93.9

9 

94 94 94 94 93.8 93.9 94 93.8

9 

93.9

4 

DT 90.8

3 

90.7

5 

90.9

0 

91.1

3 

91.2

2 

91 90.8

3 

90.8 90.8 90.9

7 

91 90.8

9 

RF 93.3

5 

94.2 93.7 93.0

9 

93.2 93.1 93.3

5 

94 94.1 92.9

7 

93.5

9 

93.5

9 

Ense

mble 

(LGB

94.3

5 

94.5 94.2 94.1 94.2 94.2 94.3

5 

94.7 94.5 94.0

3 

 

94.4 

94.3

4 
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M, 

DT, 

RF) 

1D-

CNN 

93.1

2 

93.2

5 

93.2 90.4

6 

90.3

5 

90.4 93.1

2 

93.2 93.3 91.7 91.7

5 

91.8

2 

LST

M 

93.6

3 

94 94 93.2

2 

93.6 93.5 93.6

3 

93.5 93.6 93.1

9 

93.5

4 

93.5

4 

Ense

mble 

of 1D-

CNN 

and 

LST

M 

94.3

5 

94.5 94.3 94.1 94 94 94.3

5 

93.5 93.5 93.6

2 

93.7

4 

93.7

4 

 

  



112 
 
 

 

 

Appendix E- Three trials of the results of the fourth branch of the 

study 

Three trials are also performed in the last branch of this study. The results of these trials are 

shown in Table E.1 bellow. 

Table E.1 Three trials of the evaluation results of the trained ML and DL models of the fifth 

scenario 

Model MSE 

Trial1 

MSE 

Trial2 

MSE 

Trial3 

MedAE 

Trial1 

MedAE 

Trial2 

MedAE 

Trial3 

RFR 0.0164 0.0163 0.01644 0.019 0.01889 0.0189 

KNN 

Regression 

0.03125 0.0312 0.0325 0.023 0.023 0.0229 

DTR 0.029 0.02877 0.0289 0 0 0 

Ensemble ML 0.0104 0.0103 0.0103 0 0 0 

DL model 0.11 0.114 0.109 0.0205 0.0089 0.009 
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Appendix F- Hyperparameters optimization details 

 

Table F-1. Hyperparameters in our experiments (Ensemble models). 

Hyperparameter Initial Value 

Maximum Number of Splits (range) 

 

[1, max(2, n–1)], where n is the number of 

observations  

 

Ensemble Method AdaBoost (Boosting methods) 

Minimum leaf size (per decision tree) 8 

Number of learners (Decision Trees) 30 

Initial Learning rate 0.1 

Optimizer Bayesian Optimization 

Iterations 15/20 

Maximum training time 300 

  

 

At the end of optimization, we got different values of the optimizable hyperparameters which 

were clearly different form the initial values. For example, number of learners was 73, the final 

learning rate was 0.8, the maximum number of splits was 6113. 
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