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Chapter 1

Introduction

Nowadays, we can find acceptable algorithmic solutions for countless complex
problems, including NP-complete problems. With the help of deep learning
methods, we were able to reach or exceed human performance in areas such as
chess [1] or Go [2].

Deep learning solutions usually require a large amount of data and impressive
computing capacity, which can be done on a CPU or, more typically, on GPUs.
Therefore training deep learning models requires a lot of energy [3] and its carbon
footprint is becoming more and more significant [4].

Take for example the GPT-3 (Generative Pre-trained Transformer 3) created
by OpenAI, an autoregressive language model with 175 billion parameters which
achieves strong performance on various NLP problems, like translation, question-
answering, cloze tasks, unscrambling words, using a novel word in a sentence
and performing 3-digit arithmetic. [5] Its estimated energy consumption due to
training is 1287 MWh and carbon emissions are 552 tCO2. [6]

Therefore, we can conclude that even in the case of the deep learning solutions
used successfully today, energy consumption is a very important aspect and
in some cases (e.g. in the case of embedded systems or smartphones) it is a
fundamentally decisive factor.

1.1 Outline of the thesis

This dissertation is organized as follows: Chapter 1 presents the thesis points of
the dissertation, with the first point based on the findings from [7] article, and
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2 1. INTRODUCTION

the second point based on the findings from [8] article. This chapter also provides

an introduction to the field of Neural Networks, tracing its history and exploring

its various fields of application.

Chapter 2, based on the article "End-to-End Training of Deep Neural Networks

in the Fourier Domain" by Fülöp and Horváth (2022), explores the optimization

of Convolutional Neural Networks (CNNs) in the Fourier Domain. It begins with

an introduction to the topic, followed by a detailed discussion on the acceleration

of networks in the Fourier Domain. The chapter then presents the methods

used, including the Convolution Theorem and methods in the frequency domain.

The results and discussions section provides insights into the application of these

methods on one-dimensional and two-dimensional datasets. The chapter concludes

with a discussion and conclusion of the findings.

Chapter 3, based on the article "A Convolutional Neural Network with a

Wave-Based Convolver" by Fülöp, Csaba, and Horváth (2023), introduces a

Convolutional Neural Network with a Wave-based Convolver. The chapter begins

with an introduction, followed by a detailed explanation of the methods used. It

presents a one-dimensional network and discusses the convolution and SAW-based

kervolution. The chapter then presents the results of the study, including the

application of the methods on various datasets. The chapter concludes with a

summary of the findings.

In Chapter 4, using the combination of machine learning and temporal DMD

amplitude changes, I introduce a method. In this method, I focused on classifying

audio files, specifically recognizing the difference between the vowels ’ae’ and ’ah’,

using the architecture I developed. My experiments showed that this architecture

can be effective for certain signal classification tasks. This chapter was created at

the end of my PhD studies as part of a separate project. While it is partly related

to the previous chapters, it can be considered as an independent project, from

which no thesis points were ultimately derived.
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1.2 Thesis points of my dissertation

1.2.1 First point

I implemented a convolutional neural network in the frequency domain without
using any inverse Fourier transformation, including the classification part as well.

I have introduced an alternative realization of the spatial activation functions
in the frequency domain, and I have presented a possible solution to eliminate the
inverse Fourier transformation before the fully connected classification layer.

My neural network architecture was tested on one- and two-dimensional
datasets and compared with similar network implementations containing inverse
Fourier transformation. The proposed framework could achieve similar or better
accuracy without the computational cost of inverse Fourier transformation. In
the case of the MNIST dataset, the maximum accuracy of the architecture with
inverse FFT decreased by about 6% from the time domain reference (where the
maximum was 98.75%), while the maximum accuracy of my solution dropped by
just approximately 4%.

In terms of computational efficiency, my model significantly reduced the number
of multiplications required. For an input of size 28x28 with 3x3 kernels, the number
of multiplications in the Fourier domain was 3136, compared to 7056 in the time
domain. This reduction in computational cost, coupled with the comparable or
superior accuracy of my model, demonstrates the effectiveness of my approach.

1.2.2 Second point

I introduced a special convolutional neural network with novel kernel convolution,
which can be implemented with a wave-based device based on the principles of
surface acoustic wave convolvers.

I tested my neural network architecture on one- and two-dimensional datasets,
and it was compared with similar network implementations containing normal
convolution. The proposed framework could achieve a similar or slightly worse
accuracy, but it has the potential to be implemented in a much faster and more
energy-efficient device.
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When tested on the MNIST dataset, my network achieved a mean accuracy of
86.51% and a maximum accuracy of 93.58%, compared to the reference network’s
mean accuracy of 92.61% and maximum accuracy of 96.52%. Similar trends
were observed with the Fashion-MNIST and HADB datasets, with an average
performance drop of approximately 6%.

My results also revealed some of the required properties of future magnetic
devices. To ensure high accuracy, the attenuation parameter cannot be lower than
e

−i
999 .

1.3 Brief overview of Neural Networks

1.3.1 History of Deep Learning

The researchers and philosophers have been trying to understand for a long time
how human brain and neural system function and they end up in two different
tracks: connectionism and computationalism. In case of the connectionism the
human intellectual abilities can be explained with a network of very simple units
(these units are the neurons). [9]

Alexander Bain (1818-1903) related the processes of associative memory to the
distribution of activity of neural groupings and proposed a mode of storage capable
of assembling what was required. He described the computational flexibility that
allows a neural grouping to function when multiple associations are to be stored.
[10]

Warren McCulloch and Walter Pitts speculated on the inner workings of
neurons and introduced a primitive neural network model in 1943, which could be
described as:

y =

{
1, if Θ ≤

∑
iwixi and zj = 0 for all j

0, otherwise
(1.1)

where y is the output, xi is the input of signals, wi is the corresponding weights,
zj is the inhibitory input and Θ is the threshold. [11]

Donald O. Hebb (1904-1985) the father of Neural Networks introduced the
Hebbian Learning Rule in 1949. Hebb stated that: “When an axon of cell A is
near enough to excite a cell B and repeatedly or persistently takes part in firing
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it, some growth process or metabolic change takes place in one or both cells such
that As efficiency, as one of the cells firing B, is increased.” So the connection
between two units should be strengthened as the frequency of co-occurrences of
these two units increase. [10]

Frank Rosenblatt introduced the perceptrons in 1958. He constructed an
electronic device named Perceptron that showed the ability to learn according
to associations. The Perceptron has four units, first is the sensory unit, and the
second one is the projection unit which receives the information from the sensory
unit and passes it onto the association unit, which adds the data with different
weights and then passes the results to response units. [12]

The perceptrons side by side form single one-layer neural network and the one-
layer neural networks form a multi-layer neural network, which is called multi-layer
perceptrons (MLP). MLP has universal approximation property, which means
MLP can represent any functions, but the universal approximation properties of
shallow neural networks need exponentially many neurons. [10]

The backpropagation algorithm, a cornerstone in the development of neural
networks, utilizes the propagation of the network’s error backwards for the purpose
of weight adjustment. This algorithm neural network specific discussion was
initially introduced by Paul Werbos in 1974 [13]. The backpropagation algorithm
has since become a fundamental component in the training of deep neural networks.

Hopfield Network (introduced in 1982) is a fully connected neural network
where the weights connecting the neurons are bidirectional, and the values of units
are either 0 or 1. Hopfield Network has content-addressable memory property.
[14]

LeNet, which was invented by Le Cun et al., was the first convolutional neural
network and it was inspired by the Neocogitron. The architecture of LeNet consists
of two convolutional layers and after the convolutional layers, it has downsampling
layers as well. The end of this model contains a fully connected layer and an RBF
layer for classification. [15]

Reinforcement Learning (RL) is a branch of machine learning that focuses on
decision-making processes, where an agent learns to make decisions by interacting
with its environment and receiving feedback in the form of rewards or penalties.
This learning paradigm has been successfully applied in various domains, including
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game-playing, robotics, resource management, and recommendation systems. The
introduction of RL marked a significant shift in the field of machine learning,
moving away from supervised learning paradigms, where an agent learns from a
set of labeled examples, towards a more interactive and dynamic learning process.
This shift has allowed for the development of more complex and adaptive systems,
capable of learning and improving their performance over time through interaction
with their environment. [16] The application of RL extends beyond single-agent
scenarios. In the survey "Multi-agent deep reinforcement learning: a survey" by
Sven Gronauer and K. Diepold, the authors provide an overview of the current
developments in multi-agent deep reinforcement learning, where multiple agents
learn to interact with each other and the environment. They discuss the unique
challenges that arise in the multi-agent domain and review methods to cope with
these challenges [17]. RL has also been applied in the realm of autonomous vehicles
and game-playing. In the paper "Outracing champion Gran Turismo drivers with
deep reinforcement learning" by Peter R. Wurman et al., the authors describe how
they trained agents that can compete with the world’s best e-sports drivers in the
PlayStation game Gran Turismo. They demonstrate the capabilities of their agent,
Gran Turismo Sophy, by winning a head-to-head competition against four of the
world’s best Gran Turismo drivers [18]. In the field of Unmanned Aerial Vehicles
(UAVs), RL has been used to ensure a substantial level of autonomy. In the paper
"Drone Deep Reinforcement Learning: A Review" by A. Azar et al., the authors
provide a detailed description of deep reinforcement learning techniques applied
to the guidance, navigation, and control of UAVs. [19] These studies underscore
the versatility and potential of reinforcement learning in various domains.

Autoencoders, a type of artificial neural network, have emerged as a powerful
tool for learning efficient codings of input data, particularly in the realm of
dimensionality reduction and feature learning. These networks are designed
to encode input data into a compressed representation, and then decode this
representation back into the original data format, thereby learning a form of
identity function. This process forces the network to capture the most salient
features of the input data in the compressed representation, which can be used
for tasks such as noise reduction, anomaly detection, and more [20]. The power of
autoencoders has been demonstrated in various fields. For instance, Wehmeyer and
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Noé applied a modification of an autoencoder to the task of dimension reduction
of molecular dynamics data, showing that their time-lagged autoencoder could
find low-dimensional embeddings for high-dimensional feature spaces, capturing
the slow dynamics of the underlying stochastic processes [21]. In another study,
Kiarashinejad et al. used autoencoders to considerably reduce the dimensionality
and computational complexity of electromagnetic nanostructure design problems,
transforming the conventional many-to-one design problem into a simpler one-
to-one problem plus a much simpler many-to-one problem [22]. These studies
underscore the versatility and efficacy of autoencoders in tackling high-dimensional
data, providing efficient and meaningful representations that can be used for a
range of subsequent tasks and application of autoencoders will continue to play a
significant role in this field.

The introduction of Recurrent Neural Networks (RNNs) marked a significant
milestone in the field of deep learning. Unlike traditional feed-forward neural
networks, RNNs possess a unique architecture that allows them to maintain a
form of memory by using their output as part of the input for the next step. This
characteristic makes them particularly suited for tasks involving sequential data,
such as time-series analysis, natural language processing, and speech recognition.
However, the practical application of RNNs was limited due to the vanishing
gradient problem, which was later addressed with the introduction of Long Short-
Term Memory (LSTM) networks by Hochreiter and Schmidhuber in 1997. [23]

Graph Neural Networks (GNNs) have emerged as a powerful tool for learning
from graph-structured data, providing a means to encode both node features
and topological information. GNNs have been applied across a wide range of
domains, from social network analysis to computational chemistry, and have shown
significant promise in handling complex relational data. [24] The foundational
work of Scarselli et al. ([25]) introduced the concept of GNNs, which aimed to
extend traditional neural networks to directly process graphs, thereby capturing
the rich relational structure often present in real-world data. This opened up a
new paradigm in machine learning, enabling the development of models that could
learn from data structured as graphs, going beyond the limitations of traditional
data types like vectors or sequences. An application of Graph Neural Networks
can be found in the field of recommender systems. With the rapid growth of
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online information, recommender systems have become indispensable tools for
many businesses, such as e-commerce websites and music services. These systems
aim to accurately model users’ preferences from their historical interactions and
static features, and further recommend items that users might be interested
in. However, the main challenge in recommender systems is to learn effective
user/item representations from their interactions and side information. Recently,
GNN techniques have been widely utilized in recommender systems since most of
the information in recommender systems essentially has a graph structure and
GNNs have superiority in graph representation learning. For instance, the paper
"Graph Neural Networks in Recommender Systems: A Survey" by Shiwen Wu
et al., provides a comprehensive review of recent research efforts on GNN-based
recommender systems. They provide a taxonomy of GNN-based recommendation
models according to the types of information used and recommendation tasks.
Moreover, they systematically analyze the challenges of applying GNN on different
types of data and discuss how existing works in this field address these challenges.
They also state new perspectives pertaining to the development of this field [26].

In 2012, Hinton et al. introduced a novel regularization technique known as
Dropout, which has since played a crucial role in the progression of deep learning.
The Dropout method addresses the problem of overfitting in neural networks
by randomly nullifying a certain proportion of input units at each training step.
This process effectively results in a unique network configuration at each iteration.
The inherent randomness of Dropout prevents intricate co-adaptations among the
network’s units, which in turn reduces the likelihood of overfitting and enhances
the network’s ability to generalize. [27]

While the LeNet has been previously mentioned, the evolution of CNNs
includes other significant milestones such as the introduction of AlexNet. AlexNet,
introduced by Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton in 2012,
substantially improved image recognition performance. This deep learning model
revolutionized the field of computer vision. Its architecture, deeper and wider than
previous models, utilized innovative techniques such as ReLU activation function
and dropout for regularization. The success of AlexNet sparked a wave of interest
in deep learning, particularly for applications in image classification and object
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detection, setting the stage for subsequent developments in CNN architectures.
[28]

Another milestone, the introduction of GANs by Ian Goodfellow and his col-
leagues in 2014 offered a novel approach for generative models, and they are widely
used in the generation and modification of images. GANs consist of two neural
networks, a generator and a discriminator, that are trained simultaneously. The
generator network generates new data instances, while the discriminator evaluates
them for authenticity. This adversarial process leads to the generator network
creating increasingly better data. GANs have been particularly impactful in the
field of computer vision, where they have been used to generate realistic images,
perform image-to-image translation, and even generate 3D object projections. [29]

In 2015, Ioffe and Szegedy introduced a method known as Batch Normalization,
which has since become a cornerstone in the field of deep learning. This technique,
designed to make artificial neural networks more stable and faster, normalizes the
inputs of the layers by re-centering and re-scaling them. Batch Normalization
operates by using the statistics of a batch of images to normalize the features of an
input image, which can introduce noise to the gradient of the training loss, which
is important for the optimization and generalization of deep neural networks. [30]

Capsule Networks (CapsNets), a novel form of artificial neural network, were
introduced by Geoffrey Hinton and his team in 2017. CapsNets were designed
to address some of the limitations of Convolutional Neural Networks (CNNs),
particularly their inability to preserve the hierarchical relationships of objects
within an image [31]. A capsule is a group of neurons whose activity vector
represents the instantiation parameters of a specific type of entity such as an
object or an object part. The length of the activity vector is used to represent the
probability that the entity exists and its orientation to represent the instantiation
parameters. Active capsules at one level make predictions, via transformation
matrices, for the instantiation parameters of higher-level capsules. When multiple
predictions agree, a higher level capsule becomes active. The authors introduced
an iterative routing-by-agreement mechanism: A lower-level capsule prefers to
send its output to higher level capsules whose activity vectors have a big scalar
product with the prediction coming from the lower-level capsule. This mechanism
is more effective than the max-pooling in CNNs, which allows neurons in one
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layer to ignore all but the most active feature detector in a local pool in the
layer below. The authors demonstrated that their dynamic routing mechanism
is an effective way of segmenting highly overlapping objects. They showed that
a discriminatively trained, multi-layer capsule system achieves state-of-the-art
performance on MNIST and is considerably better than a convolutional net at
recognizing highly overlapping digits. In the realm of medical imaging, CapsNets
have shown promise. For instance, in the study "Brain Tumor Type Classification
via Capsule Networks" by Parnian Afshar, Arash Mohammadi, and K. Plataniotis,
CapsNets were used for the classification of brain tumor types. The authors found
that CapsNets could successfully outperform CNNs for this classification problem,
demonstrating the potential of CapsNets in medical applications [32].

The Transformer models, introduced by Vaswani and colleagues in 2017, which
utilize attention mechanisms, have represented a significant advancement in the
field of Natural Language Processing (NLP). The Transformer model, unlike its
predecessors, does not rely on recurrence but instead uses a self-attention mecha-
nism, allowing it to consider different words in the sentence simultaneously, thereby
capturing the context more effectively. This has led to substantial improvements
in tasks such as machine translation, text summarization, and sentiment analysis.
Furthermore, the Transformer model forms the backbone of more recent models
like BERT, which have set new performance benchmarks on a wide array of NLP
tasks. [33] [34] [35]

Transfer learning is a powerful technique in machine learning, where a pre-
trained model is repurposed for a new problem. This approach has gained
significant traction in deep learning, particularly in the fields of computer vision
and natural language processing, where pre-trained models serve as a starting
point for specific tasks. Transfer learning is particularly useful in scenarios where
the training and future data may not be in the same feature space or have the
same distribution. In such cases, knowledge transfer can significantly improve the
performance of learning by avoiding the need for extensive data labeling efforts.
There are several real-world examples where transfer learning can be beneficial.
For instance, in the field of web document classification, the distribution of review
data among different types of products can be very different, making it expensive
to collect a large amount of labeled data to train the review-classification models
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for each product. In such cases, transfer learning can save a significant amount of
labeling effort.[36] In the paper "Learning to Prompt for Vision-Language Models"
by Zhou, Yang, Loy, and Liu, the authors explored the use of large pre-trained
vision-language models like CLIP, which have shown great potential in learning
representations that are transferable across a wide range of downstream tasks [37].
The authors proposed Context Optimization (CoOp), a simple approach specifically
for adapting CLIP-like vision-language models for downstream image recognition.
Through extensive experiments, they demonstrated that CoOp requires as few as
one or two shots to beat hand-crafted prompts with a decent margin and is able to
gain significant improvements over prompt engineering with more shots. In another
study, "Compressing BERT: Studying the Effects of Weight Pruning on Transfer
Learning" by Gordon, Duh, and Andrews, the authors explored weight pruning
for BERT and its effects on transfer learning [38]. They found that BERT can
be pruned once during pre-training rather than separately for each task without
affecting performance. This finding is significant as it suggests that the benefits of
transfer learning can be achieved with more compact models, making them more
feasible for deployment in resource-constrained scenarios. These studies highlight
the versatility and potential of transfer learning in deep learning. By leveraging
pre-trained models, researchers and practitioners can effectively bootstrap the
learning process for new tasks, saving computational resources and potentially
achieving superior performance.

1.3.2 Fields of Application

In this section, I strive to offer a wide-ranging, though not all-encompassing,
overview of the diverse areas where techniques of deep learning and neural networks
have been effectively utilized. The ongoing progress in these fields points towards
a future full of promise, teeming with vast potential for additional applications
and enhancements.

1.3.2.1 Natural Language Processing

In the case of Natural Language Processing (NLP), Neural Networks and Transformer-
based models have been instrumental in driving significant advancements. These
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models have been effectively utilized in a variety of NLP tasks, including text
classification, machine translation, and cognitive dialogue systems, among others.

The introduction of the BERT (Bidirectional Encoder Representations from
Transformers) model by Devlin et al. in 2018 marked a significant milestone in the
field of NLP. BERT is a transformer-based machine learning technique for NLP
pre-training. It considers the full context of a word by looking at the words that
come before and after it—hence the term ’bidirectional’. This approach has led to
state-of-the-art results on a wide array of NLP tasks. The BERT model has been
adopted by Google in its search engine, demonstrating its practical effectiveness
[34].

Following the success of BERT, Facebook AI introduced RoBERTa (A Robustly
Optimized BERT Pretraining Approach). RoBERTa, developed by Liu et al., is a
variant of BERT that is claimed to have significantly improved performance over its
predecessor. The improvements were achieved by modifying key hyperparameters
in BERT, including training the model longer with bigger batches over more data,
removing the next-sentence pretraining objective, and training on longer sequences
[39].

In the research paper "Revisiting Pre-trained Models for Chinese Natural
Language Processing," the authors undertake a comprehensive examination of
the effectiveness of pre-trained language models, specifically in the context of
Chinese, a non-English language. They acknowledge the remarkable advancements
that Bidirectional Encoder Representations from Transformers (BERT) have
brought about in various Natural Language Processing (NLP) tasks. However,
they also recognize the continuous efforts to enhance the performance of these
pre-trained language models through the introduction of subsequent variants.
In response to this ongoing development, the authors propose MacBERT, a
model that builds upon RoBERTa, offering several improvements, particularly
in the masking strategy that adopts the Masked Language Model (MLM) as
a correction mechanism. The authors’ approach with MacBERT (Mac means
"MLM as correction") is both simple and effective, demonstrating the potential for
significant advancements in the field. The paper presents extensive experiments
conducted on eight different Chinese NLP tasks to reassess the existing pre-trained
language models and the proposed MacBERT. The results of these experiments
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reveal that MacBERT can achieve state-of-the-art performances on many NLP
tasks. The authors also delve into several findings that may guide future research
in this area. This paper not only contributes to the understanding of pre-trained
models for Chinese NLP but also provides a valuable resource for the community
by releasing the Chinese pre-trained language model series. [40]

OpenAI’s GPT-3 (Generative Pretrained Transformer 3) is another significant
development in the field of NLP. GPT-3, introduced by Brown et al., is an
autoregressive language model that uses deep learning to produce human-like text.
With 175 billion machine learning parameters, GPT-3 is capable of tasks such as
translation, question-answering, and even writing poetry. [5].

1.3.2.2 Medical Imaging

In medical imaging, Convolutional Neural Networks (CNNs) have been increasingly
utilized to aid in the diagnosis and treatment of various health conditions. The
ability of CNNs to effectively process and analyze complex image data has made
them particularly useful in this field.

One of the key architectures that have been widely adopted in this domain
is the U-Net, a type of CNN that was specifically designed for biomedical image
segmentation [41]. The U-Net architecture, introduced by Ronneberger et al., is
particularly effective for tasks that require the detection of small, localized features,
such as the identification of cells or tumors in medical images. The architecture
is characterized by its U-shaped design, which consists of a contracting path to
capture context and a symmetric expanding path that enables precise localization.
This design allows the network to learn from fewer training images and still yield
more precise results [41].

A notable application of CNN in medical imaging is the work of Esteva et al.,
who used a deep learning model for the detection of skin cancer. Their model was
trained on a dataset of nearly 130,000 clinical images and was able to achieve a
performance on par with dermatologists, demonstrating the potential of CNNs in
aiding medical diagnosis [42].

In the realm of tuberculosis diagnosis, a study by Lakhani and Sundaram
[43] demonstrated the use of CNNs for the detection of tuberculosis from chest
radiographs. The authors used deep convolutional neural networks (DCNNs) to
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classify images as having manifestations of pulmonary tuberculosis (TB) or as
healthy. The best-performing classifier had an area under the curve (AUC) of 0.99,
which was an ensemble of the AlexNet and GoogLeNet DCNNs. There were 13
out of 150 test cases where the DCNNs did not agree on the classification. These
cases were then independently evaluated by a cardiothoracic radiologist, who was
able to correctly classify all 13 cases. This approach, which combined the DCNNs
with the expertise of a radiologist, achieved a sensitivity of 97.3% and a specificity
of 100%. [43]

In the case of medical imaging, the work of Zhang, Liu, and Shen stands out
for its innovative approach to large-scale anatomical landmark detection. In their
study, they proposed a two-stage task-oriented deep learning method that can
detect a multitude of anatomical landmarks in real-time, even when trained on
a limited dataset. The method they developed employs two deep convolutional
neural networks (DCNNs), each tailored to a specific task. The first stage involves
a CNN-based regression model that learns the inherent relationships between
local image patches and the target anatomical landmarks. This is achieved
by feeding the model millions of image patches. The second stage introduces
another CNN model, which incorporates a fully convolutional network (FCN)
that shares the same architecture and network weights as the CNN used in the
first stage. This second stage model also includes additional layers designed to
predict the coordinates of multiple anatomical landmarks simultaneously. This
two-stage approach allows the model to integrate both local and global information
into the learning process. Local information, such as the inherent associations
between image patches and their displacements to landmarks, is learned in the
first stage. Global information, such as the association among image patches, is
incorporated in the second stage. The authors demonstrated the effectiveness of
their method by applying it to brain landmark detection using MR data, and
prostate landmark detection using CT data. Their method achieved impressive
accuracy, with a mean error of 2.96 mm and 3.34 mm for brain and prostate
landmark detection, respectively. Furthermore, their method was able to detect
thousands of landmarks simultaneously in approximately 1 second, showcasing
the efficiency of their approach. [44]
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In addition to the original U-Net, there have been several variants and im-
provements to the architecture. One such variant is the UNet++, introduced
by Zhou et al. This architecture is a deeply-supervised encoder-decoder network
where the encoder and decoder sub-networks are connected through a series of
nested, dense skip pathways. The re-designed skip pathways reduce the semantic
gap between the feature maps of the encoder and decoder sub-networks. The
UNet++ architecture has been evaluated across multiple medical image segmen-
tation tasks, including nodule segmentation in the low-dose CT scans of chest,
nuclei segmentation in the microscopy images, liver segmentation in abdominal
CT scans, and polyp segmentation in colonoscopy videos. [45]

Another significant application of CNNs in medical imaging is in the field
of endoscopy. Based on the study "Application of artificial intelligence using a
convolutional neural network for detecting gastric cancer in endoscopic images" by
Hirasawa et al., Convolutional Neural Networks have shown significant potential
in the field of medical imaging, particularly in the diagnosis of gastric cancer. The
researchers developed a CNN that was trained using over 13,000 endoscopic images
of gastric cancer. The CNN was then tested on an independent set of stomach
images collected from 69 patients with 77 gastric cancer lesions. The CNN was able
to correctly diagnose 71 of the 77 gastric cancer lesions, demonstrating a sensitivity
of 92.2%. This study illustrates the potential of GNNs in automating the detection
of gastric cancer, which could significantly aid screening and evaluation efforts in
areas with limited access to radiologists [46].

These examples illustrate the potential of CNNs in the field of medical imaging.
As these techniques continue to evolve, they are likely to play an increasingly
important role in improving the accuracy and efficiency of medical diagnoses.

1.3.2.3 Autonomous Vehicles and Robotics

In the realm of autonomous vehicles and robotics, Convolutional Neural Networks
(CNNs) have emerged as a powerful tool for a variety of tasks, including perception,
navigation, and control. A key application of CNNs in this domain is in the
processing of visual data to understand the surrounding environment, a task that
is crucial for the operation of autonomous vehicles and robots.
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Drawing from the insights presented in the paper "End to End Learning
for Self-Driving Cars" by Bojarski et al., it is clear that Convolutional Neural
Networks (CNNs) can play a pivotal role in the development of autonomous
driving systems. The researchers devised a unique approach that allows a CNN to
learn how to steer a vehicle by using raw pixels from a single front-facing camera
and corresponding steering commands.

Notably, the neural network in this study did not rely on human-labeled data
but instead learned directly from raw data, using the human steering angle as the
only training signal. The network was able to learn the entire process of driving,
from perception to control, without any manual decomposition of the problem.

The architecture of the network they proposed is composed of nine layers,
including a normalization layer, five convolutional layers, and three fully connected
layers. The 66x200 pixel YUV image, which serves as the input, first passes through
the normalization layer and then through the convolutional layers, where the
extraction of features occurs. The final steering command is produced by the fully
connected layers. To train the network, the researchers collected a diverse set of
data by driving under various conditions, including different roads, lighting, and
weather. They augmented this data to teach the network how to correct itself
from less-than-ideal positions or orientations. The network’s objective during
training was to minimize the mean squared error between the human driver’s
steering command and the network’s output. The performance of the network was
evaluated using a simulator that uses pre-recorded videos from a forward-facing
on-board camera on a human-driven vehicle. The simulator generates images that
approximate the view if the CNN were controlling the vehicle. It also adjusts the
subsequent frame in the test video to reflect the position that the vehicle would be
in if it followed the CNN’s steering commands. Following the successful simulation
tests, the researchers proceeded to conduct real-world road tests. The trained
network was loaded onto the DRIVE PX in their test vehicle and evaluated under
actual driving conditions. The performance was measured based on the proportion
of time during which the car was able to steer autonomously. This excluded
instances of lane changes and turns from one road to another. In a typical drive
from their office in Holmdel to Atlantic Highlands in Monmouth County, New
Jersey, the vehicle was able to operate autonomously approximately 98% of the
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time. Furthermore, the vehicle was able to drive 10 miles on the Garden State
Parkway, a multi-lane divided highway with on and off-ramps, without any manual
interventions. This real-world testing further validated the effectiveness of the
CNN in controlling the vehicle, demonstrating the potential of this approach for
the development of self-driving cars [47].

Another notable example of CNN application in this field is the work of
Badrinarayanan et al., who developed SegNet, a deep fully convolutional neural
network architecture for semantic pixel-wise segmentation. SegNet was designed to
be efficient in terms of memory and computational time during inference, making
it suitable for real-time applications such as autonomous driving. The architecture
of SegNet includes an encoder network, which is topologically identical to the 13
convolutional layers in the VGG16 network, and a corresponding decoder network.
The decoder network uses pooling indices computed in the max-pooling step of the
corresponding encoder to perform non-linear upsampling, which helps to improve
boundary delineation and reduce the number of parameters, enabling end-to-end
training. [48]

In the research study "A General Pipeline for 3D Detection of Vehicles" an
innovative approach to the 3D perception of vehicles in autonomous driving
systems is introduced. The authors identify the accurate detection of vehicles in
3D as a significant challenge in autonomous driving. While 2D vehicle detection
methods have been widely implemented, they lack the depth data necessary for
autonomous vehicles to perform planning and decision making effectively. To tackle
this challenge, the authors propose a flexible pipeline that can incorporate any 2D
detection network and fuse it with a 3D point cloud to generate 3D information.
This is achieved with minimal modifications to the 2D detection networks. The
authors develop an effective model fitting algorithm based on generalized car
models and score maps, and propose a two-stage convolutional neural network
(CNN) to refine the detected 3D box. The proposed pipeline is tested on the
KITTI dataset using two different 2D detection networks. The results demonstrate
the flexibility of the proposed pipeline and its effectiveness in 3D detection.
The pipeline ranks second among the 3D detection algorithms, indicating its
competencies in this field. The paper also provides a comprehensive discussion of
the current algorithms for 3D vehicle detection, which can be categorized into four
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major groups: mono image-based, stereo image-based, LiDAR (Light Detection
and Ranging), and fusion between mono image and Lidar. The authors argue that
the prior approaches for 3D vehicle detection are not as effective as those for 2D
detection, and propose their flexible 3D vehicle detection pipeline as a solution.
[49]

The paper titled "Distant Vehicle Detection Using Radar and Vision" presents
a novel approach to enhancing vehicle detection in autonomous driving systems.
The authors identify a key challenge in autonomous driving, which is the accurate
detection of distant vehicles. While image-based object detection methods using
convolutional neural networks (CNNs) have shown excellent performance, their
effectiveness is reduced when detecting small or distant objects. To address this
challenge, the authors propose the integration of radar data with image-based
detection methods. Radar data is robust to variable weather conditions and
provides accurate measurements independent of range, including direct velocity
measurements. This integration significantly improves the detection of distant
vehicles, making it a valuable contribution to the field of autonomous driving. The
authors also introduce a detector that utilizes both monocular images and radar
scans to perform robust vehicle detection across various settings. They present an
efficient automated method for generating training data using cameras of different
focal lengths. Furthermore, they discuss the creation of their dataset, which they
label automatically using an existing detector. This dataset is generated using two
cameras configured as a stereo pair and a third camera with a long focal length
lens. Additionally, radar data is collected using a Delphi ESR 2.5 pulse Doppler
cruise control radar. [50]

Zhao et al. proposed a method called GAN-VEEP (Generative Adversarial
Network-based VEhicle trajEctory Prediction) for predicting the future location
of vehicles on urban roads. The method consists of three components: vehicle
coordinate transformation for data set preparation, a neural network prediction
model trained by GAN, and a vehicle turning model to adjust the prediction
process. The vehicle coordinate transformation model deals with the complex
spatial dependence in the urban road topology, the neural network prediction
model learns from the behavior of vehicle drivers, and the vehicle turning model
refines the driving path based on the driver’s psychology. The experimental results
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showed that GAN-VEEP exhibits higher effectiveness in terms of average accuracy,
mean absolute error, and root-mean-squared error compared to its counterparts.
[51]





Chapter 2

Convolutional neural network
optimization in the Fourier Domain.

2.1 Introduction

Neuroscience has inspired artificial intelligence techniques like Convolutional Neu-
ral Networks (CNNs), which were motivated by the visual cortex in the brain.
CNNs consist of two main alternating parts: the convolutional and pooling layers,
like simple and complex cells in the visual cortex [52]. Nowadays CNNs can reach
exceptional performance in a wide range of machine learning tasks like image
classification and natural language processing. Convolutional layers are still used
in most state of the art architectures [53], [54] such as vision transformers [55].
It was also demonstrated in [56] that similar state-of-the-art performance can be
reached with highly optimized, purely convolutional architectures. Unfortunately
there are limiting aspects of these architectures as well: updating a large num-
ber of parameters and executing myriads of multiplications requires significant
computational resources.

There are various approaches aiming to decrease the number of operations and
by this the inference time of the networks or to reduce their computational need
employing architectural changes. For instance, in the case of SqueezeNet [57],
Iandola et al. were able to make a small network architecture with AlexNet-level
accuracy on ImageNet, by downscaling the number of channels in each layer using
1x1 filters and by this decreasing both the number of operations and trainable
parameters simultaneously. Another solution, presented first in MobileNets [58]

21
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was described by Howard et al., their architecture contained two hyper-parameters
to build small and low latency models for mobile and embedded vision applications.

The goal of Knowledge Distillation [59] was similar, to make a fast and
minimized network. Yim et al. introduced a novel knowledge transfer technique,
where the transferred distilled knowledge from a pretrained neural network is
determined by computing the inner product of features from two layers and by
this decreasing neuron or layer numbers.

The invention of Farhadi et al.[60] is based on weight quantization and in a
corner case the binarization of the weights and of the intermediate representations
of data in a convolutional neural network. This method includes optimization
processes to determine the best approximations of the convolution operations in
CNN using binary operations.

A novel approach for compressing deep neural networks was introduced in
[61], which took into account the nonlinear responses and the multi-linear low-
rank constraint in the kernel tensors. They suggest a convex relaxation strategy
that can be solved directly using the alternating direction method of multipliers
(ADMM) to address the difficulty of nonconvex optimization. As a result, they
can determine the feature matrix of the Tucker decomposition [62] and Tucker-2
rank at the same time. The suggested method is tested on ImageNet dataset for
CNNs such as AlexNet, ResNet-18 and GoogleNet. This method can achieve a
significant decrease in model size while sacrificing just a minor amount of accuracy.

In [63] the researchers minimized the parameters and save operations by mod-
ifying the DenseNet deep layer block. This technique can reduce the multiple
growths of parameter amount for deeper layers by using channel merging proce-
dures while the accuracy remains relatively unchanged. In the case of DenseNet
and RetNet-110, the parameters may be lowered by 30–70%. This lightweight
network can be used in real-time on an embedded device.

In [64] the authors presented a novel minimalist hardware architecture called
adder convolutional neural network (AdderNet) to reduce the computational
complexity and energy burden. In this architecture, they use adder kernel with
hardware accelerators instead of original convolution. They can achieve 47.85%-
77.9% reduction in power consumption and a 16% increase in speed.
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These previous methods are independent from each other and they can be
combined with each other, but usually in this case accuracy drops significantly.
They all aim the simplification of network structure, merging or completely
removing neurons, channels or layers resulting different architectures with lower
computational need, but since they simplify the network architecture they are
not mathematically equivalent with the original network, but approximate it
fairly well. Because of this in most cases they also decrease the accuracy of the
networks. In this paper I will demonstrate another method which exploits the fact
that convolutions can be implemented as pointwise multiplications (Hadamard
products) in the Fourier domain and by this it can also be combined with all
previously mentioned approaches and can be generally used to decrease the
computational need of a neural network. Unfortunately meanwhile convolutions
can be more efficiently executed in the Fourier domain other elements of a typical
neural network such as non-linearities and pooling operations can only be executed
using significantly more operations in this domain and can be more efficiently
applied in the time domain. Most approaches of network optimization, also all
methods listed earlier, tries to substitute and approximate convolution in the time
domain. My approach follows a different path, where I execute all operations
in the Fourier domain where convolution can be efficiently applied and I try to
approximate the other operations in the Fourier domain.

There are existing methodologies in the literature which exploit the advan-
tageous property of the Fourier transform or other spectral methods, but all of
these substitute only specific computational building blocks in the Fourier domain
and return from it with an inverse transformation, which adds extra computation
to the system. Some of these go back to the time domain directly after the
convolution part to apply the nonlinear activation and the downsampling step
(e.g. [65], [66]), but there exist solutions, which provide an approximation to
implement pooling and nonlinear activation functions in the frequency domain
as well (e.g. [67], [68], [69]), thus even in these architectures one inverse Fourier
transformation is applied at the last layer of the network.

The authors [70] investigate the implementation of convolution in the Fourier
domain using the FFT transform, but for this, the transformation has to be
applied at every kernel.
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Similarly, discrete cosine transform (DCT) is used in [71], where the authors
suggest a faster convolution method for neural networks. They transform the
convolutional kernel and the input into the spectral domain with discrete cosine
transform and then perform pointwise multiplication between the feature map
and kernel. The complexity of DCT is significantly smaller than the FFT method
because discrete cosine transform involves only real arithmetic. They use intrin-
sically extended kernels to suppress repeated domain transformations and they
decrease the kernel symmetry with spectral dropout. This model can accelerate
the FFT-based methods without a significant decrease in accuracy.

In [72] the authors proposed a method combining FFT, CNN, and LSTM (long
and short-term memory). At first, they convert data to the Fourier domain, then
features are obtained by CNN and after that, they complete the fault diagnosis of
the circuit with the LSTM network. They improved the quality of CSTV analog
circuit fault diagnosis with this FFT-CNN-LSTM method.

All these previously introduced spectral approaches use a spectral transforma-
tion and an inverse transformation to return to time domain after convolution,
after a layer or after at the end of the network. I will demonstrate in this work
that these returns are not necessary and a neural network can be fully trained in
the Fourier domain and their weights, which in this case represent the weights of
certain Fourier components, can be directly used in the following layer even in
the logit layer for classification. . This approach can further decrease the number
of required operations and as we will demonstrate it also does not decrease the
accuracy of the network significantly.

2.2 Acceleration of Networks in the Fourier Do-
main

The idea, that convolutions can be performed as pointwise multiplications in
the Fourier domain in case of a convolutional neural network, appeared before
the appearance of large scale benchmark datasets brought the important need of
training acceleration, however, the number of feature maps was too small to apply
this method effectively. Nowadays the speedup caused by Fourier transformations
became significant, Mathieu et al. [65] implemented a Fourier based algorithm



2.2 Acceleration of Networks in the Fourier Domain 25

which requires 6Cn2log(n) + 4n2 operations instead of the direct method with
(n−k+1)2k2 operations, where my input image has dimensions of the nxn, kxk is
the size of the convolution kernel and C is the hidden constant in the O notation.

The main additional cost of the frequency-based method is the Fourier trans-
formation especially in [65] because this solution needs inverse transformation
before every non-linear activation part and after that a Fourier transformation
again. In [66] two new convolution implementations used together with Fast
Fourier transform were introduced and compared. The fbfft outperforms the
cuFFT convolution implementation in most deep learning problems (introduced
in [65] and [66]), but both of these outperform the original cuDNN variant.

Nevertheless, these transform methods have limitations as well, such as the
problem of the number of instructions issued, for example, the throughput for
32-bit floating-point multiply-add operations is greater than the throughput for
shuffles [66]. In [73] a technique was presented to mitigate the bottleneck of
transformation cost and it was shown, that the “overlap-and-add” technique can
reduce the computational time by a factor of up to 16.3 times compared to the
traditional convolution implementation in a special case.

However, not only the operation of convolution can be simplified in the
frequency domain, but the subsampling process may also change. In [74] the
authors used the spectral pooling method instead of the conventional max-pooling
as dimensionality reduction. This method is truncating the representation of the
data in the frequency domain thereby preserves more information per parameter
and enables flexibility in output dimensionality. This spectral representation based
pooling method was applied in [75], where the training of FCNN architecture was
conducted within the frequency domain without the addition of extra non-linearity.

In [67], the authors introduced a non-linearity in the frequency domain, which
was called as Fourier domain exponential linear unit and they used pyramid pooling
layers for downsampling in the frequency domain. Ayat et al. (in [68]) introduced
the frequency domain equivalent of the conventional batch normalization which
increases the accuracy of the network. They used a novel nonlinear activation
function, the Spectral Rectified Linear Unit (SReLU) after the Spectral pooling.
Following the last convolutional layer but before the fully connected layer and
softmax layer they executed an inverse Fast Fourier Transform to get real numbers
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instead of the complex valued representation. Because of this step this approach
used unnecessary computation and can not be considered a fully, end-to-end
spectral training.

In [69] an other kind of spectral ReLU operation was proposed (called 2SReLU),
that adds low frequency components with their second harmonics, and this method
has two hyperparameters to adjust each frequency contribution to the final result.
The equation of 2SReLU is as follows: F (µ1)← αF (µ1) + βF (µ2)

All of these approaches presented implementations of convolution, pooling
algorithms or non-linear activation functions, but all of them applied an inverse
transformation after the steps were executed. In the next section, I propose
a convolutional neural network architecture, which is entirely in the Fourier
domain and it contains pooling, nonlinear activation function, and batch nor-
malization in the spectral domain, and it calculates the fully connected layer
and softmax layer without spectral-spatial domain switching as well. For the
sake of reproducibility the source code of my neural network, which contains
the exact network architectures used in training and a detailed list of training
parameters for my experiments can be found in the following GitHub repository:
https://github.com/andfulop/TrainingInFourierDomain.

2.3 Methods

2.3.1 Convolution Theorem

Our method is based on the convolution theorem, which states the following:

F{f ⋆ g} = F{f} · F{g}, (2.1)

where F denotes the Fourier transforms of the f and g functions, ⋆ is the convo-
lution and · means the pointwise multiplication operators. (The theorem is also
true backward, in the time domain the pointwise multiplication is convolution in
the frequency domain.)

2.3.2 Methods in the frequency domain

During the simulations, my datasets were traditional two-dimensional grayscale
images (matrices) and one-dimensional time series (vectors). Therefore, at first, a

https://github.com/andfulop/TrainingInFourierDomain
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discrete one- or two-dimensional Fourier transform was applied to these datasets
accordingly. After the transformation, each one of the values was represented by
a complex number and all operations of the convolutional neural network were
executed in the frequency domain.

2.3.2.1 Convolution operation

The first and main part of a convolutional neural network is the convolution itself
in which I multiply element-wise the images (or time series) by the appropriate
values of the convolutional kernels, which were transformed into the frequency
domain before the multiplication as well. If I use smaller kernels than the size
of the images or the length of the time series, before the transformation, the
kernels had to be padded with zeros for the point-wise multiplication. Due to this
padding, after the transformation I always perform the multiplication operations
with matrices of the same size, thus I can save even more operations if the kernel
size is larger. However, since all my network works in the Fourier domain, I
applied another technique and generated the kernels directly in the frequency
domain instead of transforming them from time-domain using Fourier transform,
thus I can save the cost of kernels’ transformation during training. In this case,
the kernel size is the same as the size of the input. I used this approach in my
experiments, as I present in the results section. This step has no effect on inference
time, which is one of the most important factors in neural network training, but
can reduce training time.

2.3.2.2 Nonlinear activation function

A sufficiently large neural network using non-linearity can approximate arbitrarily
complex functions ([76], [68]) furthermore the learning dynamics and the expressive
power of the network depends heavily on the applied non-linearity. The activation
function Φ : R → R maps the input of a neuron into a specific range and this
value is the output of the cell.

In spectral representation, we can encounter various activation function imple-
mentations with the aim of operating similarly to nonlinearities of the time-domain
and achieving a similar result in terms of accuracy. One of these solutions is
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the Fourier domain exponential linear unit (FELU, [67]), which is the spectral

equivalent of the exponential linear unit (ELU) of the spatial domain. The ELU

can be defined as the following:

f(x) =

{
x if x > 0

a(ex − 1) otherwise
(2.2)

Another spectral activation function is the Spectral ReLU (SReLU, [68]).

This method uses the following polynomial to approximate the traditional ReLU

function: c0 + c1X + c2X
2. Of course, considering that the multiplication of

two signals in the spatial domain is equivalent to the convolution of two signals

in the Fourier domain, thus, the previous equation can be modified as follows:

c0 + c1X + c2(X ⋆ X), where the ⋆ denotes the convolution operator.

Our implementation:

I took the simplicity of the ReLUs (like max(0, x), or max(x, ax), where a <

1) methods as a basis, more precisely, the simple and efficient computation

(multiplication, addition, and comparison) of it.

During the Fourier transform, I transfer the original input signal from the set

of real numbers to the complex plane, thus the domain of my activation function

will also be the set of complex numbers.

Our non-linear function called FReLU f : C → C is a nonlinear function,

which can be written as follows:

f(z) =

{
z if |z| > α

0 otherwise
(2.3)

where z ∈ C is equal to a+ ib complex number, the |z| =
√
a2 + b2, 0 is the (0, 0)

point in the complex plane and α is a tuneable parameter of this method. This

solution can be considered as a high-pass filter with the α cut-off point or as an

equivalent of the traditional ReLU funciton for complex numbers. The Fig. 2.1

illustrates how this function maps the complex plane in case of α = 0.1. During

my training on the different datasets, the α parameter was 0.1.
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Figure 2.1: The nonlinear activation function f (with α = 0.1) maps z1 to z1 and
z2, z3 to zero, where |z1| > 0.1, |z2| < 0.1 and |z3| = 0.1. The position of points
outside the blue circle does not change, but all points in the circle will be zero.

2.3.2.3 Subsampling operation

I used the spectral pooling method introduced in [74] as a subsampling procedure.
In this case, the dimensionality reduction is in the Fourier domain, where the
N × M matrix input is truncated and only the central H × W submatrix of
frequencies remains. This approach is different from other pooling strategies in the
time domain, such as max pooling, which reduces dimensionality at least a factor
of 4 in two-dimensional cases, and the maximum value in each window sometimes
does not represent well enough the contents of the window. In contrast, spectral
pooling can tune the output dimensionality, and besides, it can be considered
as a filter as well, because the removed higher frequencies encode noise in the
two-dimensional case [74].

2.3.2.4 Classifier

Before I flatten the feature map of the last convolution layer, I calculate the
magnitude of the complex values applying a fabs2 : C→ R function, which can be
written as follows:

fabs2(a+ ib) = a2 + b2 (2.4)

This is similar to the previously introduced activation function, but the output is
the square of the absolute value, which is a real number. The computational com-
plexity of this calculation is O(n) instead of inverse FFT’s O(nlog(n)). (Previous
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solutions introduced by others used an inverse Fast Fourier Transform.) After the
flattening step I used a traditional fully connected neural network with only one
layer to predict the classes.

Figure 2.2: The schema of the proposed CNN architecture. The input is in the
frequency domain and the spectral pooling can be done before the element-wise
multiplication, and the nonlinear activation function can be applied after each
multiplication.

2.4 Results and discussions

I started from a simple convolutional neural network and my goal was to imple-
ment all operations in the frequency domain after the initial Fourier transform
and replace each element of the network with a suitable spectral solution, then
examine how my architecture works on one- and two-dimensional datasets. For
demonstration, in the time domain, I also implemented a CNN, that has the same
computational complexity as my neural network in the frequency domain (Fig.
2.2) (I used max pooling and ReLU in the time domain), the accuracy results
obtained by these CNNs on various datasets can be found in the Table 2.1.

2.4.1 One-dimensional datasets

In this case, in the frequency domain and in the time domain, my network
contained 3 convolutional layers and one FC (fully connected) layer. I performed
one-dimensional convolution in the time domain with 8× 1 kernels.
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A one-dimensional dataset selected for detailed investigation was the Smartphone-

Based Recognition of Human Activities and Postural Transitions Data Set Version

2.1 (HADB, [77]). This consists of a smartphone’s accelerometer and gyroscope

signals during twelve different activities (such as standing, walking, walking down-

stairs and upstairs, laying, etc.) of 30 subjects. The training set contains more

than 7,700 samples, while the test set contains 3,100 samples. The accuracy

results for the spatial and spectral domain trainings are shown in Fig. 2.3.

Figure 2.3: 5 training results of HADB classification in frequency domain with the
proposed non-linear activation function, with square sum. The red color means
the maximum accuracy, the yellow color is the minimum accuracy and the blue
line shows the mean accuracy.

Another one-dimensional dataset was the Ozone Level Detection Data Set

([78]), I used the one hour peak set from that. The samples contain wind speed

values at various time and temperature values measured at different times as well.

These samples can be categorized into two classes, the first one is the normal

day and the second one is the ozone day. The dataset has 2536 instances and I

selected the last 500 as an independent test set. The results of this dataset are

presented in Table 2.1.



32
2. CONVOLUTIONAL NEURAL NETWORK OPTIMIZATION IN THE

FOURIER DOMAIN.

2.4.2 Two-dimensional datasets

For two-dimensional datasets, in the frequency domain and in the time domain as
well, I used a network with 3 convolutional layers and one FC (fully connected)
layer. I performed two-dimensional convolution in the time domain with 3 × 3

kernels.

I used the well-known MNIST dataset, which is a database of handwritten
digits, and it has a training set of 60,000 examples and a test set of 10,000 examples.
The size of the images is 28x28. [79]

Another two-dimensional dataset was the Fashion-MNIST, which is an MNIST-
like fashion product database with 10 classes and it consists of 28x28 sized greyscale
images, where the number of elements of the training set is 60,000 and the test
set has 10,000 examples. [80]

The Fig. 2.4 and Fig. 2.5 show the accuracy results of the independent test
sets in the case of these datasets.

Figure 2.4: 5 training results of MNIST classification in frequency domain with
the proposed non-linear activation function, with square sum instead of inverse
FFT. The red color means the maximum accuracy, the blue line shows the mean
accuracy and the yellow color is the minimum accuracy.
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Figure 2.5: 5 training results of Fashion-MNIST classification in frequency domain
with the proposed non-linear activation function, with square sum. The red color
means the maximum accuracy, the yellow color is the minimum accuracy and the
blue line shows the mean accuracy.

Table 2.1: The table contains the average and maximum (I made five different
trainings) of the accuracy achieved on the independent test sets of the examined
datasets in case of 3 different network architectures. One is the reference network
in time domain, the other contains the inverse FFT, which was also used in
previous articles, and the neural network implemented with the sum of squares
solution proposed by us.

inverse FFT sum of squares time domain
Dataset mean max mean max mean max
MNIST 90.20% 92.39% 91.93% 94.99% 97.17% 98.75%
Fashion-MNIST 80.31% 81.95% 75.34% 82.83% 94.55% 95.54%
HADB 92.33% 94.08% 90.54% 93.95% 94.6% 95.95%
OZONE 90.26% 96.4% 96.07% 96.4% 94.31% 97%
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Table 2.2: The table contains the number of multiplication in case of frequency-
based implementation and in case of the time domain implementation. For example
a typical input 224x224x3x3 number of multiplications is: 12544 in Fourier domain
and 451584 in the time domain.

sum of squares time domain
size of input (N/2)× (M/2) N ×M
size of kernel (N/2)× (M/2) H ×W

number of multiplications (N/2)× (M/2) N ×M ×H ×W

In every case, I made five different trainings and I determined the maxima,
the minima, and the average values of these. After that, I compared the results
of inverse FFT version with the method I proposed and in the MNIST, Fashion-
MNIST and OZONE cases I found (see the Table 2.1) that the maximum value was
higher (or same in case of the maximum of OZONE) in the case I proposed than
the inverse FFT method, and only the accuracy of HADB was worse. However,
the number of calculations decreased in each case, as instead of O(nlog(n)), only
O(n) operation had to be performed after the convolutional layers (, where n is
the size of a sample).

Although the neural network in the time domain outperformed the accuracies of
the two frequency-based implementations, in this case much more multiplication
is required (Table 2.2), as in time domain the computational complexity of
convolution is O(nm), where m(= H ×W ) is the size of the kernel, but in the
frequency domain, I have only O(n

4
) complexity, since, in the frequency domain,

the spectral pooling can be executed before the element-wise multiplication. In
the frequency domain, the FFT also requires computation (O(nlog(n))), but this
can be done (and stored) before the training.

2.4.3 Dependence on hyperparameters

On one hand my method is theoretical and it is easy to see that an end-to-end
training in the Fourier domain can decrease the number of operations applied.
These decrease is general and constantly present, since it comes from the re-
formulation of the convolutions operation and the substitution of the inverse
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Fourier transform. Because of this it can be applied and is advantageous for

arbitrary network architectures and training processes. On the other hand the

other important property, the accuracy of the investigated neural networks can not

be determined theoretically and is typically measured empirically on commonly

investigated datasets.

I have measured the performance of six different neural networks variants

trained both in the time and Fourier domains and compared their performances.

The results can be seen in Table 2.3. As it can be seen in the results the overall

performance of a network depends on the selected hyperparameters, but the

networks trained in the Fourier domain has always performed similarly as they

time domain counterparts. The drop of the mean accuracy was 2% in average

over the six investigated hyperparameter sets.

Table 2.3: The table contains the results of different hyperparameters both in the
time and Fourier domains (without inverse FFT) on the HADB dataset. L denotes
the number of channels in the consecutive layers from the first to last layer, opt
denotes the optimizer which could be either Adam or Stochastic Gradient Descent
(SGD).

Fourier domain (sum of squares) time domain
hyperparameters mean max mean max
L: 16, 32; opt: Adam 92.06% 95.02% 93.56% 96.63%
L: 16 and 32; opt: SGD 90.28% 93.12% 91.42% 94.5%
L: 16, 32 and 64; opt: Adam 91.93% 94.99% 97.17% 98.75%
L: 16, 32 and 64; opt: SGD 91.4% 94.26% 89.3% 93.21%
L: 32, 32 and 64; opt: Adam 91.77% 94.9% 97.12% 98.85%
L: 32, 32 and 64; opt: SGD 89.61% 93.06% 89.3% 93.57%

2.5 Discussion

As it can be seen from the results presented in the previous chapter my approach

can provide an efficient implementation for convolutional neural networks with a

minor drop in accuracy.
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According to my knowledge this is the first approach where the whole training
process is implemented in the Fourier domain. Other methods used certain
operations or selected layers which were implemented in the Fourier domain
but they all contained an inverse Fourier transform which requires a fairly high
number of operations, typically comparable with the number of operations in a
layer. Our results also demonstrate that convolutions can be more efficiently used
in Fourier domain, which is a well known fact in the community. I substitute the
traditional maximum pooling with spectral pooling which utilizes a different tpye
of dimension reduction which suits ideally for the Fourier domain. The novelty
of my method is threefold: 1, I have demonstrated that instead of complicated
polynomial approximation of the standard time domain ReLU one can use a
similar approach in the frequency domain and just cut off certain frequencies in
the network. 2, I applied the training of the convolutional kernels directly in the
frequency domain. Which means that the kernels are not initialized and later
transformed to the Fourier domain for computation, but in my approach directly
the Fourier version of the kernels are initialized. 3, I substitute the final inverse
Fourier transformation of all previously published methods in the literature with
a simple magnitude calculation which can reduce the number of operations from
nlog(n) to n, where n is the number of neurons in the logit layer.

I have demonstrated that my method is general. I have demonstrated its
validity on four different datasets and I have investigated six different network
architectures. The results were consistent in all cases. The accuracy of the end-to-
end Fourier domain networks dropped slightly, typically with 4%, but one can
save three quarter of the multiplications compared to the traditional time series
implementations of the networks.

This mean that this approach might not be a viable optimization strategy in
applications where accuracy is utmost important, for example in medical image
processing or navigation with self-driving cars, but in case of various other methods
where power consumption is more critical like recommendation systems or photo
enhancement or classification in personal photo libraries, my method could provide
a viable and significant decrease in computation for possible applications of edge
computing.
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2.6 Conclusion

In [7], a convolutional neural network in the frequency domain was presented
without using any inverse Fourier transformation (including the classification part
as well). I have introduced an alternative realization of the spatial activation func-
tions in the frequency domain and I have presented a possible solution to eliminate
the inverse Fourier transformation before the fully connected classification layer.
My neural network architecture was tested on one- and two-dimensional datasets
and was compared with similar network implementation containing inverse Fourier
transformation. The proposed framework could achieve similar or better accuracy
without the computational cost of inverse Fourier transformation. For instance,
in the case of MNIST, which is a commonly used and often cited dataset, the
maximum accuracy of architecture with inverse FFT decreased by about 6% from
the time domain reference (where the maximum was 98.75%), while the maximum
accuracy of my solution (sum of squares) dropped just approximately 4%.





Chapter 3

Convolutional Neural Network with
Wave-based Convolver

3.1 Introduction

Artificial neural networks (ANNs) have become a staple of machine learning and
they are more and more frequently applied in embedded systems as well. To
enable their application among other things in mobile devices the decrease of
computational need and their power consumption has to be significantly reduced.
This is crucial because mobile devices have significantly limited computational
resources and battery life, and are often used for tasks that require real-time
processing. Thus the goal is to create ANNs that are lightweight and efficient,
making them well suited for deployment in mobile devices and other resource-
constrained environments.

One possible way of enabling low-energy computation can be the employment of
special-purpose hardware accelerators, which use the physics of waves to naturally
compute convolution integrals. Such devices are known in the literature as surface
acoustic waves (SAWs) where a SAW-based convolver uses the interference of two
counter-propagating waves to perform a convolution by the physics of the system(
[81]). Another implementation of the device uses spin waves [82] - which are,
in fact, very amenable to low-power, on-chip implementation for such hardware
accelerator [83].

However in a real physical system (such as a wave-based convolver) dissipation
is unavoidable and waves (especially spin waves) will decay over distance. This

39
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will influence the performance and the usefulness of the convolver. The purpose
of the paper is to evaluate the performance of the convolver in the presence of
such decay.

In [8], I demonstrate and investigate a special kernel convolution, which can be
the cornerstone of a wave-based convolver device, that can yield a fast and energy-
efficient building block of a convolutional neural network without a significant
decrease in test accuracy. With my simulations I also identify the most important
factors such as the attenuation (decay) and its affect on classification accuracy on
commonly investigated datasets. These results can help in the construction of a
device by identifying constraints regarding attenuation with which the device can
function with high accuracy.

Nowadays, Convolutional Neural Networks (CNNs) have become a crucial tool
for solving various artificial intelligence problems, and have been proven to deliver
state-of-the-art results across a wide range of applications. In particular, CNNs
have shown great success in image processing, video analysis, and natural language
processing tasks. These tasks typically involve large amounts of high-dimensional
data, such as images and videos, or complex relationships between words and
sentences in text data. CNNs have been successful in these tasks because of their
ability to automatically learn hierarchical representations of the data, and to
identify and use the most discriminative features for a given task. As a result,
they have become the go-to solution for many researchers and practitioners in
these fields, and continue to be an active area of research and development.

One area where CNNs are used very successfully is the development of self-
driving cars, for example, the traffic signs recognition and identification [84, 85, 86],
navigation [87] and 3D object recognition [88], agrarian object identification
[89] or in the medical field - like ECG signal classification and prediction [90],
diabetic retinopathy recognition [91], thyroid nodule diagnosis [92], lung pattern
classification for interstitial lung diseases [93] - in which their application has
appeared even in mobile phones and embedded devices [94].

The main and most energy consuming operation of these architectures is con-
volution, so the optimal implementation of this operation is extremely important.

In the case of mobile and embedded vision applications, energy-saving imple-
mentation is also an important consideration. Lightweight deep neural networks
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(like MobileNets [58], Xnor-Nets [95] and spiking neural networks [96] ) can be
used to achieve a reduction in energy consumption. Another possibility is to use a
special device (such as FPGA[97] or ASIC devices [98]), which is able to perform
the given operation extremely efficiently, thus the architecture will be faster and
energy consumption will decrease.

However, in the case of low-power devices, especially emerging and non-
Boolean devices, which exploit analogue and nonlinear device characteristics for
computation will not be completely ideal, since the nonlinear dynamics of the
device implementing the convolution may also affect the operation itself. But this
nonlinear phenomenon is not necessarily a disatvantage, as the neural network
requires some nonlinear operation (typically nonlinear activations such as the
Rectified Linear Unit (ReLU) [99] or Scaled Exponential Linear Unit (SeLU) [100]
functions provide these characteristics in the architecture) and Wang et al. [101]
have shown that nonlinearity can be included in the convolution.

The authors introduced the applications of kernel convolution (kervolution),
which was used to approximate complex behaviors of human perception systems.
The kervolution generalizes convolution via kernel functions and the authors
demonstrated that Kervolutional Neural Networks (KNNs) can achieve higher
accuracy and faster convergence than the baseline convolutional neural networks.
The authors’ work represents an important contribution to the field of CNNs, and
the use of KNNs in real-world applications holds significant promise. [101]

Neural network models containing kervolution can be effectively used, among
others in case of anomaly detection, time series classification [102] and in authorship
attribution [103]. Furthermore kervolution can be combined with left and right
projection layers, thanks to which this model (ProKNN [104]) can be even more
effective in certain situations.

In spread-spectrum communications, the real-time surface acoustic wave (SAW)
convolver devices have been known since long time. These convolvers were also
applied in programmable matched filtering to improve the signal-to-noise ratio,
which was one of the first application of surface acoustic wave devices and it is an
important potential in many cases. [81]

For example, radar systems have been widely used this process, since it enables
the range of the system to be enlarged, for a given peak power limitation. [105]



42
3. CONVOLUTIONAL NEURAL NETWORK WITH WAVE-BASED

CONVOLVER

Similar to SAW devices, it is conceivable to implement convolution in which it
is performed using spin-wave magnetic devices, which may allow for much lower
energy consumption and computation at higher frequencies[106].

Spin-wave computing uses magnetic excitations for computations. The spin-
wave majority gates are one of the most prominent device concepts in this field.
Linear passive logic gates, which are based on spin-wave interference, are a
technology that takes the most advantage of the wave computing paradigm and
therefore hold the highest promise for future ultralow-power electronics. [83]

The spin-wave circuits can be embedded also in CMOS (complementary
metal–oxide–semiconductor) circuits, and these complete functional hybrid sys-
tems may outperform conventional CMOS circuits, since amongst other things they
promise ultralow-power operation. Nowadays the challenges of these spin-wave
circuit systems are low-power signal restoration and efficient spin-wave transducers.
[83]

Furthermore, several methods have been proposed and studied for the devel-
opment of spin-wave multiplexers and demultiplexers to greatly increase the data
transmission capacity and efficiency of spin-wave systems. [83]

Therefore, based on the factors described above, I introduced a kervolutional
neural network, where the kervolution was implemented by surface acoustic waves
and the nonlinearities of the kervolutions based on the characteristic functions of
magnetic devices.

3.2 Methods

In this section, I propose a special convolutional neural network architecture, which
is inspired by physical ideas and does not contain additional classical nonlinear
activation functions (like ReLU or sigmoid), but the system contains nonlinearity
through the physical properties of the simulated device and these characteristics
will determine the attenuation and saturation of the convolutional/kervolutional
layer.

During the implementation of my neural network, the primary consideration
was to examine the physical effects that a device - specifically developed to perform
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the operation of convolution - may have on an ideal, theoretical artificial neural

network.

3.2.1 One-dimensional network

The real-time SAW convolver, which was the starting point in the implementa-

tion of my neural network architecture, can perform convolution only on one-

dimensional inputs.

Thus for hardware considerations, I made a one-dimensional convolutional

neural network. During my simulations, both one- and two-dimensional datasets

were investigated. I have converted the 2D input data and the convolutional

kernels to one-dimensional vectors and mapped them onto my simulated devices.

3.2.2 Convolution

One of the main parts of a CNN is the convolutional layer. The convolution of

functions f and g in one dimension can be described as the following:

f ⋆ g =

∫ +∞

−∞
f(τ)g(t− τ)dτ (3.1)

Since my input signal is finite, the value of the function f is zero outside

a certain interval (for example [0, t]). This way the value of the convolutional

integral is also zero in this interval, so the formula can be rewritten as:

[f ∗ g](t) =
∫ t

0

f(τ)g(t− τ)dτ (3.2)

This operation can be implemented by real-time SAW convolvers, such as

three-port elastic SAW convolver (3.1) under nonlinear operation [81].
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Figure 3.1: This figure depicts a primitive three-port elastic SAW convolver. Two
signals travel in opposite directions form the two inputs ports of the device (at the
left and right edges of the device) and the convolved version of the two signals can
be extracted at the integration area (in the middle of the device). This example
shows how a physical system can be used to implement a complex operation in an
energy efficient manner.

The first port of such a device is the input signal port, the second port is the
kernel port and between these is the third one, the output or result port. The
input and kernel signals can be invoked at the edges of the device by external
excitation and the magnetic or electrical changes can be read out from the result
port.

Using the Euler formula port I. can be expressed at time t along the z reference
axis as:

s(t, z) = S(t− z/ν)ej(ω0t−βz) (3.3)

where S(t− z/ν) the signal modulation envelope is a function of SAW velocity,
where ν = fλ and β = 2π/λ.

The output of port 2 can be similarly expressed as:

r(t, z) = R(t+ z/ν)ej(ω0t−βz) (3.4)

where the sign of z is minus, since the signal propagates to the opposite
direction.
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In this case, the following waveform can be read out from the output port over
the length L of the thin-film metal plate:

C(t) = P

∫ +L
2

−L
2

S(t− z/ν)R(t+ z/ν)dzej2ω0t (3.5)

where P is a constant, dependent on the nonlinear interaction strength. We
can use a change of variable τ = (t− z/ν) and reformulate this equation as the
following:

C(t) = Mvej2ω0t

∫ +∞

−∞
S(τ)R(2t− τ)dτ (3.6)

where S is the input signal, and R is the kernel signal, M is a constant
dependent on the strength of the nonlinear interaction and v is the velocity of
the waves (signals), j is the complex unit and ω0 is the angular frequency of the
signal. [81]

The equations (3.1) and (3.6) differ only in two factors: the nonlinear damp-
ening (Mvej2ω0t) at the beginning of the formula and that the argument of kernel
(R) has 2t instead of t. The reason for this difference (time compression) is that
the signals are traveling towards one another, (their relative velocity is 2v), thus
the interaction is over in half the time. [81]

In my calculations I have studied a device that works similar to real-time SAW
convolvers but the wave exhibits strong damping - therefore the model is well
applicable to spin-wave-like convolvers, where damping is more significant [83].

In my simulation, which can be considered as a baseline, a square signal
(s(t) = A1cos(ωt)) and a triangular signal (r(t) = 1

t
A2cos(ωt)) travel opposite

to each other and the waves propagating in a nonlinear manner. Square and
triangular signals were selected as case studies, since they can be easily described
mathematically and depict the effect of convolution fairly well. Reading the signal
at the intersection of the waves yields the convolution of the two input signals.
(In fact, one of the input signals must be inverted in time to obtain convolution,
otherwise, we get the cross-correlation of the signals.) The simulation is illustrated
in figure 3.2. The signal is oscillatory, but if we take advantage of the fact that the
frequency of the output signal will be twice the original frequency of the signals,
we can filter the output signal and we get the convolution result.
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Figure 3.2: In the first row, s(t) is the square signal, and next to this function
is the triangular signal r(t) (inverted in time), these are travelling opposite each
other. The first plot in the second row is the raw result, which is read from the
collision of the above signals. The last plot is the frequency filtered result, which
has doubled frequency compared to the original signals.

3.2.2.1 SAW based kervolution

In the physical system input signals attenuate over time as they travel further
and further in space. Taking this phenomenon into account, I applied exponential
attenuation to both the input signal and the kernel.

According to the properties of my physical system, I had to apply satura-
tion after the element-wise multiplication. In fact, I used the following kernel
convolution (ith element of convolution) in my CNN architecture:

gi(x) =< ϕi(xi), ϕi(w) > (3.7)

where < ·, · > is the inner product of two vectors with hyperbolic tangent (which
means < a, b >=

∑n
k=1 tanh(akbk) and tanh is the saturation of the system), and

ϕ : Rn 7→ Rn is the following nonlinear mapping function:

ϕi(x) = e
−i
a xi (3.8)
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where i is the discrete time, a is the attenuation parameter. Fig. 3.3 depicts the
e

−i
a function with different a parameter. (This attenuation formula can also be

written in the following way: 0.999ixi, which means ϕi(x) with a = 999 parameter.)

Figure 3.3: One of the parameters of my simulation is attenuation. The propagat-
ing waves were attenuated exponentially with the function e

−i
a , where i is the time

and a is the attenuation parameter. Here I plot the function with 999, 9999 and
99999 attenuation parameters. Since the dependence of attenuation is exponential
on this parameter it can heavily affect the accuracy of a neural network.

3.3 Results

I started from a simple convolutional neural network and my goal was to implement
an architecture which includes a special convolutional operation that could be
accomplished by a physical device, which can effectively perform the convolution,
thus I introduced physical characteristics into the system to demonstrate the
effects of these features. Then I examined how my architecture (depicted in the
Fig. 3.5) works on several one- and two-dimensional datasets. For demonstration,
I also implemented a CNN, that is similar to my neural network but uses one-
dimensional convolution. I used 1 × 9 kernels and 3 layers (two layers with
8 kernels and one layer with 16 kernels), and after every convolutional layer,
I applied ReLU as nonlinear activation function in the reference CNN model,
as shown in the Fig. 3.4. For the detailed parameter settings of both the
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network architectures and the training algorithms please take a look at the

source code of my neural network model which can be found in the following

GitHub repository: https://github.com/andfulop/SpinWaveConvolver. The

classification accuracy results of these CNNs on various datasets can be found in

Table 3.1.

Figure 3.4: The architecture of my reference neural network model. My network
contain three convolutional layers with ReLus followed by a fully connected layer.
This simple four layered architecture is capable of solving simple classification
tasks.

Figure 3.5: The architecture of my neural network model with SAW kervolution.
The convolutions and ReLUs are substituted with kervolutions in this variants.
Please note that the number of layers, channels and parameters are the same in
both network variants.

https://github.com/andfulop/SpinWaveConvolver
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As a more complex two-dimensional case study I have investigated the well-
known MNIST dataset as which contains handwritten digits, and it has a training
set of 60,000 examples and a test set of 10,000 examples. The size of the images is
28x28 pixels. Another two-dimensional dataset was the Fashion-MNIST, which is
an MNIST-like fashion product database with 10 classes and it consists of 28x28
sized greyscale images, where the number of elements of the training set is 60,000
and the test set has 10,000 examples. The evolution of the classification accuracies
on the test set of the MNIST dataset with a traditional convolutional network
and a kervolutional network implemented by an SAW convolver can be seen in
Fig. 3.6 and the confusion matrices of the trained architectures can be found in
Fig 3.9. The same results for Fashion-MNIST can be observed in Fig 3.7 and 3.10
accordingly.

I examined one-dimensional datasets as well. One of those is Ozone Level
Detection Data Set ([78]), I used the one-hour peak set from that. The samples
contain wind speed values at various moments and temperature values measured
at different times as well. These samples can be categorized into two classes, the
first one is the normal day and the second one is the ozone day class. The dataset
has 2536 instances and I selected the last 500 as an independent test set. The
classification accuracy results of this dataset can be found in Table 3.1 along with
other accuracy results on the previously mentioned datasets.

As it can be seen from the results in this table the same network provided
different mean accuracies on different problems ranging from 77 to 92% depending
on the complexity of the exact task. One can observe an approximately 6%
performance drop in almost all cases (except the OZONE dataset) and this
drop is independent from the original accuracy of the reference network. This
demonstrates that an energy efficient SAW convolver could provide a viable
implementation in certain problems where this 6% accuracy drop is acceptable.

Another examined one-dimensional database is the Smartphone-Based Recog-
nition of Human Activities and Postural Transitions Data Set Version 2.1 (HADB,
[77]). This consists of a smartphone’s accelerometer and gyroscope signals during
twelve different activities (such as standing, walking, walking downstairs and
upstairs, laying, etc.) of 30 subjects. The training set contains more than 7,700
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samples, while the test set contains roughly 3,100 samples. The test accuracies on

this dataset during training are depicted in Fig. 3.8.
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Figure 3.6: This figure plots the mean, minimal and maximal classification
accuracies during training averaged from five independent training on the MNIST
dataset. The top image (a) depicts the classification accuracies with the reference
convolutional neural network (baseline), meanwhile the lower image (b) plots the
same results using an SAW convolution based kervolutional neural network with an
attenuation parameter of 99999. The blue color means the maximum accuracy, the
yellow color is the mean accuracy and the red line shows the minimum accuracy.
As it can be seen there are no significant differences between the two results,
except for the 6% drop in performance

.
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(a)

(b)

Figure 3.7: This figure plots the mean, minimal and maximal classification
accuracies during training averaged from five independent training on the Fashion-
MNIST dataset. The top image (a) depicts the classification accuracies with the
reference convolutional neural network (baseline), meanwhile the lower image
(b) plots the same results using an SAW convolution based kervolutional neural
network with an attenuation parameter of 99999. The blue color means the
maximum accuracy, the yellow color is the mean accuracy and the red line shows
the minimum accuracy. As it can be seen there are no significant differences
between the two results, except for the 5% drop in performance

.
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(a)

(b)

Figure 3.8: This figure plots the mean, minimal and maximal classification
accuracies during training averaged from five independent training on the HADB
dataset. The top image (a) depicts the classification accuracies with the reference
convolutional neural network (baseline), meanwhile the lower image (b) plots the
same results using an SAW convolution based kervolutional neural network with an
attenuation parameter of 99999. The blue color means the maximum accuracy, the
yellow color is the mean accuracy and the red line shows the minimum accuracy.
As it can be seen there are no significant differences between the two results,
except for the 6% drop in performance

.
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(a)

(b)

Figure 3.9: The confusion matrix of a trained architecture on the test set of
the MNIST dataset, in case of the reference CNN model (a) and in case of my
kervolutional neural network model (b). As one can see the two confusion matrices
are qualitatively similar and although there are more misclassification in the case
of the SAW convolver (which is natural since it has a slightly lower accuracy), the
distribution of the errors is similar.
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(a)

(b)

Figure 3.10: The confusion matrix of a trained architecture on the test set of the
Fashion-MNIST dataset, in case of the reference CNN model (a) and in case of
my kervolutional neural network model (b). As one can see the two confusion
matrices are qualitatively similar and although there are more misclassification
in the case of the SAW convolver (which is natural since it has a slightly lower
accuracy), the distribution of the errors is similar. (The number labels mean: 0:
T-shirt, 1: Trouser, 2: Pullover, 3: Dress, 4: Coat, 5: Sandal, 6: Shirt, 7: Sneaker,
8: Bag, 9: Ankle boot.)
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(a)

(b)

Figure 3.11: The confusion matrix of a trained architecture on the test set of
the HADB dataset, in case of the reference CNN model (a) and in case of my
kervolutional neural network model (b). As one can see the two confusion matrices
are qualitatively similar and although there are more misclassification in the case
of the SAW convolver (which is natural since it has a slightly lower accuracy),
the distribution of the errors is similar. (The number labels mean: 0: walking, 1:
walking upstairs, 2: walking downstairs, 3: sitting, 4: standing, 5: laying, 6: stand
to sit, 7: sit to stand, 8: sit to lie, 9: lie to sit, 10: stand to lie, 11: lie to stand.)
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Reference network network with SAW kervolution
Dataset mean max mean max
MNIST 92.61% 96.52% 86.51% 93.58%

Fashion-MNIST 77.84% 83.01% 72.87% 79.32%
HADB 88.43% 91.71% 82.11% 88.89%
OZONE 99.15% 99.2% 99.07% 99.4%

Table 3.1: This table displays the test accuracies of a traditional convolutional
network (as the reference) and my method using an SAW convolver in the different
columns. The rows contain the accuracies on four different datasets. As it can
be seen from the results the same network provided different mean accuracies on
different problems ranging from 77 to 92% depending on the complexity of the
exact task. One can observe an approximately 6% performance drop in almost all
cases (except the OZONE dataset) and this drop is independent from the original
accuracy of the reference network.

The earlier results demonstrate that one can substitute convolution with

kervolution for a 6% drop in accuracy, which could enable the energy efficient

implementation of simple neural networks with SAW convolver. Unfortunately

in an ideal neural network signals propagate with infinite speed and without

attenuation and noise. To demonstrate the practical usability of an SAW I have

investigated how an SAW with different attenuation parameters would perform

on the MNIST and HADB datasets. The test accuracies for both datasets can be

seen in Fig. 3.12. As these plots demonstrate if the attenuation parameter (a) is

larger than 9999 the network reaches similar accuracy as reported in Table 3.1

and a decrease from 99999 to 9999 does not have any affect to the classification

accuracy of the network. In case of the further decrease, as in case of a = 999 the

accuracy of my implementation drops significantly. This can help in the physical

design of the SAW convolver and one can select materials and frequencies, where

this small level of attenuation is ensured.
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(a)

(b)

Figure 3.12: The training results of MNIST (a) and HADB (b) classification with
different a (attenuation) parameters, in case of blue curves the a is 9999 and red
curves show the result of 999 parameter.
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3.4 Conclusion

In [8], I introduced a special convolutional neural network with novel kernel convo-
lution, which can be implemented with a wave-based device based on the principles
of surface acoustic wave convolvers. I tested my neural network architecture on
one- and two-dimensional datasets and it was compared with similar network
implementation containing normal convolution. The network accuracy was de-
creased with an average of 5% in case of kervolutions, but these operations can
enable low-energy implementation on embedded devices. The proposed framework
could achieve similar or a little worse accuracy, but it has the potential to be
implemented with a much faster and more energy-efficient device. Our results
have also revealed some of the required properties of future magnetic devices. To
ensure high accuracy the attenuation parameter cannot be lower than e

−i
999 .

In [8], I used a very simple convolutional neural network architecture to examine
the capability of my kernel convolution. Thus in the future, I want to investigate
more complex and sophisticated network architecture that can be applied to
a wide range of real-world problems in various fields. Also, a more accurate
understanding of the physical parameters and the practical implementation of
the physical device are also important parts of my future plans. To achieve these
objectives, I plan to conduct further research and experimentation in these areas.





Chapter 4

Machine learning for the design of k-
space magnetization dynamics

In contemporary computational research, nonlinear magnetization dynamics have
emerged as a promising avenue for developing unconventional computing devices.
Significantly, magnetic devices are positioning themselves as prominent candidates
in the area of non-Boolean and neuromorphic computing architectures.

However, a persistent challenge in this domain is the crafting of magnonic
devices that not only align with theoretical principles but also deliver tangible
computational utility.

While simulating magnetization dynamics may appear straightforward, de-
signing these computing instruments demands the resolution of inverse problems.
Specifically, there’s a need to delineate optimal nanomagnet geometries and asso-
ciated external field excitations that effectively address distinct computational
challenges.

In this discussion, I introduce computational methodologies optimized for
developing neuromorphic computing devices. These devices leverage the potent,
non-linear excitations of a Yttrium Iron Garnet (YIG) disc. When analyzed, these
excitations manifest as oscillatory modes, derived from micromagnetic simulations
via Dynamic Mode Decomposition (DMD).

While DMD has gained traction in modeling complex nonlinear processes, its
application to magnetization dynamics remains relatively novel. My exploration
into this synergy reveals that nanomagnet behaviors can be accurately represented
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using approximately n = 10 distinct modes. As we escalate in amplitude, in-
teractions among DMD modes become pronounced, requiring external fields to
modulate these interactions adeptly.

To shape these crucial programming waveforms, one can employ advanced
machine learning techniques or delve into the intricacies of the temporal variations
of DMD amplitudes.

In this chapter, I present a strategy for designing outer space waveforms aimed
at increasing computational efficiency.

4.1 The k-space computing

In artificial neural networks the neurons receive multiple inputs, compute a
weighted superposition of them, and once a nonlinear operation is applied to
this superposition, the neural output is passed to next layers. This methodology
is intuitive when the system is designed as an electrical circuit. In cases where
neuromorphic computing is achieved through a dynamic physical mechanism,
like a magnonic setup, then the computational framework is different from the
standard neuron-based concept.

I used a method that links neural operations to the oscillatory modes of a
nanomagnet. Data processing is governed by the time dynamics of the modal
amplitudes. Within this apparatus, two concurrent signals are introduced to the
magnet: an evolving input signal and a similarly time-variant programming signal.
The computational result is denoted by the amplitude of the normal mode. Instead
of establishing a network in real space, calculations are conducted in the domain
of wavevector-space, known as k-space. Although this diverges significantly from
conventional neural networks, the neural network in k-space can be trained via
gradient-based techniques, similar to those used in conventional neural network
architectures.

4.1.1 Training in k-space

In training a dynamic system, the forward path involves solving the ordinary
differential equations (ODEs) that describe the system. This is done using a
time-marching procedure, such as the Runge-Kutta method, with all intermediate
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results being saved. The backward differentiation step involves a gradient-based

optimization that adjusts the physical parameters in a direction that minimizes

the loss function.

Magnetization dynamics can be described using a normal mode representation.

In this approach, rather than using the discretized M distribution, the time

evolution of the ai(t) mode amplitudes is determined. This method is especially

relevant when the magnetization dynamics can be represented as a superposition

of a limited number of eigenmodes. Importantly, the number of significant normal

modes corresponds to the system’s degrees of freedom. [107]

Normal modes can be identified using frequency-domain micromagnetic meth-

ods. Once these calculations and evaluations of mode couplings are conducted

for a specific geometry (in my simulation, the magnet was a rectangular-shaped

plate, which can also be seen in the Fig. 4.1), the normal mode description still

applies to arbitrary small-amplitude RF field excitations. [107]

4.2 Simulation

During my simulation, I based my model on a magnetic architecture that has two

line source inputs. One of these inputs processes the signal to be analyzed, while

the other introduces a programming signal. This programming signal is configured

(with the aid of a machine learning process) to ensure that the architecture

provides the correct output for various signals. The system’s output is a specific

magnetic value measured at a particular time and averaged over a certain area of

the magnet. A simplified figure (Fig. 4.1) depicts the architecture.
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Figure 4.1: The architecture of my simulation. My architecture has two line source
inputs, one of these inputs processes the signal to be analyzed, while the other
introduces a programming signal. The system’s output is a specific magnetic value
measured at a particular time and averaged over a certain area of the magnet.

During my simulation (which was implemented in Python and I used Pytorch

for the machine learning process), the main physical parameters I used are listed

in the Table 4.1. Such parameters include the discretization parameters (dx, dy,

dz); the number of cells in the x-y direction (nx, ny); the saturation magnetization

(Ms in A/m); the bias field (B0 in Tesla); excitation field amplitude (Bt in Tesla);

timestep (dt - in seconds); source frequency (f1 in Hz); and the number of timesteps

for wave propagation.
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Table 4.1: The table contains the parameters of my simulation.

parameter value
dx 50e-9 (m)
dy 50e-9 (m)
dz 20e-9 (m)
nx 30
ny 30
Ms 140e3 (A/m)
B0 60e-2 (T)
Bt 5e-4 (T)
dt 3e-12 (s)
f1 4e9 (Hz)

number of timesteps 4e3

4.2.1 Dataset

In my experiment, the dataset on which I verified the architecture’s learnability

and the efficiency of the learning consisted of audio files. Specifically, these

were vowels recorded in American English. For simplicity, given that I was only

validating the concept of a basic experimental architecture, I considered just

two vowels. This meant there were vowels belonging to two distinct classes that

the system needed to distinguish between: ’ae’ and ’ah’. I had a total of 24-24

audio files for each class, and I used their formants as inputs to the system. The

formants utilized for each sample included steady state, 20%, 50%, and 80% value

formants. More precisely, the input was linear combinations of sinusoidal signals

for a given sample, and the frequencies of the sine waves corresponded to these

formant values. An example of such an input signal can be seen in the Fig. 4.2.
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Figure 4.2: An example input of my simulation. I used linear combinations of
sinusoidal signals, with the frequencies of the sine waves corresponding to the
formant values from the ’ae’ and ’ah’ vowel audio files.

4.2.2 Training of the architecture

During the training of my model, I trained the programming signal input of the

architecture. My goal was for the system’s output (an averaged amplitude over

a specified area, serving as a temporal signal at the output) to be different for

the two classes. I determined the distinctiveness of the output signal by applying

a Fourier transformation and then assessing which of two pre-selected and fixed

frequency ranges had the larger integral of the FFT transformed signal. Thus,

the classification was determined by which integral was larger in the frequency

domain: either the one within the range indicated by the black vertical lines (seen

in the Fig. 4.3) or the one in the range marked in magenta.
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Figure 4.3: An example output of my simulation. The classification was determined
by which integral was larger in the frequency domain: either the one within the
range indicated by the black vertical lines or the one in the range marked in
magenta.

4.3 Results

During the training, the learning parameter was the frequency of the programming

sinusoidal signal. Its fine-tuning was carried out over a total of 10 epochs until

the system was trained. Since the complete dataset consisted of 48 samples, I

randomly selected 10 samples from it (5 samples per class), which represented

the independent test set, while the remaining 38 samples comprised the training

set on which the system learned. After 10 epochs, the trained model performed

flawlessly on the independent set, correctly classifying all 10 samples into their

respective groups. The Fig. 4.4 illustrates how the accuracy evolved during the

training for the training set. The Table 4.2 contains the training information.
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Figure 4.4: This plot illustrates how the accuracy evolved during the training for
the training set.

Table 4.2: The table contains the parameters of simulation.

parameter value
training dataset 38 samples

test dataset 10 samples (m)
number of training epoch 10

test set accuracy 100%
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4.4 Conclusion

In this chapter, utilizing the combination of machine learning and the temporal
DMD amplitude changes, I developed a new method, during which I conducted
a simulation as an experiment. By using audio files, specifically recognizing
the difference between the vowels ’ae’ and ’ah’, I demonstrated through my
architecture. The flawless classification after the short training phase showcased
that the architecture could be effective for certain signal classification tasks.

I hope that the presented results not only supplement the current knowledge
in the field but also prove valuable for future research in neuromorphic computing
devices.





Chapter 5

Summary of the dissertation

The dissertation introduces novel approaches to optimize convolutional neural

networks (CNNs).

5.1 Frequency Domain CNNs

The first approach focuses on implementing the entire training process in the fre-

quency domain without using any inverse Fourier transformation. By introducing

an alternative realization of spatial activation functions in the frequency domain,

we can achieve similar accuracy without the computational cost of inverse Fourier

transformation.

The proposed framework is tested on one- and two-dimensional datasets, and

the results demonstrate its effectiveness.

The approach can be especially valuable for applications where energy efficiency

and computational speed are critical.

5.2 Wave-Based Convolver CNNs

The second part of the dissertation introduces a special CNN architecture with

a wave-based convolver inspired by physical devices like Surface Acoustic Wave

(SAW) convolvers. The idea is to leverage the physical properties of such devices

to perform convolution efficiently.
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The implementation of the wave-based convolver includes exponential attenua-
tion and saturation effects in the system, which are characteristics of the simulated
physical device.

Instead of using classical nonlinear activation functions like ReLU or sigmoid,
the system incorporates nonlinearity through the physical properties (characteris-
tics) of the simulated device.

Experiments were conducted on various datasets, comparing the performance of
the wave-based convolver CNNs with traditional CNNs. The results show that the
wave-based convolver CNNs achieve similar accuracy to traditional CNNs, with a
small drop in most cases. However, the wave-based convolver implementation can
offer energy-efficient solutions for specific applications and it opens up possibilities
for low-energy implementations.

5.3 Conclusion

Both approaches presented in this dissertation offer new ways to implement CNNs
with potential benefits in terms of energy efficiency and computational speed.

Overall, these novel approaches contribute to the advancement of CNN archi-
tectures and pave the way for energy-efficient and faster implementations of deep
learning models.
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