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Abstract

In this thesis, I propose solutions for two research problems in the 3D
perception of terrestrial mobile laser scanners.

In the first part of the dissertation, a novel deep neural network-based
change detection approach is introduced, which can robustly extract changes
between sparse and weakly registered point clouds obtained in a complex
street-level environment, tolerating up to 1 m translation and 10° rotation
misalignment between the corresponding 3D point cloud frames. In the pro-
posed ChangeGAN model, the input point clouds are represented by range
images, enabling the use of 2D convolutional neural networks. The result is a
pair of binary masks indicating the change regions on each input range image,
which can be back-projected to the input point clouds without loss of infor-
mation. The proposed method utilizes a generative adversarial network-like
(GAN) architecture, combining Siamese-style feature extraction, U-net-like
multiscale feature usage, and Spatial Transformer Network blocks for optimal
transformation estimation. I have evaluated the proposed method on various
challenging scenarios, including a new dataset I created, demonstrating its
superiority over state-of-the-art change detection methods.

The second part of the thesis focuses on 3D human pose estimation in
Lidar point clouds. While Lidar sensors are generally expensive, I demon-
strated that with a new and affordable Lidar sensor (Livox Avia) featuring a
unique Non-Repetitive Circular Scanning (NRCS) pattern, human pose esti-
mation tasks can be solved efficiently despite the sparseness of the point cloud
measurements.

My proposed solution needs to implement two challenging steps. The first
one concerns foreground-background segmentation of the recorded 3D Lidar
point cloud frames. For this reason, I proposed a novel point-level foreground-
background separation technique for measurement sequences of an NRCS Lidar
sensor mounted in a fixed surveillance position. Here, the main challenge has
been efficiently balancing the spatial and temporal resolution of the recorded
range data. To address this, a very high-resolution background model of the
sensor’s Field of View is automatically generated and maintained. For real-
time analysis of dynamic objects, a low integration time is used. Consequently,
laser reflections from foreground objects provide sparse but geometrically ac-
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curate samples of moving objects. These samples are valuable for higher-level
shape description, object detection, and pose estimation. I demonstrate the ef-
ficiency of this new approach using various realistic NRCS Lidar measurement
sequences from my new dataset.

The second step of my proposed Lidar surveillance approach addresses
3D human pose estimation based on purely the NRCS Lidar measurements. I
proposed here a novel, vision transformer-based pose estimation method called
LidPose for real-time 3D human skeleton detection in NRCS Lidar point clouds
exploiting my previously introduced foreground segmentation approach. To
train and evaluate the LidPose method, I created a novel, real-world, multi-
modal dataset containing camera images and Lidar point clouds from a Livox
Avia sensor, with annotated 2D and 3D human skeleton ground truth. Using
this dataset, I demonstrated that the proposed method can efficiently and
accurately estimate 3D human poses using only NRCS Lidar point clouds.
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Chapter 1

Introduction

The understanding of the spatial environment has increasing importance
in various fields, such as robotics, autonomous vehicles, surveillance, and aug-
mented reality. In recent years, advancements in 3D perception technology
have significantly enhanced the understanding of complex environments.

This dissertation covers two research areas of 3D perception using terres-
trial mobile laser scanners, specifically focusing on Lidar point clouds.

The first research topic is change detection in Lidar point clouds, described
in Chapter 2. Change detection is a crucial technique for various applications,
including urban planning, environmental monitoring, monitoring dynamic en-
vironments, and infrastructure maintenance. 3D Lidar change detection algo-
rithms analyze sequential point cloud data to identify significant changes over
time, such as structural modifications, object movement, or environmental
disturbances.

The second research topic is human pose estimation using only Lidar point
clouds, described in Chapter 4. Human pose estimation involves detecting and
predicting the positions of various body parts. It is relevant in various appli-
cations such as human-computer interaction, surveillance, and biomechanical
analysis. Human pose estimation is traditionally performed using visual data,
recorded with cameras. However, this research investigates the feasibility and
advantages of utilizing 3D Lidar data for this purpose.

Together, these topics highlight the potential of Lidar technology in ad-
vancing 3D perception capabilities, paving the way for innovative applications
and improved methodologies in various fields.

I introduce the two research topics in Sections 1.1 and 1.2, followed by the
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Introduction

general introduction to the Lidar sensor (Section 1.3) and the description of
the two types of Lidar sensors used for my research in Sections 1.3.1 and 1.3.2.

1.1 Change detection

Due to the increasing population density, and the rapid development of
smart city applications and autonomous vehicle technologies, growing demand
is emerging for automatic public infrastructure monitoring and surveillance
applications. Detecting possibly dangerous situations caused by e.g., missing
traffic signs, and damaged street furniture is crucial. Expensive and time-
consuming efforts are required therefore by city management authorities to
continuously analyze and compare multi-temporal recordings from large areas
to find relevant environmental changes.

From the perspective of machine perception, this task can be formulated as
a change detection problem. In video surveillance applications [17,18], change
detection is a standard approach for scene understanding by estimating the
background regions and by comparing the incoming frames to this background
model. Change detection is also a common task in many remote sensing appli-
cations, which require the extraction of the differences between aerial images,
point clouds, or other measurement modalities [19,20]. However, the vast ma-
jority of existing approaches assume that the compared image or point cloud
frames are precisely registered since either the sensors are motionless, or the
accurate position and orientation parameters of the sensors are known at the
time of each measurement.

1.2 Human pose estimation

The main task of pose estimation is to localize the anatomical keypoints of
the human body. Human pose estimation is an essential task in machine per-
ception and has several real-world applications among others in robotics [21],
security and surveillance [22, 23], autonomous driving [24], human-computer
interaction [25], sports performance analysis [26], healthcare [27], forensic sci-
ence [28], entertainment and gaming [29].

The input data of the human pose estimation can be captured by vari-
ous types of sensors. Human pose estimation is most commonly solved by
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camera-based methods [30–34] in the image space. However, such solutions are
inherently limited by the camera’s incapability to directly measure distance,
the high sensitivity of the captured images to various lighting and weather
conditions, and the varying visual appearances of real-world objects.

Other sensors, such as motion capture equipment using Inertial Measure-
ment Units (IMU) [35], depth sensors [21,36] and Lidar sensors [37] can provide
additional information to the pose estimation methods to increase the predic-
tion accuracy by decreasing depth or occlusion ambiguities [38].

In applications, where privacy is a serious concern, Lidar-based human
surveillance can be efficiently applied as the observed people cannot be iden-
tified by an observer in the sparse point cloud.

1.2.1 2D Human Pose Estimation

The estimated pose is represented as a “stick figure” for each person or
more commonly referred to as the skeleton, shown in Figure 1.1.

Figure 1.1. Example for 2D pose estimation using camera images by ViTPose [33].
The skeletons are displayed over the input images. The colorful dots represent the
joints of the skeleton, and the edges are colored with blue [39].

In single-person 2D human pose estimation, the goal is to localize the joints
of a single human subject. If multiple people are present on a single image,
a preprocessing step detects the people in the input, and it determines the
person’s bounding boxes. Each box is treated as a separate input for the pose
estimator algorithm, and the results are then stitched back onto the frame.

2D human pose regression approach directly maps the joints of the de-
tected subject to the 2D locations [40], thus giving an end-to-end solution.
Regression-based approaches marked the initial step into deep learning-based
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human pose estimation methods. After the successful use of cascaded deep
neural networks [41], the research interest moved towards convolutional neural
networks.

Joint position heatmap or body part detection-based methods encode the
different body parts and joints in a series of heatmaps. The maps encode the
likelihood of the presence of a given joint at a given position. The heatmaps
are created as Gaussian distributions, with the mean being the ground truth
(GT) location of the body part [42]. With these map-based approaches, a post-
processing step is required for the extraction of the precise keypoint locations
from the heatmaps [43].

1.2.2 3D Human Pose Estimation

3D human pose estimation predicts the human pose by estimating the 3D
position of each joint in the human body. This can be applied in motion
capture, augmented reality, and sports analysis [44].

Most 3D methods also depend on monocular images or videos, presenting
an ill-posed inverse problem due to the projection and the occlusions in the in-
put data [45]. To resolve these ambiguities, multimodal approaches have been
proposed. However, these approaches usually restrict the problem to indoor
environments and limit the number of individuals captured in the dataset [46].
Consequently, models trained on such datasets often suffer from poor general-
ization [34].

Recent results described in [47, 48] introduce the use of off-the-shelf mil-
limeter wave radars for the human pose estimation task. Both approaches use
camera-based methods to train and evaluate the radar-based solution. It has
to be noted, that the radar’s detection density is significantly lower than the
density of both the RMB lidar and the NRCS lidar.

1.3 Lidar sensor

Lidar is an active sensor that illuminates the surroundings by emitting
laser beams. Distances are measured precisely by processing the received laser
reflections from the surfaces. The Lidar sensor works efficiently under different
lighting and illumination conditions. However, this robustness decreases in
harsh weather conditions: the sensor has weaker performance in fog, snow,
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or heavy rain [49]. In dense fog or heavy rain, the water droplets reflect the
emitted laser beams by creating false distance measurements from the observed
scene. A possible approach for weather-related point cloud denoising is the
WeatherNet network, described in [50].

A general Lidar operates by scanning its Field of View (FoV) with one or
several near-infrared (NIR) laser beams.

The laser beam is reflected to the scanner from the environment, the re-
turned signal is received by a photodetector. Fast electronics filter the signal
and measure the time difference between the transmitted and received signals,
which is proportional to the the distance of the reflecting object. The range is
estimated from the sensor model based on this calculated time difference. The
Lidar outputs 3D point clouds that correspond to the scanned environment and
the intensities that correspond to the reflected laser energies [51]. The Lidar’s
maximum range is limited by the eye-safe transmission power regulations.

The scanning system of a Lidar sensor is responsible for the rapid explo-
ration of the observed space. A few scanning methodologies at different Lidar
types are introduced below.

In the mechanical spinning-type sensors (rotating multi-beam (RMB) Li-
dar) the laser beams are steered through a rotating sensor head, having a
moving mirror and optics inside. The Lidar I used for my change detection
research works following this principle, described in detail in Section 1.3.1.

Another mechanical approach uses rotation of prisms to direct the laser
beams. The Lidar I used for my Lidar-only human pose estimation research
works following this scanning method, described in detail in Section 1.3.2.

The scanning can also be achieved by moving a “mirror” in a chip with elas-
tic and electromagnetic forces in a Micro-electromechanical system (MEMS)
[52].

Flash Lidars does not have any rotating component [53]. A single emitted
laser beam is spread by an optical diffuser to illuminate the whole scene, and
the reflections are detected on an array of photodiodes.

1.3.1 Velodyne HDL-64 rotating multi-beam Lidar sen-
sor

The Velodyne HDL-64 sensor (shown in Figure 1.2a) is a high-resolution
and high-performance RMB Lidar sensor, that is designed to help the real-time
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(a) (b)

Figure 1.2. Velodyne HDL-64 rotating multi-beam Lidar sensor and its recorded
point cloud in urban environment

perception of autonomous robots and vehicles. It captures high-definition and
real-time 3D measurements from its surrounding environment. The sensor
has 64 laser beams, determining a 26.9° vertical FoV. Due to the rotating
head of the sensor, its horizontal FoV is 360°. The measured data’s spatial
accuracy is 1-2 cm. Due to the sensor characteristics, the point density quickly
decreases with the distance from the sensor. The Velodyne HDL-64 is a pioneer
of the RMB Lidars. Recent RMB Lidar sensors are available on the market
(e.g., produced by Ouster) having similar characteristics, but their size and
consumption have decreased significantly, making the measurements and the
research conducted with the Velodyne Lidar in this research still relevant [54].

Ring patterns can be observed in the recorded point clouds, as can be
seen in Figure 1.2b, as the laser beams are rotated along the sensor’s vertical
axis. The sensor continuously streams the 3D measurements, which are col-
lected to point cloud frames, where the term frame refers to a single horizontal
turnaround of the sensor head.

6
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1.3.2 Livox Avia Lidar sensor with Non-repetitive Cir-
cular Scanning

Figure 1.3. Livox Avia Lidar
sensor

The Livox Avia sensor [55], shown in Fig-
ure 1.3, is a lightweight Lidar sensor that has
a unique, Non-repetitive Circular Scanning
(NRCS) technique. The sensor has six Li-
dar beams organized in a linear beam array,
which is moved and rotated inside the sen-
sor to scan its FoV (horizontal: 70°, vertical:
77°). The sensor has a detection range of up
to 320 m if the target object reflects at least
80% of the light and 190 m at 10% object
reflectivity. The sensor’s distance error (1σ)
is less than 2 cm at 20 m. The angular error
(1σ) is smaller than 0.05° [56].

Unlike most RMB Lidars, which boost a repetitive scanning pattern, the
Avia does not repeat the exact scanning paths in every frame, but instead,
the lasers cover new parts of the FoV. This key difference is both beneficial
and implicates some disadvantages. NRCS Lidars cover the complete FoV over
time, providing rich spatial information, especially in static scenarios. On the
other hand, because the same region is scanned less frequently than by using
“regular” RMB Lidars, dynamic objects, such as humans may cause challenges
as they induce heavy motion blur in the recorded NRCS point clouds.

Another sensor-specific property of the recorded data is the inhomogeneous
point cloud density. More specifically, while the center of the FoV is scanned
in every rotation of the pattern, outer regions are sampled less frequently, as
demonstrated in Figure 1.4. This inhomogeneous point density distribution
makes it difficult to apply existing Lidar point cloud processing approaches on
NRCS Lidar point clouds. Note that apart from depth data, the sensor also
records the reflection intensity of the laser beams within the range of 0−100%
according to the Lambertian reflection model [56].

The sensor continuously records distance measurements with corresponding
timestamps following its non-repetitive circular pattern in its FoV. By setting
a fixed integration time, the consecutively collected points can be grouped
into separate Lidar time frames. The main challenge is to efficiently balance
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Figure 1.4. NRCS Lidar point cloud with 100 ms integration time represented as
a 2D range image overlaid on a sample camera image. The point cloud is colored
by the distance: the lighter the point’s color, the greater its distance.

between the spatial and the temporal resolution of the recorded range data.

Figure 1.5. Change in FOV coverage over time for the Livox Avia compared to
rotating multi-beam sensors with traditional scanning. Source: [56]

While allowing larger integration time, the laser beams cover a higher pro-
portion of the FoV, as shown in Figure 1.5, yielding high spatial measurement
resolution of the measurement frame. Figure 1.6 shows how the scanning
patterns overlap each other as time passes and create a denser measurement.
The object movements of dynamic objects in the observation area induce vari-
ous artifacts (e.g., blurred pedestrian silhouettes), which do not allow efficient
dynamic event analysis. For example, the Livox Avia sensor collects 240000
points within a time window of 1s, as can be seen in Figure 1.7b. On the other
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Figure 1.6. Typical point cloud pattern inside the FoV of the Livox Avia Li-
dar sensor after (from left to right) 0.1 seconds, 0.5 seconds, 1 second, 3 seconds.
Source: [56]

(a) NRCS Lidar point cloud with 100 ms
integration time

(b) NRCS Lidar point cloud with
1000 ms integration time

Figure 1.7. Point clouds recorded with different integration times using the NRCS
Lidar. The increased integration time brings more density, it also introduces motion
blur on dynamic objects, as shown with the moving pedestrian marked with the
red rectangle. The pedestrian’s points are colored with the Lidar’s intensity, the
background is colored by the Y-axis value.

hand, if the measurements are collected in a narrow time window (e.g., in 100
ms) the resulting point clouds are very sparse, which phenomenon yields a loss
of details across the spatial dimension of the FoV: a sample frame of 24000
points is shown in Figure 1.7a.

As demonstrated in [57, 58], this type of NRCS Lidar is suitable for most
of the use case scenarios, including traditional mapping and low-speed au-
tonomous driving. The NRCS Lidar sensor can provide measurements for
real-time scene analysis, while the sensor is available on the market at afford-
able prices compared to the other Lidar technologies [59].
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Chapter 2

Change detection in coarsely
registered point clouds

In this chapter, I introduce a novel change detection approach called
ChangeGAN [1], [3] for coarsely registered point clouds in complex street-level
urban environments.

Mobile and terrestrial Lidar sensors (introduced in Section 1.3) can ob-
tain point cloud streams, providing accurate 3D geometric information in the
observed area. Lidar is used in autonomous driving applications supporting
the scene understanding process, and it can also be part of the sensor ar-
rays in ADAS systems of recent high-end cars. Since the number of vehicles
equipped with Lidar sensors is rapidly increasing on the roads, one can utilize
the tremendous amount of collected 3D data for scene analysis and complex
street-level change detection. Besides, change detection between the recorded
point clouds can improve virtual city reconstruction or Simultaneous Localiza-
tion and Mapping (SLAM) algorithms [60].

Processing street-level point cloud streams is often a significantly more
complex task than performing change detection in airborne images or Lidar
scans. From a street-level point of view, one must expect a larger variety
of object shapes and appearances, and more occlusion artifacts between the
different objects due to smaller sensor-object distances.

Also, the lack of accurate registration between the compared 3D terrestrial
measurements may mean a crucial bottleneck for the whole process, for two
different reasons: First, in a dense urban environment, GPS/GNSS-based ac-
curate self-localization of the measurement platform is often not possible [61].
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Second, the differences in viewpoints and density characteristics between the
data samples captured from the considered scene segments may make auto-
mated point cloud registration algorithms less accurate [61].

In this chapter, a deep neural network-based change detection approach
is proposed, which can robustly extract changes between sparse point clouds
obtained in a complex street-level environment. As a key feature, the proposed
method does not require precise registration of the point cloud pairs. Based
on our experiments, it can efficiently handle up to 1 m translation and 10°
rotation misalignment between the corresponding 3D point cloud frames.

2.1 Related works

As one of the most fundamental problems in multitemporal sensor data
analysis, change detection (introduced in Section 1.1) has had a vast bibliog-
raphy in the last decade. Besides methods working on remote sensing images,
several change detection techniques deal with terrestrial measurements, where
the sensor is facing towards the horizon and is located on or near the ground.
In these tasks optical cameras [62] and rotating multi-beam Lidars [63] are
frequently used, solving problems related to surveillance, map construction, or
SLAM algorithms [64].

2.1.1 Prior approaches

The related works are categorized based on the applied methodology they
use for change detection.

Many approaches are based on handcrafted features, such as a set of pixel-
and object-level descriptors [65], occupancy grids [66], volumetric features, and
point distribution histograms [64], but they all need preliminarily registered
inputs. Only a few feature-based techniques deal with compensating small
misregistration effects, such as [67], where terrestrial images and point clouds
are fused to perform change detection.

Neural network-based change detection techniques can handle in general
more robustly the variances originating from viewpoint differences, most fre-
quently using Siamese network architectures [68]. However, prior approaches
solely focus here on visual change detection problems in aerial [69] or street-
view [62, 70] optical image pairs, and this task is yet to be solved for real
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Lidar point cloud-based change detection problems. A new method for de-
tecting structural changes from city images is described in [71]. It creates 3D
point clouds using Structure-from-Motion (SfM) from the images and uses a
deep-learning-based registration on the 3D clouds.

2.1.2 Registration issues

Most of the methods require that the compared measurements are either
recorded from a static platform, or they can be accurately registered into a
joint coordinate system by using external navigation sensors, and/or robust
image/point cloud matching algorithms. The later registration step is critical
for real-world 3D perception problems, since the recorded 3D point clouds often
have strongly inhomogeneous density, and the blobs of the scanned street-
level objects are sparse and incomplete due to occlusions and the availability
of particular scanning directions only. Under such challenging circumstances,
conventional point-to-point, patch-to-patch, or point-to-patch correspondence-
based registration strategies often fail [72].

Our published paper [1] and submitted patent [3] paper presents the first
approach to solving the change detection problem among sparse, coarsely reg-
istered terrestrial Lidar point clouds, without needing an explicit fine registra-
tion step. Utilizing the STN [73] layer, the proposed model can automatically
handle errors of coarse registration.

Our proposed deep learning-based method can extract and combine various
low-level and high-level features throughout the convolutional layers, and it can
learn semantic similarities between the point clouds, leading to its capability
of detecting changes without prior registration. A clear difference between the
proposed change detection method and the state-of-the-art is the adversarial
training strategy which has a regularization effect, especially on limited data.
The other main difference is the built-in spatial transformer network yielding
the proposed model to be able to learn and handle coarse registration errors.

2.2 Proposed method

Several Lidar devices, such as the RMB sensors introduced in Section 1.3.1
provide high frame rate point cloud streams containing accurate, but relatively
sparse 3D geometric information from the environment. These point clouds
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can be used for infrastructure monitoring, urban planning [74], and SLAM [60].
The goal of our proposed method is to extract changes between two coarsely

registered and sparse Lidar point clouds, P1 and P2. To formally define our
change detection task, several considerations should be taken. First, both in-
put point clouds may contain various dynamic or static objects, which are not
present in the other measurement sample. Second, due to the lack of registra-
tion, we cannot use a single common voxel grid for marking the locations of
changes between the two point clouds.

Instead, using a µ(.) point labeling process, we separately mark each point
p ∈ P1 ∪ P2 as changed (µ(p) = ch) or unchanged background (µ(p) = bg),
respectively. We label a point p1 ∈ P1 as changed if the surface patch repre-
sented by point p1 in P1 is not present (changed or occluded) in point cloud
P2 (the label of a point p2 ∈ P2 is similarly defined).

2.2.1 Range image representation

The proposed solution extracts changes between two coarsely registered
Lidar point clouds in the range image domain. For example, creating a range
image from an RMB Lidar sensor’s point stream is straightforward [75] as its
laser emitter and receiver sensors are vertically aligned, thus every measured
point has a predefined vertical position in the image, while consecutive firings of
the laser beams define their horizontal positions. Geometrically, this mapping
is equivalent to transforming the representation of the point cloud from the
3D Descartes to a spherical polar coordinate system, where the polar direction
and azimuth angles correspond to the horizontal and vertical pixel coordinates,
and the distance is encoded in the corresponding pixel’s ‘intensity’ value. Note
that range image mapping can also be implemented for other (non-RMB) Lidar
technologies, such as Livox sensors. Using appropriate image resolution, the
conversion of the point clouds to 2D range images is reversible, without causing
information loss. Besides providing a compact data representation, using the
range images makes it also possible to adopt 2D convolution operations by the
used neural network architectures.

The proposed deep learning approach takes as input two coarsely registered
3D point clouds P1 and P2 represented by range images I1 and I2, respectively
(shown in Figures 2.1a and 2.1b) to identify changes. Our architecture assumes
that the images I1 and I2 are defined over the same pixel lattice S, and have

13



Change detection in coarsely registered point clouds

(a) I1: range image of P1 (b) I2: range image of P2

(c) Λ1: ground truth mask of changes
in range image I1

(d) Λ2: ground truth mask of changes
in range image I2

Figure 2.1. Input data representation. (a), (b): range images I1, I2 from a pair
of coarsely registered point clouds P1 and P2. (c), (d): binary ground truth change
masks Λ1, Λ2 for the range images I1 and I2, respectively. The red rectangle marks
the region displayed in 3D in Figure 2.8.

the same spatial height (h), width (w) dimensions.
Usually, change detection algorithms working on multitemporal image

pairs [62] explicitly define a test and a reference sample, and changes are
interpreted from the perspective of the reference data: the resulting change
mask marks the image regions which are changed in the test image compared
to the reference one. However, this approach cannot be adopted in our case.
It is not relevant to assign a single binary change/background label to the pix-
els of the joint lattice S of the range images, as they may represent different
scene locations in the two input point clouds. For this reason, we represent
the change map by a two-channel mask image over S, so that to each pixel
s ∈ S we assign two binary labels Λ1(s) and Λ2(s).

Following our change definition used earlier in 3D, for i ∈ {1, 2}, Λi(s) = ch
encodes that the 3D point pi ∈ Pi projected to pixel s should be marked as
change in the original 3D point cloud domain of Pi, i.e., µ(pi) = ch (see
Figures 2.1c and 2.1d).

Next, our change detection task can be reformulated in the following way:
our network extracts similar features from the range images I1 and I2, then it
searches for the high correlation between the features, and finally, it maps the
correlated features to two binary change mask channels Λ1 and Λ2, having the
same size as the input range images.
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Figure 2.2. Proposed ChangeGAN architecture. Notations of components: SB1,
SB2: Siamese branches, DS: downsampling, STN: spatial transformer network,
Conv2DT: transposed 2D convolution

2.2.2 ChangeGAN architecture

For our purpose, we propose a new generative adversarial neural network-
like architecture, more specifically a discriminative method, with an additional
adversarial discriminator as a regularizer, called ChangeGAN, which is shown
in Figure 2.2.

Since the main goal is to find meaningful correspondences between the input
range images I1 and I2, we have adopted a Siamese style [68] architecture to
extract relevant features from the input range image pairs.

The Siamese architecture is designed to share the weight parameters across
multiple branches, allowing us to extract similar features from the inputs and
decrease memory usage and training time. Each branch of the Siamese network
consists of fully convolutional downsampling blocks. The first layer of the
downsampling block is a 2D convolutional layer with a stride of 2 which has a
2-factor downsampling effect along the spatial dimensions. This step is followed
by using a batch normalization layer, and finally, we activate the output of the
downsampling block using a leaky ReLU function. Next, we concatenate the
outputs of the Siamese branches for all feature channels, and we apply a 1 × 1
convolutional layer to aggregate the merged features.

The second part of the proposed model contains a series of transposed con-
volutional layers to upsample the signal from the lower-dimensional feature
space to the original size of the 2D input images. Finally, a 1 × 1 convo-
lutional layer, activated with a sigmoid function, generates the two binary
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change maps Λ1 and Λ2. To regularize the network and prevent over-fitting,
we use the dropout technique after the first two transposed convolutional lay-
ers. To improve the change detection result, we have adapted an idea from
U-net [76] by adding higher resolution features from the downsampling blocks
to the corresponding transposed convolutional layers.

The branches of the Siamese network can extract similar features from the
inputs. In our case, as the point clouds are coarsely registered, the same re-
gions of the input range images might not be correlated with each other. To
achieve more accurate feature matching, we have added Spatial Transformer
Network blocks [73] for both Siamese branches (see Figure 2.2). STN can learn
an optimal affine transformation between the input feature maps to reduce the
spatial registration error between the input range images. Furthermore, STN
dynamically transforms the inputs, also yielding an advantageous augmenta-
tion effect.

2.2.3 Training ChangeGAN

A competitive classifier-discriminator-based adversarial training was imple-
mented for the ChangeGAN network, as shown in Figure 2.3.

Figure 2.3. Proposed adversarial training strategy of the ChangeGAN architec-
ture.
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The classifier network is responsible for learning and predicting the changes
between the range image pairs. In each training epoch, the classifier model is
trained on a batch of data. The actual state of the classifier is used to predict
validation data, which is fed to the discriminator model.

The discriminator network is a fully convolutional network that classifies
the output of the classifier network. The discriminator model divides the image
into patches and decides for each patch whether the predicted change region
is real or fake. During training, the discriminator network forces the classifier
model to create better and better change predictions, until the discriminator
cannot decide about the genuineness of the prediction.

Figure 2.3 demonstrates the proposed adversarial training strategy. We
calculate the L1 Loss (LL1) as the mean absolute error between the generated
image and the target image, and we define the Adversarial Loss (LAdv), which
is a sigmoid cross-entropy loss of the feature map generated by the discrimi-
nator and an array of ones. The final loss function of the method (L) is the
weighted combination of the Adversarial Loss and the L1 Loss:

L = LAdv + λ ∗ LL1.

Based on our experiments, we set λ = 300.
Both the classifier and the discriminator part of the GAN-like architecture

were optimized by the Adam optimizer and the learning rate was set to 10−5.
We have trained the model for 300 epochs, which takes almost two days. At
each training epoch, we have updated the weights of both the classifier and
the discriminator.

We note here, that the ChangeGAN method can be trained without the
Adversarial Loss (LAdv), relying only on L1 loss. In our preliminary exper-
iments, we followed this simpler approach, which was able to predict some
change regions, but the results were notably ambiguous. To increase the gen-
eralization ability, we applied the adversarial training strategy in the proposed
final model.

2.2.4 Change detection dataset

Considering that the main purpose of the presented ChangeGAN method
is to extract changes from coarsely registered point clouds, for model training
and evaluation we need a large, annotated set of point cloud pairs, collected
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in the same area with various spatial offsets and rotation differences.
Following our change definition in Section 2.2, the annotation should accu-

rately mark the point cloud regions of objects or scene segments that appear
only in the first frame, or only in the second frame, or which ones are un-
changed and thus observable in both frames (see Figures 2.4 and 2.8).

Since the available point cloud benchmark sets cannot be used for this
purpose, we have created a new Lidar-based urban dataset called Change3D1.
The measurements were recorded over two days in downtown Budapest using
a Velodyne HDL-64 RMB Lidar mounted on a car To our knowledge, this
Change3D dataset is the largest point cloud dataset for change detection, which
contains both registered and coarsely registered point cloud pairs.

2.2.4.1 Ground truth creation approach

Since manual annotation of changes between 3D point clouds is very chal-
lenging and time-consuming, we proposed a semi-automatic method using sim-
ulated registration errors to create GT for our change detection approach. To
ensure the accuracy of the GT, we performed the change labeling for registered
point cloud pairs captured from the same sensor position and orientation, then
we randomly transformed the reference positions and orientations of the sec-
ond frames yielding a large set of accurately labeled coarsely registered point
cloud pairs. Thereafter, this set has been divided into disjunct training and
test sets which could be used to train and quantitatively evaluate the proposed
method.

The remaining parts of the collected data including originally unregistered
point cloud pairs have been used for qualitative analysis through visual vali-
dation (see for example Figure 2.4.) of the model performance.

2.2.4.2 Core data creation for GT annotation

We selected 50 different locations during the test drive when the measure-
ment platform was motionless for a period: it was stopped by traffic lights,
crossroads, zebra crossings, parking situations, etc. These locations were taken
both from narrow streets from the downtown and wide, large junctions as well.
At each location, we took 100 recorded point clouds, and then we randomly
selected 400 point cloud pairs among them, obtaining for the 50 locations a

1Dataset link: http://mplab.sztaki.hu/geocomp/Change3D.html
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total number of 20000 point cloud pairs on which the training set was based.
The test set is based on 2000 point cloud pairs, which were selected similarly,
but in terms of locations and recording time stamps, the test samples were
completely separated from the training data.

In these recordings, the differences among the point clouds were only caused
by the moving dynamic objects such as vehicles and pedestrians. Alongside the
exploitation of real object motion and occlusion effects, some further artificial
changes have been synthesized by manually adding and deleting various street
furniture elements to selected point cloud scenes. Also, we segmented the
point clouds roughly to planes [77] and randomly deleted some selected 2D
rectangular segments.

2.2.4.3 Semi-automatic change extraction

Since the above-discussed frame pairs are taken in the same global coordi-
nate system, they can be considered as registered. Their GT change annota-
tion could be efficiently created in a semi-automatic way: A high-resolution 3D
voxel map was built on a given pair of point clouds. The voxel size defines the
resolution of the change annotation. The length of the change annotation cube
was set to 0.1 m in all three dimensions, following the voxel size recommenda-
tions from [78,79]. All voxels were marked as changed if 90% of the 3D points
in the given voxel belonged to only one of the point clouds. Thereafter, mi-
nor observable errors were manually eliminated by a user-friendly point cloud
annotation tool. Finally, in both point clouds, all points belonging to changed
voxels received a µGT(p) = ch GT labels, while the remaining points were
assigned to µGT(p) = bg labels.

2.2.4.4 Registration offset

To simulate the coarsely registered point cloud pairs requested by our
ChangeGAN approach, we have applied randomly an up to ±1 m transla-
tion and an up to ±10° rotation transform around the z-axis for the second
frame (P2) of each point cloud pair, both in the training and test datasets.
The µGT(p) GT labels remained attached to the p ∈ P2 points and were trans-
formed together with them.
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2.2.4.5 Cloud crop and normalization

In the next step, all 3D points were removed from the point clouds, whose
horizontal distances from the sensor were larger than 40 m, or whose elevation
values were greater than 5 m above the ground level. This step yielded the
capability of normalizing the point distances from the sensor between 0 and 1.

2.2.4.6 Range image creation and change map projection

The transformed 3D point clouds were projected to 2D range images I1,
and I2 as described in Section 2.2.1 (see Figure 2.1). The Lidar’s horizontal
360° FoV was mapped to 1024 pixels and the 5 m vertical height of the cropped
point cloud was mapped to 128 pixels, yielding that the size of the produced
range image is 1024 × 128.

We note here, that the Lidar sensor used in this experiment has 64 laser
emitters yielding that the height of the original range images should be 64.
However, to increase the learning capacity of the network we have doubled and
interpolated the data among the height dimension since the 2D convolutional
layers with a stride of 2 have a 2-factor downsampling effect. Let us observe
that the horizons of the range images are at similar positions in the two inputs
due to the cropped height of the input point clouds. Besides the range values,
the µGT(p) ground truth labels of the points were also projected to the ΛGT

1

and ΛGT
2 change masks, used for reference during training and evaluation of

the proposed network.

2.3 Experiments

We have trained and evaluated the proposed method using the new
Change3D dataset (see Section 2.2.4), which contains point cloud pairs
recorded by a car-mounted RMB Lidar sensor at different times in dense city
environments. For a selected coarsely registered point cloud pair, Figure 2.4
shows the changes predicted by the proposed ChangeGAN model.

2.3.1 Reference methods

To the best of our knowledge, there are no existing reference methods in
the literature that focus on change detection in coarsely registered terrestrial
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Figure 2.4. Changes detected by ChangeGAN for a coarsely registered point
cloud pair. (a) and (b) show the two input point clouds, (c) displays the coarsely
registered input point clouds in a common coordinate system. (d),(e) present the
change detection results: blue and green colored points represent the objects marked
as changes in the first- and second point cloud, respectively. The red ellipse draws
attention to the global alignment difference between the two coarsely registered point
clouds.

point clouds. However, since we reformulated the 3D change detection problem
in the 2D range image domain, image-based methods tolerant of registration
errors can also be taken into consideration for comparison.

As the first baseline, we have chosen the ChangeNet method [62], which
is a recent approach for visual change detection, being able to detect and
localize changes even if the scene has been captured at different lighting, view
angle, and seasonal conditions. ChangeNet uses a ResNet backbone, working
with fixed-size input images (224 × 224). Our created range images could
not be given directly to this network, since their resolution (1024 × 128) and
aspect ratio parameters are different. This issue was solved by splitting our
range images into eight 128 × 128 parts, which were upscaled to the image size
required by ChangeNet. We used the genuine and published implementation
of the ChangeNet architecture, which was trained using our training data set
described in Section 2.2.4.

Our second reference method follows a voxel occupancy-based ap-
proach [74], where the detection accuracy and the ability to compensate for
minor registration errors depend on the chosen voxel resolution. As a core
step of the algorithm, [74] applies a registration method between the point
cloud pairs. For noise filtering and registration error elimination, a Markov
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(a) Ground truth fused change map Λ̂GT (b) ChangeGAN output’s fused change
map Λ̂

(c) ChangeNet output [62] (d) MRF output [74]

Figure 2.5. Predicted change masks by the different methods on input data, shown
in Figure 2.1. Red rectangles: region displayed in 3D in Figure 2.8.

Random Field (MRF) model is adopted, which is defined in the range image
domain [74].

The reference methods described above were applied to the task of change
detection in 3D point clouds, a use case different from their original purpose.
ChangeNet was retrained using the depth images for the evaluation.

Comparative results of the proposed method and the reference techniques
for the point cloud pair of Figure 2.1 are shown in Figure 2.5, in the range
image representation.

Since neither the ChangeNet nor the MRF methods can distinguish changes
by objects of the first and second images, for a direct comparison, we also
binarized the output of ChangeGAN to get a fused change map Λ̂ where ∀s ∈
S: Λ̂(s) = max(Λ1(s), Λ2(s)). The fused GT mask Λ̂GT was similarly derived.

2.3.2 Quantitative results

We evaluated the proposed ChangeGAN method and the two baseline tech-
niques on our new Change3D benchmark set. The quantitative performance
analysis was performed in the 2D range image domain, using the fused Λ̂GT

mask as a GT reference. To measure the similarity between the binary GT
change mask and the binary change masks predicted by the different methods,
the mean F1-score, and IoU were calculated alongside pixel-level precision,
recall, and accuracy. The used metrics’ definition follows standard binary
classification metrics [80].

The numerical evaluation results obtained by MRF-based [74],
ChangeNet [62], and the proposed ChangeGAN methods over the 2000
range image pairs of the test dataset, are shown in Table 2.1. As Figure 2.6

22



Change detection in coarsely registered point clouds

Table 2.1. Performance comparison of the proposed ChangeGAN method to
ChangeNet [62] and to the MRF -based reference approach [74]

ChangeGAN ChangeNet MRF-based
Accuracy 0.93 0.78 0.78
Precision 0.83 0.43 0.44
Recall 0.71 0.59 0.88
F1-score 0.76 0.48 0.58
IoU 0.62 0.42 0.32
Execution time (s) 0.06 0.004 0.51

demonstrates, the ChangeGAN method outperforms both reference methods
in terms of these performance factors, including the F1-score and IoU values.

The MRF-based [74] method is largely confused if the registration errors
between the compared point clouds are significantly greater than the used voxel
size. Such situations result in large numbers of falsely detected “change pixels”,
which fact yields on average very low precision result (0.44), although due to
several accidental matches, the recall rate might be relatively high (0.88).

Figure 2.6. Execution time and performance of the proposed ChangeGAN method
against the ChangeNet [62] and the MRF -based reference approach [74]

The measured low computational cost means a second strength of the pro-
posed ChangeGAN approach, especially versus the MRF model, whose execu-
tion time is longer by one order of magnitude. Although ChangeNet is even
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faster than ChangeGAN, its performance is significantly weaker compared to
the other two methods. Since the adversarial training strategy has a regular-
ization effect [81], and the STN layer can handle coarse registration errors, the
proposed ChangeGAN model can achieve better generalization ability, and it
outperforms the reference models on the independent test set.

2.3.3 Qualitative results

For qualitative analysis, we back-projected the 2D binary change masks
to the corresponding 3D point clouds and visually inspected the quality of
the proposed change detection approach. During the investigations, we have
observed similarly efficient performance for the remaining, originally unregis-
tered point cloud pairs of the Change3D dataset, to the point cloud set with
simulated registration errors which participated in the quantitative tests of
Section 2.3.2.

Figure 2.7. Changes detected by ChangeGAN for a coarsely registered point cloud
pair. Blue and green points represent the changes in the first and second point
clouds.

Figure 2.7 contains a busy road scenario, where different moving vehicles
appear in the two point clouds. As shown, moving objects, both from the
first (blue color) and second (green) frames, are accurately detected despite
the large global registration errors between the point clouds (highlighted by
a red ellipse). Let us also observe that a change caused by a moving object
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(a) Ground truth change mask (b) ChangeGAN predicted change

(c) ChangeNet predicted change (d) MRF predicted change

Figure 2.8. Comparative results of the ground truth and the predicted changes
by ChangeGAN and the reference techniques. Green and blue points mark changed
regions in P1 and P2 respectively. Orange and red ellipses mark the detected front
and back part of a bus traveling in the upper lane, meanwhile occluded by other cars.
The blue square shows a building facade segment, which was occluded in P2. The
magenta boxes highlight false positive changes of the reference methods confused by
inaccurate registration.

in each frame also implies a changed area in the other frame in its shadow
region, which does not contain reflections due to occlusion. This phenomenon
is a consequence of our change definitions, however, the shadow changes can
be filtered out by geometric constraints, if they are not needed for a given
application.

Figure 2.8 displays another traffic situation, where the output of the pro-
posed ChangeGAN technique can be compared to the manually verified GT
and the two reference methods in the 3D point cloud domain. As shown, our
results accurately reflect our change concept defined in the paper, while the
reference techniques cause multiple missing or false positive change regions.
Since a bus traveling in the upper lane was partially occluded by other cars,
only its frontal and rear parts could be detected as changes. However, the
ChangeNet model missed detecting its frontal region and a partially occluded
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(a) Change annotation of a point cloud
pair

(b) ChangeGAN prediction errors

(c) ChangeNet prediction errors (d) MRF prediction errors

Figure 2.9. Prediction errors samples of the ChangeGAN and the reference meth-
ods

facade segment. In addition, both reference methods detected false changes
in the bottom left corner of the image, which were caused by the inaccurate
registration. Figure 2.9 shows the error of ChangeGAN and the reference
methods on the same scene as Figure 2.8. It can be seen that ChangeGAN
has significantly fewer errors than the ChangeNet or the MRF.

Finally, we note that our method has also successfully performed2 for frame
pairs from the KITTI dataset [82], which were completely independent of our
training process.

2.3.4 Robustness analysis

To evaluate the performance dependency of the discussed methods on the
translation and orientation differences between the compared point clouds, we
generated two specific sample subsets within the new Change3D dataset. This
experiment was based on 500 (originally registered) point cloud pairs, selected

2Sample videos are available here: https://users.itk.ppke.hu/~kovlo/videos/
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from the 2000 test sample pairs of the dataset.
For translation-dependency analysis, we used an offset domain of

[0.1, 1.0] meter, which was discretized using 10 equally spaced bins. For test
set generation, we iterated through all the 500 point cloud pairs: For every
sample, we chose for each translation bin 0.1 ≤ ti ≤ 1.0 (i = 1 . . . 10) a random
rotation value −10° ≤ αi ≤ 10°, and transformed the second cloud P2 using
(ti, αi).

With this process, for each offset bin, we generated 500 coarsely registered
point cloud pairs with known registration errors. In total, 10 subsets were
created for the 10 offset bins, each one containing 500 samples.

Figure 2.10. Translation dependency of the compared methods’ performance (F1-
score, Precision, Recall)

Next, we ran our proposed method and the reference techniques on this new
set, and we calculated the mean F1-score [75,83] value for each translation bin
i, among samples having an offset parameter ti. Figure 2.10 displays with solid
lines the average F1-scores in a function of various ti values. The proposed
method shows a graceful degradation by increased offsets, and even for a ti = 1
meter offset, the quality of change detection is significantly better than the
nearly constant low values provided by the reference approaches.

For measuring the rotation-dependency of the models, we have performed a
similar experiment: here we discretized the −10° ≤ αi ≤ 10° rotation domain
with 10 bins, and within each bin, we generated 500 sample pairs, with random
translation values. Finally, we averaged the measured F1-scores within each
rotation bin [75, 83]. Results shown in Figure 2.11 with solid lines confirm
again the superiority of the proposed method against the tested references.
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Change detection in coarsely registered point clouds

Figure 2.11. Translation rotation dependency of the compared methods’ perfor-
mance (F1-score, Precision, Recall)
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Chapter 3

Real-time foreground
segmentation in NRCS Lidar
point clouds

This chapter presents a new point-level foreground-background separation
method by processing measurement sequences of an NRCS Lidar sensor, which
is used as a surveillance sensor, mounted in a fixed position.

3.1 Introduction

Accurate and real-time foreground-background separation is a critical task
in surveillance applications. As alternative solutions of conventional optical
video cameras, range sensors offer significant advantages for scene analysis,
since direct geometrical information is provided by them [84]. The use of
infrared light-based Time-of-Flight (ToF) cameras [85] or laser-based Light
Detection and Ranging (Lidar) sensors [86] enables recording directly measured
range images, where we can avoid artifacts of the stereo vision-based depth map
calculation.

From the point of view of data analysis, ToF cameras record depth image
sequences over a regular 2D pixel lattice, where established image processing
approaches, such as morphological filters or Markov Random Fields (MRFs)
can be adopted for smooth and observation-consistent segmentation and recog-
nition [87]. However, such cameras can only be reliably used indoors, due to
the limitations of current infra-based sensing technologies, and they may have
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a narrow FoV, which fact can be a drawback for surveillance and monitoring
applications.

A stereo camera system estimates the environment in 3D by detecting and
matching features in a pair of corresponding images, followed by triangula-
tion to compute the 3D positions of keypoints. The process involves several
critical steps. Accurate depth estimation requires precise camera calibration.
Feature extraction and matching demand high-resolution images and feature-
rich areas, which makes the calculations computationally intensive. Dynamic
scenes with moving objects and varying illumination present additional chal-
lenges for stereo-based depth estimation. Furthermore, the overlapping FoV
of the cameras restricts the extent of the 3D reconstruction. The baseline,
or the distance between the cameras, determines the disparity: the pixel dif-
ference between a keypoint in the left and right images. The baseline must
be optimized for the task: a smaller baseline is suitable for measuring closer
objects (e.g., robotics), while a larger baseline is necessary for distant object
measurements (e.g., autonomous vehicles).

By extracting accurate 2D or 3D object silhouettes, one can obtain various
sorts of valuable scene information which can be directly exploited in people
detection, tracking, biometric recognition, or activity analysis.

Prior existing Lidar-based surveillance solutions utilize mainly RMB Lidar
sensors [88], introduced in Section 1.3.1. These Lidars provide high frame rate
point cloud videos, enabling dynamic event analysis in the 3D space. On the
other hand, the measurements have low spatial density, which quickly decreases
as a function of the distance from the sensor, and the point clouds may exhibit
ring patterns typical of the sensor characteristics.

While previous works have shown [17], that RMB Lidar measurements
can be used for certain dynamic scene analysis tasks, such as object separa-
tion, tracking, and even gait-based biometric person recognition and activity
analysis, the constant and low vertical resolution of the measurements that
is physically constrained by the number of vertically fixed laser emitters and
receivers (typically 32 or 64), means a clear limitation by applying them in
a static sensor configuration. Moreover, the RMB Lidar sensors are generally
expensive, thus their application is not widespread for surveillance tasks.

An alternative to the RMB Lidars is a new type of Lidar sensor introduced
in Section 1.3.2, which implements the unique NRCS technique.

In the proposed approach we generate and maintain a very high-resolution
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Figure 3.1. Point cloud recording from the Courtyard dataset, recorded using the
Livox Avia NRCS Lidar sensor

background model of the scene fully automatically in the range image domain
of the sensor’s FoV, while for enabling real-time analysis of dynamic objects we
use low integration time to extract the consecutive time frames. The measured
points are matched to the high-resolution background model components in
the closest matching positions. This process ensures that the spatial accuracy
of the native measurements is largely maintained, instead of applying a rough
spatial down scaling technique. As a result, we can obtain sparse, but geomet-
rically accurate point cloud segments representing the moving objects, which
can be used in higher-level scene analysis steps of surveillance systems.

3.2 Proposed Method

The goal of the proposed method is to separate foreground and background
regions in Lidar frames extracted with a 100 ms integration window from a
measurement sequence of a static NRCS Lidar sensor.

Formally, in a given time frame t, we assign to each point p ∈ P a la-
bel Λ(p) ∈ {fg, bg} corresponding to the foreground (fg) or background (bg),
respectively.

The sensor’s non-repetitive circular scanning approach implies a critical
challenge to be handled: the moving laser beams cannot densely cover the
whole FoV within the considered data collection window, which results in
several sparse/empty regions in the individual Lidar frames. Moreover, we can
observe strongly inhomogeneous point density, as shown in Figure 3.1.

31



Real-time foreground segmentation in NRCS Lidar point clouds

Surveillance applications demand real-time solutions. To avoid computa-
tionally expensive algorithmic steps in the 3D point cloud domain, and to
enable the efficient and robust utilization of the sparse data, we map the prob-
lem to the 2D range image domain, by transforming the 3D Euclidean point
coordinates into a polar representation.

The proposed method consists of three main steps, as follows:
1. Incoming Lidar measurements are collected within a 100 ms time window

for composing the next point cloud frame of the sequence. Thereafter,
the distances of the 3D measurement points from the sensor are assigned
to corresponding pixels in a high-resolution range image.

2. A local background model is assigned and maintained for each pixel of
the range image lattice, following the Mixture of Gaussians (MoG) ap-
proach [89] applied for the range values. Considering the sparseness of
the captured point clouds, in a given time frame, only the MoG back-
ground model components of range image pixels linked to the actual
measurement points are updated. The incoming measurement points
are classified either as foreground or as background, based on matching
the measured range values to the local MoG distributions.

3. False foreground points in dynamic background regions (e.g., by moving
vegetation) are filtered out by using an extension of the original MoG
approach. To ensure compact shapes for the extracted moving objects,
fast spatial filters are adopted for segmentation refinement.

3.2.1 Range image formation

The point cloud’s representation is transformed from the 3D Descartes to
a spherical polar coordinate system. A 2D pixel lattice (S) is generated by
quantizing the horizontal and vertical FoV-s, and each 3D point’s distance
from the sensor is stored in a pixel determined by the corresponding azimuth
and elevation values. The polar direction and azimuth angles correspond to
the horizontal and vertical pixel coordinates, and the distance is encoded in
the corresponding pixel’s ‘gray’ value. As a result, the upcoming steps of the
proposed foreground segmentation method can be developed in the 2D range
image domain (I).

Using a narrow timing window, the range image of a certain frame con-
tains several pixels with undefined range values as a consequence of the NRCS
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scanning technology. The number of undefined pixels depends on both the
timing window and the predefined size of the range image. In our experi-
ments, exploiting the precision parameters of the used Livox Avia sensor, its
FoV is mapped onto a 600 × 660 sized pixel lattice (S), resulting in a 8.5px/°
spatial resolution. We also have to consider that the density of the recorded
valid range values is decreasing towards the peripheral regions of the range
image due to the applied scanning technique: the scanning pattern crosses the
optical center of the sensor more frequently than covering the regions of the
FoV’s perimeter. The sparseness of the range image makes it significantly more
difficult to perform, e.g., object-based foreground-background segmentation.

3.2.2 Background model

The scene’s estimated background is represented in the 2D range image
domain defined in Section 3.2.1.

Our background modeling technique is based on [87], which extends the
MoG approach [89] to the range image domain. A fitness term fbg(p) is as-
signed to each point p ∈ P of the cloud, which measures the quality of the
hypothesis that p is a background point. As explained in Section 3.2.1, we map
the points to the range image pixels, where we use the predefined and fixed
size 2D pixel lattice. For each s ∈ Sbg, we calculate an MoG approximation
of the d(p) distance histogram of p points being projected to s. Following the
approach of [86], we use 5 components with weight wi

s, mean µi
s, and standard

deviation σi
s parameters, i = 1 . . . 5. Thereafter, the weights are sorted in

decreasing order, and the minimal ks number is determined, which satisfies

ks∑
i=1

wi
s > Tbg, (3.1)

where we used Tbg = 0.89 based on the work in [90].
We consider the components with the ks largest weights as the background

components. Then, denoting by η() a Gaussian density function, and by Πbg

the projection transform onto Sbg, the fbg(p) background evidence term is
obtained as:

fbg(p) =
ks∑

i=1
wi

s · η
(
d(p), µi

s, σi
s

)
, where s = Πbg(p). (3.2)
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The Gaussian mixture parameters are calculated and refreshed, as follows.
3D point’s depth, d(p)t, is compared with the existing 5 Gaussian distributions
until a match is identified. If none of the 5 distributions match the current
point’s depth value at the proper pixel, the least probable Gaussian component
is replaced with a new distribution with the current depth value as its mean,
a high variance, and a low prior weight.

The prior weights at time t are calculated as follows:

wk,t = (1 − α)wk,t−1 + α(Mk,t), (3.3)

where α is the learning rate and Mk,t = 1 for the model which matched as a
background and Mk,t = 0 for the remaining models. After this approximation,
the weights are renormalized. [89]

The µ and σ parameters for the unmatched components are not changed.
The parameters of the matching component are updated as follows:

µt = (1 − ρ)µt−1 + ρ · d(p)t (3.4)

σ2 = (1 − ρ)σ2
t−1 + ρ(d(p)t − µt)T (d(p)t − µt) (3.5)

where
ρ = αη(d(p)t|µk, σk) (3.6)

is the learning factor for adapting the Gaussian component parameters [89].
By thresholding fbg(p), we can get a dense foreground/background labeling of
the point cloud [86,89].

As the incoming points from the consecutive sparse NRCS Lidar frames are
processed one after another, each pixel of the high-resolution background range
image lattice becomes covered by valid range measurement several times, thus
the associated MoG distribution can learn the appropriate parameters. The
used background model is adaptive; thus it automatically updates itself when
the background scene changes: for example, a static object is relocated, or a
parking car departs. Besides updating the high-resolution background map,
the method also classifies the incoming frame’s points, whether they belong to
the foreground or the background classes.

Although the MoG technique is regarded as a highly robust approach for
optical video processing, as demonstrated in Figure 3.2b, the above-described
foreground-background classification process is notably noisy for NRCS Lidar-
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(a) Detected foreground (red) in a
single time frame of the NRCS Lidar
image sequence

(b) Detected foreground region (red)
displayed over the generated high-
resolution background range image

Figure 3.2. Foreground detection results (red) in the City Center scene, displayed
in 3D point cloud representation.

based range image sequences, especially in scenarios recorded in large outdoor
environments. Various sources of noise are present, including oscillations and
small movements in the background (tree leaves, branches), whose regions are
often classified falsely as foreground. Although by fine-tuning the parameters
of the algorithm, the negative effects of oscillations can be decreased, usually
these artifacts cannot be eliminated in acceptable quality. As a consequence,
to reliably eliminate the oscillation artifacts, further noise filtering steps are
needed, as described in the next subsection.

As for the speed of adaption, the initialization period of the method in
a new scene needs about 50 − 100 time frames, to obtain an efficient initial
background range value for each pixel of the high-resolution background map.
Additional 100 − 300 frames are required to let the background model’s MoG
distribution parameters converge, exploiting the repetitive sensor measure-
ments from the observed background scene.

3.2.3 Foreground noise filtering

In this section, we propose filtering steps applied to the MoG-based seg-
mentation output, to obtain a smoothly uniform and observation-consistent
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(a) Foreground detection
without the spatial filter-
ing adjustment

(b) Foreground detec-
tion result with the pro-
posed method

Figure 3.3. Foreground detection results in the central area of Figure 3.2a, dis-
played in range image representation.

segmentation of the point cloud sequence recorded by the NRCS Lidar.
Vibrations of objects (e.g., tree leaves, branches) in the background regions

are usually composed of relatively small, but frequent movements. The vibrat-
ing objects’ edge points often oscillate between neighboring pixels of the range
image lattice, causing challenges for the original MoG approach.

As the background oscillations are often quasi-periodic, by observing the
pixels of these oscillating areas, the two Gaussian components with the highest
weight can be used. Thus, based on the thresholding rule of Equation (3.1),
these regions are marked as background.

Mixture of Gaussians

Spatial filtering
(median filter, opening)

2nd Gaussian
component filtering

Lidar point cloud Projection to 2D depth
image

Figure 3.4. Steps of the proposed method for foreground-background separation
in NRCS Lidar point clouds

However, there are regions in the observed scene, where real foreground
objects (persons, cars, etc.) are frequently observable. The general distance of
a true foreground point is stored in the second component of the background
model, which still has to be detected as foreground. To avoid false filtering of
the real foreground points, we apply an additional condition: if the deviation
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of the Gaussian component with the highest weight is saliently small (which
indicates a compact background surface), it is added to the background model.

Since the above-described MoG-based method works independently on each
pixel of the range image, noise may result in many standalone false foreground
pixels surrounded by background regions. These artifacts can be removed by
applying spatial filtering in the 2D range image domain using median filter and
morphological opening. Figure 3.4 shows the steps of the proposed method for
foreground-background separation in NRCS Lidar point clouds.

As a result, the number of false positive foreground pixels can be signifi-
cantly decreased as shown in Figure 3.3, and we can obtain compact connected
object shapes, as shown in Figure 3.5.

3.3 Dataset collection

For the development and evaluation of the proposed method, two measure-
ment sequences were recorded by a tripod-mounted Livox Avia sensor in two
different, outdoor locations.

In the Courtyard scene, five people were walking in a narrow inner court-
yard surrounded by large building facades, while canopies of trees and bushes
were waving in the background due to the wind. The observed courtyard is
15 m wide, and its width is parallel to the NRCS Lidar’s front plane, while the
length of the observed area is 40 m. This measurement setup was suitable for
the 70° horizontal FoV of the Livox sensor. The sensor was placed horizon-
tally, looking towards the horizon. Five to seven walking pedestrians formed
the foreground regions of the scene, while the background consisted of parking
cars, walls, trees, ground areas, etc. This setup utilized the benefits of the
NRCS Livox sensor, as the foreground regions appeared close to the center of
the sensor’s FoV, resulting in better spatial resolution than in the peripheral
FoV regions.

The City Center sequence was recorded in a busy scene in downtown
Budapest, containing several moving vehicles and pedestrians. The selected
square and junction were observed from a higher location, where the sensor
was placed looking towards the ground. The foreground regions of this scene
include various types of moving objects, including pedestrians, cars, trams,
cyclists, etc. In this experiment, the observed area was in an open space, thus
the observed distances were also limited by the sensor’s reflection detection ca-
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(a) Detected foreground (red) in a
single time frame of the NRCS Lidar
sequence

(b) Detected foreground regions (red)
displayed over the generated high-
resolution background point cloud

Figure 3.5. Foreground detection results (red) in the City Center scene, displayed
in 3D point cloud representation.

pabilities, not only by the static field objects such as buildings/vegetation. As
the observed area was farther from the sensor than in the Courtyard scene, the
City Center sequence has sparser data. Because of the sparser measurements,
we observed here a slightly longer initialization period of the high-resolution
background model.

3.4 Results and discussion

The method was tested and evaluated using the Courtyard and City Center
Livox Lidar measurements (see Section 3.3).

A demonstrating example for foreground classification on a sparse sample
frame from the Courtyard sequence and the generated dense background model
are displayed in Figure 3.2 in the range image representation.

A sample result from the City Center dataset is displayed in Figure 3.5 in
point cloud representation. Here both the foreground and background objects
were at larger distances, resulting in even sparser Lidar point cloud frames.

3.4.1 Quantitative Results

Numerical evaluation of the algorithm’s performance was conducted by
comparing the detection results to GT segmentation, which was manually
generated for selected keyframes of both the Courtyard and the City Cen-
ter Lidar measurement sequences. More specifically, we considered 25 s long
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MoG only method MoG + Filtering

Precision 0.67 0.72
Recall 0.80 0.83
F1 Score 0.72 0.77
IoU 0.57 0.62

Table 3.1. Result of the quantitative evaluation of the method on the annotated
Courtyard and City Center datasets

measurement segments in both scenes and manually annotated every 5th point
cloud (i.e., the annotation frame rate was 2 frames per second (FPS)) via a
3D annotation tool, separating the foreground and background regions.

The quantitative performance analysis was performed by the comparison
of each point’s label after the assignment of the 3D corresponding points of
the GT and the output clouds. To measure the similarity between the binary
annotation of the GT point cloud, and the binary classification of each point
in the result point cloud, the mean F1-score and Intersection over Union (IoU)
were calculated alongside precision and recall. The used metrics’ definition
follows the standard binary classification metrics [91].

The results of the quantitative evaluation are listed in Table 3.1. These
initial results are satisfying considering our low-level classification approach,
which observation can also be confirmed by qualitative experiments. The av-
erage running speed of the method was 80 ms for each point cloud on a PC
with an i7-7500UK CPU @2.7 GHz with 16 GB RAM.

3.4.2 Qualitative Results

For qualitative analysis, we constructed first a dense 3D point cloud from
the 2D high-resolution background model.

Then, the moving objects detected in the consecutive Lidar frames (Fig-
ure 3.5a) can be displayed with the background’s dense point cloud in the
same coordinate system, which can provide a useful visualization effect for the
operators of a surveillance system (Figure 3.5b).

We demonstrate the development phases of the dense background model by
the adopted MoG approach in Figure 3.6. As time elapses, the sensor’s non-
repetitive scanning pattern covers more and more regions of its FoV, resulting
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(a)

(b) (c) (d)

Figure 3.6. Evolution of the high-resolution background model in the City Center
dataset

in a step-by-step evolution of the background point cloud. By the end of the
initialization process, all undefined regions disappear, and all pixels in the
FoV receive a valid range value. Once the high-resolution background model
is built, it is updated continuously during the surveillance process.

During the experiments, we also tested the adaptivity of the background
model, by investigating the transition of different scene regions from foreground
to background classes and vice versa. Figure 3.7 displays consecutive point
cloud frames, where a walking pedestrian stopped for a certain time, and its
point cloud was built into the background model. It is also noteworthy, that
when the pedestrian resumed walking, a rapid “revival” could be observed,
as the range values were temporarily stored in the second-strongest Gaussian
components of the concerning pixels.
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(a) (b) (c) (d)

Figure 3.7. Transition of a region from the foreground (red) to the background
(black), while a pedestrian stopped and stood in place for 5s.
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Chapter 4

Human pose estimation using
only NRCS Lidar data

4.1 Introduction

The main task of this pose estimation is to localize the anatomical keypoints
of the human body in three-dimensional space.

In this chapter, we demonstrate the efficiency of using the Livox Avia Lidar
sensor introduced in Section 1.3.2 for the human pose estimation described in
Section 1.2. We propose a visual transformer-based [92] neural network to
detect and fit human skeleton models solely based on the NRCS Lidar data.

4.1.1 Related works

For 3D human pose estimation [24, 93] use semi-supervised learning ap-
proaches, where the 2D annotations are lifted to the 3D space and the methods
use the fusion of camera images and Lidar point clouds.

Aside from camera-based methods, the human pose estimation task has
also been addressed by processing Lidar measurements. The Lidar-based hu-
man pose estimation faces several challenges, including sparse data represen-
tation, limited FoV and limited spatial resolution. The sparseness of the point
clouds emerges from the limited number of laser beams in the sensors. The
Lidar’s limited FoV is caused by the placement of the laser array and the
scanning method. Upon proposing a Lidar-based solution these issues must
be addressed.
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In [94] the authors proposed a method for 3D human pose and shape es-
timation from a point cloud sequence. Although that method can regress the
3D mesh of a human body, it does not make predictions about the underlying
human skeleton. Similarly, LiveHPS proposed in [95] estimates the human
pose and shape using a point cloud sequence, recorded with an RMB Lidar.
Although this method extracts point-wise features and predicts the human
body joint positions, it uses the IMU sensor’s data alongside the Lidar point
clouds for the pose detection, similarly to the LIP method described in [96].
Dense depth images can be used to estimate human pose, as shown in [97], us-
ing a deep graph convolutional neural network-based network [98]. The input
of this method is a point cloud, derived from the 2D depth images recorded
with a depth camera. That method relies on the denseness of the point cloud,
which does not make it suitable to process sparse point clouds recorded with
an NRCS Lidar sensor.

The LPFormer method [99] works on point clouds recorded with RMB Li-
dars, and it is developed and tested on the Waymo Open Dataset [100]. How-
ever, that technique exploits particular measurement modalities apart from
the 3D point coordinates, namely the intensity, elongation, and the timestamp
associated with each Lidar point, which requirements give limitations for using
the LPFormer method with different Lidar types, including the NRCS Lidar
sensors.

Vision transformers made significant progress and successes recently in sev-
eral computer vision tasks [92,101], such as object detection [102], image gen-
eration [103–105], but also in pose estimation [33,99,106]. A notable approach
for camera-based human pose estimation is ViTPose [33], a vision transformer-
based human pose estimator. The method yields state-of-the-art results while
running in real-time on camera images. Given the attractive properties of
ViTPose [33] and the fact that transformers [101] handle sparse data bet-
ter than the mostly convolution-based skeleton estimation methods [107–109],
we propose here a modified ViTPose architecture to process the sparse Lidar
input data for 3D human pose estimation, expecting that the transformer-
based [101] approach can handle the sparse Lidar input data more efficiently
than the mostly convolution-based skeleton detection methods [107–109].
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4.2 Proposed Method

The goal of the proposed method [1], [3] is to detect human poses (intro-
duced in Section 1.2) in Lidar frames, recorded by an NRCS Lidar sensor.

The sensor’s non-repetitive circular scanning pattern presents a significant
challenge: The scanning laser beams are unable to densely cover the entire
FoV of the sensor within a data collection window. This limitation leads to
numerous sparse and even empty regions within the individual Lidar frames,
particularly near the edges of the sensor’s FoV. Additionally, there is a notice-
able inhomogeneous point density, as illustrated in Figure 1.7.

The human pose estimation task can be applied in surveillance applica-
tions, which demand real-time solutions. To address this need, our approach
involves transforming the representation of the NRCS Lidar point cloud from
3D Cartesian coordinates to a spherical polar coordinate system, similarly
to our previous works described in Chapters 2 and 3 and in publications [1]
and [5]. We generate a 2D pixel grid by discretizing the horizontal and ver-
tical FoV-s, where each 3D point’s distance from the sensor is mapped to a
pixel determined by corresponding azimuth and elevation values. The polar
direction and azimuth angles correspond to the horizontal and vertical pixel
coordinates, while the distance is encoded as the intensity value of the respec-
tive pixel. This process allows the subsequent steps of our proposed Lidar-only
3D human pose estimation method to be developed within the domain of 2D
range images.

Depending on the timing window of data collection, as illustrated in Fig-
ure 1.7, the range image of a specific Lidar frame may contain numerous pixels
with undefined range values due to the NRCS scanning pattern. The num-
ber of these undefined pixels depends on both the measurement integration
time and the predefined dimensions of the range image. For this method we
used the range image representation of the Lidar point cloud, as described in
Section 3.2.1.

The proposed method is based on the state-of-the-art ViTPose [33] human
pose estimation method, working on camera images, based on a Vision Trans-
former (ViT) architecture [92], which was trained on the COCO dataset [110].
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4.2.1 ViTPose

ViTPose is a deep learning-based method for human skeleton estimation,
that can achieve real-time performance and outstanding estimation accu-
racy [33]. ViTPose works on images containing a single person with a tight
crop. It has three main parts: network backbone, network head, and joint
position reconstruction.

Figure 4.1. The structure of the ViTPose method [33].
a) Input image, split into patches.
b) transformer-encoder
c) classical human pose estimation decoder
d) output pose overlaid on the input image
e) transformer block from the encoder

The network’s backbone is a plain and non-hierarchical vision transformer,
as shown in Figure 4.1. Its input is a camera image, cropped around the human
subject. The backbone embeds the input data into tokens using patch embed-
ding and downsampling. These embedded tokens are fed to several transformer
layers. Each of these layers consists of a Multi-Head Self-Attention (MHSA)
layer and a Feed-Forward Network (FFN). The output of the transformer layer
is processed by a decoder. ViTPose’s head is the decoder network, which pro-
cesses the transformer blocks’ output in the feature space. It employs direct
upsampling with bilinear interpolation, which is followed by a Rectified Linear
Unit (ReLU) and a 3 × 3 convolution. The output of the network head is a
set of heatmaps, one heatmap for each joint in a down-scaled and uniformed
feature space. The heatmap encodes the likelihood of the presence of a joint
at each pixel position. Thus, the maxima of each heatmap correspond to the
estimated joint locations. The third part of the method retrieves the final
keypoint predictions from the heatmaps predicted by the network head and
transforms the keypoint locations back to the original input image domain.

45



Human pose estimation using only NRCS Lidar data

4.2.2 LidPose
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Figure 4.2. LidPose end-to-end solution:
Lidar data: full Lidar point cloud. Select ROI: selects the 3D points in the vicinity
of the observed human. Projection stores the 3D point cloud in a 2D array. Input
types: 3D XYZ coordinates (XYZ), Depth (D) and Intensity (I). LidPose network:
Both LidPose–2D and LidPose–3D use our patch embedding module and the en-
coder backbone, visible in blue. LidPose–2D and LidPose–3D use the corresponding
Decoder head and LidPose–2D+ is calculated from the 2D prediction and the input
point cloud.

The proposed LidPose method is an end-to-end solution, which solves the
human detection and pose estimation task using only NRCS Lidar measure-
ments, in a surveillance scenario, where the sensor is mounted in a fixed posi-
tion. The LidPose method’s workflow is shown in Figure 4.2.

First, the moving objects are separated from the static scene regions in
the NRCS Lidar measurement sequence, by applying a foreground-background
segmentation technique that is based on the MoG approach adopted in the
range image domain, as described in Chapter 3 and in [5]. The incoming
measurement points are then classified as either foreground or background by
matching the measured range values to the local MoG distributions.

Second, the foreground point regions are segmented to separate individual
moving objects, and the footprint positions of the detected pedestrian candi-
dates are estimated. Here a 2D lattice is fitted to the ground plane, and the
foreground regions are projected to the ground. At each cell in the ground lat-
tice, the number of the projected foreground points is counted, which is used to
extract each foot position, as described in [75]. The result of this step is a set
of bounding boxes for the detected people, which can be represented both in
the 3D space and in the 2D range image domain. As shown in [75], due to the
exploitation of direct range measurements the separation of partially occluded
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pedestrians is highly accurate, however in a large crowd the efficiency of the
approach can be deteriorated.

In the next step, the NRCS Lidar point cloud and the range image are
cropped with the determined bounding boxes. The cropped regions correspond
to Lidar measurement segments containing points either from a person or from
the ground under their feet.

To jointly represent the different available measurement modalities, we pro-
pose a new 2D data structure that can be derived from the raw Lidar mea-
surements straightforwardly and can be efficiently used to train and test our
proposed LidPose model. More specifically, we construct from the input point
cloud a five-channel image over the Lidar sensor’s 2D range image lattice, where
two channels directly contain the depth and intensity values of the Lidar mea-
surements, while the remaining three layers represent the X,Y,Z coordinates
of the associated Lidar points in the 3D world coordinate system.

Note that in our model, the pose estimator part of the method is inde-
pendent of the sensor placement. While in this paper we demonstrate the
application purely in a static Lidar sensor setup, we should mention that with
an appropriate segmentation method for a given scene, the LidPose pose esti-
mation step could also be adapted to various - even moving - sensor configu-
rations.

To comprehensively explore and analyze the potential of using NRCS Lidar
data for the human pose estimation task, we introduce and evaluate three
alternative model variants:

• LidPose–2D predicts the human poses in the 2D domain, i.e. it detects
the projections of the joints (i.e. skeleton keypoints) onto the pixel lattice
of the range images, as shown in Figure 4.3a. While this approach can
lead to robust 2D pose detection, it does not predict the depth informa-
tion of the joint positions.

• LidPose–2D+ extends the result of the LidPose–2D prediction to 3D for
those joints, where valid values exist in the range image representation
of the Lidar point cloud, as shown in Figure 4.3b. This serves as the
baseline of the 3D prediction, with a limitation that due to the sparsity
of the Lidar range measurements, some joints will not be associated with
valid depth values (marked by blue boxes in Figure 4.3b).

• LidPose–3D is the extended version of LidPose–2D+, where depth values
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(a) (b) (c)

Figure 4.3. Predicted human poses of the LidPose variants, overlaid on the input
data.
(a) LidPose–2D: 2D predicted skeleton (red) over the 2D Lidar point cloud repre-
sentation (colored based on 3D coordinate value).
(b) LidPose–2D+: 2D predicted skeleton (red) is extended to the 3D space using
the Lidar points (gray) where they are available. Points where Lidar measurement
is not available are highlighted in blue.
(c) LidPose–3D: 3D predicted skeleton (red) over the Lidar point cloud (gray).

are estimated for all joints based on a training step. This approach
predicts the 3D human poses in the world coordinate system from the
sparse input Lidar point cloud, as shown in Figure 4.3c.

The ViTPose [33] network structure was used as a starting point in the
research and development of the proposed LidPose methods’ pose estimation
networks. My main contributions to the proposed LidPose method:

• A new patch embedding implementation was applied to the network
backbone to handle efficiently and dynamically the different input chan-
nel counts.

• The number of transformer blocks used in the LidPose backbone is in-
creased to enhance the network’s generalization capabilities by having
more parameters.
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• The output of the LidPose–3D network has been modified by extending
its dimensions to include joint depths alongside the 2D predictions.

As Figure 4.2 demonstrates, the LidPose network structure can deal with
different input and output configurations, depending on the considered chan-
nels of the above-defined five-layer image structure. The optimal channel con-
figuration is a hyperparameter of the method, that can be selected upon experi-
mental evaluation, as described in detail in Section 4.4. In our experiments, we
tested the LidPose networks with the following five input data configurations:

• Lidar depth only (D)

• 3D real world coordinates (XYZ)

• 3D + Lidar depth (XYZ+D)

• 3D + Lidar intensity (XYZ+I)

• 3D + depth + intensity. (XYZ+D+I)

For the training and testing of the proposed method, a new dataset was in-
troduced, comprising an NRCS Lidar point cloud segment and the co-registered
human pose GT information for each sample object. The dataset is described
in detail in Section 4.3. The three model variants introduced above are detailed
in the following subsections.

4.2.2.1 LidPose–2D

For pose estimation in the 2D domain, the LidPose–2D network was created
based on ViTPose [33] architecture. The patch embedding module of the
ViTPose backbone was changed to handle custom input dimensions for the
different channel configurations (XYZ, D, I, and their combinations).

This newly designed network architecture was trained end-to-end from an
uninitialized state, with five separate networks trained for the input combi-
nations listed above. For these methods predicting 2D joint positions, the
training losses were calculated in the joint-heatmap domain. An example of
the LidPose–2D prediction can be seen in Figure 4.3a.
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4.2.2.2 LidPose–2D+

In this model variant, called LidPose–2D+, the 2D predictions created by
LidPose–2D configuration are straightforwardly extended to the 3D space.

Each predicted 2D joint is checked, and if a valid depth measurement exists
around the joint’s pixel location in the Lidar range image, the 3D position of
a given joint is calculated from its 2D pixel position and the directly measured
depth value. This transfer from the 2D space to the 3D space implies a simple
baseline method for 3D pose prediction models. However, the LidPose–2D+
approach has a serious limitation originating from the inherent sparseness of
the NRCS Lidar point cloud. 2D joints, whose positions are in regions with
missing depth measurements in the 2D range image, cannot be extended to
3D. An example of the LidPose–2D+ prediction is shown in Figure 4.3b, high-
lighting three joints that cannot be assigned to range measurements.

4.2.2.3 LidPose–3D

The limitations of LidPose–2D+ can be eliminated by a new network, called
LidPose–3D that aims to predict the depth of each detected joint, apart from
its pixel position in the range image lattice. Similarly to the LidPose–2D vari-
ants described above, this network structure can handle inputs with different
configurations of the XYZ, D, I, channels.

The LidPose–3D network’s output is constructed with the extension of
ViTPose [33] to predict depth values for the joints alongside their 2D coor-
dinates. The normalized depth predictions are performed on a single channel
depth image, in the same down-scaled image space (64 × 48), where the joint
heatmaps are predicted. An example of the LidPose–3D prediction can be
seen in Figure 4.3c.

4.2.3 LidPose training

The training input data is a 2D array with a given number of channels
- depending on the training configuration (combinations of XYZ, D, I). For
the different channel configurations, different patch embedding modules were
defined to adopt the variable numbers of parameters in the input, as shown
in Figure 4.2. For training and evaluation of the network, we also need the
GT pose data, which we assume is available at this point. (Details of GT
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generation will be presented in Section 4.3.)
Regarding the loss function of the LidPose–2D network, we followed the

ViTPose [33] approach by using Mean Squared Error (MSE) among the pre-
dicted and the GT heatmaps:

LLidPose–2D := Ljoint2D = MSE(HMpred, HMGT), (4.1)

where HMpred and HMGT are the predicted joint heatmap and the GT joint
heatmap, respectively.

For the LidPose–3D network, the training loss is composed of two com-
ponents: one responsible for the joints’ 2D prediction accuracy (Ljoint2D), the
other reflecting the depth estimation accuracy (Ldepth). The total training loss
is a weighted sum of the position and depth losses:

LLidPose–3D = Wjoint2D · Ljoint2D + Wdepth · Ldepth (4.2)

For calculating the 2D joint position loss term Ljoint2D, Equation (4.1) was used
again. Regarding the depth loss Ldepth, we tested three different formulas: L1
loss, L2 loss and Structural Similarity Index Measure (SSIM) [111]. Based on
our evaluations and considering training runtime, the SSIM was selected for
the depth loss measure in the proposed LidPose–3D network. Following a grid
search optimization, the weighting coefficients in the loss function were set as
Wjoint2D = 10 and Wdepth = 1.

4.3 Dataset for Lidar-only 3D human pose es-
timation

For the development and evaluation of the proposed LidPose method, we
created a new dataset, since we have not found any public benchmark sets
containing NRCS Lidar measurements with human pose GT.

GT annotation proved to be a challenging process since the visual interpre-
tation of sparse 3D Lidar point clouds is difficult for human observers, and the
inhomogeneous NRCS pattern makes this task even harder. For facilitating
GT generation and the analysis of the results, in our experimental configu-
ration, a camera was mounted near the NRCS Lidar sensor to record optical
images as well, besides the point clouds. The camera images were only used
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for creating the GT information for human pose estimation, and for helping
the visual evaluation of the results of LidPose. During annotation, the oper-
ator used the camera images to mark, validate, and verify the skeleton joint
positions.

During the dataset collection, the NRCS Lidar (Livox Avia [55]) and the
RGB camera were mounted together on a standing platform, and the measure-
ment sequences were recorded in two outdoor and one indoor location, where
persons were walking in the sensors’ FoV.

4.3.1 Spatio-temporal registration of Lidar and camera
data

Since our experimental configuration uses both camera and Lidar data for
creating the GT human poses and validating the results, the spatial transfor-
mation parameters between the two sensors’ coordinate systems need to be
determined by a calibration process.

The camera’s extrinsic and intrinsic parameters were calibrated us-
ing OpenCV [112, 113] libraries and a Livox-specific, targetless calibration
method [114]. The camera images were undistorted using the calibration dis-
tortion coefficients to remove lens distortion and provide rectified images for
the dataset. Thereafter, the camera images and the Lidar range images were
transformed into a common coordinate system.

To establish the spatial correspondence among the camera and Lidar sen-
sors, the requirement of time synchronization of the data recording arose. The
camera and the Lidar data were properly timestamped following the synchro-
nization process described in the IEEE 1588 standard [115], using the Precision
Time Protocol daemon (PTPd) [116], running on the data collector computer.

This enabled time-synchronous processing of both the camera and the Lidar
sensor data with a precision of 1 ms. The camera and the Lidar data were
recorded with different, sensor-specific data acquisition rates, at 30 Hz on the
camera and at 10 Hz in the case of the Lidar. The corresponding image-
point cloud pairs were created by selecting the camera image with the smallest
time difference for each recorded Lidar point cloud. In other words, the data
collection was adjusted to the Lidar’s slower frame rate.
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4.3.2 Human pose ground truth

Although the proposed LidPose method performs human pose estimation
from solely NRCS Lidar point clouds, in the GT generation phase we also took
advantage of the co-registered camera images that were recorded in parallel
with the Lidar measurements.

4.3.2.1 2D human pose ground truth

The GT generation has been implemented in a semi-automatic way, exploit-
ing established camera-based person detection and pose-fitting techniques. In
the first step, in each data sample, the YOLOv8 [117] was run to detect the
persons in the camera images. The detected persons’ bounding boxes with sizes
smaller than ViTPose’s native input resolution (192×256) were discarded. The
bounding box of a detected person was used to crop the person’s region both
on the camera image and in the Lidar data in the 2D range image domain.

In the second step, the initial pose estimation was created on the cropped
camera images by the state-of-the-art 2D human pose estimator ViTPose [33]
network with its huge configuration. This network configuration, where the
network backbone had 32 transformer blocks, was selected based on its superior
results in comparison to the smaller network variants. The trained model
ViTPose-huge was obtained from the ViTPose [33] implementation from the
repository at [118].

In the third step, the camera images were used to manually check, validate,
filter, and fine-tune each 2D human pose, resulting in the 2D GT of human
poses.

Since the Lidar range images and the camera images were co-registered
(both in time and space), the filtered camera-based pose models can be directly
used as GT of the 2D human poses in the Lidar’s range image domain. The
skeleton parameters in the 2D GT are stored in COCO-Pose [110] data format,
which represents a given human pose with 17 keypoints, facilitating detailed
pose estimation (see in Figure 4.3).

4.3.2.2 3D human pose ground truth

The 3D human pose GT is created by the extension of the 2D human
skeleton dataset, so that we attempt to assign to each joint a depth value, based
on the depth measurements of the Lidar sensor around the joint’s 2D position.
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The challenge of this 2D-to-3D point assignment task arises from the sparseness
of the measured NRCS Lidar range image, which implies that some 2D joints
cannot be assigned to genuine Lidar depth measurements on the considered
Lidar frames. In these cases, we applied spatio-temporal interpolation, i.e.
we interpolated the depth values of joints without direct range measurements
from the depth values of other nearby joints, and nearby frames. When a given
2D joint’s pair in 3D did not have its corresponding 3D pair, the estimation
of the joint depth was done in the following order:

1. Finding valid depth measurements in the 2D depth image with a 9 × 9
kernel and using the point with the minimum value as the estimated
depth.

2. Calculating the mean depth value of the previous and the next Lidar
frames, if both contained valid depth measurements.

3. Mix of steps 1 and 2: Calculating the mean depth value of the previous
and the next Lidar frames in a 9 × 9 kernel, and if both contained valid
depth measurements, the point with the minimum distance is used as
the estimate of the given point’s depth.

4.3.3 Transforming the point cloud to the five-channel
range image representation

As described in Section 4.2, the LidPose method requires that the 3D Lidar
point cloud is transformed to a spherical polar coordinate system, using a 2D
pixel lattice generated by quantizing the horizontal and vertical FoV-s. The
3D world coordinates of the Lidar points are stored in the 2D range image
domain in different image channels.

As mentioned in Section 4.2.2, five different 2D data layers are created for
each Lidar point cloud. The first layer is the depth map, where values are the
distances of the Lidar points from the camera center. The second layer is the
intensity map, where the values are the reflection intensity of the Lidar points.
The remaining three layers store the coordinates of the Lidar points in the 3D
space (XY Z)3D at the calculated (u, v) range image locations.
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4.3.4 Dataset parameters

Independent recordings were made for the training, test, and validation
datasets, where several moving pedestrians were observable in the sensors’
FoV. One to three persons were walking at the same time following arbitrary
directions in the observed field, meanwhile, they occasionally stopped during
the movement, and some of them did gymnastic exercise-like activities. In
parallel with the data capturing, the MoG-based foreground-background seg-
mentation method [5] was run on the Lidar data, and the binary classification
of the 3D points was stored for each frame alongside the camera and Lidar
measurements.

In total, our created new dataset contains 9500 skeletons, and 161000 joints.
The dataset was split into the independent training, validation, and test sets,
having 5500, 490, and 3400 skeletons, respectively, as shown in Table 4.1.

The training set consists of two sequences, both containing three individuals
moving in a narrow courtyard. The validation set comprises two sequences
which are recorded in a wide courtyard containing two individuals. The test
set consists of three further sequences: The first one is recorded indoors, in
a large room with a single observed individual. The second test sequence is
captured on a wide courtyard with two subjects, and the third one is recorded
in the same location with a single individual.

To support the deeper analysis and understanding of the structure and
properties of our new dataset, we created the following graphical demonstra-
tions. Figure 4.4 demonstrates the number of joints at a given depth X3D from
the Lidar sensor. Figure 4.5 shows the number of joints in a given direction in

Dataset Count Location Mean, STD (m)
Joint Skeleton X Y Z

Train 94248 5544 7.34(±2.27) 0.13(±1.29) −0.54(±0.54)
Validation 8364 492 7.59(±2.26) −0.05(±2.22) −0.50(±0.52)
Test 59228 3484 6.86(±2.28) −0.25(±1.55) −0.55(±0.52)

Total 161840 9520

Average 7.26(±2.27) −0.06(±1.69) −0.53(±0.53)
Table 4.1. Overview of the distributions of the LidPose dataset over its Train,
Validation, and Test splits.
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Figure 4.4. Distribution of the joints in the LidPose dataset, based on the depth
coordinate (X) of the 3D joints.

Figure 4.5. Distribution of the joints recorded in the LidPose dataset, based on
the local emergence angle of the Lidar sensor

the Lidar FoV for the different datasets. It can be seen that the majority of
the joint positions were recorded in the central, 40° wide region of the Lidar
FoV.

Figure 4.6 presents the number of human poses displayed on the ground
(XY )3D plane from a bird’s eye view. It demonstrates that as the observed
people were crossing the sensor FoV, the central regions registered more skele-
tons than the regions near the FoV edge.

Figure 4.7 shows the number of joints in the 2D camera image plane (u, v)
in the pixel regions overlaid on a sample camera image. As the majority of the
joints are recorded from the human torso, the regions above the ground with
1 m registered more keypoints than the lower, ankle- and knee regions.
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Figure 4.6. Distribution of joint positions in the LidPose dataset, displayed on the
ground plane (X, Y )3D from the bird’s-eye view.

(a) Distribution of 2D joint coordinate
positions in the outdoor test dataset,
overlaid on a sample camera image.

(b) Distribution of 2D joint coordinate
positions in the indoor test dataset,
overlaid on a sample camera image.

Figure 4.7. Distribution of 2D joint coordinate positions in the test dataset overlaid
on a sample camera image.
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4.4 Results and discussion

The proposed LidPose networks were trained to estimate human poses both
in 2D and 3D. For LidPose–2D, 5 model variants were trained with different
patch-embedding blocks on the corresponding input data configurations (D,
XYZ, XYZ+D, XYZ+I, XYZ+D+I), as listed in Table 4.2,

Regarding LidPose–3D, we trained 12 model variants. On one hand, for
each input configuration (XYZ, XYZ+D, XYZ+I, XYZ+D+I), the network was
trained with different patch-embedding blocks. On the other hand, each con-
figuration was trained with three different depth prediction losses: L1, L2,
and SSIM. The trained models with their input and training loss are listed in
Table A.1.

4.4.1 Metrics

The following metrics were calculated to compare the LidPose models. The
visibility of a predicted joint j in a skeleton i is represented by v(i,j) ∈ [0, 1],
indicating whether there is GT data for it. Thus, let N be the total number
of visible joints in each dataset:

N :=
∑
i,j

v(i,j).

Additionally, let Y and Ŷ be the GT and predicted coordinates of the key-
points, respectively.

Average Distance Error (ADE) measures the average Euclidean dis-
tance between the predicted pose and the GT pose across all skeleton joints,
providing a measure of overall pose estimation accuracy. In the 2D case, nor-
malization is applied based on the skeleton height to eliminate the varying
skeleton sizes in the 2D image space. ADE, as defined in Equation (4.3). The
lower the value, the better the performance.

ADE(Y, Ŷ ) = 1
N

∑
i,j

v(i,j)

∥∥∥Y(i,j) − Ŷ(i,j)

∥∥∥
2

(4.3)

Mean Per-Joint Position Error (MPJPE) [119] measures the po-
sition errors of different joint types, as defined in Equation (4.4). MPJPE is
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similar to the ADE metric, however, it can highlight the performance differ-
ences between different body parts, and regions.

MPJPE(Y, Ŷ , J) = 1∑J
j

∑
i v(i,j)

J∑
j

∑
i

v(i,j)

∥∥∥Y(i,j) − Ŷ(i,j)

∥∥∥
2

, (4.4)

where J is a subset of all joints.

Percentage of Correct Keypoints (PCK) [120] shows the percentage
of joints in the estimated pose that fall within a certain threshold distance from
their corresponding GT keypoints. In the 2D space, the distance threshold is
set in pixels, while in the 3D space, it is set in meters. This measure defined
in Equation (4.5) assesses the accuracy of joint localization at different levels
of precision, the higher the value, the better the prediction.

PCK(Y, Ŷ , α) = 1
N

∑
i,j

δ(i,j)(α), (4.5)

where α is the error threshold and δ is an indicator function:

δ(i,j)(α) :=

1 if ∥Y(i,j) − Ŷ(i,j)∥2 ≤ α

0 otherwise
(4.6)

the PCK curve can be constructed by sweeping the distance threshold.
The Area Under Curve (AUC) value of a PCK curve is a good generalizing

metric for human pose estimation tasks [121]. PCK evaluates the performance
of an examined human pose estimation method based on a single threshold,
PCK-AUC on the other hand uses a series of thresholds, providing a more
comprehensive assessment of the method’s performance. This also reduces the
sensitivity of the results to the choice of the parameter.

Limb Angle Error (LAE) calculates the mean angular difference be-
tween the orientations of corresponding limbs (arms, legs) in the predicted
skeleton and the GT skeleton, as defined in Equation (4.7). It assesses the
accuracy of orientation estimation both in the 2D and 3D space.

LAE(Y, Ŷ , L) = 1∑
i vL

i

∑
i

| angle(Yi, L) − angle(Ŷi, L)|, (4.7)
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Figure 4.8. Example training batch of input data with the randomly applied
augmentations (horizontal mirroring, scaling, rotation, half body transform). The
camera images are shown for visual reference only.

where L is a subset of joints that has three elements that are connected by the
skeleton edges, and vL

i ∈ [0, 1] indicates whether the whole limb is present in
the prediction and GT for a given skeleton. angle() calculates the angle of the
skeleton edges at the middle joint of the limb.

Limb Length Error (LLE) was calculated on skeleton limbs (arms,
legs) to measure how the network predicts their total length, as defined in
Equation (4.8). This measure does not penalize if the elbow or the knee is not
predicted accurately until the total limb length is estimated correctly.

LLE(Y, Ŷ , L) = 1∑
i vL

i

L∑
l

∑
i

||Y(i,l)| − |Ŷ(i,l)||, (4.8)

where L and vL
i notations are the same as in Equation (4.7).

4.4.2 Experiment parameters

During the training of the LidPose models, data augmentation was ap-
plied both to the five-channel 2D input arrays and the GT skeletons. Vertical
mirroring, scaling, and rotation transforms were added to each data sample
randomly to enhance model robustness and estimation efficiency. To enhance
the network’s robustness on partial skeletons, half-body transform was applied
randomly during the training process, where either the upper body or the
lower body of a skeleton was selected and cropped, as in [33]. Figure 4.8 shows
a batch of input data with the randomly applied augmentations mentioned
above.
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Table 4.2. LidPose–2D network results on different input types with position loss.
The meaning of the Input values: D: Lidar distance; XYZ: point 3D coordinates; I:
Lidar intensity; Percentage of Correct Keypoints (PCK ) was calculated with the
error being at most 10 pixels. The AUC-PCK was calculated on the [0, 30] pixel
interval as shown in Figure 4.9.

Model Input ADE↓ PCK↑ AUC-PCK↑ LAE↓ LLE↓

2D–1 D 18.0726 0.4316 0.5360 13.7856 9.7695
2D–2 XYZ 14.4013 0.4960 0.5952 12.6956 9.5330
2D–3 XYZ+D 14.6881 0.4966 0.5926 12.7078 9.4509
2D–4 XYZ+I 13.2473 0.5278 0.6166 12.5251 10.6579
2D–5 XYZ+D+I 13.8399 0.5122 0.6049 12.6762 11.1547

During the training of LidPose, AdamW was used with weight decay coef-
ficient λ = 0.1 and β1 = 0.9 and β2 = 0.999. The maximum learning rate was
set to γ = 5 · 10−4, this was reached after 3 batches with a ramp-up. Learning
rate decay was used to decrease the learning rate exponentially by a factor of
0.1 between epochs 20 − 30, 30 − 35, and 35 − 100.

The proposed LidPose runs at 52 FPS on the prerecorded dataset in offline
processing on singleton batches. In the end-to-end application of the proposed
pipeline, the frame rate of the method is determined by the NRCS Lidar’s
sampling rate (10 FPS).

4.4.3 LidPose–2D evaluation

The evaluation results based on the metrics described in Section 4.4.1 are
shown in Tables 4.2 and 4.3. The test results show that Model 2D–4 outper-
forms the other model variants with almost all the metrics for the 2D human
skeleton estimation task. This best model variant corresponds to the XYZ+I
channel configuration, i.e. it uses the 3D point coordinate values and the Lidar
reflection intensity.

From Table 4.2 it can be seen that the depth-only (D) method (2D–1 ) has
weak performance, as the network does not have enough information to es-
timate the 2D skeleton positions accurately. If the input of the LidPose–2D
network is the real world 3D point coordinate data in three input channels
(XYZ) (2D–2 ), the ADE and the LAE scores decrease significantly, showing
more accurate estimations. This means, that the use of the 3D coordinates
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Table 4.3. Mean Per-Joint Position Error (MPJPE) values (↓) of the LidPose–2D
network for different joints.

Model head shoulders elbows wrists hips knees ankles ADE↓

2D–1 12.4838 17.5230 25.2190 27.6912 13.6437 16.6865 21.6442 18.0726
2D–2 11.3505 12.8925 17.3831 19.7888 10.9468 13.7076 19.3161 14.4013
2D–3 11.2303 13.1998 18.1070 20.5023 11.2541 14.0968 19.6134 14.6881
2D–4 10.0393 11.1264 14.5071 17.0304 11.5661 13.9160 19.3576 13.2473
2D–5 10.1436 11.6997 15.8984 18.6925 12.7537 14.1663 19.0698 13.8399

(XYZ) instead of the Lidar depth values (D) increases the network’s general-
ization capability. The combination of the two formers, i.e. the depth values
(D) and the 3D joint coordinates (XYZ) used as the input, model variant 2D–
3 achieves the lowest LLE score. If the previous variant is extended by the
Lidar intensity (2D–5 ), the network does not outperform the 2D–4 network
variant, as the former achieves 13.84 ADE, while the latter scores 13.2 ADE.
This shows, that adding the depth features which can be calculated from the
3D coordinates does not enhance the network’s performance.

Table 4.3 lists the MPJPE values for the different LidPose–2D model vari-
ants. It can be seen that the torso joints (head, shoulders, hips) have lower
MPJPE scores than the limb-related joints. This can be explained by the
smaller size of those parts and thus the fewer or no measurements in the
sparse Lidar point cloud at those locations. An example of this can be seen in
the left leg of the person in Figure 4.11f.

Figure 4.9. LidPose–2D: Percentage of Correct Keypoints for the different 2D
networks with different joint-correspondence threshold acceptance values. Model
2D–4, which has been trained on 3D coordinates + Lidar intensity, has the best
PCK curve.
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Figure 4.10. 2D Average Distance Error of the selected 2D–4 model, overlaid on
a sample camera image.

Figure 4.9 shows the PCK values of each 2D model for different thresh-
old values. The AUC-s of these PCK graphs were calculated (also shown in
Table 4.2), where the Model 2D–4 has the highest score.

The ADE of the selected model was evaluated in different 2D image regions,
as shown in Figure 4.10. From this figure it can be seen that as the 2D
estimation positions in this 2D camera image space are getting closer to the
edge of the Lidar FoV, the ADE value increases above 50 pixels, meanwhile,
in the central regions, the ADE score is below 20 pixels. This behavior is
the consequence of the inhomogeneous nature of the NRCS Lidar point cloud,
where the point cloud sparseness increases with the distance from the sensor’s
optical center.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.11. LidPose–2D predictions are shown in red, overlaid on the input Lidar
point cloud (right). The GT is shown in green, drawn over the corresponding camera
frame (left). The prediction in red and the GT in green are shown together in the
input Lidar point cloud (middle).

Example pose estimations are shown in Figure 4.11, where the GT is shown
in the camera image, and the Lidar-based 2D skeleton prediction is displayed
on the sparse point cloud. Figure 4.11b and 4.11d show skeletons, where
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the human was at 5 m distance to the Lidar resulting in less sparse point
clouds. On the contrary, Figure 4.11a, 4.11c and 4.11e show skeletons at 10 m
distance, having much less Lidar points in the frame. It can be observed that
the skeleton estimation accuracy is high, as the predicted and the GT are very
close. Figure 4.11f shows an example, where the prediction makes a mistake
on the person’s head as there are no recorded 3D points from that region at
that given frame.

4.4.4 LidPose–3D evaluation

Figure 4.12. LidPose–3D: Percentage of Correct Keypoints in the 3D space for
the different 3D (and 2D+) networks with different joint-correspondence threshold
distance acceptance values. Model 3D-9, which has been trained on 3D coordinates
+ Lidar intensity with SSIM-based depth loss, has the best PCK curve.

The LidPose–3D networks predict the 2D joint positions in the same man-
ner as LidPose–2D, and the depth values for each joint. From the predicted
2D position and the depth values the 3D joint positions are calculated. The
results are evaluated using various 3D metrics in the 3D space as described in
Section 4.4.1. The baseline of the 3D evaluation is the LidPose–2D+, described
in Section 4.2.2.2. Tables A.1 and A.2, and Figure A.1 show the results for
both LidPose–3D and LidPose–2D+ models. As we can see from these results,
the predictions of the LidPose–3D models are considerably better overall.

Upon assessing the PCK values of the 3D models in Figure 4.12, the models
can be grouped based on their PCK curve shape. The first group consists of
models, that did not learn the depth properly during training. Namely, 3D–
01, 3D–04, 3D–07 and 3D–10 have failed to learn depth estimation. Their
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Figure 4.13. Distribution of Average Distance Error of the predicted joints in
bird’s eye view, using the selected 3D–09 model. Only cells with more than 24
annotated joints are shown.

common attribute is that they were using L1 loss to penalize the depth error
during the learning process.

The second group contains the projected 2D models (LidPose–2D+). These
models all perform very similarly to each other, while distinctly from the other
two groups. They serve as a baseline for the proposed method. Their perfor-
mance is equal to or better than the 3D models if the threshold is set between
0 − 0.1 m, as they have significantly more correct predictions than in a larger
distance. This is due to the assembly of the 3D predictions from existing
3D points at the predicted 2D joints’ positions. These characteristics high-
light, that while this approach works well with sparse but homogeneous Lidar
measurements, as shown in [93], it fails on point clouds recorded with NRCS
Lidar.

Lastly, the third group is the rest of the 3D models, which use L2 loss and
SSIM as the depth criterion. As can be seen, these models correctly estimate
the human poses, and the trend is similar to the 2D models in Figure 4.9.
Notably, while the shape of these curves is similar, models with the SSIM-
based depth loss outperform the models trained with L2 loss. Model 3D–09
outperforms all other configurations.

The best 3D network, 3D–09 was evaluated with the ADE metrics on the
ground plane on the test dataset to show the spatial dependency of the pose
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estimation performance at different regions, as shown in Figure 4.13. Although
the maximum ADE is 0.5 m, most of the cells of the ground grid have less than
0.3 m average error rates.

Table A.2 shows the MPJPE results for the 3D methods. It can be seen
that the projected 2D+ models (LidPose–2D+) are outperformed with all the
LidPose–3D networks. The 2D models listed in Table 4.2 were projected to
3D prediction using the inhomogeneous sparse Lidar data. This was done
by using nearby 3D data where it was available for the back-projected 2D
predictions. However, due to the characteristics of the NRCS Lidar sensor,
this approach has its limitations. Figures 4.12 and A.1, and Table A.1 also
show, that LidPose–3D outperforms the extended LidPose–2D+ networks.

In Figure 4.14, 3D human pose samples are shown from different viewing
angles. By inspecting Figures 4.14a and 4.14b, it can be seen that there is a
correlation between the density of the points and the accuracy of the network.
This angle- and distance dependency can also be observed in Figures 4.10
and 4.13.

The experiments in this section have shown that the proposed LidPose
methods are capable of the efficient and accurate estimation of the human
poses. Our obtained results provide strong evidence, that the NRCS Lidar
sensor is suitable for solving the Lidar-only 2D and 3D human pose estimation
tasks.

(a) (b) (c) (d)

Figure 4.14. LidPose3D predicted skeletons using the 3D–09 configuration. Red
skeleton: 3D prediction. Green skeleton: GT. Gray points: NRCS Lidar points.
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Chapter 5

Conclusions of the thesis

This thesis deals with three different research problems that raise important
challenges for experts in machine perception.

The change detection task among coarsely registered Lidar point clouds
was solved using state-of-the-art neural network components. The custom
dataset created for this task has been recorded with an RMB Lidar sensor. The
solution for the point cloud change detection is created by using an adversarial
training strategy, where two neural networks compete against each other to
achieve more accurate change detection results. It has been shown by a detailed
example, that the proposed method is capable of efficiently detecting changes
among coarsely registered Lidar point clouds.

The second research problem was raised by experimenting with a new
type of Lidar sensor, having an unusual non-repetitive circular scanning. The
foreground-background classification task of this specific Lidar point cloud
could not be solved by existing methods, which step was required by other
higher-level perception tasks. In the dissertation, a method was proposed for
this research problem. It has been shown in real measurements and in a work-
ing demonstration, that the proposed method can classify Lidar points both
from recordings and live sensor data.

The Lidar sensor with non-repetitive circular scanning was used for per-
ceiving the third research problem. The human pose estimation task using only
the NRCS Lidar point cloud task was solved by defining a vision-transformer-
based neural network. It was shown by several examples, that the proposed
solution is capable of estimating the human poses using only NRCS Lidar data.
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5.1 New Scientific Results

1. Thesis: I proposed a novel change detection approach for coarsely
registered RMB Lidar point clouds in complex, street-level urban
environments. The input point clouds are represented by range im-
ages, the result of the method is a pair of binary masks showing
the change regions on each input range image, which can be back-
projected to the input point clouds without loss of information. I
have evaluated the proposed method in various challenging scenar-
ios, and I have shown its superiority against state-of-the-art change
detection methods.

The method, called ChangeGAN was published in a journal paper [1], and
it was submitted to a patent application [3].

In the initial phase of this research, in conference paper [6] a method was
described for multi-object detection in urban scenes utilizing 3D background
maps and tracking. It uses a dense 3D city map to increase the accuracy of
object detection on a sparse point cloud from a Lidar sensor. This method
can extend the camera-based machine perception of a road vehicle, described
in [7]. For the evaluation of the results considering the object trajectories, a
track-to-track evaluation method can be used [8].

The need to solve the point-based detection of changed regions due to
object displacements between initially unmatched (coarsely registered) pairs of
point clouds can be emphasized with practical cases, where reliable registration
and therefore the change detection cannot be achieved with currently available
methods. I introduced a novel problem formulation: I described the differences
among a coarsely registered pair of point clouds without exactly matching the
available input point cloud measurements.

As a key feature, the proposed method does not require precise registration
of the point cloud pairs. Based on my experiments, the proposed method is
more efficient than existing solutions, and it can efficiently handle up to 1 m
translation and 10° rotation misalignment between the corresponding 3D point
cloud frames.
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1.1. Subthesis: I have defined a deep neural network structure, ca-
pable of learning and robustly extracting changes between coarsely
registered 3D sparse point clouds obtained in a complex street-level
environment. For the training of this neural network, I proposed
a semi-automatic method to create a change detection dataset with
coarsely registered point cloud pairs using simulated registration
errors.

The proposed deep learning approach takes as input two coarsely registered
3D point clouds recorded with an RMB Lidar sensor P1 and P2 represented
by range images I1 and I2, respectively (shown in Figures 2.1a and 2.1b). The
proposed architecture assumes that the images I1 and I2 are defined over the
same pixel lattice and have the same spatial dimensions.

I have adopted a Siamese style [68] architecture to extract relevant fea-
tures from the input range image pairs. The Siamese architecture is designed
to share the weight parameters across multiple branches, allowing us to extract
similar features from the inputs and to decrease the memory usage and train-
ing time. Each branch of the Siamese network consists of fully convolutional
downsampling blocks. This step is followed by using a batch normalization
layer, and finally, the output of the downsampling block is activated using a
leaky ReLU function. Next, the outputs of the Siamese branches are concate-
nated for all feature channels, and a 1 × 1 convolutional layer is applied to
aggregate the merged features.

The second part of the proposed model contains a series of transposed
convolutional layers to upsample the signal from the lower-dimensional feature
space to the original size of the 2D input images. Finally, a 1×1 convolutional
layer, activated with a sigmoid function, generates the two binary change maps
Λ1 and Λ2.

To regularize the network and prevent over-fitting, dropout technique is
used after the first two transposed convolutional layers. To improve the change
detection result an idea was adopted from U-net [76] by adding higher resolu-
tion features from the downsampling blocks to the corresponding transposed
convolutional layers.

To achieve more accurate feature matching, Spatial Transformer Network
blocks [73] were added for both Siamese branches. STN can learn an optimal
affine transformation between the input feature maps to reduce the spatial
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registration error between the input range images. Furthermore, STN dy-
namically transforms the inputs, also yielding an advantageous augmentation
effect.

For the training of the ChangeGAN neural network I have created a
new Lidar-based urban dataset called Change3D1. The measurements were
recorded over two days in downtown Budapest using a Velodyne HDL-64 RMB
Lidar mounted on a car.

The manual annotation of point cloud differences is very challenging, even
if the point clouds originate from the same coordinate system. To ensure
the accuracy of the GT, I performed the change labeling for registered point
cloud pairs captured from the same sensor position and orientation, then the
reference positions and orientations of the second frames were randomly trans-
formed yielding a large set of accurately labeled coarsely registered point cloud
pairs.

The training database contains 20000 point cloud pairs from 50 locations,
while the test set was composed of 2000 point cloud pairs from completely
different measurement locations.

In summary, I have created a new dataset suitable for training and evaluat-
ing new change detection methods where accurate registration of the compared
point clouds is not required.

The proposed architecture outperforms the state-of-the-art methods on the
created Change3D dataset [1].

1.2. Subthesis: I have proposed a novel, competitive classifier -
discriminator-based adversarial training method for the change de-
tection task on a coarsely registered pair of 3D point clouds.

The classifier network is responsible for learning and predicting the changes
between the range image pairs. In each training epoch, the classifier model is
trained on a batch of data. The actual state of the classifier is used to predict
validation data, which is fed to the discriminator model.

The discriminator network is a fully convolutional network that classifies
the output of the classifier network. The discriminator model divides the image
into patches and decides for each patch whether the predicted change region
is real or fake. During training, the discriminator network forces the classifier

1Dataset link: http://mplab.sztaki.hu/geocomp/Change3D.html
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model to create better and better change predictions, until it cannot decide
about the genuineness of the prediction.

Figure 2.3 demonstrates the proposed adversarial training strategy. I calcu-
late the L1 Loss (LL1) as the mean absolute error between the generated image
and the target image, and I define the Adversarial (Adv) Loss (LAdv), which is
a sigmoid cross-entropy loss of the feature map generated by the discriminator
and an array of ones. The final loss function of the method (L) is the weighted
combination of the Adversarial Loss and the L1 Loss: L = LAdv + λ ∗ LL1.

2. Thesis: I proposed a novel, end-to-end method for real-time
foreground-background segmentation and human pose estimation,
solely based on point cloud measurements of a Non-repetitive Cir-
cular Scanning Lidar sensor.

The method was published in a journal [2] and a conference paper [5]. I
introduced a modified ViTPose [33] approach, which is adapted to the 3D
point clouds and can efficiently handle the sparsity and the unusual rosetta-
like scanning pattern of the NRCS Lidars. The proposed method’s first step
utilizes a foreground-background segmentation technique [5] for the NRCS
Lidar sensor to select foreground points. In the next step, the LidPose human
pose estimator network estimates the human pose in the filtered NRCS Lidar
point cloud segments.

The proposed method is a complete and end-to-end approach to human
pose estimation from raw NRCS Lidar measurement sequences, captured by a
static sensor for surveillance scenarios.

To evaluate the method, I have created a novel, real-world, multi-modal
dataset, containing camera images and Lidar point clouds from a Livox Avia
sensor with annotated 2D and 3D human skeleton GT.

Figure 4.11 shows the predictions of the proposed LidPose method in 2D.
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2.1. Subthesis: I proposed a point-level foreground-background
segmentation technique for NRCS Lidar point cloud sequences
recorded in a static sensor configuration. I proved that the pro-
posed method can handle the sparsity of the NRCS Lidar mea-
surements in a surveillance scenario. I created a database for the
testing and evaluation of the proposed approach and demonstrated
its efficiency [5].

To solve the point-wise foreground-background segmentation task, it is
required to efficiently balance between the spatial and the temporal resolution
of the recorded NRCS Lidar data, shown in Figure 1.7. For this reason, I
create and maintain a very high-resolution background model of the sensor’s
FoV using a MoG-based method [5], displayed in Figure 3.5b. On the other
hand, to enable real-time analysis of dynamic objects, I use low integration
time to extract the consecutive Lidar frames. As a result, the laser reflections
from foreground objects reflect sparse, but geometrically accurate samples of
the silhouettes (shown in Figure 3.5a) providing valuable input for higher-
level shape description, object detection, and pose estimation, as described in
Subthesis 2.3. I demonstrated the efficiency of the new approach in different
realistic NRCS Lidar measurement sequences.

2.2. Subthesis: I have proposed a semi-automatic method to cre-
ate a human pose dataset with camera images and NRCS Lidar
measurements.

GT annotation of Lidar point clouds is a challenging process, since the
visual interpretation of sparse 3D Lidar point clouds is difficult for human
observers, and the inhomogeneous NRCS pattern makes this task even harder.
In the experiments, a camera was mounted near the NRCS Lidar sensor to
record optical images as well, besides the point clouds, as shown in Figure 1.4.
The camera images were only used for creating the GT information for human
pose estimation, and for helping the visual evaluation of the results of LidPose.

GT generation has been implemented in a semi-automatic way, exploiting
established camera-based person detection and pose-fitting techniques.

1. In each data sample, the YOLOv8 [117] was run to detect the persons
in the camera images.

2. The initial pose estimation was created on the cropped camera images
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by the state-of-the-art 2D human pose estimator ViTPose [33] network.
3. The camera images were used to manually check, validate, filter, and

fine-tune each 2D human pose, resulting in the 2D GT of human poses.
4. The filtered camera-based human pose model was directly used as the GT

of the 2D human poses in the co-registered Lidar’s range image domain.
5. The 3D human pose GT is created by the extension of the 2D human

skeleton dataset, so I attempted to assign to each joint a depth value,
based on the depth measurements of the Lidar sensor around the joint’s
2D position.

6. Spatio-temporal interpolation was applied on joints without direct range
measurements from the depth values of other nearby joints, and nearby
frames.

In total, the created new dataset contains 9500 skeletons, and 161000 joints.
The dataset was split into independent training, validation, and test sets,
having 5500, 490, and 3400 skeletons.

In summary, I have created a new dataset suitable for training and evalu-
ating a new human pose estimation method that uses only NRCS Lidar point
cloud as an input. To prove the usability of the dataset, I have proposed a
vision transformer-based neural network to perform human pose estimation,
the details of which are described in Subthesis 2.3.

2.3. Subthesis: I proposed a novel, visual transformer-based
method for real-time human pose estimation from inhomogeneous
and sparse Lidar point clouds recorded with an NRCS Lidar sensor.

First, the moving objects are separated from the static scene regions in the
NRCS Lidar point clouds, as described in Subthesis 2.1 and in [5].

In the next step, the NRCS Lidar point cloud and the range image are
cropped with the foreground regions’ bounding boxes.

To jointly represent the different available measurement modalities, I pro-
posed a new 2D data structure that can be derived from the raw Lidar mea-
surements straightforwardly and can be efficiently used to train and test our
proposed LidPose model. I generate a five-channel image from the input point
cloud, mapped onto the Lidar sensor’s 2D range image lattice. Two channels
store the depth and intensity values of the Lidar measurements, while the
remaining three channels encode the X,Y,Z coordinates of the corresponding
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points in the 3D world coordinate system.
The ViTPose [33] network structure was used as a starting point in the

research and development of the proposed LidPose methods’ pose estimation
networks. My main contributions to the proposed LidPose method:

• A new patch embedding implementation was applied to the network
backbone to handle efficiently and dynamically the different input chan-
nel counts.

• The number of transformer blocks used in the LidPose backbone is in-
creased to enhance the network’s generalization capabilities by having
more parameters.

• The output of the LidPose–3D configuration has been modified as well
by extending the predictions’ dimension to be able to predict the joint
depths alongside the 2D predictions.

The obtained results published in [1] confirm, that the proposed method
can detect human skeletons in sparse and inhomogeneous NRCS Lidar point
clouds. The results of the 3D human pose estimation using the proposed
LidPose method are shown in Figures 4.11 and 4.14.

The approach gives accurate human pose estimation results in real-time in
the 3D world coordinate system of the scene, which can be used in higher-level
scene analysis steps of surveillance systems.

5.2 Application and dissemination of the re-
sults

5.2.1 ChangeGAN

The proposed ChangeGAN [1], [3] can robustly extract changes between
sparse point clouds obtained in a complex street-level environment. As a key
feature, the proposed method does not require precise registration of the point
cloud pairs. Based on my experiments, it can efficiently handle up to 1 m trans-
lation and 10° rotation misalignment between the corresponding 3D point cloud
frames. This makes the proposed method suitable for real-world applications,
where the precise registration of the point clouds is not feasible due to the
complexity of the environment or the limitations of the sensors. The method
can be applied in automatic public infrastructure monitoring, where detecting
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possibly dangerous situations caused by e.g., missing traffic signs, and dam-
aged street furniture is crucial. Expensive and time-consuming efforts can be
reduced in city management offices by applying this method to automatically
and continuously analyze and compare multi-temporal recordings from large
areas to find relevant environmental changes.

5.2.2 LidPose

In the LidPose paper [2] I gave evidence, that the Livox Avia [55] NRCS
Lidar can be widely adopted in real-life scenarios due to its low price, can be
used for solving complex human pose estimation tasks, while the process highly
respects the observed people’s privacy as the people are barely recognizable by
human observers from the recorded sparse point clouds.

The change detection accuracy can be increased by applying a novel depth
image completion technique, which eliminates the uneven sparseness of the
NRCS Lidar data, as described in a submitted patent application [4].

5.2.3 Publications and dissemination

The research results were published mainly in prestigious journals and con-
ferences, as cited in the theses.

On top of those I presented my research progress at the biannual Confer-
ence of the Hungarian Association for Image Analysis and Pattern Recognition
(KÉPAF) [9–11] and in the PhD proceedings, annual issues of the Doctoral
School, Faculty of Information Technology and Bionics [12–15].

I demonstrated my results among others at the Researcher’s Night2, and
at various events organized by the Artificial Intelligence National Laboratory
(MILAB) and National Lab for Autonomous Systems (ARNL), including the
AI & Aut Expo 20233.

2https://sztaki.hun-ren.hu/kutatok-ejszakaja-2022#xr
3https://www.facebook.com/photo/?fbid=8779797418761582&set=pcb.

8780186178722706
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5.3 Computational resources

5.3.1 ChangeGAN

For the training and evaluation of the ChangeGAN method [1], [3] a PC
was used with an i8-8700K CPU @3.7 GHz with 12 threads, 32 GB RAM, and a
GeForce GTX 1080Ti. This setup was sufficient for the training of the proposed
method, and the training time was reasonable. The proposed ChangeGAN
runs at 16 FPS on the prerecorded dataset in offline processing on singleton
batches. This makes the method usable for real-world applications, as the
method’s computational requirements are limited, and the required hardware
is widely available nowadays.

5.3.2 LidPose

For both training and inference of the LidPose [2], two types of computers
were used: a set of desktop computers having 12/16 CPU threads, 32 GB
RAM and 11 GB vRAM in Nvidia GeForce 1080Ti GPU, and a cloud computer
instance in HUN-REN Cloud [122] with 8 vCPU cores, 32 GB RAM, and 16 GB
vRAM in an Nvidia Tesla V100 GPU cluster. The training was run with a
batch size of 48, and one step took 5 seconds on both types of computers.

The proposed LidPose runs at 52 FPS on the prerecorded dataset in offline
processing on singleton batches. In the end-to-end application of the proposed
pipeline, the frame rate of the method is determined by the NRCS Lidar’s
sampling rate (10 FPS).
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Appendix A

Supplementary materials

Figure A.1. PCK and AUC-PCK (both introduced in Section 4.4.1) values of the
3D predictions by LidPose–3D and LidPose–2D+ networks evaluated in 3D space
with 3D metrics. The AUC-PCK was calculated on the [0, 0.5] meter interval, as
shown in Figure 4.12
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Table A.1. Results of the LidPose–3D and LidPose–2D+ networks with different
input types and depth losses, evaluated in 3D space with 3D metrics.
The meaning of the Input values:
D: Lidar distance; XYZ: point 3D coordinates
I: Lidar intensity
Depth L. refers to the criterion used to calculate the depth loss during learning.
2D+ models do not have this parameter.
Percentage of Correct Keypoints (PCK ) was calculated with the error being at most
0.2 meters. The AUC-PCK was calculated on the [0, 0.5] meter interval, as shown
in Figure 4.12

Model Input Depth L. ADE↓ PCK↑ AUC-PCK↑ LAE↓ LLE↓

3D–01 XYZ L1 0.3372 0.5222 0.5364 22.5130 0.9247
3D–02 XYZ L2 0.1848 0.6904 0.6424 21.9994 0.0966
3D–03 XYZ SSIM 0.1683 0.7322 0.6749 20.7884 0.0903
3D–04 XYZ+D L1 0.2679 0.4599 0.5040 24.8060 0.1868
3D–05 XYZ+D L2 0.1873 0.6784 0.6374 22.3703 0.0964
3D–06 XYZ+D SSIM 0.1676 0.7374 0.6768 20.6084 0.0908
3D–07 XYZ+I L1 0.2576 0.4822 0.5176 25.0920 0.1769
3D–08 XYZ+I L2 0.1762 0.7147 0.6593 21.6107 0.1047
3D–09 XYZ+I SSIM 0.1583 0.7678 0.6942 20.6737 0.0952
3D–10 XYZ+D+I L1 0.2764 0.4164 0.4852 31.0437 0.2274
3D–11 XYZ+D+I L2 0.1794 0.7014 0.6537 21.9404 0.1064
3D–12 XYZ+D+I SSIM 0.1633 0.7466 0.6841 21.1505 0.0983

2D+–1 D - 2.4477 0.4887 0.4427 32.4529 1.4299
2D+–2 XYZ - 2.4758 0.5242 0.4626 32.5635 1.4419
2D+–3 XYZ+D - 2.4910 0.5165 0.4583 33.3569 1.4723
2D+–4 XYZ+I - 2.5901 0.5141 0.4534 34.0922 1.5538
2D+–5 XYZ+D+I - 2.5671 0.5133 0.4541 33.5011 1.3705
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Table A.2. Mean Per-Joint Position Error (described in Section 4.4.1) results of
the LidPose–3D networks for different joint types.

Model head shoulders elbows wrists hips knees ankles ADE↓

3D–01 0.1693 0.2252 1.1299 0.3677 0.1741 0.2045 0.3413 0.3372
3D–02 0.1368 0.1537 0.2038 0.2252 0.1374 0.1768 0.3320 0.1848
3D–03 0.1375 0.1404 0.1694 0.1933 0.1368 0.1611 0.2860 0.1683
3D–04 0.1817 0.2512 0.3898 0.3914 0.2009 0.2334 0.3560 0.2679
3D–05 0.1410 0.1576 0.2063 0.2297 0.1386 0.1767 0.3305 0.1873
3D–06 0.1386 0.1391 0.1654 0.1898 0.1347 0.1591 0.2899 0.1676
3D–07 0.1698 0.2214 0.3676 0.4060 0.1999 0.2239 0.3466 0.2576
3D–08 0.1323 0.1442 0.1762 0.2040 0.1369 0.1705 0.3349 0.1762
3D–09 0.1290 0.1272 0.1509 0.1734 0.1303 0.1585 0.2827 0.1583
3D–10 0.1853 0.2282 0.3865 0.4642 0.2308 0.2387 0.3372 0.2764
3D–11 0.1332 0.1486 0.1819 0.2085 0.1430 0.1771 0.3330 0.1794
3D–12 0.1309 0.1347 0.1568 0.1813 0.1399 0.1625 0.2855 0.1633

2D+–1 2.4256 1.6951 2.2149 3.2206 1.9731 2.4557 3.1819 2.4477
2D+–2 2.5820 1.6506 2.1371 3.1362 2.0028 2.4956 3.1668 2.4758
2D+–3 2.5793 1.6879 2.2053 3.1573 1.9953 2.4664 3.2130 2.4910
2D+–4 2.8987 1.7478 2.2795 3.1611 2.0405 2.4757 3.0646 2.5901
2D+–5 2.9546 1.7358 2.1397 3.0070 2.0248 2.4215 3.1053 2.5671
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List of Abbreviations

ADE Average Distance Error

AUC Area Under Curve

COCO Microsoft COCO: Common Objects in Context dataset

FoV Field of View

FPS Frames Per Second

GAN Generative Adversarial Network

GT Ground Truth

IoU Intersection over Union

IMU Inertial Measurement Unit

HUN-REN Hungarian Research Network

LAE Limb Angle Error

LLE Limb Length Error

MEMS Micro-electromechanical system

MHSA Multi-Head Self-Attention

MRF Markov Random Fields

MoG Mixture of Gaussians

MPJPE Mean Per-Joint Position Error

MSE Mean Squared Error

NIR near-infrared

NRCS Non-repetitive Circular Scanning
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List of Abbreviations

PCK Percentage of Correct Keypoints

PTPd Precision Time Protocol daemon

ReLU Rectified Linear Unit

ROI Region of Interest

RMB Rotating multi-beam

SLAM Simultaneous Localization and Mapping

SSIM Structural Similarity Index Measure

STN Spatial Transformer Network

ToF Time-of-Flight

ViT Vision Transformer
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