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Abstract

This thesis investigates optimization-based techniques for robustness and
performance analysis of a wide class of nonlinear dynamical systems with
parametric uncertainty. The dynamics are described by ordinary differential
equations written in a linear fractional representation (LFR). To formulate
convex Lyapunov-type stability certificates, Finsler’s lemma is used with
affine annihilators.

A generic modeling framework is proposed to solve a parameter-dependent
linear matrix inequality (PD-LMI) constraint written in a rational (i.e., frac-
tion of polynomials) form. Such a nonlinear parameter-dependent condition
is an infinite dimensional problem in the sense that its feasibility should be
tested in infinitely many parameter points. The linear fractional transforma-
tion (LFT) and Finsler’s lemma are used to formulate a sufficient polytopic
(i.e., affine) PD-LMI condition. Based on the duality of minimal genera-
tors and maximal annihilators, numerical methods are proposed to reduce
both the dimension and the conservatism of the obtained sufficient polytopic
constraint.

Furthermore, robust stability and dissipativity analysis is addressed for
nonlinear rational models. The Lyapunov/storage function candidate is
searched as rational function of the state and parameter. The Lyapunov con-
ditions for robust stability as well as the dissipativity constraint are rational
scalar inequalities. The proposed relaxation techniques are able to cope with
and find a solution for these typically infinite-dimensional problems. In order
to perform local analysis, the Lyapunov-type certificates are prescribed only
on a compact polytopic subset of the extended state and parameter space.
Convex boundary conditions are formulated to expand the unitary level set
of the Lyapunov function as much as possible. The size of each boundary
(PD-LMI) condition is reduced in an unconventional way. The proposed dis-
sipativity analysis method is able to compute a tight upper-bound for the
induced L2 norm of a nonlinear model or a linear parameter-varying (LPV)
system with rational parameter dependence. Convex conditions are proposed
to compute a passivating output projection law to a rational LPV system
and to check its feedback equivalence to a strictly passive LPV system.

Illustrative examples are used to demonstrate the applicability of the pro-
posed method and compare against existing solutions in the literature. A
robust stability domain is computed for a simple disease model and a Lotka-
Volterra system with a parameter-varying equilibrium point. A continuous
fermentation process model is considered with a stabilizing proportional or
integral substrate feedback law. Finally, a 3-dimensional invariant domain is
computed for the inverted pendulum balancing system with a simple nonlin-
ear state feedback. To evaluate the proposed L2-gain computation technique
a conservative quasi-LPV model is considered for the pendulum-cart system.
Stable dynamic inversion of the pendulum-cart system is presented as an
application example of the passivating output projection synthesis.
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Basic notions, notations and
symbols

In this thesis, the following notations are used:

R, C denote the set of reals and complex values, respectively.
Rn n-dimensional Euclidean space
In n× n unit matrix
0n n× n zero matrix
0n×m n×m zero matrix
1n n× n matrix, in which all elements are 1
1n×m n×m matrix, in which all elements are 1.
I, 0,1 The dimensions in the subscripts of In, 0n, 0n×m, 1n, 1n×m are sup-

pressed whenever they are obvious or irrelevant, e.g.,
(
In 0
0 0m1×m2

)
de-

notes the same matrix as
(

In 0n×m2
0m1×n 0m1×m2

)
.

A> transpose of matrix A ∈ Rn×m, therefore, A> ∈ Rm×n

He{A} stands for A> +A, where A ∈ Rn×n

Tr{A} denotes the trace of a square matrix A =
( a11 ... a1n
... ... ...
an1 ... ann

)
∈ Rn×n,

Tr{A} =
∑n
i=1 aii.

Ker(A) kernel space of matrix A ∈ Rn×m, i.e., Ker(A) = {v ∈ Rm |Av = 0}.
Im(A) image space of matrix A ∈ Rn×m,

i.e., Im(A) = {w ∈ Rn | ∃v ∈ Rm such that w = Av}.

‖A‖F denotes the Frobenius norm of matrix A ∈ Rn×m, ‖A‖F =
√

Tr{A>A}.
mixed multiplication property

A⊗B Kronecker tensor product of matrices A ∈ Rn×m and B, namely,

A⊗B =
(
A11B ... A1mB
... ...

An1B ... AnmB

)
. (1)

Let A ∈ Rn1×n2 , B ∈ Rm1×m2 , C ∈ Rn2×n3 , D ∈ Rm2×m3 , then, the
so-called mixed multiplication property

(A⊗B) · (C ⊗D) = (A · C)⊗ (B ·D) (2)

of the Kronecker tensor product holds.

diag(. . . ) diag(A1, . . . , An) denotes
(
A1 ... 0
... ... ...
0 ... An

)
.

A � 0 matrix A is positive definite
A � 0 matrix A is positive semidefinite
A ≺ 0 matrix A is negative definite
A � 0 matrix A is negative semidefinite
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A† left pseudo inverse of the full column-rank matrix A ∈ Rn×m (n ≥ m),
namely, A† = (A>A)−1A> ∈ Rm×n, thus A†A = Im.

A⊥ the rows of matrix A⊥ ∈ R(n−m)×n is an orthonormal basis for the
kernel space of matrix A> (i.e., A⊥A = 0(n−m)×m), where A ∈ Rn×m.

X ◦ denotes the interior of a compact set X .
∂X ∂X = X \ X ◦ denotes the set of boundary points of a compact set X .
Co(H) denotes the convex hull of set H ⊂ Rn, e.g., H = {v1, . . . , vm} ⊂ Rn,

then Co(H) = {v =
∑m
i=1 αivi ∈ Rn |

∑m
i=1 αi = 1}. H is said to be the

set of vertices of set Co(H).
polytope X = Co({v1, . . . , vnX }) ⊂ Rn is called a polytope in Rn.

Let U = (v1 . . . vnX ) ∈ Rn×nX . If rankU = n (i.e., {v1, . . . , vnX } is a
generator system in Rn), X is compact and is called a full-dimensional
polytope in Rn. If rankU = r < n, then X is an r-dimensional poly-
topic submanifold in Rn and is said to be a “compact” polytope in the
submanifold U = {v =

∑nX
i=1 αivi ∈ Rn |αi ∈ R} of Rn. Throughout

the thesis, polytopes are denoted by calligraphic letters, e.g., X , P , R,
W . Note that the kth facets Fk, k = 1, . . . ,mX of a full-dimensional
polytope X ∈ Rn is an (n − 1)-dimensional polytopic submanifold in
Rn. Integers nX and mX denote the number of corner points and the
number of facets, respectively, of polytope X .

Ve(X ) denotes the set of vertices of polytope X ,
e.g., Ve(Co(v1, . . . , vnX )) = {v1, . . . , vnX }.

n

×
i=1

Hn is the Cartesian product H1 × · · · ×Hn of sets Hn.

Gr(P , . . .) denotes a gridding of rectangular set P =
np

×
i=1

[p
i
, pi], namely,

Gr
(P ,K1×. . .×Knp

)
=

np

×
i=1

{
p
i
+(pi−pi)

k−1
Ki−1

∣∣∣ k=1, . . . ,Ki

}
. (3)

x, y, z, p,
u, v,w
(signals)

are multidimensional signals (x : [0,∞)→ Rnx , . . . , w : [0,∞)→ Rnw).
The dimension of the signal values are denoted by nx, ny, nz, np, nu,
nv, nw, respectively, corresponding to the name of the signal. For
simplicity, dimension of signal x is denoted by n when it is possible.
Though, the values of signals in time instant t are denoted by x(t),
. . . , w(t), the time argument (t) is often suppressed (as it is commonly
done in the literature) and only used when it is necessary.

dx
dt = ẋ is the time-derivative of signal x.
x, p, ṗ = %,
w (inde-
pendent
variables)

x ∈ Rnx , p ∈ Rnp , or w ∈ Rnw is often used as independent variables
and not the value of a signal at time t. The context or the element
containment relations (“x ∈ Rnx”) will clarify how to interpret symbols
x, p, etc. On the other hand, variable % ∈ Rnp is used as a replacement
for ṗ ∈ Rnp whenever it should be considered an independent variable.

∂V
∂xi

is the partial derivative of function V : Rnx → R with respect to
variable xi.
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∂V
∂x ,

∂V
∂p

∂V
∂x : Rnx+np → R1×nx , ∂V∂p : Rnx+np → R1×np denote the gradient row
vector of the continuously differentiable function V : Rnx+np → R with
respect to variables x = (x1 . . . xnx)> ∈ Rnx and p =

(
p1 . . . pnp

)
∈

Rnp , respectively. The value of function ∂V
∂x in (x, p) is denoted by

∂V
∂x (x, p).

∇H ∇H = (∂H∂x )> : Rn → Rn denotes the gradient of function H : Rn → R.
∂f
∂x

∂f
∂x : Rnx → Rnx×nx , denotes the Jacobian matrix of the continuously
differentiable mapping f : Rnx → Rnx with respect to variables x =
(x1 . . . xnx)> ∈ Rnx .

operations
without
function
arguments

Consider well-defined functions A,B,C,D : Rnx → Rm1×m2 and con-

stant matrix E ∈ Rnx×m1 , then, let M =
(

(A+B)C> D

x>E 01×m2
0m2×m1 Im2

)
denote

that function M : Rnx → R(m1+m2+1)×(m1+m2) satisfies

M(x) =
(

(A(x)+B(x))C>(x) D(x)
x>E 01×m2

0m2×m1 Im2

)
for all x ∈ Rnx . (4)

Furthermore, let “A>A � 0 on X ” denote the fact that A>(x)A(x) � 0
for all x ∈ X ⊂ Rnx . We use this abuse of notations typically in
large matrix compositions, where the parameter arguments would sig-
nificantly increase the size of the equations.

u ≡ 0 Let u : [0,∞)→ Rnu . Then, u ≡ 0 denotes that u(t) = 0 for all t ≥ 0.
V (t)=V (x(t)) For simplicity, the composite functions often inherit the name of the

outer function, e.g., V ◦ x is referred to as V , and V (t) = V (x(t)),
where V : Rn → R and x : R→ Rn.

V̌ (x, p, %) denotes the value in (x, p, %) of the Lie derivative of the scalar-valued
function V : Rnx+np → R with respect to ẋ = f(x, p) and ṗ = %,
namely, V̌ (x, p, %) = ∂V

∂x (x, p)f(x, p) + ∂V
∂p (x, p)%, where % is considered

as an independent variable.
well-
defined
rational
functions

Function f : X → Rm1×m2 is called a well-defined rational function on
polytope X if it is Lipschitz continuous in X ⊆ Rnx and has a rational
(i.e., fraction of polynomials) algebraic form. Namely, f(x) can be
given as the following sum:

f(x) = f0 +
J∑
j=1

q1j(x)
q2j(x)fj ,

where f0, fj ∈ Rm1×m2 and q1j , q2j are polynomials with q2j(x) ≥ ε for
all j = 1, . . . , J and for some ε > 0.

π,πb,πc,
πd, π̂d, etc.

are rational vector-valued functions, their dimensions are denoted by
m, mb, mc, md, m′d, respectively.

Π,Πc,Πd,
Π̂d, etc.

are rational matrix-valued functions having m, mc, md, m′d number of
rows, respectively.

monic a polynomial is said to be monic if its leading coefficient is 1.
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Abbreviations

CT continuous-time

DT discrete-time

SDP semidefinite program/problem

LMI linear matrix inequality

LF Lyapunov function

SF storage function

PD parameter-dependent

PD-LMI parameter-dependent linear matrix inequality

LFT linear fractional transformation

LFR linear fractional representation

MIMO multiple input multiple output

LTI linear time-invariant

LTV linear time-varying

LPV linear parameter-varying

qLVP quasi-linear parameter-varying

DOA domain of attraction

rDOA robust domain of attraction

RSD robust stability domain

IQC integral quadratic constraints

SOS sum of squares

KYP Kalman-Yakubovich-Popov (lemma, property)

UIO unknown input observer

PS Positivstellensatz

ODE ordinary differential equation

GSS generalized state-space
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Chapter 1

Introduction

All scientific knowledge to which man owes his role
as master of the world arose from playful activities.

/Konrad Lorenz/

Dynamical models allow us to understand and effectively influence (control) physical,
biological and social processes taking place in the world. In practice, we usually have
uncertain and often nonlinear models that are difficult to analyse and control. Fortu-
nately, the availability of complex computational tools and the new theoretical results
provide new opportunities for dealing with uncertain nonlinear systems. This thesis
presents new numerical methods to perform stability, performance, and passivity anal-
ysis of nonlinear uncertain dynamical systems. The three analysis tasks are related to
different engineering problems, namely, domain of attraction estimation, disturbance at-
tenuation analysis, and dynamic invertibility, respectively. Nevertheless, these problems
connect at the level of the more general theory of dissipativity, which provides a common
computational framework for system analysis.

Stability analysis allows to estimate the secure operating domain of a safety-critical
system, like a nuclear reactor, but also of a Segway. For instance, a Segway vehicle is
in balance if the passenger is standing vertically. When the passenger leans forward,
the motor of the Segway tries to balance the vehicle by moving forward with a given
velocity. As the power of the Segway’s motor is limited, the vehicle will tumble down
if the inclination angle is too large. The domain of attraction (DOA) determines a safe
interval for the inclination angle, from which the motor has enough power to balance the
vehicle.

The induced L2 norm of a dynamical model is one possible quantitative descriptor of
the input-output behaviour. This metric is of potential interest when a system operates
in an environment where the environmental factors change frequently. For example, the
induced L2-gain of a suspension system can quantify the expected vibration of a vehicle
in the function of the road’s quality. Accordingly, we also call this metric the disturbance
attenuation level.

The passivity property ensures many advantageous features of a dynamical system. It
can be shown that an unknown disturbance input applied to the system can be asymp-
totically reconstructed if the system can be strictly passivated with a state feedback,
so to say, if the system is feedback strictly passive. Although the open loop model may
be unstable, the feedback strict passivity property guarantees an asymptotically stable
zero dynamics, which is an essential condition for many fault detection and isolation
techniques.
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The analysis, filtering, and control of nonlinear uncertain models are all challenging
tasks in nonlinear systems and control theory. Often, these problems require the solution
of nonlinear parameter-dependent algebraic or matrix equality/inequality constraints.
To solve these typically non-convex problems, different convex relaxation approaches are
available in the literature. Some of these techniques give only an approximate solution of
the nonlinear problem. Other approaches formulate convex sufficient conditions to find
a (conservative) solution for the nonlinear problem.

1.1 Contributions and layout of the thesis

In this dissertation, I present a new optimization-based numerical methodology to ad-
dress different nonlinear problems in the field of analysis and filtering of a wide class of
nonlinear uncertain systems.

The thesis consists of 9 chapters and an Appendix. The main scientific contributions
corresponding to the 3 different thesis points are presented in Chapters 5-8. These four
chapters begin with a problem statement, where the goals are formulated, and each
chapter ends with a summary, where the conclusions are drawn. The layout of the thesis
and the main scientific contributions are described below.

Chapter 1. I review the literature of DOA estimation, induced L2-gain and passiv-
ity techniques. Furthermore, I revise the existing convex linear matrix inequality
(LMI) techniques in robust and nonlinear control theory.

Chapter 2. Two motivating nonlinear physical systems are presented here.

Chapter 3. I summarize important notions, definitions, and known results in the field of
dissipativity theory of nonlinear systems, semidefinite programming (SDP), linear
parameter-varying (LPV) modeling with linear fractional transformation (LFT),
and Finsler’s lemma. These results and notions will be used throughout the work.

Chapter 4. I present few recent (or still popular) results, which serve as possible refer-
ence solutions in the comparative evaluation of my approach.

Chapter 5. I propose efficient computer algebra and numerical methods to model and
solve rational parameter-dependent constraints in a convex computational frame-
work. Based on the preliminary results of Trofino and Dezuo (2013), I formulated
sufficient Lagrange-type LMIs to solve infinite-dimensional constraints. To reduce
both the dimension and the conservatism of the LMIs, I introduced the duality
of minimal generators and maximal annihilators. The proposed methodology is
applied in the next chapters to address different system analysis problems.

Chapter 6. I present an improved computational method to estimate the robust domain
of attraction of nonlinear uncertain systems. I illustrate the method on multiple
process system models. Finally, I computed a 3-dimensional stability domain for
the inverted pendulum balancing system using its dynamically extended rational
model.

Chapter 7. I propose a new approach to compute a local upper-estimate of the induced
L2 operator norm of a locally stable nonlinear input-output system. The proposed
approach is also applicable for global performance estimation of LPV systems with
rational parameter dependence.

Chapter 8. I prove advantageous properties of feedback passive LPV systems. I for-
mulate convex constraints to test feedback passivity of an LPV model, and to
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synthesize a structured passivating output to a stable LPV model. I illustrate the
applicability of my approach through a hypothetical bench-mark problem.

Chapter 9. I list the theses of my dissertation, and I mention a few possible directions
for future research.

Appendix A. I provide a few additional details here.

In the following three sections, we revise some basic results related to DOA estimation,
L2-gain, and passivity techniques. Then, convex LMI relaxation techniques are explored
in Section 1.4 to perform analysis and filtering tasks for nonlinear uncertain and LPV
systems.

1.2 Domain of attraction estimation

Finding or at least approximating the DOA of a locally stable equilibrium point of a
nonlinear dynamical system is an important but also a non-trivial task in model anal-
ysis and controller design/evaluation. A (positively) invariant stability domain is often
determined as an appropriate level set of a local Lyapunov function.

Numerical approximation of Massera’s construction. In the literature, several numer-
ical DOA approximation results are available, which are based on converse Lyapunov the-
orems [2] such as Massera’s construction [1]. Many successor Massera-type approaches
[3–8] provide a Lyapunov function in the form of a line integral, which can be numerically
approximated along the system’s solutions. These approaches often involves discretiza-
tion of both the state-space (spacial) and the dynamics (temporal).

Iterative solutions of Zubov’s equation. It is well-known that the DOA of an asymp-
totically stable equilibrium point of a nonlinear dynamical system can be precisely de-
termined in theory by solving Zubov’s first order nonlinear partial differential equation
[9]. There exist several generalizations of Zubov’s method, such as [10; 11]. The for-
mer is dedicated to determine the robust domain of attraction (rDOA) of an uncertain
nonlinear system with a bounded perturbation. In this field, a fundamental result is
the existence of the so-called maximal Lyapunov functions for a wide class of nonlinear
systems and the corresponding (simplified) partial differential equation, which charac-
terizes them [12]. In comparison with Zubov’s equation, an iterative procedure is given
for approximating the maximal rational Lyapunov function. In [13], maximal Lyapunov
functions were defined and computed for hybrid (piecewise nonlinear) systems. Although
the above mentioned nonlinear (rational) structures are advantageous for DOA compu-
tation, they are less attractive from a computational point of view.

The optimization-based approaches, see, e.g., [14–16], consider a preliminarily struc-
tured parameterized Lyapunov function candidate, which is defined as a composition of
elementary functions and free decision variables. Then, the free variables are meant to
be found such that the function satisfies a set of sufficient Lyapunov-type certificates,
which are formulated as convex constraints, typically LMIs. Other approaches, like [17;
18], are seeking for a piecewise affine Lyapunov function by solving a linear program.

For nonlinear discrete-time systems, specifically, further approaches exist, e.g., an
analytical Lyapunov-like solution is proposed in [19] by introducing the so-called G-
functions. For convergence analysis of DT dynamical systems, the authors of [20–22] used
the Banach fixed-point principle together with the contraction mapping theorem. At the
same time, there exist alternative simulation-guided approaches (which are different from
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Massera’s construction), for example, the authors of [23; 24] prescribed linear constraints
obtained from the execution traces of the dynamics in discrete sample points.

Point-like attractors. Computational Lyapunov function research puts the primary
focus on dynamical systems with a single locally stable equilibrium point in the origin.
Therefore, the nonzero point-like attractive equilibrium solution are generally translated
to the origin to perform DOA estimation. In [5; 6], important results are available on
the Lyapunov function construction for dynamical models with multiple (not necessarily
point-like) local attractors.

1.3 Induced L2-gain and passivity techniques

The importance of feedback passivity of a dynamical system has been recognized in the
literature [25] due its advantageous properties related to stable zero dynamics (minimum
phase property), and internal stability. These system properties give rise to stable input-
output linearization of nonlinear (possibly uncertain) systems [25; 26], and provide stable
dynamic inversion [27]. Several inversion-based fault diagnosis results are available for
minimum phase LPV systems [28–33]. As another advantage of passivity property is
that it allows unknown input reconstruction by computing only the first derivative of
the output vector.

On the other hand, it is natural in many control problems to involve finite-energy
signals in the analysis, and target induced L2-gain to measure the effect of a disturbance
signal on the output of the system. This metric can be quantified for a wide range
of dynamical systems, linear or nonlinear problems [34], therefore, the induced L2-gain
analysis is of potential interest for applications, e.g., in transport [35], aerospace [36], or
renewable energy industry [37; 38].

In general systems theory, the small-gain theorem and the passivity results have a
central role in dynamical analysis and control, with a particular importance in intercon-
nection-based techniques [25; 39–41]. Passivity-based global asymptotic stabilization of
a wide class of dynamical (possibly interconnected) systems can be found in [26; 40–
44]. Important passivity-based stability conditions for feedback systems are introduced
in [45] for linear time-varying (LTV) systems.

As it was observed by Li and Zhao [46], there is a strong relationship between passivity
and finite L2 performance level. Van der Schaft [39, Proposition 4.2.1] showed that
strict output passivity implies finite L2-gain. What is more, passivity and finite L2-gain
property of a dynamical system are both special cases of dissipativity with respect to
different supply rate functions [39]. Also, the Lyapunov condition for stability is again a
special case of the dissipation inequality with the zero supply rate.

It is not surprising that many L2-gain and passivity approaches are based on the
dissipativity relation, where a so-called storage function is needed to be computed. An
alternative formulation of the dissipation inequality for passivity is given by the Kalman-
Yakubovich-Popov (KYP) properties [25; 26].

In the general case of nonlinear systems, the dissipativity relation is a nonlinear state-
and parameter-dependent inequality constraint, that cannot be solved in a convex com-
putational framework. There exists an extended literature related to optimization-based
stability, passivity, and L2 performance analysis as-well-as robust controller synthesis for
a wide class of nonlinear uncertain systems. In the following section, we present in de-
tail the main computational approaches to account for nonlinear analysis and synthesis
problems.
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1.3.1 Passivating output selection for a stable zero dynamics

Independently of the internal stability of a dynamical system, a fortunate selection of
the output can render a stable zero dynamics [25; 26]. The output should be selected
such that the number of independent output signals matches the number of independent
input signals. Furthermore, the system with the new output should be feedback passive,
namely, there exists a full state feedback law such that the closed-loop model with the
selected output is passive.

In the case of general nonlinear uncertain systems (but even for linear parameter
varying models) finding such on output is not trivial. Sepulchre et al. [42] stated that
“many passivation attempts are frustrated by the requirements that the system must
have a relative degree one and be weakly minimum phase.”

A recursive differential geometrical technique is proposed by Sepulchre et al. [41; 42]
to compute a passivating state feedback law and output for a special class of nonlinear
systems. The nth order dynamic equations should be written as a cascade interconnection
of an (n−r)th order input-affine model and an rth order integrator chain, where r is the
relative degree of the system with respect to a given (initial) output. Their technique was
successfully applied by Astolfi et al. [47] on a magnetic suspension system, however, these
highly nonlinear structures are less attractive from the computational point of view. In
the case of a general nonlinear system, a state transformation mapping should be found
to recast the dynamics into the required structured normal form. As an alternative
solution, a simple linear output selection technique was proposed by Szederkényi et al.
[48] by using a linear quadratic regulator design [49, Section 3.5.4].

Port-Hamiltonian systems. The passivity framework naturally arises in circuit theory
[50], and hence in the theory of port-Hamiltonian systems [51]. Arghir [52] introduced
important passivity-based techniques for complex power networks modeled by Hamilto-
nian control systems, e.g., a zero dynamics refinement is presented in [52, Chapter 3] by
using an output transformation. Furthermore, specific feedback passivation is addressed
in [52, Chapter 4].

Output selection for local stabilization. In the literature (e.g., [41; 42; 46–48; 52–59]),
a passivating output selection is principally motivated by local asymptotic stabilization
through input-output linearization [27, Section 4.4]. At the same time, a passivating
output provides a stable unknown input reconstruction [29]. Moreno [60], e.g., proved
strong relationships in the LTI framework between passivity properties and the existence
of an unknown input observer. For general input affine nonlinear systems, this strong
relationship is not maintained [61].

1.4 LMI approaches

The use of LMI/SDP techniques in control theory has become very popular due to their
advantageous properties and the availability of efficient numerical tools to solve LMI
problems [62–64].

In the context of linear uncertain systems, important results are available [62–69].
The introduction of LFT to the theory of linear time-invariant (LTI) systems constituted
a crucial step in the late ’80s [66; 67]. The LFT/LMI methodology “unified many
concepts and generalized transfer functions and their state-space realizations to include
uncertainty” [67]. However, it is still not straightforward to extend these results to the
class of nonlinear parametric models.
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LPV modeling serves as an intermediate step, which “fills in the gap” between LTI and
nonlinear uncertain systems. This powerful modeling framework was gradually developed
by [70–76]. LPV principles are widely used in system analysis and controller design [35;
36; 77], due to their ability to represent a wide class of nonlinear systems, while preserving
the advantageous properties of linear structures. Several polytopic results are available
in the literature to handle affine or switched LPV models [55; 62; 78–84].

The grid-based approach have gained wide popularity in control applications (see,
e.g., [38]) as it provides an easy-to-use methodology, when the polytopic solutions are
not applicable. To obtain an approximate solution for a general nonlinear problem, the
authors of [73–75] suggested to evaluate and solve the emerging nonlinear constraints
over a finite set of state and parameter grid points. This approach requires not only a
fine enough gridding policy but often results in large and computationally demanding
SDP.

Representing rational functions with LFT can be considered as the next step towards a
unified framework to cope with general parametric uncertainty [85–88] and nonlinearity
[89; 90]. LFT allows to recast a rational nonlinear parameter-dependent model as a
feedback interconnection of a LTI system and a static state- and parameter-dependent
diagonal block. In this way, the nonlinear and parameter-dependent part of the system
equation is separated from the dynamics as an artificial feedback loop. The authors
of [85–90] considered a quadratic Lyapunov function, and defined convex conditions for
stability analysis and state feedback design for rational nonlinear and LPV systems.
Differently from the grid-based approximation, these approaches result in a possibly
conservative but guaranteed solution for the nonlinear problem.

Low order LFT modeling. The dimension and the accuracy of the derived stabil-
ity conditions may be prone to LFT factorization. Therefore, in [91] a minimal linear
fractional representation (LFR) is suggested for polynomial equations. Furthermore, a
Kalman-like numeric n-dimensional order reduction (n-DOR) method [92] and different
symbolic low-order LFT modeling techniques [93] are available to yield a relative-minimal
realization [94] of a rational expression. These symbolic and numeric procedures are im-
plemented in the Enhanced LFR-Toolbox for Matlab [95] and in the Generalized State
Space (GSS) Library [96] of the SMAC Toolbox [97].

In the following subsections, we revise a few advanced LMI relaxation techniques from
the last two decades related to analysis, filtering, and controller synthesis of nonlinear
uncertain systems.

1.4.1 Multiplier approaches with integral quadratic constraints

In parallel with the progressive development of the LFT techniques, an advanced ro-
bust analysis and synthesis approach was emerging, that made extensive use of integral
quadratic constraints (IQC) and the so-called multipliers [98; 99].

The IQC-theory is a general framework, which is able to cope with a wide class of non-
linear, uncertain, but also time-delayed models. Starting from the results of Megretski
and Rantzer [99], the basic IQC concept has gained a special interest in the robust con-
trol theory, and many generalizations/extensions are now available (see, e.g., [100–110]).
Moreover, Seiler [111] presented important theoretical results about IQC in relation with
the dissipation theory.

Analysis with rate bounded parameters. As IQC approach is based on frequency-
domain considerations [106], it formulates frequency-domain conditions for stability. In
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order to generate equivalent time-domain LMIs, the well-known KYP lemma [98; 99]
is used. In the case of LPV systems, the obtained time-domain LMI conditions are
parameter-dependent. To solve the dissipativity relation, Scherer [100] used the full
block S-procedure, and formulated convex conditions, in which the bounds of the pa-
rameter’s derivative are not considered. Compared to [100], the authors of [103; 104]
considered dynamic multipliers and used the swapping lemma [102, Section 1.5] to cope
with parameter rate bounds during the analysis. Two possible implementations of the
IQC-analysis technique is proposed in [112; 113].

Dissipativity relation in the IQC-framework. Seiler [111] showed that a class of IQC
multipliers has so-called J-spectral factorization, which allows to formulate IQC stability
constraints in the dissipativity framework. However, the IQC approach of [103; 104] with
dynamic multipliers do not generate a Lyapunov/storage function directly as the stabil-
ity criteria are formulated in the frequency-domain. Though, the dynamic multiplier
corresponds to a parameter-dependent storage function [112], it is not straightforward to
obtain the exact structure of the storage function from the IQC solution. Nevertheless,
there exist other multiplier approaches where a storage function is involved naturally in
the analysis.

A multiplier approach with quadratic separators and a specific augmented model rep-
resentation is proposed by Iwasaki and Shibata [114] to check the global stability of
LPV/LFT systems. This approach brings about three major advantageous features.
First, the time-domain LMI conditions for stability generated by the KYP lemma are
already parameter independent. Second, the system model is augmented with the param-
eter’s dynamics, hence, the rate bounds of the parameter signals are taken into account.
Finally, the resulting parameter-dependent Lyapunov function can be obtained naturally
by considering the linear fractional representation of the system equations.

One drawback of the multiplier approach, in general, is that the finally obtained
LMI condition for stability should be tested over a set characterized by infinitely many
inequalities [100; 103; 114]. As a possible solution, a so-called D-G scaling is used, e.g.,
in [105; 114], which may introduced further conservatism into the solution.

1.4.2 Descriptor approach

The theory of LTI descriptor systems can be attributed to Luenberger’s name [115], and
it dates back to the late ’70s. Nonetheless, a general dissipativity theory for descriptor
models was founded only in the mid ’90s [116; 117], simultaneously with the appearance
of the robust control approaches for uncertain LTI descriptor models [118–120]. Finally,
the past twenty years of research emerged a novel methodology, which allows efficient
dissipativity analysis and controller synthesis for a wide class of liner uncertain and/or
parameter-varying systems.

Though it operates on the seemingly narrow class of affine LPV models, the strength
of the approach constitutes in the ability to represent any LPV model in the LFR form.
The authors of [121–125] used the extension of the bounded real lemma [116] to test
stability and compute an upper bound on the L2-gain for this class of LTI and LPV de-
scriptor systems. Masubuchi et al. [123; 125] formulated nonlinear parameter-dependent
LMI (PD-LMI) conditions, which can be solved by a specific LMI relaxation technique
proposed by the same author [126; 127]. The nonlinearity in these PD-LMIs is in the
form of products of two multi-affine parameter-dependent terms.

In this methodology, as in the case of the IQC theory, the proposed PD-LMI constraint
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is the KYP reformulation of a frequency-domain stability criterion in the form of an IQC.
Therefore, a major drawback of this approach is the concealed structure of the storage
function.

1.4.3 Polynomial approaches

Compared to the methods reviewed so far, a relatively different line of research is related
to the polynomial techniques and the sum of square (SOS) approach, see, e.g. [128; 129].
For rational or polynomial parameter-dependent nonlinear models, the SOS method can
account for DOA estimation [15; 130–135], system analysis [136–139], and controller
synthesis [14; 140–149].

A dissipativity-based synthesis method is proposed in [148; 149], by measuring of the
passivity indices with SOS constraints. Pirkelmann et al. [147] used SOS approach to
computationally check the central assumption (strict dissipativity) of the model predic-
tive control methods presented in [151; 152]. Wu and Prajna [141] proposed SOS-based
analysis and synthesis methods for a class of LPV models. In [136–139], homogeneous
polynomial solutions are investigated for the robust stability analysis of autonomous
LPV systems. It is worth remarking that [139] gives necessary and sufficient conditions
for the robust stability of rational autonomous LPV systems.

The main mathematical apparatus behind the SOS techniques is the positive locus
theorem or, as it is commonly called, the Positivstellensatz (PS), which was introduced
by Stengle [153]. PS is considered an important result in the real algebraic geometry. A
detailed description of PS can be found in [14]. Using PS, one can formulate sophisti-
cated set containment constraints related to the specific level sets of different multivariate
scalar functions. The SOS techniques give a computational framework to solve PS con-
ditions. [143; 144], As the PS constraints should be satisfied on the whole extended
state and parameter space, the obtained solutions may be conservative. Chesi [133] and
Yang and Wu [145] introduced polynomial Lagrange multipliers into the scalar inequality
constraints to reduce the conservatism of the solution.

Though the SOS algorithm is promising [14; 15] and its expansion to rational systems
is possible, it is computationally heavy and may require bilinear [133] or iterative LMI
algorithms to obtain a disturbance attenuation level [146].

1.4.4 Polytopic approach with Finsler’s lemma and affine annihilators

The most closely related results for stability and dissipativity analysis of rational parame-
ter-dependent nonlinear systems are presented in [16; 149; 150; 154–159], where Finsler’s
lemma [160] is borrowed to address DOA computation, performance estimation, and
dissipativity-based robust nonlinear controller design.

For DOA estimation, an LMI approach is presented in [154] together with Finsler’s
lemma to construct polynomial Lyapunov functions for discrete-time nonlinear systems
with parametric uncertainties. Trofino and Dezuo [16] considered rational state- and
parameter-dependent Lyapunov functions and used affine annihilators to generate suffi-
cient LMI conditions ensuring local stability for uncertain rational continuous-time (CT)
systems. The Lyapunov conditions are required to be fulfilled only within a bounded
polytopic subset of the state-space, therefore, it is enough to check the feasibility of the
obtained LMIs only in the corner points of the polytope. Trofino and Dezuo [16] pri-
marily focus on the fundamental theory of DOA computation using Finsler’s lemma.
Therefore, there is a room for the further study of the automatic generation of the set of
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rational functions contained in the Lyapunov function and that of the corresponding an-
nihilator. Based on [16], finite-time stability of nonlinear quadratic systems is addressed
in [161] by using polynomial Lyapunov functions.

Induced L2-gain and passivity with Finsler’s lemma. Coutinho et al. [155; 156] per-
formed induced L2 norm estimation and robust nonlinear controller synthesis for rational
uncertain nonlinear systems. By the introduction of an admissible disturbance set, the
authors of [155; 156] gave a local interpretation of the computed upper bound for the
induced L2 norm. Following the concepts of [16; 156], a passivity-based static/dynamic
output feedback controller design is proposed in [149; 150] for rational nonlinear mod-
els. Uncertainty or time-varying parameter dependency are not considered in the sys-
tem equations, and no systematic design is proposed in [149; 150] to compute rational
parameter-dependent storage functions.

As a Lagrange multiplier approach, Finsler’s lemma with affine annihilators is an effi-
cient relaxation technique to solve PD-LMI conditions. Though the nonlinear parameter-
dependent terms are pulled out from the LMI, their algebraic interdependence is implic-
itly injected into the LMI condition through an affine annihilator accompanied by a free
matrix Lagrange multiplier (notion introduced by [160]). It is already shown in [150]
that Finsler’s lemma with affine annihilators have advantageous properties compared to
the SOS approach for rational nonlinear inequality conditions.

In the last decade, some preliminary model construction and dimension reduction
techniques were developed for the Finsler’s lemma-based control optimization problems.
With some restrictions on the structure of the storage function, a systematic construction
of the differential-algebraic representation needed by Finsler’s lemma can be found in
[156; 158; 159]. In [156], a systematic model construction procedure is presented for
the quadratic performance estimation with a fourth-order polynomial storage function
candidate. In [158; 159], quadratic storage/Lyapunov functions are searched with affine
parameter dependence to solve robust stability conditions in an automated manner for
rational descriptor LPV systems using LFT. In order to reduce the dimension of the
PD-LMI, [158; 159] proposed to solve the parameter independent part of the PD-LMI
conditions separately.

1.5 Motivation and contributions

The grid-based approach, the LFT techniques, the multiplier results, the theory descrip-
tor systems, the polynomial methods, and finally, the polytopic approaches with affine
annihilators, are all relaxation techniques to solve robust and nonlinear control problems.
However, the main methodological questions related to the Lyapunov-based solutions for
rational nonlinear (or LPV) systems can still be improved in terms of conservatism, com-
putational tractability, transparency, automation, and applicability to other problems in
the passivity framework.

In this dissertation, I contribute to the former set of results, which are based on a poly-
topic approach with affine annihilators and Finsler’s lemma. The major contributions of
this thesis compared to the state-of-the-art solutions are the following:
(Automation) Compared to [16; 156], a systematic construction method is found to des-

ignate a parameter-dependent Lyapunov/storage function candidate. Furthermore,
the required (constant, affine, or even multi-affine) annihilators are computed au-
tomatically, which makes the approach applicable to difficult nonlinear dynamical
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models.

(Computational tractability) Compared to

• the computationally heavy iterative solutions of Zubov’s equation [12],
• the recursive differential geometrical techniques to find a passivating output

[41; 42],
• or the often bilinear Lyapunov-type SOS certificates [162],

a simple computational framework is developed, which preserves convexity (finite
number of convex constraints), and at the same time provides dimension reduction
features without compromising the solution’s accuracy.

(Conservatism) A major focus is put on the rich algebraic structure of the candidate
function and on maximal annihilators, which together provide an appropriate pa-
rameterization of the problem and reduce conservatism relatively to the available
state-of-the-art optimization-based solutions.

(Transparency) Differently from

• the converse Lyapunov techniques, where a Lyapunov function is approxi-
mated numerically through solving a line integral,

• or the IQC and descriptor approaches, where the storage function is concealed
in the soft IQC constraints,

the solution is given as a direct Lyapunov method, where the Lyapunov function is
searched in a closed parameterized form.

(Passivating output selection) Differently, from the existing feedback passivating output
selection attempts [41; 42; 48; 52; 60], the PD-LMI approach is capable to cope with
the nonlinear KYP equality/inequality constraint for a general LPV/LFT model,
such that the output function is searched in a structure form.

(Multiple attractors) Differently from the mainstream DOA computation research, where
the point-like attractors are located in the origin, the proposed approach provides
the possibility to generalize the computations for multiple attractive equilibria or
limit cycles.

1.6 Hardware and software environment

The results presented in this dissertation were computed in the Matlab environment.
For symbolic computations, I applied Matlab’s built-in Symbolic Math Toolbox based
on Mupad. To compute and manipulate the linear fractional representation (LFR) of
a rational matrix function, I used the Enhanced LFR-toolbox for Matlab [95; 163] and
the GSS Library [96] of the SMAC Toolbox [97]. To model and solve semidefinite pro-
gramming (SDP) problems, I used YALMIP [164] with three different SDP solvers. Pri-
marily, I used Mosek solver [165], then, SeDuMi [166–168], and SDPT3 [169] solvers are
used to check the obtained solution if necessary. To solve systems of ordinary differen-
tial equations (ODEs), I used the Matlab’s built-in 4th and 5th order adaptive explicit
Runge-Kutta implementation [170] (ode45), unless it is stated otherwise. The computa-
tions were processed on a PC with Intel Core i7-4710MQ CPU at 2.50GHz and 16GB of
RAM.
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Chapter 2

Motivational examples

Dynamical models with a rational parameter or state dependence cover a wide class of
nonlinear and/or time-varying systems. To demonstrate the wide applicability of the
proposed approaches, we consider the highly nonlinear inverted pendulum balancing
system, which constitutes the primary benchmark physical example of this dissertation.
After a detailed model description of the pendulum-cart system, a bioreactor model is
presented in Section 2.2.

2.1 The pendulum-cart system

The Euler-Lagrange equations of the inverted pendulum balancing system of [34, Section
1.3] are: Iω̇ = mg` sin θ −m`2ω̇ −m`v̇ cos θ,

Mv̇ = F −m
(
v̇ + `ω̇ cos θ − `ω2 sin θ

)
− bv,

(2.1)

where M [kg] is the mass of the cart, m [kg] is the mass of the rod, the length of the rod
is 2` [n], and b [kg/s] is the friction coefficient. The moment of inertia of the rod rotating
about the lower end (forced to the pivot) is I = 4

3m`
2. The state variable v [m/s] is

the velocity of the cart, θ [rad] is the angle of the rod with respect to the vertical axis,
θ̇ = ω [rad/s] is the angular velocity of the rod. Angle θ is measured clockwise and θ = 0
when the pendulum is pointing upwards. Signal F [N] is an external force (input) applied
to the cart acting parallelly to the cart’s horizontal motion. The motion of the system
is sketched in Figure 2.1.

The dynamic equations in (2.1), can be altered into the following state-space repre-
sentation:

ẋ = f(x) + g(x)u, with x =
(
v θ ω

)>
, u = F, (2.2a)

f(x) = 1
σ2(θ)

(
m`σ1ω2 sin θ−bσ1v−m2g `2 sin θ cos θ

ωσ2(θ)
(m+M)mg` sin θ+mb`v cos θ−m2`2ω2 sin θ cos θ

)
, g(x) = 1

σ2(θ)

(
σ1,
0

−m` cos θ,

)
,

where

σ1 = I +m`2, σ2(θ) = σ1(m+M)−m2`2 cos2 θ. (2.2b)

This system has a stable equilibrium point when the rod is pointing downwards (v = 0,
θ = (2k+1)π, ω = 0, k ∈ Z), and an unstable equilibrium point when the rod is pointing
upwards (v = 0, θ = 2kπ, ω = 0, k ∈ Z). Obviously, this system has multiple stable and
unstable equilibria as its dynamical equations are periodic with respect to the pendulum’s
angle θ.
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F

ω

v

M

θ m, 2`

Figure 2.1: A sketch of the inverted pendulum balancing system (left) and the illustration of its
potential application in the Segway balancing (middle) and the aircraft landing problem (right).
The sources of the middle and right figures are [179] and [180], respectively.

In the literature, different variants of model (2.2) were considered as benchmark ex-
amples for several control design techniques, see, e.g., [48; 171–177]. In [175], the authors
also guaranteed a wide domain of attraction (−π

2 ,
π
2 ) for θ if v(0) = ω(0) = 0. On the

other hand, the simple one degree-of-freedom pendulum-cart system (2.1) serves as a
starting point for multiple control engineering problems [178], see, e.g., the Segway bal-
ancing of [179] or the rocket landing problem addressed in the master’s thesis [180].

In this thesis, we do not address the synthesis of an advanced control feedback law for
(2.2). Instead, we analyse the behaviour of the system (2.2), when a simple but possibly
nonlinear feedback u(θ) is considered.

Note that the dynamical model (2.2) contains trigonometric terms in θ, however,
the proposed computational techniques require rational models. In the following two
subsections, we describe the pendulum-cart dynamics (2.2) by rational models. First, we
give a dynamically equivalent nonlinear (but rational) time-invariant model. Secondly,
we propose a conservative qLPV model by encapsulating the nonlinear terms of (2.2) in
parameters.

2.1.1 Rational input-affine model

In order to embed the pendulum-cart dynamics into a rational model, we follow the
techniques of [181; 182]. We introduce the following two auxiliary state variables:

z3 = sin θ and z4 = 1− cos θ. (2.3)

Variables z3 and z4 are interdependent through the identity z2
3 + (1 − z4)2 = 1. The

dynamics of z3 and z4 are: {
ż3 = θ̇ cos θ = ω(1− z4),
ż4 = θ̇ sin θ = ωz3.

(2.4)

We stress that a solution of (2.4) should satisfy the following identity

z2
3(t) +

(
1− z4(t)

)2 = 1, (2.4a)

for all t ≥ 0. However, it can be shown that the quantity on the left hand side of (2.4a)
is invariant along the solutions of (2.4). Therefore, it is enough to force (2.4a) only in
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t = 0. Then, the augmented state-space model can be given as follows:

v̇ = 1
σ3(z)

(
m`σ1ω

2z3 − bσ1v −m2g `2z3(1− z4)+σ1F
)
,

θ̇ = ω,

ω̇ = 1
σ3(z)

(
(m+M)mg`z3+mb`v(1−z4)−m2`2ω2z3(1−z4)−m`(1−z4)F

)
,

ż3 = ω(1− z4),
ż4 = ωz3.

(2.5)

where

σ1 = I +m`2, σ3(z) = σ1(m+M)−m2`2 +m2`2z2
3 . (2.5a)

With the proposed change of variables in (2.3), the angle θ disappeared from the right
hand side of the augmented model (2.5). Furthermore, the dynamics of the angle is
encoded in the dynamical equations (2.4) of z3 and z4. Therefore, we are allowed to
eliminate the second equation (θ̇ = ω) from (2.5). The remaining four equations can be
written in the following qLPV form:

ż = A(z)z +B(z)u, with z2
3(0) +

(
1− z4(0)

)2 = 1, (2.6)

where z = (v ω z3 z4)>, u = F , and

A(z) = 1
σ3(z)

 −bσ1 m`σ1ωz3 −m2g `2(1−z4) 0
mb`(1−z4) −m2`2ωz3(1−z4) (m+M)mg` 0

0 (1−z4)σ3(z) 0 0
0 0 ωσ3(z) 0

, B(z) = 1
σ3(z)

(
σ1

−m`(1−z4)
0
0

)
.

Note that (2.6) is not a qLPV model, but a nonlinear (rational) time-invariant input-
output model written in a qLPV form, where the output is the state.

It is important to mention that system (2.2) with output

y = h(v, θ, ω) =
(
v ω sin θ 1− cos θ

)>
(2.7)

is dynamically equivalent to system (2.6), in the sense that, for each t ≥ 0, the output
y(t) of (2.2) for (v(0), θ(0), ω(0)) is equal to the output z(t) of (2.6) with the same values
for (v(0), θ(0), ω(0)), and z3(0) = sin(θ(0)), z4(0) = 1 − cos(θ(0)). Though, the state-
space of (2.6) is embedded into a higher-dimensional Euclidean space (R4), the state
trajectory z evolves in the following 3-dimensional cylindrical manifold:

z(t) ∈M =
{
z ∈ R4 | z2

3 + (1− z2
4) = 1

}
= {z = Φ(v, θ, ω) | (v, θ, ω) ∈ U}, (2.8)

where Φ(v, θ, ω) = (v, ω, sin θ, 1−cos θ), and U = R× (−π, π]× R. (2.8a)

Mapping Φ : U → M is a diffeomorphism, and its Jacobian matrix is full-rank for all
(v, θ, ω) ∈ U . Note that

A(z)z =
(
∂Φ
∂x f ◦ Φ−1

)
(z) and B(z) =

(
∂Φ
∂x g ◦ Φ−1

)
(z), (2.9)

where

Φ−1 : (v, ω, sin θ, 1−cos θ) 7→ (v, θ, ω). (2.10)

A possible explicit expression for Φ−1 (which is well-defined and differentiable for “al-
most” all z ∈M) can be given as follows:

Φ−1 : (v, ω, z3, z4) 7→ Φ−1(z) = (v, sgn(arcsin z3) arccos(1− z4), ω), (2.11)

where sgn denotes the sign function.
As the dynamics (2.6) are restricted to M = Φ(U) = Φ(R3), system (2.6) has only

two equilibria, which satisfy the initial identity (2.4a). The unstable equilibrium is
z∗us = (0 0 0 0)>, whereas, the stable equilibrium is z∗s = (0 0 0 2)>.
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Remark. We admit that the parametric definition for manifold M in (2.8) is not com-
plete, as Φ(U) is not an open cover for M . Furthermore, Φ−1 (as it is given in (2.11)) is
not differentiable in z = (·, ·, 0, 2). However, the loose definitions immediately make sense
if the dynamics are controlled within the open set U◦ = R× (−π, π)×R or equivalently
in the open manifold M◦ = {z = Φ(v, θ, ω) | (v, θ, ω) ∈ U◦}. �

2.1.2 Rational qLPV model

In this section, we present a qLPV model for the nonlinear dynamics (2.2). First, we
encapsulate the nonlinear terms of (2.2) in parameters, then, we compute the bounds
for the parameters and their time-derivatives.

Following [171; 172], we introduce three state-dependent parameter signals

p1 = sinx2
x2

, p2 = cosx2, p3 = x3 sin x2, p =
( p1
p2
p3

)
. (2.12)

Then, the nonlinear system (2.2) can be embedded in the following LPV model:

ẋ = A(p)x+B(p)u, (2.13)

where x = (v θ ω)>, u = F , and

A(p) = 1
σ4(p)

(
−bσ1 −m2g `2p1p2 m`σ1p3

0 0 σ4(p)
mb`p2 (m+M)mg`p1 −m2`2p2p3

)
, B(p) = 1

σ4(p)

(
σ1
0

−m`p2

)
and σ1 = I +m`2, σ4(p) = σ1(m+M)−m2`2p2

2.

(2.13a)

Note that model (2.13) is still not an approximation of the nonlinear dynamics (2.2).
Differently from (2.6), the qLPV model in (2.13) is written in the initial state-space R3

of variables (v, θ, ω). Observe that, for a given input u and initial condition x(0), there
exists a parameter trajectory p : t 7→ p(x(t)) such that the solution of (2.13) is identical
to that of the nonlinear model (2.2). On the other hand, the proposed qLPV model can
describe different dynamical behaviour by altering the parameter signals. We can say
that (2.13) is a conservative model for the nonlinear dynamics.
2.1.2.1 Determining the parameter bounds. In order to obtain a complete LPV
model description, which is aligned with the physical model (2.2), we need to compute
the bounds of p and ṗ. For simplicity, let us assume that a state feedback u = −Kx+ v

with x(0) = 0 can keep the state vector within the following rectangular set

X = [−x1, x1]× [−x2, x2]× [−x3, x3] ⊂ U◦, with 0 < x2 <
π
2 . (2.14)

Furthermore, let the disturbance signal v have an infinity norm less than or equal to
M̄∞. With these assumptions, we are able to define bounds for the parameter signal p
as follows:

p(t) ∈ P = P1 × P2 × P3, where

p1(t) ∈ P1 =
[

sinx2
x2

, 1
]
, p2(t) ∈ P2 = [cos(x2), 1],

p3(t) ∈ P3 = [−x3 sin(x2), x3 sin(x2)].

(2.15)

Due to the fact that ∂p1
∂x2

is strictly decreasing on x2 ∈ [−x2, x2], the bounds of the
time-derivative of p1 can be given as follows:

ṗ1 ∈ R1 = [−r1, r1], r1 =
( cos(x2)

x2
− sin(x2)

x2
2

)
x3. (2.16)

Note that ṗ2 = −p3, therefore, ṗ2 ∈ R2 = P3. Finally, ṗ3 ∈ R3 can be approximated
numerically by evaluating ṗ3 = ∂p3

∂x2
ẋ2 + ∂p3

∂x3
ẋ3 in a finite number of grid points in X , for

both v = ±M̄∞, and remembering that u = −Kx+ v. N

Remark 2.1. System (2.13) is unstable but stabilizable with a static state feedback. In
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certain case studies (e.g., the crane system [183]), it is useful to consider the stable equi-
librium as the operating point. Then, we have the possibility to translate the dynamic
equation into x∗ = (0 π 0)> by setting x1 = v, x2 = θ − π, and x3 = ω. For simplicity
the centered state variables are not distinguished in the notations. Considering the iden-
tities sin θ = − sin x2 and cos θ = − cosx2, the centered nonlinear state-space dynamics
are

ẋ = f(x) + g(x)u, with x = (v θ − π ω)>, u = F, (2.17)

f(x) = −1
σ2(θ)

(
m`σ1ω2 sin θ+bσ1v+m2g `2 sin θ cos θ

−ωσ2(θ)
(m+M)mg` sin θ+mb`v cos θ+m2`2ω2 sin θ cos θ

)
, g(x) = 1

σ2(θ)

(
σ1,
0

m` cos θ,

)
,

which correspond to the following qLPV model

Σ : ẋ = A(p)x+B(p)u, (2.18)

where x = (v θ−π ω)>, u = F , and

A(p) = −1
σ4(p)

(
bσ1 m2g `2p1p2 m`σ1p3
0 0 −σ4(p)

mb`p2 (m+M)mg`p1 m2`2p2p3

)
, B(p) = 1

σ4(p)

(
σ1
0

m`p2

)
. (2.18a)

In (2.18), the parameters are functions of the translated state variables as given in (2.12)
with x2 = θ − π. The expression for σ1 and σ4(p) are the same as in (2.13a). For
the translated model, the bounds for p and ṗ can be similarly computed by considering
u = v. �

In the following remark, we present a benchmark problem related to the hanging
pendulum-cart system (i.e., that moves around the stable equilibrium point).

Problem 2.1 (The kidnapped scientist’s problem). Suppose that a scientist is kid-
napped and locked down in a van, which is traveling on a highway at a variable speed.
The scientist’s ambition is to compute the distance took by the van from the point, where
he was captured. In order to reconstruct the velocity function of the van, the scientist
forces a pendulum on the ceiling of the cargo bay and measures the angle and the angu-
lar velocity of the pendulum. We are wondering whether the scientist can calculate the
speed function of the van without the knowledge of the friction coefficient (b) and the
mass of the van (M)? �

Problem 2.1 is revisited in Chapter 8, where a passivating output selection is proposed
for system (2.18).

2.2 Continuous fermentation process

A bioreactor is a stirred tank, in which biological reactions occur simultaneously in a
liquid medium [184, Chapter 1]. Through the microbial growth reactions, the nutrients or
substrates are consumed by the microorganisms (bacteria, yeasts, etc.), which produce
a resulting substance, called the product. The mass of living organisms is called the
biomass.

In this section, we present an isothermal nonlinear continuous fermentation process
model taken from [185] with constant volume V0, constant physico-chemical properties
and a (possibly) uncertain maximal growth rate µmax. The principal reaction rate coeffi-
cient µmax is usually determined experimentally with relatively high uncertainty, causing
a multiplicative uncertainty factor in the actual growth rate µ, which is a function of the
substrate concentration S as follows:

µ(S) = µmax S

K2S2 + S +K1
. (2.19)
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In (2.19), constantsK1 andK2 are the saturation and inhibition parameters, respectively.
The dynamics of the biomass concentration (X) and substrate concentration (S) in

the bioreactor tank is given by the following state-space modelẊ = µ(S)X − XF
V0
,

Ṡ = −µ(S)X
Y + (SF−S)F

V0
,

(2.20)

where constant Y is the yield coefficient. Signal F = F0 + uC + uF is the inlet feed flow
rate, where constant F0 is the optimal (nominal) flow rate, and uC is a possible con-
trol input signal. The flow rate is perturbed by a disturbance signal uF , which may be
resulted, e.g., by the actuator’s inaccuracy. Signal SF = SF,0 + uS is the substrate con-
centration of the inflowing mixture to be processed, where constant SF,0 is the assumed
(operating point) concentration. In a real-life application the substrate concentration of
the input flow may be rippling, this effect is encoded in the additive disturbance signal
uS .

The dynamics of the product concentration (P ) in the bioreactor tank is given by the
following equation [184, Eq. (1.9)]:

Ṗ = υX − FP
V0
−Q (2.21)

where Q is the rate of mass outflow of the product from the reactor in gaseous form,
and υ is the specific production rate. The detached dynamical equation (2.21) of the
product concentration is given for the sake of completeness, however, it does not influence
the internal stability of the fermentation process (2.20). At the same time, a stable
equilibrium solution of (2.20) with respect to F0 entails a sustainable uniform input feed
and product removal, i.e., a stable equilibrium solution for (2.21).

The dynamical modeling, analysis, and control of bioreactor systems are presented in
details by Bastin and Dochain [184].
2.2.0.1 Optimal equilibrium solution. Let X0 and S0 denote the equilibrium con-
centrations of the biomass and the substrate, respectively, corresponding to the optimal
inlet feed flow rate F0. The equilibrium solution is computed so that the substrate feed
concentration is assumed to be constant (SF (t) = SF,0 for all t ≥ 0) and the biomass
production X0F0 is maximized. First, the values of X0 and F0 are determined in the
function of S0 such that they satisfy

µ(S0)X0 − X0F0
V0

= 0 and − µ(S0)X0
Y + (SF,0−S0)F0

V0
= 0. (2.22)

Namely,

X0 = (SF,0 − S0)Y and F0 = V0µ(S0) = V0S0
K2S2

0 + S0 +K1
· µmax. (2.23)

Secondly, we find the optimal substrate concentration S0, that maximizes X0F0:

S0 = argmax
S0>0

(SF,0 − S0)µ(S0) = argmax
S0>0

−S2
0+SF,0S0

K2S2
0+S0+K1︸ ︷︷ ︸
f(S0)

. (2.24)

If we differentiate function f with respect to S0, we obtain:

f ′(S0) = (SF,0K2+1)S2
0+2K1S0−SF,0K1

(K2S2
0+S0+K1)2 = 0 ⇒ S0 =

−K1+
√
K2

1+S2
F,0K1K2+SF,0K1

K2SF,0+1 . (2.25)

As the output signals, we consider the centered biomass concentration x1 = X −X0 and
centered substrate concentration x2 = S − S0. N

It is worth mentioning that the optimal feed flow rate (F0) depends linearly on the
(possibly uncertain) maximal growth rate (µmax), though, the equilibrium solution is
independent of µmax. Furthermore, the optimal (operating) equilibrium point (X0, S0)
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Ẋ = µ(S)X − XF
V0

Ṡ = −µ(S)X
Y

+ (SF−S)F
V0

k

+

++

SF,0

F0

uF

uS
SF

F

−

+

+

X0

S0

X x1−

S x2

−

Figure 2.2: Block diagram of the closed-loop dynamics of the continuous fermenter.

is locally asymptotically stable, with a relatively small DOA. It is shown in [185] that
a proportional substrate feedback F = F0 − k(S − S0) + uF can provide a significantly
larger DOA for the operating point. In Figure 2.2, we present the block diagram of the
closed-loop system with a proportional substrate feedback.

In this thesis, we address the following two system analysis problems.

Problem 2.2 (DOA estimation). Assume an uncertain maximal growth rate µmax, and
that uF ≡ 0, uS ≡ 0. Estimate the robust domain of attraction of the closed-loop
dynamics (Figure 2.2) when F (t) = F0 − k(S(t)− S0) and SF (t) = SF,0 for all t ≥ 0. In
order to provide a robustness for the feedback controller, consider an additional integral
feedback component, namely

F (t) = F0 − kP (S(t)− S0) + kI

∫ t

0
(S(τ)− S0) for all t ≥ 0. (2.26)

Compute a stability region of the feedback system with input (2.26). Repeat the com-
putations with different values of k, kP , and kI , then, draw the conclusions. �

Problem 2.3 (Disturbance attenuation analysis). Assume that the maximal growth
rate µmax is given. Upper estimate the disturbance attenuation level of the closed-loop
system in Figure 2.2 from signals uF , uS to signals x1, x2. Analyse how the attenuation
level is changing for different values of proportional feedback gain k. �
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Chapter 3

Background

In this chapter, the important notations, definitions, and known results are presented in
brief, which will be used throughout the paper.

3.1 Signal spaces, operators, operator norms

Definition 3.1. Let Lnp [0,∞) denote the signal space of the Lebesgue-integrable n-di-
mensional vector-valued signals having finite p-norm, namely

Lnp [0,∞) =
{
x : [0,∞)→ Rn

∣∣∣x is measurable and ‖x‖p <∞
}
, (3.1)

where ‖x‖p =
(∫ ∞

0
‖x(t)‖pdt

) 1
p

for all 1 ≤ p <∞, (3.1a)

and ‖x‖∞ = ess sup
t∈[0,∞)

‖x(t)‖ if p =∞, (3.1b)

are called the p-norm of signal x ∈ Lnp [0,∞). In (3.1a) and (3.1b), ‖x(t)‖ denotes the
Euclidean norm of vector x(t) ∈ Rn. �

Remark. Throughout the dissertation, we consider only causal signals mapping from
[0,∞), therefore, we suppress the domain argument of Lnp [0,∞) for simplicity. Fur-
thermore, superscript n denoting the dimensionality is suppressed when the signal’s
dimension is obvious or irrelevant. �

Definition 3.2. A mapping Σ : Lnup → Lnyq is called a system operator. The induced
operator norm of system Σ is defined as follows:

‖Σ‖ = sup
06≡u∈Lnup

‖y‖q
‖u‖p

, where Σ : u 7→ y = Σ[u]. (3.2)

Signal y ∈ Lnyp is the output of system Σ obtained as a response for the given input
signal u ∈ Lnuq . �

Remark 3.1. The dimensions of the signals are denoted correspondingly to their name,
e.g., the dimension of signals x, y, z, p, u, v, w are denoted by nx, ny, nz, np, nu, nv,
nw, respectively. For simplicity, the dimension of signal x is denoted by n when it is
possible. Though, the values of signals at time instant t are denoted by x(t), . . . , w(t),
the time argument (t) is often suppressed (as it is commonly done in the literature) and
only used when it is necessary. Note that symbols x ∈ Rnx , p ∈ Rnp , . . .w ∈ Rnw are
often used as independent variables and not the value of a signal at time t. However,
the context will clarify, whether we refer to the signal, its value at t, or an independent
variable. �
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3.2 Local stability and domain of attraction

Definition 3.3 [40, Definition 10.1.1]. A continuous function α : [0, a)→ [0,∞) is said
to belong to class K if it is strictly increasing and α(0) = 0. If a =∞ and lim

r→∞
α(r) =∞,

the function is said to belong to class K∞. �

Definition 3.4. A multivariate function f is called a C1 function if it is continuously
differentiable with respect to each variable. �

We study nonlinear systems with time-varying parametric uncertainty in the form1:

Σa : ẋ(t) = f(x(t), p(t)), with x(0) = x0 ∈ X ⊂ Rnx , (3.3)

where x : [0,∞) → Rnx and p : [0,∞) → Rnp are the state and parameter signals,
respectively, x(0) = x0 is the initial condition, X is a compact set, and f : Rnx+np → Rnx
is a locally Lipschitz continuous function. For p, we consider the following restrictions.

Assumption 3.1. The parameter signal p is bounded and real-time available with a
bounded time-derivative, namely, p(t) ∈ P for all t ≥ 0 and ṗ(t) ∈ R for all t > 0, where
P and R are (a-priori known) compact polytopes in the parameter space Rnp . �

Definition 3.5. Signal p is called admissible if it satisfies Assumption 3.1. �

We assume that x∗ ∈ X is an equilibrium point of system (3.3), namely f(x∗, p) = 0
for all p ∈ P .

Definition 3.6 [34, Definition 4.1]. The equilibrium point x∗ ∈ X of system Σa is stable
if, for each ε > 0, there exists δ such that ‖x(0)− x∗‖ < δ implies ‖x(t)− x∗‖ < ε for
all t > 0. Furthermore, x∗ is called asymptotically stable if it is stable and δ > 0 can be
chosen such that ‖x(0)− x∗‖ < δ implies lim

t→∞
x(t) = x∗. �

Theorem 3.7 [40, Theorem 10.1.3]. The equilibrium point x∗ = 0 ∈ X of Σa is locally
asymptotically stable for all admissible parameter trajectory p if there exists a possibly
parameter-dependent C1 function V : X×P → R, called the Lyapunov function satisfying

α(‖x‖) ≤ V (x, p) ≤ α(‖x‖) for all x ∈ X , all p ∈ P , (3.4a)

and for some class K functions α, α, such that
∂V
∂x

(x, p)f(x, p) + ∂V
∂p (x, p)% ≤ −α(‖x‖) for all x ∈ X , all (p, %) ∈ P ×R, (3.4b)

and for some class K function α.
The equilibrium point x∗ ∈ X is globally asymptotically stable for all admissible pa-

rameter trajectory if (3.4a) and (3.4b) are satisfied for all x ∈ Rnx, all (p, %) ∈ P ×R,
and for some class K∞ functions α, α, and α. �

3.2.1 Further results for autonomous models

As a special case of (3.3), consider an autonomous nonlinear system

ẋ(t) = f(x(t)), with x(0) = x0 ∈ X . (3.5)

Observe that system (3.5) is the autonomous case of system (3.3) with p ≡ 0.

Definition 3.8 (Invariant set [34]). A set M is said to be an invariant set with respect
to (3.5) if x(0) ∈ M implies x(t) ∈ M for all t ∈ R. A set M is said to be a positively
invariant set if x(0) ∈M implies x(t) ∈M for all t ≥ 0. �

1Despite the hint of subscript “a”, this system is not autonomous due to its time-varying dynamics.
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Theorem 3.9 (LaSalle’s theorem [34, Theorem 4.4]). Let Ω ⊂ X be a compact set that is
positively invariant with respect to (3.5). Let V : X → R be a continuously differentiable
function such that ∂V

∂x (x)f(x) ≤ 0 in Ω. Let E be the set of all points x ∈ Ω where
∂V
∂x (x)f(x) = 0. Let M be the largest invariant set in E. Then, every solution starting
in Ω approaches M as t→∞. �

Theorem 3.9 formulates stability properties for autonomous dynamical systems with
general (not necessarily point-like and possibly multiple) local attractors.

Lemma 3.10. Consider an autonomous system (3.5). Let Φ : X → M be a diffeomor-
phism satisfying 0 = Φ(0), where X ⊆ Rn and M ⊆ Rn′. Assume that there exist positive
finite scalars β0 and β0, such that

β0‖x‖ ≤ ‖Φ(x)‖ ≤ β0‖x‖. (3.6)

Consider the vector of state variables z = Φ(x) and its dynamics:

ż = f̄(z), where f̄ = ∂Φ
∂x f ◦ Φ−1. (3.7)

Assume that W : Z → R is a Lyapunov function for (3.7), where M ⊆ Z . Then,
V = W ◦ Φ is a Lyapunov function for (3.5) in X . �

Proof. Obviously, V is continuously differentiable and V (x) = W (Φ(x)) > 0 for all x ∈ X
as W (z) > 0 for all z ∈M = Φ−1(X ). Furthermore, we show that[

∂W
∂z (z)f̄(z)

]
z=Φ(x)

= ∂V
∂x (x)f(x) for all x ∈ X . (3.8)

Considering (3.7), the Lie derivative of W in the terms of x ∈ X simplifies to
∂W
∂z f̄ ◦ Φ =

(
∂W
∂z ◦ Φ

)(
f̄ ◦ Φ

)
=
(
∂W
∂z ◦ Φ

)(
∂Φ
∂x f ◦ Φ−1 ◦ Φ

)
=
((

∂W
∂z ◦ Φ

)
∂Φ
∂x

)
f = ∂V

∂x f. (3.9)

Finally, the existence of class K functions β, β, β satisfying

β(‖z‖) ≤W (z) ≤ β(‖z‖) in Z , (3.10a)
∂W
∂z (z)f̄(z) ≤ β(‖z‖) in Z , (3.10b)

implies the existence of class K functions α, α, α, where

α(r) = β(β0r), α(r) = β(β0r), α(r) = β(β0r),

such that (3.4) are satisfied.

A similar result to Lemma 3.10 is presented by Papachristodoulou and Prajna [182,
Proposition 3] in the framework of the SOS approach.

3.2.2 Lyapunov transformation

Consider the following linear time-varying (LTV) state-space model:{
ẋ(t) = A(t)x(t) + B(t)u(t), x(0) = x0.

y(t) = C(t)x(t) +D(t)u(t)
(3.11)

where x : [0,∞) → Rn, u : [0,∞) → Rnu , y : [0,∞) → Rny are the state, input, and
output signals, respectively, x(0) = x0 is the initial condition, A, B, C, and D are
Lipschitz continuous functions of the time having appropriate dimensions.

Definition 3.11 [186, Section 9.1]. The time-varying state transformation T : [0,∞)→
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Rn×n is called a Lyapunov transformation if it satisfies the following properties:

1. T is continuously differentiable in (0,∞), (3.12)
2. T and Ṫ are bounded in [0,∞),
3. There exists a constant m > 0 such that m ≥ | detT (t)| for all t ≥ 0. �

According to [186], a Lyapunov transformation applied to the state space model (3.11)
preserves the internal stability of the dynamics.

3.3 Dissipativity, induced L2 norm and passivity

We consider nonlinear input-output systems of the form

Σ :
{
ẋ = f(x, u, p),
y = h(x, u, p),

(3.13)

where x, u, y, and p are the state, input, output, and parameter signals, respectively, with
p satisfying Assumption 3.1. Functions f : Rnx+nu+np → Rnx and h : Rnx+nu+np → Rny
are Lipschitz continuous on Rnx × Rnu × P .

Let s : Rnu+ny → R be a mapping, called the supply rate or supply function and
assume that, for all t0, t1 ∈ R and for all input-output pairs u, y satisfying (3.13), the
composite function s(t) = s(u(t), y(t)) is locally integrable, namely,

∫ t1
t0
|s(t)|dt < ∞.

According to [62, Section 2.2.1], the supply function s should be interpreted as the
“supply delivered to the system”. A positive value for

∫ t1
t0
s(t)dt means that work is done

on the system, otherwise, if
∫ t1
t0
s(t)dt < 0, work is done by the system.

Definition 3.12 [40, Definition 10.7.1]. System Σ is said to be strictly dissipative with
respect to the supply rate s : Rnu+ny → R if there exists (a possibly parameter-dependent)
C1 function V : Rnx × P → R, called the storage function satisfying

α(‖x‖) ≤ V (x, p) ≤ α(‖x‖) for all x ∈ Rnx , all p ∈ P , (3.14a)

and for some class K∞ functions α, α, such that
∂V
∂x

(x, p)f(x, u, p) + ∂V
∂p (x, p)%− s(u, y) ≤ −α(‖x‖) for all (x, u) ∈ Rnx+nu ,

all (p, %) ∈ P ×R,
(3.14b)

and for y = h(x, u, p), where α is a K∞ function. System Σ is said to be dissipative if
(3.14b) holds for α ≡ 0. �

Note that the inequality in (3.14b) is stated for the independent variables x, u, p,
and ṗ = %. According to [39, Definition 3.1.2] an equivalent integral form of (3.14b) is
as follows:

V
(
x(t1), p(t1)

)
− V

(
x(t0), p(t0)

)
≤
∫ t1

t0
s(u(t), y(t))dt. (3.15)

for all 0 ≤ t1 ≤ t2, and all admissible parameter and input signals.

Corollary 3.13 (based on [40, Definition 10.7.4, Example 10.7.1; 62, Corollary 2.18]).
System operator Σ : Lnu2 → Lny2 has a finite induced L2 norm smaller than or equal to
γ if it is dissipative with respect to the supply rate s(u, y) = γ2‖u‖2 − ‖y‖2. �
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As a special case of system Σ, consider now a nonlinear system of the form2:

Σp :
{
ẋ = f(x, u, p), x(0) = x0,

y = h(x, p).
(3.16)

and having as many inputs as outputs (nu = ny). Note that the output y of Σp does not
depend on the input u algebraically, but only dynamically through the state signal x.

Definition 3.14. System Σp is called (strictly) passive if it is (strictly) dissipative with
respect to the supply rate s(u, y) = 2u>y. �

The dissipation inequality (3.14b) for strict passivity can be written as follows:
∂V
∂x

(x, p)f(x, u, p) + ∂V
∂p (x, p)% ≤ y>u+ u>y − α(‖x‖) for all (x, u) ∈ Rnx+nu ,

all (p, %) ∈ P ×R,
(3.17)

and for some K∞ function α.

Remark 3.2. A strictly passive system with storage function V (satisfying (3.14a)) is
always asymptotically stable with Lyapunov function V if the input u ≡ 0. �

3.4 Parameter-dependent linear matrix inequalities

Definition 3.15 (Canonical form of LMIs). A linear matrix inequality (LMI) is a convex
constraint of the following form

M(x) = M0 +
∑n
i=1 xiMi � 0 (3.18)

where Mi ∈ Rm×m are fixed constant symmetric matrices and xi are free decision vari-
ables. LMI (3.18) is said to be feasible if there exists x ∈ Rn, such that M(x) � 0. The
feasible set (or solution set) of (3.18) is denoted by F = {x |M(x) � 0}. �

An LMI is a convex constraint in the sense that its feasible set is convex, formally,
λx+ (1− λ)y ∈ F for all x, y ∈ F and all λ ∈ [0, 1].

Lemma 3.16 (Schur complement [62, Proposition 1.38]). Let M(x) be partitioned as
follows: M(x) =

(
M11(x) M12(x)
M21(x) M22(x)

)
, where M11(x) is a square matrix. Let

F1 =
{
x
∣∣M(x) � 0

}
, (3.19)

F2 =
{
x
∣∣M11(x) � 0, M22(x)−M12(x)

[
M11(x)

]−1
M21(x) � 0

}
. (3.20)

Then, F1 = F2. �

Schur’s complement lemma makes possible to linearize nonlinear (typically quadratic)
matrix inequalities.

Example 3.1. Consider the following simple scalar inequality x2
1 +x2

2 ≤ 1, which can be
written in the following form 1− ( x1

x2 )>( 1 0
0 1 )( x1

x2 ) ≥ 0. According to Schur’s complement
lemma, the previous inequality is equivalent to the following LMI:

−1 1
−1

1
F :

(
1 x1 x2
x1 1 0
x2 0 1

)
� 0⇔

( 1 0 0
0 1 0
0 0 1

)
+ x1

( 0 1 0
1 0 0
0 0 0

)
+ x2

( 0 0 1
0 0 0
1 0 0

)
� 0. (3.21)

Obviously, the solution set F of (3.21) is the unit disc. �

Definition 3.17. The canonical form of a semidefinite program (SDP) with a linear

2System Σp is a sublclass of Σ, which is considered during the passivity analysis.
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objective function can be formulated as follows:

min c>x, subject to M(x) � 0, (3.22)

where c ∈ Rn is a constant vector. �

Definition 3.18. Let Mi : W → Rm×m, i = 0, . . . , n, where W ⊂ Rnp. The matrix
inequality condition

M0(w) +
∑n
i=1 xiMi(w) � 0 for all w ∈W , (3.23)

is said to be a parameter-dependent LMI (PD-LMI) condition. The free variables x ∈ Rn

are meant to be found such that (3.23) is satisfied for all parameter values w ∈W . �

Definition 3.19. In the general case, when Mi are nonlinear functions of the parameter
w, inequality (3.23) is said to be an infinite-dimensional problem, as the feasibility of
(3.23) should be tested in infinitely many parameter points on W . �

Proposition 3.20 [62, Proposition 5.4]. Assume that W is a compact polytope in Rnw
and Mi are affine functions, namely, Mi(w) = Mi0 +

∑nw
j=1Mijwj. Then, (3.23) is

satisfied for all w ∈W if and only if (3.23) is satisfied in the (finite number of) corner
points (Ve(W)) of polytope W . �

3.5 Finsler’s lemma

In this section, we present the parameter-dependent form [16] of Finsler’s lemma [160].

Definition 3.21. Let W ⊆ Rnw be a subset of the parameter space Rnw . A vector-valued
function π : W → Rm is called well-defined on W if ‖π(w)‖ <∞ for all w ∈W . �

Lemma 3.22 [16, Lemma 2.1]. Let Q : W → Rm×m and N : W → Rs×m be given
well-defined functions on W ⊆ Rnw , with Q(w) symmetric. Then, the following are
equivalent
(i) π>(w)Q(w)π(w) ≥ 0 is satisfied for all w ∈ W and all well-defined π : W → Rm,

which fulfills N(w)π(w) = 0 for all w ∈W , (3.24a)

(ii) ∃L : W → Rm×s such that Q(w) + He{L(w)N(w)} � 0 for all w ∈W , (3.24b)

(iii)
(
N⊥

)>(w) Q(w) N⊥(w) � 0 for all w ∈W , (3.24c)
where N⊥ is a basis for the kernel space of N (i.e., N(w)N⊥(w) = 0 ∀w ∈W). �

A proof for Lemma 3.22 is given in [160].

Definition 3.23 [16]. Function N : W → Rs×m is called an annihilator of π : W → Rm

if Nπ ≡ 0 on W (i.e., π(w)N(w) = 0 for all w ∈W). �

Definition 3.24 [160]. Function L : W → Rm×s in (3.24b) is called a matrix Lagrange
multiplier. �

Remark 3.3. In this thesis, we consider parameter- (w) dependent matrix inequality
conditions of the form (3.24a), in which Q is an unknown affine function and π is a
priori given typically nonlinear function. Generally, it is not straightforward to solve
the scalar inequality (3.24a). Instead, we have the opportunity to solve the affine PD-
LMI Q(w) � 0 over W , but the obtained solution for Q is conservative due to the
interdependence between the nonlinear coordinate functions of π. Observe that Q(w) � 0
implies z>Q(w) z ≥ 0 for all z ∈ Rm, namely, the information about the structure of π
is not taken into account at all. Fortunately, the annihilator N together with the free
multiplier L makes possible to inject an amount of extra information into (3.24b), and,
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in this way, N reduces the conservatism. Roughly speaking, annihilator N represents
the algebraic coupling between the coordinate functions of π. �

Remark 3.4. According to Proposition 3.20, PD-LMI (3.24b) can be solved in a convex
computational framework if L is searched as a constant multiplier and N : W → Rs×m

is given as an affine function. �

3.6 Linear fractional transformation

The linear fractional transformation (LFT) plays an important role in modeling uncertain
and/or nonlinear rational systems, and it is often used in the literature, e.g., as presented
by El Ghaoui and Scorletti [90]. The LFT is discussed in detail in the book [187, Chapter
10] and in the users’ manual [94].

Let us consider a rational function A : W → Rm1×m2 in the form:

A(w) =
∑J
j=1

q1j(w)
q2j(w)Aj , (3.25)

where w ∈ W is a vector of some general parameters, W is a subset of the parameter
space Rnw and qij are multivariate polynomials with q11 = q21 ≡ 1. We assume that the
fractions q1j(w)/q2j(w) of polynomials q1j and q2j are irreducible for all j > 1.

Definition 3.25. Two multivariate polynomials p1 and p2 are called relative prime, if
they do not have common factors in their irreducible factorized form [188]. The fraction
p1(w)/p2(w) of two multivariate polynomials p1 and p2 is called irreducible if p1 and p2
are relative prime. �

Definition 3.26. We say that function A is well-defined (i.e., matrix A(w) has a bounded
norm) on W if A can be given by (3.25), where q2j(w) ≥ ε for all j = 1, . . . , J , all w ∈W ,
and some ε > 0. �

Lemma 3.27 [90, Lemma 2.1]. For any rational function A : Rnw → Rm1×m2 with
no singularities at the origin, there exist non-negative integers r1, . . . , rnw and matrices
F11 ∈ Rm1×m2, F12 ∈ Rm1×m, F21 ∈ Rm×m2 and F22 ∈ Rm×m, with m = r1 + . . .+ rnw ,
such that:

A = Fl
{(

F11 F12
F21 F22

)
,∆
}

= F11 + F12(Im −∆F22)−1∆F21 (3.26)
= F11 + F12∆(Im − F22∆)−1F21 on W ,

where ∆ : Rnw → Rm×m, ∆(w) = diag
{
w1Ir1 , . . . , wnwIrnw

}
. �

Remark 3.5. The so-called uncertainty block ∆ is generally considered as an operator
∆ : η1 7→ π1 = ∆η1. In this case the arguments of ∆ are suppressed. �

The form (3.26) is called the linear fractional representation (LFR) of function A.
Operator ∆ is said to have nw blocks of dimensions r = {r1, . . . , rnw}. LFR (3.26) is
said to be well-posed if Im − ∆(w)F22 is invertible for all w ∈ W . According to [94],
function A is well-defined on W if and only if A admits a well-posed LFR on W .

Remark 3.6. Considering the LFR of function A, the nonlinear static operator A :
u 7→ y, such that y(t) = (Au)(t) = A(w(t))u(t), is often represented in the literature by
the following feedback interconnection:

F11 F12

F21 F22

∆

uy
η1 π1

(
y

η1

)
=
(
F11 F12
F21 F22

)
·
(
u

π1

)
←→

{
y = F11u+ F12π1

η1 = F21u+ F22π1
(3.27)

with feedback π1 = ∆ η1 (3.27a)
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Due to the lower position of block ∆ relatively to block F =
(
F11 F12
F21 F22

)
, the LFR realiza-

tion (3.26) is called a lower LFR of A. For simplicity, we make no significant difference
between the notations of operator A = Fl{F,∆}, the rational matrix-valued function
A = Fl{F,∆}, and the parameter-dependent matrix A(w) = Fl{F,∆(w)}. �

Definition 3.28. An
{
ri, . . . , rnp

}
-dimensional LFR Fl

{(
F11 F12
F13 F14

)
,∆
}
is equivalent to

the
{
r′i, . . . , r

′
np

}
-dimensional LFR Fl

{(
F ′11 F

′
12

F ′13 F
′
14

)
,∆′

}
if matrices F11, F

′
11 ∈ Rm1×m2

have compatible (i.e., the same) dimensions and

F11 + F12(Im −∆(w)F22)−1∆(w)F21 = F ′11 + F ′12(Im′ −∆′(w)F ′22)−1∆′(w)F ′21 (3.28)

is satisfied for all w ∈W . �

Remark 3.7. Consider a transfer function G : C → Rm1×m2 , such that G(s) = D +
C(sI −A)−1B. Then, G can be given by the following lower LFR:

G(s) = D + C
(
I −

(
1
sI
)
A
)−1(1

sI
)
B = Fl

{(
D C

B A

)
, 1
sI

}
, (3.29)

where s denotes the Laplace operator. �

3.6.1 Basic operations with LFRs

Through the thesis, we will need to perform different operations on parameter-dependent
matrices, namely, transposition, addition, multiplication, inversion, kernel computation,
and block matrix composition, but also differentiation of rational matrix-valued func-
tions. A few of these matrix operations (e.g., inversion) require intensive and compu-
tationally demanding computer algebra (i.e., symbolic manipulation) techniques, not to
mention the hazardous tolerance-dependent rank decisions, which are involved by the
interlaced symbolic and numeric manipulations [189].

The major advantage of the linear fraction transformation (LFT) is its ability to
perform these algebraic operations on rational functions by using purely numerical tools.
In the following, we revise the basic LFR operations as presented in the users’ manual
[94]. Consider two LFRs Fl{F,∆1} and Fl{G,∆2}, where

F =
(
F11 F12
F21 F22

)
, G =

(
G11 G12
G21 G22

)
. (3.30)

Henceforth, we assume that the two LFRs have compatible dimensions required for the
corresponding matrix operations. The proofs for the following statements are given in
[94, Section 7.1].

Lemma 3.29. If ∆1 is diagonal, the transposition of Fl{F,∆1} is Fl
{
F >,∆1

}
. �

Lemma 3.30. The vertical matrix composition of Fl{F,∆1}, Fl{G,∆2} is

(
Fl{F,∆1}
Fl{G,∆2}

)
= Fl




F11 F12 0
G11 0 G12
F21 F22 0
G21 0 G22

 ,
(

∆1 0
0 ∆2

). (3.31)

Whereas, the horizontal matrix composition is

(
Fl{F,∆1} Fl{G,∆2}

)
= Fl


F11 G12 F12 G12
F21 0 F22 0
0 G21 0 G22

 ,(∆1 0
0 ∆2

). (3.32)
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The block diagonal matrix composition of Fl{F,∆1}, Fl{G,∆2} is

(
Fl{F,∆1} 0

0 Fl{G,∆2}

)
= Fl




F11 0 F12 0
0 G12 0 G12
F21 0 F22 0
0 G21 0 G22

 ,
(

∆1 0
0 ∆2

). (3.33)

�

Lemma 3.31. The sum of Fl{F,∆1} and Fl{G,∆2} can be given as follows:

Fl{F,∆1}+ Fl{G,∆2} = Fl


F11 +G11 F12 G12

F21 F22 0
G21 0 G22

 ,(∆1 0
0 ∆2

). (3.34)

�

Lemma 3.32. The product of A = Fl{F,∆1} and B = Fl{G,∆2} is:

Fl{F,∆1}Fl{G,∆2} = Fl


F11G11 F12 F11G12
F21G11 F22 F21G12
G21 0 G22

 ,(∆1 0
0 ∆2

). (3.35)

�

Proof. Differently from the proof of [163], consider the input-output relation z = A y

and y = B u, then, z = AB u. If we eliminate variable y from

A :


z = F11y + F12π1

η1 = F21y + F22π1

π1 = ∆1η1

, B :


y = G11u+G12π2

η2 = G21u+G22π2

π2 = ∆2η2

(3.36)

we obtain

AB :



z = F11G11u+ F12π1 + F11G12π2

η1 = F21G11u+ F22π1 + F21G12π2

η2 = G21u+G22π2

π1 = ∆1, π2 = ∆2.

(3.37)

Considering η = ( η1
η2 ) and π = ( π1

π2 ), we obtain LFR (3.35).

Lemma 3.33. The matrix inverse of Fl{F,∆1} is

F−1
l {F,∆} = Fl

{(
F−1

11 −F−1
11 F12

F21F
−1
11 F22 − F21F

−1
11 F12

)
,∆
}
. (3.38)

�

Remark 3.8. Note that a separate LFR can be given for any uncertainty block ∆ as
follows:

∆ = Fl
{(

0 I

I 0

)
,∆
}
. (3.39)

Using the previous standard LFR operations, a few typical expressions of ∆ can be
written as follows:

I −∆M = Fl
{(

I −I
M 0

)
,∆
}
,

I −M∆ = Fl
{(

I −M
I 0

)
,∆
}
,

(3.40)

(I −∆M)−1 = Fl
{(

I I
M M

)
,∆
}

= I + (I −∆M)−1∆M,

(I −M∆)−1 = Fl
{(

I M
I M

)
,∆
}

= I +M∆(I −M∆)−1.
(3.41)
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Note that the identities in (3.41) are both a special case of the matrix inversion lemma
[190, Section 2.1.4], which is not discussed in this dissertation. �

Lemma 3.34 (based on [163, Lemma 7.1.15]). Assume that ∆ is a diagonal block,
namely, ∆(w) = diag

{
w1Ir1 , . . . , wnwIrnw

}
. Then, the derivative of Fl{F,∆} with re-

spect to variable wi, i ∈ {1, . . . , nw} is

∂Fl{F,∆}
∂wi

= Fl


F12HiF21 F12 F12HiF22
F22HiF21 F22 F22HiF22

F21 0 F22

 ,(∆ 0
0 ∆

), (3.42)

where Hi ≡ ∂∆/∂wi . �

Proof. The derivative of Fl(F,∆) with respect to wi can be expressed as follows
∂Fl{F,∆}

∂wi
= F12(I −∆F22)−1HiF22(I −∆F22)−1∆F21 + F12(I −∆F22)−1HiF21

= F12(I −∆F22)−1Hi

(
I + F22(I −∆F22)−1∆

)
F21. (3.43)

Considering the commutation property (3.26) of operator ∆, we can write:
∂Fl{F,∆}

∂wi
= F12(I −∆F22)−1Hi

(
I + F22∆(I − F22∆)−1

)
F21. (3.44)

Recalling the identities in (3.41), we obtain:
∂Fl{F,∆}

∂wi
= F12Fl

{(
I I
F22 F22

)
,∆
}
HiFl

{(
I F22
I F22

)
,∆
}
F21. (3.45)

Then, the multiplication rule of Lemma 3.32 applied to (3.45) gives back the LFR (3.42),
which completes the proof.

Finally, the Kernel computation technique of [163, Section 7.1.8] makes possible for
a given function A : W → Rm1×m2 to find function B : W → Rm2×(m2−m1) such that
AB ≡ 0 on W .

Lemma 3.35. Assume that matrix F11 ∈ Rm1×m2 of A = Fl{F,∆} has maximal row
rank. Let the columns of Q ∈ Rm2×(m2−m1) span the kernel space of matrix F11. Then,

B =
(
Fl{F,∆}

Q>

)−1(0m1×(m2−m1)
Im2−m1

)
(3.46)

satisfies AB ≡ 0 on W . �

3.6.2 Recursive LFT realization

After we have introduced the standard LFR operations in the previous section, we are
now allowed to compute a so-called recursive (or direct) LFT realization of any rational
matrix-valued function having no singularities at the origin. In this section, we give a
few examples, how a possible LFR is computed for some specific functions.

Example 3.2 (Elementary “building blocks” – the monomials). Let p1, p2, . . . , pnp be
independent variables. Then pi = Fl{( 0 1

1 0 ), pi}. Using the multiplication rule of Lemma
(3.32), the LFRs of some monomials are:

p1p2 = Fl

0 1 0

0 0 1
1 0 0

 ,(p1
p2

), p3
1 = Fl




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 , p1I3

, (3.47)

or in general
np∏
i=1

prii = Fl{M,∆}, where M =
( 0 Im

1 0
)
,∆ = diag

{
p1Ir1 , . . . , pnpIrnp

}
, (3.48)
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and m = r1 + · · ·+ rnp . �

It is a well-known fact that a rational proper3 transfer function G has infinitely many
state-space realizations G(s) = Fl

{(
D C
B A

)
, 1
sIn
}
, but there exist minimal realizations

(with the smallest possible n). In a similar fashion, a rational multivariate function A has
also infinitely many equivalent (Definition 3.28) LFR realizations Fl{F,∆}. Assume that
pi and pj are not commutative operators, namely [pi, pj ] = pipj−pjpi 6= 0, 1 ≤ i < j ≤ np.
Then, there exists a class of minimal LFR realizations A = Fl{F,∆}, where the size of
∆ is the smallest possible [92]. This minimal realization is called a “relative-minimal”
LFR if pi and pj do commute [163]. In [92], the dimension (m = r1 + · · · + rnp) of the
uncertainty block ∆ of a static LFR A(p) = Fl{F,∆(p)} is called the order of the LFR.

It is worth mentioning, that the LFRs in Example 3.2 are all relative-minimal. In the
following examples, however, we will experience that some operations will not result in a
relative-minimal LFR. Not to mention the fact that a rational expression may result in
completely different (but equivalent) LFRs, if the standard LFR operations are evaluated
in a different sequence.

Example 3.3 (Polynomials). Let us “compose” the LFR of a polynomial by applying
the summation rule of Lemma 3.31 to some simple monomials of Example (3.2):

p1 + p1p2 = Fl




0 1 1 0
1 0 0 0
0 0 0 1
1 0 0 0

 ,
p1

p1
p2


. (3.49)

Note that the order of LFR in (3.49) is 3 (r = {2, 1}). Consider again the same polyno-
mial written in its Horner factorized form:

p1(1 + p2) = Fl
{(

0 1
1 0

)
, p1

}
Fl
{(

1 1
1 0

)
, p2

}
= Fl


0 1 0

1 0 1
1 0 0

 ,(p1
p2

) (3.50)

Differently from (3.49), the resulting LFR (3.50) is a relative-minimal (second-order)
LFR (r = {1, 1}). �

Remark 3.9. A polynomial in its Horner factorized form not necessarily results in a
relative-minimal LFR. �

Example 3.4 (Rational functions). Using the inversion rule of Lemma 3.33, let us
compute the LFR of the following inverse function:

1
1 + p2

3
= F−1

l


1 1 0

0 0 1
1 0 0

 ,(p3
p3

) = Fl

1 −1 0

0 0 1
1 −1 0

 ,(p3
p3

). (3.51)

Applying the multiplication rule, we compute the LFR of the following rational function:

p1(1 + p2)
1 + p2

3
= Fl




0 1 0 −0 −0
1 0 1 −1 0
1 0 0 −1 0
0 0 0 0 1
1 0 0 −1 0

 ,

p1

p2
p3

p3




. (3.52)

Note that the LFR of the numerator (p1(1 + p2)) is given in (3.50). Finally, a matrix of
rational functions can be computed by applying the matrix composition rules of Lemma
3.30. �

To conclude, the recursive (or direct) LFT realization of a rational expression is com-
puted through in the in-order evaluation of a depth-first traversal of the corresponding

3the degree of the numerators in G(s) are at most equal to the degree of denominators in G(s).
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horzcat

*

*

p1 p2

()−1

+

1 *

p2 p2

()−1

+

1 p3

Figure 3.1: Expression tree of a rational ma-
trix expression

(
p1p2
1+p2

2

1
1+p3

)
, where “horzcat”

stands for the horizontal matrix composition
operation.

Figure 3.2: The geometrical interpretation of
the conditional constraint (3.56).

expression tree (see, e.g., Figure 3.1). The leaves of the tree constitute the independent
variables and constants appearing in the rational expression. The intermediate nodes
represent to the standard arithmetic operations of the rational expression, such that the
root of the tree corresponds to the outermost operation.

3.7 Positivstellensatz and the S-procedure

The Positivstellensatz (PS) constitutes an important result in the real algebraic geom-
etry and it is also the major mathematical apparatus behind the sum-of-squares (SOS)
approach. PS enables to formulate sufficient inequalities for set containment problems
or conditional inequalities. In the robust control theory and LFT framework, multiple
PS-like theorems were developed, such as the standard, or the full-block S-procedure. In
this section, we focus on the generalized S-procedure, which is a special case of PS.

Lemma 3.36 (Generalized S-procedure [162, Lemma 2.3.1]). Let q, p1, . . . , pr : Rn → R
be scalar valued functions. Assume that there exist some non-negative functions s1, . . . , sr
such that

−q(x) +
∑r
i=1 si(x)pi(x) ≥ 0 for all x ∈ R, (3.53)

then, the following set containment constraint

{x ∈ Rn | p1(x) ≤ 0} ∩ · · · ∩ {x ∈ Rn | pr(x) ≤ 0} ⊆ {x ∈ Rn | q(x) ≤ 0} (3.54)

is satisfied. �

The set containment in (3.54) can be equivalently reformulated as the following con-
ditional constraint:

“if p1(x) ≤ 0 , . . . , pr(x) ≤ 0, then, q(x) ≤ 0.” (3.55)

In Figure 3.2, we illustrate the set containment problem in the 2-dimensional space
(x ∈ R2) with a single condition (r = 1). The equivalent conditional constraint is the
following:

“if p(x) ≤ a, then, q(x) ≤ b, ” (3.56)

where p, q : Rn → R are multivariate functions. Geometrically, (3.56) prescribes the
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a-level set of p(x) to lay inside the b-level set of q(x). Namely:

Ωp
a ⊆ Ωq

b , where Ωf
c = {x ∈ Rn | f(x) ≤ c}. (3.57)

According to Lemma 3.36, the conditional constraint in (3.56) is equivalent to any of the
following two PS conditions:

∃ s : Rn → R+ such that (p(x)− a)− s(x)(q(x)− b) ≥ 0, (3.58a)
∃ s : Rn → R+ such that s(x)(p(x)− a)− (q(x)− b) ≥ 0. (3.58b)

Observe that the points belonging to the red region in Figure 3.2 do not satisfy the
conditional constraint (3.56) nor its equivalent PS formulations (3.58a) and (3.58b).

In the following statement, we present a special case of Lemma 3.36, called the stan-
dard S-procedure, formulated for quadratic expressions.

Lemma 3.37 [191, Section III-A]. Let Θ,M ∈ Rn×n be given symmetric matrices. We
have the following equivalence:

x>Θx < 0 for all x ∈ Rn such that x 6= 0, x>Mx ≤ 0 (3.59)
⇔ Θ− τM < 0 for some τ ≥ 0.

On the other hand, if M is not positive semidefinite, we have that

x>Θx ≤ 0 for all x ∈ Rn such that x>Mx ≤ 0 (3.60)
⇔ Θ− τM ≤ 0 for some τ ≥ 0. �

Note that Lemma 3.37 formulates equivalent conditions for the following two condi-
tional constraints:

“if p(x) = x>Mx ≤ 0, then, q(x) = x>Θx < 0” and
“if p(x) = x>Mx ≤ 0, then, q(x) = x>Θx ≤ 0”, respectively.

(3.61)

Lemma 3.37 is used, e.g., in [90] and [156], to formulate sufficient LMI conditions to
shape the storage function such that its certain level set be contained by a bounded
polytope.
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Chapter 4

Related solutions in the literature

In this chapter, without any claim of completeness, I present a few reference solutions of
literature. We can say that these approaches are a subset of the state-of-the-art solutions
in the robust and nonlinear system theory.

The notations of the reference solutions are aligned with the notation system used in
this dissertation. To keep the scope of this chapter between a reasonable limit, I present
the reference solutions in a simplified, condensed form.

4.1 Performance analysis for nonlinear LPV systems: a
grid based solution

Though it cannot be considered a “recent” solution, we feel reasonable to present the
grid-based approach of Wu (1995). Due to its simplicity and transparency, this technique
is frequently used to find approximate solutions of nonlinear problems.

As a subclass of (3.13), consider an LPV input-output system of the form

Σ :
{
ẋ = A(p)x+B(p)u,
y = C(p)x+D(p)u,

(4.1)

where p fulfills Assumption 3.1 with polytopes

P =×np
i=1

[
p
i
, pi
]
, R =×np

i=1
[
−%i, %i

]
. (4.2)

Functions A, B, C, D in (4.1) are Lipschitz continuous on P .
In the following theorem, we summarize the results of Theorem 3.3.1 and Lemma

4.4.2 of the PhD dissertation of Wu [73].

Theorem 4.1. Consider system Σ, and a finite number of C1 functions fi : Rnp → R,
which form the parameterized structure of the quadratic parameter-dependent storage
function candidate

V (x, p) = x>P (p)x, with P (p) = P0 +
∑m
i=1 Pifi(p). (4.3)

Let T and δ be fixed positive scalars. Suppose that there exist symmetric matrices Mi ∈
Rnx×nx and Pi ∈ Rnx×nx, i = 0, . . . ,m, such that

P (p)− δInx � 0, (4.4a)(
Inx Pi

P>i Mi

)
� 0, Tr(Mi) ≤ T, (4.4b)He{P (p)A(p)}+

∑m

i=1 Pi

(
∂fi
∂p

(p)%
)
P (p)B(p) 1

γ
C>(p)

B>(p)P (p) −Inu 1
γ
D>(p)

1
γ
C(p) 1

γ
D(p) −Iny

+ δInx+nu+ny � 0, (4.4c)
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are satisfied for all p ∈ Gr
(P , N1 × · · · ×Nj × · · · ×Nnp

)
, and all % ∈ Ve(R). Further-

more, assume that the number of grid points are selected such that

Nj ≥ 1+(pj−pj)δ
−1npT max

{
m∑
i=1

(
2M ij

A +M ij
B

)
+

np∑
k=1

νk

m∑
i=1

M ijk
ff ,

m∑
i=1

M ij
f

}
, (4.5)

where
M ij
A = max

p∈P

∥∥∥∂(fiA)
∂pj

(p)
∥∥∥

F
, M ij

f = max
p∈P

∣∣∣ ∂fi∂pj
(p)
∣∣∣,

M ij
B = max

p∈P

∥∥∥∂(fiB)
∂pj

(p)
∥∥∥

F
, M ijk

ff = max
p∈P

∣∣∣ ∂2fi
∂pj∂pk

(p)
∣∣∣. (4.6)

Then, system Σ has a finite induced-L2-gain smaller than or equal to γ. �

Note that the pair of LMIs in (4.4b) assure that the Frobenius norm (‖Pi‖F) of
matrices Pi are upper bounded by the positive scalar T . The upper-bounds for Nj

in (4.5) were derived by following the clever arguments of [73, Proof of Lemma 4.4.2].
The values of M ij

A , M ij
B , M ij

f , and M ijk
ff can be well approximated by evaluating the

corresponding derivative functions of (4.6) over a fine grid.

Remark 4.1. The LMI constraints in (4.4) guarantee that γ is an upper bound on the
induced L2-gain. However, the LMIs in (4.4) become more and more conservative as the
value of T−1 and δ is increased. On the other hand, a small δ and large T generate a
large number of grid points. �

Remark 4.2. In the practical applications, the pair of LMIs in (4.4b) are not considered,
and δ is often selected to be a small non-negative number (e.g., 10−5 or even zero). In
this case, the necessary grid density is infinitesimal. To gain a first insight into the input-
output behaviour of the system, the value of an upper bound γ is approximated (γ̂1) by
considering a coarse grid with a much smaller number of grid points than necessary. The
value of γ̂1 computed through a coarse grid is often smaller than the actual induced L2-
gain. Therefore, the computations are performed again using a finer grid with a larger
number of grid points (still less than necessary) to obtain a more precise approximation
γ̂2 for γ. If the grid points of the initial coarse grid are included in the fine grid, the
second approximation (γ̂2) is higher or equal to γ̂1 (see, e.g., the results in Figure 7.7).
As the grid density is uniformly increased, the computed γ̂ converges to an upper bound
γ on the induced L2-gain. �

4.2 Stability and induced L2-gain of LFR systems

In this section, we present significant results from the computational nonlinear system
theory. The studied reference solutions and theorems are not proved here, but they are
commented with additional derivations for the sake of clarity.

Though the approach of El Ghaoui and Scorletti [89; 90] and that of Coutinho et
al. [156] are fairly different, both techniques considered a nonlinear system model in the
linear fractional representation of the form:

F(Σ) :



ẋ = F11x+ F12u+ F13π, x(0) = 0 ∈ X ,
y = F21x+ F22u+ F23π,

η = F31x+ F32u+ F33π,

π = ∆η, ∆ = diag
(
x1Ir1 , . . . , xnxIrnx , p1Irnx+1 , . . . , pnpIrnx+rnp

)
,

(4.7)

where x, u, y are the state, input, and output signals respectively, p ∈ P ⊂ Rnp is a
constant uncertain parameter, finally, X and P are again compact polytopes. Signals
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π, η : [0,∞)→ Rm are the auxiliary feedback signals of the LFR.

4.2.1 Induced L2-gain approach of El Ghaoui and Scorletti (1996)

In this section, we present another elder solution, which is probably one of the fathers of
the computational nonlinear approaches. In the 80’s, the linear fractional transformation
(LFT) was deployed to model uncertainty in LTI models [66; 67; 86]. This general
LFT framework is applied by El Ghaoui and Scorletti [89; 90] to model nonlinearity,
and perform system analysis on time-invariant nonlinear autonomous and input-output
models.

Consider system (4.7) with F22 = F23 = 0 and assume that ∆ does not depend on
the parameter, namely, ∆(x) = diag

(
x1Ir1 , . . . , xnxIrnx

)
.

Remark 4.3. According to [112], block ∆ can be considered as a static LTV operator
∆ : Lm2 → Lm2 such that

π(t) = (∆η)(t) = ∆(x(t)) η(t).
At the same time, the (time-varying) matrix (∆(x(t))) of operator ∆ is defined through
a function of the state, namely, ∆ : x 7→ diag

(
x1Ir1 , . . . , xnxIrnx

)
. With an abuse of

notation, symbol ∆ represents an operator and a diagonal matrix-valued function of x at
the same time. Whereas, ∆(x) constitute the value of function ∆ in state x. Similarly,
symbols η and π denote signals and independent variables at the same time. The context
will then clarify which interpretation of these symbols we are considering. �

Assume that the induced 2-norm of matrix ∆(x) is less than or equal to σ−1 for all
x ∈ X , namely

‖∆(x)‖ = sup
06=η∈Rm

‖∆(x) η‖
‖η‖

≤ σ−1 for all x ∈ X . (4.8)

Assuming that x(t) ∈ X for all t ≥ 0, the norm of operator ∆ is less than or equal to
σ−1. This fact can be shown as follows:

‖∆‖2 = sup
06≡η∈Lm2

‖π‖22
‖η‖22

= sup
06≡η∈Lm2

‖η‖−2
2 ·

∫ ∞
0
‖∆(x(t)) η(t)‖2dt (4.9)

≤ sup
06≡η∈Lm2

‖η‖−2
2 ·

∫ ∞
0
‖∆(x(t))‖2 ‖η(t)‖2dt (4.9a)

≤ σ−2 · sup
06≡η∈Lm2

‖η‖−2
2 ·

∫ ∞
0
‖η(t)‖2dt = σ−2. (4.9b)

To rephrase, the norm of the uncertainty block ∆ can be kept below σ−1 if we can
define a set of admissible input signals, which maintain the state function inside X .
In [89], a number of sufficient LMI constraints are introduced, which provide a type of
input-to-state stability for system (4.7).

Let ek denote the kth column of the identity matrix Inx and let

S(r) =
{
S = diag(S1, . . . , Snx)

∣∣∣ 0 ≺ Si = S>i ∈ Rri×ri , i = 1, . . . , nx
}
,

G(r) =
{
G = diag(G1, . . . , Gnx)

∣∣∣Gi = −G>i ∈ Rri×ri , i = 1, . . . , nx
}
.

(4.10)

Using these notations, we summarize the results of [89, Theorem 4.1] for induced L2-gain
estimation.

Theorem 4.2. Consider system F(Σ) in (4.7) with ‖∆‖ ≤ σ−1. Suppose that there
exist P, S ∈ S(r), G ∈ G(r), and a scalar γ > 0, such that the LMIs(

γ−2σ−2 e>k
ek P

)
� 0, k = 1, . . . , nx, (4.11)
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Λ =

He{PF11}+F>21F21+F>31SF31 PF12+F>31SF32 PF13+F>31SF33−F>31G

F>12P+F>32SF31 F>32SF32−γ2Inu F>32SF33−F>32G

F>13P+F>33SF31+GF31 F>33SF32+GF32 F>33SF33+GF33−F>33G−σ
2S

 ≺ 0, (4.12)

are satisfied. Then, we have:

1. System (4.7) is well-posed over

X =
{
x ∈ Rnx

∣∣∣ |xi| ≤ 1
σ , i = 1, . . . , nx

}
=
[
− 1
σ ,

1
σ

]nx
. (4.13)

2. Every trajectory of system (4.7) with x(0) = 0 and input u ∈ Lnu2 such that ‖u‖2 ≤
1 is entirely contained in

Ωγ2 =
{
x ∈ Rnx

∣∣∣x>P x ≤ γ2
}
⊂ X ◦. (4.14)

3. System F(Σ) has a finite induced L2 norm less than or equal to γ. �

It is worth mentioning that LMI (4.12) is equivalent to the following scalar inequality
stated for all x ∈ Rnx , u ∈ Rnu , and all π ∈ Rm:( x

u
π

)>
Λ
( x
u
π

)
= x>P (F11x+ F12u+ F13π) +

(
x>F >11 + u>F >12 + π>F >13

)
Px

+ x>F >21F21x− γ2u>u− σ2π>Sπ + x>F >31S (F31x+ F32u+ F33π)
+ u>F >32S (F31x+ F32u+ F33π) + π>F >33S (F31x+ F32u+ F33π)

+ π>G (F31x+ F32u+ F33π)−
(
x>F >31 + u>F >32 + π>F >33

)
Gπ

= He
{
x>Pẋ

}
+ y>y − γ2u>u −σ2π>Sπ + η>Sη︸ ︷︷ ︸

≥0

+ π>Gη − η>Gπ︸ ︷︷ ︸
=0

≤ 0, (4.15)

Matrices S and G are block diagonal corresponding to the r = {r1, . . . , rnx} dimensional
blocks of ∆. Therefore, ∆ commutes with both S and G. Inequality (4.15) contains two
zeros terms π>Gη = −η>Gπ = 0. This is due to the fact that

π>Gη = η>∆Gη = η>G∆η = η>Gπ = −π>Gη = 0. (4.16)

On the other hand, ‖∆‖ ≤ σ−1 implies that

σ2π>π − η>η = ( πη )>
(
σ2I 0
0 −I

)
( πη ) = η>

(∆
I

)(
σ2I 0
0 −I

)(∆
I

)
η ≤ 0 for all η ∈ Rm. (4.17)

Therefore,(∆
I

)(
σ2I 0
0 −I

)(∆
I

)
≺ 0⇔

(∆
I

)(
σ2I 0
0 −I

)(∆
I

)
S =

(∆
I

)(
σ2S 0

0 −S

)(∆
I

)
≺ 0 (4.18)

⇔ σ2π>Sπ − η>Sη ≤ 0 for all η, π ∈ Rm : π = ∆η.

Finally, (4.15) can be lower estimated as follows:

He
{
x>P ẋ

}
+ y>y − γ2u>u ≤

( x
u
π

)>
Λ
( x
u
π

)
≤ 0, (4.19)

which, implies that system (4.7) has an induced L2-gain less than or equal to γ with
a quadratic storage function V : Rnx → R+, V (x) = x>Px. Matrices G and S are
practically a sort of Lagrange multipliers and S is related to the S-procedure method
applied to the conditional dissipation inequality:

“if σ2π>π ≤ η>η, then, He
{
x>P ẋ

}
+y>y−γ2u>u ≤ 0” for all x, u, π, η. (4.20)

In the literature (see, e.g.,[62]), another common equivalent form of LMI (4.12) is the
following: 

I 0 0
F11 F12 F13
0 I 0
F21 F22 F23
0 0 I
F31 F32 F33


>

0 P
P 0 0 0
0 −γ2I 0

0 I
0

0 0 −σ2S G
−G S




I 0 0
F11 F12 F13
0 I 0
F21 F22 F23
0 0 I
F31 F32 F33

 ≺ 0. (4.21)

Note that both F22 and F23 are presented in (4.21), though they are assumed to be zero
matrices. In this sense, (4.21) is a generalization of (4.12).
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The matrix inequalities in (4.11) are additional geometrical constraints for the storage
function. Namely, they force the γ2-level set Ωγ2 of the storage function to fit into
polytope X . Considering Schur’s complement lemma (Lemma 3.16), the LMI in (4.11)
is equivalent to

P − ekγ2σ2e>k � 0, k = 1, . . . , nx. (4.22)

Then, by pre- and post-multiplying with x> and x, respectively, we obtain:

x>
(
P − ekγ2σ2e>k

)
x = (x>Px− γ2)− (x>ekγ2σ2e>kx− γ2) (4.23)

= (x>Px− γ2)− γ2σ2
(
‖e>kx‖ − σ−2

)
> 0, k = 1, . . . , nx.

Inequality (4.23) implies the following set of conditional constraints

“if x>Px < γ2, then,
∣∣e>kx∣∣ ≤ 1

σ , ” k = 1, . . . , nx, (4.24)

which are the equivalent formulation of the set containment relationship in (4.14).

4.2.2 Induced L2-gain approach of Coutinho et al. (2008)

Following the ideas of El Ghaoui and Scorletti [89; 90], an efficient nonlinear performance
analysis approach is introduced by Coutinho et al. [156], who proposed to exploit the
advantages of affine annihilators and Finsler’s lemma (Section 3.5).

Consider system (4.7) in the following differential-algebraic representation
ẋ = F11x+ F12u+ F13 π(x, u, p),
y = F21x+ F22u+ F23 π(x, u, p),
0 = Π1(x, p)x+ Π2(x, p)u+ Π3(x, p)π(x, u, p),

(4.25)

where p ∈ Rnp is constant, and Π1, Π2, Π3 are affine functions of the state and the
parameter, such that

Π1 = ∆F31, Π2 = ∆F32, Π3 = ∆F33 − Im. (4.26)

Observer that nonlinear feedback π = ∆η of (4.7), is eliminated from (4.25), therefore,
π cannot be considered as a signal any more, but a nonlinear function of the state and
the parameter.

Furthermore, consider the following storage function candidate

V (x, p) = x>P(x, p)x, P(x, p) = Θ>(x, p)P Θ(x, p), (4.27)

where Θ is a well-defined (possibly rational) function of x and p. Let ζ(x, p) denote
Θ(x, p)x. Then, the storage function can be written in the terms of ζ as follows:

V (x, p) = ζ>(x, p)P ζ(x, p). (4.28)

To promote a systematic model construction, Coutinho et al. [156] proposed to use an
affine function of (x, p) defined as follows:

Θ : X × P → Rm̄×nx , such that Θ =
(
Inx
Θ1
Θ2

)
, Θ1 = x⊗ Inx , Θ2 = p⊗ Inx , (4.29)

where m̄ = nx + m̄1 + m̄2, m̄1 = n2
x, m̄2 = nxnp.

Theorem 4.3 [156, Theorem 1]. Consider system (4.7) in representation (4.25) with
affine functions (4.29) and

Ψ0 : X → Rs0×nx , Ψ2 : X × P → Rm̄×(m̄+1),

Ψ1 : X × P → R(m̄1+m̄2)×m̄, Ψ3 : X × P → R(m+s0)×(m̄+m+nu),
(4.30)

such that Ψ0 x ≡ 0 and

Ψ1 =
(Θ1 −Im̄1 0

Θ2 0 −Im̄2

)
, Ψ2 =

(
x −Ea
0 Ψ1

)
, Ψ3 =

(
Π1Ea Π3 Π2
Ψ0Ea 0 0

)
, (4.31)
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where Ea = (Inx 0nx×m̄1 0nx×m̄2). (4.31a)

Let X ⊂ Rnx and P ⊂ Rnp be given polytopes, with X be represented by a collection of
hyperplanes as follows:

X =
{
x ∈ Rn

∣∣∣ a>kx ≤ 1, k = 1, . . . ,mX
}
, (4.32)

where ak ∈ Rnx are perpendicular vectors to the associated faces of X . Suppose that
positive scalars µ, γ, and matrices P = P >, L, W , Mk, k = 1, . . . ,mX are solutions of
the following LMIs:

P + He{LΨ1(x, p)} � 0 for all (x, p) ∈ Ve(X×P), (4.33)(
2µ−1 −µa>kEa
−µE>a ak P

)
+ He{MkΨ2(x, p)} � 0 for all (x, p) ∈ Ve(X×P), (4.34)

Λ(x, p) +
(

He{WΨ3(x,p)} 0
0 0ny×ny

)
≺ 0 for all (x, p) ∈ Ve(X×P), (4.35)

where k = 1, . . . ,mX and

Λ =

He{P Θ̃F11Ea} P Θ̃F13 P Θ̃F12 E>a F>21

F>13Θ̃>P 0 0 F>23
F>12Θ̃>P 0 −γInu F>22
F21Ea F23 F22 −γIny

, Θ̃ =
(

Inx
Θ1+Inx⊗x

Θ2

)
. (4.35a)

Then, the trajectory x starting from x(0) = 0 and driven by an admissible disturbance
signal u ∈ Lnu2 , ‖u‖2 ≤ γ−1 lies in the set

Ω1 = {x ∈ X | ∃ p ∈ P , such that V (x, p) ≤ 1}, (4.36)

for all constant uncertain parameter p ∈ P . Moreover, ‖y‖2 ≤ γ‖u‖2. �

Observe that Ψ1, Ψ2, and Ψ3 are affine annihilators of vector-valued functions ζ,(
1
ζ

)
, and

(
ζ
π
u

)
, respectively. Furthermore, a possible affine annihilator for x is, e.g.,

Ψ0 = (Inx ⊗ x)− (x⊗ Inx).
Pre- and post-multiplying (4.33) by ζ> and ζ, we obtain that V (x, p) > 0 for all

(x, p) ∈ X × P , x 6= 0.
According to Schur’s complement lemma (Lemma 3.16) and Proposition 3.20, LMI

(4.35) is equivalent to

Λ1(x, p) +

E>a F>21
F>23
F>22

1
γ

E>a F>21
F>23
F>22

> + He{WΨ3(x, p)} ≺ 0 in X × P , (4.37)

where Λ1 =

He{P Θ̃F11Ea} P Θ̃F13 P Θ̃F12

F>13Θ̃>P 0 0
F>12Θ̃>P 0 −γInu

. (4.37a)

If we pre-multiply (4.37) by
(
ζ> π> u>

)
and post-multiply by the transpose, the terms

with Ψ3 vanish, then, we obtain

He
{
ζ>(x, p)P ζ̇(x, p)

}
− γu>u+ 1

γ y
>y < 0. (4.38)

In the previous step, we took into consideration that the full derivative of ζ can be
expressed as follows:

ζ̇(x, p) = d
dt

( x
Θ1(x)x
Θ2(p)x

)
=
(

ẋ
Θ1(ẋ)x+Θ1(x) ẋ

Θ2(p) ẋ

)
, where Θ1(ẋ)x = (ẋ⊗ Inx)x = (Inx ⊗ x) ẋ.

Similarly to (4.11), the LMIs in (4.34) correspond to the geometrical conditions cap-
tured through the S-procedure to enforce the 1-level set of V to belong to X . Pre- and
post-multiplying (4.34) by

(
1
ζ

)>
and

(
1
ζ

)
, we obtain the PS condition:

−2µ(a>kx− 1) + (x>P(x, p)x− 1) > 0 for all (x, p) ∈ X × P . (4.39)
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Inequality (4.39) implies the following conditional constraint:

“if V (x, p) < 1, then, a>kx ≤ 1” for all k = 1, . . . ,mX , (4.40)

or equivalently Ω1 ⊂ X ◦.

4.2.3 DOA computation approach of Trofino and Dezuo (2013)

In this section, we present the stability analysis and DOA computation approach of
Trofino and Dezuo [16], which is closely related to the nonlinear L2-gain approach of
Coutinho et al. [156]. Similarly to [156], affine annihilators and Finsler’s lemma is applied
efficiently in [16] to formulate sufficient polytopic LMIs for stability.

Consider a non-autonomous rational nonlinear system (3.3) in the following differential-
algebraic representation{

ẋ = F11x+ F12 π1(x, p), with x(0) = x0 ∈ X ,
0 = N(x, p)π(x, p) for all (x, p) ∈ X × P , where π = ( x

π1 ),
(4.41)

and with a time-varying parameter signal p satisfying Assumptions 3.1. Furthermore,
consider a Lyapunov function candidate V : X × P → R in the following form

V (x, p) = x>Q(x, p)x = π>(x, p)Q(x, p)π(x, p), (4.42)
with Q(x, p) = Q0 +

∑nx
i=1Q1ixi +

∑np
j=1Q2jpj ∈ Rm×m, (4.42a)

where function π : X × P → Rm, m = nx + m1 is the same that appear in (4.41).
Function π1 : X × P → Rm1 can be given manually, e.g., a set of monomials up to a
given degree:

π>1 (x, p) = ( x1 x2 x2
1 x1x2 x2

2 x3
1 x2

1x2 x1x2
2 x2

2 p1x1 p1x2 p1x2
1 p1x1x2 p1x2

2 ), (4.43)

or it may originate from a possible linear fractional representation (ẋ = F11x + F12 π1,
η1 = F21x+ F22π1, π1 = ∆η1) of (4.41) as follows: π1 = (Im1 −∆F22)−1∆F21x.

Remark 4.4. In [16], the Lyapunov function candidate (4.42) is considered with a
constant matrix Q instead of an affine function (4.42a) of x and p. In this sense, the
approach in this presentation is a slight generalization of that proposed in [16]. �

To formulate sufficient convex conditions for the Lyapunov inequality (3.4b), Trofino
and Dezuo [16] proposed to factorize the total derivative of the Lyapunov function as
presented in the following proposition.

Proposition 4.4 (based on [16, Section 4]). Consider function V = π>Qπ (4.42) and
constant matrices1

Er=
(
Im 0m×(m1+nxm)

)
, Ar=

(
F11 F12 0 0m1×(nxm)
0 0 Im1 0m1×(nxm)

)
, Wr=

(
0mnx×(nx+2m1) Imnx

)
.

Then, the derivative function V̇ with ẋ = f(x, p) and ṗ = % can be expressed as follows

V̇ (x, p) = π>r (x, p, %)Qr(x, p, %)πr(x, p, %), (4.44)

where Qr(x, p, %) = He
{
E>rQ(x, p)Ar + 1

2E
>
r Q̄1Wr

}
+ E>rQ2(%)Er, (4.44a)

and Q2(%) =
∑np
j=1Q2j %j , Q̄1 =

(
Q11 . . . Q1nx

)
. �

Furthermore, function πr is given as follows

πr = ( πdµ ), with πd = ( ππ̇1) and µ =
( µ1
···
µnx

)
= (f ⊗ Im)π, (i.e., µi = ẋiπ), (4.45)

1Subscript r in πr, Qr(x, p, %), Er, Ar, etc. does not have a specific meaning. Other subscript letters
are already assigned.
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where π̇1 = ∂π1
∂x
f + ∂π1

∂p %. (4.46)

Proof. Observe the following identities:

π = Erπr, π̇ =
(
f
π̇1

)
= Arπr, µ = Wrπr. (4.47)

Then, the full derivative of function Q can be given as follows:

Q̇(x, p) =
nx∑
i=1

Q1iẋi +
np∑
j=1

Q2j% = Q̄1(f(x, p) ⊗ Im) +Q2(%).

Accordingly, the derivative function V̇ can be expressed in the terms of πr:

V̇ = He
{
π>Q π̇

}
+ π>Q̇ π (4.48)

= He
{
π>rE

>
rQArπr

}
+ π>Q̄1(f ⊗ Im)π + π>Q̇2 π (4.49)

= π>rHe
{
E>rQAr

}
πr + 1

2He
{
π>Q̄1µ

}
+ π>rE

>
r Q̇2Erπr (4.50)

= π>r

(
He
{
E>rQAr + 1

2E
>
r Q̄1Wr

}
+ E>r Q̇2Er

)
πr. (4.51)

Finally, the derivative function can be written as follows:

V̇ (x, p) = π>r (x, p, %)
(
He
{
E>rQ(x, p)Ar + 1

2E
>
r Q̄1Wr

}
+ E>rQ2(%)Er

)
πr(x, p, %),

which completes the proof.

The quadratic reformulation (4.44) of the derivative function V̇ brings us closer to
the point, where Finsler’s lemma is applicable to formulate convex LMIs for stability.
However, we still need to determine an affine annihilator for function πr.

Proposition 4.5 (based on [16, Section 4]). Assume that N and Nd are affine annihi-
lators of π and πd = ( π

π̇1 ), respectively, with

N(x, p) = N0 +N1(x) +N2(p) = N0 +
∑nx
i=1N1ixi +

∑np
j=1N2jpj .

Consider function Nr defined as follows:

Nr(x, p, %) =

 Nd(x,p,%) 0
0 Inx⊗N(x,p)

N2(%)Ed+N(x,p)Ad N̄1
(Inx⊗x)Hd −Inx⊗(Inx 0nx×m1)

, (4.52)

where Ed =
(
Im 0m×(4m1)

)
, Ad =

(
F11 F12 0
0 0 Im1

)
, Hd =

(
F11 F12 0

)
,

and N2(%) =
∑np
j=1N2j %j , N̄1 =

(
N11 . . . N1nx

)
.

Then, Nrπr ≡ 0, i.e., Nr is an affine annihilator of πr. �

Proof. Affine function N is an annihilator of π, and hence of µi = ẋiπ. On the other
hand, if we express the derivative of Nπ and consider that π̇ = Adπd, we obtain the
following identity:

d
dt(Nπ) = Ṅπ +Nπ̇ =

∑nx
i=1N1i (πẋi) +

(∑np
j=1N2j%j

)
π +Nπ̇ (4.53)

=
∑nx
i=1N1iµi +N2(%)Edπd +NAdπd = N̄1µ+ (N2(%)Ed +NAd)πd = 0.

Identity (4.54) gives back the third row of Nr(x, p, %). Finally, we can observe that

(Inx 0nx×m1)µi = xẋi, (4.54)

therefore, if we collect vectors x ẋi into a composed vector, we obtain an affine relationship
between µ and πd:[

Inx ⊗ (Inx 0nx×m1)
]
µ =

(
x ẋ1
...
x ẋn

)
= (Inx ⊗ x) ẋ = (Inx ⊗ x)Hd πd. (4.55)

Identity (4.55) gives the last row of annihilator Nr.
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In the following theorem, we present sufficient LMI conditions for stability as proposed
by [16].

Theorem 4.6 (based on [16, Theorem 4.1]). Consider system (3.3) in representation
(4.41), and a Lyapunov function candidate in the form (4.42). Assume that there exist
full matrices L and Lr of the appropriate dimensions such that

Q(x, p) + He{LN(x, p)} − α0

(
Inx 0
0 0

)
� 0 for all (x, p) ∈ Ve(X×P), (4.56a)

Qr(x, p, %)+He{LrNr(x, p, %)}+α0
(
Inx 0
0 0

)
�0 for all (x, p, %)∈Ve(X×P×R), (4.56b)

where Qr and Nr were defined in (4.44) and (4.52), respectively. Then, the equilibrium
point x∗ = 0 of system (3.3) is locally asymptotically stable. �

4.2.4 Boundary conditions of Trofino and Dezuo (2013)

Note that El Ghaoui and Scorletti [89; 90] and Coutinho et al. [156] used the S-procedure
to solve the level-set containment problem Ω1 ⊂ X ◦. A possible alternative solution to
guarantee Ω1 ⊂ X ◦ is presented by Trofino and Dezuo [16], who considered the following
boundary conditions:

V (x, p) > 1 for all x ∈ ∂X and all p ∈ P . (4.57)

To formulate convex constraints, inequality (4.57) is enforced over all (convex polytopic)
facets Fk of polytope X , k = 1, . . . ,mX . This result of [16, Section 5.1], which is a
consequence of Lemma 3.22, is summarized in the following corollary.

Corollary 4.7 [16]. Consider function V = π>Qπ (4.42) over X × P with polytope X
given by its bounding hyperplanes as presented in (4.32). Assume that affine function
N : X × P → Rs×(nx+1) satisfies N( 1

π ) ≡ 0 on X × P , and consider constant matrices

Ea =
(
Inx 0nx×m1

)
, Nk =

(
−1 a>kEa

)
, and N⊥k =

(
a>kEa
Im

)
. (4.58)

Suppose that for all k = 1, . . . ,mX there exists full matrix Lk ∈ R(nx+1)×s, which satisfies(
N⊥k

)>((−1 0
0 Q(x,p)

)
+ He{LkN(x, p)}

)
N⊥k � 0 for all (x, p) ∈ Ve(Fk×P). (4.59)

Then, V (x, p) > 1 for all x ∈ ∂X and all p ∈ P , thus, Ω1 ⊂ X ◦. �

Note that constant matrix Nk satisfies Nk( 1
π ) ≡ 0 on Fk × P . According to the

implication (3.24c)⇒ (3.24a) of Finsler’s lemma, we can conclude that (4.59) implies(
1

π(x,p)

)>((−1 0
0 Q(x,p)

)
+ He{LkN(x, p)}

)(
1

π(x,p)

)
� 0 for all (x, p) ∈ Fk×P . (4.60)

Evaluating the products in (4.60), we get back the boundary condition in (4.57).
In order to fill X by Ω1 us much as possible, Trofino and Dezuo [16] prescribed further

boundary inequalities, namely

V (x, p) < τk for all (x, p) ∈ Fk × P , and all k = 1, . . . ,mX , (4.61)

where the slack variables τk are meant to be minimized through the optimization. Sim-
ilarly to (4.57), these inequalities in (4.61) can be enforced by sufficient LMIs.

4.3 Dissipativity analysis of affine descriptor systems

In this section, we present the powerful theoretical and computational results of [123–
127; 192] written for LTI, and a class of multi-affine parameter dependent LPV descriptor
systems.

Consider a linear parameter varying LFR system (4.7), where the uncertainty block
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is only parameter-dependent, namely, ∆(p) = diag
(
p1Ir1 , . . . , pnpIrnp

)
and the possibly

time-varying parameter signal p satisfies Assumption 3.1. Similarly to (4.25), let us
rewrite (4.7) into the following descriptor model form:{

Eξ̇ = A(p)ξ +B(p)u
y = Cξ +Du

with ξ = ( xπ ) ∈ Rnx+m, (4.62)

where

A =
(

F11 F13
∆F31 ∆F33−I

)
, B =

(
Bu

∆F32

)
, (4.63)

E =
(
I 0
0 0
)
, C =

(
F21 F23

)
, D = F22. (4.64)

Suppose that the LFR (4.7) is well-posed (i.e., I−∆(p)F33 is invertible for all p ∈ P).
Then, according to [124, Definition 1], the descriptor system (4.62) is regular and impulse-
free if the following assumptions are fulfilled.

Assumption 4.1. Matrix sE − A(p) is regular (with respect to s ∈ C), i.e., does not
exist p ∈ P , such that the determinant of sE−A(p) =

(
sInx−F11 −F13
−∆(p)F31 I−∆(p)F33

)
is identically

zero. Furthermore, the pair (E,A) does not have impulsive modes, i.e., does not exist
real vectors v1, v2, . . . , such that Ev1 = 0 and Evk = A(p)vk−1, k = 2, 3, 4, . . . . �

Although, the following notions and statements are all applicable for a more general
class of descriptor systems (with A,B,C,D being multi-affine functions of p), they all
assume that the descriptor system is regular and impulse-free.

The descriptor system (4.62) with the initial condition ξ(0) = 0 is said to be dissipative
with respect to the supply rate

s(u, y) = −( uy )>S ( uy ), (4.65)

with S = S> =
(
S11 S12
S>12 S22

)
∈ Rnu+ny×nu+ny , S22 = Γ22Γ>22 � 0,

if the following integral quadratic constraint (IQC)∫ T
0 s(u(t), y(t))dt ≥ 0 (4.66)

holds for any T ≥ 0. Note that (4.66) is a special case of the more general integral
dissipation inequality (3.15) formulated with a trivial initial condition. According to
[123–125], the IQC (4.66) holds if there exist

P (p) =
(
P1(p) 0
P2(p) P3(p)

)
∈ R(nx+m)×(nx+m), with P1(p) = P >1 (p) ∈ Rnx×nx ,

W1(p) =
( 0nx×nu
W12(p)

)
∈ R(nx+m)×nu , W2(p) =

( 0nx×ny
W22(p)

)
∈ R(nx+m)×ny ,

(4.67)

such that

P >(p)E � 0, (4.68a)
I 0

A(p) B(p)
0 I

C(p) D(p)


>

P̌ >(p, %)E P (p) 0 0
P (p) W2(p)W >

2 (p) W1(p) W2(p)Γ>22
0 W >

1 (p) S11 S12
0 Γ22W

>
2 (p) S>12 Γ22Γ>22




I 0
A(p) B(p)

0 I

C(p) D(p)

 ≺ 0, (4.68b)

are satisfied for all (p, %) ∈ P × R, where P̌ (p, %) =
∑np
i=1

∂P
∂pi

(p)%i. Applying Schur’s
complement lemma to (4.68b), we obtain

I 0 0
A(p) B(p) 0

0 I 0
C(p) D(p) 0

0 0 I



>
P̌ >(p, %)E P (p) 0 0 0
P (p) 0 W1(p) 0 W2(p)

0 W >
1 (p) S11 S12 0

0 0 S>12 0 Γ22
0 W >

2 (p) 0 Γ>22 −I




I 0 0

A(p) B(p) 0
0 I 0

C(p) D(p) 0
0 0 I

 ≺ 0. (4.69)
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Two equivalent (expanded and bilinear) form of (4.69) is He
{
P >(p)A(p)

}
+ P̌ >(p, %)E P >(p)B(p) + C>(p)S>12 +A>(p)W1(p) C>(p)Γ22 +A>(p)W2(p)

B>(p)P (p) + S12C(p) +W >
1 (p)A(p) S11 + He

{
S12D(p) +W >

1 (p)B(p)
}

D>(p)Γ22 + C>(p)W2(p)
Γ>22C(p) +W >

2 (p)A(p) Γ>22D(p) +W >
2 (p)B(p) −I

 (4.70)

= He


 P>(p) 0 0
W>

1 (p) Inu 0
W>

2 (p) 0 Iny

( Inx 0
0 S12
0 Γ>22

)(
A(p) B(p) 0
C(p) D(p) 0

)+
(
P̌>(p,%)E 0 0

0 S11 0
0 0 −Iny

)
≺ 0. (4.71)

According to [125], P (p) is non-singular as it satisfies (4.68) with S22 � 0. Let us
introduce the following (non-singular) transformation matrix

T (p) =
(

Q(p) 0 0
Z1(p) Inu 0
Z2(p) 0 Iny

)
, where Z1(p) = −W >

1 (p)P (p), Z2(p) = −W >
2 (p)P (p) (4.72)

and Q(p) ∈ R(nx+m)×(nx+m), such that P (p)Q>(p) = Q(p)P >(p) = I. (4.73)

If we pre- and post-multiply (4.71) by T (p) and T >(p), respectively, we finally obtain the
PD-LMI condition [125, Eq. (5) and (6)] sufficient for the dissipation inequality. These
results of [125] are summarized in the following theorem.

Theorem 4.8 [123–125]. Consider a linear parameter varying descriptor system

Σd :
{
Eξ̇ = A(p)ξ +B(p)u,
y = C(p)ξ +D(p)u,

(4.74)

with E =
(
Inx 0
0 0m×m

)
, A(p) =

(
A11(p) A12(p)
A21(p) A22(p)

)
, ξ = ( xπ ) ∈ Rnx+m,

where A22(p) is non-singular for all p ∈ P . The following statements are equivalent:

1. There exist functions P , W1, W2 of p as defined in (4.67), such that P >(p)E � 0
and (4.71) are satisfied for all p ∈ P .

2. There exist functions Q, Z1, Z2 of p:

Q(p) =
(
Q1(p) Q2(p)

0 Q3(p)

)
∈ R(nx+m)×(nx+m), with Q1(p) = Q>1(p) ∈ Rnx×nx , (4.75)

Z1(p) = (0nu×nx Z12(p)) ∈ Rnu×(nx+m), Z2(p) =
(
0ny×nx Z22(p)

)
∈ Rny×(nx+m),

such that they satisfy Q(p)E � 0 and the “pseudo-dual” matrix inequality

He
{(

Inx 0
0 S12
0 Γ>22

)(
A(p) B(p) 0
C(p) D(p) 0

)(Q>(p) Z>1 (p) Z>2 (p)
0 Inu 0
0 0 Iny

)}
+
(
−EQ̌>(p,%) 0 0

0 S11 0
0 0 −Iny

)
≺ 0. (4.76)

for all (p, %) ∈ P ×R, where Q̌(p, %) =
∑np
i=1

∂Q
∂pi

(p)%i.

3. System Σd is dissipative with respect to the supply rate (4.65). �

Until to this point, we did not discuss about a storage function of system Σd. We
will demonstrate that the PD-LMI (4.70) corresponds to a dissipation inequality with a
(practically quadratic) storage function

V (x) = ξ>P >(p)Eξ = x>P1(p)x, (4.77)

Let ϕ = Γ22y denote the artificial signal introduced through the Schur’s complement
lemma. Furthermore, we pre- and post-multiply LMI (4.70) by

(
x> u> ϕ>

)
and by its

transpose. Then, we obtain:
He
{
x>P>(p)Eẋ

}
+x>Ṗ>(p)Ex+He

{
ϕ>W>

1 (p)Eu
}

+He
{
ϕ>W>

2 (p)Eẋ
}
−s(u,y)<0 (4.78)

Observe that W >
1 (p)E = 0, W >

2 (p)E = 0, and P >(p)E = E>P (p), each for all p ∈ P ,
therefore, inequality (4.78) simplifies to V̇ < s(u, y).
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4.3.1 Cross-corner evaluation technique of Masubuchi (1999)

It is worth mentioning that both the primal and the dual matrix inequalities in (4.71)
and (4.76), respectively, are often infinite-dimensional problems in the sense, that the
inequalities should be tested in infinitely many points over P . However, if we assume
that A,B,C,D, P,Q,W1,W2, Z1, Z2 are all multi-affine functions of p, the relaxation
technique of Masubuchi [126; 127] makes possible to formulate a system of ordinary
LMIs, which together imply the nonlinear PD-LMI ((4.71) or (4.76)). This relaxation
method can be considered a (non-trivial) extension of the corner evaluation technique
for affine PD-LMIs defined over polytopes (Proposition 3.20).

In this section, the dimension of vector p is denoted by n = np for simplicity.

Definition 4.9 [126, Section 2.2]. Function F : P → Rm1×m2 is called a multi-affine
function of (p1, . . . , pn) ∈ P (or simply p ∈ P) if F is affine with respect to any single
independent variable pi while the other variables are fixed. Formally,

F (p) =
∑
τ∈In

Fτ

n∏
i=1

pτii , where In = {τ = (τ1, τ2, . . . , τn) | τi ∈ {0, 1}, i = 1, . . . , n}.

and Fτ = Fτ1τ2...τn ∈ Rm1×m2 are constant matrices. Furthermore, P is a hyper-rectangle
in Rn, namely

P =
n×
i=1

[
p
i
, pi

]
. (4.79)

Each “tuple of indices” τ in In corresponds to a vertex pτ of P , e.g.,

(0, . . . , 0) 7→ (p1, . . . , pn), (1, . . . , 1) 7→ (p1, . . . , pn),

(. . . , 0(ith), . . . ) 7→ (. . . , p
i
, . . . ), (. . . , 1(ith), . . . ) 7→ (. . . , pi, . . . ). �

Differently, from [126; 127], we introduce an equivalence relation on In × In to sim-
plify the further notations. Consider two pair of tuples (τ, µ) and (τ ′, µ′) ∈ In × In.
Let say that (τ, µ) and (τ ′, µ′) are equivalent if (τ ′, µ′) can be obtained from (τ, µ) by
interchanging one or more corresponding coordinates in tuples τ and µ, e.g.,(

(τ1,...,τi,...,τn),(µ1,...,µi,...,µn)
)
≡
(
(τ1,...,µi,...,τn),(µ1,...,τi,...,µn)

)
. (4.80)

If n = 2, the following pairs of tuples from I2 × I2 are equivalent

(P2,9 : )
(
(0, 0), (1, 1)

)
≡
(
(0, 1), (1, 0)

)
≡
(
(1, 1), (0, 0)

)
≡
(
(1, 0), (0, 1)

)
. (4.81)

Each pair in (4.81), was obtained by swapping the corresponding coordinates of the
previous pair. This equivalence relation generates a partitioning of In × In, namely,

3n⋃
k=1

Pn,k = In × In, (4.82)

where partitions Pn,k are pairwise disjoint, namely, Pn,k ∩Pn,l = ∅ if k 6= l.
It can be shown that a partition Pn,k may have 1, 2, . . . , or 2n number of distinct

elements from In×In. Furthermore, Cin ·2n−i number of distinct partitions exist, which
have 2i elements, i = 0, . . . , n. Then, we can show that the number of partitions in total
is 3n, whereas, the number of elements in In × In is 22n. In Appendix A, we provided
the partitioning of In × In for n = 1, 2, 3.

In the following lemma we present an important result of Masubuchi [126], namely a
special case of [126, Lemma 4].

Lemma 4.10. Consider two multi-affine functions F : Rn → Rm1×m2 and G : Rn →
Rm2×m3. Let “<” denote a partial ordering on Rm1×m3. Let pτ denote the vertex of
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hyper-rectangle P corresponding to the tuple of indices τ ∈ In. Suppose that∑
(τ,µ)∈Pn,k

F (pτ )G(pµ) < 0, for all k = 1, . . . , 3n. (4.83)

Then, F (p)G(p) < 0 for all p ∈ P . �

Lemma 4.10 is a special case of [126, Lemma 4] in the sense that [126] considered a
more general class of functions, namely, piecewise multi-affine functions. Therefore, [126]
proposed to split up P into sub-domains.

Lemma 4.10 has an important consequence.

Corollary 4.11. Consider two multi-affine functions F : Rnp+n% → Rm1×m2 and G :
Rnp → Rm2×m3. Let “<” denote a partial ordering on Rm1×m3. Let pτ1 and %τ2 denote
the appropriate vertex of hyper-rectangles P ⊂ Rnp and R ∈ Rn%, respectively, where
τ1 ∈ Inp and τ2 ∈ In%, respectively. Suppose that∑

(τ1,µ1)∈Pnp,k

F (pτ1 , %τ2)G(pµ1) < 0 for all k = 1, . . . , n3 and all τ2 ∈ In% . (4.84)

Then, F (p, %)G(p) < 0 for all (p, %) ∈ P ×R. �

In Corollary 4.11, we provided sufficient conditions to test an inequality, which is
multi-affine in % but contains products of multi-affine functions in p. In this case, it is
enough the test the inequality only in the corner points of R with respect to %. However,
with respect to p, the inequality should be evaluated as presented in Lemma 4.10.

A further consequence of Corollary 4.11 is that a multi-affine parameter-dependent
inequality can be enforced on a hyperrectangle P by testing its feasibility in the corner
points of P .

Finally, observe that the bilinear form of the dissipation inequality (4.71) (but also
its dual formulation (4.76)) can be written in the form

He{F (p)G(p)}+H(p, %), (4.85)

where F and G are multi-affine functions of p, and H is a multi-affine function of (p, %).
Therefore, both PD-LMIs (4.71) and (4.76) can be ensured by testing their feasibility as
presented in Corollary 4.11.

4.4 Performance analysis for LPV systems using integral
quadratic constraints

In this section, we study one of the most powerful state-of-the-art approaches for ro-
bust analysis and controller synthesis. Without going into the technicalities, we provide
a slight insight into the IQC-framework with a special interest in the stability and per-
formance analysis of nominal LPV plants with rate-bounded parameters and dynamic
multipliers.

The major idea behind the IQC-theory is to encapsulate the input-output relations of
an uncertain nonlinear (static or dynamic) operator ∆ into a so-called integral quadratic
constraint of the form∫ ∞

−∞

(
η̂(iω)
π̂(iω)

)>
Π(iω)

(
η̂(iω)
π̂(iω)

)
dω ≥ 0, and ∆ : η 7→ π = ∆η, (4.86)

where η̂, π̂ denote the Fourier transforms of signals η, π, respectively, i =
√
−1 denotes

the imaginary unit, ω denotes the angular frequency. The (possibly static) transfer
function Π is called a multiplier.
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As it already appeared in (4.66), a dissipativity relation can be written in the form
of an IQC (4.86). For instance, the fact that block ∆ is passive can be captured by
Π =

( 0 I
I 0
)
, or Π =

(
κ2I 0
0 I

)
describes that operator ∆ has an induced L2-gain smaller

than or equal to κ.
Consider again the LPV system Σ in (4.1) in the LFR (4.7). Let s denote the Laplace

operator, and observe that the input-output relationship of Σ can be given by the fol-
lowing feedback interconnection system

(
M11(s) M12(s)
M21(s) M22(s)

)

∆

uy

η π Σ :


η = M11(s)π +M12(s)u,
y = M21(s)π +M22(s)u,
π = ∆η, where M(s) =

(
M11(s) M12(s)
M21(s) M22(s)

)
.

(4.87)

Let a possible state-space realization of M(s) be written in the following lower LFR:

M(s) = Fl
{(

F33 F32
F23 F22

F31
F21

F13 F12 F11

)
, 1
sInx

}
. (4.88)

Setting u ≡ 0, the autonomous part of system (4.87) is given by the feedback intercon-
nection system below:

G(s)

∆

η π

{
η = G(s)π,
π = ∆η,

where G(s) = M11(s) = Fl
{(

F33 F31
F13 F11

)
, 1
sInx

}
. (4.89)

Now, we present the celebrated IQC stability criterion of Megretski and Rantzer [99]
for the interconnected system (4.89).

Theorem 4.12 [99, Theorem 1]. Assume that the set of admissible uncertainty ( /∆) is
star shaped namely τ∆ ∈ /∆ if ∆ ∈ /∆ and τ ∈ [0, 1]. Consider a stable LTI system G(s)
and let ∆ ∈ /∆. Assume that

1. the feedback interconnection system (4.89) is well-posed for τ∆, τ ∈ [0, 1], namely,
Im − τF33∆ is nonsingular,

2. for all τ ∈ [0, 1], the IQC (4.86) defined by Π = Π∗ is satisfied by τ∆,

3. there exists ε > 0 such that(
G(iω)
I

)∗
Π(iω)

(
G(iω)
I

)
+ εI � 0, for all ω ∈ R. (4.90)

Then, the feedback interconnection of operators G(s) and ∆ is stable.
If assumptions 1. and 2. hold for every ∆ ∈ /∆, the interconnection is robustly stable

(i.e., for all admissible ∆ ∈ /∆). �

According to [110], the results of Theorem 4.12 can be extended for dissipativity anal-
ysis by “injecting a performance channel” into the frequency-domain inequality (4.90).

Corollary 4.13 [110, Corollary 3]. Assume that

1. the feedback interconnection system (4.87) is well-posed for all ∆ ∈ /∆,

2. the IQC (4.86) defined by Π = Π∗ is satisfied by all ∆ ∈ /∆,

3. there exists ε > 0 such that(
M11(iω) M12(iω)

I 0
M21(iω) M22(iω)

0 I

)∗(
Π(iω) 0

0 S

)(M11(iω) M12(iω)
I 0

M21(iω) M22(iω)
0 I

)
+ εI � 0, for all ω ∈ R. (4.91)
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Then, the feedback interconnection of LTI system M(s) and the uncertain operator ∆ is
robustly stable and robust performance with respect to the supply rate s(u, y) = ( yu )>S( yu )
is guaranteed. �

Remark 4.5. The Laplace operator and the supply function are denoted by the same
latter s, however, they can be identified obviously as their roles are different. �

Note that, the choice of the IQC multiplier Π constitutes an important degree of
freedom in the analysis problem, which makes possible to represent a wide variety of
uncertain perturbations. In this section, we focus on parametric uncertainty

/∆ =
{

∆ ◦ p
∣∣∆(p) = diag{piIri}i=1,...,np , p : [0,∞)→ P , ṗ : (0,∞)→ R

}
, (4.92)

with rate-bounded parameters p satisfying Assumptions 3.1, where P and R are a
bounded polytopes and 0 ∈ P . Observe that ∆ : p 7→ ∆(p) is a linear function of
p ∈ P , therefore, ∆̇(p(t)) = ∆(ṗ(t)).

Observe that in Corollary 4.13, the (physical) limitations on ṗ are not taken into
consideration. Therefore, the inequality (4.90) formulated with a given multiplier Π
would give a conservative solution, as it is satisfied for all (essentially) bounded parameter
signal p : [0,∞)→ P .

In order to inject the parameter rates into the stability analysis, Helmersson [103]
proposed to use the swapping lemma of Jönsson [102]. Before we formulate the swapping
lemma, we need to introduce some auxiliary notations. First, consider the transfer
function T as follows

T (s) = diag{Ti(s)}i=1,...,np = Fl
{(

D̂ Ĉ

B̂ Â

)
, 1
sIn′

}
, (4.93)

where Ti(s) = Fl
{(

D̂i Ĉi

B̂i Âi

)
, 1
sIn′i

}
∈ Cm

′
i×ri . (4.94)

Integers n′i andm′i denote the number of states and outputs, respective, of operator Ti(s).
Throughout the dissertation, integer ri denotes the dimension of the ith parameter block
(piIri) in operator ∆. Obviously, matrices D̂, Ĉ, B̂, Â are all block diagonal matrices of
blocks

D̂i ∈ Rm
′
i×ri , Ĉi ∈ Rm

′
i×n

′
i , B̂i ∈ Rn

′
i×ri , Âi ∈ Rn

′
i×n

′
i , (4.95)

respectively.
Due to its specific block diagonal structure, T (s) fulfills an important algebraic rela-

tion, which is summarized in a special case of the swapping lemma.

Lemma 4.14 [104, Lemma 1]. Consider operator T (s) in (4.93) and let

U(s) = Fl
{(

0 Ĉ

I Â

)
, 1
sIn′

}
, V (s) = Fl

{(
0 I

B̂ Â

)
, 1
sIn′

}
, (4.96)

∆̂ : p 7→ diag
{
piIn′i

}
i=1,...,np

, ∆̄ : p 7→ diag
{
piIm′i

}
i=1,...,np

. (4.97)

Assume that the real part of the eigenvalues of Â are strictly negative. Then,(
T (s) U(s)

0 I

)( ∆
˙̂∆V (s)

)
=
(

∆̄ 0
0 ˙̂∆

)(
T (s)
V (s)

)
. �

Remark 4.6. Due to their block diagonal structure, matrices in (4.93) and (4.97) satisfy
the following identity: (

Â B̂
Ĉ D̂

)(
∆̂ 0
0 ∆

)
=
(

∆̂ 0
0 ∆̄

)(
Â B̂
Ĉ D̂

)
. (4.98)

Lemma 4.14 can be considered as a special case of [103, Lemma 1]. �
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Provided by Lemma 4.14, a specific IQC-type certificate can be formulated for the
robust stability of interconnection (4.89).

Theorem 4.15 [103, Theorem 2]. Assume that ∆◦p ∈ /∆ (4.92) is a bounded parameter
uncertainty and there exists a symmetric matrix P satisfying I 0

0 I
∆̄(p) 0

0 ∆̂(%)

>P
 I 0

0 I
∆̄(p) 0

0 ∆̂(%)

 � 0 for all (p, %) ∈ P ×R. (4.99a)

Then, the interconnection (4.89) of G(s) and ∆ is robustly stable for any admissible
parameter trajectory p satisfying Assumptions 3.1 if(

G(iω) 0
I 0
0 I

)∗
Π(iω)

(
G(iω) 0
I 0
0 I

)
+ εI � 0 (4.99b)

is satisfied for all ω ∈ R ∪ {∞} and some ε > 0, where

Π(s) = Ψ∗(s)P Ψ(s), and Ψ(s) =

 T (s) 0 0
V (s) 0 0

0 T (s) U(s)
0 0 I

 (4.100)

constitutes the IQC multiplier of the IQC program. �

The IQC certificates in (4.99) correspond to the original IQC stability criterion of
Theorem 4.12, but written in a different form and applied to the following augmented
interconnection system:

(
G(s) 0

)

(
∆

˙̂
∆V (s)

)

η (πψ)
≡

G(s)

∆

˙̂
∆V (s)

ηη π

ψ


η = G(s)π,
π = ∆η,

ψ = ˙̂∆V (s)η.

≡
η = (G(s) 0)( πψ ),

( πψ ) =
( ∆

˙̂∆V (s)

)
η.

(4.101)

It is worth mentioning that the internal dynamics of (4.89) is not altered, but an
auxiliary (practically output) signal ψ is introduced, which depends on the parameter’s
time-derivative. In this way, the IQC-type constraint (4.99a) corresponding to (4.101)
involves ṗ = %. As the rate bounds in (4.99) are taken into consideration, these conditions
are less conservative than the IQC certificates of Theorem 4.12.

As the reader may have observed, (4.99a) is a time-domain matrix inequality, whereas,
in Theorem 4.12, the corresponding constraint (4.86) is given as a frequency-domain IQC.
In [103], it is shown that (4.99a) has the following frequency-domain IQC equivalent:∫ ∞

−∞

(
η̂(iω)
π̂(iω)
ψ̂(iω)

)∗
Π(iω)

(
η̂(iω)
π̂(iω)
ψ̂(iω)

)
dω ≥ 0. (4.102)

As the final step, we seek for an IQC-type certificate for the robust stability and
performance of an input-output feedback interconnection with rate-bounded parameters.
Following the technique of Theorem 4.15, we introduce again the output signal ψ as it
was done in (4.101):

(
M11(s) 0 M12(s)
M21(s) 0 M22(s)

)

(
∆

˙̂
∆V (s)

)

uy

η (πψ)



η = M11(s)π+M12(s)u,
y = M21(s)π+M22(s)u,
π = ∆η,

ψ = ˙̂∆V (s)η,

≡

η = (M11(s) 0)( πψ )+M12(s)u,
y = (M21(s) 0)( πψ )+M22(s)u,

( πψ ) =
( ∆

˙̂∆V (s)

)
η.

(4.103)

Finally, an IQC specification for system (4.101) can be formulated obviously, by following
Corollary 4.13 and Theorem 4.15.

Corollary 4.16. Assume that ∆ ◦ p ∈ /∆ (4.92) is a bounded parameter uncertainty and
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there exists a symmetric matrix P satisfying (4.99a). Consider multiplier Π in (4.100).
Then, the feedback interconnection (4.87) of operators M(s) and ∆ is robustly stable and
robust performance with respect to the supply rate s(u, y) = ( yu )>S( yu ) is guaranteed ifM11(iω) 0 M12(iω)

I 0 0
0 I 0

M21(iω) 0 M22(iω)
0 0 I

∗(Π(iω) 0
0 S

)M11(iω) 0 M12(iω)
I 0 0
0 I 0

M21(iω) 0 M22(iω)
0 0 I

+ εI � 0, (4.104)

is satisfied for all ω ∈ R ∪ {∞} and some ε > 0. �

Remark 4.7. Applying the celebrated Kalman-Yakubovich-Popov (KYP) lemma [193]
the frequency-domain inequalities in (4.90), (4.91), (4.99b), (4.104) can be enforced by
equivalent LMIs. �

4.4.0.1 IQC software tools. In this paragraph, we present two IQC analysis im-
plementations, namely, LPVMAD – The IQC analysis tool (LPVMAD) [112], and the
lpvwcgain method of plftss class in LPVTools [113]. Both implementations are based
on Corollary 4.104, however, the selection for T (s) in the two implementation are differ-
ent. In LPVMAD, the structure of the dynamic multiplier of the IQC problem is defined
by T (s) = blkdiag(Ti(s)), Ti(s) =

(
Iri

a(s)⊗Iri

)
, i = 1, 2, 3, where a(s) is a column vec-

tor of some basis transfer functions. LPVMAD’s default value for a(s) is a(s) = ( 1
s+1 ).

Whereas, in lpvwcgain Ti(s) =
(

(1 ... 1)⊗a(s)
Iri

)
, i = 1, 2, 3, where the poles in a(s) are

selected algorithmically by LPVTools. On the other hand, LPVMAD solves the KYP
(time-domain) LMIs, whereas, lpvwcgain enforces the corresponding frequency-domain
inequalities on a frequency grid using the iterative cutting plane algorithm of [194]. N
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Chapter 5

Computational framework for the
analysis of dynamical systems

In this chapter, I provide an efficient computational framework for stability, dissipa-
tivity and nominal performance analysis of nonlinear systems with time-varying and
rate-bounded parametric uncertainty.

5.1 Motivation – domain of attraction computation

As an introductory motivation example, let us consider the van der Pol oscillator in-
troduced by the Dutch electrical engineer and physicist Balthasar van der Pol. The
dynamical motion of the oscillator is described by the following scalar ordinary differen-
tial equation [195, Eq. (6)]:

ÿ − p (1− y2)ẏ + y = 0. (5.1)

If p is a positive constant the dynamics of (5.1) has a globally stable limit cycle.
In this chapter, we consider the time-reversed dynamics of (5.1) in the following state

space model

Σa : ẋ = f(x, p) = A(x, p)x, with x(0) ∈ X , (5.2)

where

A(x, p) =
(

0 −1
1 x2

1p− p

)
x, and x(t) =

(
x1(t)
x2(t)

)
=
(
y(−t)
ẏ(−t)

)
. (5.3)

Let p be an uncertain (possibly time-varying) parameter satisfying Assumption 3.1 with
P ⊂ (0,∞) and R = [−%, %].

The origin of the time-reversed model (5.3) is locally asymptotically stable. To prove
local stability and compute a positively invariant domain, we seek for a local Lyapunov
function V in a specific parameterized form, which will be described later.

5.1.1 Dynamical model representation

In general, we assume that function A in (5.2) is a well-defined rational function of
(x, p) ∈ X × P , consequently, A admits a well-posed LFR:

A(x, p) = Fl
{(

F11 F12
F21 F22

)
,∆(x, p)

}
∈ Rnx×nx , with ∆(x, p) ∈ Rm1×m1 . (5.4)

Then, the dynamics can be given by the following feedback interconnection:

F(Σa) :
(
ẋ
η1

)
=
(
F11 F12
F21 F22

)
( x
π1 ), with π1 = ∆ η1, (5.5)
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where π1, η1 : [0,∞)→ Rm1 are the feedback signals through the uncertainty block ∆.

Definition 5.1. The alternative algebraic form

G(Σa) : ẋ = f(x, p) = F11x+ F12π1(x, p) = (F11 F12)π(x, p) (5.6)

of the system equation is said to be the generator form realization of Σ, and the rational
function π = ( x

π1 ) is called a generator corresponding to LFR (5.4). Generator π is
determined from the LFR of the system equations as follows:

π(x, p) = Π(x, p)x ∈ Rm and π1(x, p) = Π1(x, p)x ∈ Rm1 , (5.7)

where Π =
(
Inx
Π1

)
: X × P → Rm×nx , m = nx +m1, (5.7a)

and Π1 = Fl
{(

0 Im1
F21 F22

)
,∆
}

= (Im1 −∆F22)−1∆F21 : X × P → Rm1×nx . (5.7b)

The matrix compositions in (5.7a), (5.7b), or in π = ( x
π1 ) are interpreted for functions,

as presented in (4), instead of their values in (x, p). �

Example 5.1. Considering the recursive LFT realization of Section 3.6.2, the LFR of
the van der Pol equation (5.3) is the following:

A(x, p) = Fl


 0 −1

1 0
0 0 0
−1 1 0

0 1
0 0
0 0

0 0 0
0 0 1
1 0 0

 ,(p
x1I2

), then, π1(x, p) =

 p x2
p x2

1x2
p x1x2

 , (5.8)

and π = ( x
π1 ) is the generator of (5.6) corresponding to the LFR in (5.8). �

Naturally, the different LFR realizations of A define different generator form realiza-
tions for mapping f . However, a given LFR uniquely determines a certain set of rational
functions through the generator π. The main reason for using the term “generator” is
that function π generates a certain algebraic structure for the Lyapunov function.

Local asymptotic stability of nonlinear uncertain systems. In order to prove local
asymptotic stability for system Σa, we are looking for a Lyapunov function in the fol-
lowing form:

V (x, p) = x>Q(x, p)x = π>(x, p)Q(p)π(x, p), (5.9)
with Q(x, p) = Π>(x, p)Q(p) Π(x, p), (5.9a)
where Q(p) = Q0 +

∑np
i=1Qi pi ∈ Rm×m. (5.9b)

Matrix Q(p) should not be necessarily positive definite. Matrices Qi, i = 0, . . . , np are
free symmetric matrix variables, and function π is defined in (5.7). With reference to
Theorem 3.7, system Σa is locally asymptotically stable, if there exist positive constants
α0 and α0 such that the following inequalities are satisfied:

x>Q(x, p)x− α0‖x‖
2 ≥ 0 for all (x, p) ∈ X × P , (5.10)

x>
(
He{Q(x, p)A(p)}+ Q̌(x, p, %)

)
x+ α0‖x‖2 ≤ 0 for all (x, p, %) ∈ X × P ×R,

where Q̌(x, p, %) =
∑np
i=1

∂Q
∂pi

(x, p)%i.
Global asymptotic stability of LPV systems. Now, assume that A is a function of p

only. Then, the system equation simplifies to an LPV system of the form

Σa : ẋ = f(x, p) = A(p)x with p satisfying Assumptions 3.1. (5.11)

In this case, generator Π in (5.7a) and hence Q in (5.9a) are independent of x. Therefore,
according to Theorem 3.7, the system is globally asymptotically stable if there exist
positive constants α0 and α0 such that the following PD-LMIs are satisfied

Q(p)− α0Inx � 0, for all p ∈ P , (5.12)
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He{Q(p)A(p)}+ Q̌(p, %) + α0Inx � 0, for all (p, %) ∈ P ×R.
with some α0, α0 > 0

In the general case, Q is a nonlinear symmetric matrix-valued function, therefore, the
scalar inequalities in (5.10) and the PD-LMIs in (5.12) for the asymptotic stability, are
infinite-dimensional problems (Definition 3.19). Fortunately, the left hand side of both
inequalities in (5.10) and (5.12) can be formulated as a quadratic expression of some
rational terms similarly to the quadratic structure of the Lyapunov function in (5.9).

Definition 5.2. The quadratic algebraic form (5.9a) of function V is called a quadratic
generator form or quadratic factorized form of function V . �

In this chapter, we present convex LMI relaxation techniques for rational parameter-
dependent inequality conditions written in a quadratic expression of rational terms. The
proposed techniques are based on the LFR, Finsler’s lemma, and the duality of the
minimal generators and the maximal annihilators.

5.2 Notions and problem formulation

Henceforth, in this chapter, we consider a general parameter- (p), state- (x), and param-
eter rate- (%) dependent rational PD-LMI condition in the following general quadratic
form:

Q(w) = Π>(w)Q(w)Π(w) � 0 for all w ∈W , (5.13)
with Q ∈ Smϕ (W), (5.13a)

where Smϕ (W) denotes the following set of symmetric matrix-valued functions:

Smϕ (W) =
{
Q =

∑mϕ
i=1Qiϕi : W → Rm×m

∣∣Qi = Q>i ∈ Rm×m, ϕ : W → Rmϕ
}
, (5.13b)

and ϕi denote the distinct monomial coordinate functions of ϕ : W → Rmϕ .
In (5.13), Q : W → Rn×n is a rational function of some general parameters collected in

vector w ∈ Rnw belonging to a bounded polytope W ⊂ Rnw . Generator Π : W → Rm×n

is a rational function of w with n ≥ 1.
Matrices Qi, i = 1, . . . ,mϕ are free symmetric matrix variables, which are meant to

be found such that (5.13) is satisfied for all parameter values w ∈W , and that a certain
linear objective function is minimized. Generator Π and functions ϕi are fixed before the
optimization. The distinct monomials ϕi determine a structure for function Q, therefore,
ϕ is called again a generator.

In order to find a solution for the (infinite-dimensional) rational PD-LMI (5.13), we
formulate a sufficient PD-LMI condition for (5.13), which can be computed in a convex
computational framework.

Remark 5.1. As an algebraic structure, Smϕ (W) forms an R-module [196, Chapter 3]
over the ring of symmetric m × m matrices R = (Sm,+, ·). E.g., when ϕ(w) = ( 1

w ),
Smϕ (W) denotes the module of symmetric matrix-valued affine functions. The abstract
structure for Q ∈ Smϕ (W) allows us to describe the further results in a more general
framework.

1. In the computational examples, we generally use affine parameter dependence in
Q with ϕ(w) = ( 1

w ), which makes possible to formulate for (5.13) the following
sufficient but polytopic PD-LMI condition:

Q(w) � 0 for all w ∈W . (5.14)
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According to Proposition 3.20, a solution Q ∈ Smϕ (W) with ϕ(w) = ( 1
w ) for the

affine PD-LMI (5.14) can be found by checking the feasibility of (5.14) in the corner
points of polytope W .

2. Moreover, a rectangular polytope

W =×nw
i=1[wi, wi]. (5.15)

makes possible to solve (5.14) with a multi-affine structure for Q with,

ϕ : W → Rn
nw
, ϕ(w) =

(
ϕ1(w) . . . ϕi(w) . . . ϕ2nw (w)

)>
, ϕi(w) =

nw∏
j=1

w
τij
i ,

(5.16)
where τij ∈ {0, 1} satisfy i = 1 +

nw∑
j=1

2j−1τij for all i = 1, . . . , 2nw . (5.16a)

As a direct consequence of Lemma 4.10, a solution Q ∈ Smϕ (W) with (5.16) for the
multi-affine PD-LMI (5.14) can be found by checking the feasibility of (5.14) only
the corner points of the rectangular polytope W in (5.15). �

Remark 5.2. Observe that constraining Q(w) to be positive semidefinite for all w ∈W
is a restrictive condition for (5.13) as it provides the non-negativity of z>Q(w) z for all
z ∈ Rm and all w ∈W , without taking into account the nonlinear structure of Π. �

According to a special case of Finsler’s lemma (Lemma 3.22), a less conservative, but
still sufficient (multi-)affine PD-LMI condition for (5.13) can be given as follows:

Q(w) + He
{
LN(w)

}
� 0 for all w ∈W , (5.17)

where N : W → Rs×m is a (multi-)affine annihilator for Π and L ∈ Rm×s is a free matrix
Lagrange multiplier. Naturally, PD-LMI (5.17) is less conservative than (5.14).

Alongside the conservatism, a second important attribute of the LMI problem (5.17)
is its dimension. To find a solution for (5.13), it is often enough to solve a dimensionally
reduced sufficient PD-LMI condition as follows

S>
(
Q(w) + He

{
LN(w)

})
S � 0 for all w ∈W , (5.18)

where S ∈ Rm×m′ is a full column-rank matrix (m′ < m). See that (5.18) is a, so to
say, “projection” of (5.17), therefore, it is not trivial to foresee, how conservative is the
reduced-dimensional PD-LMI condition (5.18) compared to (5.17).

To cope with the conservatism and the dimensionality of the resulting sufficient PD-
LMI condition (5.17), we introduce the notion of the maximal annihilator (to enlarge
the set of feasible solutions) and the minimal generator (to reduce the dimensionality
without compromising the solution set).

5.2.1 Finsler’s lemma and Lagrange multipliers

It is worth mentioning that annihilator N and its multiplier L in PD-LMI (5.17), have the
same role as the Lagrange multipliers have in [133; 145]. The authors of [133; 145] used
SOS techniques to check the positivity of a polynomial function. They used polynomial
Lagrange multipliers to enforce some coupling constraints between the monomials of the
state variables (x). In [197], rational multipliers are used and factorized using LFT.

In our framework, the matrix Lagrange multiplier L comprise the coefficient matrices
of some structured rational Lagrange multipliers. If we pre- and post-multiply (5.17) by
Π>(w) and Π(w), respectively, we obtain an identical Lagrange inequality condition

Q(w) +
∑s
i=1 λ

>
i (w)Φi(w) > 0, for all w ∈W (5.19)
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that is solved in [145, Section 2.2], where λi(w) ∈ R1×n and Φi(w) = 01×n are the ith
row of L>Π(w) and N(w)Π(w) = 0s×n, respectively. Similarly to [197], λi are rational
multiplier functions. Due to the fact that the nonlinear terms of Π(w) are factorized out
from Q(w) in our case, the rational parameter dependence in λi(w) does not need to be
handled separately.

The maximal (multi-)affine annihilator has the advantage of involving as much cou-
pling constraints Φi(w) as possible while keeping the parameter-dependent matrix in-
equality of the form (5.17) convex.

5.3 Maximal annihilator for handling conservatism

The choice of the annihilator represents an important source of freedom in the LMI (5.17)
problem formulation. The annihilator in (5.17) directly affects the solution set of the
PD-LMI with respect to Q.

Definition 5.3 [P3]. Let

F∗ϕ =
{
Q ∈ Smϕ (W)

∣∣ Q(w) = Π>(w)Q(w)Π(w) � 0 for all w ∈W}
and (5.20)

Fϕ(N) =
{
Q ∈ Smϕ (W)

∣∣ ∃L ∈ Rm×s : Q(w) + He{LN(w)} � 0 ∀w ∈W}
(5.21)

denote the solution set or feasible set of PD-LMIs (5.13) and (5.17), respectively. �

In the formalism of Definition 5.3, let Fϕ(0) denote the feasible set of (5.14). Then,
Q ∈ Fϕ(0) is obviously a solution of (5.17) with L = 0m×s. Furthermore, let Q ∈ Fϕ(N),
namely, Q satisfies (5.17) for some L. Then, if we pre-multiply (5.17) by Π>(w) and
post-multiply by Π(w), we have that Π>(w)Q(w)Π(w) � 0 (i.e., Q ∈ F∗ϕ). Finally, we
can state that Fϕ(0) ⊆ Fϕ(N) ⊆ F∗ϕ.

In this section, we consider two fixed generators Π and ϕ. Then, we will show the
existence of a so-called maximal annihilator of the form

N ∈ N s×m
ϕ (W) =

{∑mϕ
i=1 N̄iϕi : W → Rs×m

∣∣ N̄i∈ Rs×m, ϕ : W → Rmϕ
}
, (5.22)

that generates the largest possible feasible set Fϕ(W) for PD-LMI condition (5.17). Note
that constant s in (5.22) denotes the number of rows in N(w).

Definition 5.4 [P3]. Function N ∈ N s×m
ϕ (W) is said to be a maximal annihilator of

Π over W with respect to ϕ if NΠ ≡ 0 on W and Fϕ(N1) ⊆ Fϕ(N) for any other
N1 ∈ N s1×m

ϕ (W) such that N1Π ≡ 0 on W . �

The existence of (infinitely many) maximal annihilators is proved in Section 5.3.2.

5.3.1 Row reduced equivalent of an annihilator

In this section, we show that an annihilator N ∈ N s×m
ϕ (W) with linearly dependent

rows is redundant. In other words, there exists another annihilator N0 ∈ N s0×m
ϕ (W)

with less rows (s0 < s) but generating the same solution set for Q.

Definition 5.5 [P3]. The two annihilators N ∈ N s×m
ϕ (W) and N0 ∈ N s0×m

ϕ (W) of
generator Π are called f-equivalent if Fϕ(N) = Fϕ(N0), i.e., the solution set of PD-LMI
(5.17) with respect to Q is the same for both annihilators. �

Definition 5.6. Vector-valued functions v1, . . . , vm : W → R1×m are said to be linearly
independent if

∑m
j=1 αjvj ≡ 0 on W implies that α1, . . . , αm = 0. �

To ease further notations and derivations, let us introduce the following algebraic
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representation of an annihilator N ∈ N s×m
ϕ (W).

Definition 5.7 (based on [P3]). The factorized algebraic form N(w) = ΘΞ(w) of func-
tion N , N(w) =

∑mϕ
i=1 N̄iwi ∈ Rs×m is said to be the generator form of N , where

Ξ(w) = ϕ(w)⊗ Im and Θ =
(
N̄1 · · · N̄mϕ

)
. (5.23)

Constant matrix Θ and function Ξ are called the coefficient matrix and the generator,
respectively, of function N . �

Example 5.2. The generator form of an affine function N , N(w) = N̄0 +
∑nw
i=1 N̄iwi

can be given by the following generator and coefficient matrix:

Ξ(w) = ( 1
w )⊗ Im =

(
Im
w1Im···
wnw Im

)
= Fl



Im
0
···
0

0 ··· 0
Im ··· 0
··· ··· ···
0 ··· Im

Im···
Im

0

 ,∆N (w)

, (5.24)

Θ =
(
N̄0 N̄1 · · · N̄nw

)
, and ∆N (w) = diag {w1Im, · · · , wnwIm}. �

Note that for the fixed generator ϕ, the coefficient matrix Θ is a unique alternative
numerical representation of function N ∈ N s×m

ϕ (W). Moreover, it can be shown that Θ is
row-rank deficient if and only if the rows of N are linearly dependent. In the following, we
prove that an annihilator N and its row-reduced alternative N0 are f-equivalent, namely,
they generate the same solution set Fϕ(N) = Fϕ(N0) for (5.17).

Proposition 5.8 [P3]. Suppose that N = ΘΞ ∈ N s×m
ϕ (W) is an annihilator of Π and

rank(Θ) = s0<s. Then, there exists Θ0∈Rs0×(m·mϕ), such that N0 = Θ0Ξ∈N s0×m
ϕ (W)

is an annihilator of Π, rank(Θ0) = s0, and N0 is f-equivalent to N . �

Proof. First, we give a candidate function N0, then, we prove its correctness.

(Candidate row-reduced annihilator) Without the loss of generality, we can assume that
the first s0 rows (Θ0) of Θ =

(
Θ0
Θ1

)
are linearly independent. Consequently, there exist

Γ = Θ1Θ0(Θ0Θ>
0)−1 ∈ R(s−s0)×s0 and S =

(
I
Γ
)
, such that the following identities hold

Θ1 = ΓΘ0, Θ = SΘ0, N(w) = SN0(w), and N0(w) = Θ0Ξ(w) for all w ∈W .

(Correctness of the row-reduced annihilator – “if”) Let L ∈ Rm×s be given. Then,

LN = L
(

Θ0
Θ1

)
Ξ = LSΘ0Ξ = L0Θ0Ξ = L0N0 on W , where L0 = LS. (5.25)

Now, assume that Q ∈ Fϕ(N) for some L, then, Q ∈ Fϕ(N0) as

Q(w) + He{LN(w)} = Q(w) + He{L0N0(w)} � 0 for all w ∈W . (5.26)

Equation (5.26) proves that Fϕ(N) ⊆ Fϕ(N0).

(“only if”) Conversely, assume that Q ∈ Fϕ(N0) for some L0, then, there exists matrix
L = (L0 0), for which Q ∈ Fϕ(N), namely,

Q(w) + He{L0N0(w)} = Q(w) + He{(L0 0)N(w)} � 0 for all w ∈W , (5.27)

as L0N0(w) = L0Θ0Ξ(w) = (L0 0)
(

Θ0
Θ1

)
Ξ(w).

It is worth mentioning that the number of free decision variables collected in L0 are
less (ms0) than the number of variables in L (ms). In other words, using annihilator N0
instead of N will result in an optimization problem with less free variables, but no real
degrees of freedom are lost in the optimization.

Remark 5.3. Let Θ>
0 be a basis for the image space of Θ>. Then annihilator N0 = Θ0Ξ

is a row reduced f-equivalent of N = ΘΞ. �
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5.3.2 Existence of maximal annihilators

It is obvious from the problem formulation that an infinite number of row vector-valued
functions r ∈ N 1×m

ϕ (W) exist, such that rΠ ≡ 0 on W . However, in order to reduce the
conservatism of (5.17), it is not reasonable to collect as many rows into N as possible.
Due to Proposition 5.8, there exists a guaranteed maximal number of (well selected)
annihilator rows (≤ m · mϕ), to which if we append any further rows, the feasible set
will not change anymore.

For N ∈ N s×m
ϕ (W) to be a maximal annihilator, we may expect that the solution set

generated by every other annihilator be contained by the solution set Fϕ(N) generated
by the maximal annihilator N . The following lemma together with the row-reduction
result (Proposition 5.8) gives evidence to the existence of such a maximal annihilator.

Lemma 5.9 [P3]. For any two annihilators N1 ∈ N s1×m
ϕ (W) and N2 ∈ N s2×m

ϕ (W)
of Π, we can construct an annihilator N12 =

(
N1
N2

)
∈ N (s1+s2)×m

ϕ (W) for Π, such that
Fϕ(N1) ∪ Fϕ(N2) ⊆ Fϕ(N12). �

Proof. If Q ∈ Fϕ(N1) for some L1, then Q ∈ Fϕ(N12) for L12 = (L1 0), namely, Fϕ(N1) ⊆
Fϕ(N12). Similarly, we can prove that Fϕ(N2) ⊆ Fϕ(N12).

As an obvious consequence of Proposition 5.8, we are able to give a sufficient condition
for N ∈ N s×m

ϕ (W) to be a maximal annihilator for Π.

Corollary 5.10 [P3]. Let the rows of Θ ∈ Rs×(m·mϕ) span the co-vector space{
ϑ ∈ R1×(m·mϕ)

∣∣∣ϑ (ϕ⊗ Im) Π ≡ 0 on W
}
. (5.28)

Then, N = Θ (ϕ⊗ Im) ∈ N s×m
ϕ (W) is a maximal annihilator of Π. �

Let us say that the co-vector space (5.28) is the constant left kernel space of function
(ϕ⊗ Im) Π. We say that Θ is a maximal constant annihilator of (ϕ⊗ Im) Π if the rows
of Θ span (5.28). In the formalism of Corollary 5.10, we are able to formulate a second
definition of a maximal annihilator as follows.

Definition 5.11. Let Π : W → Rm×n and ϕ : W → Rmϕ be well-defined functions,
where ϕi are distinct monomials in w. Then, N = Θ (ϕ⊗Im) ∈ N s×m

ϕ (W) is a maximal
annihilator of Π with respect to ϕ if the rows of Θ ∈ Rs×q span (5.28). �

Provided by Proposition 5.8, Definition 5.4 and Definition 5.11 are equivalent.
5.3.2.1 Maximal annihilator computation. Corollary 5.10 highlights that a general
maximal annihilator computation can be traced back to a maximal constant annihilator
computation for function (ϕ ⊗ Im) Π. A few special classes of the maximal annihilator
of a fixed generator Π are as follows:

1. A maximal constant annihilator of Π (with respect to ϕ(w) = 1) is a basis of the
constant left kernel space of function Π.

2. Let W = X × P and w = ( xp ). Then, a maximal p-dependent affine annihilator
N : P → Rs×m of generator Π : X × P → Rm×n can be computed by considering
ϕ(x, p) =

( 1
p

)
.

3. A maximal multi-affine annihilator N : W → Rs×m of generator Π : W → Rm×n

can be computed by considering function ϕ in (5.16).

Henceforth, the word “maximal” is often suppressed but used when it is significant. N
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5.3.3 Constant annihilator computation

As the reader possibly observed, the notion of a constant annihilator is very close to the
standard notion of the kernel space. Consider a matrix-valued function Π : W → Rm×n.
We assume that Π(w) has a full column-rank (n < m) for all w ∈ W \ {0}. Then, the
kernel space of Π>(w) is a vector space, which depends on w ∈W , formally,

Ker
(
Π>
)

=
{∑m−n

i=1 αigi
∣∣αi∈R, gi :W→Rm, giΠ≡0, i=1, . . . ,m−n

}
. (5.29)

From gi in (5.29), we also require that rank
(
g1(w) . . . gm−n(w)

)
= m−n for all w ∈

W\{0}. In [27, Section 1.3], Ker
(
Π>
)
constitutes a so-called distribution as it constitutes

a family of vector spaces spanned by functions gi. Suppose that Ker
(
Π>
)
has a, so to

say, subdistribution, which is independent of w.

Example 5.3. Let Π>(w) =
(

1 w w2 w+w2

0 1 w 1+w

)
. Then, the kernel distribution of Π> is

Ker
(
Π>
)

=
{
α1 g1 + α2 g2

∣∣ (α1, α2) ∈ R2
}
, where g1(w) =

( 0
w
−1
0

)
, g2 =

( 0
1
1
−1

)
.

Observe that g2 is constant, therefore, it spans the parameter independent subdistri-
bution of Ker

(
Π>
)
. In other words, g>2 is a constant annihilator of Π and it spans the

constant left kernel space of Π. �

In Lemma 3.35, we presented a possible numerical method to find a kernel distribution
for a matrix-valued rational function given in a well-posed LFR. But now, we seek for
constant matrix N0 ∈ Rs0×m such that N0Π(w) = 0 for all w ∈ W . Here, we present
two different computational methods to find N0.

Procedure 5.12 [P2] (symbolical construction). To compute the basis N0 of the con-
stant left kernel space of Π, we proceed with the following algebraic manipulation steps:

1. Let u ∈ Rn be an auxiliary vector of parameters, that are independent of w, and
let ϑ ∈ R1×m be a vector of free coefficients, that are meant to be found, such that
ϑΠ(w)u = 0 for all w ∈ Rnw and all u ∈ Rn.

2. Let q1(w,u;ϑ)
q2(w) = ϑΠ(w)u denote the (unique) irreducible fractional form of ϑΠ(w)u,

where q1(w, u;ϑ) and q2(w) are multivariate polynomials.

3. Collect the terms of q1(w, u;ϑ) having a common degree in w and u, namely:
q1(w, u;ϑ) =

∑J
j=1 cj(ϑ)q1j(w, u) = 0 for all (w, u) ∈ R2nw .

4. Coefficients cj(ϑ) are linear in ϑ. Therefore, the identity conditions cj(ϑ) = 0 for
all j = 1, . . . , J can be equivalently formulated as a system of linear equations:
Aϑ> = 0, where A ∈ RJ×m is a constant matrix.

5. Let N>
0 be a basis for the kernel space of matrix A.

The resulting matrix N0 is a constant annihilator of Π, namely, N0Π ≡ 0. �

An alternative numerical method to compute a basis N0 for the constant left kernel
space of Π is given in the following procedure.

Procedure 5.13 [P1] (numerical construction). The following steps generate a basis N0
for the constant left kernel space of Π.

1. Following the guidelines of Remark 5.4, select a few points w(1), . . . , w(M) from W .

2. Evaluate Π(w) in the selected points, and collect its values in a block matrix as
follows: ΠM =

(
Π(w(1)) · · · Π(w(M))

)
∈ Rm×Mn.
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3. Compute a basis N>
0 for the kernel space of Π>M , that constitutes the transpose of

a constant annihilator N0.

Finally, check that the norm of matrix O(w) = N0Π(w) is below a given tolerance value
0 < ε� 1. �

Remark 5.4 [P1]. When selecting some distinctive points w(1), . . . , w(M) to evaluate
matrix Π(w) ∈ Rm×n we consider the following guidelines.

• From the author’s experience, it is a good strategy to choose
M =max

{
dim(W) + 1,

⌈
m
n

⌉}
nr. of characteristic (possibly random) points in W ,

where dim(W) denotes the local dimension of manifold W ⊂ Rnw at an arbitrary
point w ∈ W . Furthermore,

⌈
m
n

⌉
denotes the smallest integer value M , such that

m
n ≤M .

• The selected points should span W , i.e for all w ∈ W there exist α1, . . . , αM ∈ R
such that w = w(1)α1 + · · ·+ w(M)αM .

• It is a good policy if the selected points include the corner points of W .
As a possible random sampling implementation for LFRs, we refer to the (dbsample)
subroutine of the GSS Library [96] of the SMAC Toolbox [97]. �

Remark 5.5. Also note that the precision of the kernel computation may depend on
the domain, from which the random points are selected. For instance, if Π(w) contains
higher order monomials in w1, but lower order monomials in w2 (e.g., w6

1w
2
2), then, the

“normalized” polytope W = [−2, 2]× [−8, 8] is a better choice to compute N0 than, e.g.,
W = [−2, 2]× [−2, 2]. �

Remark 5.6. Procedure 5.12 considers that polytope W spans the whole parameter
space Rnw . In comparison, Procedure 5.13 allows W to be a polytope in an affine
submanifold of Rnw . �

5.4 Minimal generators for dimension reduction

In this section, we cope with the dimensionality of the generated sufficient convex PD-
LMI conditions for dynamic system analysis. Consider again the infinite-dimensional
PD-LMI condition Q(w) = Π>(w)Q(w)Π(w) � 0 (5.13), that is feasible for all w ∈W if
the convex PD-LMI Q(w) + He

{
LN(w)

}
� 0 (5.17) is satisfied for all w ∈W . Similarly

to (5.17), we aim to formulate a reduced-dimensional sufficient PD-LMI (5.18) to solve
(5.13).

Assume that the rows of Π : W → Rm×n are linearly dependent (i.e., Π admits a
constant annihilator). Then, there exist a full column-rank matrix S ∈ Rm×m′ (m′ < m)
and generator Π̂ : W → Rm′×n satisfying Π = SΠ̂ on W . Consequently, the quadratic
factorization (5.13) of Q is redundant, in the sense that Q can be decomposed differently:

Q(w) = Π̂>(w)Q̂(w)Π̂(w) � 0 for all w ∈W , (5.30)

with a smaller dimensional matrix Q̂(w) = S>Q(w)S ∈ Rm′×m′ . Having (5.30), a
reduced-dimensional sufficient PD-LMI for (5.13) can be formulated as follows:

Q̂(w) + He
{
L̂N̂(w)

}
� 0 for all w ∈W , (5.31)

where N̂ ∈ N s′×m′
ϕ (W) is an annihilator for Π̂.

Definition 5.14 [P1]. We say that Π : W → Rm×n is a minimal generator if the rows
of Π are linearly independent in the sense of Definition 5.6. �
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Remark 5.7. According to Definition 5.6, generator Π is minimal if and only if it does
not have a constant annihilator. �

Based on the constant annihilator computation approach of Section 5.3.3, we present
an efficient method for minimal generator selection in Section 5.4.1. Then, in Section
5.4.2, we show that the initial (5.17) and the reduced-dimensional affine PD-LMIs (5.31)
are equivalent if the annihilator N̂(w) = N(w)S is transformed appropriately.

5.4.1 Minimal generator selection

Let σ = (σ1, . . . , σm) be a permutation. Let Iσ ∈ Rm×m denote a permutation matrix,
in which the ith row corresponds to the σith row of the identity matrix Im.

Procedure 5.15 [P1]. Assume that Π is not a minimal generator. In order to find a
full column-rank matrix S and a minimal generator Π̂ satisfying Π = SΠ̂ on W , proceed
the following steps:
Step 1. Compute a constant annihilator N0 ∈ R(m−m′)×m for generator Π as presented

in Section 5.3.3.
Step 2. Compute a basis Λ ∈ Rm×m′ for the kernel space of matrix N0 (N0Λ = 0).
Step 3. Let the first m′ nr. of values of permutation σ be the indices of the linearly

independent rows of matrix Λ.
Step 4. Let

(
V
W

)
= I>σΛ, where V ∈ Rm′×m′ is invertible.

Step 5. Let Sσ =
(
Im′

Γ

)
and Π̂ be the first m′ rows of IσΠ, where Γ = WV −1.

Finally, we obtain matrices Iσ, Sσ and generator Π̂ such that IσΠ = SσΠ̂. Introducing
S = I>σSσ, we also have that Π = SΠ̂. �

Theorem 5.16 [P1]. Function Π̂ obtained through Procedure 5.15 is a minimal generator
satisfying IσΠ = SσΠ̂. �

Proof. Step 2 of Procedure 5.15 implies the existence of a generator Π0 : W → Rm′×n

such that Π = ΛΠ0. As Λ has a maximal column-rank, we have that Λ†Π = Π0.

(Generator Π0 is minimal) Assume that Π0 admits a constant annihilator r0 6= 0 such
that r0Π0 ≡ 0. Then, r0Λ†Π = r0Π0 ≡ 0, namely, r0Λ† is a constant annihilator for Π.
Since N0 is a basis for the constant left kernel space of Π, it must exist an α ∈ Rm such
that r0Λ† = α>N0. Post-multiplying by Λ we have that r0 = 0. By contradiction, Π0
does not admit a constant annihilator, i.e., Π0 is a minimal generator.

(Generator Π̂ is minimal) Step 4 of Procedure 5.15 implies that

IσΠ =
(

Π̂
Π̃

)
=
(
V

W

)
Π0 ⇒

{
Π0 = V −1Π̂,
Π̃ = WV −1Π̂.

(5.32)

Therefore, Π = VΠ0 is minimal and satisfies IσΠ = SσΠ̂.

Remark 5.8 [P1]. Without the loss of generality, we may assume that G(Σa) in (5.6) is
a minimal generator form realization for system Σ (i.e., vector π is minimal). Otherwise,
let f(x, p) = (G11G12) π̂, where π = Sπ̂ and (G11G12) = (F11 F12)S. �

5.4.2 Equivalent reduced-dimensional PD-LMI

Due to the fact that the values of the annihilators N and N̂ are different for PD-LMIs
(5.17) and (5.31), it is not trivial to foresee whether the two PD-LMIs define the same
solution set for Q or not. Another interesting question arises: how the annihilator should
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be transformed to obtain an equivalent reduced-dimensional PD-LMI. The main result
related to the dimension reduction transformation is concluded in the next theorem.

Theorem 5.17 [P1; P2]. Assume that generator Π in (5.13) admits a factorization
Π = SΠ̂ with S = I>σ

(
I
Γ
)
and with a minimal generator Π̂. Let functions N ∈ N s×m

ϕ (W)
and N̂ ∈ N s′×m′

ϕ (W) denote the maximal annihilators of Π and Π̂, respectively. Then,
the PD-LMIs (5.17) and (5.31) are equivalent in the sense that Fϕ(N) = Fϕ(N̂ , S), where

Fϕ(N̂ , S)=
{
Q∈Smϕ (W)

∣∣ ∃L̂∈Rm′×s′ : S>Q(w)S+He
{
L̂N̂(w)

}
�0 ∀w∈W}

(5.33)

denotes the solution set of the reduced PD-LMI (5.31). �

The implication scheme is the following:
Q(w) = Π>(w)Q(w)Π(w) = Π̂>(w)Q̂(w)Π̂(w) � 0 for all w ∈W

⇑ ⇑
PD-LMI (5.17) ⇔ PD-LMI (5.31).

Proof. (only if) Assume that the pair (Q,L) is a solution for the initial PD-LMI (5.17)
with annihilator N . Then, multiplying PD-LMI (5.17) by S> from the left and by S from
the right, we obtain that pair (S>QS, S>L) is a solution for (5.31) with the transformed
annihilator N̂ = NS ∈ N s′×m′

ϕ (W), s = s′. Now, we showed that Fϕ(N) ⊆ Fϕ(N̂ , S).
(if) Conversely, for each solution (Q̂, L̂) of (5.31) with annihilator N̂ , there exists a
sufficiently small value ε > 0, such that the pair (Q,L) with

Q = I>σ

(
Q̂− εΓ>Γ 0

0 εIm−m′

)
Iσ, L = I>σ

(
L̂

0

)
,

satisfy both Q̂ = S>QS and (5.17) with annihilator N . Therefore, Fϕ(N) ⊇ Fϕ(N̂ , S).
(with maximal annihilators) Finally, the following lemma provides that the projection
N̂ = NS preserves the maximality of N and N̂ with respect to generators Π and Π̂
respectively.

Lemma 5.18 [P1]. Suppose that N = Θ(ϕ⊗ Im) ∈ N s×m
ϕ (W) is a maximal annihilator

of Π = SΠ̂. Then, N̂ = NS ∈ N s×m′
ϕ (W) is also a maximal annihilator of Π̂. �

Proof. It is enough to show that for any annihilator row r̂ = ϑ̂ (ϕ⊗Im′) of Π̂ there exists
a constant row vector α such that r̂ = αNS on W .

First, observe that constant matrix Imϕ⊗S has maximal column-rank, therefore, there
exists (Imϕ ⊗ S)† such that (Imϕ ⊗ S)†(Imϕ ⊗ S) = Imϕm′ . Then, r̂ Π̂ can be expressed
as follows:

0 ≡ r̂ Π̂ = ϑ̂ (ϕ⊗ Im′) Π̂ = ϑ̂ (Imϕ ⊗ S)† (Imϕ ⊗ S) (ϕ⊗ Im′) Π̂︸ ︷︷ ︸
(ϕ⊗ Im) Π

. (5.34)

Applying twice the mixed multiplication property (2) of the Kronecker tensor product
(1), the braced term can be developed further as follows:

(Imϕ ⊗ S) (ϕ⊗ Im′) Π̂ = ((Imϕϕ)⊗ (SIm′)) Π̂ = (ϕ⊗ S) Π̂
= ((ϕ · 1)⊗ (ImS)) Π̂ = (ϕ⊗ Im)(1⊗ S) Π̂ = (ϕ⊗ Im)S Π̂ = (ϕ⊗ Im) Π.

(5.35)

Identity (5.34) implies that r = ϑ(ϕ⊗ Im) is an annihilator of Π with ϑ = ϑ̂ (Imϕ ⊗ S)†.
AsN is a maximal annihilator of Π, the rows of Θ span the constant left kernel space of

(ϕ⊗Im)Π. Therefore, there exists a constant row vector α such that ϑ̂ (Imϕ⊗S)† = αΘ.
Then, following the reasoning of (5.34) and (5.35), we can conclude that

r̂ = ϑ̂ (ϕ⊗ Im′) = αΘ (Imϕ ⊗ S)(ϕ⊗ Im′) = αΘ (ϕ⊗ Im)S = α N̂, (5.36)
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which completes the proof.

5.5 A tuning knob against conservatism

In this section, we propose a systematic method to formulate less conservative sufficient
convex conditions for rational PD-LMIs. This technique introduces new degrees of free-
dom into the convex conditions, at the same time, it results in higher dimensional LMI
problems.

Up to this point, Π was a called a generator, and f = FΠ was called a genera-
tor form realization of function f . According to Definition 5.2, let Q = Π>QΠ be
called a quadratic generator form realization of the symmetric matrix-valued function
Q. Consider the following matrix inequality in two possible quadratic generator form
realizations:

Q(w) = Π>(w)Q(w)Π(w) = Π>g(w)Qg(w)Πg(w) � 0 for all w ∈W , (5.37)

where both generators Π : W → Rm×n and Πg : W → Rmg×n are minimal, but there
exists a full row-rank matrix Hg such that Π = HgΠg. Observe that Π carries less
information than Πg (m < mg), as Π can be expressed by Πg.

Let N ∈ N s×m
ϕ (W) and Ng ∈ N sg×mg

ϕ (W) be two maximal annihilators for Π and
Πg, respectively. Then, two sufficient PD-LMIs for (5.37) can be formulated as follows:

Q(w) + He{LN(w)} � 0 for all w ∈W , (5.38)
Qg(w) + He{LgNg(w)} � 0 for all w ∈W . (5.39)

It can be demonstrated (through examples) that PD-LMI (5.39) is typically less conser-
vative than (5.38).

The need to inflate generator Π with new nonlinear terms may arise when Π does
not originate from an LFR. This typical case occurs when we seek for a solution to the
Lyapunov inequality (3.4b) or the dissipativity relation (3.14b). In Proposition 4.4, it
was already presented that the Lyapunov inequality (3.4b) can be altered into a quadratic
generator form, where the corresponding generator (4.45) is given manually in a special
structured form, and it does not originate from an LFR. In this case, it may happen
that the algebraic coupling between the rows (or coordinates) of Π cannot be given by a
(multi-)affine annihilator. Or, the maximal annihilator for Π is not descriptive enough
to reduced the conservatism as much as we expect.

Example 5.4. Let Π(x) = ( x x3 x4 x6 x8 )>, then, N(x) = ( 0 −x 1 0 0 ) is its maximal
(multi-)affine annihilator. Obviously, the algebraic interdependences between the terms
x, x3, x6, and x8 are not represented. Therefore, the solution of (5.17) will handle these
terms as independent variables. If Q ∈ R5×5 is a solution for (5.17), then, Π>(z)QΠ(z) ≥
0 for all z ∈ R4, where Π(z) = ( z1 z2 z2

2 z3 z4 )> and M(z) = ( 0 −z2 1 0 0 ) is its maximal
annihilator. Note that if we introduce the intermediate terms x2, x5, x7 into Π, we will
obtain an optimization problem, where the algebraic interdependences in the augmented
vector ( x x3 x4 x6 x8 x2 x5 x7 )> are well represented. �

5.5.0.1 LFR-based tuning of quadratic generator forms [P2]. In order to intro-
duce the “missing” terms into Π, we consider an LFR realization of Π as follows:

Π = Fl
{(

H11 H12
H21 H22

)
,∆g

}
, (5.40)

where the corresponding generator

Π(initial)
g =

(
I

(I−∆gH22)−1∆gH21

)
(5.41)
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is typically not minimal. Therefore, we compute a full column-rank matrix Sg and
minimal generator Πg such that Π(initial)

g = SgΠg. Then, function Π can be given in the
following minimal generator form realization:

Π = HgΠg, where Hg = (H11 H12)Sg. (5.42)

Practically, Πg : W → Rmg×n is a minimal generator for the minimal generator form
realization of minimal generator Π (,). Then, a solution for (5.37) can be given by
solving the “tuned-up” PD-LMI

H>
gQ(w)Hg + He{LgNg(w)} � 0 for all w ∈W , (5.43)

where Ng is a maximal annihilator for the new generator Πg. N

Proposition 5.19. The solution set of Q + He{LN} � 0 (5.38) is subset of that of
(5.43) namely, Fϕ(N) ⊆ Fϕ(Ng, Hg). The notation for Fϕ(Ng, Hg) should be interpreted
mutatis mutandis as presented in (5.33). �

Proof. Note that NHg is an annihilator for Πg, and it is typically conservative (not
maximal). Let Ng denote a maximal annihilator for Πg. According to Corollary 5.10,
there exists Γg such that NHg = ΓgNg. Let (Q,L) denote a solution for (5.43), then,
(Q,Lg) with Lg = H>

gLΓg is a solution for (5.43). This completes the proof of Fϕ(N) ⊆
Fϕ(Ng, Hg).

Remark 5.9. The tuning knob of Paragraph 5.5.0.1 results in a higher dimensional PD-
LMI (5.43), therefore, it is useful when the solution set for Q is considerably expanded
in this way, namely, Fϕ(N) ( Fϕ(Ng, Hg). Assume that (Q,Lg) is a solution for (5.43).
In order to find matrix L ∈ Rm×s such that the pair (Q,L) satisfies (5.43), we need to
solve the following equation:

Lg = H>
gLΓg, where Lg ∈ Rmg×sg , H>

g ∈ Rmg×m, Γg ∈ Rs×sg are given. (5.44)

Equation (5.44) has a solution in L if Im
{
Lg
}
⊆ Im

{
H>
g

}
and Im

{
L>g
}
⊆ Im

{
Γ>g
}
. It is

easy to see that equation (5.44) is overdetermined (m < mg and s < sg), which is due
to the mg − m and sg − s number of new rows in Πg and Ng relatively to Π and N ,
respectively. To conclude, the new (linearly independent rows) in Ng carry important
additional information about the nonlinear structure of function Q. �

Example 5.5. Here, we give an example, for which Fϕ(N) = Fϕ(0) ( Fϕ(Ng, Hg). Let
us define the following variables:

Π(x) = ( x
x3 ), Hg = ( 1 0 0

0 0 1 ), Πg(x) =
(

x
x2

x3

)
, Ng(x) =

(
x −1 0
0 x −1

)
. (5.45)

Generator Π does not admit a (multi-)affine annihilator. Observe that there exists an
indefinite matrix Q =

( 1 0
0 −1

)
6∈ Fϕ(0), such that Q ∈ Fϕ(Ng, Hg), namely:

H>
gQHg + He{LgNg(x)} =

(
1 −x 0
−x 2 −x
0 −x 1

)
� 0 for all x ∈ [−a, a], Lg =

(
0 0
−1 0
0 −1

)
,

where 0 < a < 1. �

Remark 5.10. The results of Theorem 5.17 and that of Proposition 5.19 are very sim-
ilar. The former states that the solution set of (5.38) does not change after a projection
if the rows of Π are linearly dependent. Whereas, Proposition 5.19 and Remark 5.9
demonstrated that the solution set can be expanded if the already minimal generator Π
is augmented by further linearly independent rows. �

Remark 5.11 [P2]. It can be shown that the LFR-based tuning of Paragraph 5.5.0.1
finds the “missing intermediate” terms from Π. Namely, the algebraic coupling between
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each pair of rows (coordinates) in generator Πg can be represented by an affine annihilator
Ng ∈ N sg×mg

ϕ (W) with ϕ = ( 1
w ). �

Example 5.6. In this example, we demonstrate how the “missing intermediate” terms
will appear in Πg in case when Π is matrix. In the following set of equations (5.46),
one can see the initially given generator Π, its maximal affine annihilator N , then, the
computed generator Πg, matrix Hg, and the corresponding maximal affine annihilator
Ng:

N(x) = (−x2 −x1 −x2 1 ), Π =

 1 0
0 1
x2

1 x2

x2(x2
1+1) x2

2+x1

, Hg =
( 1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0
0 0 0 0 1 0 1 0 0 1

)
(5.46)

Ng(x) =



0 0 1 −x1 0 0 0 0 0 0
−x1 0 0 1 0 0 0 0 0 0

0 0 −x2 0 1 0 0 0 0 0
0 0 0 −x2 0 1 0 0 0 0
0 −x1 0 0 0 0 1 0 0 0
0 −x2 0 0 0 0 0 1 0 0
−x2 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 −x2 0 1
0 0 −x2 0 0 x1 0 0 0 0
0 0 0 0 0 0 −x2 x1 0 0
0 0 0 −x2 0 0 0 0 x1 0


, Πg =



1 0
0 1
x2

1 0
x1 0
x2

1x2 0
x1x2 0

0 x1
0 x2
x2 0
0 x2

2


.

Compared to the pair (Π, N), the algebraic coupling constraints in the inflated generator
Πg are better represented by its maximal affine annihilator Ng. �

5.6 Concluding remarks and summary

Remark 5.12 (A slight difference between the nonlinear and the LPV case). If the
state transition matrix A(x, p) of system (5.2) does not depend on the state variables,
system (5.2) becomes an LPV system (5.11). In the case of LPV systems, generator Π(p)
can be considered separately from x, since Π(p) does not depend on the state. However,
in the case of a nonlinear system (5.2), considering Π(x, p) separately from x can be
disadvantageous. For example, let x = ( x1

x2 ) and

Π(x)=
(
x1x2 x2

1
0 x2

1
x2

2 0

)
⇒ π(x)=

(
2x2

1x2
x2

1x2
x1x2

2

)
with NΠ(x)=( x2 −x2 −x1 ), Nπ(x)=

( 1 −2 0
x1 −2x1 0
x2 0 −2x1
0 x2 −x1

)
It is visible that the generator Π is minimal, whereas, π = Πx is not minimal. Further-
more, a maximal affine annihilator for Π is NΠ, however, the maximal affine annihilator
Nπ for π represents more algebraic coupling between the coordinates of π. Consequently,
applying the LMI relaxation techniques (minimal generator and maximal annihilator se-
lection) of Chapter 5 for the quadratic form π>Q(p)π (instead of Π>Q(p)Π) may result
in a reduced-dimensional and less conservative affine PD-LMI condition. �

In this chapter, I introduced a complete framework to model and solve rational PD-
LMI conditions by convex optimization. We introduced the notion of a maximal annihi-
lator, which injects the maximal parameter scheduled degree of freedom into the convex
constraints. The notion of a minimal generator was introduced in order to allow LMI
dimension reduction. We gave efficient numerical methods to find a minimal generator
and to compute a maximal annihilator. A maximal annihilator computation technique
(Section 5.3), and then, a minimal generator selection method was presented in Section
(5.4.1).

The proposed algorithm in Theorem 5.10 with the numerical decomposition of Π in
Procedure 5.15 allow us to apply this relaxation technique to arbitrary rational PD-LMI
constraints in a (possibly numerically given) quadratic generator form (5.13).
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Chapter 6

Domain of attraction estimation
for uncertain nonlinear systems

In this chapter, I propose a systematic method to estimate the domain of attraction of
the origin for nonlinear uncertain systems using the computational techniques of Chapter
5. Through the analysis, I consider closed-loop autonomous (ẋ(t) = f(x(t))), uncertain
autonomous (ẋ(t) = f(x(t), p)), and non-autonomous (ẋ(t) = f(x(t), p(t))) systems.

Chapter specific notations

In this chapter, we consider both continuous-time (CT) and discrete-time (DT) systems,
therefore, a specific notation system is used in this chapter in order to cover both CT
and DT model description. Let x(t) denote the value of the vector-valued signal x at
time instant t, where t ≥ 0 in the CT case and t = 0, 1, 2, . . . in the DT case. Let
x+(t) = ẋ(t) and x+(t) = x(t+1), for CD and DT cases, respectively. For simplicity and
transparency, we suppress the time arguments in both CT and DT cases, except when
it is necessary.

6.1 System class, Lyapunov function, model representation

We consider a nonlinear uncertain (CT or DT) model imported from (5.2), as follows:

Σa : x+ = f(x, p) = A(x, p)x with x(0) = x0 ∈ X , (6.1)

We assume that Σa is given in the following LFR:

F(Σa) :


x+ = F11x+ F12π1,

η1 = F21x+ F22π1,

π1 = ∆1η1,

A = Fl
{(

F11 F12
F21 F22

)
,∆
}
, ∆ : X × P → Rm1×m1

f = (F11 F12)π, π = ( x
π1 ),

π1 = Π1x, Π1 = (Im1 −∆F22)−1∆F21.

(6.2)

A detailed description of the system class Σa and its model representation is presented
in details in Section 5.1

Assumption 6.1. Signal p is bounded with a bounded rate, namely, there exist (a-priori
given) compact polytopes P ,R ⊂ Rnp such that p(t) ∈ P for all t ≥ 0 and

CT case: %(t) = ṗ(t) ∈ R for all t > 0.
DT case: %(t) = p(t+ 1)− p(t) ∈ R for all t = 0, 1, 2, · · · .

With an abuse of notation, we can write: (CT-case) p+ = %, (DT-case) p+ = p+ %. �

Note that % conceals the different notations in the continuous- and discrete-time cases.
With this notation, we are allowed to consider both CT and DT models in a unified RSD
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computation framework. Symbol % is often used as an independent variable.

Remark 6.1. Observe that the origin x∗ = 0 is inherently a (stable or possibly un-
stable) equilibrium point of Σa independently of the parameter’s actual value. If Σa is
a continuous-time model, then, ẋ = A(x, p)x, x(0) = 0 implies that ẋ ≡ 0, and hence
x(t) does not move out from the origin. If Σa is a discrete-time model, the recursion
x(t+ 1) = A(x(t), p(t))x(t), with x(0) = 0 has again the trivial solution x(t) = 0 for all
t = 0, 1, 2, . . . . �

Definition 6.1 [198]. Assume that x∗ is at least locally asymptotically stable. The ro-
bust domain of attraction (rDOA) of x∗ comprise all initial conditions, from which the
solutions of (6.1) converge to x∗ for all admissible parameter trajectories satisfying As-
sumption 6.1. �

Definition 6.2. Set Ω ⊂ Rnx is called a robust stability domain (RSD) of equilibrium
point x∗, if the system trajectory converges to x∗ from any initial condition x0 ∈ Ω and
for any admissible parameter trajectory. �

Note that an RSD of x∗ is always a subset of the rDOA, moreover, the computed
RSD can be considered as an estimate of the rDOA. Clearly, an RSD of system (6.1) can
be given by an appropriate level set of a local Lyapunov function V .

Remark 6.2. Even though the rDOA of x∗ might be unbounded, we consider only
a compact polytopic set of initial conditions X , including x∗ = 0 ∈ X . Therefore,
the computed RSD, which should be located entirely in the interior of X , is inherently
bounded. �

A suitable parameter-dependent Lyapunov function V : X ×P → R for Σa is searched
in the form V (x, p) = x>Q(x, p)x = π>(x, p)Q(p)π(x, p) (5.9), where π : X ×P → Rm is
a fixed minimal generator. Affine function Q : P → Rm×m is unknown and meant to be
found, such that the equivalent conditions (3.4) for local stability are satisfied.

According to Theorem 3.7, function V should satisfy the following conditions for local
stability of Σa

1:

α(‖x‖) ≤ V (x, p) = π>(x, p)Q(p)π(x, p) ≤ α(‖x‖) ∀(x, p) ∈ X × P , (6.3a)
δV (x, p, %) = π>d (x, p, %)Qd(p, %)πd(x, p, %) ≤ −α(‖x‖) ∀(x, p, %) ∈ X × P ×R, (6.3b)

for some class K∞ functions α, α, and α. In (6.3b), notation δV stands for the rate
of the Lyapunov function along the system trajectory. In the CT case δV (x, p, %) =
∂V
∂x (x, p)f(x, p) + ∂V

∂p (x, p)%, whereas, in DT case δV (x, p, %) = V (A(x, p)x, % + p) −
V (x, p).

As it will be shown in Section 6.2, the rate of the Lyapunov function V in time can
be written again in a quadratic factorized form as follows:

δV = x>Qd x = π>dQdπd with Qd = Π>dQdΠd and πd = Πdx, (6.4)

where Qd : X × P ×R → Rnx×nx , Πd : X × P ×R → Rm×nx , πd : X × P ×R → Rm

are rational functions, and Qd ∈ P ×R → Rm×m is an affine function. Obviously, the
quadratic factorization (6.4) of δV with generator πd is not unique.

1Functions Qd, Qd, and πd are related to the rate of the Lyapunov function δV , therefore, subscript
d in these notations stands for derivative or difference.
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6.2 Sources of freedom in the model description

In the LMI problem formulation for RSD computation, we have important sources of
freedom. The bounds of the parameter value and those of its rate are naturally coming
from some physical or technological constraints. However, we also need to define a
bounded polytopic domain X for the state vector. Polytope X constitutes a subset of the
state-space, where the local stability of system Σa is tested. The first important degree
of freedom therefore is the choice of X , which is not trivial and it is often determined
iteratively [16; P8] by gradually enlarging an initial polytope X0.

Furthermore, we have three important sources of freedom in the model representation.
First, we have to a-priori fix the rational structure of the Lyapunov function (selection
of π). Secondly, we need to find an appropriate quadratic generator form realization for
the rate of the Lyapunov function (selection of πd). Finally, two annihilators have to be
appropriately computed for generator π and πd.

The shape of the Lyapunov function and hence the area/volume of the computed RSD
depends not only on the shape of polytope X but also on the choice of the generators π
and πd and on their annihilators.

The problem of selecting the “best” annihilators for generator π and πd is already
addressed in Section 5.3, and an efficient numerical procedure is proposed in Section 5.3
to find a maximal affine annihilator for a given generator.

However, the choice of generators π and πd is a trade-off between the computational
tractability and the accuracy of the estimated rDOA. Based on the LFT and the proposed
minimal generator selection technique in Procedure 5.15, we already defined a possible
minimal generator π for Σa in Remark 5.8.

In Sections 6.2.1 and 6.2.2, we give alternative quadratic techniques for the rate of
the Lyapunov function. But also an LFR-based tuning of a quadratic factorization was
presented in Section 5.5.

As we consider parameter-dependent Lyapunov functions, the notion of a robust sta-
bility domain is described in Section 6.3 as an abstracted notion of a positively invariant
set (Definition 3.8). To expand the robust stability domain as much as possible, a set
of convex boundary constraint are presented in Section 6.3.2 with a non-conventional
PD-LMI dimension reduction technique. Finally, in Section 6.3.3, convex conditions are
formulated for the local asymptotic stability of system Σa.

6.2.1 Total derivative of the Lyapunov function

In the continuous-time case, the time-derivate of V = x>Qx (5.9) along the trajectory
of system Σa : ẋ = f(x, p) can be computed as follows

δV (x, p, %) = V̇ (x, p) = ∂V
∂x

(x, p)f(x, p) + ∂V
∂p (x, p)% = x>Qd(x, p, %)x (6.5)

with Qd(x, p, %) = He{Q(x, p)A(x, p)}+ Q̌(x, p, %), (6.5a)

and Q̌(x, p, %) =
〈
∂Q
∂x

(x, p), f(x, p)
〉

+
〈
∂Q
∂p (x, p), %

〉
. (6.5b)

where ṗ = % and the bracketed notation 〈·, ·〉 denotes a tensor contraction operation
[199, Section 4.5] as follows:〈

∂Q
∂x
, f
〉

= (∇x ⊗Q)(f ⊗ Inx) and
〈
∂Q
∂p , %

〉
= (∇p ⊗Q)(%⊗ Inx) =

∑np
i=1

∂Q
∂pi
%i, (6.6)

where ∇x=
(

∂
∂x1

... ∂
∂xnx

)
and ∇p=

(
∂
∂p1

... ∂
∂pnp

)
are the gradient operators. (6.6a)

In the following two propositions, we provide two possible quadratic factorizations for

64

10.15774/PPKE.ITK.2021.004



(6.5) with dynamics Σa : ẋ = (F11 F12)π(x, p) and Lyapunov function V in the form
V (x, p) = π>(x, p)Q(p)π(x, p) (5.9).

Proposition 6.3. Function V̇ with ẋ = f(x, p) and ṗ = % can be written as follows:

V̇ (x, p) = π>d (x, p, %)Qd(p, %)πd(x, p, %), (6.7)
with Qd(p, %) = He

{
E>dQ(p)Ad

}
+ E>d Q̌(%)Ed, πd = ( ππ̇1), (6.7a)

where Ed =
(
Im 0m×(4m1)

)
, Ad =

(
F11 F12 0
0 0 Im1

)
, (6.7b)

and π̇1(x, p) = π̌1(x, p, %) = ∂π1
∂x

(x, p)f(x, p) + ∂π1
∂p (x, p)%, (6.7c)

finally, Q̇(p) = Q̌(%) =
∑np
i=1Qi%i. (6.7d)

Matrices F11 and F12 are given in (6.1). �

Proof. The time-derivative of the Lyapunov function is V̇ = He
{
π>Qπ̇

}
+ π>Q̇π, where

π̇ = Adπd and π = Edπd.

Remark 6.3. The quadratic realization (6.7) for the time-derivative of the Lyapunov
function may be conservative. Note that the derivative function π̇1 in (6.7c) contains
sums of multiple typically high degree terms multiplied by the independent variables %.
Therefore, the algebraic coupling between π and π̇1 in generator πd in (6.7b) is often not
possible to be represented by affine annihilators. For instance, consider ẋ = xp + x2p,
ṗ = %, and π1 =

(
xp
x2p

)
, then, the time-derivative of π1 is π̇1 =

(
xp2+x2p2+x%

2x2p2+2x3p2+x2%

)
. A

maximal affine annihilator for πd is as follows:

Nd =
(
p −1 0 0 0
ṗ p p −1 0
0 x −1 0 0

)
, πd =


x
xp
x2p

xp2+x2p2+x%
2x2p2+2x3p2+x2%

. (6.8)

Observe that the last coordinate of function πd does not appear in Ndπd ≡ 0. For more
details and examples, we refer back to Section 5.5 and to [P2, Section 4] �

Proposition 6.4. Another factorization for V̇ can be given in the form (6.7) with the
modified matrices:

Ed =
(
Im 0m×(4m1)

)
,

Ad =
(
F11 F12 0 0 0 0
0 0 Im1 Im1 Im1 Im1

)
,
and πd =

 Π
Π1F11

Π1F12Π1
〈∂Π1/∂x , f〉
〈∂Π1/∂p , %〉


︸ ︷︷ ︸

Πd

·x, (6.9)

where Π1 = Fl
{(

0 Im1
F21 F22

)
,∆
}
(5.7b), and Π =

(
Inx
Π1

)
. �

Proof. It is enough to show that π̇ = Adπd and π = Edπd. From representation (6.2),
we have that ẋ = F11x+ F12Π1x. Therefore, π̇1 = Π̇1x+ Π1ẋ, where

Π̇1 =
〈
∂Π1
∂x , f

〉
+
〈
∂Π1
∂p , %

〉
(6.10)

and Π1ẋ = Π1F11x + Π1F12Π1x. The inner products 〈·, ·〉 should be interpreted as
presented in (6.6).

Remark 6.4. Note that in (6.9), the higher order nonlinearities of πd in (6.9) are
introduced gradually by the terms Π1F11, Π1F12Π1,

〈
∂Π1
∂x , f

〉
,
〈
∂Π1
∂p , %

〉
. This makes

possible to introduce some “intermediate” terms into function πd. From the author’s
experience, the algebraic coupling between the coordinates of πd is more likely to be
characterized by an affine annihilator in this way. If we continue the example in Remark
6.3, we obtain that

F11 = 0, F12 = (1 1), Π1 = ( p
xp ), ∂Π1

∂x f =
(

0
xp2+x2p2

)
, ∂Π1

∂p % = ( %
x% ). (6.11)
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Function πd is not a minimal generator, hence, we compute S and π̂d such that πd = Sπ̂d.
Matrix S, function π̂d, and its maximal affine annihilator is given as below:

Πd=



1
p
xp
0
0

p2x+p2

p2x2+p2x
0

p2x2+p2x
%
x%


, S=



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

, N̂d=


p −1 0 0 0 0 0
% 0 0 0 0 −1 0
0 x −1 0 0 0 0
0 p p −1 0 0 0
0 % 0 0 0 −p 0
0 0 % 0 0 0 −p
0 0 0 x −1 0 0
0 0 0 0 0 x −1

, π̂d=


x
px
px2

p2x2+p2x
p2x3+p2x2

%x
%x2

.
(6.12)

Observe that each coordinate function of π̂d appears at least in a single algebraic expres-
sions N̂dπ̂d ≡ 0. �

When Q : X × P → Rm×m is a function of both x and p, and

Q(x, p) = Q0 +
∑nx
i=1Q1ixi +

∑np
j=1Q2jpj , (6.13)

the quadratic generator form realization for the Lyapunov function’s time-derivative is
more technical and is given in Proposition 4.4. Though, the factorization in Proposition
4.4 is essentially based on the derivations of [16], our slight improvement consists in the
affine state and parameter dependence in function Q. By comparison, Trofino and Dezuo
[16] considered a constant matrix Q.

6.2.2 Rate of the Lyapunov function

Similarly to the technique presented in Proposition 6.3, the Lyapunov inequality (6.3a)
can be written in a quadratic form (6.4) in the discrete-time case as well.

Proposition 6.5. The rate of function V = x>Qx = π>Qπ (5.9) along the trajectories
of x+ = f(x, p) = A(x, p)x with p+ = %+ p is

δV (x, p, %) = V (f(x, p), p+ %)− V (x, p) = x>Qd(x, p, %)x (6.14)
where Qd(x, p, %) = A>(x, p)Q(f(x, p), p+ %)A(x, p)−Q(x, p). (6.14a)

Then, a possible quadratic factorization of (6.14) is

δV (x, p, %)=π>d (x, p, %)Qd(p, %)πd(x, p, %) (6.15)

with Qd(p, %)=A>dQ(p+ %)Ad−E>dQ(p)Ed and πd =
(
π
π+

1

)
= Πdx, (6.15a)

where Πd(x, p, %) =
(

Π(x,p)
Π1(f(x,p),p+%)(F11+F12 Π1(x,p))

)
. (6.15b)

Matrices Ad and Ed in (6.15a) are the same as in (6.7b). �

Proof. Substitute πd and Qd(p, %) into (6.15) to obtain (6.14).

Note that generator πd =
(
π
π+

1

)
in Proposition 6.5 is very similar to πd = ( π

π̇1 ) in
Proposition 6.3, but applied to the discrete-time dynamics, namely,

π+
1 (x, p) = π1(f(x, p), p+ %). (6.16)

We stress that the explicit value of π+
1 depends on the parameter rate % = p+− p, which

is considered as an independent variable in (6.3b).
In Section 4.2.3, we have presented an alternative approach (for the CT case) to fac-

torize the total derivative of the Lyapunov function. Furthermore, a (possibly not max-
imal) annihilator is given explicitly for the corresponding generator (πr) in Proposition
4.5. Based on these results, we present a similar factorization in the DT case.

The proposed decomposition is motivated by the uniformly zero “annihilation” ex-
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pression of N(x, p)π(x, p) = 0 but evaluated in the subsequent time step as follows:

N(f(x, p), p+ %)π(f(x, p), p+ %) = 0. (6.17)

In expression (6.17), important nonlinear terms may appear, which, collected in a gener-
ator πr may result in an more representative annihilator and hence in a less conservative
convex condition.

Proposition 6.6 [P2]. Considering the rational terms of expression (6.17), an alterna-
tive factorization for δV (x, p, %) can be given as follows

δV (x, p, %) = π>r (x, p, %)H>
r Qd(p, %)Hr πr(x, p, %), (6.18)

with Hr =
(
Inx+2m1 0(nx+2m1)×(n2

x+2nxm1)

)
,

Generator πr(x, p, %) is defined as follows:

πr = ( πdµ ), with µ =
( µ1
···
µnx

)
= (f ⊗ Im)πd, µi = x+

i πd, (6.19)

where vector πd and matrix Qd(p, %) are given in (6.15) and x+ = f(x, p). �

Proof. Considering the fact that Hrπr = πd it is easy to see that factorization (6.18)
gives back function δV = π>dQdπd (6.4).

Factorization (6.18) also makes possible to define a (not necessarily maximal) affine
annihilator for vector πr(x, p, %).

Proposition 6.7 [P2]. A possible annihilator for πr(x, p, %) in (6.19) is

Nr(x, p, %) =

 Nd(x,p,%) 0
0 Inx⊗Nd(x,p,%)

N0(p+%)Ad (N1Ad N2Ad ... NnxAd )
(Inx⊗x)·(F11 F12 0nx×p ) −Inx⊗ ( Inx 0nx×2p )

, (6.20)

where Ni are constant matrices and N0 is an affine matrix function of p such that:

N(x, p) = N0(p) +
∑nx
i=1Nixi (6.21)

and matrix N(x, p) is an annihilator for vector π = Πx. �

Proof. Affine matrix Nd(x, p, %) is an annihilator of πd and hence of µi = x+
i πd for all

i = 1, . . . , nx. On the other hand, if we evaluate expression (6.17) and considering that
π+ = Adπd, we obtain the following identity:

0 = N(f(x, p), p+ %)π+

= N0(p+ %)Adπd +
∑nx
i=1NiAdµi

(6.22)

Finally, we can observe that (
Inx 0nx×2p

)
µi = xx+

i , (6.23)

therefore, if we collect vectors xx+
i into a composed vector, we obtain an affine relation-

ship between µ and πd:[
Inx ⊗

(
Inx 0nx×2p

)]
· µ=

(
xx+

1...
x x+

n

)
=(Inx ⊗ x)x+ =(Inx ⊗ x) ·Hdπd. (6.24)

Identity (6.24) gives the last row of annihilator Nr(x, p, %).

6.3 Robust stability domain computation

It is well-known that a (parameter independent) Lyapunov function V : X → R satisfying
(6.3), determines a positively invariant level set Ωα = {x ∈ X |V (x) ≤ α} with measure
greater than zero. Then, Ωα is a robust stability domain (RSD) for the (possibly non-
autonomous) system Σa : ẋ = f(x, p) in the sense of Definition 6.2.
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In general, we consider a parameter-dependent Lyapunov function V : X × P → R
with a time-varying parameter p : [0,∞) → P . Then, it is less straightforward how an
RSD can be determined for the non-autonomous system Σa : ẋ = f(x, p).

6.3.1 Level set of a parameter-dependent Lyapunov function

In this section, we present a step-by-step construction of a possible RSD.

1. First of all, let us consider the “hyper” level set of V in the unified state and
parameter space Rnx+np as follows:

Ψα = {(x, p) ∈ Rnx × P | V (x, p) ≤ α}. (6.25)

Note that each point (x, p), for which p 6∈ P , is irrelevant in the stability analysis,
therefore, they are not an element of Ψα. The truncated level set Ψα is illustrated by
the filled orange region in Figure 6.1. Due to the geometry (6.3a) of the Lyapunov
function, there exists some α > 0, such that the truncated level set Ψα is contained
(entirely) in X × P . In this case, Ψα is positively invariant with respect to the
system dynamics. In other words, (x(0), p(0)) ∈ Ψα implies that (x(t), p(t)) ∈ Ψα

for all t ≥ 0.

Suppose that the Lyapunov function V = x>Qx (5.9) is quadratic with a positive
definite Q(x, p) for all (x, p) ∈ X × P . Then, according to [16, Corollary 4.1], the
Lyapunov inequalities (6.3) imply that the solution x of Σa will converge to the
equilibrium point x∗ = 0, for all (x(0), p(0)) ∈ Ψα and all admissible parameter
signal p satisfying Assumption 6.1.

2. Secondly, we introduce an auxiliary set, which can be considered as a “projection”
of Ψα onto the subspace of the state variables (Rnx) defined in the following way
(Figure 6.1, blue interval):

Ωα = {x ∈ Rnx | ∃ p ∈ P such that V (x, p) ≤ α}
=
⋃
p∈P {x ∈ Rnx | V (x, p) ≤ α}.

(6.26)

Note that Ωα ⊂ X if Ψα ⊂ X × P .

3. Finally, we give a robust stability domain for the equilibrium point:
Ωx0
α = {x ∈ Rnx | V (x, p) ≤ α for all p ∈ P}

=
⋂
p∈P {x ∈ Rnx | V (x, p) ≤ α} ⊆ Ωα.

(6.27)

Superscript x0 in the notation of set (6.27) emphasizes that Ωx0
α is a set of initial

conditions x(0) = x0, from which the state vector will remain inside Ωα and
will converge to the equilibrium point independently of the time evolution of the
uncertain parameters.

Though a positively invariant domain cannot be given for a parameter-dependent
Lyapunov function, we are able to determine two subsets Ωx0

α ⊂ Ωα, which provide a
more specific stability property. Namely, x(t) ∈ Ωα for all t ≥ 0 if x(0) ∈ Ωx0

α . If the
Lyapunov function is parameter-independent Ωα = Ωx0

α is positively invariant.
In [16, Eqs. (89) and (90)], the authors introduced two further LMI conditions, which

ensure that the truncated unitary level set

Ψ1 = Ψα=1 = {(x, p) ∈ Rnx × P | V (x, p) ≤ 1}. (6.28)

is entirely inside of X × P . Furthermore, an objective function is proposed to be mini-
mized in order to X × P by Ψ1 as much as possible.
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Figure 6.1: In this figure, we illustrate how the ro-
bust stability domain is computed by using a specific
level set of the obtained parameter-dependent Lya-
punov function. For simplicity, the RSD of a first
order system is illustrated in this figure with a single
uncertain parameter. The orange contour line illus-
trates the α level set of the Lyapunov function V .
The light green band (Rnx×P) highlights the region,
where p ∈ P . The filled orange region illustrates the
truncated level set Ψα. This truncated set is posi-
tively invariant with respect to the system dynamics.
The blue and green intervals illustrate the projected
sets Ωα and Ωx0

α , respectively. If the initial value of
the state variable x(0) belongs to the computed ro-
bust stability domain Ωx0

α , the state x(t) will remain
inside Ωα for all t ≥ 0 and will converge to the origin,
independently of p(t), i.e., x(t) ∈ Ωα and x(t) → x∗

for all x(0) ∈ Ωx0
α and for any admissible parameter

trajectory p(t) satisfying Assumption 6.1.

6.3.2 Boundary conditions

Instead of the S-procedure approach of El Ghaoui and Scorletti (Section 4.2.1) or Coutinho
et al. (Section 4.2.2) we present a generalized version of the approach proposed by Trofino
and Dezuo (Section 4.2.4).

Trofino and Dezuo [16] prescribed the Lyapunov function to be greater than 1 along
the bounds ∂X of polytope X . Furthermore, an auxiliary slack variable are introduced,
by which the Lyapunov function is upper-bounded and minimized to spread the unitary
level set Ω1 in X as much as possible. Then, the boundary conditions are

1 ≤ V (x, p) ≤ τ for all x ∈ ∂X and all p ∈ P . (6.29)

The previous constraint is obviously not convex, as ∂X is not convex. However, as X
is a polytope, we have the possibility to cover ∂X by a number of convex sets, namely,
∂X =

⋃mX
k=1 Fk, where

Fk ⊂
{
x ∈ Rnx

∣∣ a>kx = 1
}

(6.30)

denotes the kth facet of polytope X . Vector ak ∈ Rnx is a vector perpendicular to Fk
and its norm is inversely proportional to the distance of the origin (dk) to facet Fk,
namely, ‖ak‖ = d−1

k . See also Figure 6.2.
Finally, the set of boundary conditions are presented as follows:

1 ≤ V (x, p) ≤ τk for all (x, p) ∈ Fk × P and for some τk ≥ 1. (6.31)

Note that in (6.31), multiple slack variables appear (τk) corresponding to each facet
Fk, k = 1, . . . ,mX . The sum of variables τk is meant to be minimized through the
optimization procedure.

Inequalities (6.31) can be rewritten as follows2:

π>fQf (p, 1)πf ≥ 0 and π>fQf (p, τk)πf ≤ 0 for all (x, p) ∈ Fk × P , (6.32)

where Qf (p, α) =
(
−α 0
0 Q(p)

)
and πf = ( 1

π ) =
( 1
x
π1

)
, π1 = Π1x.

By construction (Procedure 5.15), rational vector π is a minimal generator for V (x, p),

2Subscript f in πf and Qf suggests that these variables are related to the boundary conditions on
the facets of polytope X .
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origin

dk

v1

v2

v3

v4

v5

v6

v7

v8

Fk

‖ek‖ = 1

ak = ek/dk

X

V(Fk) = {v1, v2, v3, v4}

Figure 6.2: This figure illustrates how to cal-
culate vector ak for a given facet Fk. Vector
ek (red arrow) is a unit length vector orthogo-
nal to Fk, dk is the distance of the origin from
Fk, then ak = ek

dk
(yellow arrow) is an orthogo-

nal vector with a length inversely proportional
to dk. If a point x ∈ Rn is an element of
polytope X , then e>kx ≤ dk, or alternatively,
a>kx ≤ 1 for every facet Fk. Additionally, this
figure illustrates the case of a rectangular poly-
tope in a three-dimensional state-space, with
nX = 23 = 8 number of corner points. This
polytope has MX = 2 · 3 = 6 facets, and each
facet has nFk

= 23−1 = 4 vertices.

in other words, the coordinate function of π are linearly independent (Definition 5.6).
Therefore, vector πf is again a minimal generator. However, each inequality in (6.32) is
meant to be solved over an (nx − 1)-dimensional submanifold Fk of polytope X ⊂ Rnx .
This fact involves additional algebraic interdependence (a>kx = 1) between the state
variables, and hence in the (possibly minimal) generator πf , e.g.,

(
1 a>k 0

)
πf = 0. In

the following example, we demonstrate that even a simple vector πf may admit multiple
linearly independent constant annihilator rows when x ∈ Fk.
Example 6.1. Let x = ( x1

x2 ) ∈ R2, and let π1 =
(
x2

1 x1x2 x2
2
)>, then constraining

x to satisfy x1 + x2 + 1 = 0, a possible constant annihilator for πf = ( 1 x1 x2 π>1 )> is
N0 =

( 1 1 1 0 0 0
0 1 0 1 1 0
0 0 1 0 1 1

)
. �

In the following corollary, we summarize the sufficient boundary LMIs for function V .

Corollary 6.8 (Boundary LMIs). Consider function V : X ×P → R in the form (5.9),
namely, V (x, p) = π>(x, p)Q(p)π(x, p), where π : X × P → Rm is a minimal generator,
and Q(p) = Q0 +

∑np
i=1Qi pi. For each facet Fk (k = 1, . . . ,mX ) of polytope X , compute

1. full column-rank matrix Sf,k ∈ R(m+1)×mf,k (mf,k ≤ m), and minimal generator
πf,k : Fk × P → Rmf,k , such that πf (x, p) = Sf,kπf,k(x, p) for all (x, p) ∈ Fk × P ,
where πf = ( 1

π ) : Fk × P → Rm+1,

2. affine annihilator Nf,k : Fk × P → Rsf,k×mf,k , such that Nf,kπf,k ≡ 0 on Fk × P .

Assume that for each facet Fk, there exist matrices L(1)
f,k, L

(2)
f,k ∈ Rmf,k×sf,k such that the

following PD-LMIs are satisfied

Qf,k(p, 1) + He
{
L

(1)
f,kNf,k(x, p)

}
� 0, for all (x, p) ∈ Ve(Fk × P), (6.33a)

Qf,k(p, τk) + He
{
L

(2)
f,kNf,k(x, p)

}
� 0, for all (x, p) ∈ Ve(Fk × P), (6.33b)

where Qf,k(p, α) = S>f,kQf (p, α)Sf,k. Then, inequality (6.31) is satisfied.
Symmetric matrices Q0, . . . , Qnp and full matrices L(1)

f,k, L
(2)
f,k, k = 1, . . . ,mX are

free decision variables of the semidefinite program, and are meant to be found such that∑mX
k=1 τk is minimized. �

Proof. To obtain (6.32), multiply both PD-LMIs from the left and right hand side by
π̂>f,k and by π̂f,k, respectively.

Note that Corollary 6.8 extends the results of [16, Section 5.1] in the terms of au-
tomation and dimensional reduction.
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Remark 6.5. In order to determine the decomposition πf = Sf,kπ̂f,k, we find a constant
matrix N0,k satisfying N0,kπf = 0 for all (x, p) ∈ Fk × P (Procedure 5.13 with Remark
5.4). Then, apply Procedure 5.15 to obtain Sf,k and π̂f,k. �

6.3.3 Final optimization solution for DOA computation

Up to this point, we collected the necessary ingredients to formulate the final optimization
task for DOA estimation. First, we presented the LFR system representation (6.2) to
select generator π. In Section 6.2.1, multiple factorization techniques were presented for
the Lyapunov inequality δV = π>d Qd πd (6.4). Finally, boundary LMIs were introduced
to shape the Lyapunov function conveniently.

In the following corollary, we present the overall optimization problem for RSD com-
putation. Corollary 6.9 should be interpreted in the foreground of the computational
framework of Chapter 5, and in companion with the boundary LMIs in Corollary 6.8.

Corollary 6.9 (SDP for DOA estimation). Consider system Σa : x+ = A(x, p)x (6.1),
function V = π>Qπ (5.9), and a possible factorization of δV = π>dQdπd (6.4) where
π : X × P → Rm is a minimal generator, πd : X × P ×R → Rmd is not necessarily a
minimal generator, and X ⊂ Rnx , P ,R ⊂ Rnp are compact polytopes. Compute

1. full column-rank matrix Sd ∈ Rmd×m′d and minimal generator π̂d : X×P×R→ Rm′d
such that πd = SdΠ̂d,

2. affine functions N : X × P → Rs×m and Nd : X × P × R → Rsd×m′d, such that
Nπ ≡ 0 and Ndπd ≡ 0.

3. matrices Sf,k, generators πf,k, and annihilators Nf,k as requested by Corollary 6.8.

Consider some positive constants 0 < α0, α0 � 1. Then, system Σa is locally asymptoti-
cally stable with the Lyapunov function V if there exist matrices L ∈ Rm×s, Ld ∈ Rm′d×sd,
and L(1)

f,k, L
(2)
f,k ∈ Rmf,k×sf,k , k = 1, . . . ,mX , such that the LMIs (6.33) in Corollary 6.8

and the LMIs above are satisfied:

Q(p) + He{LN(x, p)} −
(
α0Inx

0

)
� 0 ∀ (x, p) ∈ Ve(X×P), (6.34a)

S>d

(
Qd(p, %)+

(
α0Inx

0

))
Sd+He

{
LdNd(x, p, %)

}
�0 ∀ (x, p, %)∈Ve(X×P×R). (6.34b)

Symmetric matrices Q0, . . . , Qnp, full matrices L, Ld, L
(1)
f,k, and L

(2)
f,k are free decision

variables of the semidefinite program and are meant to be found such that they minimize
the cost function

∑mX
k=1 τk of Corollary 6.8. �

Note that the PD-LMIs in (6.33) and (6.34) are affine in (x, p, %), therefore, they
can be solved with a semidefinite solver if we evaluate them in the corner points of the
corresponding polytopic domains. In this way, we obtain a system of a finite number of
LMIs. For convenience, we collected the number of LMIs and their dimensions in Table
6.1, where nX , nP , and nR denote the number of corner points of polytopes X , P and R,
respectively, and mX denotes number of facets of X . The dimension of PD-LMIs (6.34b)
and (6.33) depends on the dimensions (m′d and m′f,k ≤ m) π̂d and π̂f,k, respectively.

In the case of rectangular polytopes X ⊂ Rnx and P ,R ⊂ Rnp , the number of vertices
are nX = 2nx , nP = nR = 2np , nFk = 2nx−1 ∀k = 1,mX , furthermore, the number of
facets of X is mX = 2nx (Figure 6.2). Therefore, the feasibility of PD-LMIs (6.34a) and
(6.34b) should be checked in 2nx+np and 2nx+2np number of vertices, respectively. On
the other hand, the two parameter-dependent LMIs (6.33) for every facet of X should be
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eq. nr. description dim. nr. of LMIs (rect. X ,P and R)
(6.34a) positivity of V (x, p) m nX · nP (= 2nx+np)
(6.34b) negativity of V̇ (x, p) m′d nX · nP · nR (= 2nx+2np)
(6.33) 1 ≤ V (x, p) ≤ τk m′f,k ≤ m 2nP

∑mX
k=1 nFk (= nx · 2nx+np+1)

Table 6.1: Computational complexity of the optimization problem for RSD computation. The
third column presents the dimensions of LMIs, the fourth column comprise the number of corner
points, in which the PD-LMI are evaluated.

checked in each vertex of Fk × P , which means 2 · 2nx−1+np = 2nx+np number of simple
LMIs for each facet, in all, 2nx · 2nx+np = nx · 2nx+np+1 simple LMIs.

In general, truncating vector π (decreasing its dimension m) reduces significantly the
number of decision variables and the sizes of the LMIs, especially the LMIs corresponding
to the rate of the Lyapunov function. On the other hand, more independent rational
terms in π may result in a better estimate for the DOA.

6.4 Numerical examples

In this section, we illustrate the applicability of the approach presented above through
different numerical examples.

6.4.1 Uncertain Van der Pol dynamics

In this subsection, we revisit the time-reversed Van der Pol system (5.3) with an un-
certain possibly time-varying parameter p. Here, we consider three different classes of
uncertainty, namely,

1. constant unknown parametric uncertainty p ∈ P ,

2. rate-bounded manipulating input p satisfying Assumptions 6.1 encapsulated in a
parameter,

3. a nonlinear term p : X → P encapsulated in a parameter such that p ◦ x satisfies
Assumptions 6.1.

The boundary of the system’s largest achievable DOA can be approximated (or at least
estimated) by simulating the Van der Pol oscillator model (5.1) with the given parameter
signal.

The Lyapunov function is searched in the form (5.9), where π and its annihilator is
given below:

N(x, p) =
( 0 0 0 1 −x1

0 0 x1 0 −1
0 p −1 0 0
x2 −x1 0 0 0

)
, π(x, p) =

 x1
x2
px2
px2

1x2
px1x2

. (6.35)

Due to their different nature, the three types of parametric uncertainty have to be
treated differently. In the following paragraphs, we study the three cases separately. For
simplicity, the Lyapunov function is searched in a quadratic form (5.9) with a constant
“Lyapunov matrix” Q. In each case study, polytope X is evaluated gradually in an
automated manner as described in [P18, Section 3.6]. The initial polytope was chosen
to be X (0) = [−0.3, 0.3]2. In Figures 6.3-6.5, the bounds of the approximated (robust)
DOA are illustrated by the black trajectories.
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Unknown constant. First, we consider p ∈ [1, 3] to be an unknown constant model
parameter. For Q, the following value was computed:

Q =

 0.681 −0.213 −0.019 0.03 0
−0.213 0.462 0.002 0.017 0.002
−0.019 0.002 0.001 0 0

0.03 0.017 0 0.001 0
0 0.002 0 0 −0.011

. (6.36)

In Figure 6.3, the maximal achievable DOAs are shown for three different values of
p = 1, 2, 3. The area of the computed RSD Ωx1

1 (highlighted by the filled green region)
is 5.677u2.

Rate-bounded input. Secondly, we considered a time-varying (known) parameter func-
tion p : [0,∞) → P = [p0 − a, p0 + a] with a bounded derivative ṗ : (0,∞) → R =
[−aω, aω]. Let p(t) = p0 + a sin(ωt), with p0 = 1, a = 0.8, ω = 10.5. The obtained value
for the Lyapunov matrix is

Q =

 0.879 −0.08 −0.002 0.003 0
−0.08 0.861 −0.001 0.002 0
−0.002 −0.001 0 0 0
0.003 0.002 0 0 0

0 0 0 0 −0.001

. (6.37)

Figure 6.6 illustrates the shape of the Lyapunov function V and its derivative function
if the parameter p(t) = p0 is fixed for all t ≥ 0. The area of the computed RSD
is 3.6226u2, which is illustrated by the green region in Figure 6.5. Furthermore, we
simulated the nonlinear time-dependent system from different initial conditions (x(i)

0 )
close to the bounds of the RSD. Then, we computed the values v(i)(t) = V (x(i)(t), p(t))
of the Lyapunov function along the trajectories x(i). As Figure 6.5 illustrates, functions
v(i) are non-increasing. To estimate the robust DOA of the system we simulated (5.1)
with the time-varying parameter function.

Trigonometric term in the system equation. Finally, assume that p is a nonlinear
function of the state. Let p(x) = p0 + a sin(ωx1), where p0 = 2, a = 1.5, ω = 10. In the
same way as we presented in Paragraph 2.1.2.1 for the inverted pendulum model, we can
compute the bounds of p(x) and its total derivative ∂p

∂x(x)f(x, p(x)) in the knowledge
of the a priori given polytope X . In this particular case, the derivative function of p
simplifies to ∂p

∂x(x)f(x, p(x)) = −aωx2 cos(ωx1), thus, the rate of p may vary between
[−aωx(max)

2 , aωx
(max)
2 ], where x(max)

2 = max
x∈X
|x2|. The generated Lyapunov function is

characterized by

Q =

 0.942 −0.158 −0.001 0.001 0
−0.158 0.844 −0.001 0.003 0
−0.001 −0.001 0 0 0
0.001 0.003 0 −0.001 0

0 0 0 0 0

. (6.38)

Compared to the previous two cases a positively invariant region can be given by the
1-level set Ω1 of the Lyapunov function W = V ◦ p, namely, W (x) = V (x, p(x)). In
Figure 6.7, one can see the shape of the Lyapunov function W , and its derivative LfW =
∂W
∂x (f◦p), where LfW (x) = ∂W

∂x (x)f(x, p(x)). The area of the estimated DOA is 3.5895u2

(Figure 6.4). In this case, the DOA can be precisely computed through simulating (5.1)
with p(x).
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6.4.2 A third-order rational system – continuous-time model

Here, we consider a third-order rational system taken from [16; P2; P3]:
ẋ1 = x2 + ε3x3 + ε1ζ(x)
ẋ2 = −x1 − x2 + ε2x

2
1

ẋ3 = ε3(−2x1 − 2x3 − x2
1),

, where ζ(x) = x1
x2

2 + 1
, ε1 = ε2 = ε3 = 1

2 (6.39)

A possible qLPV representation ẋ = A(x)x for system (6.39) can be given by matrix

A(x) =


ε1

x2
2+1 1 ε3

ε2x1 − 1 −1 0
−ε3x1 − 2ε3 0 −2ε3

 . (6.40)

It is easy to see that (6.39) has an equilibrium point at x∗ = 0. This equilibrium is
locally asymptotically stable, that can be justified by the negative real eigenvalues of
the Jacobian matrix of f(x) = A(x)x at x∗. The problem to be solved is to compute a
three-dimensional positively invariant domain as an estimate of the DOA around x∗.

Using the recursive LFT implementation of Section 3.6.2, we obtain the following
LFR for A(x) generating the following set of rational functions:

A(x)=Fl




0.5 1 0.5
−1 −1 0
−1 0 −1

0 0 −0.5 0
0.5 0 0 0
0 −0.5 0 0

1 0 0
1 0 0
0 0 0
1 0 0

0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 ,
(
x1 0 0 0
0 x1 0 0
0 0 x2 0
0 0 0 x2

)⇒ π1 =

 x2
1
x2

1
x2

2ζ(x)
x2ζ(x)

 (6.41)

We can see that monomial x2
1 appears twice in π1, therefore, ( x

π1 ) is not minimal. After
the proposed minimal generator selection technique of Procedure 5.15, we obtain the
following minimal generator form realization for the dynamic equation (6.39):

A(x)x =
(

0.5 1 0.5
−1 −1 0
−1 0 −1

0 −0.5 0
0.5 0 0
−0.5 0 0

)
π, where π = ( x

π2 ) and π2 =
(

x2
1

x2
2ζ(x)
x2ζ(x)

)
. (6.42)

The obtained vector π is now a minimal generator. A maximal affine annihilator for π
can be obtained by using the technique in Theorem 5.10:

N(x) =


x1 0 0 −1 0 0
x2 0 0 0 −x2 −1
x3 0 −x1 0 0 0
0 x1 0 0 −x2 −1
0 x3 −x2 0 0 0
0 0 0 0 1 −x2

.
The Lyapunov function is searched in the form V (x) = x>Qx (5.9), with a constant
matrix Q ∈ Rm×m. For the quadratic factorization of V̇ (x), we followed two different
approaches:

1. that proposed by Trofino and Dezuo [16] (Proposition 4.4) with an annihilator of
Proposition 4.5,

2. and our new LFR-based approach presented in Paragraph 5.5.0.1 with a maximal
annihilator.

In both cases, we used maximal annihilators for vector πd. Polytope X is selected
manually:

X = [−3.771, 3.5195]× [−4.6077, 5.1943]× [−8.4274, 6.7204]. (6.43)

In order to find a Lyapunov function and a positively invariant level set (i.e., RSD), we
solved the SDP described in Corollary 6.9, namely, we evaluated the PD-LMIs (6.33)
and (6.34) in each corner point of X . The obtained ordinary LMI constraints can be
solved by an SDP solver like SeDuMi [166–168] or Mosek [165]. In the computations, we
considered two different quadratic realizations for V̇ (x, p), that is illustrated in Figure
6.8 and Figure 6.9.
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In order to evaluate the obtained RSD estimate, we approximated numerically the
true DOA of the continuous-time model (6.39). We simulated the system from different
initial conditions located on a dense grid x0 ∈ Gr(12 · X , 201× 201× 201), where 12 ·X
denotes the set {12x |x ∈ X }. This grid density allows us to illustrate the true DOA on
a 3D plot in Figure 6.10. During the ODE simulation, we have considered two terminal
conditions. First, we assumed that x0 is not an element of the DOA if the trajectory
leaves the ball BM = {x ∈ Rnx | ‖x‖ ≤M}, where M = 254. Secondly, x0 is an element
of the DOA if the trajectory approaches the unit ball B1. Note that B1 is a subset of
the RSD Ω1 computed for system (6.39). The numerical approximation results suggest,
that the system has an unbounded DOA with an infinite volume.

6.4.3 A third-order rational system – discrete-time model

In this section, we consider the discrete-time version of model (6.39) first presented in
Section 6.4.2. Using Euler’s method, we can give a discrete-time model for this system:

x+ = x+ hA(x)x = ADT (x)x,
with ADT (x) = I + hA(x), (6.44)

where h denotes the constant sampling period. In the computations, we used h = 0.1.
The final transformed LFR realization for matrix ADT (x) generated the same set of
rational terms π1 and hence the same structure for the candidate Lyapunov function as
before obtained for the CT model (6.39).

We used again two different approaches to construct vector πd for the PD-LMI (6.34b).
1. First, we generated π(1)

d as presented in Proposition 6.6, and used an annihilator as
presented by 6.7. This approach is the discrete-time reformulation of the technique
of [16] presented in Section 4.2.3

2. Then, we used the LFR-based approach in Paragraph 5.5.0.1 with a maximal an-
nihilator.

In order to be able to evaluate the results and compare to those obtained for the CT
model, we used the same polytope as given previously in (6.43). The results of the RSD
computation (including the volume of the computed estimate) are presented in Table
6.2, and the corresponding stability domains are illustrated in Figures 6.8-6.12.

76

10.15774/PPKE.ITK.2021.004



3D rational model m md #vars volume solver time
CT + Proposition 4.4 (Fig. 6.8) 6 27 1926 314.479 4.758 sec
CT + Paragraph 5.5.0.1 (Fig. 6.9) 6 21 1575 304.804 3.349 sec
DT + Proposition 6.6 (Fig. 6.11) 6 36 2223 279.382 8.401 sec
DT + Paragraph 5.5.0.1 (Fig. 6.12) 6 54 6705 318.521 247.143 sec

Table 6.2: Results of the RSD computation for the continuous-time (Section 6.4.2) and discrete-
time models (Section 6.4.3) using two different quadratic generator form realizations for the rate of
the Lyapunov function. Column md contains the number of coordinates of the selected generator
πd. The value of md constitutes the size of PD-LMI (6.34b). In the 4th column we present the
number of free decision variables of the optimization problem. The last column presents the
processing time of the semidefinite optimization solver (Mosek).

Figure 6.8: Computed
RSD for the CT model
(with Proposition 4.4). Vol.:
314.479.

Figure 6.9: Computed RSD
for the CT model (with Para-
graph 5.5.0.1). Vol.: 304.804.
asd asd

Figure 6.10: Approximated true
DOA for the CT model (6.39).
asdasdasdas as dasd asd as

Figure 6.11: Computed RSD for the DT
model (with Proposition 6.6). Vol.: 279.382.

Figure 6.12: Computed RSD for the DT
model (with Paragraph 5.5.0.1). Vol.: 318.521.

77

10.15774/PPKE.ITK.2021.004



6.4.4 Stability and DOA analysis of the gradient descent method

In the literature, there exist many approaches to prove stability and convergence of the
diverse alternatives of the steepest descent and other fixed-point algorithms. Two of
the most popular techniques are based on Banach’s contraction mapping theorem (see
e.g. [22]) and on the well-known Lyapunov theorem. In [200] a Lyapunov function
is considered to prove stability for a continuous-time version of the steepest descent
dynamics. In [201] a multi-variable robust adaptive gradient-descent training algorithm
is developed to train a recurrent neural network. The convergence of the weight vector
was proven using a diagonal quadratic Lyapunov function.

In this section, we consider the dynamics of the classical gradient descent algorithm in
order to demonstrate the operations of the proposed method. The objective function to
be minimized is chosen to be the energy (i.e., Hamiltonian) function of the “Moon beam”
dynamics [202], which is a special variant of the Duffing oscillator having negative linear
stiffness [203, Section 2.6], [204]. For the sake of completeness, we give the dimensionless
differential equation, which describes the free motion of the undamped Duffing dynamics

ÿ − βy + αy3 = 0, where β = b2, α = a2. (6.45)

If we introduce the state variables x̄1 = y and x̄2 = ẏ, the Hamiltonian function of the
oscillator is the following

H(x̄) = 1
4

(
2x̄2

2 − 2b2x̄2
1 + a2x̄4

1

)
. (6.46)

This function has two local minima in (b/a, 0) and (−b/a, 0) for every nonzero a, b
parameter values. The gradient descent dynamics for this specific objective function
H(x̄) can be given as follows:

x̄+ = f(x̄, p) = x̄− p · ∇H(x̄), p ∈ P = [0.01, 0.1], (6.47)

where ∇H(x̄) denotes the gradient of function H(x̄), and p > 0 is the value of the
variable step-size belonging to the given bounded interval. Furthermore, we make no
restrictions on the rate of the parameter’s change, the only constraint is that the value
of parameter p in any future step should belong to the same bounded interval, namely,
p+ = p+ % ∈ P . In the computations, we used a = 0.5, b = 1.

The dynamics of the centered state vector x = (x̄1 + b/a, x̄2)> can be written in a
qLPV form x+ = A(x, p)x, where

A(x, p) =
(
−a2 p x2

1 + 3 a b p x1 − 2 p b2 + 1 0
0 1− p

)
. (6.48)

Using the direct LFT realization, we computed a minimal generator form realization
of A(x, p)x =

(
1 0
0 1

−4 0 3 1
0 1 0 0

)
π, where the minimal generator π and its maximal affine

annihilator are given as follows:

N(x, p) =


x2 −x1 0 0 0 0
p 0 −2 0 0 0
0 p 0 1 0 0
0 0 x1 0 −1 0
0 0 x2 0.5x1 0 0
0 0 0 0 x1 2

 , π =


x1
x2

0.5 px1
−px2

0.5 px2
1

−0.25 px3
1

. (6.49)

To give a PD-LMI (6.34b) for the negativity of δV (x, p, %), we have considered three
different quadratic generator form realizations for δV (x, p, %):

π
(1)
d : Firstly, we used the simple factorization given in Proposition 6.5, which resulted

in a small dimensional but conservative PD-LMI.

π
(2)
d : Secondly, we used the technique proposed in Proposition 6.6 with annihilator com-

puted in Proposition 6.7, which resulted in a less conservative PD-LMI, but the

78

10.15774/PPKE.ITK.2021.004



processing time increased significantly.

π
(3)
d : Finally, as presented in Paragraph 5.5.0.1, we used LFT and minimal generator

selection (Procedure 5.15) to generate vector πd = π
(3)
d . This LMI results in the

largest RSD, but the processing time increased by more than one order of magni-
tude compared to the second setup (with π(2)

d ).

For vectors π(1)
d and π(3)

d , we used maximal annihilators, whereas for π(2)
d we considered

annihilator Nr(x, p, %) computed as presented in Proposition 6.7. In order to compare
the operations of the three models, we used three different polytopes:

X0 = [−3.65,−0.9]× [−2.2, 2.2],
X1 = [−4.55,−0.3]× [−3.4, 3.4],
X2 = [−5, 0]× [−4, 4], (6.50)

for which the PD-LMIs (6.34) and (6.33) are solved. Table 6.3 summarizes the results of
the RSD computation for each factorization strategy for δV (x, p, %) and for each polytope
Xi. In Figure 6.13 and Figure 6.14, the obtained RSD Ω1 with Ωx0

1 are illustrated.
Additionally, the truncated level set Ψ1 is shown in Figure 6.13 alongside with a possible
trajectory (x(t), p(t)).

6.4.5 Continuous fermentation process

In this section, we revisit Problem 2.2, where the continuous fermentation process model
is considered with an uncertain maximal growth rate µmax = p. In the numerical cal-
culations, we used the following model constants: V0 = 4 l, K1 = 0.03 g/l, K2 = 0.5 l/g,
Y = 0.5, and SF,0 = 10 g/l. Furthermore, we assumed that p belongs to the interval
P = [0.8, 1.2] 1/h.

Let x = (x1 x2)> = (X −X0 S − S0)> denote the centered biomass and substrate
concentrations. We assume that the uncertain maximal growth rate (p) can be measured
or estimated on-line, and the optimal operating point inlet flow rate F0(p) = p · 3.2089 l
is scheduled accordingly. Then, the optimal equilibrium biomass (X0 = 4.8907 g/l) and
substrate (S0 = 0.2187 g/l) concentrations are independent of p. The values for X0, S0,
and F0(p) were computed as presented in Paragraph 2.2.0.1.

Model (2.20) can be written in the standard input-affine form with the centered state
vector x and the centered input flow rate u = F − F0(p). The centered model is:
ẋ = f(x, p) + g(x)u, where

f(x, p) =
(

(x1+X0)·µ(x2+S0)− (x1+X0)F0(p)
V0

− (x1+X0)·µ(x2+S0)
Y

+
(SF,0−(x2+S0))F0(p)

V0

)
, g(x) =− 1

V0

(
x1+X0

x2+S0−SF,0

)
(6.51)

Function f(x, p) can also be written in the factorized form f(x, p) = A1(x, p)x, where

A1(x, p) =

 −
F0(p)(c2x

2
2+c1x2)

q(x2)V0
pV0(x1+X0)−X0F0(p)(c2x2+c1)

q(x2)V0

− pS0
q(x2)Y −F0(p)

V0
− p(x1+X0)

q(x2)Y −
F0(p)(S0−SF,0)(c2x2+c1)

q(x2)V0

 (6.52)

with q(x2) = c2x
2
2 + c1x2 + c0, where c0 = K2S

2
0 + S0 +K1, c1 = 2K2S0 + 1, c2 = K2

Though the centered open-loop system (6.51) with u ≡ 0 is locally asymptotically
stable, it has a relatively small domain of attraction [P6]. Therefore, we consider two
different substrate feedback control laws, which ensure a much larger stability domain.
First, we estimate the domain of attraction generated through a static proportional
feedback u = −kPx2. Then, a PI (proportional-integral) controller is considered, namely,
u = −(kP + kI

s )S, where, s denotes the complex Laplace variable. Note that capital
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Figure 6.13: Trajectory (x(t), p(t)) for the gradient-descent dynamics (left) in the case of a
time-varying step size p(t) (right). The computed truncated level set Ψ1 (green surface) was
obtained when using vector π(2)

d with polytope X1 (5th row of Table 6.3, see also Figure 6.14d),

selected πd, polytope area of Ω1 Ωx0
1 Xi in cubic units proc. time

vector π(1)
d (Prop. 6.5), X0 7.5909 8.7803 12.1 (Fig. 6.14a) 0.1472 sec

vector π(2)
d (Prop. 6.6), X0 7.7690 8.7122 12.1 (Fig. 6.14b) 4.2773 sec

vector π(3)
d (Par. 5.5.0.1), X0 9.2163 9.2168 12.1 (Fig. 6.14c) 86.014 sec

vector π(1)
d (Prop. 6.5), X1 no solution found

vector π(2)
d (Prop. 6.6), X1 18.2780 20.4107 28.9 (Fig. 6.14d) 4.4903 sec

vector π(3)
d (Par. 5.5.0.1), X1 22.1316 22.1516 28.9 (Fig. 6.14e) 112.968 sec

vector π(1)
d (Prop. 6.5), X2 no solution found

vector π(2)
d (Prop. 6.6), X2 no solution found

vector π(3)
d (Par. 5.5.0.1), X2 28.1455 28.2825 40 (Fig. 6.14f) 172.517 sec

Table 6.3: Results of the optimization problem for the three different sets of rational functions
π

(1)
d , π(2)

d , π(3)
d , and for the three different polytopes X0 ⊂ X1 ⊂ X2.

selected πd dim. of πd dim. of its annihilator average proc. time
π

(1)
d (Prop. 6.5) 10 8× 10 0.1472 sec
π

(2)
d (Prop. 6.6) 30 34× 30 4.3838 sec

π
(3)
d (Par. 5.5.0.1) 52 102× 52 123.833 sec

Table 6.4: Dimension of the selected vector πd and its corresponding annihilator with the
estimated overall solver time in the three different cases.
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(a) Computed RSD for π(1)
d and X0. (b) Computed RSD for π(2)

d and X0.

(c) Computed RSD for π(3)
d and X0. (d) Computed RSD for π(2)

d and X1.

(e) Computed RSD for π(3)
d and X1. (f) Computed RSD for π(3)

d and X2.

Figure 6.14: Computed RSD for the classical gradient descent dynamics applied to the Hamil-
tonian function H(x) of the Duffing oscillator (colored surface). The dashed black rectangular
region illustrates polytope X , in which the PD-LMIs were tested. The blue and green contour
lines bound the computed regions Ω1 and Ωx0

1 , respectively. In order to make the computed DOA
estimate more visible, we projected X , Ω1 and Ωx0

1 onto the surface of the objective function
H(x). These are illustrated by the solid black, blue and green lines, respectively.
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letter “P” in the notation kP stands for “proportional”, furthermore, the value of kP is
independent of the uncertain parameter p.

Linear proportional substrate feedback

Let us define the centered input flow rate as u = −kPx2, where kP > 0 is the feedback
gain. The equation of the closed-loop system can be transformed into the following form:

ẋ = A2(x, p)x where A2(x, p) = (A1(x, p)− g(x)KP ) , KP = (0 kP ) (6.53)

To obtain a generator form realization for mapping f(x, p) in (6.51), we applied the recur-
sive LFT realization to (6.53), then, we used the minimal generator selection technique of
Procedure (5.15). We computed the RSD of system (6.53) for different feedback gain val-
ues kP ∈ [0.125, 5.125] with a rectangular polytope selection. In Figure 6.18, we illustrate
the RSD’s area in the function of kP . Observe that the area suddenly increases between
the values k(i)

P = 0.916 (area(i) = 0.6634) and k
(i+1)
P = 0.917 (area(i+1) = 6.5188). In

Figure 6.15, we illustrate the obtained RSD region and the corresponding rectangular
polytope X for different feedback gain values.

The largest area is obtained when kP = 0.917. In this case, matrices F11, F12 of
representation (5.5) and the obtained generator π1 corresponding to the system equation
(6.52) are the following:

F11 =
( 0 1.121

0 −2.242
)
, F12 =

(
0 0.219 0 0.0447 0.229 −0.802 0 0 0 0 −3.92 0

−0.875 −0.437 −0.802 −4 0 0 0 0 0 0 7.85 0.229

)
(6.54)

π>1 =
(

px1
ζ(x2)

px2
ζ(x2) px2

px1x2
ζ(x2) x1x2

px1x
2
2

ζ(x2)
x1x

2
2

ζ(x2)
x1x2
ζ(x2)

x3
2

ζ(x2)
x2
2

ζ(x2)
px2

2
ζ(x2) x

2
2

)
, ζ(x2) = q(x2)

c2
= q(x2)

K2

Figure 6.17 illustrates the obtained Lyapunov function V in two different view points
when p = p0. Figure 6.16 illustrates a possible RSD computed with an irregular polytope
when kP = 0.917. Note that the irregular polytope resulted in a larger RSD than a
rectangular polytope.

In each case, polytope X was selected manually through multiple trials. Though
there are systematic techniques in the literature (see, e.g., [16] or [P8]), the automatic
polytope evaluation is not addressed in this thesis.

Linear proportional and integral substrate feedback

Let the centered input flow rate be u = −kPx2−kI
∫ >
t0
x2(τ)dτ . In this case the equation

of the closed-loop system is ξ̇ = A3(x, p)ξ, where ξ = [x1 x2 u]> is the state vector of
the obtained three dimensional system. Using the variables from (6.51) and (6.52), the
state-transition matrix function A3(x, p) can be composed as follows:

A3(x, p) =
(

A1(x,p) g(x)
−KPA1(x,p)−KI −KP g(x)

)
, with KP =

(
0 kP

)
and KI =

(
0 kI

)
. (6.55)

After the proposed model transformation of Remark 5.8, the augmented dynamic equa-
tion is written in a generator form realization A3(x, p)ξ = F11ξ + F12π1, where

F11 =
(

0 0 −1.22
0 0 2.45
0 −2.0 −4.89

)
, F12 =

(
0 0.219 0 0.0447 −0.25 −0.802 0 0 0 0 −3.92 0

−0.875 −0.437 −0.802 −4.0 0 0 0 0 0 0 7.85 −0.25
1.75 0.875 1.6 8.0 0 0 0 0 0 0 −15.7 0.5

)
,

π>1 =
(

px1
ζ(x2)

px2
ζ(x2) px2

px1x2
ζ(x2) x1x3

px1x
2
2

ζ(x2)
x1x

2
2

ζ(x2)
x1x2
ζ(x2)

x3
2

ζ(x2)
x2
2

ζ(x2)
px2

2
ζ(x2) x2x3

)
. (6.56)

In Figure 6.19, we presented the computed (3-dimensional) RSD for two different feed-
back configurations. First, we fixed kP = 0.917 and kI = 1, then, we selected kP = 2
and kI = 2. For the two different cases, we used polytopes:

(x1, x2, u) ∈ [−2.172, 3.087]× [−0.2, 2.311]× [−1, 1],
(x1, x2, u) ∈ [−2.873, 3.813]× [−0.2, 2.154]× [−2, 2], respectively.

(6.57)
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Figure 6.15: Computed RSD (solid lines)
and the corresponding polytope X (dashed
lines) for different feedback gain values, with
a rectangular polytope selection.

Figure 6.16: Computed RSD, when an ir-
regular polytope is selected (blue line) com-
pared to that when a rectangular polytope is
considered (red line). In both cases, the feed-
back gain is kP = 0.917.
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Figure 6.17: Plot of the Lyapunov function V from two
different angles, when kP = 0.917 and p = 1.
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Figure 6.19: The computed RSD in the case of two different feedback gain configurations, when
an additional integral substrate feedback is applied. In both cases, the figure illustrates the used
polytope X (bounding box), the maximal robust stability domain (red mesh) and its cross section
when u(0) = 0 (blue line).
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Note that in a higher dimensional Euclidean space (e.g., 3D), a rectangular polytope is
a more conservative polytope selection than in 2D. Therefore, the obtained estimates in
both integral feedback configurations are smaller than that obtained when no integral
feedback is applied.

6.4.6 A simple disease model

In this example, we consider a susceptible-infectious-recovered-deceased (SIRD) model
taken from [205]. The system equations are the following:

˙̄x1 = π − (β1x̄2 + β2x̄4 + λx̄5)x̄1 − µx̄1

˙̄x2 = (β1x̄2 + β2x̄4 + λx̄5)x̄1 − (µ+ δ + γ)x̄2

˙̄x3 = γx̄2 − µx̄3

˙̄x4 = (µ+ δ)x̄2 − bx̄4

˙̄x5 = σ + ξx̄2 + αx̄4 − ηx̄5

(6.58)

where x̄1, x̄2, x̄3, x̄4 denote the scaled numbers of susceptible, infectious, recovered
and deceased human individuals, respectively, while x̄5 denotes the scaled concentra-
tion of virus pathogens in the environment. The values of model parameters are cho-
sen to be as follows: π = 10, η = 0.03, ξ = 0.04, α = 0.04, δ = 0.05, β1 = 0.006,
β2 = 0.012, λ = 0.01, γ = 0.06, µ = 0.5, b = 0.8, σ = 0. For this parameter
configuration, system (6.58) has a unique positive (endemic) equilibrium point x̄∗ =(
16.5986 2.788 0.3346 1.9168 6.273

)>
, which is locally asymptotically stable [205,

Theorem 5.1]. The value of x̄∗ can be derived analytically, as it was shown in [205]. If
we introduce the centered state variable x = x̄− x̄∗, the numerical form of the centered
system’s equation will be the following:

ẋ1 =−0.006x1x2−0.012x1x4−0.01x1x5−0.6025x1−0.0996x2−0.1992x4−0.166x5 (6.59a)
ẋ2 = 0.006x1x2 + 0.012x1x4 + 0.01x1x5 + 0.1025x1 − 0.5104x2 + 0.1992x4 + 0.166x5 (6.59b)
ẋ3 = 0.06x2 − 0.5x3 (6.59c)
ẋ4 = 0.55x2 − 0.8x4 (6.59d)
ẋ5 = 0.04x2 + 0.04x4 − 0.03x5 (6.59e)

Considering every second-order monomial of the state variables x1, x2, x4 and x5 to
appear in π, we will have dim(π) = 10. If we skip every second-order monomial in
which a certain state variable is on the power of 2 (i.e., monomials of the form x2

i ), we
obtain dim(π) = 6 monomials. Using the LFT and then the minimal generator selection
technique of Section 5.4.1, we obtained the following minimal generator form realization
(Definition 5.1) for system (6.59):

F11 =

−0.6025 −0.0996 0 −0.1992 −0.166
0.1025 −0.5104 0 0.1992 0.166

0 0.06 −0.5 0 0
0 0.55 0 −0.8 0
0 0.04 0 0.04 −0.03

, F12 =
(−0.006 −0.012 −0.01

0.006 0.012 0.01
0 0 0
0 0 0
0 0 0

)
, π1 =

( x1x2
x1x4
x1x5

)
The annihilators for both πd and π were computed using the proposed technique in
Paragraph 5.3.2.1. Before the optimization, we selected a rectangular polytope:

X = [−4.42, 4.96]× [−2.79, 3.55]× [−0.33, 0.43]× [−1.92, 2.18]× [−3.83, 3.96]. (6.60)

The volume of the obtained positively invariant region is approximately 107.22u5. In
comparison, the volume of X is 1444.34u5. Figure 6.20 illustrates the cross sections of
the estimated DOA along the different axes.
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Figure 6.20: DOA for the 5-dimensional disease model. The area bounded by the closed green
line illustrates the cross sections of the obtained positively invariant domain. The gray rectangle
is the cross section of polytope X along the respective axes.

6.4.7 Inverted pendulum balancing system with state feedback

We consider the rational embedded model (2.6) of the inverted pendulum balancing
system given in the form:

ż = A(z)z +B(z)u, z> = (v ω z3 z4), z3 = sin θ, z4 = 1− cos θ, (6.61)

where matrices A(z) and B(z) are given in Section 2.1.1 alongside a detailed model
description. The origin is an unstable equilibrium point of the open-loop system (6.61)
with u ≡ 0, therefore, a locally stabilizing static state feedback is considered:

u = −Kz. (6.62)

The closed-loop dynamics in the embedding state-space are

ż = f̄cl(z) = (A(z)−B(z)K)z. (6.63)

For DOA computation, we consider initial conditions z(0) in a compact rectangular
subset of the state-space Z ⊆ R4, which corresponds to

x(0) = Φ−1(z(0)) ∈ Φ−1(Z ∩M) = X ⊂ R3, (6.64a)

in the state-space of system (2.2). The converse statement is also true, namely:

z(0) = Φ(x(0)) ∈ Z ∩M = Φ(X ) ⊂ R4. (6.64b)

Mapping Φ and manifold M were defined in Section 2.1.1 as follows:

M =
{
z ∈ R4 | z2

3 + (1− z2
4) = 1

}
= {z = Φ(x) |x ∈ U = R×(−π, π]×R}, (6.65)

z = Φ(x) = (v, ω, sin θ, 1−cos θ), where x = (v θ ω)>. (6.65a)

Let the state (x) of (2.2) be restricted to X ⊂ U◦=R×(−π, π)×R, then, Φ : X → R∩M
is a diffeomorphism andR∩M ⊂ {z = Φ(x) | z ∈ U◦}. Also note that the initial condition
z(0) ∈ Z \M does not correspond to a physically interpretable state for system (2.2). It
can be shown further that the diffeomorphism in (6.65a) satisfies 0 = Φ(0) and

1
2‖x‖ ≤ ‖Φ(x)‖ ≤ ‖x‖ for all x ∈ U. (6.66)

Observe that 1
4θ

2 ≤ 2(1− cos θ) ≤ θ2 in [−π, π], therefore, the inequality
1
4(v2 + ω2) + 1

4θ
2 ≤ v2 + ω2 + 2(1− cos θ) ≤ v2 + ω2 + θ2 in U, (6.67)

gives back (6.66).
Suppose that W : Z → R is a C1 (continuously differentiable) Lyapunov function for
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the dynamics (6.61). Then, according to Lemma 3.10, function V = W ◦ Φ : X → R is
a C1 Lyapunov function for the closed-loop dynamics

ẋ = fcl(x) = f(x) + g(x)u(x) (6.68)

of system (2.2), with the nonlinear feedback u(x) = −KΦ(x).
In the numerical computations, we considered the following model constants m = 1,

M = 0.5, ` = 1, g = 10, b = 0, and I = 4
3m`

2. Furthermore, the locally stabilizing
feedback gain K = (−1 −16.45 −38.56 0) in (6.62) was computed by considering the
(v, ω, z3) subsystem of the linearized model of (6.61) around z∗ = 0. Note that the pair
(Ā, B̄) of the linearized state-space model

ż = Āz + B̄u, where Ā = ∂f̄
∂z (z∗), and B̄ = B(z∗), (6.69)

is not controllable. However, the controllable subsystem (v, ω, z3) can be detached from
the LTI model (6.69). Therefore, K was computed through a linear quadratic regulator
design [49, Section 3.5.4] with Q = I3 and R = 1 for the pair (Ā1:3,1:3, B̄1:3,:), where
Ā1:3,1:3 denotes the upper-left 3×3 block of matrix Ā, and B̄1:3,: denotes the upper 3×1
block of matrix B̄.

During the analysis we considered initial conditions satisfying

(v(0), θ(0), ω(0)) ∈ X = [−18, 18] m
s ×

[
−π

4 ,
π
4
]
rad× [−3, 3] rad

s . (6.70)

Correspondingly, let

Z = [−18, 18]× [−3, 3]× [−0.751, 0.751]× [−0.1, 0.34], (6.71)

which satisfies (6.64).
Considering the LFR realization of rational function f̄cl, we obtain generator π, having

m = 28 coordinate functions. Using the proposed approach of Section 5.4, we computed
a reduced-dimensional minimal generator π̂ satisfying

f̄cl(z) =
(
F11 F12

)
π̂(z), π̂(z) =

(
z

π̂1(z)
)
∈ R19, where (6.72)

π̂>1 (z) = 1
2z2

3+5( vz3 vz4 ωz3 ωz4 z3z4 z2
3 vz2

3 ωz3z4 ωz2
3 ω2z3 z2

3x4 z3
3 ωz3

3 ωz2
3x4 ω2z3z4 ),

F11 =
( 0.933 15.4 32 0
−0.4 −6.58 −9.42 0

0 1 0 0
0 0 0 0

)
, F12 =

(
−16 0 −0.467 0.467 0 5 0 −7.68 1.17 0 0 0 0 0 0
−3.51 8.22 0.2 −0.2 0.5 19.3 −0.5 3.29 0 0 0 0 0 0.5 0
1.25 −1.25 0 0 0 0 0 −0.5 0 0 0 0 0.5 0 0

0 0 1.25 0 0 0 0 0 0 0 0.5 0 0 0 0

)
.

Therefore, a Lyapunov functionW is computed in a formW (z) = π>(z)Pπ(z), with a free
symmetric matrix P . To formulate a PD-LMI for the Lyapunov inequality (“Ẇ < 0”),

we computed πd(z) =
(

π̂(z)
∂π̂1
∂z (z)f̄cl(z)

)
∈ R34, which admits an affine annihilator Nd with

sd = 58 rows. To reduce the conservatism of the solution, we used the factorization
technique of Paragraph 5.5.0.1. Then, we obtained a minimal generator πg(z) ∈ R50,
which satisfies πd(z) = Hgπg(z), and admits an affine annihilator Ng with sg = 113 rows.

Solving the SDP of Corollary (6.9) for DOA computation, we obtained the following
value for the free matrix P in the Lyapunov function W :

0.005 0.0228 0.0468 0.0002 0 −0.0107 −1.95 1.03 −0.869 0.31 −0.0402 −0.782 1.04 −0.0071 0.713 −0.253 0.209 −0.557 0.132
0.0228 0.314 0.504 0.0002 1.95 −1.05 0.0212 0.798 −1.6 −2.31 −0.158 −4.62 1.47 −0.007 −3.21 −0.766 −0.617 −4.54 −5.39
0.0468 0.504 2.45 0 −0.316 11.7 2.36 36.3 −86.2 −0.0674 0.113 16.4 2.45 −3.58 −38.6 17.1 −0.382 −1.64 7.62
0.0002 0.0002 0 100 −11.1 −0.0027 −39.4 −0.0036 0.0062 −162 −0.811 −18.8 6.54 −1.09 −346 23.8 −4.27 8.92 −0.728

0 1.95 −0.316 −11.1 0.432 0.0011 −4.46 −13.9 36.3 −1.48 0.0039 21.3 −0.302 0.0043 16.3 −0.467 −3.54 −4.69 −0.028
−0.0107 −1.05 11.7 −0.0027 0.0011 −0.876 17.8 −5.33 −5.33 −35.5 0.586 −0.0063 −3.76 −0.671 −0.497 −3.09 6.61 4.33 −0.116
−1.95 0.0212 2.36 −39.4 −4.46 17.8 30.1 28.3 −25.1 −25.8 −0.764 −30 2.72 0.0895 83.3 −2.56 1.25 27.6 −1.81
1.03 0.798 36.3 −0.0036 −13.9 −5.33 28.3 −110 58 −71.7 −7.37 4.18 10 24.3 −55.2 6.59 −7.84 8.16 4.64
−0.869 −1.6 −86.2 0.0062 36.3 −5.33 −25.1 58 −691 75.1 1.3 7.87 0.645 77.3 −9.41 10.1 9.7 0.467 −1.95

0.31 −2.31 −0.0674 −162 −1.48 −35.5 −25.8 −71.7 75.1 319 0.485 94.3 1.09 −0.313 1.22e+03 −0.825 −18.8 −1.39 11.2
−0.0402 −0.158 0.113 −0.811 0.0039 0.586 −0.764 −7.37 1.3 0.485 −0.264 −0.235 −0.185 −0.0831 −0.141 0.0433 −0.336 −6.4 −0.324
−0.782 −4.62 16.4 −18.8 21.3 −0.0063 −30 4.18 7.87 94.3 −0.235 6.27 2.57 1.19 9.19 −51.8 11.5 −1.26 −0.718

1.04 1.47 2.45 6.54 −0.302 −3.76 2.72 10 0.645 1.09 −0.185 2.57 −1.92 −0.619 0.0321 −0.63 2.46 −13.5 −1.98
−0.0071 −0.007 −3.58 −1.09 0.0043 −0.671 0.0895 24.3 77.3 −0.313 −0.0831 1.19 −0.619 −0.692 −22.2 −7.27 −0.0854 3.75 −0.518

0.713 −3.21 −38.6 −346 16.3 −0.497 83.3 −55.2 −9.41 1.22e+03 −0.141 9.19 0.0321 −22.2 1.27e+03 31.8 −3.77 −22.3 3.65
−0.253 −0.766 17.1 23.8 −0.467 −3.09 −2.56 6.59 10.1 −0.825 0.0433 −51.8 −0.63 −7.27 31.8 0.158 5.62 −2.4 −43.1
0.209 −0.617 −0.382 −4.27 −3.54 6.61 1.25 −7.84 9.7 −18.8 −0.336 11.5 2.46 −0.0854 −3.77 5.62 −11.2 0.298 1.37
−0.557 −4.54 −1.64 8.92 −4.69 4.33 27.6 8.16 0.467 −1.39 −6.4 −1.26 −13.5 3.75 −22.3 −2.4 0.298 −72.6 2.91
0.132 −5.39 7.62 −0.728 −0.028 −0.116 −1.81 4.64 −1.95 11.2 −0.324 −0.718 −1.98 −0.518 3.65 −43.1 1.37 2.91 2.83


Then, the 1-level set Ω1 ⊂ X of function V is determined, which constitutes a positively
invariant domain for system (2.2). The approximated volume of Ω1 is 89.767. The shape
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Figure 6.21: Invariant level set Ω1 of function V = W ◦Φ computed for the nonlinear inverted
pendulum balancing system (2.2). In the figure, ϑ = π

4 ' 0.7854.

of Ω1 is illustrated in Figure 6.21.
The propose computational framework of Chapter 5 and the DOA computational

method of this chapter are originally proposed for rational nonlinear (possibly uncer-
tain) dynamical models. However, the embedding allowed us to adapt the proposed
approach for a dynamical system with both rational and trigonometrical terms (and
their composition). Also observe that the computed Lyapunov V = W ◦ Φ is also a
highly nonlinear rational-trigonometrical function with an unstructured matrix P . With
this example, we aimed to demonstrate the applicability of the proposed approach for
an even broader class of dynamical models than that with rational state (or parameter)
dependence.

6.5 Summary

In this chapter, I have proposed a computational method to estimate the domain of
attraction (DOA) of uncertain nonlinear (rational) continuous- or discrete-time systems
based on Lyapunov’s theorem. The proposed DOA computation framework has similar
elements to the techniques proposed in [154] (DT case) or [16] (CT case), where the
authors used affine annihilators to construct polytopic LMI conditions for stability. The
new contributions compared to these references are as follows. I presented automatic
numerical techniques to build up a system representation required for DOA computation,
whereas, [16; 154] give the theoretical and methodological bases of the polytopic approach
for DOA computation. Differently from [154], I allow time-varying uncertainties for
both CT and DT cases. In [154], the boundary conditions for the Lyapunov function
is formulated by the S-procedure and the volume of the DOA is enlarged by a trace
minimization method. Differently from [154], I follow the techniques of [16], where the
DOA is enlarged by using slack variables and prescribing additional boundary conditions,
which are formulated with Finsler’s lemma. Supplementing [16; 154], I propose reductive
LMI projections for both Lyapunov conditions and the boundary conditions. To reduce
the solutions conservatism I used algorithmically generated maximal annihilators, which,
to the best of our knowledge is a new concept in the literature.
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Chapter 7

Induced L2-gain computation

Alongside the internal stability of a dynamical system, the input-output behaviour of the
system is another major attribute, and the induced L2-gain is its most popular quan-
titative descriptor. The induced L2-gain computation for a general nonlinear uncertain
system is not covered yet. In this chapter, I propose a novel approach to compute a tight
upper bound γ on the induced L2 norm of a rational nonlinear uncertain model.

7.1 Motivating example

Consider a waste fermenting bioreactor modeled by the continuous fermentation process
introduced in Section 2.2. Suppose that the substrate concentration of the inlet waste
flow is rapidly changing due to the inhomogeneous substrate concentration of the organic
waste mixture to be processed. For a sustainable compost (P ) production, the mass of
bacteria culture (X) in the bioreactor should be maintained within a relatively tight
interval irrespectively of the small substrate concentration perturbations (uS) of the
inlet feed flow.

The induced L2-gain analysis allows us to obtain quantitative information about the
input-output behaviour of the nonlinear process model. In Figure 7.1, we demonstrate
two possible system responses to a small inlet substrate concentration perturbation.
First, suppose that the system has a small L2-gain from signal uS to signal x1 = X−X0.
Then, the system weakens the input perturbation on the output signal and the system
remains close to the operating point (X0, S0). If the process model has a high L2-gain
(larger than 1), then, the input perturbation is amplified on the output signal. In this
case, the system state may leave the domain of attraction of the operating equilibrium
point and the bacteria culture might even be washed out. In the knowledge of an upper
bound γ on the induced L2-gain, we can forecast, which of the previous two cases is
more likely to occur.

7.2 Convex conditions for induced L2-gain analysis

7.2.1 System class and storage function

We consider MIMO uncertain nonlinear state-space models in the following form:

Σ :
{
ẋ = f(x, u, p) = A(x, p)x+B(x, p)u, with x(0) = 0,
y = h(x, u, p) = C(x, p)x+D(x, p)u,

(7.1)
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Figure 7.1: Small L2-gain (typically lower than 1) provides a higher disturbance attenuation,
and hence a stable behaviour. Large L2-gain implies a higher sensitivity to the disturbance
signal, which results in the unstable behaviour.

where x, u, y, and p are the state, input, output, and the scheduling parameter signals,
respectively, with p satisfying Assumption 3.1. Furthermore, A, B, C, D are well-defined
rational functions on X × P , where P ,R ⊂ Rnp are compact polytopes, and X ⊆ Rnx
is a compact polytope (for local analysis) or the whole state-space (for global analysis).

The storage function candidate is constructed in the same form (5.9), as a Lyapunov
function was searched for DOA estimation in Chapter 6, namely:

V (x, p) = x>Q(x, p)x = π>(x, p)Q(p)π(x, p), with Q(p) = Q0 +
∑np
i=1Qi pi, (7.2)

where π : X × P → Rm is a minimal generator, and Q0, . . . , Qnp are free symmetric
matrices. Note that the Lyapunov matrix of V is Q(x, p) = Π>(x, p)Q(p) Π(x, p), where
generator Π : X × P → Rm×nx satisfies π(x, p) = Π(x, p)x for all (x, p) ∈ X × P .

Similarly to the DOA computation problem in Chapter 6, we have three source of
freedom in the LMI formulation. First, we have to select the minimal generator, which
constructs the candidate storage function. Secondly, we need to give a possible quadratic
reformulation of the dissipation inequality (3.14b) with the appropriate supply rate (in
Corollary 3.13), namely:

∂V
∂x (x, p)f(x, u, p) + ∂V

∂p (x, p)%− γ2u>u+ y>y (7.3)

= ( 1
u )>π>` (x, p, %)Q`(p, %)π`(x, p, %)( 1

u ) ≤ −α0‖x‖2,
for all (x, u, p, %) ∈ X × Rnu × P ×R. (7.3a)

where π` is a minimal generator. Thirdly, we have to select affine annihilators N and N`

for the generators π and π`.

89

10.15774/PPKE.ITK.2021.004



7.2.2 Model representation

As a first step, a structured LFR is fixed for the dynamic equations of Σ. The equations
and the block diagram of the proposed model representation are the following:

F33 F31

F23 F21

F13 F11

∆1

F12 F14

F22 F24

F42 F44

∆2

++ 1
s

u

ẋ

x

y

η1 π1

η2
π2

F(Σ) :


ẋ

y

η1
η2

 =


F11 F12 F13 F14
F21 F22 F23 F24
F31 0 F33 0
0 F42 0 F44


︸ ︷︷ ︸

F::


x

u

π1
π2

 , (7.4)

where π1 = ∆1η1, π2 = ∆2η2, and constant matrices Fij
are determined through the LFRs(

A(x, p)
C(x, p)

)
= Fl


F11
F21

F13
F23

F31 F33

 ,∆1

, (7.4a)

(
B(x, p)
D(x, p)

)
= Fl


F12
F22

F14
F24

F42 F44

 ,∆2

. (7.4b)

Pairs π1, η1 : [0,∞) → Rm1 , and π2, η2 : [0,∞) → Rm2 are the feedback signals through
the uncertain blocks ∆1 and ∆2, respectively. In the block diagram of F(Σ), the matrices
F11, F13, F21, F23, F31, F33 are reordered to match the modified order of input and output
signals. The coefficient matrices of Σ can also be given in a single equation as follows:(

A(x,p) B(x,p)
C(x,p) D(x,p)

)
= Fl

{
F::,

(
∆1

∆2

)}
. (7.5)

To construct a storage function candidate, we derive a generator from (7.4) by eliminating
signals η1 and η2 as follows1:

Π1 = Fl
{(

0 Im1
F31 F33

)
,∆1

}
, Π =

(
Inx
Π1

)
: X × P → Rm×nx , (7.6a)

Π2 = Fl
{(

0 Im2
F42 F44

)
,∆2

}
, Πb =

(
Inu
Π2

)
: X × P → Rmb×nu , (7.6b)

π1 = Π1x, π2 = Π2u, π = Πx = ( x
π1 ), πb = Πbu = ( u

π2 ), (7.6c)

where m = nx +m1, mb = nu +m2. From now on ∆1, ∆2, Π1, Π2, Π, Πb, π1, and π are
considered as of (x, p), whereas, π2 and πb are functions of (x, u, p). The generator form
realization of the (7.1) corresponding to LFR F(Σ) is the following:

G(Σ) :
(
ẋ
y

)
=
(
F11 F13
F21 F23

)
π(x, p) +

(
F12 F14
F22 F24

)
πb(x, u, p). (7.7)

Remark 7.1. For simplicity and transparency but without the loss of generality, we
assume that functions π and πb are minimal generators, i.e., G(Σ) is a minimal generator
form realization for Σ. Otherwise, let

(
ẋ
y

)
=
(
G11 G13
G21 G23

)
π̂ +

(
G12 G14
G22 G24

)
π̂b, where(

G11 G13
G21 G23

)
=
(
F11 F13
F21 F23

)
S, and

(
G12 G14
G22 G24

)
=
(
F12 F14
F22 F24

)
Sb, (7.8)

and the minimal generators π̂ and π̂b satisfy π = Sπ̂ and πb = Sbπ̂b. To compute π̂ with
S and π̂b with Sb, we refer back to Procedure 5.15. �

7.2.3 Reformulating the dissipation inequality

As a second step, we need to find an appropriate quadratic factorization of the dissipation
inequality as suggested in (7.3). In the following proposition, we present one possible

1Subscript b in Πb, πb suggests that generator Πb is related to matrix B(x, p) = (F12 F14)Πb.
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form of the dissipativity relation.

Proposition 7.1. Let Σ be given in representation (7.4) with a storage function (7.2).
Furthermore, let Q` and the corresponding generator π` be given as follows:

Q`(p, %) =
(

He
{
E>dQ(p)Ad

}
+E>d Q̌(%)Ed+C>d Cd E

>
dQ(p)Be+C>dDe

B>e Q(p)Ed+D>e Cd D>eDe−γ2E>e Ee

)
, (7.9)

π`(x, p, %) =
(
πd(x,p,%) 0

0 Πe(x,p)

)
: X × P ×R→ R(md+me)×(1+nu), (7.9a)

where md = nx + 4m1, me = nu + 2m1 +m2, furthermore,

Q̌(%) = dQ
dt =

np∑
i=1

Qi%i, πd =


π

∂π1
∂x

F11x
∂π1
∂x

F13π1
∂π1
∂p

%

, Πe =

 Πb
∂π1
∂x

F12
∂π1
∂x

F14Π2

, (7.9b)

Ad =
(
F11 F13 0 0 0
0 0 Im1 Im1 Im1

)
, Be =

(
F12 F14 0 0
0 0 Im1 Im1

)
, (7.9c)

Cd = ( F21 F23 0ny×3m1 ), De = ( F22 F24 0ny×2m1 ), (7.9d)

Ed =
(
Inx 0 0nx×3m1
0 Im1 0m1×3m1

)
, Ee = ( Inu 0nu×m2 0nu×2m1 ). (7.9e)

Then, a possible quadratic factorization form for the dissipation inequality (7.3) can be
given by Q` and generator π`. �

Proof. The left hand side of (7.3) can be evaluated as follows:

He
{
π>(x, p)Q(p)

(
∂π
∂x (x, p)A(x, p)x+ ∂π

∂x (x, p)B(x, p)u+ ∂π
∂p (x, p)%

)}
+π>(x, p)Q̌(%)π(x, p)

+ ( 1
u )>

(
C(x, p)x D(x, p)

)> (
C(x, p)x D(x, p)

)
( 1
u )− γ2u>u ≤ 0. (7.10)

Using the notations in (7.9b)-(7.9e), we can observe the following identities:
∂π
∂x (x, p)A(x, p)x+ ∂π

∂p (x, p)%=
(

F11x+F13π1(x,p)
∂π1
∂x

(x,p)(F11x+F13π1(x,p))+ ∂π1
∂p

(x,p)%

)
=Adπd(x, p, %), (7.11a)

∂π
∂x (x, p)B(x, p) =

(
F12+F14Π2(x,p)

∂π1
∂x

(x,p)(F12+F14Π2(x,p))

)
= BeΠe(x, p), (7.11b)

C(x, p)x = F21x+ F23π1(x, p) = Cdπd(x, p, %), (7.11c)
D(x, p) = F22 + F24Π2(x, p) = DeΠe(x, p), (7.11d)
π(x, p) = Edπd(x, p, %), and Inu = EeΠe(x, p). (7.11e)

Accordingly, (7.10) can be altered as follows:

He
{
π>d (x, p, %)E>dQ(p)(Ad Be)π`(x, p, %)( 1

u )
}

+ π>d (x, p, %)E>d Q̌(%)Edπd(x, p, %)

+ ( 1
u )>π>` (x, p, %)

(
C>d Cd C>dDe
D>e Cd D>eDe−γ2E>e Ee

)
π`(x, p, %)( 1

u ) (7.12)

= ( 1
u )>π>` (x, p, %)He

{(
E>dQ(p)Ad E>dQ(p)Be

0 0

)}
π`(x, p, %)( 1

u )

+ ( 1
u )>π>` (x, p, %)

(
E>d Q̌(%)Ed+C>d Cd C>dDe

D>e Cd D>eDe−γ2E>e Ee

)
π`(x, p, %)( 1

u ) ≤ 0. (7.13)

Finally, it is already visible from (7.13) that it gives back the right hand side of (7.3)
with Q` and π` as defined in (7.9).

7.2.4 Global performance analysis for LPV systems

Let us consider the linear parameter varying subclass of system (7.1):

ΣLPV :
{
ẋ = A(p)x+B(p)u, with x(0) = 0,
y = C(p)x+D(p)u,

(7.14)

where A, B, C, D are well-defined rational functions of the scheduling parameter only,
and p : [0,∞) → P is again a function of the time. System ΣLPV is said to be an LPV
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model with rational parameter dependence.
We assume that ΣLPV is globally asymptotically stable for u ≡ 0, for all x(0) ∈ Rnx ,

and all p satisfying Assumption 3.1. Consequently, the L2-gain analysis can be executed
without any “special” restrictions on the input signal, it only has to belong to Lnu2 [0,∞).
Furthermore, it is natural to set X = Rnx , namely, the analysis is performed “globally”
over the whole state-space.

Observe that generators Π and Πb in (7.6) computed for system ΣLPV are functions
of p only, as well as, matrix Q(p) = Π>(p)Q(p) Π(p) is consequentially independent of
the state. Therefore, an equivalent formulation of the dissipation inequality for system
ΣLPV can be given as follows:

Q`(p, %) = Π>` (p, %)Q`(p, %)Π`(p, %) =
(

He{Q(p)A(p)}+Q̌(p,%)+C>(p)C(p) Q(p)B(p)
B>(p)Q(p) D>(p)D(p)−γ2I

)
� −

(
α0Inx 0

0 0nu×nu

)
for all (p, %) ∈ P×R, (7.15)

where Q` is given in (7.9) and

Π` =
(

Πd
Πe

)
: P ×R→ R(md+me)×(nx+nu). (7.16)

Differently from π` in (7.9a), generator Π` is independent of x as generators Πd and Πe

simplifies to

Πd =

 Π
Π1F11

Π1F13Π1∑np
i=1

∂Π1
∂pi

%i

 : P ×R→ Rmd×nx , Πe =
( Πb

Π1F12
Π1F14Π2

)
: P → Rme×nu . (7.17)

It is worth mentioning that generator Π` is typically not minimal.
Finally, as all the “ingredients” are introduced, we present a semidefinite program to

compute a tight upper bound γ on the induced L2-gain of system ΣLPV. The following
corollary is a direct consequence of Corollary 3.13, Lemma 3.22, and Proposition 7.1.

Corollary 7.2 [P1] (SDP for global L2-gain analysis). Consider system ΣLPV (7.14)
with storage function V : Rnx × P → R in the quadratic form

V (x, p) = x>Q(p)x, Q(p) = Π>(p)Q(p) Π(p), Q(p) = Q0 +
∑np
i=1Qi pi, (7.18)

where Π is a minimal generator, and consider the quadratic factorization (7.15) of Q`.
Compute

1. full column-rank matrix S` ∈ R(md+me)×m′` and minimal generator
Π̂` : P ×R→ Rm′`×(nx+nu), such that Π` = S`Π̂`,

2. affine functions N : P → Rs×m and N` : P ×R→ Rs`×m′`, such that Nπ ≡ 0 and
N`Π̂` ≡ 0.

Then, ΣLPV is dissipative with respect to the supply rate s(u, y) = γ2‖u‖2 + ‖y‖2, and
has a finite L2-gain ‖Σ‖L2

≤ γ if there exist L ∈ Rm×s and L` ∈ Rm′`×s` such that

Q(p)− α0Ia + He
{
LN(p)

}
� 0, for all p ∈ Ve(P), (7.19a)

S>` (Q`(p, %) + α0I`)S` + He
{
L`N`(p, %)

}
� 0, for all (p, %) ∈ Ve(P ×R), (7.19b)

for α0 = 0, and some α0 > 0, where Ia = diag {Inx , 0m1}, I` = diag {Inx , 0nu+m2+6m1}.
Symmetric matrices Q0, . . . , Qnp, and full matrices L, and L` are free decision vari-

ables and are meant to be found such that they minimize γ (appearing in Q`). �

Proof. Condition (7.19a) implies (3.14b). Then, pre- and post-multiply (7.19b) by
(x> u>)Π̂>` (p, %) and by its transpose, respectively. Considering the proof of Proposi-
tion 7.1, we observe that obtained expression resembles the dissipation inequality.
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Remark 7.2. System ΣLPV is strictly dissipative with respect to the supply rate s(u, y) =
γ2‖u‖2+‖y‖2, and system ẋ = A(p)x is globally asymptotically stable with the Lyapunov
function (7.18) if (7.19) are satisfied for some α0, α0 > 0. �

7.2.5 Induced L2-gain and local stability

Let us consider a locally asymptotically stable nonlinear (possibly uncertain) system
Σ as it is given in (7.1). If we prescribe an upper energy bound on the input signal
(‖u‖2 ≤ M̄2), it is possible to compute a local upper bound on the induced L2 norm
of Σ. Moreover, it can be shown that the state trajectory of Σ will evolve inside a
compact set X . The strong relationship between local stability and induced L2-gain is
already addressed by El Ghaoui and Scorletti [89; 90], and Coutinho et al. [155; 156]. In
Section 4.2, we presented in brief both local analyses approaches. We although revisit
these concepts, and investigate them in the foreground of the generalized H2 nominal
performance [62, Section 3.3.4] of dynamical systems.

In the following theorem, we give a slight generalization of Theorem 4.3, with a
different proof compared to that presented by Coutinho et al. [156]. Although it is sub-
stantially based on the clever arguments of [62, proof of Proposition 3.12], the proposed
derivations have not yet been written, to the best of our knowledge, for uncertain non-
linear systems.

Theorem 7.3. Let X ⊂ Rnx be a compact subset of the state-space. Assume that func-
tion V : X × P → R in (7.2) satisfies the dissipativity relations (3.14) on X × P ×R
and for some γ > 0. Let function α > 0 be the highest value satisfying

Ωα = {x ∈ Rnx | ∃ p ∈ P such that V (x, p) ≤ α} ⊂ X ◦. (7.20)

Assume that system Σ is excited by an input u ∈ Uγ =
{
u ∈ Lnu2 [0,∞) | ‖u‖2 ≤ γ−1√α

}
.

Then, the solution of Σ starting from x(0) = 0 will not leave Ωα and ‖y‖2 ≤ γ‖u‖2,
independently of the parameter signal p satisfying Assumption 3.1. �

Note that Ωα is the “projection” of Ψα = {(x, p) ∈ X × P | V (x, p) ≤ α} onto the
state space as it is illustrated in Figure 6.1. Furthermore, Uγ constitutes the set of
admissible input signals.

Proof. Inequality (7.3) implies
∂V
∂x

(x(t), u(t)) f(x(t), u(t), p(t)) + ∂V
∂p (x(t), u(t)) ṗ(t)

≤ γ2‖u(t)‖2 − ‖y(t)‖2 ≤ γ2‖u(t)‖2 for all t ≥ 0,
(7.21)

with y = h(x, u, p). An equivalent integral formulation of (7.21) is the following:

V (x(t), p(t)) ≤ γ2
∫ t

0
‖u(τ)‖2dτ ≤ γ2

∫ ∞
0
‖u(τ)‖2dτ = γ2‖u‖22. (7.22)

Remember that the storage function is given in a quadratic form (7.2) with Q(x, p) � 0.
Consequently, for all (x, p), there exists a symmetric matrix

√
Q(x, p) = R(x, p) such

that Q(x, p) = R(x, p)R(x, p). Let z = R(x, p)x, therefore,

V (x(t), p(t)) = ‖R(x(t), p(t))x(t)‖2 = ‖z(t)‖2 ≤ γ2‖u‖22 for all t ≥ 0, (7.23)

Taking the supremum of the left hand side of inequality (7.23) over t ≥ 0 yields

‖z‖∞ ≤ γ‖u‖2 for all u ∈ L2. (7.24)

Dividing (7.24) by ‖u‖2 and taking the supremum over all u ∈ L2, we obtain that the
induced norm (i.e., the generalized H2 nominal performance) of the system operator
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Σz : L2 → L∞ is smaller than or equal to γ > 0, where

Σz :
{
ẋ = f(x, u, p), with x(0) = 0,
z = R(x, p)x.

(7.25)

The prescribed γ−1√α energy bound for u implies that ‖z(t)‖2 ≤ α for all t ≥ 0, thus,
x(t) ∈ Ωα for all t ≥ 0 if x(0) = 0. As the state trajectory remains inside X , the
dissipation inequality (7.3) ensures that ‖y‖2 ≤ γ‖u‖2 for all admissible input signal
u ∈ Uγ .

With a few slight modifications of Corollary 7.2, we give a semidefinite program for
the local L2-gain analysis. For the sake of clarity and completeness, the equations of
Corollary 7.2 are presented again adopted for a nonlinear model. A proof for Corollary
7.4 resembles that for Corollary 7.2.

Corollary 7.4 (SDP for local stability and L2-gain analysis). Consider system Σ (7.1)
with storage function (7.2), and the quadratic factorization (π`>Q`π` ≺ 0) of the dissipa-
tion inequality (7.3) as proposed in Proposition 7.1. Compute

1. full column-rank matrix S` ∈ R(md+me)×m′` and minimal generator
π̂` : X × P ×R→ Rm′`×(1+nu), such that π` = S`π̂`,

2. affine functions N : X × P → Rs×m and N` : X × P × R → Rs`×m′`, such that
Nπ ≡ 0 and N`π̂` ≡ 0.

Then, system Σ has a finite L2-gain ‖Σ‖L2
≤ γ for all admissible input u ∈ Uγ if there

exist L ∈ Rm×s and L` ∈ Rm′`×s`, such that the following LMIs

Q(p)− α0Ia + He
{
LN(x, p)

}
� 0, for all (x, p) ∈ Ve(X × P), (7.26a)

S>` (Q`(p, %)+α0I`)S`+He
{
L`N`(x, p, %)

}
�0, for all (x, p, %)∈Ve(X×P×R), (7.26b)

are satisfied for α0 = 0 and some α0 > 0. Functions Q` and π` are given in (7.9),
matrices Ia and I` are the same as in (7.19).

Symmetric matrices Q0, . . . , Qnp in (7.2), full matrices L, and L`, are free decision
variables of the SDP and are meant to be found to minimize γ. �

Differently from the global analysis in Corollary 7.2, annihilators N and Nd in Corol-
lary 7.4 are functions of the state too.

As we presented in Section 4.2.2, Coutinho et al. [156, Section 3.3] proposed to shape
the unitary level set Ω1 of the storage function to fit into X . However, forcing Ω1 ⊂ X ◦
may result in a conservative solution. To demonstrate this fact, assume that V satisfies
(7.3) and Ωα ∈ X ◦, α < 1. Let

Ṽ (x, p) = α−1V (x, p) ≥ V (x, p) on X × P . (7.27)

Then, Ṽ will not necessarily satisfy (7.3). In Section 7.3.1, we demonstrate through
a numerical example, that enforcing 1 ≤ V (x, p) on Fk × P or 1 ≤ V (x, p) ≤ τk on
Fk ×P , k = 1, . . . , nX and minimizing γ +

∑mX
k=1 τk may result in a very conservative γ.

Consequently, we propose to neglect the boundary LMIs and let the storage function be
shaped completely by the optimal value of γ. After that the storage function is computed,
the value of α corresponding to the maximal level set Ωα can be determined through a
simple optimization:

maxα, s.t. α ≤ V (x, p) for all (x, p) ∈ Fk × P , where k = 1, . . . , nX . (7.28)

Note that the optimization (7.28) returns the largest level set Ωα if the storage function
is radially nondecreasing (at least with respect to x on X ).
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Alongside γ, the optimization procedure provides a second important descriptor of
the input-output dynamics Σ. The value of M̄2 = γ−1α gives a lower energy bound for
the input signal. If the input satisfies ‖u‖2 ≤ M̄2, the state trajectory starting from
x(0) = 0 is asymptotically stable if p satisfies Assumption 3.1. A higher value for M̄2
gives a less conservative bound for the input and provides a more robust input-to-state
behaviour.

7.3 Computational examples

In this section, we illustrate the operations of the proposed L2-gain computation method
through some illustrative computational examples.

7.3.1 Forced mass-spring-damper system with a nonlinear stiffness

Let us consider a mass-spring-damper system

mÿ = F − Fk(y)− Fb(ẏ). (7.29)

with a nonlinear stiffness function [203]:

Fk(y) = k1y + k3y
3 (7.29a)

In (7.29), y denotes the displacement of mass m, b is the damping coefficient, Fb(ẏ) = by

is the force of the damper applied to the mass, F is an external force applied to m. If
k3 is positive, the spring is said to be a hardening spring. A typical mechanical example
for such force-deflection relationship in (7.29a), is the highly deflected beam.

Let m = 1 kg, b = 1 N
m/s , k1 = 1 N

m , k3 = 2 N
m3 . Furthermore, we denote x1 = y,

x2 = ẏ, and u = F . Then, the state-space dynamics are given as follows:{
ẋ1 = x2,

ẋ2 = −k1x1 − bx2 − k3x
3
1 + u.

(7.30)

Note that (7.30) is also a variant of the Duffing oscillator model [203]. The coefficient
matrices of the state-space model (7.30) and their possible LFR realization F(Σ) are
given as follows:

(
A(x) B

C D

)
=

 0 1 0
−2x2

1 − 1 −1 1
1 0 0

 , F:: =



0 1 0 0 0
−1 −1 1 2 0
1 0 0 0 0
−0 0 0 0 1
−1 0 0 0 0


,

(
∆1(x)

∆2(x)

)
=

I3x1
x2

.
(7.31)

The empty spaces in block matrix F:: highlight that matrices F4j and Fi4 are empty
as the matrix

(
B
D

)
is constant and π2, η2 are m2 = 0-dimensional feedback signals in the

feedback interconnection system F(Σ). Correspondingly, generator Π2 does not exist (or
it is empty) in this model. Furthermore, generator Π, π from (7.6) are determined by

Π1(x) =
(
−x2

1 0
−x1 0

)
. (7.32)

The matrices (7.9) for the dissipation LMI are computed from the LFR realization (7.31).
Their values are the following:

Ad =


0 1 0 0 0 0 0 0 0 0
−1 −1 2 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 1 0
0 0 0 0 0 1 0 1 0 1

, Be =


0 0 0 0 0
1 0 0 0 0
0 1 0 1 0
0 0 1 0 1

, (7.33)
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Cd =
(
1 0 0 0 0 0 0 0 0 0

)
, De =

(
0 0 0 0 0

)
, (7.34)

Ed =


1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0

, Ee =
(
1 0 0 0 0

)
. (7.35)

Similarly to matrix F::, the empty blocks in matrices Be, De, Ee are due to the 0-
dimensional feedback signals π2, η2. The generators (7.9) corresponding to the dissipation
LMIs are as follows:

∂π1
∂x (x) =

(
−3x2

1 0
−2x1 0

)
, ∂Π1

∂p ≡ O2×2, (7.36)

Πd(x) =



1 0
0 1
−x2

1 0
−x1 0

0 −3x2
1

0 −2x1
0 0
0 0
0 0
0 0

, Πe ≡


1
0
0
0
0

 , π`(x) =
(

Πd(x)x 0
0 Πe

)
=



x1 0
x2 0
−x3

1 0
−x2

1 0
−3x2

1x2 0
−2x1x2 0

0 0
0 0
0 0
0 0
0 1
0 0
0 0
0 0
0 0


. (7.37)

Obviously, generator π` is not minimal, therefore, we compute S` and π̂` as requested in
Corollary 7.4:

SL =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


, π̂`(x) =


x1 0
x2 0
−x3

1 0
−x2

1 0
−3x2

1x2 0
−2x1x2 0

0 1

. (7.38)

Finally the two annihilators N and N` are computed for generators π and π`

N(x) =

 0 0 1 −x1
x1 0 0 1
−x2 x1 0 0

 , N`(x) =


0 0 1 −x1 0 0 0
x1 0 0 1 0 0 0
0 0 0 −3x2 1 0 0

2x2 0 0 0 0 1 0
−x2 x1 0 0 0 0 0

0 0 −3x2 0 x1 0 0
0 0 0 −2x2 0 x1 0

. (7.39)

During the analysis, we considered six different rectangular polytopes:

X1 = [−0.4, 0.4]× [−0.4, 0.4], X2 = [−0.9, 0.9]× [−0.9, 0.9],
X3 = [−1.2, 1.2]× [−1.2, 1.2], X4 = [−1, 1]× [−1.5, 1.5], (7.40)
X5 = [−5, 5]× [−20, 20], X6 = [−20, 20]× [−200, 200].

Finally, solving the PD-LMIs (7.26) on the corner points of the actual polytope X , we
obtain a value for γ.

To compute an upper bound γ on the induced L2 norm of system (7.30), we solve
the SDP (7.26) as proposed in Corollary 7.2. In Corollary 6.8, we presented additional
boundary constraints to shape the Lyapunov function and expand the positively invari-
ant level set appropriately inside polytope X . Though these constraints were designed
for RSD shaping, they can be used combined with the L2-gain analysis. The role of the
boundary constraints in (6.33) are similar to the PS constraints (4.11) and (4.34) of [89;
90] and [156], respectively. Namely, they guarantee that the unitary level set Ω1 of the
storage function is closed inside X . In this example, we demonstrate that the perfor-
mance analysis in combination with the shaping constraints may result in a conservative
solution.
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X Method γ α M̄2 vol(Ωα) t [sec]
1: X1 El Ghaoui and Scorletti [89; 90] 2.0411 1 0.48993 0.47918 0.1009
2: X1 [89; 90], without PS constraint 1.2643 0.1671 0.32331 0.40916 0.0957
3: X1 Coutinho et al. [156] 3.8116 1 0.26236 0.47546 0.2247
4: X1 [156], without PS constraint 1.2595 0.13157 0.28799 0.40888 0.1750
5: X1 Our method, no boundary LMIs 1.1548 0.16475 0.35149 0.40641 0.1379
6: X1 Our method, 1 ≤ V (x) on ∂X 1.8566 1 0.53861 0.4819 0.1426
7: X1 Our method, 1 ≤ V (x) ≤ τk on Fk 1.8706 1 0.53460 0.48989 0.1705
8: X2 El Ghaoui and Scorletti [89; 90] 2.2859 1.2825 0.49543 1.7386 0.0892
9: X2 [89; 90], without PS constraint 2.2859 1.2825 0.49543 1.7386 0.1084
10: X2 Coutinho et al. [156] 2.5895 1 0.38618 1.8286 0.2329
11: X2 [156], without PS constraint 2.2779 0.55896 0.32821 1.7375 0.1754
12: X2 Our method, no boundary LMIs 1.1548 0.86361 0.80474 1.8404 0.1398
13: X2 Our method, 1 ≤ V (x) on ∂X 1.158 1 0.86353 1.7857 0.1402
14: X2 Our method, 1 ≤ V (x) ≤ τk on Fk 1.1895 1 0.84067 2.0632 0.1618
15: X3 El Ghaoui and Scorletti [89; 90] 25.169 22.057 0.1866 2.7127 0.1129
16: X3 [89; 90], without PS constraint 25.169 22.057 0.1866 2.713 0.0984
17: X3 Coutinho et al. [156] 7.4801 1 0.13369 2.5167 0.2380
18: X3 [156], without PS constraint 5.8217 0.45954 0.11644 2.3638 0.1528
19: X3 Our method, no boundary LMIs 1.1548 1.5556 1.0801 3.0703 0.1282
20: X3 Our method, 1 ≤ V (x) on ∂X 1.1548 1.5546 1.0797 3.1036 0.1402
21: X3 Our method, 1 ≤ V (x) ≤ τk on Fk 1.294 1 0.77281 3.1313 0.1837
22: X4 El Ghaoui and Scorletti [89; 90] Infeasible problem
23: X4 [89; 90], without PS constraint Infeasible problem
24: X4 Coutinho et al. [156] 3.0972 1.3229 0.37137 4.1129 0.1929
25: X4 [156], without PS constraint 3.0972 1.3229 0.37137 4.1129 0.1823
26: X4 Our method, no boundary LMIs 1.1548 2.4944 1.3677 4.5294 0.1304
27: X4 Our method, 1 ≤ V (x) on ∂X 1.1548 2.4969 1.3683 4.525 0.1511
28: X4 Our method, 1 ≤ V (x) ≤ τk on Fk 1.5772 1 0.63402 4.097 0.1549
29: X5 El Ghaoui and Scorletti [89; 90] Infeasible problem
30: X5 [89; 90], without PS constraint Infeasible problem
31: X5 Coutinho et al. [156] Infeasible problem
32: X5 [156], without PS constraint Infeasible problem
33: X5 Our method, no boundary LMIs 1.1548 504.74 19.455 292.4 0.1495
34: X5 Our method, 1 ≤ V (x) on ∂X 1.1548 505.47 19.469 293.45 0.1500
35: X5 Our method, 1 ≤ V (x) ≤ τk on Fk 5.6544 177.18 2.3541 296.77 0.1805
36: X6 El Ghaoui and Scorletti [89; 90] Infeasible problem
37: X6 [89; 90], without PS constraint Infeasible problem
38: X6 Coutinho et al. [156] Infeasible problem
39: X6 [156], without PS constraint Infeasible problem
40: X6 Our method, no boundary LMIs 1.1548 52635 198.67 9681.7 0.1414
41: X6 Our method, 1 ≤ V (x) on ∂X 1.1548 52647 198.69 9678.6 0.1543
42: X6 Our method, 1 ≤ V (x) ≤ τk on Fk Infeasible problem

Table 7.1: Comparative computational results obtained for model (7.30). During the analysis,
we considered multiple polytopes X1, . . . ,X6, which correspond to the six blocks of the table. In
the first four rows of each block, we present the obtained results for the two reference approaches
[89; 90] and [156] with and without the PS conditions (4.11) and (4.34), respectively. The results
of our proposed approach is presented in three different setup. First, we used no boundary
conditions for the storage function (third row of each block). Secondly, the unitary level set Ω1
is enforced to lay inside polytope X (each fourth rows). Finally, the value of the storage function
is additionally minimized along the facets of X (each fifth rows). γ denotes the computed upper
bound on the induced L2-gain of the system. The value of α corresponds to the largest level set
Ωα of the storage function, which lies completely inside of X . M̄2 =

√
αγ−1 is the upper energy

bound on the input signal u, which ensures that the state signal will evolve inside Ωα. vol(Ωα)
denotes the volume of level set Ωα. t denotes the SDP solver’s processing time.
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Figure 7.2: Shape of the storage function and its maximal level set Ωα obtained through the
different approaches for model (7.30) with polytope X1. The storage functions in subplots (A-1),
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Figure 7.3: Shape of the storage function and its maximal level set Ωα obtained through the
proposed approach for model (7.30) with and without boundary LMIs. The figures illustrate the
results obtained for polytopes X3, X4, and X5. The storage functions in subplots (A-1), (A-2),
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Through the comparative analysis, we considered two nonlinear solutions of the lit-
erature presented in [89; 90] and [156], respectively. For both nonlinear techniques, we
execute the analysis with the corresponding PS constraint, then, we perform the analysis
without any shaping constraint. Afterwards, we apply our proposed L2-gain approach in
three different setup. First, we neglect the boundary constraints (as proposed in Corol-
lary 7.4). Secondly, we enforce an upper bound boundary constraint (6.33a) on V as
follows: 1 ≤ V (x) on ∂X . Thirdly, we considered both boundary LMIs in (6.33) to force
1 ≤ V (x, p) ≤ τk for all x ∈ ∂X , and we minimized γ +

∑mX
k=1 τk.

The numerical results of the comparative evaluation are presented in detail in Table
7.1 for all polytopes in (7.40). Table 7.1, we collected the obtained values for the upper
bound γ, the level α of the maximal level set, the input energy bound M̄2 = γ−1√α,
the volume of the maximal level set Ωα, and the processing time. For instance, Line
40 of Table 7.1 presents that the system is asymptotically stable with x(0) = 0 and
‖u‖2 ≤ 198.7 and the energy of the output is less than 1.1541 · ‖u‖.

In order to demonstrate the effect of the shaping constraints, we present the storage
functions generated by the different approaches in Figure 7.3. In Figure 7.3, we illustrate
the storage function obtained by our proposed approach for polytopes X3, X4, and X5.

We observed that the upper bounding boundary constraint (6.33a) is conservative
when polytope X1 or X2 is considered (Lines 6 and 13 of Table 7.1). Note that in both
cases, the unitary level set obtained through neglecting the shaping constraints (Lines 5
and 12 of Table 7.1) are not located inside X . Moreover, enforcing the lower bounding
constraint (6.33b) and minimizing the values of τ1, . . . , τk alongside with γ, may result
in an unreasonably conservative solution (e.g., Line 35 of Table 7.1).

The numerical values suggest that the upper bound γ, generated by [89; 90] and [156],
can also be significantly decreased by neglecting the PS conditions.

For each polytope selection, our approach computes a less conservative value for both
the upper bound γ and the input energy limit M̄2 compared to the considered reference
solutions.

7.3.2 Continuous fermentation process

In section 6.4.5, we analysed the stability of the closed-loop dynamics of the continu-
ous fermentation process model (2.20) with an uncertain maximal growth rate µmax, a
constant substrate feed concentration (SF (t) = SF,0 + uS(t), uS ≡ 0), and without ac-
tuator noise (uF ≡ 0). Here, we revisit this problem with the same model constants
(V0 = 4 l, K1 = 0.03 g/l, K2 = 0.5 l/g, Y = 0.5, SF,0 = 10 g/l) and a maximal growth
rate µmax = 1, but we analyse the effect of signals uF and uS on the centered state
variables x1 = X − X0 and x2 = S − S0. Note that X0 and S0 are the optimal equi-
librium point concentrations of the biomass and the substrate in the tank, and they are
computed as presented in Paragraph 2.2.0.1

The state-space equations of the closed-loop model is
Ẋ = µ(S)X − X(F0 − k(S − S0) + uF )

V0
,

Ṡ = −µ(S)X
Y

+ (SF,0 + uS − S)(F0 − k(S − S0) + uF )
V0

.

(7.41)

If we collect the terms in (7.41) with respect to the input signals, we obtain the following
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Figure 7.4: Computed upper bound γ on the induced L2 norm of nonlinear system (7.42) with
different input/output configurations and different feedback gain values.

“input-multi-affine” model:Ẋ = µ(S)X − XF0
V0

+ kX(S−S0)
V0

− X
V0
uF ,

Ṡ = −µ(S)X
Y + (SF,0−S)F0

V0
− k(SF,0−S)(S−S0)

V0
+ SF,0−S

V0
uF + F0−k(S−S0)

V0
uS + 1

V0
uFuS ,

Finally, the centered input-output model can be written in the following form:

ẋ = f(x, µmax)− k g(x)x2 + g(x)uF + g1(x)uS + g2(x)uFuS , (7.42)

with f(x, µmax) = A1(x, µmax)x, and x = ( x1
x2 ) =

(
X−X0
S−S0

)
, (7.42a)

where functions f , g, and A1 are defined in (6.51)-(6.52), furthermore,

g1(x) = 1
V0

(
0

F0 − k x2

)
, g2(x) = 1

V0

(
0
1

)
. (7.42b)

The centered nonlinear model (7.42) is multi-affine in the input signals uF and uS as
their product appear in the system equation. Therefore, we analyse the actuator noise
effect first, assuming no substrate feed concentration perturbation (uS ≡ 0). Then, we
assume no actuator noise (uF ≡ 0), and analyse the effect of uS on the state variables.
For both input signals, we consider (separately) both the centered biomass concentration
(x1) and the centered substrate concentration (x2) as outputs. The computed γ for each
case can be seen in Figure 7.4 in the function of the feedback gain k.

The analysis points out that the disturbance attenuation from uS to x1 cannot be
decreased below 0.5 with k ≤ 20. At the same time, the effect of the actuator noise can
be reduced arbitrarily with a sufficiently high feedback gain. In Figure 7.6, we present
the simulation results of the translated closed-loop system (7.42) with no actuator noise
but a smoothed random substrate feed concentration perturbation. In Part (A) and Part
(B) of Figure 7.6, the system trajectories are illustrated for two different feedback gain
values (k = 3 and k = 10, respectively) but applying the same input signal (black line in
Part (C) of Figure 7.6). The computed trajectories confirms of the results of the L2-gain
analysis, namely, the effect of uS on x1 is practically independent of the feedback gain
value within k ∈ [2, 20].

Through the comparative evaluation, we considered again the two significant nonlinear
induced L2-gain approach of [89; 90] and [156]. The numerical results and the positively
invariant domains obtained through the different approaches are collected in Table 7.2
and Figure 7.5, respectively. In this example, our approach results in the lower computed
γ compared to the considered reference solutions. However, the computational cost of our
approach is almost two order of magnitude higher than that of the reference solutions.
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Figure 7.5: Maximal level set of the storage function
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x2 with feedback gain k = 3 and the assumption that
uF ≡ 0. The storage functions were obtained through
the proposed approach (Corollary 7.4) and the different
techniques of the literature [89; 90; 156].

Method γ α M̄2 vol(Ωα) t [s]
El Ghaoui and Scorletti [89; 90] 3.4416 1.0001 0.2906 0.0205 0.1
[89; 90], without PS constraint 0.3496 0.0047 0.1958 0.0263 0.1
Coutinho et al. [156] 9.3969 1.0000 0.1064 0.0194 0.2
[156], without PS constraint 0.0917 0.0058 0.8274 0.0202 0.2
Our method, no boundary LMIs 0.0894 0.0005 0.2463 0.0185 8.8

Table 7.2: Comparative numerical results of the L2-gain analysis for system (7.42) from input
uS to output x2 with feedback gain k = 3 and the assumption that uF ≡ 0.
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Figure 7.6: Comparative simulation results of system (7.42) with two different feedback gain
values (k = 3 and k = 10), with zero actuator noise (uF ≡ 0), and a smoothed random pertur-
bation (uS) on the substrate feed concentration.
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Figure 7.7: Computed upper bound γ for system (7.43) with different values of α considering
the descriptor approach of [125] (orange dots), IQC/LFT approach of [113] (small green dots)
and [104] (large purple dots), and the proposed approach based on Finsler’s lemma (small black
dots). The empty triangles illustrate the approximated value for γ using the grid-based approach
of [73] and considering two different grid densities. The horizontal red line illustrates the worst-
case LTI H∞ gain obtained for the frozen parameter values p1 = p2 = p3 = 2. This value is a
guaranteed lower bound on the induced L2-gain of system (7.43).

Method (α = 100) Upper b. γ Solver [s] Overall [s]
1: IQC (Cor. 4.16), LPVMAD [112] 2.8203 37 38
2: IQC (Cor. 4.16), LPVTools [113] 2.8192 80 101
3: Descr.-approach (Thm. 4.8, Cor. 4.11) 2.7800 240 250
4: Our approach (Cor. 7.2) 2.7270 748 807
5: Grid-based (Thm. 4.1) (13×13×13) ' 2.7000 531 633
6: Grid-based (Thm. 4.1) (5×5×5) ' 2.6134 19 30

Table 7.3: Computational results of our approach compared to other known solutions in the
literature obtained for model (7.43). Symbol “'” in lines nr. 5-6 highlight that the grid-based
approach returns an approximated (not guaranteed) upper bound on the induced L2 norm.

7.3.3 Global performance analysis of a fourth-order LPV model

We consider an LPV system Σ with matrices [P1]:

(
A(p) B(p)
C(p) D(p)

)
=



p1−3 2p1
2p2

3+p1+2 +3 0.1p3 p2p
2
3 0 0

0 −p2
2 − 1 5 0 p2

2+1 0
1

p2−5 0 p1−4 0 0 0
0 0.1 0 1

p1+2−5 0 p1
p1+2 +2

− 1
p2−5 0 0 0 0 0
0 0 p1+1 0 0 0


. (7.43)

The values of the parameters and of their derivatives are bounded and belong to the
following intervals:

p1 ∈ [−1, 2], p2 ∈ [−1, 2], p3 ∈ [0, 2],
ṗ1 ∈ [−10α, 10α], ṗ2 ∈ [−α, α], ṗ3 ∈ [−5α, 5α],

(7.44)

where α ≥ 1. During the analysis, we considered multiple values for α ∈ [1, 1000].
After computing the recursive LFT realization (Section 3.6.2) of matrices

(
A(p)
C(p)

)
and(

B(p)
D(p)

)
, the corresponding generators π and πb in (7.6) are not minimal and have m = 20

and mb = 6 coordinates, respectively. According to Remark 7.1, and using the proposed

103

10.15774/PPKE.ITK.2021.004



approach of Section 5.4, we obtained

π̂(x, p) =
( x
π̂1(x,p)

)
∈ R17, and π̂b(u, p) =

( u
π̂2(u,p)

)
∈ R5, where

π̂>1 (x, p) =
(
p1x1

2p1x2
2p23+p1+2

p1x3
p1x4
p1+2 p2p2

3x4 p2
2x2 p2x2

p2x1
p2−5

2p23x2
2p23+p1+2

2p3x2
2p23+p1+2

p3x3 p2
3x4 p3x4

)
,

π̂>2 (u, p) =
(
p2u1 p2

2u1
2p1u2
p1+2

)
. (7.45)

Thus, a storage function is computed in the form V (x, p) = π̂>(x, p)Q(p) π̂(x, p).
When α = 1 our computed upper bound is very close to the guaranteed lower bound

obtained through an LTI H∞ analysis of (7.43) for a frozen parameter configuration
(p1(t) = p2(t) = p3(t) = 2 for all t ≥ 0). Therefore, we gradually increased the parameter
rate variations up to α = 1000. The computed upper bound is illustrated for different
values of α in Figure 7.7, in which the horizontal red line illustrates the guaranteed lower
bound on the induced L2-gain.

The results obtained by the proposed approach are compared to the results of two
IQC/LFT implementations [112; 113], grid- [73] and descriptor-based [125] approaches.
These approaches are all outlined in brief in Chapter 3. The comparative computational
results are presented in Table 7.3 (for α = 100) and in Figure 7.7 (for α ∈ [1, 1000]).

The IQC approach for nominal L2 performance analysis is outlined in Corollary 4.16.
The implementation details related to the IQC software tools [112; 113] are given in
Paragraph 4.4.0.1.

The approach of Masubuchi and Suzuki [125] is detailed in Theorem 4.8 alongside with
the cross-corner evaluation technique of Masubuchi [126], which is presented in details
in Corollary 4.11. First, a descriptor model for system Σ is derived from a relative-
minimal LFR realization of Σ as presented in (4.25). Then, we considered the bilinear
(in p) linear (in the free variables) matrix inequality (blPD-LMI) (4.76) of Theorem 4.8
with the multi-affine parameter-dependent free matrix variables in (4.75). The resulting
blPD-LMI can be solved in an SDP framework as presented in Corollary 4.11.

The grid-based approach of Wu [73] is summarized in Theorem 4.1. In this case, a
rational storage function candidate is considered:

V (x, p) = x>
(∑

iQi$i(p)
)
x, (7.46)

where Qi are free symmetric matrices, and the basis functions in $i(p) ∈
{

1; p1, p2,
p3; p2

1, p1p2, p2
2, p1p3, p2p3, p2

3; p3
1, p2

1p2, p1p
2
2, p3

2, p2
1p3, p1p2p3, p2

2p3, p1p
2
3, p2p

2
3, p3

3;
1

5−p2
, p1
p1+2 ,

p1
p2

3+ p1
2 +1

}
were selected by considering the generator form realization (7.7) of

system (7.43). In order to reduce the solutions conservatism, we used δ = 0 and T =∞
(as proposed in Remark 4.2), and we considered two finite gridding of P with different
density. Accordingly, the computed values for γ are not guaranteed upper bounds on the
induced L2-gain of system (7.43). First, we considered a coarse grid Gr(P , 5 × 5 × 5)
(blue triangles in Figure 7.7), then, we refined the subdivision to Gr(P , 13 × 13 × 13)
(red triangles in Figure 7.7).

It is worth mentioning that the 5× 5× 5 gridded solution gives a value 2.6134 for γ.
Then, we practically inserted two additional intermediate grid points between every two
consecutive grid points (in each dimension). This refined 13× 13× 13 gridding resulted
in a higher value for γ, namely, 2.7000. This suggests that the actual induced L2 norm
of (7.43) is possibly higher that 2.6134, but it may also be higher than 2.7000.

Compared to the gridded solution, our approach as well as the IQC- and the descriptor-
based approaches, provide a guaranteed upper bound on the induced norm. Though, it
is computationally more demanding than the IQC- and the descriptor-based approaches,
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Figure 7.8: Maximal level set Ωc ⊂ X ◦, of the computed storage function W (x) = V (x, p(x)),
where c = 2.1271. The required energy bound for the input signal is ‖u‖2 ≤ 1.6879. The
approximated volume of Ωc is 1.886.

our method gives the lowest guaranteed upper bound.

7.3.4 The pendulum-cart system – a qLPV approach

Here, we consider the qLPV model (2.18) of the open-loop down rising pendulum-car
system (2.1) introduced in Section 2.1.2, in Remark 2.1. In this model, the locally asymp-
totically stable equilibrium point x∗ = 0 corresponds to the state, when the pendulum
is at rest, and it points downwards.

In Theorem 7.3, we have already revisited the relation between local stability and
finite L2-gain property. However, qLPV model (2.18) requires even more attention.
Remember that the parameter bounds and the parameter rate bounds were determined
in Paragraph 2.1.2.1 in the function of the operating domain (polytope X ) and the upper
bound M̄∞ on the L∞ norm of the input signal.

First of all, we selected the model constants: m = 1 kg, M = 2 kg, ` = 1 m, g =
10 m/s2, b = 5 kg/s, and M̄∞ = 1. Through a few numerical simulations of system (2.17)
with different admissible input signals u : ‖u‖∞ ≤ M̄∞, we fixed the following bounding
polytope for the state vector:

X = [−2, 2]× [−0.4, 0.4]× [−1.2, 1.2].

Then, the corresponding bounding polytopes for p and ṗ are
p ∈ P = [0.9735, 1]× [0.9211, 1]× [−0.4673, 0.4673],
ṗ ∈ R = [−0.1575, 0.1575]× [−0.4673, 0.4673]× [−4, 4].

(7.47)

7.3.4.1 L2-gain and local stability. Suppose that there exists an appropriately small
value M̄2 < ∞ such that the state trajectory x from x(0) = 0 does not leave the
preliminarily selected compact subset X of the state-space Rnx for all t ≥ 0 and all

u ∈ U =
{
u ∈ L2[0,∞)

∣∣∣ ‖u‖∞ ≤ M̄∞, ‖u‖22 ≤ M̄2
}
, (7.48)

According to Paragraph 2.1.2.1, polytopes P and R in (7.47) were determined such that

p(x) ∈ P , ∂p
∂x

(x)(f(x) + g(x)u) ∈ R, ∀x ∈ X , ∀u ∈ Rnu : ‖u‖ ≤ M̄∞. (7.49)
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Method γ solver [s] preproc [s] total [s]
1: LPVMAD 1.1444 22 1 23
2: LPVTools 1.1388 61 17 78
3: Descriptor 0.8741 107 14 121
4: Proposed approach 0.8641 231 34 265
5: Grid:15 ' 0.8634 141 139 280
6: Grid:5 ' 0.8630 4 10 14

Table 7.4: Computed upper bound γ for the nominal L2 performance of LPV system (2.13)
using different approaches.

Let W : X × P → R be a storage function for the qLPV model (2.18). Then, function
V : X → R with V (x) = W (x, p(x)) is a storage function for the (translated) nonlinear
system (2.17) and it satisfies the dissipation inequality

V (x(t)) ≤
∫ t

0
γ2‖u(τ)‖2 − ‖y(τ)‖2dτ, (7.50)

for all t ≥ 0, all u ∈ U, and for x(0) = 0, where the output y is the angle of the pendulum
x2 = θ. Following the reasoning (7.22) of the proof of Theorem 7.3, the left hand side of
(7.50) can be upper estimated as follows:

V (x(t)) ≤ γ2
∫ t

0
‖u(τ)‖2dτ ≤ γ2‖u‖22 ≤ γ

2M̄2, (7.51)

for all t ≥ 0, x(0) = 0. Let c > 0 be selected such that the level set

Ωc = {x ∈ X |V (x) ≤ c} ⊂ X ◦ (7.52)

is contained by X ◦. Finally, let M̄2 = c γ−2. Then, (7.51) implies x(t) ∈ X for all t ≥ 0
and all u ∈ U. N

Before the nonlinear analysis, it is worth mentioning that γ = 0.5548 is a guaranteed
lower bound on the induced L2-gain of model (2.18), which is the LTI H∞ norm of
system (2.18) for the frozen worst-case parameter values p1(t) = 0.9735, p2(t) = 0.9211,
p3(t) = −0.4673 for all t ≥ 0.

The model representation for (2.18), as proposed in Section 7.2.2, is constructed
through the recursive LFT realization of Section 3.6.2. First, we computed an LFR of
both matrices A(p) and B(p) in (2.18). Then, we obtained representation (7.4), with

A(p) = Fl
{(

F11 F13
F31 F33

)
,∆1(p)

}
, B(p) = Fl

{(
F12 F14
F42 F44

)
,∆2(p)

}
, (7.53)

F21 = C = (0 1 0), F22 = D = 0, F23 = 0, F24 = 0. (7.54)

The sizes of the blocks in ∆1 are r = {2, 11, 2}. Whereas, the blocks of ∆2 have the di-
mensions r = {0, 3, 0}. Therefore, the number of rows in Π(p) and Πb(p) of (7.6) are
m = 18 and mb = 4, respectively. After the proposed minimal generator computation
of Section 5.4.1, we obtained Π̂(p) =

( 1
Π̂1(p)

)
∈ R13×3 and Π̂b(p) =

(
I3

Π̂2(p)

)
∈ R3×1.

Although the proposed approach (Section 5.4) does not necessarily use symbolical oper-
ations, the obtained LFRs of Π̂1(p) and Π̂2(p) can be evaluated symbolically as:

Π̂1(p) =



0 −p1p2σ5 0
0 −p1σ5 0
0 −p2σ5 0
0 0 p2

2σ5
0 0 p2σ5

−p2σ5 0 0
0 0 −p2p3σ5

p2
2σ5 0 0
0 p2

2σ5 0
0 0 −p3σ5


, Π̂2(p) =

(
−p2σ5
p2

2σ5

)
, σ5 = 1

p2
2 − 7

. (7.55)

Using this model, an upper bound γ = 0.8641 is computed for system (2.18) as
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presented in Corollary 7.2. The maximal level set of the computed storage function
W (x) is presented in Figure 7.8. In order to keep the state trajectory (staring from
x(0) = 0) inside Ωc ⊂ X ◦, c = 2.1271, the required energy bound for the input signal u
is M̄2 =

√
cγ−2 = 1.6879.

The values of matrices Fij , ∆1, ∆2 of (7.4), Π(p), Π`(p) ∈ R46×4, Π̂(p), Π̂`(p, %) ∈
R36×4, S, S`, N(p) ∈ R14×13, N`(p, %) ∈ R50×36 from Corollary 7.2, and the final optimal
value of Q(p) are available on-line [206].
7.3.4.2 Comparative discussion of the results. First, we considered for compari-
son the grid-based approach of [73, Theorem 3.3.1] using the rational storage function
candidate (7.46) with $i(p) ∈

{
1; p1, p2, p3; p1p2σ5, p1σ5, p2σ5, p2

2σ5, p2p3σ5, p3σ5
}
.

The nonlinear terms $i(p), were selected from generator Π̂1(p) in (7.55). We considered
both a coarse (5×5×5) grid on P (Line 6 of Table 7.4), and a fine (15×15×15) grid on
P (Line 5 of Table 7.4) to approximate an upper bound γ on the induced L2-gain.

After computing a relative-minimal LFR of (A(p) B(p)), a descriptor representation
was derived as presented in (4.25). Then, we solved the blPD-LMI of Theorem 4.8 using
the cross corner evaluation technique of Corollary 4.11. The obtained guaranteed upper
bound is presented in Line 3 of Table 7.4.

For the next comparison, we consider the LPVMAD [112] and the LPVTools [113]
implementations of the IQC approach (Corollary 4.16). In the computations we con-
sidered LPVMAD’s default value for a(s) = ( 1

s+1 ). Compared to LPVMAD, LPV-
Tools generates algorithmically a set of poles for the basis transfer functions as follows:
a(s) =

(
(s+ 3.844)−1 (s+ 167.37)−1 (s+ 7288.15)−1

)>
. The IQC results are presented

in Line 1 and Line 2 of Table 7.4. The frequency grid considered by LPVTools consisted
of 144 logarithmically spaced discrete values in [0.0883, 317360.6] rad/s. N

In this example, our proposed approach has given a more that 20% lower upper
estimate for the induced L2 norm, than the IQC/LFT approach [103; 104; 107], and
a more than 1% lower upper bound than the descriptor-based approach of [125]. The
complexity of the proposed computation is comparable to the descriptor-approach [125]
and the grid-based approach [73].

7.4 Summary

In this chapter, I proposed a systematic procedure to compute a guaranteed upper bound
for the induced L2-gain of qLPV state-space system models with rational state- and
parameter-dependent nonlinearities. The proposed method is based on the ideas of
[16; 156]. The storage function was searched in a general quadratic form of a rational
state- and parameter-dependent vector generated from the LFR realization of the system
equation. To formulate convex PD-LMI conditions for stability I used Finsler’s lemma
with minimal generators and maximal annihilators (Chapter 5).

By the means of an upper energy bound for the input signal, I give convex boundary
conditions to obtain a positively invariant level set of the storage function as a guaranteed
domain for local asymptotic stability and induced L2 norm smaller than or equal to γ > 0.

The proposed method is compared to other state-of-the-art LPV [103; 104; 112; 113]
solutions of the literature through a 4th order 2-input 2-output LPV system. Compared
to these solutions in the literature, our method results in a convex optimization problem,
that scales better with the model and parameter dimension, while systematically using
an efficient parameter-dependent storage function.

107

10.15774/PPKE.ITK.2021.004



Differently from the grid-based approach [73], our method theoretically guarantees
the correctness of the obtained upper bound, and the storage function is constructed
systematically. Compared to the IQC/LFT approaches [103; 104; 107] where dynamic
multipliers are used to involve rate bounds in the optimization, our approach is based on
the classical dissipation theory, the LMI constraints are transparent, and the rate bounds
are involved through the parameter-dependence in the storage function. Differently from
the descriptor-based method [125], our approach computes a storage function, which is
rational in the parameters.
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Chapter 8

Passivity of LPV systems

In this chapter, I revisit the kidnapped scientist’s problem (Problem 2.1). Our ambition
is to design dynamical filters, to reconstruct an unknown input (e.g., fault signal) applied
to a dynamical system. Here, I address this problem in the foreground of the passivity
theory. We propose a novel LMI method for output selection for rational LPV systems.

8.1 Passivity analysis for LPV systems

In this section, the strict passivity property for LPV systems and its relation to the zero
dynamics and stable input reconstruction is discussed. We extend the results of [25; 39]
to LPV systems with time-varying parametric uncertainty.

We consider MIMO LPV systems of the form:

Σ :
{
ẋ = f(x, u, p) = A(p)x+B(p)u,
y = h(x, p) = C(p)x.

(8.1)

where x, u, y, and p are the state, input, output, and the scheduling parameter signals,
respectively, with p satisfying Assumption 3.1, furthermore, A, B, and C are well-defined
rational functions of p.

Assume that system Σ has as many output signals as input signals (ny = nu). Then,
consider a parameter-dependent quadratic storage function candidate defined as follows:

V (x, p) = x>Q(p)x, (8.2)

where Q is continuously differentiable on P with respect to each parameter variable, and
Q(p) = Q>(p) is positive definite for all p ∈ P . For V to be a storage function, we can
formulate the following sufficient and necessary conditions1 for strict passivity of Σ.

Theorem 8.1 [P1]. System Σ is strictly passive with the storage function (8.2) and for
α(‖x‖) = α0‖x‖2 with some α0 > 0 if and only if Σ has the Kalman-Yakubovich-Popov
(KYP) property, namely:

He{Q(p)A(p)}+ Q̌(p, %) + α0Inx � 0, for all (p, %) ∈ P ×R, (8.3a)
Q(p)B(p) = C>(p), for all p ∈ P , (8.3b)

are satisfied, where Q̌(p, %) =
∑np
i=1

∂Q
∂pi

(p)%i. �

Proof. Assume that system Σ is strictly passive with (8.2). Then, (3.17) expands to

He
{
x>Q(p)

(
A(p)x+B(p)u

)}
+ x>Q̌(p, %)x ≤ He

{
u>C(p)x

}
− α(‖x‖). (8.4)

1based on [39, Proposition 4.1.2, Lemma 4.1.3, Corollary 4.1.5]
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Scalar inequality (8.4) can be equivalently formulated as the following matrix inequality(
x>
(
He{Q(p)A(p)}+ Q̌(p, %)

)
x+ α0‖x‖2 x>

(
Q(p)B(p)− C>(p)

)(
B>(p)Q(p)− C(p)

)
x 0nu×nu

)
� 0. (8.5)

According to [39, proof of Corollary 4.1.5], (n+ 1)× (n+ 1) matrix
(
α β>
β 0n×n

)
is negative

semidefinite if and only if β = 0n×1 and α ≤ 0. Therefore, (8.5) is equivalent to

x>
(
He{Q(p)A(p)}+ Q̌(p, %) + α0Inx

)
x ≤ 0, (8.6a)

x>
(
Q(p)B(p)− C>(p)

)
= 0. (8.6b)

Inequalities in (8.4), (8.5), and (8.6) should be satisfied for all x ∈ Rnx and for all
(p, %) ∈ P ×R. Conditions (8.6) are equivalent to (8.3).

8.1.1 Consequences of passivity for LPV systems

In the following, we analyze a few important consequences of strict passivity, which will
be exploited later for stable dynamic inversion.

Lemma 8.2. Assume that Σ is passive with storage function (8.2) and rank(B(p)) = nu
for all p ∈ P . Then, rankC(p)B(p) = nu for all p ∈ P . �

Proof. Suppose that rank(C(p0)B(p0)) < nu for some p0. Then, there exists a non-
zero vector v ∈ Rnu such that C(p0)B(p0)v = 0. From Theorem 8.1, we have that
C(p0) = B>(p0)Q(p0), which implies the following identity:

0 = v>C(p0)B(p0)v = v>B>(p0)Q(p0)B(p0)v

Since rank(B(p0)) = nu and Q(p0) is positive definite symmetric, v = 0 follows, which
is a contradiction.

Remark 8.1. We say that system Σ has (vector) relative degree 1, if C(p)B(p) is
invertible for all p ∈ P . A more general definition for the vector relative degree is
present by Isidori [27, Section 5.1]. �

8.1.1.1 Normal form. With reference to [25, Section 4], the non-singularity of C(p)B(p)
implies the existence of a well-defined mapping z = T2(p)x ∈ Rnx−nu , which together
with y = C(p)x qualify as a new set of local coordinates for Σ. The state variables of Σ
in the new coordinates system are:

( yz ) = T (p)x, with T (p) =
(
C(p)
T2(p)

)
∈ Rnx×nx . (8.7)

The dynamic equation of Σ in the new coordinates has a special normal form [30, Eq.
(9.17), Section 9.2]:

Σy,z :
{
ẏ = Ayy(p, ṗ) y +Ayz(p, ṗ) z +By(p)u,
ż = Azy(p, ṗ) y +Azz(p, ṗ) z,

(8.8)

where
(
Ayy(p,%) Ayz(p,%)
Azy(p,%) Azz(p,%)

)
=
(
Ť (p, %) + T (p)A(p)

)
T−1(p), (8.8a)

and By(p) = C(p)B(p), Ť (p, %) =
∑np
i=1

∂T
∂pi

(p) %i. (8.8b)

Note that the transformed state transition matrix in (8.8a) is partitioned correspondingly
to the transformed state variables in y and in z as follows:

Ayy =
(
Č + CA

)
T ′1, Ayz =

(
Č + CA

)
T ′2,

Azy =
(
Ť2 + T2A

)
T ′1, Azz =

(
Ť2 + T2A

)
T ′2,

(8.9)

where Č(p, %)=
∑np
i=1

∂C
∂pi

(p) %i, Ť2(p, %)=
∑np
i=1

∂T2
∂pi

(p) %i, and T−1(p)=
(
T ′1(p) T ′2(p)

)
. N
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For a rational parameter dependence in the system equations, a possible numeric
construction of the transformation matrix T (p) is given in the following Lemma 8.3.

Lemma 8.3. Assume that system Σ is strictly passive, and functions A, B, C are
rational well-defined functions on P . Then, there exists an invertible state transformation
(8.7), such that the system equation in the new coordinates has the normal form (8.8). �

Proof. By assumption, By(p) = C(p)B(p) is non-singular, therefore, both matrices C(p)
and B(p) are full-rank matrices for all p ∈ P . Due to the fact that B(p) is well-defined
on the compact set P (in a well-posed LFR form), there exists a well-defined matrix
T2(p) in a well-posed LFR form [207] with rank(T2(p)) = nx − nu and with a bounded
norm for all p ∈ P , such that T2(p)B(p) = 0, namely, T >2 (p) is a basis for the kernel
space Ker(B>(p)) of B>(p). The non-singularity of matrix C(p)B(p) implies that the
rows of C(p) are are not in Ker(B>(p)), additionally, C(p) ∈ Rnu×nx contains linearly
independent rows. Therefore, the square matrix T (p) =

(
C(p)
T2(p)

)
is invertible ∀p ∈ P .

If we apply the state transformation ( yz ) = T (p)x to Σ, we obtain the transformed and
partitioned dynamics Σy,z.

8.1.1.2 Output zeroing input. In this normal form, the invertibility of By(p) makes
also possible to compute the output-zeroing input u∗ for system Σy,z, which can force
the output y to be identically zero for y(0) = 0, any z(0) ∈ Rnx−ny , and any parameter
trajectory satisfying Assumption 3.1. If we enforce ẏ ≡ 0, we can express u∗ algebraically
from the first equation of (8.8) as follows:

u∗ = −B−1
y (p)

(
Ayy(p, ṗ)y +Ayz(p, ṗ)z

)
= −B−1

y (p)
(
Ayy(p, ṗ) Ayz(p, ṗ)

)
( yz ). (8.10)

Considering y(0) = 0 and ẏ ≡ 0 (i.e., y ≡ 0), the output zeroing input in the transformed
state-space is the following:

u∗ = −B−1
y (p)Ayz(p, ṗ)z. (8.11)

Note that in the original system of coordinates, the closed form for u∗ can be derived
from the time-derivative of the output equation y = C(p)x of system Σ:

ẏ = Č(p, ṗ)x+ C(p)
(
A(p)x+B(p)u∗

)
≡ 0, (8.12)

Then, the output zeroing input in the terms of the original state vector x is

u∗ = −
(
C(p)B(p)

)−1(
Č(p, ṗ) + C(p)A(p)

)
T−1(p)( yz ). (8.13)

Considering (8.10) in the light of (8.8a), (8.8b), and (8.9), we can conclude that the two
closed form for u∗ are equivalent. N

8.1.1.3 Zero dynamics. The so-called zero dynamics of system Σ describes the internal
behaviour of Σ, when the output zeroing input u∗ is applied to it. The zero dynamics of
system Σ in the new coordinates are characterized by

ż = Azz(p, ṗ)z. (8.14)

In the original system of coordinates the zero dynamics can be described by the closed-
loop system driven by the output zeroing input (8.13) as follows:

Σ0 : ẋ = A(p)x+B(p)u∗ =
(
A(p)− (C(p)B(p))−1

(
Č(p, ṗ) + C(p)A(p)

))
x, (8.15)

with x(0) ∈ Ker{C(p(0))}. N

The strong relation between the passivity property and the zero dynamics first was
addressed in [25] for nonlinear time-invariant systems, and it was generalized to a class
of (time-varying) uncertain nonlinear systems in [26]. In the following theorem, we adapt
these results for rational LPV systems.
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Theorem 8.4. Assume that p is continuously differentiable and system Σ is strictly
passive with a proper positive definite storage function (5.9). Then, the zero dynamics
(8.14) is asymptotically stable. �

Proof. We follow the derivations of [39, Section 5.1]. Assume that x(0) ∈ Ker{C(p(0))}
and the dissipation inequality V̇ ≤ y>u + u>y − α(‖x‖) (3.17) holds. Apply the output
zeroing input u∗ (8.13) to system Σ. Then, y ≡ 0 implies V̇ < −α(‖x‖) along the solution
x : t 7→ x(t) ∈ Ker(C(p(t))) of the closed-loop dynamics Σ0 (8.15). Due to the quadratic
form (5.9) of the PDSF, V̇ < −α(‖x‖) implies the asymptotic stability of (8.15).

As it is shown in Lemma 8.3, mapping z = T2(p)x can be chosen such that the
parameter-dependent (non-singular) transformation matrix T (p) is a well-defined ratio-
nal function of p, and hence it is also continuously differentiable in pi [94, Section 7.1.14]
and Ť (p, %) has a bounded norm for all p ∈ P and all % ∈ R. If p is continuously differ-
entiable, function T in (8.7) is a time-varying Lyapunov transformation in the sense of
Definition 3.11, and T preserves the internal stability of system Σy,z.

Finally, the asymptotic stability of (8.15) implies the asymptotic stability of the zero
dynamics (8.14).

8.1.1.4 Unknown input reconstruction. A stable zero dynamics (Theorem 8.4) im-
plies the existence of a stable dynamic inversion filter. Additionally, passivity provides
the invertibility of matrix C(p)B(p) as stated by Lemma 8.2. Therefore, the unknown
input applied to a strictly passive LPV system can be reconstructed asymptotically in
the knowledge of the output y and the parameter signals p and their derivatives (ẏ, ṗ).
The equations of the dynamic inverse are the following

Σ−1
y,z :

{ ˙̂z = Azz(p, ṗ)ẑ +Azy(p, ṗ)y, where ẑ(0) = 0,
û = B−1

y (p)(ẏ −Ayy(p, ṗ)y −Ayz(p, ṗ)ẑ).
(8.16)

Observe that the input is algebraically expressed from the first equation of (8.8), where
signal z is hidden (i.e., it represents the unobservable modes of system Σ). Therefore,
we simulate the zero dynamics driven by the output y and starting from the initial state
z(0) = 0. N

Remark 8.2. If it is reasonable to assume that y(0) = 0, a dynamic inversion filter can
be design without the knowledge of the state transformation matrix T (p). The equations
of the dynamic inverse in the original system of coordinates are:

Σ−1 :


˙̂x =

(
A(p)−

(
C(p)B(p)

)−1(
Č(p, ṗ) + C(p)A(p)

))
x̂+

(
C(p)B(p)

)−1
ẏ,

û =
(
C(p)B(p)

)−1(
ẏ −

(
Č(p, ṗ) + C(p)A(p)

)
x̂
)
,

(8.17)

where x̂(0) = 0. �

8.1.2 Feedback equivalence to a passive LPV system

Generally, we can say that (strict) passivity is a conservative property as it requires
internal stability and a special input-output relationship, which are abstracted by the
KYP properties (8.3). According to Byrnes et al. [25], a weaker property, the feedback
(strict) passivity of Σ is a sufficient condition for an asymptotically stable zero dynamics.

Definition 8.5. We say that Σ with nu = ny is feedback (strictly) passive with a storage
function V = x>Qx (8.2) if Σ is feedback equivalent to a (strictly) passive system,
namely, there exists a state feedback u = −K(p)x + G(p)v with well-defined functions
K : P → Rnu×nx , G : P → Rnu×nu and G(p) non-singular, such that the closed-loop
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system

ΣK,G :
{
ẋ =

(
A(p)−B(p)K(p)

)
x+B(p)G(p)v

y = C(p)x
(8.18)

is strictly passive from input v to output y with a storage function (8.2). �

Remark 8.3. According to Theorem 8.1, system ΣK,G is strictly passive with a storage
function (8.2) if it has the KYP property, namely,

He
{
Q(p)

(
A(p)−B(p)K(p)

)}
+ Q̌(p, %) + α0I � 0 for all (p, %) ∈ P ×R, (8.19a)

Q(p)B(p)G(p) = C>(p) for all p ∈ P , (8.19b)

where α0 > 0. �

In the following two theorem, we show an important relationship between feedback
passivity, stable zero dynamics, and relative degree 1. In Theorem 8.6, we adapt the
results of [25, Theorem 4.7] and [26, Theorem 1] to LPV models.

Theorem 8.6. Assume that Σ has a same number of input and output signals (nu = ny),
and it is feedback strictly passive. Then, the zero dynamics of Σ is asymptotically stable,
and C(p)B(p) is non-singular for all p ∈ P . �

Proof. Assume that the closed-loop system ΣK,G is passive and x is the solution of ΣK,G

with output zeroing input v∗, a parameter trajectory satisfying Assumption 3.1, and
x(0) ∈ Ker{C(p(0))}. Obviously, the same trajectory x is the solution of the open-
loop system Σ with output zeroing input u∗ = −K(p)x + G(p)v∗, the same parameter
trajectory, and the same initial condition x(0) ∈ Ker{C(p(0))}.

(Zero dynamics) Assume that Σ is feedback equivalent to a passive system with stor-
age function V . Then, y ≡ 0 implies V̇ ≤ 0 along the solutions of the closed-loop system
ΣK,G. Let (x, p, u∗) denote the solution of the zero dynamics Σ0 (8.15) with output ze-
roing input u∗ in (8.10) and parameter trajectory p. Then, (x, p, v∗) is the solution of
system ΣK,G with the output zeroing input v∗ = G−1(p)(u∗+ K(p)x). Therefore, V̇ ≤ 0
along the solution x of Σ0 with p.

(Relative degree) Assume that Σ is feedback equivalent to a passive system. Then,
according to Lemma 8.2, C(p)B(p)G(p) has rank nu. Since G(p) is a full-rank matrix,
we obtain that C(p)B(p) has rank nu.

In the following theorem, we present an interesting sufficient condition for feedback
equivalence to a strictly passive LPV system. Theorem (8.7) first was formulated by
Moreno [60] for linear time-invariant systems. Here, we extend and prove the result of
Moreno for general (well-posed) LPV systems.

Theorem 8.7. Consider system Σ with nu = ny. Assume that there exist functions
Q : P → Rnx×nx, K : P → Rnu×nx , such that Q(p) is symmetric positive definite for all
p ∈ P and system Σ satisfies the following criteria

He
{
Q(p)A(p)−K>(p)C(p)

}
+ Q̌(p, %) + α0Inx � 0, for all (p, %) ∈ P ×R,

Q(p)B(p) = C>(p), for all p ∈ P .
(8.20)

Then, Σ is feedback equivalent to a strictly passive LPV system with u = K(p)x+ v. �

Proof. Let us rewrite the KYP conditions (8.20) into a single matrix inequality as follows:

He
{(

I K>(p)
0 I

)(
Q(p) 0

0 I

)(
A(p) B(p)
−C(p) 0

)}
+
(

Q̌(p, ṗ) + α0I 0
0 0

)
� 0. (8.21)
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Then, multiply (8.21) by
(
I −K>(p)
0 I

)
from the left and by

(
I 0

−K(p) I

)
from the right:

He
{(

Q(p) 0
0 I

)(
A(p)−B(p)K(p) B(p)

−C(p) 0

)}
+
(

Q̌(p, ṗ) + α0I 0
0 0

)
� 0. (8.22)

Evaluating (8.22), we obtain(
He
{
Q(p)

(
A(p)−B(p)K(p)

)}
+ Q̌(p, ṗ) + α0I Q(p)B(p)− C>(p)

B>(p)Q(p)− C(p) 0

)
� 0. (8.23)

Condition (8.22) is equivalent to the KYP criteria (8.19) for ΣK,G with G ≡ Inu . Finally,
we got that system Σ is feedback equivalent to

ΣK,I :
{
ẋ =

(
A(p)−B(p)K(p)

)
x+B(p)v

y = C(p)x
(8.24)

that is strictly passive system with V (x, p) = x>Q(p)x.

Remark 8.4. The parameter-dependent conditions in (8.20) are convenient as they are
linear in the unknown functions Q and K. On the other hand, the assumption that
G ≡ Inu makes these conditions conservative. In section 8.3, we present an equivalent
condition for feedback passivity. �

8.2 Passivating structured output selection

In this section, we consider an asymptotically stable LPV system. We assume that we are
able to place sensors assembling more independent measurements (y) than the number
of the emerging fault signals (u), namely, ny > nu. Naturally, in this situation, we have
more information to reconstruct the unknown input from the measurements. Here, we
propose a specific parameter-dependent output projection transformation that provides
strict passivity (and hence stable dynamic inversion) for system Σ.

We are looking for a parameter-dependent quadratic storage function V = x>Qx

(7.18) and a parameter-dependent output mapping G : P → Rny×nu , such that Σ with
the combined output

ȳ = G>(p)y = G>(p)C(p)x, (8.25)
is strictly passive with respect to V .

Remark 8.5. Notation for function G was already used in Section 8.1.2, to nominate a
parameter-dependent feed-forward gain G(p) in the feedback rule u = −K(p)x+ G(p)v.
Later, in Section 8.3, it will turn out that the role of the parameter-dependent output
mapping G(p) is similar to that of the feed-forward gain G(p). This abuse of notation
is consider for the sake of reusability. �

The second KYP condition (8.3b) for system Σ with output ȳ is the following:

Q(p)B(p) = C>(p)G(p) for all p ∈ P . (8.26)

Note that (8.26) is a matrix equality condition with nonlinear (rational) parameter de-
pendence, where G and Q are unknown functions. Therefore, the algebraic structure of
G and Q should be defined carefully, such that the same set of rational terms appear on
both sides of equality (8.26). The rational terms of function B should be contained by
function G. Similarly, function Q should inherit the rational terms of function C.

In the following subsection, we give a possible LFR realization for the system equation,
which will generate an advantageous structure for Q and G.
8.2.0.1 Dynamical model representation. We consider a well-posed LFR realization
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of the model matrices of Σ as follows:(
A(p)
C(p)

)
= Fl


F11
F21

F13
F23

F31 F33

 ,∆1(p)

, B(p) = Fl
{(

F12 F14
F42 F44

)
,∆2(p)

}
. (8.27)

The equations of Σ can be written in the following structured LFR:

F(Σ) :


ẋ

y

η1
η2

 =


F11 F12 F13 F14
F21 0 F23 0
F31 0 F33 0
0 F42 0 F44


︸ ︷︷ ︸

F::


x

u

π1
π2

 , with π1 = ∆1η1,

and π2 = ∆2η2,
(8.28)

where Fij are constant matrices and π1, η1 ∈ Rm1 , respectively π2, η2 ∈ Rm2 are the
feedback signals through the parameter-dependent blocks ∆1 and ∆2 corresponding to
the two LFRs in (8.27).

Observe that representation (8.28) is a special case of (7.4) written for LPV systems
without a direct feedthrough term (D ≡ 0). Due to the same dynamical input-output
model representation, a few variables will be reused from Chapter 7. Compared to (7.6),
generators

Π =
(
Inx
Π1

)
: P → Rm×nx , Πb =

(
Inu
Π2

)
: P → Rmb×nu , (8.29)

as well as, Π1, Π2 are functions of the parameter p only. N

To formulate sufficient convex conditions for strict passivity, we need again to find
an appropriate factorization for the nonlinear KYP properties. The KYP inequality
conditions (8.3a) is rewritten as presented in Proposition 6.4. However, the KYP equality
condition (8.26) requires a special attention. To factorize (8.26), we need to presume a
particular algebraic structure for mapping G. In the following proposition, we propose
a possible reformulation for the KYP properties.

Proposition 8.8. Let Σ be given in representation (8.28) with a quadratic storage func-
tion V = x>Qx (7.18), and a parameter-dependent output mapping ȳ = G>(p)y (8.25).
Consider generators Πd, Πe, which are defined in (7.17). Let G be given in the following
form:

G(p) = G(p)Πe(p) with G(p) = G0 +
np∑
i=0

Gipi ∈ Rny×me , (8.30)

where G0, . . . , Gnp are constant matrices. Then, the KYP properties (8.3a) and (8.26)
can be written in the following factorized form:

He{Q(p)A(p)}+ Q̌(p, %) = Π>d(p, %)Qd(p, %) Πd(p, %) � −α0Inx , (8.31a)

Q(p)B(p)− C>(p)G(p) = Π>(p)
(
Q(p)Be − C>aG(p)

)
Πe(p) = 0, (8.31b)

where

Qd(p, %) = He
{
E>dQ(p)Ad

}
+ E>d Q̌(%)Ed with Q̌(%) =

∑np
i=1Qi %i, (8.32)

and Ca = (F21 F23). Matrices Ad, Be, Ed are defined in (7.9c)-(7.9e). �

Proof. (KYP inequality property) Following the proof of Proposition 7.1, the left hand
side of (8.31a) can be written as follows:

He
{

Π>(p)Q(p)Π(p)(F11 F13)Π(p)
}

+He
{

Π>(p)Q(p)Π̌(p, %)
}

+Π>(p)Q̌(%)Π(p). (8.33)

Observe that Π(p) = EdΠd(p, %), furthermore, similarly to (7.11a), we have that

Π(p) (F11 F13) Π(p) =
(

F11+F13 Π1(p)
Π1(p) (F11+F13 Π(p))+Π̌1(p,%)

)
= Ad Πd(p, %) (8.34)

115

10.15774/PPKE.ITK.2021.004



where Π̌(p, %) =
∑np
i=1

∂Π
∂pi

(p)%i, Π̌1(p, %) =
∑np
i=1

∂Π1
∂pi

(p)%i. (8.34a)

Finally, (8.33) can be written in the form:

Π>d(p, %)
(
He{EdQ(p)Ad}+ E>d Q̌(%)

)
Πd(p, %). (8.35)

(KYP equality property) First, we expand the left hand side of (8.31b) as follows:

Π>(p)Q(p) Π(p) (F12 F14) Πb(p)−Π>(p) (F11 F13)>G(p) Πe(p). (8.36)

As observed in (7.11b), we write the following:

Π(p) (F12 F14) Πb(p) =
(

F12+F14 Π2(p)
Π1(p) (F12+F14 Π2(p))

)
= Be Πe(p). (8.37)

Finally, (8.36) can be altered as presented in (8.31b).

In the following corollary, we present one of the major contributions of this chapter,
namely, we give sufficient convex conditions that imply the KYP properties for strict
passivity of system Σ with output (8.25).

Corollary 8.9 (SDP for passivating structured output selection). Consider LPV system
(8.1) with a quadratic storage function V = x>Qx (7.18), and the minimal generator
Π : P → Rm×nx. Compute

1. full column-rank matrix Sd ∈ Rmd×m′d and minimal generator
Π̂d : P ×R→ Rm′d×nx, such that Πd = SdΠ̂d,

2. full column-rank matrix Se ∈ Rme×m′e and minimal generator
Π̂e : P ×R→ Rm′e×nu, such that Πe = SeΠ̂e,

3. affine functions N : P → Rs×m, Nd : P × R → Rsd×m′d, and Ne : P → Rse×m′e,
such that NΠ ≡ 0, NdΠ̂d ≡ 0, and NeΠ̂e ≡ 0.

Then, system (8.28) is strictly passive from input u to output ȳ (8.25) if there exist
L ∈ Rm×s, Ld ∈ Rm′d×sd, La ∈ Rm′e×s, and Le ∈ Rm×se, such that

Q(p) + He{LN(p)} − α0Ia � 0, for all p ∈ Ve(P), (8.38a)
S>d
(
Qd(p, %) + α0Id

)
Sd + He{LdNd(p, %)} � 0, for all (p, %) ∈ Ve(P ×R), (8.38b)(

Q(p)Be−C>aG(p)
)
Se+N>(p)L>a+LeNe(p)=0, for all p ∈ Ve(P), (8.38c)

for some α0, α0 > 0, and Ia = diag {Inx , 0m1}, Id = diag {Inx , 04m1}.
Symmetric matrices Q0, . . . , Qnp, and full matrices G0, . . . , Gnp, L, Ld, La, and Le

are free decision variables of the semidefinite program. �

Proof. (Geometry of V ) Obviously, (8.38a) implies that Q(p) = Π>pQ(p) Π(p) is positive
definite for all p ∈ P , and that V (x, p) = x>Q(p)x is positive and radially unbounded
for all p ∈ P .

(KYP inequality property) Pre- and post-multiplying (8.38b) by Π>d(p, %) and Πd(p, %),
respectively, the Lagrange multiplier terms He{LdNd(p, %)} vanish. Therefore, we retain
the KYP inequality (8.31a).

(KYP equality property) In the same fashion, we pre- and post-multiply (8.38c) by Π>(p)
and Πe(p), respectively, then, we get back the KYP equality (8.31b).

The computed passivating output projection ȳ = G(p)y provides a stable zero dy-
namics and an invertible C(p)B(p) for system (8.28).

Remark 8.6. In order to solve the nonlinear PD-LME QB−C>G ≡ 0 (8.26), the equal-
ity conditions between the coefficients of the identical rational terms in each element
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of the matrix identity have to be extracted, which requires computationally demand-
ing symbolic operations. However, the computationally more tractable affine PD-LME
QBe − C>aG ≡ 0 is only a sufficient condition for (8.26). In order to make it less con-
servative, we use again affine annihilators, which introduce new degrees of freedom into
QBe − C>aG+N>L>a + LeNe ≡ 0 (8.38c). �

8.3 Stability analysis for the zero dynamics

In this section, we consider a (possibly unstable) square system Σ (nu = ny) and formu-
late sufficient convex conditions to test whether the zero dynamics are globally asymp-
totically stable. These conditions are rendered through the KYP properties formulated
for the closed-loop system to test feedback equivalence to a strictly passive LPV system.
For the sake of reusability, we intentionally redefine a few notations.

We are looking for a state feedback law

u = −K(p)x+ G(p)v (8.39)

with well-defined rational functions K : P → Rnu×nx and G : P → Rnu×nu , such
that det(G(p)) 6= 0 and the closed-loop system ΣK,G in (8.18) is strictly passive with a
quadratic storage function V : Rnx × P → R,

V (x, p) = x>P(p)x, (8.40)
where P−1(p) = Q(p) = Π>(p)Q(p) Π(p), (8.40a)
and Q(p) = Q0 +

∑np
i=1Qi pi ∈ Rm×m. (8.40b)

For generator Π in (8.40a), a possible formula will be given soon.
According to Theorem 8.1, the KYP properties for the strict passivity of Σ with

feedback (8.39) and storage function (8.40) are the following:

He
{
P(p)

(
A(p)−B(p)K(p)

)}
+ P̌(p, %) + α0Inx � 0, for all (p, %) ∈ P ×R, (8.41a)

P(p)B(p)G(p) = C>(p), for all p ∈ P , (8.41b)

where, as previously, P̌(p, %) =
∑np
i=1

∂P
∂pi

(p)%i. Observe that the matrix-valued con-
straints in (8.41) are not linear in the unknown functions functions P, K, and G. In
order to make condition (8.41a) convex, we multiply both sides of (8.41a) and the left
hand side of (8.41b) by the positive definite symmetric matrix Q(p). We note that this
technique is commonly used in the literature (see, e.g., [62; 63]). Keeping in mind that
d(PQ)

dt = PQ̇ + ṖQ ≡ 0, we obtain the following constraints:

He{A(p)Q(p)−B(p)H(p))} − Q̌(p, %) + α0Inx � 0, for all (p, %) ∈ P ×R, (8.42a)
B(p)G(p) = Q(p)C>(p), for all p ∈ P , (8.42b)

where H(p) = K(p)Q(p) for all p ∈ P . Also observe that the first term in (8.42) can be
altered as follows:

He{A(p)Q(p)−B(p)H(p))} = He
{
Q(p)A>(p)−B(p)H(p))

}
. (8.43)

Finally, we obtain an equivalent formulation of the KYP constraints, which are advan-
tageous for the polytopic convexification. The final “pseudo-dual” formalization of the
KYP properties for the strict passivity of the closed-loop system ΣK,G is given in the
following proposition.

Proposition 8.10. Assume that there exist functions H : P → Rnu×nx, Q : P →
Rnx×nx, and G : P → Rnu×ny with Q>(p) = Q(p) and rank(G(p)) = ny for all p ∈ P ,
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such that

Q(p)− α0Inx � 0, for all p ∈ P , (8.44a)

He
{
Q(p)A>(p)−B(p)H(p))

}
− Q̌(p, %) + α0Inx � 0, for all (p, %) ∈ P ×R, (8.44b)

Q(p)C>(p)−B(p)G(p) = 0, for all p ∈ P , (8.44c)

are satisfied for some α0, α0 > 0. Then, Σ with (8.39) is feedback equivalent to a strictly
passive LPV system (ΣK,G) with the quadratic storage function V = x>Px (8.40), where
P(p) = Q−1(p) and K(p) = H(p)P(p) for all p ∈ P . �

Proof. The derivations were presented in (8.41)-(8.43).

From the computational point of view, again, it is not obvious how to select appropri-
ate generators for unknown functions Q, H, and G such that a solution for the matrix
equality (8.44c) can be found. In the following, we give a specific model representation
for LPV system Σ, which generates a possible algebraic structure for the unknown ma-
trices of (8.44). Compared to LFR (8.27), now, we consider the transposed realization
of system Σ as follows:(

A>(p)
B>(p)

)
= Fl


F11
F21

F13
F23

F31 F33

 ,∆1

, C>(p) = Fl
{(

F12 F14
F42 F44

)
,∆2

}
. (8.45)

We call (8.45) the transposed LFR realization relatively to (8.27), due to the fact that
the transposition of constant matrices Fij gives back the system dynamics, namely:

F>(Σ) :


ẋ

y

η̄1
η̄2

 =


F >11 F >21 F >31 0
F >12 0 0 F >42
F >13 F >23 F >33 0
F >14 0 0 F >44


︸ ︷︷ ︸

F̄::=F>::


x

u

π̄1
π̄2

 , with π̄1 = ∆1η̄1,

and π̄2 = ∆2η̄2,
(8.46)

Observe that (8.46) holds as a direct consequence of the transposition rule for LFRs
(Lemma 3.29):(

A(p) B(p)
C(p) 0

)
=
(
A>(p) C>(p)
B>(p) 0

)>
=Fl

{
F::,

(
∆1(p)

∆2(p)

)}>
=Fl

{
F >:: ,

(
∆1(p)

∆2(p)

)}
. (8.47)

Since nu = ny, we can reuse the definitions for generators Π1, Π (7.6a), Π2, Πb (7.6b),
Πd, Πe (7.17), matrices Ad, Be, Ed (7.9c)-(7.9e), and Ca = (F21 F23) of Proposition 8.8,
where the corresponding matrices Fij are now defined by the transposed LFR (8.45).

Function Q was preliminarily defined in (8.40a), furthermore, let H and G be rational
functions in the following forms:

H(p) = H(p)Πd(p) and G(p) = G(p)Πe(p), (8.48)
with H(p) = H0 +

∑np
i=1Hipi ∈ Rm×md , (8.48a)

G(p) = G0 +
∑np
i=1Gipi ∈ Rm×me , (8.48b)

where matrices Qi in (8.40b), Hi in (8.48a), and Gi in (8.48b) are free matrix variables
of the appropriate size.

Then, following the arguments of Proposition 8.8, the KYP constraints (8.44b) and
(8.44c) for the closed-loop system ΣK,G can be written as follows:

He
{
Q(p)A>(p)−B(p)H(p))

}
− Q̌(p, %) = Π>d(p)Qd(p, %) Πd(p) � −α0Inx , (8.49a)

Q(p)C>(p)−B(p)G(p) = Π>(p)
(
Q(p)Be − C>aG(p)

)
Πe(p) = 0, (8.49b)
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where

Qd(p, %) = He
{
E>d Q(p)Ad − E>d C>a H(p)

}
− E>d Q̌(%)Ed. (8.50)

Observe that inequality (8.49a) is ensured by (8.38b), the equality (8.49b) is implied
by (8.38c), finally, the positivity and the radially unbounded nature of storage function
(8.40) is guaranteed by (8.38a). Practically, we can “reuse” Corollary 8.9 but with Qd(p)
defined in (8.50). Full column rank matrices Sd, Se, and affine annihilators N , Nd,
and Ne in Corollary 8.9 are to be computed the same, furthermore, all variables and
constants in (8.38) together with the Lagrange multipliers L, Ld, La, and Le have the
same dimensions.

The results of Section 8.3 are concluded in the following corollary.

Corollary 8.11. The feasibility of convex conditions (8.38) in Corollary 8.9 with Qd(p)
(8.50) imply a globally asymptotically stable zero dynamics for the (possibly unstable)
LPV system Σ in the transposed LFR realization (8.46). �

Remark 8.7. It worth remarking that the simultaneous structured output selection
(Section 8.2) together with the feedback passivity analysis (Section 8.3) results in matrix-
valued constraints, which are nonlinear in the parameters and bilinear in the free vari-
ables. Practically, we would be looking for an output ȳ = M>(p)C(p)x such that sys-
tem Σ with the output ȳ is feedback equivalent to a strictly passive LPV system with
u = −K(p)x+ G(x)v. The factorization of the highly nonlinear KYP constraints

He
{
Q
(
A(p)−B(p) K(p)

)}
+ Q̌(p, %) + α0Inx � 0 for all (p, %) ∈ P ×R, (8.51)

Q(p)C>(p) M(p) = B(p) G(p) for all p ∈ P , (8.52)

are not obvious here. Therefore, it is not straightforward how we can formulate a sys-
tem of sufficient (even) bilinear matrix (in)equality constraints for the resulting KYP
conditions. �

8.4 Illustrative examples

In this section, we illustrate the operations of the proposed passivity analysis procedure
through two illustrative LPV system model. First, the LPV model of the pendulum-
cart system is considered. Then, an artificial example is presented to demonstrate a
passivating output selection and dynamic inversion for a multiple-input multiple-output
LPV system.

8.4.1 The problem of the kidnapped scientist revisited

In this section, we revisit Problem 2.1 raised in Section 2.1. Suppose that a pendulum
is forced to the ceiling of a van, in which a scientist is captured. For simplicity, we
consider a van, which is traveling along a straight highway, accordingly, we can assume
that the pendulum is moving along the plane spanned by the longitudinal and vertical
axes of the van. We assume that the kidnapped scientist can precisely measure the angle
θ(t) and angular velocity ω(t) of the pendulum, furthermore, he knows the mass of the
pendulum (m), the length of the pendulum (2`), and the gravitational acceleration (g).
The scientist aims to reconstruct the velocity v(t) of the van.

Note that the first Euler-Lagrange equation in (2.1) formulates a strong relationship
between all the three state variables (v, θ, ω), although, the differential equation does not
contain the mass of the cart (M , i.e., mass of the van), the friction coefficient (b), nor the
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external force applied to the cart (F ). Therefore, our ambition is that the information
available for the scientist are sufficient to asymptotically observe the velocity of van.

First, consider the LPV model (2.18) of the pendulum-cart system centered around
the stable equilibrium point with the following constants and assumptions:

constants : m = 1 kg, ` = 2 m, g = 10 m/s2, M = 1 kg, b = 1 kg/s, I = 4
3m`

2,

assumptions : |v(t)| ≤ 2 m/s, |θ(t)| ≤ 0.4 rad, |ω(t)| ≤ 1.2 rad/s, |F (t)| ≤ 1 N, ∀t ≥ 0,

polytopes :
{
p(t) ∈ P = [0.974, 1]× [0.921, 1]× [−0.467, 0.467],
ṗ(t) ∈ R = [−0.158, 0.158]× [−0.467, 0.467]× [−3, 3], ∀t ≥ 0,

(8.53)

Polytopes P and R were computed as presented in (2.15) and (2.16) by considering the
assumed bounds for the state and input signals.

System (2.18) has two output functions (θ and ω) and a single input function F .
Therefore, we have the possibility to find a passivating output square down transforma-
tion G>(p), such that system (2.18) is strictly passive from input F to output ȳ = G>(p)y.
Finally, the strict passivity property allows us to reconstruct the unknown input F as
well as, to observe the unknown state v (without the knowledge of F ).

To compute the passivating output function, we considered (2.18) in the LFR form
(8.27). Using the object-oriented LFT realization, we obtained a 15-dimensional LFR
for

(
A(p)
C(p)

)
with r1 = 2, r2 = 11, r3 = 2, and a 3-dimensional LFR for B(p) with r1 = 0,

r2 = 3, r3 = 0. We found that the corresponding matrices Π(p) ∈ R18×3, Πb(p) ∈ R4×1

and Πe(p) ∈ R34×1 are not minimal. Using the proposed minimal generator computation
technique of Section 5.4, we obtained

Π̂(p) =
(

I3
Π̂1(p)

)
, Π̂b(p) =

( 1
3p2ζ1(p)
3p2

2ζ1(p)

)
, and (8.54)

Πe(p) =


1

3p2ζ1(p)
3p2

2ζ1(p)
9p3

2ζ
2
1 (p)

9p2
2ζ

2
1 (p)

9p2
2p3ζ2

1 (p)
9p2p3ζ2

1 (p)

, Π̂1(p) =



0 3p1p2ζ1(p) 0
0 3p1ζ1(p) 0
0 3p2ζ1(p) 0
0 0 3p2

2ζ1(p)
0 0 3p2ζ1(p)

3p2ζ1(p) 0 0
0 0 3p2p3ζ1(p)

3p2
2ζ1(p) 0 0

0 3p2
2ζ1(p) 0

0 0 3p3ζ1(p)


.

where

ζ1(p) = − 1
3σ4(p) = 1

3m2`2p2
2 − 3(I +m`2)(m+M)

= 1
3p2

2 − 14
. (8.55)

We are looking for a storage function V = x>Qx (8.40), with Q(p) = Π>(p)Q(p)Π(p)
and an output square down function G, with G(p) = G(p)Πe(p), where Q and G are
affine functions of p, furthermore, the coefficient matrices of Q and G are free decision
variables. We evaluate the (affine) parameter-dependent LMI and LME conditions (8.38)
in each vertex of polytope P × X . Solving the resulting SDP problem, we obtained:

G(p) = G0 +G1p1 +G2p2 +G3p3, (8.56)

where
G0 =

(
−0.1786 0 −0.2723 −0.0933 0.1542 1.3733 −0.2468
−0.027 0 0.395 0.5825 4.4238 −1.3558 −0.2727

)
,

G1 =
( 0.009 −0.4422 −0.009 0.4327 0.0619 0.0513 −0.0366

0 0.0036 0 0 0 0 0
)
,

G2 =
(

0.0901 0.3875 −0.0901 −0.0597 −0.8727 0.0077 −2.4576
0.0606 1.3281 −0.0606 −4.8588 10.922 0.0363 2.3375

)
,

G3 =
(

0.0039 −0.0518 −0.0039 0.1294 1.1296 0.0016 0.0017
0 −0.0526 0 0.0143 −0.9547 0.2845 0.2255

)
.

The coefficient matrices of Q(p) are not included in this document due to their large size.
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Unknown input and state reconstruction for the hypothetical model. First of all, we
derive the normal form (8.8) and the inverse dynamics (8.16) for system (2.18) with
parameters (8.53). We simulated the nonlinear model (2.17) with the same parameters
(8.53) and with a non-trivial input function. Using the simulated values of θ(t) and ω(t),
we computed the parameter signals according to (2.12). Finally, we reconstructed the
velocity of the cart and the input function as presented in (8.16) by using the output
y = ( θω ) and the parameter signals and their time-derivative. Note that in this case
study, we assumed a complete knowledge of the model. The plot of the input function,
the resulting state, output and parameter signals, and the reconstructed signals are
illustrated in Figure 8.1.

Unknown state reconstruction with a limited knowledge of the model parameters. Let
the actual mass of the van be M = 2000 kg and the friction coefficient be b = 5 kg/s. Si-
multaneously, we consider the inverse dynamics derived for the scientist’s pendulum-cart
model (8.53), with some freely selected values for M and b. Although that the measured
values of θ(t) and ω(t) correspond to the actual parameter values of the pendulum-cart
model, we try to reconstruct both the unknown input and state signals with the scien-
tist’s hypothetical model. We found that the velocity function can be asymptotically
observed, but the input signal is not reconstructible. The results of this case study are
illustrated in Figure 8.2.

8.4.2 Output projection synthesis to a fourth-order LPV model

Consider the following rational LPV system with 2 inputs and 3 outputs and with two
time-varying parameters p1 and p2:

(
A(p) B(p)
C(p) 0

)
=



−p2
2 − 1 5 0 0 p1+1

p2
2+1 + 1 1

0 p1 − 4 0 0 p1 0
1
10 0 −5p1−9

p1+2 0 0 0
0 p1

p2−5 0 −1 0 4− 2p2

1 1
p2−5 2 0 0 0

2 0 1 0 0 0
0 0 1 1 0 0


P = [−1, 2]× [−1, 2], R = [−1, 1]× [−3, 3]. (8.57)

The computed minimal generators are

Π̂(p) =
(

I4
Π̂1(p)

)
,

Π̂b(p) =
(

I2
Π̂2(p)

)
,

where Π1(p) =


0 p1 0 0
0 0 p1

p1+2 0
0 p1p2

p2−5−p1 0 0
p2

2 0 0 0
p2 0 0 0
0 p2

p2−5 0 0

, Π2(p) =


p1−

p1p
2
2

p22+1
0

p1 0
p22
p22+1

0
p2
p22+1

0

0 −p2

.

The closed form of affine function Q : P → R10×10, G : P → R10×14 alongside with
Π : P → R10×4, Πd : P × R → R24×4, Πe : P → R14×2, with their affine annihilators
N : P → R7×10, Nd : P × R → R29×24, Ne : P → R16×14, and other variables are
available on-line at [208].

The feasibility problem (8.38) includes a 10 × 10 PDLMI (8.38a), a 24 × 24 PDLMI
(8.38b), and 10×14 PDLME (8.38c), which were evaluated in 4, 16, and 4 corner points,
respectively. The number of free decision variables in functions Q, G, and in the matrix
Lagrange multipliers L, Ld, La, and Le is 1315. The LMI computations last 3 seconds.

The computed function G and Q satisfy the KYP equality (8.3b) with a 10−10 tol-
erance, namely for some p(i) ∈ P (including the corner points) the absolute value of the
worst nonzero element of matrix Q(p(i))B(p(i))− C>(p(i))G(p(i)) was less than 10−10.
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Figure 8.1: Input and state reconstruction for the LPV model (2.18) of the inverted pendulum
system (2.17). The first subplot illustrates the measured state variables θ and ω. In the sec-
ond subplot the parameter signals are presented, which are the functions of the measured state
variables. The thirds subplot, illustrates the time-derivative of the parameter signals. Last two
subplots illustrate the unknown state and input signals, respectively, and their reconstructed
values.
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Figure 8.2: State reconstruction for the LPV model (2.18) of the inverted pendulum system
(2.17) without the knowledge of the cart’s actual mass and the friction coefficient. The first
subplot illustrates the measured state variables θ and ω. In the second subplot the parameter
signals are presented, which are the functions of the measured state variables. The thirds subplot,
illustrates the time-derivative of the parameter signals. Last two subplots illustrate the unknown
state and input signals, respectively, and their reconstructed values. Note that the unknown
input signal is not reconstructed successfully.
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Figure 8.3: Dynamic inversion for system in Example 8.4.2.

Using G>(p)y as the new output vector, a stable dynamic inverse was computed as
presented in Paragraph 8.1.1.4. The results of the dynamic inversion of system Σ are
illustrated in Figure 8.3.

8.5 Summary

An efficient systematic procedure is proposed in this chapter for the passivity analysis
and passivating output synthesis of rational LPV systems. For the dissipativity rela-
tions, I used a parameter-dependent proper quadratic storage function. In order to
relax the KYP equality condition, a rational parameter-dependent output projection is
co-designed through LMI computations, which also allows the handling of non-square
systems. The LPV system equation is given in a structured LFR form, from which I
generate the rational algebraic structure of the storage function and of the output pro-
jection matrix. To reduce the conservatism, maximal annihilators are used as proposed
in Section 5.3. In comparison with [149; 150; 156], the main contributions in the field of
dissipativity analysis of nonlinear systems with Finsler’s lemma relaxation is that I gave
an automatic procedure to generate a fixed rational structure for the storage function
candidate with free coefficient variables and then systematically formulate sufficient con-
vex LMI conditions for strict passivity. As presented in Theorem 8.4, I proposed a new
way to use affine annihilators with matrix Lagrange multipliers to solve a matrix-valued
equality condition, which was applied to handle the KYP equality condition (8.38c).
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Chapter 9

Conclusions

The main contributions and the proposed theses of this work are summarized in this
chapter, then the possible directions of further research are given. The relevant chapter
of the dissertation and the related publications are highlighted at the end of each thesis
point.

9.1 New scientific contributions

I. Based on the linear fractional transformation (LFT) and Finsler’s lemma,
I have proposed a novel computational framework to model and solve
a parameter-dependent matrix (in)equality constraint, which is affine in
the unknown variables and rational in the parameters. I formulated suffi-
cient linear matrix inequality (LMI) or equality (LME) constraints to find
a possibly conservative solution for the rationally parameter-dependent
inequality or equality condition, respectively.

A) I proposed both a symbolical and a numerical method to compute a basis for
the parameter independent (i.e., constant) kernel space of a so-called generator,
which constitutes a well-defined rational matrix-valued function of the param-
eters appearing in the rational parameter-dependent matrix (in)equality con-
straint. The algorithm is also applicable if the parameter values are restricted
to a subset of the parameter space [P1].

B) I have introduced the notion of a maximal annihilator to reduce the conservatism
of the formulated sufficient LMI/LME constraints. I have proved the existence
of a non-unique maximal annihilator for a fixed generator. I have shown that
the maximal annihilator provides the largest possible degree of freedom for the
sufficient convex condition. Based on the constant kernel computation tech-
nique, I proposed a numerical method to compute a maximal annihilator for a
generator [P1; P3].

C) I have introduced the notion of a minimal generator to reduce the dimensionality
of the generated sufficient convex conditions. The minimal generator determines
the minimum size of the LMI/LME that can be attained by a projection trans-
formations without affecting the solution set of the sufficient convex constraint
[P1].

D) To compute a minimal generator and the corresponding LMI dimension reduc-
tion transformation, I proposed an efficient numerical method based on the
constant kernel computation technique [P1; P2; P4].
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The results are described in detail in Chapter 5.

Related publications: [P1; P2; P3; P4].

II. I have designed a systematic procedure to compute robust stability do-
main (RSD) for nonlinear rational uncertain systems.

A) I have proposed a general quadratic structure for Lyapunov function candidates
obtained from the LFR realization of the nonlinear system model. For model
dimension reduction, I used the technique proposed in thesis point I.D. I have
shown that this technique results in a significant dimension reduction of the
optimization problem compared to other known solutions in the literature [P3].

B) I extended the proposed RSD computation method to discrete-time nonlinear
systems [P2].

The results are described in detail in Chapter 6.

Related publications: [P2; P3; P4; P5; P6; P8; P13; P16].

III. I have introduced new computational methods for induced L2-gain and
passivity analysis of linear parameter-varying (LPV) and nonlinear state-
space models in a quasi-LPV form.

A) I proposed a novel method to compute an upper bound on the induced L2
norm of a nonlinear rational uncertain system [P1; P14]. Through numerical
examples, I have demonstrated that the proposed approach is able to provide
a tighter upper bound than the state-of-the-art IQC approach with parameter-
dependent storage functions and swapping lemma (Köroğlu and Scherer, 2006;
Scherer et al., 2008; Pfifer and Seiler, 2016), the descriptor approach (Masub-
uchi and Suzuki, 2008), or the method of (Coutinho et al., 2008) for nonlinear
systems.

B) I have shown that a feedback (strictly) passive LPV model has relative degree
1 and an (asymptotically) stable zero dynamics. I proposed an LFT-based
approach to compute a parameter-dependent state transformation, which leads
the LPV state-space model into a special normal form advantageous for dynamic
inversion and input reconstruction [P7].

C) I formulated sufficient LMI and LME constraints to guarantee strict passivity
or feedback strict passivity of a rational LPV system [P7].

D) I proposed a passivating structured output selection method for an asymptot-
ically stable rational LPV system. I developed a method to perform stable
dynamic inversion for rational LPV systems [P7].

The results are described in detail in Chapters 7 and 8.

Related publications: [P1; P7; P14].
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9.2 Suggestions for future research

We would like to extend the results presented in this thesis in the following directions.
Dynamic invariants. The maximal annihilator selection algorithm of Section 5.3 could

be extended in a fairly straightforward way to find polynomial/rational maximal annihi-
lators with a fixed (but parameterized) structure. Using such a (not necessarily affine)
maximal annihilator, we could be able to compute dynamic invariants (i.e., functions of
the state and parameter that do not change their value along the system trajectories).
Dynamic invariants make room to compute analytically the controllable manifold of a
partially controllable system.

Input-to-state stability. In [P16], we have presented some preliminary results on com-
putational input-to-state stability (ISS) analysis. We have shown that a Lyapunov func-
tion computed for DOA estimation is also an ISS-Lyapunov function satisfying the ISS
inequalities [40, Lemma 10.4.2]. We found that for ‖u‖∞ ≤ M the estimated domain
where the disturbed motion of the state is taking place is fairly large compared to the
actual disturbance region. Namely, the computed local upper-estimate for the induced
L∞ norm of system Σ with y2 = V (x) is unreasonably large (conservative). An interest-
ing question is, how ISS certificates can be relaxed to obtain a tighter upper bound for
the induced L∞ norm.

Local passivity analysis. We aim to formulate local passivity certificates to perform
passivity analysis/output synthesis with certain constraints on the input signal. We will
investigate the following two possibilities to start with:

1. We can start from the tight relationship of strict passivity and ISS property. It is
well-known, that for any strictly passive system there exists a static output feedback
law such that the closed-loop is ISS. Future work in this area will be directed
towards finding a strictly passive system that is output-feedback equivalent to the
actual system.

2. It is also known that strict output passivity implies finite L2-gain [39]. The next
step is to find a technique to inject the disturbance attenuation level into the KYP
properties and tie it down as much as possible.

Output selection. Future work in inversion-based fault detection will be devoted to
passivating output selection by considering physical or technological sensor placement
constraints.

Positivstellensatz. Finsler’s lemma and maximal annihilators can be used to solve
Positivstellensatz (PS) conditions locally over a polytope, which may result in a less
conservative solution compared to a global solution obtained by SOS approach.
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Appendix A

Partitioning of In× In – Examples

The partitions of I1 × I1 is

P1,1 =
{(

(0), (0)
)}
,P1,2 =

{(
(1), (1)

)}
,P1,3 =

{(
(0), (1)

)
,
(
(1), (0)

)}
,

The partitions of I2 × I2 is

• 4 partitions with a single element:

P2,1 =
{(

(0, 0), (0, 0)
)}
,

P2,2 =
{(

(0, 1), (0, 1)
)}
,

P2,3 =
{(

(1, 0), (1, 0)
)}
,

P2,4 =
{(

(1, 1), (1, 1)
)}
,

• 4 partitions with 2 elements:

P2,5 =
{(

(0, 0), (0, 1)
)
,
(
(0, 1), (0, 0)

)}
,

P2,6 =
{(

(1, 0), (1, 1)
)
,
(
(1, 1), (1, 0)

)}
,

P2,7 =
{(

(0, 0), (1, 0)
)
,
(
(1, 0), (0, 0)

)}
,

P2,8 =
{(

(0, 1), (1, 1)
)
,
(
(1, 1), (0, 1)

)}
,

• a single partition with 4 elements:

P2,9 =
{(

(0, 0), (1, 1)
)
,
(
(0, 1), (1, 0)

)
,
(
(1, 0), (0, 1)

)
,
(
(1, 1), (0, 0)

)}
,

The partitions of I3 × I3 is

• 8 partitions with a single element:

P3,1 =
{(

(0, 0, 0), (0, 0, 0)
)}
,

P3,2 =
{(

(0, 0, 1), (0, 0, 1)
)}
,

P3,3 =
{(

(0, 1, 0), (0, 1, 0)
)}
,

P3,4 =
{(

(0, 1, 1), (0, 1, 1)
)}
,

P3,5 =
{(

(1, 0, 0), (1, 0, 0)
)}
,

P3,6 =
{(

(1, 0, 1), (1, 0, 1)
)}
,

P3,7 =
{(

(1, 1, 0), (1, 1, 0)
)}
,

P3,8 =
{(

(1, 1, 1), (1, 1, 1)
)}
,

• 12 partitions with 2 elements:

P3,9 =
{(

(0, 0, 0), (0, 0, 1)
)
,
(
(0, 0, 1), (0, 0, 0)

)}
,

P3,10 =
{(

(0, 1, 0), (0, 1, 1)
)
,
(
(0, 1, 1), (0, 1, 0)

)}
,
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P3,11 =
{(

(0, 0, 0), (0, 1, 0)
)
,
(
(0, 1, 0), (0, 0, 0)

)}
,

P3,12 =
{(

(0, 0, 1), (0, 1, 1)
)
,
(
(0, 1, 1), (0, 0, 1)

)}
,

P3,13 =
{(

(1, 0, 0), (1, 0, 1)
)
,
(
(1, 0, 1), (1, 0, 0)

)}
,

P3,14 =
{(

(1, 1, 0), (1, 1, 1)
)
,
(
(1, 1, 1), (1, 1, 0)

)}
,

P3,15 =
{(

(1, 0, 0), (1, 1, 0)
)
,
(
(1, 1, 0), (1, 0, 0)

)}
,

P3,16 =
{(

(1, 0, 1), (1, 1, 1)
)
,
(
(1, 1, 1), (1, 0, 1)

)}
,

P3,17 =
{(

(0, 0, 0), (1, 0, 0)
)
,
(
(1, 0, 0), (0, 0, 0)

)}
,

P3,18 =
{(

(0, 0, 1), (1, 0, 1)
)
,
(
(1, 0, 1), (0, 0, 1)

)}
,

P3,19 =
{(

(0, 1, 0), (1, 1, 0)
)
,
(
(1, 1, 0), (0, 1, 0)

)}
,

P3,20 =
{(

(0, 1, 1), (1, 1, 1)
)
,
(
(1, 1, 1), (0, 1, 1)

)}
,

• 6 partitions with 4 elements:

P3,21 =
{(

(0,0,0),(0,1,1)
)
,
(
(0,0,1),(0,1,0)

)
,
(
(0,1,0),(0,0,1)

)
,
(
(0,1,1),(0,0,0)

)}
,

P3,22 =
{(

(1,0,0),(1,1,1)
)
,
(
(1,0,1),(1,1,0)

)
,
(
(1,1,0),(1,0,1)

)
,
(
(1,1,1),(1,0,0)

)}
,

P3,23 =
{(

(0,0,0),(1,0,1)
)
,
(
(0,0,1),(1,0,0)

)
,
(
(1,0,0),(0,0,1)

)
,
(
(1,0,1),(0,0,0)

)}
,

P3,24 =
{(

(0,1,0),(1,1,1)
)
,
(
(0,1,1),(1,1,0)

)
,
(
(1,1,0),(0,1,1)

)
,
(
(1,1,1),(0,1,0)

)}
,

P3,25 =
{(

(0,0,0),(1,1,0)
)
,
(
(0,1,0),(1,0,0)

)
,
(
(1,0,0),(0,1,0)

)
,
(
(1,1,0),(0,0,0)

)}
,

P3,26 =
{(

(0,0,1),(1,1,1)
)
,
(
(0,1,1),(1,0,1)

)
,
(
(1,0,1),(0,1,1)

)
,
(
(1,1,1),(0,0,1)

)}
,

• a single partition with 8 element:

P3,27 =
{(

(0,0,0),(1,1,1)
)
,
(
(0,0,1),(1,1,0)

)
,
(
(0,1,0),(1,0,1)

)
,
(
(0,1,1),(1,0,0)

)
,(

(1,0,0),(0,1,1)
)
,
(
(1,0,1),(0,1,0)

)
,
(
(1,1,0),(0,0,1)

)
,
(
(1,1,1),(0,0,0)

)}
.
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