
Navigating the Floating-Point
Seas: From Bitwise

Reproducibility to Reduced
Precision Computing

By:
Bálint Siklósi

Supervisor:

Dr. István Zoltán Reguly, PhD

A dissertation submitted for the degree of
Doctor of Philosophy

Pázmány Péter Catholic University
Faculty of Information Technology and Bionics

Roska Tamás Doctoral School of Sciences and Technology

Budapest, 2025

In memory of my father,
whose legacy lives on in who I’ve become.

Acknowledgements

First of all, I want to thank my supervisor, István Reguly. He supported me in every
part of this journey: from tracking down the tiniest code bugs to helping me shape the
writing and structure of this dissertation. He always stayed calm and patient, even when
I had long periods without real progress. Beyond research, he supported me in life too.
He never judged when things got tough, and always understood when personal events set
me back. And when I faced practical difficulties, he helped out where he could, without
hesitation.

During my time abroad, I had the privilege of working with two amazing researchers:
Gihan R. Mudalige at the University of Warwick and Neil Sandham at the University of
Southampton. Both of them welcomed me warmly and treated me as a colleague from
the first moment, not just as a visitor or a student, but as someone whose work mattered.
Their trust and support meant a lot.

I’d also like to thank Pushpender K. Sharma at the University of Southampton for his
patient help in understanding the physics and CFD background, and David Lusher for
his support with OpenSBLI-related coding questions.

During my research stay at the University of Southampton, I had the privilege of
staying with the Robinson family, who welcomed me into their home for a month. Their
kindness and joyful presence made a big difference – they created a calm and supportive
environment that helped me focus on my work in a much healthier way.

To my fellow PhD students and friends: thank you. Especially Dani and Attila, for all
the “duck debugging” sessions, the countless technical discussions, and just being there
when things didn’t make sense (which happened often). Also thanks to everyone in the
"Ebéd délben?" group for sharing your advice – on research, but also on how to survive
the rest of life during a PhD. I also want to thank my flatmates, past and present: Dani,
Anna, Tomi, and Dalma. For the everyday support, laughs, and shared chaos that made
this whole period more bearable (and often, more fun).

I’m incredibly thankful to my family: my mother, my sisters, my brother-in-law, and
my nieces. Their support was always there in the background, even when I didn’t always
show how much I needed it. I also want to mention my father, who sadly passed away
midway through my PhD. I wish he could have seen me finish – I know he would have
been proud.

There are some people who were a big part of my life during this journey, even if not
all of them are still here in the same way. To the people I shared life with more deeply
during this time: your presence helped carry me through. Especially Ágota who is with
me now: thank you for your patience, support, and everything else.

I’m also grateful to my friends – the ones who listened, distracted, encouraged, or just

3

spent time with me when I needed it most.
Thanks to the administrative staff at the university. Tivadarné Vida, from the doctoral

office, thank you for always handling the paperwork and deadlines with a smile (and
flexibility). I also want to thank the international relations office for their help with
arranging and financing my visits abroad, and all other staff members who contributed
in any way during these years.

Finally, I want to thank all the grants and programs that made this research possible:
multiple EKÖP, ÚNKP fellowships, Erasmus+, OTKA projects, and – especially – Tamás
Zsedrovits who invited me to join his grant project when I truly needed that opportunity.

Thank you all.

4

Abstract

Floating-point arithmetic is a cornerstone of scientific and high-performance computing,
enabling the numerical approximation of complex real-world phenomena. However, its
inherent limitations – such as rounding errors, limited precision, and non-associativity –
pose significant challenges to reproducibility and computational efficiency. This disser-
tation addresses two critical and interrelated areas in floating-point computing: bitwise
reproducibility and reduced or mixed-precision computing. These challenges are ex-
plored in the context of large-scale scientific simulations, with a focus on enhancing
both numerical robustness and performance portability across heterogeneous computing
platforms.

The first half of the research concentrates on bitwise reproducibility on unstructured
mesh computations, which refers to the ability to obtain identical binary results across
multiple executions of a program given the same input. This property is essential for
debugging, validation, cross-platform consistency, and scientific integrity, especially in
high-performance environments that involve parallelism through MPI or GPU acceleration.
The primary causes of non-reproducibility are identified as parallel reductions and indirect
memory access patterns that introduce non-deterministic execution orders. To address
these challenges, the dissertation proposes and implements a set of novel techniques within
the OP2 domain-specific language for unstructured mesh computations. These include
temporary array-based accumulation to impose deterministic update orders, deterministic
graph coloring to avoid race conditions during parallel execution, and the integration
of the ReproBLAS library to ensure reproducibility of global reductions. The resulting
methods are platform-agnostic and require minimal changes to application source code,
thus promoting portability and ease of use.

These techniques were evaluated on a range of real-world applications, including
industry-grade computational fluid dynamics (CFD) solvers such as Rolls-Royce Hydra, as
well as benchmark applications like Airfoil, Aero, and MG-CFD. The results demonstrate
that full bitwise reproducibility can be achieved with varying levels of performance
overhead, depending on the application, hardware platform, and chosen strategy. While
the overhead is generally reasonably low on CPUs, it can be significantly higher on
GPUs, especially for complex workloads. Despite these costs, the benefits of deterministic
behavior and consistent results across executions make these methods suitable for both
research and industrial use cases where reproducibility is essential.

The second part of the dissertation explores reduced and mixed-precision computing as
a means to improve performance and reduce energy and memory consumption. By using
lower precision representations – such as single or half precision – scientific applications
can achieve significant speedups and reduced memory bandwidth usage. However, reduced
precision can compromise numerical stability and accuracy. To navigate this trade-off,
this work implements mixed-precision strategies within the OpenSBLI framework, a code
generation system for CFD applications that targets OPS as its backend. The strategy

involves maintaining critical variables in higher precision while performing secondary
calculations in reduced precision. Several precision combinations were tested using
simulations of the Taylor-Green vortex problem.

Results show that carefully designed mixed-precision schemes can retain sufficient
accuracy while achieving notable runtime and memory improvements. For example, the
use of single and half precision in specific subroutines led to up to 2.37× speedup on
GPU platforms and up to 3.7× on CPU platforms, with acceptable loss in accuracy. The
dissertation also highlights how algorithmic formulations, such as split-forms of the Navier-
Stokes equations, influence numerical stability under low-precision conditions. These
insights are essential for developing robust reduced-precision solvers for compressible and
turbulent flows.

Together, the work presented in this dissertation delivers significant contributions to the
field of high-performance scientific computing. It offers a reproducibility framework that
is practical for use in industrial CFD applications and proposes strategies for leveraging
low-precision arithmetic without compromising scientific validity. The combination of
reproducibility and mixed-precision optimization enables scientists and engineers to
develop simulations that are both accurate and efficient, marking a meaningful step
toward the challenges posed by future exascale computing systems. The techniques
introduced here are broadly applicable and can be extended to other scientific domains
where floating-point operations play a crucial role.

6

Kivonat

A lebegőpontos aritmetika a tudományos és nagy teljesítményű számítástechnika egyik
alappillére, amely lehetővé teszi a valós világ összetett jelenségeinek numerikus közelítését.
Ugyanakkor a lebegőpontos számábrázolás velejáró korlátai – például a kerekítési hibák,
a korlátozott pontosság és a nem-asszociativitás – komoly kihívásokat jelentenek a
reprodukálhatóság és a számítási hatékonyság szempontjából. Ez a disszertáció két,
egymással szorosan összefüggő területet vizsgál a lebegőpontos számítások világában:
a bitpontosan reprodukálható számításokat és a csökkentett vagy kevert pontosságú
számítást. A vizsgálat középpontjában nagyléptékű tudományos szimulációk állnak, azzal
a céllal, hogy növeljék a numerikus stabilitást és biztosítsák a teljesítmény hordozhatóságát
heterogén számítási architektúrák között.

A kutatás első része a bitpontosságú reprodukálhatóságra fókuszál, amely azt jelenti,
hogy egy program többszöri futtatása azonos bemeneti adatokkal minden alkalommal pon-
tosan azonos bináris eredményt produkál. Ez a tulajdonság kulcsfontosságú a hibakeresés,
a validálás, a platformfüggetlen viselkedés és a tudományos megbízhatóság szempont-
jából, különösen az olyan nagy teljesítményű környezetekben, ahol MPI-alapú vagy
GPU-gyorsított párhuzamosítás történik. A nem reprodukálható viselkedés fő okai között
szerepelnek a párhuzamos redukciós műveletek, valamint az indirekt memóriahozzáférési
minták, amelyek nem-determinisztikus végrehajtási sorrendeket eredményeznek. A disszer-
táció ennek kezelésére új módszereket javasol és valósít meg az OP2 domén-specifikus
nyelv keretein belül, amelyet strukturálatlan térhálókon végzett számításokra terveztek.
A bemutatott technikák között szerepel ideiglenes tömbök használata a determinisztikus
frissítési sorrendek biztosítására, determinisztikus gráfszínezés az adatversenyek elkerü-
lésére, valamint a ReproBLAS könyvtár integrálása a globális redukciók bitpontosságú
végrehajtásához. Ezek a megoldások platformfüggetlenek, és csak minimális módosítást
igényelnek az alkalmazáskódban, ezáltal elősegítve a technológiák közti átjárhatóságot és
a könnyű használatot.

A bemutatott módszerek valós alkalmazások széles körében kerültek kiértékelésre, bele-
értve ipari szintű áramlástani szimulátorokat, például a Rolls-Royce Hydra-t, valamint
benchmark célú alkalmazásokat, mint az Airfoil, Aero és MG-CFD. Az eredmények
azt mutatják, hogy a teljes bitpontosságú reprodukálhatóság elérhető eltérő mértékű
teljesítménybeli többletteher mellett, amely függ az alkalmazás típusától, a hardver-
platformtól és a választott módszertől. Míg CPU-n ez az lassulás jellemzően mérsékelt,
GPU-n, különösen összetett problémák esetén, jelentősebb lehet. Ennek ellenére a deter-
minisztikus viselkedés és a konzisztens eredmények előnyei különösen értékessé teszik a
módszereket olyan kutatási és ipari szimulációs környezetekben, ahol elengedhetetlen a
reprodukálhatóság.

A dolgozat második része a csökkentett és kevert pontosságú számításokat vizsgálja,
mint lehetséges eszközt a teljesítmény növelésére, illetve az energia- és memóriafelhaszná-
lás csökkentésére. Az alacsonyabb pontosságú számábrázolások – mint például a single

vagy half pontosság – használata révén tudományos alkalmazások jelentős gyorsulást és
kisebb memória-sávszélesség igényt érhetnek el. Ugyanakkor a csökkentett pontosság
numerikus instabilitáshoz és pontosságvesztéshez vezethet. E kompromisszum kezelésére
a disszertáció kevert pontosságú stratégiákat valósít meg az OpenSBLI keretrendszerben,
amely egy CFD-alkalmazásokhoz tervezett kódgeneráló rendszer, az OPS könyvtárra
épülve. A megközelítés lényege, hogy a kritikus változók magasabb pontosságban ma-
radnak, míg az alacsonyabb prioritású számítások csökkentett pontossággal történnek.
Számos pontossági kombináció került tesztelésre a Taylor-Green örvényléstani problémán
keresztül.

Az eredmények azt mutatják, hogy a gondosan megtervezett kevert pontosságú eljárások
képesek megtartani a szükséges pontosságot, miközben számottevő futásidő- és memória-
megtakarítást biztosítanak. Például egyes alprogramokban a single és half pontosság
alkalmazása akár 2.37-szeres gyorsulást eredményezett GPU-kon és akár 3.7-szerest CPU-
kon, elfogadható pontosságveszteség mellett. A dolgozat továbbá kiemeli, hogy az olyan
algoritmikus megfogalmazások, mint a Navier – Stokes egyenletek szétválasztott alakjai,
jelentősen befolyásolják a numerikus stabilitást alacsony pontosságú környezetekben.
Ezek az eredmények kulcsfontosságúak a összenyomható és turbulens áramlásokhoz
alkalmazható robusztus, csökkentett pontosságú szimulátorok fejlesztéséhez.

Összességében a disszertációban bemutatott munka jelentős hozzájárulást nyújt a nagy
teljesítményű tudományos számítástechnika területéhez. Olyan reprodukálhatósági keret-
rendszert kínál, amely ipari CFD-alkalmazásokban is hatékonyan használható, és olyan
stratégiákat javasol, amelyek révén kihasználható az alacsonyabb pontosság nyújtotta
teljesítménynövekedés anélkül, hogy ez veszélyeztetné a tudományos érvényességet. A
reprodukálhatóság és a kevert pontosság kombinációja lehetővé teszi olyan szimuláci-
ók létrehozását, amelyek egyszerre pontosak és hatékonyak, ezzel megalapozva a jövő
exaszintű számítógépes rendszereinek alkalmazásait. Az itt bemutatott technikák széles
körben alkalmazhatók, és kiterjeszthetők más tudományterületekre is, ahol a lebegőpontos
műveletek központi szerepet játszanak.

8

Contents

1 Introduction 14
1.1 Scientific Computing . 14
1.2 High Performance Computing . 14
1.3 Floating-Point precision . 16
1.4 The OPS and OP2 Domain Specific Libraries 24

2 Bitwise reproducibility 33
2.1 Introduction . 33
2.2 Backround . 33
2.3 Theory and Calculation . 37
2.4 Performance Results . 44
2.5 Conclusions . 49

3 Reduced precision computing 50
3.1 Introduction . 50
3.2 Enabling mixed precision in OpenSBLI . 51
3.3 Results . 54
3.4 Conclusions and Future Work . 65

4 Summary of the Dissertation 66
4.1 Methods and tools . 66
4.2 New scientific results . 67
4.3 Potential applications and benefits . 71

List of author publications 73

9

List of Figures

1.1 Histogram, showing the relative differences in a conjugate-gradient solver
(Aero) between runs with eight processes and 16. The result converges to
a numerically stable state, but on average there is a 4.05× 10−7 difference. 19

2.1 Histograms, generated by using Hydra. The relative difference increases
with more timesteps on an unsteady numerical solver. (a) Rig250 mesh
with 20M nodes, 10 timesteps, Spalart–Allmaras model; (b) Rig250 mesh
with 20M nodes, 100 timesteps, Spalart–Allmaras model. 36

2.2 Histograms, generated by using Hydra. The two models are not directly
comparable, but they illustrate how the relative difference depends on the
numerical properties of the applied model. (a) Rot37 mesh with 700k
nodes, 100 iterations, k-ω model; (b) Rot37 mesh with 8M nodes, 100
iterations, Spalart–Allmaras model. 37

2.3 Flow diagram of the mechanism of OP2. The bold, red frames represent
the updated steps of OP2’s workflow from my work. 38

2.4 Example execution order of edges around a cell. Due to local id renum-
bering, the global ids must be used for a reproducible execution order. . . 39

2.5 An example of a second ghost layer to determine the edge→edge neighbors
on the partition borders. The numbers on the edges indicate their unique ID. 42

2.6 Slowdown effect of the different methods compared to the non reproducible
version.
(a) Using 40 MPI-only processes on the Cirrus machine; (b) Using one
MPI+CUDA GPU process on the Cirrus-GPU machine. 45

2.7 Slowdown of Hydra measured on an 8M mesh, 20 iterations, using the
Cirrus-CPU machine. 46

2.8 Scaling of preprocessing overhead. (a) reversed map and temporary array
creation time for the temporary array method; (b) reversed map creation
and distributed coloring time. 46

2.9 Strong scaling measurement of the different methods, using 1,2,4,8 nodes;
(a) Airfoil, using 36 MPI Intel Xeon CPU processes per node; (b) Airfoil,
using four Nvidia V100 GPU processes per node; (c) Aero, using 36 MPI
Intel Xeon CPU processes per node; (d) Aero, using four Nvidia V100 GPU
processes per node; (e) Mg-cfd, using 36 MPI Intel Xeon CPU processes
per node; (f) Mg-cfd, using four Nvidia V100 GPU processes per node. . . 48

2.10 Strong scaling measurement of a reduction kernel; (a) Airfoil_update on
the Cirrus-CPU machine; (b) Airfoil_update on the Cirrus-GPU machine. 48

10

3.1 Schematic of the use of nW variable precision work arrays W to form resid-
uals R for update of conservative variables Q during a typical Runge-Kutta
substep (DP=double precision, SP=single precision, HP=half precision). . 52

3.2 Contours of ρE in three mutualy perpendicular slices at the mid locations
in x, y and z-directions, demonstrating the evolution of TGV state at
different times: (a) t=0, (b) t=5, (c) t=10 and (d) t=15. 56

3.3 Kinetic energy (K) and dissipation (ϵS) relative to the time. 56
3.4 Numerical accuracy of TGsym app using different precision levels. Mesh

size = 2563, M = 0.5, Re = 800. The simulations were run for 8000
iterations using the default method. 57

3.5 Contours of ρE showing the TGV state at t = 10, close to the peak of
dissipation: (a) SPDP, (b) SP, (c) HPSP and (d) HP. 58

3.6 Numerical accuracy of TGsym app using different precision levels. Mesh
size = 2563, M = 0.5, Re = 800. The simulations were run for 8000
iterations using the Storesome method. 59

3.7 The effect of changing parameters of the model on the numerical accuracy
of TGsym app using different precision levels. Size=2563, default method.
Values are the average of the absolute differences against the DP run of
the dissipation at every 0.5 stepsize of simulation time. 59

3.8 The effect of different split-forms on numerical accuracy of the inviscid
Taylor-Green vortex application using DP and HPSP precision levels.
N = 643 grid points, M∞ = 0.4, dt = 0.004, inviscid calculation, StoreSome
method. 60

3.9 Average volume of MPI communications per process per iteration on the
TGsym app, using 4 MPI processes. Size=2563 64

3.10 Strong- and weakscaling of the TGsym app with GPUdirect using different
precision levels. Minf=0.5, Re=800, 8000 iterations. 64

11

List of Tables

1.1 Comparison of IEEE 754 Half and Single Precision Formats 22

2.1 Memory usage of the reference run and with using the proposed methods
in GB. 45

2.2 Number of colors with the different methods on the applications main map. 46
2.3 Reversed map creation and greedy coloring time. 46

3.1 Runtime per iteration and speedup compred to the double precision run
time of the TGsym app are shown for the default and storesome gener-
ation methods. Mesh size=2563, M = 0.5, Re=800, 800 iterations. The
measurements are performed on a single NVIDIA A100-SXM4-40GB GPU
with an AMD EPYC™ 7763 (Milan) CPU. 62

3.2 Runtime per iteration and speedup compared to the double precision run
of the TGsym app using the default and Storesome generation methods.
Mesh size=2563, Minf=0.5, Re=800, 800 iterations. The measurements
are performed on Intel Xeon Platinum 8592+ CPU 63

3.3 Memory used with the TGsym app and memory gain compared to the
double precision run. Size=2563. 63

12

List of Algorithms

1 Algorithm of generating incrementing order 40
2 Algorithm for applying the order of increments 40
3 Algorithm for reproducible coloring in a distributed graph 43

13

1 Introduction

1.1 Scientific Computing

Scientific computing is the application of computational methods to solve complex
problems across a wide array of scientific and engineering disciplines. At its core, it
involves the development and implementation of numerical models and algorithms that
approximate the behavior of real-world systems. Many problems – whether they arise
in fluid dynamics, materials science, or biological systems – are analytically intractable;
computational methods allow researchers to explore these systems through simulation,
analysis, and visualization. Over the decades, advances in algorithm design, software
engineering, and computer architecture have dramatically expanded the scope and depth
of problems that can be addressed [1].

A significant factor in this evolution has been the ongoing advancement of computational
hardware. Earlier computational efforts were often constrained by limited processing
power and memory, but modern systems now offer immense capabilities that enable the
simulation of systems with millions, or even billions, of degrees of freedom. This progress
has not only enhanced the precision and scale of simulations but also broadened their
applicability. Researchers can now conduct comprehensive computational experiments
that complement and, at times, guide traditional laboratory and theoretical studies.

Moreover, scientific computing today is not just about simulation. It also involves
sophisticated data analysis and visualization techniques, which help in interpreting the
often massive volumes of data produced by computational experiments. This holistic
approach – combining model development, simulation, and data exploration – has become
essential for advancing our understanding of complex phenomena. As computational
methods continue to evolve, they are increasingly integrated into the fabric of research,
policy-making, and industry, underscoring their critical role in modern scientific inquiry.

1.2 High Performance Computing

High performance computing (HPC) represents a specialized branch of scientific computing
dedicated to solving large-scale and computationally intensive problems. By harnessing
the capabilities of supercomputers and computer clusters, HPC systems perform vast
numbers of calculations in parallel, enabling breakthroughs in fields where high-speed
data processing and complex simulations are essential [2]. These systems are built
upon advanced hardware architectures that include multi-core processors, high-speed
interconnects, and expansive memory configurations.

The evolution of HPC is deeply intertwined with historical trends in semiconductor

14

technology. Moore’s Law, which observes that the number of transistors on a chip
doubles approximately every two years [3], has driven exponential growth in computing
power over the past several decades. Dennard scaling, which posited that as transistors
shrink, their power density remains constant [4], further enabled performance gains while
managing energy consumption. However, as Dennard scaling has slowed due to physical
and practical limits, the focus has increasingly shifted toward exploiting parallelism and
innovative architectural designs to sustain performance improvements.

Parallel programming models – whether using distributed memory, shared memory, or
hybrid approaches – are central to efficiently utilizing these evolving hardware capabilities.
The challenge is not only to design algorithms that can be effectively partitioned and
executed concurrently but also to ensure that the underlying hardware is fully exploited
while minimizing overhead from communication and synchronization. This balance
between hardware and software innovation continues to drive the evolution of HPC
systems.

Beyond raw computational power, the success of HPC relies on a robust software
ecosystem. Specialized libraries and frameworks have been developed to abstract the
complexities of parallel architectures, thereby allowing domain scientists to focus on
problem-solving rather than the intricacies of hardware management. These tools are in-
dispensable for managing inter-process communication, load balancing, and fault tolerance
– critical aspects when operating at large scales.

Looking ahead, emerging technologies such as exascale computing and quantum com-
puting promise to further transform the HPC landscape. These advances aim to extend
the boundaries of computational science, enabling simulations and analyses that are
currently beyond our reach. The continued collaboration among computer scientists,
mathematicians, and domain experts will be key to overcoming the challenges posed by
these new frontiers, ensuring that HPC remains at the cutting edge of scientific discovery.

1.2.1 GPU Acceleration and Partitioned Architectures in Modern HPC

In recent years, Graphics Processing Units (GPUs) have become a cornerstone of high
performance computing, significantly reshaping the architecture and performance capabil-
ities of modern supercomputers. Unlike traditional CPUs, which offer a relatively small
number of powerful cores optimized for sequential execution, GPUs consist of thousands
of simpler cores capable of executing massively parallel workloads with high throughput.
This architectural difference makes GPUs particularly well-suited for numerically intensive
tasks such as matrix operations, particle simulations, and finite-difference computations
that dominate scientific applications.

Many of the world’s leading HPC systems – including Leonardo (Italy), LUMI (Finland),
and Frontier (USA) – derive a substantial portion of their computational power from
large-scale GPU partitions. These GPU-enabled partitions are not mere accelerators;
they often act as the primary computational resource, with CPUs coordinating high-level
control and data orchestration. For example, the Frontier supercomputer uses AMD
Instinct MI250X GPUs in combination with EPYC CPUs to achieve exascale performance,

15

with the vast majority of FLOPs delivered by the GPUs.
Effective utilization of GPU-based partitions requires careful consideration of data

locality, memory hierarchy (e.g., shared vs. global memory on GPUs), and parallel
granularity. Programming models such as CUDA, HIP, OpenACC, and OpenMP offloading
are commonly used to harness GPU capabilities, often through abstraction layers or
domain-specific libraries (like OP2 or OPS) that shield application developers from
low-level complexity.

Partitioning plays an equally critical role in the design and performance of HPC systems.
At the cluster level, workloads are distributed across nodes using partition-aware job
schedulers and MPI-based communication. Within a node, further partitioning occurs
across NUMA domains and GPU devices, which can be independently managed for
compute or memory tasks. Modern resource managers (e.g., SLURM, PBS) allow users
to specify job partitions explicitly, targeting specific node types (e.g., GPU vs. CPU-only)
or even GPU models (e.g., A100, V100). This allows for hardware-aware scheduling,
energy optimization, and better resource utilization.

Partitioning is not only a hardware-level concern but also a software design principle. Al-
gorithms must be structured to accommodate domain decomposition, load balancing, and
overlapping communication with computation. Libraries such as ParMETIS and Scotch
help in graph partitioning, ensuring minimal communication overhead across partitions.
In large-scale simulations, especially those using unstructured meshes, partition-aware
computation is essential for both scalability and reproducibility.

1.3 Floating-Point precision

Floating-point arithmetic (FP) is a cornerstone of modern scientific computing, enabling
the representation and manipulation of real numbers in a format suitable for digital
computation [5]. Unlike integer arithmetic, which deals with discrete values, floating-point
arithmetic approximates real numbers using a finite number of bits. This approximation
introduces inherent limitations, but it also allows for the representation of a wide range of
magnitudes, from the extremely small to the extremely large. This capability is essential
for tackling complex problems in fields such as physics, engineering, finance, and machine
learning.

A floating-point number is represented in the form:

(−1)sign × significand× baseexponent

where:

• sign is a single bit indicating the number’s polarity (positive or negative).

• significand (also known as mantissa or coefficient) is a digit string of a given length
in a given radix (or base). It determines the precision to which numbers can be
represented.

16

• base is the base of the number system used (typically 2 for binary floating-point
numbers).

• exponent is a signed integer that modifies the magnitude of the number.

The IEEE 754 standard[6] defines several floating-point formats, including single-
precision (32-bit), double-precision (64-bit), and half-precision (16-bit). Each format
allocates a specific number of bits to the sign, exponent, and significand, thereby deter-
mining the range and precision of representable numbers. For example, a double-precision
number has a wider exponent range and a larger significand than a single-precision
number, allowing it to represent a broader range of values with higher accuracy.

Floating-point operations, such as addition, subtraction, multiplication, and division,
approximate the corresponding real number arithmetic operations [5]. Because the result
of an operation may not be exactly representable as a floating-point number, it must
be rounded to the nearest representable value. The IEEE 754 standard specifies several
rounding modes, including round to nearest, round up, round down, and round toward
zero [6]. The choice of rounding mode can affect the accuracy and stability of numerical
algorithms [5]. Rounding error is a characteristic feature of floating-point computation
[7].

The range of floating-point numbers is determined by the number of bits allocated to
the exponent. A double-precision (64-bit) binary floating-point number has an exponent
of 11 bits, which means the complete range of positive normal floating-point numbers in
this format is from approximately 2× 10−308 to approximately 2× 10308 [5].

This dissertation focuses on two critical aspects of floating-point arithmetic: bitwise
reproducibility and reduced/mixed-precision computing. Bitwise reproducibility aims to
ensure that, given the same inputs, a floating-point computation produces identical results
across executions on the same platform, and across different platforms that conform to
the same floating-point standard and maintain consistent execution behavior. Reduced-
precision computing explores the use of lower-precision floating-point formats to improve
performance and energy efficiency, while mixed-precision computing combines different
precision levels within a single computation to optimize accuracy and performance.

1.3.1 Non-Associativity and Round-off Error

A fundamental challenge in floating-point arithmetic is its non-associativity. In real
number arithmetic, the order in which operations are performed does not affect the result
(e.g., (a + b) + c = a + (b + c)). However, due to the limited precision of floating-point
representation and the need for rounding, this property does not generally hold for
floating-point arithmetic [8].

Before presenting the concrete associativity example, I introduce two key concepts for
quantifying numerical errors:

• Absolute error : ϵabs = |x̂− x| measures how far the computed value x̂ is from the
true value x.

17

• Relative error : ϵrel = |x̂−x|
|x| indicates how significant the error is with respect to the

magnitude of x.

In scientific computing, relative error is usually the more relevant measure, as it reflects
the proportional accuracy of a computation.

Consider the following example:

a = 1.0× 104, b = −1.0× 104, c = 1.0

In real number arithmetic, (a + b) + c = a + (b + c) = 1.0. However, in floating-point
arithmetic with limited precision, we might have:

(a + b) + c = (1.0× 104 + (−1.0× 104)) + 1.0 = 0.0 + 1.0 = 1.0

but

a+(b+c) = 1.0×104+(−1.0×104+1.0) = 1.0×104+(−9999.0) = 1.0×104+(−1.0×104) = 0.0

This result emerges from the limitations of the floating-point representation format
– in this case, IEEE 754 binary16 (half precision). The key issue is that the mantissa
(or significand) has finite length. During the computation −1.0× 104 + 1.0, the smaller
number (1.0) is shifted right to align exponents, causing its least significant bits to
be discarded – effectively rounding it to zero. This phenomenon is known as loss of
significance or catastrophic cancellation.

This non-associativity can lead to significant problems, especially in large-scale high-
performance computing (HPC) simulations[8]. In such scenarios, a vast number of floating-
point operations are performed, and round-off errors can accumulate and propagate,
leading to inaccurate or even unstable results. The order in which these operations are
performed can significantly impact the final outcome.

The effects of catastrophic cancellation can be quantified more precisely through error
propagation analysis. For example, in the subtraction of two nearly equal values a and b,
the relative error of the result can be bounded as follows:

δ(a− b) ≤ |a| · δa + |b| · δb

|a− b|

This inequality shows that as a approaches b, the denominator becomes small and the
relative error increases significantly, even if δa and δb are small. This is why subtraction
is particularly vulnerable to amplification of error in floating-point systems.

It has to be noted here that the differently accumulated roundoff error in most cases
should not change the validity of an application [9]. Changing the execution order of an
algorithm may still produce valid results, independently of being reproducible.

A related example is the summation of a convergent series such as the harmonic series∑∞
n=1

1
n . In floating-point arithmetic, adding terms in decreasing order may lead to

inaccurate results, because the smaller terms may be truncated entirely. This motivates

18

summing values in increasing order of magnitude – a well-known numerical strategy to
reduce rounding error.

These considerations are critical when designing reliable and reproducible HPC simula-
tions, especially in parallel environments.

We can observe this effect in Figure 1.1, using a more realistic finite element method
example with a conjugate-gradient solver, with calculations in double precision (Aero [10]—
detailed in Section 2.2.2). On this histogram, we counted the number of different values
of the end results in relative differences for several magnitudes between running the
application using eight processes and 16 processes. From the 6.5M elements, there were
only 3599, which had a bitwise identical result, the rest had a difference between 10−12

and 10−4, and most of them were around the magnitude of 10−8.

16 14 12 10 8 6 4 2
Relative difference (log10)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Co
un

t

x10⁶

Figure 1.1: Histogram, showing the relative differences in a conjugate-gradient solver
(Aero) between runs with eight processes and 16. The result converges to a
numerically stable state, but on average there is a 4.05× 10−7 difference.

Reproducibility

Reproducibility is often understood as experimental reproducibility. This is also a widely
researched topic [11]–[15], but my aim is to obtain bitwise identical results of an application
run with the same input parameters regardless of the level of parallelism, be it the number
of threads or processes executed simultaneously. Non-reproducibility is not caused by
the roundoff error but by the non-determinism of accumulative roundoff error. Due to
the non-associativity of floating-point addition, accumulative roundoff errors depend
on the order of evaluation, which is almost always relaxed in parallel and distributed
environments. In a distributed MPI environment, there are multiple possible sources of
non-associativity: number of MPI nodes, MPI reduction tree shape, number of cores per
node, and data ordering. The histogram in Figure 1.1, which runs the Aero benchmark
of the OP2 library, shows the relative differences ((a−b)

a | a > b) of a non-reproducible
application run with different numbers of MPI processes. In general, some of the causes
might be efficiently addressed, such as the reduction tree shape, which can be defined by

19

network interface cards [16], but changing the number of processes can cause issues that
are not as easily addressed. A general solution might be to fix the order of evaluation
but that is, in many cases, incompatible with parallelization, and running sequentially
is prohibitively costly. Another solution is to eliminate rounding errors. We can use
exact arithmetics [17], but that will substantially increase the memory usage and the
cost of the computations, as well as the amount of communication when applied to more
complicated operations such as matrix multiplication. Higher precision can be used, but
it will be reproducible only with higher probability [18].

Reproducible Reductions

One of the most common sources of non-reproducibility comes from reductions, where
we add up the elements of an array into a single result. When carrying this out with
a parallel execution, the rounding errors can accumulate rapidly. There are multiple
solutions for this problem [19]–[21], but the underlying observation is common to all
approaches; adding up numbers with similar magnitudes is going to be exact. Demmel et
al. [19] use pre-roundings to a well-calculated magnitude with an extra sweep through the
array, add the values together, and then apply the same method on the remainders of the
roundings. Arteaga et al. [20] extended their work by calculating the magnitudes without
the additional sweep. The ReproBLAS library [21] creates bins for the magnitudes in
advance and uses them in parallel for the summations. In our project, we use ReproBLAS,
due to its user-friendly implementations; though the necessary reductions can be calculated
by using other techniques as well.

ReproBLAS

Reproducible Basic Linear Algebra Subprograms [21] (ReproBLAS), intends to provide
users with a set of parallel and sequential linear algebra routines that guarantee bitwise
reproducibility independent of the number of processors, data partitioning, reduction
scheduling, or the sequence in which the sums are computed in general. It assumes
that floating-point values are binary and conform to IEEE Floating-Point Standard
754-2008, floating-point operations are conducted in ROUND-TO-NEAREST mode (ties
may be broken at will) and that underflow happens gradually. Summing n floating-point
values with their default settings costs around 9n floating-point operations (arithmetic,
comparison and absolute value). The new “augmented addition” and “maximum mag-
nitude” instructions in their proposed IEEE Floating-Point Standard 754-2019 [6] can
theoretically reduce this count to 5n. On a single Intel Sandy Bridge core, for example,
the ReproBLAS slowdown compared to a performance-optimized non-reproducible dot
product is 4× [22]. Here, the output is reproducible regardless of how the input vector is
permuted. For the summing of 1,000,000 double-precision floating-point (FP64) values,
the slowdown on a large-scale system with more than 512 Intel “Ivy Bridge” CPUs (the
Edison machine at NERSC) is less than 1.2×. The result is also reproducible regardless
of how the input vector is partitioned across nodes or how the local input vector is stored
within a node.

20

Bitwise Reproducibility in Parallel HPC Applications

While roundoff errors are expected and often tolerable, non-determinism in their accumu-
lation poses a unique challenge in HPC. This is especially true in parallel or heterogeneous
systems, where factors such as the number of MPI processes, thread scheduling, or
network-level reduction trees influence the order of floating-point operations. As a result,
repeated executions with identical inputs may diverge at the bit level. These discrepan-
cies are not inherently errors, but they complicate debugging, verification, and scientific
reproducibility.

The degree of reproducibility required varies across domains. In some cases, relative
agreement within machine epsilon suffices. However, there are many applications – for
example, in regulatory simulations, cross-architecture validation, or industrial workflows –
where bitwise identical output is required. Examples include structural wind vulnerability
prediction [23] or nonlinear aeroelastic analysis [24], where repeatability is crucial for
safety or engineering certification.

To address this, multiple algorithmic techniques have been proposed. A widely known
approach is Kahan’s compensated summation [25], which stores low-order errors during
accumulation to preserve precision. More sophisticated strategies, such as the binned
summation method by Demmel et al. [19], separate values by magnitude before summation,
effectively controlling rounding error propagation. These approaches improve determinism
but often come with overhead, intrusive changes to code, or limitations to specific
architectures.

The reproducibility challenge becomes especially pronounced in unstructured mesh
applications, where computation frequently involves indirect memory access patterns and
data races. In such scenarios, the cost of enforcing strict operation ordering can outweigh
the gains from parallelization. Emerging methods aim to strike a balance: maintain-
ing acceptable performance while enforcing reproducibility. Notably, the ReproBLAS
library [21] provides drop-in reproducible versions of BLAS routines, with overheads as
low as 1.2× in massively parallel environments, such as NERSC’s Edison system [22].

1.3.2 Precision Trade-offs in HPC

The choice of floating-point precision involves a trade-off between accuracy, performance,
and memory usage [26]. Higher precision formats, such as double-precision, provide
greater accuracy and a wider dynamic range but require more memory and computational
resources. Conversely, lower precision formats, such as single-precision and half-precision,
offer improved performance and reduced memory footprint at the cost of reduced accuracy
and dynamic range [26].

To better understand these trade-offs, it is useful to examine the numerical properties
of standard floating-point formats as defined by the IEEE 754 standard. Table 1.1.
summarizes the key characteristics of single (32-bit) and half (16-bit) precision:

21

Table 1.1: Comparison of IEEE 754 Half and Single Precision Formats

Property Half Precision (FP16) Single Precision (FP32)

Total bits 16 32
Significand (mantissa) bits 10 (plus implicit 1) 23 (plus implicit 1)
Exponent bits 5 8
Exponent bias 15 127
Approximate decimal precision ∼3.3 digits ∼7.2 digits
Smallest positive normal value 6.1× 10−5 1.2× 10−38

Largest finite value 6.5× 104 3.4× 1038

Machine epsilon (ε) 9.8× 10−4 1.2× 10−7

As the table shows, half precision offers significantly reduced representable range and
decimal precision compared to single precision. For example, FP16 can represent values
roughly between 10−5 and 104 with only around three decimal digits of precision, while
FP32 spans over 30 orders of magnitude and supports over seven digits of precision. This
has direct implications in scientific computing, where algorithms must be analyzed for
sensitivity to rounding errors and underflow/overflow risk.

In many high-performance computing (HPC) applications, performance is often limited
by memory bandwidth [26]. The time required to transfer data between memory and
the processor can be a bottleneck, rather than the floating-point operations themselves.
Using lower precision formats can significantly improve performance by reducing the
amount of transferred data. For example, replacing double-precision with single-precision
can halve the memory footprint and potentially double the memory bandwidth, leading
to significant speedups, provided that the reduced precision does not compromise the
accuracy of results [26].

Modern hardware accelerators, such as GPUs and specialized AI accelerators, offer
significantly higher throughput for lower precision floating-point operations [26]. This
makes reduced-precision computing an attractive option for accelerating a wide range
of applications, including machine learning, signal processing, and scientific simulations.
However, numerical stability and accuracy requirements must be carefully analyzed before
adopting reduced-precision formats, as inappropriate usage may lead to unacceptable
errors or instability [26]. Mixed-precision computing provides a potential solution by
allowing different parts of the computation to be performed at different precision levels,
optimizing both accuracy and performance [26].

The advent of artificial intelligence has further encouraged the adoption of reduced
precision formats in hardware, such as half-precision (16-bit) floating-point arithmetic.
While this transition presents opportunities for significant performance gains, it also
raises concerns regarding numerical stability, particularly in HPC applications sensitive to
precision. The challenge lies in balancing precision and performance to meet the growing
demand for computational efficiency.

Existing mixed precision techniques have demonstrated promise in various applications.

22

For instance, many linear solvers have successfully employed mixed precision to improve
performance without sacrificing accuracy [27]–[31]. Abdelfattah et al. [32] reported
advancements in mixed precision algorithms, including speedups in dense and sparse
LU factorization, eigenvalue solvers, and GMRES implementations. Computational
fluid dynamics (CFD) applications, such as FluidX3D [33] and OpenFOAM [34], have
also integrated mixed precision strategies to enhance computational efficiency while
maintaining accuracy.

Many finite difference methods (FDMs) exhibit a structural pattern where a smaller
value is iteratively added to a larger one. This structure enables strategic precision
allocation: the larger value, which accumulates multiple iterations and is prone to
roundoff errors, is typically maintained in full precision, while the smaller update values,
which are discarded after each step, can be represented in reduced precision formats. This
controlled trade-off enhances computational efficiency without excessive loss of accuracy.

Challenges of Using Insufficient Precision

Employing inadequate floating-point precision can lead to significant computational errors,
particularly in CFD applications where numerical stability is critical. Key issues include:

• Round-off Errors: Limited mantissa length causes rounding errors, which can
accumulate in iterative methods and lead to divergence [35].

• Overflow and Underflow: Floating-point arithmetic constraints can result in
catastrophic failures when numbers exceed the representable range.

• Loss of Significance: Subtracting nearly equal numbers can lead to catastrophic
cancellation, significantly affecting CFD simulations [36].

These challenges highlight the importance of selecting an appropriate precision level that
balances computational efficiency with accuracy requirements.

Half-Precision Floating-Point Arithmetic

Half-precision floating-point arithmetic (FP16) has gained traction in HPC due to its
balance between computational efficiency and memory usage. Recent NVIDIA GPU
architectures, such as Volta and Ampere, have introduced native FP16 support, enabling
substantial performance improvements in scientific computations. Studies have shown
that employing mixed precision techniques, which integrate FP16 with higher precision
formats, can achieve speedups of up to four times in iterative refinement solvers [37]. This
acceleration is primarily due to enhanced computational throughput enabled by Tensor
Cores optimized for FP16 arithmetic. Additionally, FP16 reduces memory bandwidth
requirements, facilitating faster data transfers and improved overall performance in
large-scale simulations [38].

Despite its advantages, transitioning to FP16 is not without challenges. Its limited range
and precision can introduce numerical instability, particularly in operations requiring
high accuracy. Catastrophic cancellation is a notable concern, especially in time-marching

23

methods where small perturbations can accumulate over iterations. To mitigate these
issues, researchers have proposed techniques such as iterative refinement and modified
LU factorization, which enhance numerical stability while leveraging FP16’s performance
benefits [39].

Beyond FP16, alternative reduced precision formats are being explored. Bfloat16
[40], which retains FP32’s exponent size while reducing the significand to 7 bits, has
proven useful in deep learning due to its stable training properties. However, despite
its advantages, bfloat16 has precision limitations that can lead to numerical instability
in certain computational scenarios. Even smaller floating-point formats, such as float8
[41], have been proposed, though their accuracy challenges make them less suitable for
general scientific computing. Given the difficulties encountered with FP16, using even
lower precision formats is generally discouraged.

In the following chapters, this dissertation will dive into the challenges and opportunities
presented by bitwise reproducibility and reduced/mixed-precision computing, exploring
novel algorithms and techniques to address the limitations of floating-point arithmetic
and harness its full potential for scientific discovery.

1.4 The OPS and OP2 Domain Specific Libraries

1.4.1 The Unstructured Mesh Computational Motif

Computations defined on unstructured meshes form an important basis for many engineer-
ing calculations commonly used in PDE discretizations, such as finite elements of finite
volumes. An unstructured mesh is characterized by a number of sets (vertices, edges,
cells, etc.) with explicit connectivity information between them (e.g., edges to vertices).
Computations are commonly expressed as a parallel loop over a set, with computations
accessing data either directly on the iteration set or through an indirection. For example,
a common operation in computational fluid dynamics is to compute fluxes across faces
(edges), and then increment/decrement state variables defined on connected cells. The
key motif here is the edge-centered computations indirectly incrementing cell data, which
then gives rise to non-determinism when the order of execution of the edges is relaxed for
the sake of parallelism. Another common pattern is the global reduction, often conducted
in a non-deterministic order, where the result is then used in subsequent computations.
For example, in the conjugate gradient algorithm, the results of dot products are used as
weights in the next step.

The distributed and parallel execution of unstructured mesh algorithms is a well-
established field [42]–[45]. For distributed memory execution, the mesh is partitioned
using one of many established libraries, such as PT-Scotch or ParMetis [46], [47]. It is
important to note here that an unstructured mesh is a hypergraph, consisting of multiple
“vertex” types, whereas most partitioners only partition a simple graph, and the rest of the
hypergraph is usually partitioned in a greedy way through connections to the simple graph.
This is then related to how computations are executed, an “owner-compute” approach is
commonly utilized, where all computations associated with a given element are performed

24

on the process that owns that element. So, for instance, in the earlier example, the process
that owns a given cell will execute all the edges that increment that cell, even if some of
those edges are not owned by it. This requires communicating all the data needed to
execute those edges as well. This often leads to redundant computations around partition
boundaries. Depending on the exact implementation the deterministic order of execution
for elements is often relaxed at this point to allow shared memory parallelization and
powerful optimizations such as overlapping computations and communications.

To enable shared-memory parallel execution of unstructured mesh computations, one
needs to address the issue of race conditions when indirectly incrementing/updating data.
Virtually all execution schemes used in the literature rely on the associativity of these
operations, for example, by using atomic updates, a staging of increments in an auxiliary
array and their separate sum, or a coloring scheme [48], [49]. We are not aware of related
works that explicitly aim to maintain an ordering of operations whilst enabling shared
memory parallel execution.

1.4.2 OP2 Domain-Specific Library

OP2 is a domain-specific library (DSL) designed to facilitate the development of portable
and efficient applications operating on unstructured meshes [45]. It provides a high-
level abstraction for expressing mesh-based computations, separating the specification
of numerical algorithms from their parallel implementation across diverse hardware
platforms, including CPUs, GPUs, and clusters.

The OP2 framework is centered around a small set of key abstractions:

• Sets: Represent collections of topological entities in the mesh, such as edges, cells,
or vertices.

• Maps: Define connectivity between sets, by listing connections from one set to
another. For example, a map from edges to the two adjacent cells. A map in OP2
must have the same number of elements pointed to from each element of the first
set.

• Datasets (op_dat): Store data associated with a set, such as pressure or velocity
fields.

• Parallel loops (op_par_loop): Describe computations over elements of a set,
using user-defined kernel functions.

Listing 1.1 demonstrates how these abstractions are used in practice. The example
code shows a parallel loop over the edges set, applying a kernel function res to perform
updates on data defined on adjacent cells, via an indirection map.

Listing 1.1: Specification of an OP2 parallel loop
1 /∗ −−−−− elementa l k e r ne l f unc t i on in res . h −−−−−−∗/
2 void r e s (const double ∗edge ,
3 double ∗ c e l l 0 , double ∗ c e l l 1){

25

4 // Computations , such as :
5 ∗ c e l l 0 += ∗ edge ; ∗ c e l l 1 += ∗ edge ;
6 }
7 /∗ −−−−−−−−−− in the main program f i l e −−−−−−−−−−−∗/
8 // Dec lar ing the mesh wi th OP2 s e t s
9 op_set edges = op_decl_set (numedge , " edges ") ;

10 op_set c e l l s = op_decl_set (numcell , " c e l l s ") ;
11 // mappings − c o n n e c t i v i t y between s e t s
12 op_map e d g e 2 c e l l = op_decl_map (edges , c e l l s ,
13 2 , etoc_mapdata , " e d g e 2 c e l l ") ;
14 // data on s e t s
15 op_dat p_edge = op_decl_dat (edges ,
16 1 , " double " , edata , " p_edge ") ;
17 op_dat p_ce l l = op_decl_dat (c e l l s ,
18 4 , " double " , cdata , " p_ce l l ") ;
19 // OP2 p a r a l l e l l oop d e c l a r a t i o n
20 op_par_loop (res , " r e s " , edges ,
21 op_arg_dat (p_edge , −1 ,OP_ID ,4 , " double " ,OP_READ) ,
22 op_arg_dat (p_cel l , 0 , edge2c e l l , 4 , " double " ,OP_INC) ,
23 op_arg_dat (p_cel l , 1 , edge2c e l l , 4 , " double " ,OP_INC)) ;

The key mechanism in OP2 is the use of the op_par_loop construct, which applies a
kernel function across elements of a set. The arguments to this loop specify:

• the dataset involved (op_dat),

• the indirection (if any) via an op_map,

• the access mode (OP_READ, OP_WRITE, OP_INC, etc.), and

• the type and arity of the data.

In the example, p_edge is accessed directly with OP_READ, while p_cell is updated
via an indirection map, using OP_INC (increment), reflecting a common pattern in
unstructured mesh computations.

OP2 distinguishes between two types of loops:

• Direct loops: All data is accessed directly on the iteration set. These are free
from data races and inherently parallelizable.

• Indirect loops: At least one op_dat is accessed indirectly through a mapping to
another set. These are the general case in unstructured mesh computations and
may involve data hazards, requiring careful parallelization strategies (e.g., coloring,
atomics, or staging).

An important constraint imposed by the OP2 API is that the execution order of itera-
tions in an op_par_loop must be semantically interchangeable—that is, the operations

26

performed within the loop must be mathematically associative, so that reordering them
does not affect the final result beyond variations within machine epsilon. This contract
enables OP2 to apply aggressive parallel execution and optimization strategies, such as
dynamic scheduling, coloring, or hardware-specific kernel transformations. Consequently,
applications must be written to respect this constraint, relinquishing control over loop
execution order and avoiding order-dependent side effects in kernel functions. This design
choice is crucial not only for performance portability, but also for enabling reproducibility
features, as it permits the library to re-structure computations in deterministic ways
when required.

This access-execute model allows OP2 to automatically generate platform-optimized
code, targeting backends such as OpenMP, CUDA, OpenCL, and MPI. By abstracting
away the parallelization logic, OP2 ensures performance portability and maintainability,
enabling users to write a single high-level description of their numerical algorithm.

Several real-world and production-scale applications have successfully adopted OP2
to achieve performance portability and maintainability across heterogeneous platforms.
The VOLNA-OP2 tsunami simulation code demonstrates the applicability of OP2 to
geophysical modeling, achieving high performance on modern parallel architectures while
maintaining numerical fidelity [50]. In the aerospace domain, Hydra, a full-scale industrial
CFD application developed by Rolls-Royce, was ported to OP2 and accelerated across
CPU and GPU platforms with significant performance gains, highlighting OP2’s ability
to handle complex legacy codebases [51]. Additionally, the MG-CFD mini-application
has been developed as a compact, research-oriented code that leverages OP2 (and later
SYCL) to explore strategies for achieving performance portability in multi-grid CFD
solvers [52]. These applications illustrate the practical maturity and flexibility of the OP2
model for unstructured mesh computations in both industrial and academic contexts.

In this dissertation, OP2 serves as the foundation for implementing bitwise reproducibil-
ity techniques in unstructured mesh applications. Because OP2 has full control over
execution order and data access patterns, it is well-suited to introducing deterministic
variants of indirect operations – such as accumulation using temporary arrays or coloring
– and integrating external libraries like ReproBLAS for reproducible reductions.

Overall, OP2 enables concise, readable code that can scale efficiently across modern het-
erogeneous architectures, while also supporting advanced capabilities like reproducibility,
debugging, and algorithmic experimentation.

1.4.3 OPS Domain-Specific Library

The Oxford Parallel library for Structured mesh solvers (OPS) [53] is a domain-specific
library aimed at simplifying the development of stencil-based applications operating
over structured Cartesian meshes. OPS provides a high-level abstraction that allows
developers to describe numerical algorithms independently of the underlying hardware or
parallelization strategy. This enables performance portability across diverse computing
architectures, including multi-core CPUs and GPUs.

OPS applications are structured around a set of well-defined abstractions:

27

• Blocks: Represent topological regions of the computational domain (e.g., a struc-
tured grid).

• Datasets (ops_dat): Multi-dimensional arrays (fields) defined on blocks, storing
quantities like pressure or velocity.

• Stencils: Define relative access patterns to neighboring data points in a dataset,
used within a computational kernel.

• Parallel loops (ops_par_loop): Apply user-defined kernels across elements of a
block, using specified stencils and data access modes.

Listing 1.2 shows a minimal example of a 5-point stencil kernel applied to a 2D dataset.
The user kernel stencil updates a point in u2 based on neighboring values in u and a
forcing term f, using discrete approximations to the Laplace operator.

Listing 1.2: Example of an OPS parallel loop for a 5-point stencil update in 2D.
1 // User k e rne l
2 void s t e n c i l (const ACC<double> &u , const ACC<double> &f ,
3 ACC<double> &u2) {
4 u2 (0 , 0) = ((u(−1 , 0) + u (1 , 0)) ∗ dy ∗ dy +
5 (u (0 , −1) + u (0 , 1)) ∗ dx ∗ dx −
6 f (0 , 0) ∗ dx ∗ dx ∗ dy ∗ dy) /
7 (2 . 0 ∗ (dx ∗ dx + dy ∗ dy)) ;
8 }
9 // . . .

10 // Dec lar ing a d a t a s e t on a b l o c k
11 int s i z e [2] = { size_x , s ize_y } ;
12 int base [2] = {0 , 0} ;
13 int d_p [2] = {1 , 1} ; // p o s i t i v e ha lo depth
14 int d_m[2] = {−1, −1}; // nega t i v e ha lo depth
15 ops_dat u = ops_decl_dat (block , 1 , s i z e , base , d_m, d_p ,
16 nu l lp t r , " double " , "u ") ;
17 // Execute a g iven loop on the b l o c k
18 int i t e r_range [] = {0 , size_x , 0 , s ize_y } ;
19 ops_par_loop (s t e n c i l , " s t e n c i l " , block , 2 , i ter_range ,
20 ops_arg_dat (u , 1 , S2D_4PT, " double " , OPS_READ) ,
21 ops_arg_dat (f , 1 , S2D_00 , " double " , OPS_READ) ,
22 ops_arg_dat (u2 , 1 , S2D_00 , " double " , OPS_WRITE)) ;

The kernel function is expressed in terms of the ACC wrapper, which provides indexed
access to data in the stencil neighborhood. In this example, u(-1, 0) accesses the value
of u one cell to the left of the current grid point.

OPS manages all parallel execution and halo exchange logic. Similar to OP2, OPS
assumes that the order of execution of iterations in an ops_par_loop is interchangeable

28

within machine epsilon. This constraint allows OPS to exploit a wide range of optimization
strategies, such as loop tiling, or parallel scheduling across distributed memory, while
ensuring the correctness of the results under relaxed ordering. Consequently, OPS users
must avoid introducing order-dependent side effects in kernel code and should write
stencil kernels that are agnostic to iteration ordering. Each ops_dat is defined with its
halo depths (d_m and d_p), enabling efficient communication of ghost cells in distributed
memory environments. The execution region is defined by the iteration range, and
stencil patterns such as S2D_4PT specify which neighboring points are required during
computation.

Data access modes (e.g., OPS_READ, OPS_WRITE, OPS_INC) inform OPS of dependencies,
allowing it to perform data movement, synchronization, and loop fusion optimizations
automatically. Importantly, OPS restricts write access in stencil computations to only
the center of the stencil – the element at offset (0,0). This design simplifies dependency
analysis and guarantees data race freedom, but also imposes a discipline on kernel authors:
any update to a dataset must occur only at the current iteration point, not at neighboring
locations. This constraint aligns with OPS’s goal of maintaining safe and portable parallel
execution across diverse hardware backends.

OPS applications are backend-agnostic: the same high-level code can be compiled
into parallel implementations using OpenMP, MPI, CUDA, or OpenCL, depending
on the target hardware. Source-to-source translation is used to generate optimized
implementations for each backend, abstracting away the details of low-level parallel
programming.

OPS also supports:

• Per-dataset precision control: Each ops_dat can be declared with its own
floating-point type (e.g., float, double, or half), enabling memory-efficient storage
tailored to the accuracy requirements of each field.

• Multi-block domains: Supporting more complex geometries or decompositions
across structured blocks.

• Backend portability: Achieved through code generation and scheduling optimiza-
tions across OpenMP, MPI, CUDA, and other targets.

A notable feature of OPS is its ability to declare datasets with different precisions,
allowing developers to express varying numerical accuracy requirements across different
fields in a simulation. This design enables precision-aware memory optimization and
data management. However, prior to the work presented in this dissertation, OPS lacked
support for true mixed-precision computations – that is, stencil kernels combining operands
of different precisions within a single operation or across interdependent datasets.

As part of this research, support for such mixed-precision arithmetic was introduced
into OPS, enabling computations that combine datasets of different types directly within
user-defined kernels. This advancement extends OPS’s flexibility beyond memory layout
and storage into the computational domain, making it possible to systematically explore

29

trade-offs between performance, accuracy, and energy efficiency in real-world stencil-based
applications.

OPS has been successfully employed in a range of structured-mesh applications to
demonstrate both performance portability and scalability on modern high-performance
computing systems. One such example is CloverLeaf, a hydrodynamics mini-application
representative of many production-level shock physics codes. By porting CloverLeaf
to OPS, researchers introduced features such as dynamic loop tiling and multi-target
backend support without altering the high-level algorithmic structure [54]. Another
notable example is OpenSBLI, an automated code generation framework for finite-
difference solvers, which uses OPS as its parallel back end. OpenSBLI is used extensively
in this research and will be introduced in detail in the following section [55].

1.4.4 OpenSBLI

OpenSBLI [55] is a complete code generation system for computational fluid dynamics
that automatically generates OPS code starting from a compact description of the
governing equations using subscript notation. It uses symbolic Python to expand the
governing equations and carry out the subsequent discretisation, using high-order finite
differences. The frontend is used to define and expand the governing equations and
constituent relations. It also defines all the boundary and initial conditions and sets all
the run time parameters. This provides an effective implementation of the ‘separation
of concerns’ workflow [56], whereby users focusing on the fluid dynamics can carry out
most tasks from the python frontend. Alternatively, numerical methods developers can
work either in the OPSC code or in the OpenSBLI code generation, while computer-
science-based performance optimisations can be carried out in the OPS translator. The
main applications of OpenSBLI are direct numerical simulation (DNS) and large eddy
simulation (LES) of compressible-flow problems involving transition to turbulence or
fully-developed turbulence on structured grids.

Finite difference methods (FDMs) form the mathematical foundation underlying most of
OpenSBLI’s numerical strategies. In essence, FDMs approximate derivatives of continuous
functions by discrete differences over a structured grid. This approach is particularly
efficient for problems defined on regular domains, and supports high-order accurate
schemes with straightforward stencil implementations. OpenSBLI leverages explicit
high-order central differencing for both convective and diffusive terms, allowing efficient
exploitation of structured memory access patterns. Compared to other discretization
techniques such as finite-volume or finite-element methods, FDMs offer a favorable balance
between simplicity, performance, and accuracy in structured mesh simulations, making
them especially attractive in the context of GPU-accelerated large-scale DNS and LES
workflows.

Definition of the Blaisdell quadratic split-form: for convective terms of the form

C = ∂(ρujφ)
∂xj

,

30

the Blaisdell form rewrites this as a skew-symmetric or quadratic average to reduce
aliasing:

CBlaisdell = 1
2

[
ρuj

∂φ

∂xj
+ φ

∂(ρuj)
∂xj

]
,

which preserves kinetic energy in the inviscid limit and improves numerical robustness by
mitigating aliasing errors [57].

An initial version (V1) of the software [58] demonstrated the code-generation concept for
simple low-speed periodic flows and the benefits of the OPS code translation in being able
to run efficiently on heterogeneous computing architectures. The project was restarted
from a clean code base in [59], which led to the subsequent public code release in [55].
This version (V2) included shock capturing using Weighted Essentially Non-Oscillatory
(WENO) and less dissipative Targeted Essentially Non-Oscillatory (TENO) schemes
along with a greatly expanded set of boundary-conditions and application demonstrations,
including shock-wave/boundary-layer interactions [59] and channel flow validation test
cases [60]. This release also included generalised curvilinear geometries. The current
release version of OpenSBLI is V3 [61]. Version 3 added multi-block mesh support, airfoil
simulations, new numerical methods and filters, and various performance and efficiency
improvements. Reduced-dimension I/O, partial reductions for spanwise averaging, and
mixed-precision support were also added, via upgrades to both OpenSBLI and the OPS
library. The combination of multi-block capability and new filter-based shock-capturing
schemes [61] has led to new applications of implicit LES simulations of flow over airfoils,
including state-of-the-art studies of airfoil buffet in the transonic flow regime [62], [63]
that exploit large GPU-based machines to perform high-fidelity simulations on the order
of N ∼ 1010 mesh points.

Flow Simulations and Discretization of Models

In computational fluid dynamics (CFD), simulating fluid flow involves solving the gov-
erning equations – e.g. the compressible Navier–Stokes equations – on a discrete com-
putational mesh. These equations encapsulate the conservation of mass, momentum,
and energy within the fluid domain. To translate them into a solvable numerical for-
mat, discretization techniques are applied. In the context of this work, high-order finite
difference methods on structured grids are used for this purpose, as facilitated by the
OpenSBLI framework. The resulting discrete equations are advanced in time using
explicit Runge–Kutta schemes, while spatial derivatives are evaluated via central dif-
ferencing. Additional stabilization is achieved through split formulations such as the
Blaisdell quadratic form, which mitigate aliasing errors and improve robustness at high
Reynolds numbers. These methods enable accurate and scalable simulations of turbulent
flow phenomena, particularly in GPU-based exascale environments.

Numerical Methods and Split Formulations of the Equations

The accuracy of low- and mixed-precision algorithms is assessed in this work in the context
of the unsteady full-3D Navier-Stokes equations for a compressible Taylor-Green vortex

31

problem described in Section 3.3.1. All simulations are performed using explicit 4th-order
accurate non-dissipative central-differencing. Both the convective and diffusive parts of
the Navier-Stokes equations are solved at 4th-order to maintain consistent spatial order
throughout. Time-stepping is performed by a low-storage explicit 3rd-order Runge-Kutta
scheme. Details of the implementation have previously been given in [55].

Depending partly on the magnitude of the Reynolds number, direct application of
standard central derivative approximations to the Navier-Stokes equations can lead to
numerical instabilities [64]. This is due to an accumulation of aliasing errors that occurs
from discrete evaluation of the product between two or more terms within the non-linear
convective derivatives. The lack of numerical robustness can also be linked to the failure
of standard formulations to discretely preserve quadratic invariants such as global kinetic
energy in the inviscid limit [65]. To alleviate these discretisation issues, convective terms
of the base Navier-Stokes equations are routinely reformulated in modern CFD codes in
what are known as split formulations. These alternative formulations of the governing
equations have been reported to improve numerical robustness via reduced aliasing errors
and preservation of certain invariant quantities [66].

Various split-forms are available in the literature [66]. They typically focus on the
reformulation of non-linear convective derivative terms that take the general form

C = ∂ρujφ

∂xj
, (1.1)

where φ takes the value of (1, ui, E), for the continuity, momentum, and energy components
of the Navier-Stokes equations, respectively. As an example of one of the split-forms
available in OpenSBLI, the Feiereisen quadratic split-form [67], expands these terms
quadratically as

∂ρujφ

∂xj
→ 1

2
∂ρujφ

∂xj
+ 1

2

(
φ

∂ρuj

∂xj
+ ρuj

∂φ

∂xj

)
. (1.2)

While the underlying physical equations are mathematically equivalent in an algebraic
sense, the split-form is considerably more robust numerically when the equations are
evaluated on a discrete mesh with finite-difference approximations [66]. The split-forms are
computationally more expensive due to the increased number of floating-point operations
required, however, as CFD codes are typically memory-bound, they are an efficient way
of improving numerical stability for large-scale calculations at high Reynolds numbers.
In this work, the quadratic Blaisdell split-form [57] of the equations is applied to improve
numerical robustness throughout. As we are interested in the effect of low- and mixed-
precision and the propagation of numerical errors in finite-difference approximations,
other quadratic and cubic split-forms are also tested in the inviscid limit with varying
numerical precision in Section 3.3.2.

32

2 Bitwise reproducibility

2.1 Introduction

Floating-point operations are the foundation of modern scientific computing. However,
their finite-precision representation means that operations are non-associative [7]. In
parallel computing environments, where execution order is not guaranteed, this leads to
run-to-run variability even for the same inputs.

This motivates the concept of bitwise reproducibility – producing identical binary
outputs across repeated executions. While tolerances are sometimes acceptable, exact
reproducibility is often required for debugging, port validation, and testing frameworks [68].
Such reproducibility is challenging to maintain efficiently on modern hardware, especially
in large-scale or GPU-based simulations.

This chapter presents a reproducibility solution for unstructured mesh computations –
an HPC domain prone to indirect memory access and data races. The approach integrates
into the OP2 DSL and demonstrates reproducibility in industrial-scale applications such
as Rolls-Royce Hydra, while preserving performance across CPU and GPU architectures.

2.2 Backround

2.2.1 Related Works

Bitwise reproducibility is a widely researched problem, usually investigated in a specific
application.

Mascagni et al. [69] list the main sources of non-reproducibility in a neuroscience
application: (i) the introduction of floating-point errors in an inner product; (ii) the
introduction of floating-point errors at each an increasing number of time steps during
temporal refinement (ii) and (iii) differences in the output of library mathematical
functions at the level of round-off error. They highlight the importance of numerical
reproducibility without providing a general solution.

Liyang et al. created a special method [70] for molecular dynamics applications in the
LAMPPS Molecular Dynamics Simulator [71]. From each particle, the potentials are
calculated first and then stored temporarily. Then they loop over every particle again,
sort the components for one element, and accumulate them in ascending order. This way,
they were able to eliminate the effect of non-associative accumulation.

Langlois et al. [72] tested multiple techniques for reproducible execution on an in-
dustrial free-surface flow application: the 2D simulation of the Malpasset dam break.
All methods passed, but their main purpose is to determine how easy it is to use them.

33

Kahan’s compensated solution method [25] appeared to be the easiest to apply and
provided accurate results for low computing overhead. The integer conversion provided
in Tomawac [73] was also easy to derive and introduced a low overhead. The solution
that uses reproducible sums [19] was efficient, but was applied less easily in their case
and introduced a significant communication overhead.

He et al. [74] experimented on a dynamical weather science application. They tested
several methods, such as Kahan’s [25], or the double-double number technique [75] which
is an unevaluated sum of two IEEE double precision numbers. They also provide an MPI
operator for reductions.

Taufer et al. [76] were looking into a molecular dynamics application, whereby repro-
ducibility meant that results of the same simulation running on GPU and CPU lead to
the same scientific conclusions; in their case, bitwise reproducibility was not necessary.
They tried double precision arithmetic, which partially corrected the drifting, but was
significantly slower than single precision, comparable to CPU performance. They created
a library of float-float composite type, which is comparable in accuracy to double, but
the performance loss is only 7%, versus a loss of 182% of normal double precision.

Robey et al. also experimented with a dynamical fluid application [77]. They tried
to sort their data first and then sum, but that was too slow. They applied Ozawa’s
pair-wise summation [78], which produced less truncation, but not bitwise reproducibility,
although this method is quick and can run in parallel. The double-double technique used
too much memory, so finally they used Kahan’s [25] and Knuts’s [79] approach due to
their simplicity, low additional cost and their added precision.

Apostal et al. [80] developed a source code scanner to recognize reductions over MPI
in C or C++ codes and automatically modify them to use Kahan’s summation [25] or an
algorithm developed by Demmel and Nguyen [19].

Olsson et al. [81] defined some transformation techniques to describe concurrent
applications written in the SR programming language to achieve reproducibility. They
can transform an arbitrary SR program into two parts: one for recording a sequence of
events and one for replaying those events.

Reproducible Basic Linear Algebra Subprograms [21] (ReproBLAS), intends to provide
users with a set of parallel and sequential linear algebra routines that guarantee bitwise
reproducibility independent of the number of processors, data partitioning, reduction
scheduling, or the sequence in which the sums are computed in general. The BLAS
are commonly used in scientific programs, and the reproducible versions provided in
the ReproBLAS will provide high performance while reducing user effort for debugging,
correctness checking, and understanding the reliability of programs.

Graph coloring is a widely used method in HPC to maximize parallel efficiency, without
facing any race conditions. We can see a detailed example of using coloring techniques
in the work of Zhang et al. [82] . Their paper addresses challenges in parallelizing
unstructured CFD on GPUs, employing graph coloring for data locality optimization and
parallelization, resulting in substantial speed-up with GPU codes outperforming serial
CPU versions by 127 times and parallel CPU versions by more than thirty times in the

34

same MPI ranks.

2.2.2 Test Applications

The following applications are implemented in OP2 to evaluate and assess the efficacy
and performance of the proposed algorithms.

Airfoil [83] is a representative CFD code, written using OP2’s C/C++ API. It is a non-
linear 2D inviscid airfoil code that uses an unstructured grid. Airfoil uses a finite volume
method to solve the steady-flow 2D Euler equations using scalar numerical dissipation.
Airfoil is available as part of the OP2 framework.

Aero [10] is a 2D non-linear steady potential flow simulation of air moving around an
airfoil, developed based on standard finite element methods. It uses a quadrilateral grid
similar to that used by the Airfoil application but uses a Newton iteration to solve the
non-linear equations defined by a finite element approximation. Each Newton iteration
requires the solution of a linear system of equations. The assembly algorithm is based on
quadrilateral elements and uses transformations from the reference square to calculate
the derivatives of the first-order basis functions. Dirichlet-type boundary conditions
are applied on the far-field, and the symmetric sparse linear system is solved with the
standard conjugate-gradient (CG) algorithm. Aero is also available as part of the OP2
framework.

MG-CFD is a 3D unstructured multigrid, finite-volume computational fluid dynamics
(CFD) mini-app for solving an inviscid flow problem. It performs a three-dimensional
finite-volume discretization of the Euler equations for inviscid, compressible flow across
an unstructured grid by extending the CFD solver in the Rodinia benchmark suite [84],
[85]. It accumulates fluxes by performing a sweep across edges, which is implemented as
a loop over all edges. Multigrid support is achieved by supplementing the Euler solver’s
architecture in the work of Corrigan et al. [84] with crude operators that transport
the simulation’s state between multigrid levels. MG-CFD was originally created as a
CPU-only implementation[86], but it has since been implemented with OP2 as well. It
can be downloaded as open-source software [87].

Hydra [88] is a full-scale industrial CFD application for the design of turbomachine
components of aircraft engines at Rolls-Royce. Hydra is a complex and configurable
application that can perform various simulations on highly detailed unstructured meshes.
Its development originally started 23 years ago [89], and it is still actively developed and
optimized to this day. The simulations implemented in Hydra are typically applied to large
meshes, which can contain tens to hundreds of millions of edges and can run from a few
minutes to weeks. It consists of several components that simulate various aspects of the
design, including the steady and unsteady flows that occur in the engine around adjacent
rows of rotating and stationary blades, the operation of compressors, turbines and exhaust,
and the simulation of behavior such as ingestion of ground vortices. The guiding equations
to be solved are the Reynolds-Averaged Navier–Stokes (RANS) equations, which are
second-order PDEs. By default, Hydra uses a 5-step Runge–Kutta method for the time-
marching, which is accelerated by multigrid and block-Jacobi preconditioning [89], [90].

35

This work uses the Hydra setup with several configurations: an unsteady simulation of
two blades of DLR’s Rig250 mesh and a steady simulation of NASA’s Rotor37 mesh with
different turbulence models: the Spalart–Allmaras wall function model, which is a one-
equation model that solves a modeled transport equation for the kinematic eddy turbulent
viscosity and a k-ω, which is a two-equation model that is used as an approximation for
the Reynolds-averaged Navier–Stokes equations (RANS equations). Once again, the effect
of non-reproducibility is highlighted through several examples with Hydra. In Figure 2.1
we can observe how the relative difference accumulates when increasing the number of
time-steps from 10 to 100 while using the same unsteady numerical method on the same
mesh. For a full revolution of two blade rows, 2000 time-steps are needed, where one
time-step contains 10 iterations. Figure 2.2 illustrates how different turbulence models
are affected by the relaxation of execution order, tested over 100 iterations in a steady
simulation on the NASA Rotor37 benchmark. The k-ω is more susceptible to rounding
error than the Spalart–Allmaras. The variable ω is used to avoid singularity near the
wall, but it also becomes more sensitive to precision than the Spalart variable. This has a
knock-on effect on the whole boundary layer, and hence the flow field. All four histograms
present the magnitude of differences between two runs with the same setup, just running
with different numbers of MPI processes.

16 14 12 10 8 6 4 2 0
Relative difference (log10)

0.0

0.2

0.4

0.6

0.8

1.0

Co
un

t

x10⁷

(a)

16 14 12 10 8 6 4 2 0
Relative difference (log10)

0

1

2

3

4

5

6

7

Co
un

t

x 10⁶

(b)

Figure 2.1: Histograms, generated by using Hydra. The relative difference increases with
more timesteps on an unsteady numerical solver. (a) Rig250 mesh with 20M
nodes, 10 timesteps, Spalart–Allmaras model; (b) Rig250 mesh with 20M
nodes, 100 timesteps, Spalart–Allmaras model.

36

16 14 12 10 8 6 4 2 0
Relative difference (log10)

0

Co
un

t

100,000

200,000

300,000

400,000

500,000

600,000

700,000

(a)

16 14 12 10 8 6 4 2 0
Relative difference (log10)

0

1

2

3

4

5

6

Co
un

t

x 10⁶

(b)

Figure 2.2: Histograms, generated by using Hydra. The two models are not directly
comparable, but they illustrate how the relative difference depends on the
numerical properties of the applied model. (a) Rot37 mesh with 700k nodes,
100 iterations, k-ω model; (b) Rot37 mesh with 8M nodes, 100 iterations,
Spalart–Allmaras model.

2.3 Theory and Calculation

Altering an already existing nonreproducible code to be reproducible might be tedious
and laborious. Fortunately, in some ways, this process can be automated.

OP2 has an already established workflow to generate platform-specific optimized
applications [91], Figure 2.3 summarizes the main mechanisms. If an application is
implemented using OP2’s API, then a source-to-source translator can generate platform-
specific application files, which later can be compiled and linked with the backend libraries
of OP2. In this work, I modified three stages of the workflow. I added API calls to
the application description, so the user can choose which reproducible strategy should
be applied. In order to use these strategies, the source-to-source translator had to be
updated to generate such application files that use the reproducible backend libraries
with MPI or CUDA.

37

Figure 2.3: Flow diagram of the mechanism of OP2. The bold, red frames represent the
updated steps of OP2’s workflow from my work.

This section presents techniques for addressing the two primary sources of non-
reproducibility: local element-wise reductions and global reductions. The focus is primarily
on local reductions, while global reductions are handled using ReproBLAS. Although most
examples in this section employ an edges→cells mapping, all algorithms are implemented
generically based on the specific mapping dimension.

To solve the issue of ordering in local (element-wise) reductions, I provide two separate
approaches: (1) a method storing increments temporarily and applying them later in a
fixed order and (2) different reproducible coloring techniques, which later can be used
as colored execution, maintaining deterministic ordering. For all of these techniques,
one must provide a common deterministic seed that will always be the same, even with
different numbers of MPI processes. That common seed is the global ID of all elements
in the whole mesh. If there are multiple MPI processes, then the global IDs of each
element must be communicated between the processes. If an element is owned by the
given process, then its global ID can be looked up from an internal data array of OP2. If
an element is not owned, then its global ID must be imported from the MPI process that
owns it. All of my techniques use two main parts: (1) the OP2 backend must calculate
the execution order and (2) the generated code must execute the computations in this
order. The reproducible execution method is applied only to kernels where the order
of summation matters. These are loops with global reductions, indirect incrementing
operations (OP_INC), or operations with an indirect read and write access pattern (OP_RW).

2.3.1 Temporary Array Method

A temporary array-based technique can be used to ensure reproducibility for incrementing
operations. Consider using an edge→cells mapping and an incrementing operation. Here,
we would iterate through all the edges, calculate values, and add them to a variable
defined on a neighboring cell. To achieve reproducibility, I modify this structure by
storing the calculated increments in a temporary array defined on the edges, and after all
the increments are calculated, I iterate through all the cells and apply these increments in

38

a fixed order defined by the global_IDs of the edges. In Figure 2.4 we can see an example
of this method, where edge2’s global_ID is the smallest, so the value from edge2 is
applied first on the cell, then edge0, etc.

Figure 2.4: Example execution order of edges around a cell. Due to local id renumbering,
the global ids must be used for a reproducible execution order.

To achieve this modified execution, a few extra preparations must be conducted in the
backend, which are shown in Algorithm 1. After the global_IDs are shared, the next
step is to create a reversed mapping for every map. The reversed mapping is needed so
we can iterate through the cells and in each iteration we can access the edges connected
to the given cell. This reversed map uses local indices which might be in different order
in different MPI ranks. That is why we need to reorder them by using their previously
shared global indices. Another modification conducted on the reversed map is that it
actually stores indices of a temporary array where the increments from the edges are
stored for a cell. In other words, if the kth element in line n (kth edge connection of cell
n) of the reversed map is x, then it means that in the temporary increments array at
location x the increment for cell n from edge k can be found.

The main disadvantage of this method is the need for significant additional memory
to store the reversed mapping, and to store the increments. The reversed map uses
a Compressed sparse row (CSR) format, which consists of a main array of increment
indexes (integers), with the size of set_from_size ∗ original_map_dimension, and
another array indexing the previous array with a size of set_to_size+1. The temporary
arrays themselves can use much more memory: set_from_size ∗ map_dimension ∗
data_element_size.

After creating the reversed map with the correct order, OP2 generates a new op_par_loop

implementation code to use this modified method. The main changes can be seen in
Algorithm 2. After the initialization phase, it is imperative to set all elements in a
temporary array to zero to accommodate individual increments. This step is crucial as
the user kernel performs the increments, and proper initialization is required beforehand.
Moreover, this approach ensures that the data remain in the cache, enhancing overall
performance. Then we can call the kernel function for all edges to access the elements

39

Algorithm 1 Algorithm of generating incrementing order
exchange global IDs
OP_map_index = number of maps
for m = 0 to OP_map_index do

create reversed mapping for map m
set_to_size = target set’s size of map m
for i = 0 to set_to_size do

sort the reversed connections of i by global IDs
end for

end for

defined on the cells. If a parameter is accessed through an OP_READ or OP_WRITE method,
then the execution order does not matter, so we can use the original method of directly
storing the new state in the data. If the parameter is incremented (OP_INC), then we
need to store each increment value in the tmp_incs array instead of adding it to the
actual data. After the iteration on edges is completed and all increments are calculated,
we need to apply those to the actual data on cells. For that, OP2 starts a new cell-based
loop on the cells and by using the reversed mapping with the fixed ordering, for each
cell, it can gather and apply the increments. This method is generally applicable to other
types of mappings as well.

Algorithm 2 Algorithm for applying the order of increments
set_from_size = source set’s size of the original map
original_map_dim = the dimension of the original map
set_to_size = target set’s size of the original map
for n = 0 to set_from_size ∗ original_map_dim do

tmp_incs[n]← 0
end for
for n = 0 to set_from_size do

prepare regular access indices for OP_READ and OP_WRITE parameters
call kernel function, using the tmp_incs array for OP_INC parameters

end for
for n = 0 to set_to_size do

for all connection i of n do
apply the temporary increment from connection i on the final location of the

data
end for

end for

2.3.2 Reproducible Coloring

The temporary arrays method only works for increment-type operations, where increments
can be stored separately. If a kernel not only increments a variable but also reads and
rewrites it (OP_RW), then the kernel call from one edge must be executed, storing its result
in the cell before another edge accessing that cell can be executed. Although OP2 still
requires that the computation be associative, we cannot store the increments separately.
This problem needs a solution to be able to really execute the kernel calls in a predefined

40

fixed order and achieve reproducibility. To solve this issue, we can apply a regular coloring
scheme with the following restriction, we are looking for an equivalence class of colorings
where if the color of one element is smaller than that of another connected element in the
case of one coloring, then it should also be the same in the case of any other coloring.

I have three main approaches to solve this problem. An initial trivial solution is to
choose the global index of the edge as the color. With this, we have as many colors as
edges in any given subgraph, but we do not have multiple edges with the same color.
This is useful for MPI-only parallelization, but not for a shared memory method. The
advantage is that this trivial method can be solved without actually coloring the elements.
We can just use the numbering from the global_ids for ordering sequential execution.
This trivial execution schedule can be considered as a special case of colored execution
and in fact they use the same generated code. Therefore, I refer to it as a coloring
method. The second method is a non-distributed method. OP2 applies a greedy coloring
algorithm on the whole mesh in a single process as a pre-processing step and save the
assigned colors in a file. When we rerun the application on multiple processes, we load
and distribute the saved colors the same way as we distribute the mesh elements between
the processes. With greedy coloring, we can generate a near-optimal number of colors,
thus we have a high degree of parallelism. The drawback of this option is that we have to
execute the pre-processing part in a single process. This carries the restriction that the
whole mesh must be able to fit into the memory on a single node. The third method is a
novel distributed coloring scheme, which does not suffer from this restriction.

Distributed Reproducible Coloring Method

I base my method on an algorithm developed by Osama et al. [92]. This original non-
reproducible parallel method can be seen in Algorithm 3 between lines 7 and 40. OP2
iterates through each element, calculates a local hash value and then compares it to its
(as yet uncolored) neighbors’ hash values. If the examined hash value is a local minimum
or maximum in its neighborhood in a given iteration, then OP2 can assign it a color. In
my implementation I use Robert Jenkins’ 32-bit integer hash function [93]. This hash
function is a custom, non-cryptographic function that operates on unsigned integers.
It uses a combination of bitwise operations and arithmetic with specific constants to
compute the hash of an input.

While the core idea of local extrema-based coloring is shared with Osama et al., there
are several important differences and challenges that arise in my distributed, reproducible
variant.

Most importantly, the original method by Osama is limited to a single shared-memory
context – it assumes all graph elements and their neighbors are immediately accessible
in memory. This is not valid in distributed-memory environments, such as those using
MPI-based partitioned meshes. To address this, I introduce a second halo layer, which
includes not only the directly connected elements across partitions but also additional
neighbors required to fully resolve adjacency across process boundaries. Without this
second ghost layer, the coloring decisions would be based on incomplete information,

41

Figure 2.5: An example of a second ghost layer to determine the edge→edge neighbors
on the partition borders. The numbers on the edges indicate their unique ID.

breaking correctness and reproducibility.
Figure 2.5 illustrates this key challenge. Elements like edge 0, 2, 5, and 6 on Process

1 do not directly belong to the process’s ownership, but their presence is essential for
determining whether a local hash value is minimal or maximal. The second ghost layer
ensures these indirect neighbors are accessible and integrated into the neighborhood
evaluation. Creating and synchronizing this extended halo involves a nontrivial neighbor
discovery phase, including communication of both the topological structure and the
coloring states of remote neighbors.

The difficulty of applying this algorithm in a distributed graph comes from two sources.
First, in each iteration of the previously described algorithm, we must know if the neighbor
element already received a color, or not. Thus, we need to synchronize the assigned
colored values on the borders of each subgraph (MPI partition). Secondly, it is difficult
to figure out all the neighbors of an element on the border of a subgraph in a standard
owner-computed model. We can see an example of this problem in Figure 2.5. Solid dots
and continuous lines are the owned elements. In this example, I use an edge → nodes
mapping, thus we import one layer of halo elements (e.g., edge 7, 8, 9 on Process 0) so
we can update the owned nodes from all attached edges (so far it is a standard owner
compute model). However, to calculate the smallest hash value in a neighborhood, we
also need to communicate edges even around the non-owned nodes (e.g., edge 0, 2, 5, 6
on Process 1).

A second key difference is that while Osama’s method does not guarantee determin-
istic behavior across runs (due to non-deterministic hash seed and tie-breaking), my
implementation ensures determinism by using a consistent hash seed based on element
global IDs and structure, independent of execution order or partitioning. This guarantees
reproducibility across distributed runs.

Moreover, my implementation handles color synchronization explicitly: after each
iteration, newly assigned color values must be communicated across partition boundaries
to ensure globally consistent state for subsequent decisions. This requirement is absent in
Osama’s original shared-memory variant.

My extension to distributed execution can also be applied to other iterative coloring
techniques that use only local information (the algorithm is not sequential) and are
deterministic even with different graph partitioning. The number of colors is not explicitly
minimized.

42

Algorithm 3 Algorithm for reproducible coloring in a distributed graph
1: create neighbor lists
2: global_done = 0
3: local_done = false
4: if set_size == 0 then
5: local_done = true
6: end if
7: iteration = 0
8: low_color = 0
9: high_color = 1

10: while global_done < number of subgraphs do
11: if not local_done then
12: for all element e in from_set do
13: if e has no color then
14: calculate hash value of e in iteration i
15: is_min = true
16: is_max = true
17: for all neighbors n of e do
18: if n has no color then
19: calculate hash value of n in iteration i
20: if n’s hash < = e’s hash then
21: is_min = false
22: else if n’s hash > = e’s hash then
23: is_max = false
24: end if
25: end if
26: end for
27: if is_min then
28: give low_color as color of e
29: number of noncolored elements − = 1
30: end if
31: if is_max then
32: give high_color as color of e
33: number of noncolored elements − = 1
34: end if
35: end if
36: end for
37: if number of noncolored elements == 0 then
38: local_done = true
39: end if
40: end if
41: exchange halo color values
42: reduce local_done values into global_done
43: low_color += 2
44: high_color += 2
45: iteration += 1
46: end while

43

2.3.3 Parallel Global Reduction

Global reductions are another source of non-reproducibility in MPI applications. This
operation is commonly conducted by performing a local sum on each process, then calling
MPI_Reduce, however, this assumes associativity. If we use different numbers of MPI
processes, then we would sum different elements and even a different number of elements
locally, which again can produce different results. To solve this issue, I introduced
another temporary storage. If a kernel performs an increment reduction, then OP2 gives
a temporary storage point to store the increment for the result of each element. Then,
in each MPI process, it reduces these increments reproducibly by using the ReproBLAS
library. First, OP2 creates a local ReproBLAS’s double_binned variable for every MPI
process, then uses binnedBLAS_dbdsum to collect those into the local_sum. After that,
it uses reproBLAS’s method to call an MPI_Allreduce with the binnedMPI_DBDBADD

operator. Finally, OP2 converts the result back to a regular double precision variable
and return it.

2.3.4 Reproducible Codegeneration with OP2

Using OP2’s source-to-source translator, a user can easily generate reproducible code
from an app that already has an implementation using OP2. A few flags are responsible
for controlling the mechanisms that allow reproducible code to be generated. In the
translator scripts these are: reproducible—needed for all methods, repr_temp_array—
for using temporary arrays, repr_coloring—for using reproducible coloring method and
trivial_coloring which will produce the trivial coloring version. To enable the greedy
coloring technique, the -op_repro_greedy_coloring command line flag must be used
with the application.

2.4 Performance Results

I measured my techniques with four test applications, introduced in Section 2.2.2. All
results are the average of 10 measurements. The Cirrus-CPU machine is equipped with
an Intel Xeon E5-2695 (Broadwell) processor running at 2.1 GHz. It does not feature a
GPU and provides 18 cores per node, with 2 threads per core. The code on this system
was compiled using the Intel compiler icc (version 19.0.0.117), and the operating system
is Red Hat Enterprise Linux 8.1 (Ootpa). The Cirrus-GPU machine, on the other hand,
features an Intel Xeon Gold 6248 processor running at 2.5 GHz, along with NVIDIA Tesla
V100-SXM2-16GN GPUs. Each node includes 20 cores, with 2 threads per core, and is
equipped with 4 GPUs. Compilation on this system was performed using the NVIDIA
HPC compiler nvc++ (version 21.9-0). Like Cirrus-CPU, it also runs Red Hat Enterprise
Linux 8.1 (Ootpa).

All of the introduced methods provide full reproducibility at the expense of additional
computations, suboptimal scheduling, or redundant memory usage. The overall cost
of these techniques is visualized in Figures 2.6 and 2.7 and in Table 2.1. Each run is
compared with its original, non-reproducible version. On CPU systems, slowdowns are

44

(a) (b)

Figure 2.6: Slowdown effect of the different methods
compared to the non reproducible version.
(a) Using 40 MPI-only processes on the Cirrus machine; (b) Using
one MPI+CUDA GPU process on the Cirrus-GPU machine.

Table 2.1: Memory usage of the reference run and with using the proposed methods in
GB.

App Non Reproducible Temporary Arrays Coloring Method

Airfoil 0.92 1.6 1.3
Aero 2.6 3.4 2.8
MG-CFD 7.5 14.4 9

between 1 and 3.21 times. The difference between the greedy and distributed coloring
methods comes down to data reuse and cache line utilization, because of the different
number of colors used. The main reason for that is that the data for neighboring elements
are located close in memory, but when using coloring, adjacent elements will have different
colors, leading to poor utilization. A few examples of the number of colors used are
shown in Table 2.2. While the greedy scheme leads to near-optimal color counts, the
parallel scheme yields much higher color counts particularly in 3D. The performance
of the trivial coloring scheme is close to the reference, since it uses a similar order of
execution to the nonreproducible version, with the only differences around the borders
of MPI partitions. Since with the trivial scheme we still require sequential execution
within a process, we cannot use additional parallelization techniques, such as CUDA
or OpenMP. In contrast, the slowdown on GPUs is more significant, because they are
even more sensitive to data access patterns and cache locality than CPUs. In particular,
with the usage of the temporary arrays, we have to iterate through the increment data
twice, once when populating it and once when gathering the results, each time with a
different access pattern. If we optimize for one stage, then the other will suffer from the
non-coalesced data accesses. This is even true for the coloring methods. If we reorganize
the data in a set according to one map, then later, using another map to the same set,
we again obtain inefficient access patterns.

The runtime overhead of the preprocessing preparations of the temporary array and
coloring methods against the number of MPI processes are detailed in Figure 2.8 and
using only one process in Table 2.3.

Figure 2.9 shows how well the test applications scale with the different methods using

45

S
lo

w
do

w
n

vs
 n

on
re

pr
od

uc
ib

le

0

1

2

3

Temporary array Greedy Distributed Trivial

Figure 2.7: Slowdown of Hydra measured on an 8M mesh, 20 iterations, using the Cirrus-
CPU machine.

Table 2.2: Number of colors with the different methods on the applications main map.
App (Map) Greedy Distributed

Airfoil (pecell1) 4 14
Aero (pcell1) 5 17
MG-CFD (edge→node0) 7 19

(a) (b)

Figure 2.8: Scaling of preprocessing overhead. (a) reversed map and temporary array
creation time for the temporary array method; (b) reversed map creation and
distributed coloring time.

Table 2.3: Reversed map creation and greedy coloring time.
App Runtime

Airfoil 4.65 s
Aero 1.79 s
MG-CFD 128.88 s

46

one, two, four, and eight nodes on the Cirrus cluster. On the CPU side, all methods
have the same parallel efficiency on each application, except the distributed and greedy
coloring methods on Airfoil, where we can observe superlinear scaling (Figure 2.9a) since
much of the data used can fit into the cache if they are divided between at least four
nodes. We cannot observe this on the temporary array method, because it uses extra
memory to store increments separately. Apart from the reductions (discussed in detail
below), MPI communications and communication times do not differ between reproducible
and non-reproducible. For non-reproducible execution, the communication overhead (as
a fraction of total runtime) will become higher using multiple nodes. In the case of
reproducible execution, because we spend more time in the colored execution, we spend a
smaller fraction of the total time in communications. Therefore, the relative difference is
decreasing and the slowdown effect with any method compared to the non-reproducible
is less when more nodes are used.

We can observe the strong scaling of a reduction kernel in Figure 2.10. Since all
reproducible methods use the same reduction technique, there is no separate measurement
for them. Again on CPUs, we can see the superlinear effect as the application fits more and
more into the cache. We can also observe that there is an additional cost of the reduction
caused by the reproBlas functions. The most significant factor in the cost of reproducible
reduction is that we must write all the values to be reduced into a separate array and
perform a reduction on it within a process. This leads to extra memory movement compared
to the reference version. This is particularly expensive on GPUs because this array must
be copied to the host to perform the local summation. MPI_reduce is not significantly
more expensive.

Using only MPI parallelization, the overhead is quite small (between 1 and 1.12 times).
Using shared memory parallelism, it is a bit greater due to the bad cache locality. In
some extreme cases, we can even lose the speedup gain from GPUs, my reproducible
methods work better on CPU-only systems.

47

Number of processes

R
un

im
e

(s
)

1

5
10

50
100

36x1 36x2 36x4 36x8

non reproducible temporary arrays greedy coloring
distributed coloring trivial coloring

(a)

Number of processes

R
un

im
e

(s
)

0.1

0.5
1

5
10

4 8 16 32

non reproducible temporary arrays greedy coloring
distributed coloring

(b)

Number of processes

R
un

im
e

(s
)

1

5
10

50
100

36x1 36x2 36x4 36x8

non reproducible temporary arrays greedy coloring
distributed coloring trivial coloring

(c)

Number of processes

R
un

im
e

(s
)

0.5
1

5
10

50

4 8 16 32

non reproducible temporary arrays greedy coloring
distributed coloring

(d)

Number of processes

R
un

im
e

(s
)

1

5
10

50
100

36x1 36x2 36x4 36x8

non reproducible temporary arrays greedy coloring
distributed coloring trivial coloring

(e)

Number of processes

R
un

im
e

(s
)

0.1

0.2

0.4

0.8

2

4

4 8 16 32

non reproducible temporary arrays greedy coloring
distributed coloring

(f)

Figure 2.9: Strong scaling measurement of the different methods, using 1,2,4,8 nodes; (a)
Airfoil, using 36 MPI Intel Xeon CPU processes per node; (b) Airfoil, using
four Nvidia V100 GPU processes per node; (c) Aero, using 36 MPI Intel Xeon
CPU processes per node; (d) Aero, using four Nvidia V100 GPU processes
per node; (e) Mg-cfd, using 36 MPI Intel Xeon CPU processes per node; (f)
Mg-cfd, using four Nvidia V100 GPU processes per node.

(a) (b)

Figure 2.10: Strong scaling measurement of a reduction kernel; (a) Airfoil_update on the
Cirrus-CPU machine; (b) Airfoil_update on the Cirrus-GPU machine.

48

2.5 Conclusions

In this chapter, I examined the non-reproducibility phenomenon that occurs due to the non-
associative property of the floating-point number representation on applications defined on
unstructured meshes. I compared the differences in results without reproducibility across
a range of applications, including Rolls-Royce’s production application, Hydra. While
non-reproducibility is a widely studied problem; I did not find an effective solution for
distributed systems in the literature that could also be applied to arbitrarily partitioned
meshes. In this work, I developed a collection of parallel and distributed algorithms to
create a plan and then execute it, guaranteeing the reproducibility of the results. Of
these, I highlight a graph coloring scheme that gives the same colors regardless of how
many parts the graph was partitioned into. I implemented all of my methods in the OP2
DSL and then I showed how they can be automatically applied without user intervention
to any application that is already using OP2. I demonstrated that on CPU systems, my
methods can achieve bitwise reproducible results with a slowdown between 1.0 and 3.21
times in various applications, and on GPU systems with a slowdown between 2.31 and
10.7 times due to the modified data access patterns.

While there are alternative methods addressing the issue of reproducible reduction,
their complexity is akin to mine and from the perspective of OP2, the choice of method
is non-critical. This is why I do not draw comparisons on this aspect, as the time spent
on reductions is relatively short. My work stands out in the development of a generalized
method ensuring reproducible execution, applicable to various applications. This is in
contrast to other solutions that are application-specific. There are several general methods
available. Kahan’s method, although popular, does not guarantee reproducibility, just
higher accuracy. The most straightforward method involves sorting the elements before
adding them. The most general method, perhaps, is the binned method, like in the
ReproBLAS library. However, all these methods are more complex and mainly more
expensive in computing and/or in memory usage. By leveraging the properties of the
unstructured mesh, we can keep the costs low, thus presenting a more efficient solution.

49

3 Reduced precision computing

3.1 Introduction

The advent of artificial intelligence has led to the widespread adoption of reduced precision
formats in hardware, such as half-precision (16-bit) floating-point arithmetic. While this
transition presents opportunities for significant performance gains, it also raises concerns
regarding the accuracy and stability of numerical results, particularly in high-performance
computing (HPC) applications that are sensitive to precision. The challenge lies in
determining the appropriate balance between precision and performance, as the demand
for computational efficiency continues to grow.

Existing mixed precision techniques have shown promise in various applications. For
instance, many linear solvers have been successfully implemented using mixed precision,
allowing for improved performance without sacrificing accuracy [27]–[31]. Abdelfattah
et al. [32] reported advancements in mixed precision algorithms, including speedups in
dense and sparse LU factorization, eigenvalue solvers, and GMRES implementations.
FluidX3D [33], a lattice Boltzmann CFD software, has explored mixed precision techniques,
although it is limited to specific models and lacks flexibility in accommodating other
simulation types. OpenFOAM [34], another popular CFD framework, with its recent
update, compiles its code in single precision while employing double precision exclusively
for its linear algebra solvers. This approach allows OpenFOAM to leverage the efficiency
of single precision across a wide range of simulations, although it primarily focuses on
finite volume solvers.

Many finite difference methods (FDMs) are characterized by a common structural
pattern: the iterative addition of a smaller value to a larger one at each computational step.
This inherent structure presents an opportunity for strategic precision allocation that is
exploited in the present contribution. In this approach, the larger value, which accumulates
the results of multiple iterations and is more susceptible to accumulating roundoff errors, is
typically maintained in a full precision format to minimize the loss of precision. Conversely,
the smaller update values, which are discarded after each step and do not contribute to
long-term error accumulation, can be represented in reduced precision formats, allowing
for a controlled trade-off between precision and computational efficiency. By employing
the OpenSBLI [55] framework, which automates the derivation of finite difference solvers,
in conjunction with the OPS [53] library—designed for structured mesh solvers—I
demonstrate the capability to generate optimized codes for multi-GPU and multi-CPU
environments. OpenSBLI facilitates the generation of optimized reduced/mixed precision
implementations of OPS codes, enabling efficient computations across various hardware
configurations.

50

The flexibility afforded by OpenSBLI allows users to customize the precision of datasets
utilized in their simulations. This capability is particularly advantageous in scenarios
where computational efficiency is paramount, necessitating a careful balance between
precision and performance. In this study, I present a series of tests conducted on a
compressible Taylor-Green vortex simulation, which serves as a benchmark for evaluating
the performance and accuracy of reduced precision computing. My findings reveal that
employing half, single, and double precision formats, as well as mixtures such as half-
single and single-double, yields significant speedups without compromising the numerical
accuracy of the results. Notably, only the half-precision runs exhibited numerically
unsatisfactory outcomes, highlighting the critical importance of precision selection in
computational simulations.

The chapter is structured as follows: Section 3.2 focuses on the algorithmic changes
required to implement mixed precision strategies effectively within finite difference meth-
ods. Section 3.3 presents my testing and evaluation, starting with an introduction to the
Taylor-Green vortex test case. Then I assess the accuracy of various precision configura-
tions and subsequently analyze the performance, highlighting both the computational
speedups and memory savings achieved with mixed precision. Finally, in Section 3.4, I
discuss conclusions and future work, highlighting the potential of mixed precision tech-
niques in larger and more complex applications, as well as improvements in half-precision
performance and flexibility in the OPS framework.

3.2 Enabling mixed precision in OpenSBLI

3.2.1 Mixed precision using explicit finite difference methods

For simulation of transitional and turbulent compressible flows, in which a wide range of
spatial and temporal scales are present, explicit finite difference schemes are commonly
used. High-order finite differences are used for evaluating spatial derivatives, while
low-storage variants of Runge-Kutta time advance schemes are adopted. The conservation
form of the governing Navier-Stokes equations is used, with the vector of flow variables
given by Q = (ρ, ρu, ρv, ρw, ρE)T , where ρ is the density, u, v, and w are the velocity
components and E = e + (u2 + v2 + w2)/2 is the total energy per unit mass, adding
the internal energy per unit mass e to the kinetic energy per unit mass. The complete
governing equations are given in [94]. Here, the focus is on the time advance step to
explain how reduced precision schemes may be implemented.

The conservative flow variables are advanced in time using compact Runge-Kutta
methods based on storage of Q and a change denoted Q̃ . At each substep i these storage
locations are updated according to

Q̃i = AiQ̃i−1 + ∆tRi−1 (3.1)

and
Qi = Qi−1 + BiQ̃i, (3.2)

51

𝑸𝐷𝑃,𝑆𝑃,𝐻𝑃
𝑛+1 =𝑸𝐷𝑃,𝑆𝑃,𝐻𝑃

𝑛 +t𝑹𝐷𝑃,𝑆𝑃,𝐻𝑃
𝑛

𝑛𝑊𝑊𝐷𝑃,𝑆𝑃,𝐻𝑃
𝑛Q=


𝑢
𝑣
𝑤
𝐸 Work arrays

Figure 3.1: Schematic of the use of nW variable precision work arrays W to form residuals
R for update of conservative variables Q during a typical Runge-Kutta substep
(DP=double precision, SP=single precision, HP=half precision).

where Ai and Bi are scalar coefficients of the scheme, ∆t is the time step and R is
the residual, containing all the remaining terms from the governing equations. After m

substeps the solution at the next time level n + 1 is given by

Qn+1 = Qm. (3.3)

The update procedure is shown schematically in Figure 3.1 based on a simple Euler
update, but containing the essential features of equation 3.1. The residual R needs to
be computed from the solution Q at the previous step. This step contains most of the
computational cost of the algorithm and is typically accomplished using a number nW of
work arrays W , where nW may be of the order of 20, but can be much more if curvilinear
co-ordinates are used. The work arrays typically are the datasets containing first and
second derivatives of various quantities which are eventually used to evaluate the residual,
R.

To discuss the use of mixed precision algorithms, it is first noted that each of the array
types Q (flow variables), R (residuals), and W (work arrays) could, in principle, be
represented using different numerical precision. A standard treatment would be to store
all in double precision (denoted DP and shown in red in figure 3.1). One could in principle
also do all the operations in single precision (SP, blue) or even half precision (HP, green).
In this work, mixed precision cases are also considered; for example, a single/double
mixed precision case (SPDP) can be defined where Q is retained in double precision,
while single precision is used for R and all the W . Similarly, a half/single mixed precision
case (HPSP) stores Q in single precision and R and W in half precision. Clearly, there
are other options that will be discussed later. One could also split the residual R into
different components that could be treated with different precision, as proposed in [95].

Two approaches to the work array usage are applied in this study. The first one is called
the “default" method, and the second is called the “Storesome" method. The default
method in OpenSBLI creates various 3D work arrays to calculate and store the residual
terms in memory before passing them to the main kernel that does the final evaluation
of R involving the inviscid and viscous fluxes. This method is memory intensive, but
helps with code structure and readability, mimicking what was previously done with

52

manually-written code. The second method, called the “Storesome" method, only uses a
few of the 3D work arrays and computes most of the derivatives directly within the kernel
functions, as and when required. Jammy et al [96] demonstrated significant improvements
with the Storesome approach, in terms of memory usage and run time.

3.2.2 Generation of mixed-precision source codes using OpenSBLI

The most recent version of OpenSBLI [61] was extended for this work to implement
the different low- and mixed-precision algorithm strategies. This required the following
changes to be made to the internal code-generation engine:

• A new user interface option in the high-level Python script for specification of the
precision to be used globally within the simulation (double/single/half).

• Modifications to the array declaration types and input/output arguments to OPS
parallel loops based on the selection made by the user.

• Explicit C/C++ casting of quantities appearing on the right-hand-side of equations
in the simulation code, as required.

• A Python interface for specifying a lower/higher precision for certain array quantities
(e.g. Q, R, W discussed in Section 3.2.1) to enable mixed-precision strategies.

The new interface for specifying lower- and mixed-precision is shown in the example code
snippet below:

Listing 3.1: Selecting mixed-precision inputs in OpenSBLI V3 [61]
1 # Set the g l o b a l s imu la t i on p r e c i s i o n to s i n g l e
2 SimulationDataType . set_datatype (FloatC)
3 # Define custom mixed−p r e c i s i o n op t i ons us ing p r e s e t s
4 mixed_prec i s ion_conf ig = {
5 ' q_vector ' : ([] , Double) ,
6 ' RK_arrays ' : ([] , Double) ,
7 ' r e s i d u a l s ' : ([] , FloatC) ,
8 ' wk_arrays ' : ([] , FloatC) ,
9 ' c a s t i n g ' : ' e x p l i c i t ' }

10 # Opt iona l l y , s e l e c t custom arrays to s e t the p r e c i s i o n o f
11 custom_arrays = [
12 block . l o ca t i on_datase t (dset)
13 for dset in ['T ' , ' p ']
14]
15 mixed_prec i s ion_conf ig [' custom '] = (custom_arrays , Hal f)
16 # Cal l the OPS C code−genera tor
17 OPSC(alg , mixed_prec is ion_conf ig)

53

In line 2, the default global precision of the simulation is specified by the user as single
(FloatC). A configuration dictionary is then created in lines 4-9 to specify mixed-precision
alterations to the global precision depending on the storage quantity in question. Four
presets are shown between lines 5-8, which, in this example, raise the precision of the
conservative Q and temporary Runge-Kutta Q̃ storage arrays to double precision. Other
available presets for residual R and work-arrays W are also shown. For completeness, a
custom array option is also shown in lines 11-15. Here, the arrays for temperature and
pressure (T, p) are set as half precision, to provide additional flexibility to explore more
complex mixed-precision strategies. Finally, OpenSBLI’s OPS C code-writer is called in
line 17 with the requested mixed-precision configuration. Internally, the code-generation
engine will define the precision of these quantities and their API calls within the OPS
library automatically based on the user input.

3.3 Results

3.3.1 Taylor Green test case

The Taylor-Green vortex problem has become a standard test case for assessing the
accuracy and efficiency of schemes to solve the unsteady Navier-Stokes equations, par-
ticularly of high-order schemes [97]. It is a straightforward case to set up, consisting of
a triply-periodic domain with a uniformly spaced grid and a prescribed analytic initial
condition. From this starting condition, the flow evolves into discrete vortices which
subsequently break down to a turbulent flow state. The kinetic energy of the initial
condition eventually dissipates into heat and the accuracy of the method is assessed by
monitoring the time evolution of the turbulence kinetic energy and the dissipation rate.
Both incompressible and compressible forms of the problem can be specified. The effect
of Mach number was demonstrated by Lusher & Sandham [94] and one of their cases was
used for a 7-way multi-code comparison with a variety of numerical methodologies in [98].

The starting equations for the Taylor-Green vortex problem are given by

u(x, y, z, t = 0) = sin(x) cos(y) cos(z), (3.4)

v(x, y, z, t = 0) = − cos(x) sin(y) cos(z), (3.5)

w(x, y, z, t = 0) = 0, (3.6)

p(x, y, z, t = 0) = 1
γM2 + 1

16 [cos(2x) + cos(2y)] [2 + cos(2z)] . (3.7)

Here, M is the reference Mach number, while γ = 1.4 for air. The equations are
solved in a non-dimensional form and all the quantities are non-dimensionalised with
corresponding reference values. Also, the initial density ρ at the start of the simulations
is evaluated based on the non-dimensional form of the equation of state, i.e.,

ρ(x, y, z, t = 0) = γM2p. (3.8)

54

In the TGV problem, a constant initial reference temperature is assumed across the entire
domain at the beginning at t = 0, hence the non-dimensional temperature is equal to one
and doesn’t feature in Eq. 3.8.

All the simulations are carried out with fourth order central differencing. The solution
domain size can be either a (2π)3 or (exploiting symmetries in the initial condition)
π3. Key parameters are the Reynolds and Mach numbers. For the tests of reduced
precision, the triply symmetric case (denoted TGSym) is adopted, that was part of the
2021 OpenSBLI release [55] with a Reynolds number set to Re = 800 to make the case
better resolved on modest grids (compared to the Re = 1600 used in [98] requiring grids
between 5123 and 20483 for a supersonic case). A default resolution of 2563 is adopted
here, which is enough for these cases to be fully resolved (equivalent to 5123 in a (2π)3

domain). Using an intermediate Mach number of M = 0.5 allows larger time steps and is
more representative of compressible flow applications than the choice of M = 0.1 that is
commonly used to compare with incompressible simulations; however, the effect of Mach
number will also be considered, since we wish to check for any issues in using reduced
precision towards the incompressible limit. Also later, an inviscid version of the problem
is considered to study the stability of various splitting schemes in the context of reduced
precision algorithms.

Figure 3.2 shows a typical evolution of the flow field at a few different time instances.
Contours of ρE are shown for a M = 0.5 TGV simulation run in double precision. The first
frame (Fig. 3.2a) shows the smooth state of the flow at time t = 0, as per the description
in Eqs. 3.4-3.7. As time evolves, the evolution of the flow leads to the formation of
smaller and smaller scale vortical structures (Figs. 3.2b and 3.2c), illustrating the cascade
process of turbulent flow. With no production of turbulence, the flow (Fig. 3.2d) slowly
decays.

Before I move to quantitative results, the physical quantities of interest must be outlined
in the TGV problem to assess the efficacy of various precision calculations presented in
this research. The volume-averaged kinetic energy at each instance of time is defined as

K = 1
V

∫
V

1
2uiuidV. (3.9)

Here, V is the volume of the computational box and is equal to π3 for the symmetric
case. The evolution of solenoidal dissipation, which represents the enstrophy contribution
to dissipation, is also examined. The simulations performed in the present work are all
for subsonic Mach numbers where the dilatation part of dissipation is negligible. The
equation for solenoidal dissipation is

ϵS = 1
Re

∫
V

(
ϵijk

∂uk

∂xj

)2

dV. (3.10)

Here, Re is the simulation Reynolds number, while the integrand represents the inner
product of the vorticity vector, also known as enstrophy.

Figure 3.3 shows the behavior of K (left hand scale) and ϵS (right hand scale) over a

55

(a) t = 0 (b) t = 5

(c) t = 10 (d) t = 15

Figure 3.2: Contours of ρE in three mutualy perpendicular slices at the mid locations in
x, y and z-directions, demonstrating the evolution of TGV state at different
times: (a) t=0, (b) t=5, (c) t=10 and (d) t=15.

0 5 10 15 20
t

0.02

0.04

0.06

0.08

0.10

0.12

K

0.002

0.004

0.006

0.008

0.010

S

Figure 3.3: Kinetic energy (K) and dissipation (ϵS) relative to the time.

56

Simulation time

D
is

si
pa

tio
n

(ϵ
ˢ)

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0 5 10 15 20

HP HPSP-wk HPSP-res HPSP-res+wk SP
SPDP-wk SPDP-res SPDP-res+wk DP

(a) Dissipation

Simulation time

A
bs

. E
rr

or
 w

.r.
t.

D
P

1.00E-15

1.00E-12

1.00E-9

1.00E-6

1.00E-3

0 5 10 15 20

HP HPSP-wk HPSP-res HPSP-res+wk SP
SPDP-wk SPDP-res SPDP-res+wk

(b) Absolute difference of dissipation, com-
pared to double precision

Figure 3.4: Numerical accuracy of TGsym app using different precision levels. Mesh size
= 2563, M = 0.5, Re = 800. The simulations were run for 8000 iterations
using the default method.

simulation time from t = 0 to t = 20. For spatially homogeneous decaying turbulence,
the rate of change of K is proportional to −ϵ, so the kinetic energy decays monotonically
once small scale structures have formed and the dissipation, which is positive definite,
becomes significant. Given the derivative nature of the relation between K and ϵ, the
solenoidal dissipation rate ϵS , representing almost all of ϵ, is a more sensitive measure of
the numerical accuracy that is used to compare the different techniques employed in this
study.

3.3.2 Accuracy

Figure 3.4a shows the effect of numerical precision on the behavior of the solenoidal
dissipation rate as a function of time. Three standard versions are shown: HP using
FP16 exclusively, SP using FP32, and DP using FP64. In addition, three kinds of mixed
precision cases, namely ‘-wk’, ‘-res’, and ‘-res+wk’, are presented between each pair of
pure precisions. The ‘-wk’ cases store only the work arrays in the lower precision, the
‘-res’ cases store only the residual arrays in the lower precision, and the ‘-res+wk’ cases
store both the residual and work arrays in the lower precision. All test cases demonstrate
overlapping results, with the exception of the FP16 version. The consistency observed
among the other cases, with overlapping dissipation profiles, suggests comparable physical
outcomes across these precision levels. Figure 3.4b presents a more detailed comparison
and magnifies the differences by showing the absolute differences between each case and
the highest precision run (FP64). The mixed-precision versions exhibit closer alignment
with the higher precision of the two component precisions. Given the similarity in the
observed error among the three mixed precision strategies, subsequent analyses will focus
solely on the ‘-res+wk’ strategy, as it offers the most significant computational speedup.

Figure 3.5 shows the state of TGV at t = 10 for various types of precision computations.
It is clear that the flow state is qualitatively the same for lower precision and mixed
precision computations all the way to the HPSP mixed setup, when compared to the

57

(a) SPDP mixed TGV state at t = 10. (b) SP TGV state at t = 10.

(c) HPSP mixed TGV state at t = 10. (d) HP TGV state at t = 10.

Figure 3.5: Contours of ρE showing the TGV state at t = 10, close to the peak of
dissipation: (a) SPDP, (b) SP, (c) HPSP and (d) HP.

most accurate DP results presented in Fig. 3.2c. The results only deviate for the pure
half-precision computations (HP), as can be noted from the last frame in the figure, where
the vortex structures are more diffuse and sometimes in different locations.

The accuracy of the Storesome method is presented in Figure 3.6 in the same format
as Figure 3.4. This method also demonstrates a high level of accuracy across different
configurations, with the exception of the half-precision (FP16) run, which yielded inaccu-
rate results. The overlapping results for all the other precision configurations indicate
comparable physical outcomes. From Figure 3.6b, we can see how the levels of error
varied among the mixed-precision runs. Notably, as the number of work arrays decreases
significantly in the Storesome approach, a larger portion of the data is retained in higher
precision. Consequently, a mixed half-single precision run exhibits a similar level of
accuracy to that of a pure single precision run.

Figure 3.7 illustrates the impact of varying the timestep and Mach number M on the
precision of the results. Small timesteps are required for low Mach number simulations
and imply the additions of progressively smaller updates to the flow variables that are

58

Simulation time

D
is

si
pa

tio
n

(ϵ
ˢ)

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0 5 10 15 20

HP HPSP-res+wk SP SPDP-res+wk DP

(a) Dissipation

Simulation time

A
bs

. E
rr

or
 w

.r.
t.

D
P

1.00E-15

1.00E-12

1.00E-9

1.00E-6

1.00E-3

0 5 10 15 20

HP HPSP-res+wk SP SPDP-res+wk

(b) Absolute difference of dissipation, com-
pared to double precision

Figure 3.6: Numerical accuracy of TGsym app using different precision levels. Mesh size
= 2563, M = 0.5, Re = 800. The simulations were run for 8000 iterations
using the Storesome method.

0.000625 0.00125 0.0025
Dt

HP
HP

SP
SP

SP
DP

Pr
ec

isi
on

3.90E-03 3.11E-03 2.14E-03

5.59E-08 5.33E-08 5.76E-08

1.58E-08 3.94E-09 1.08E-09

4.30E-13 5.19E-13 5.69E-13

10 10 10 9 10 8 10 7 10 6 10 5 10 4 10 3

(a) Effect of changing timestep. M = 0.5, Re =
800, 20/dt iterations.

0.1 0.3 0.5 0.8
Minf

HP
HP

SP
SP

SP
DP

Pr
ec

isi
on

1.59E-03 3.50E-03 3.90E-03 3.75E-03

8.70E-08 6.63E-08 5.59E-08 3.96E-08

3.57E-08 3.22E-08 1.58E-08 6.23E-09

4.77E-13 1.44E-13 4.30E-13 1.93E-13

10 10 10 9 10 8 10 7 10 6 10 5 10 4 10 3

(b) Effect of changing Mach number M . Re =
800, 32000 iterations, dt = 0.000625

Figure 3.7: The effect of changing parameters of the model on the numerical accuracy
of TGsym app using different precision levels. Size=2563, default method.
Values are the average of the absolute differences against the DP run of the
dissipation at every 0.5 stepsize of simulation time.

59

Figure 3.8: The effect of different split-forms on numerical accuracy of the inviscid Taylor-
Green vortex application using DP and HPSP precision levels. N = 643 grid
points, M∞ = 0.4, dt = 0.004, inviscid calculation, StoreSome method.

potentially sensitive to reduced precision. Here I separate out the effects of time step from
those of Mach number. In Figure 3.7a, where the time step is varied while keeping the
Mach number constant, it is evident that the reduced precision runs, where all variables
are maintained at the same precision level (HP or SP), yield slightly less accurate results
with smaller timesteps. However, when residuals and work arrays are set to lower precision,
changes in timestep do not affect the results. This is because the Q array is retained in
higher precision, allowing for more accurate result storage. All observed errors remain
within a factor of 10 of the smallest representable number for each specific precision.
Figure 3.7b shows the effect of Mach number, while maintaining the same time step.
While the HP case is incorrect for all Mach numbers, only a small increase in error is
seen for the HPSP, SP, and SPDP cases as the Mach number is reduced. Overall, both
subplots indicate that mixed/reduced precision runs can be effectively utilized.

Next a selection of the convective split-forms are considered that are available in the
OpenSBLI solver [61] to improve simulation robustness. As we have already observed that
half precision does not produce consistent results for the TGV application (Figure 3.6), I
limit the discussion here only to the HPSP algorithm compared to the full double precision
(DP) result. A full list of the equations for each of the split forms is given in the appendix
of [99]. In order to isolate the relationship between precision and split-formulation of the
equations, this comparison is performed as an inviscid TGV calculation with the diffusive
terms omitted. A coarsened N = 643 grid is used at M∞ = 0.4 [99] to test the robustness
of the split-forms at different numerical precisions.

Figure 3.8 shows the time evolution of global kinetic energy normalised by its initial
value. For a robust numerical scheme, the normalised kinetic energy for the inviscid case
should stay at a value of one for as long as possible. The first thing to note in the figure
is that, in the absence of physical viscosity in the inviscid limit considered here, several

60

of the formulations (used for the convective terms of Navier-Stokes equations) diverge by
showing exponential growth and eventually produce NaN when evaluated on a discrete
mesh as non-linearities amplify aliasing errors. In particular, it can be observed that
direct application of central differencing in the divergence form is unsuitable and the
simulation rapidly diverges. Quadratic-split formulations by Blaisdell, Jameson, Kok,
and Feiereisen (all listed in [99]) perform better, but still diverge within the standard
simulation time used for Taylor-Green vortex problem (i.e. t = 20). In contrast, the cubic-
split Kennedy-Gruber-Pirozzoli (KGP) [66] and Kinetic Energy and Entropy Preserving
(KEEP) [99] schemes are robust and are able to maintain numerical stability even in the
inviscid limit on a coarse grid. The physical behaviour we observe between the different
split formulations is in good agreement with previous studies of this problem [99].

The effect of numerical precision is also shown on Figure 3.8, comparing double
precision (solid line) with half-single precision (dashed line). Only very minor differences
are observed between the full and mixed precision algorithms, with the largest differences
being observed for the KGP scheme [66]. In each case, the trends between the split
forms are consistent between double and half-single precision. This demonstrates that the
improved numerical robustness of split formulations for the convective terms of the Navier-
Stokes equations persists even when applying reduced/mixed numerical precision. The
benefits of the mixed precision strategies are maintained when using other formulations
of the equations, and are therefore not limited to only the baseline split-form.

To conclude this section, I highlight the findings regarding the accuracy of mixed
and half precision formats in my simulations. My evaluations demonstrate that while
mixed precision configurations, such as half-single precision (HPSP), maintain acceptable
accuracy levels, pure half precision (HP) fails to meet the required standards across
various conditions. Importantly, these results are consistent regardless of the simulation
parameters, such as Reynolds number and Mach number, as well as the choice of
numerical schemes. This reinforces the notion that while mixed precision techniques
can be effectively employed in computational fluid dynamics (CFD) applications, careful
selection of precision is crucial to ensure reliable outcomes. As I move forward in my
research, understanding these accuracy implications will be essential for optimizing
performance without compromising the integrity of simulation results.

3.3.3 Performance measurements

In the previous sections, I demonstrated how the usage of lower precision affects accuracy
at the application level. In this subsection, I will examine the changes in performance
and quantify the trade-offs involved. Under normal circumstances, a complete TGV
simulation (mesh size = 2563 M = 0.5. Re = 800, 8000 iterations, ∆t = 0.0025) using
FP64 precision on a GPU takes approximately 825.68 seconds. In contrast, I observed
that the simulation rearranged according to the Storesome method is significantly faster,
completing in just 402.48 seconds while utilizing nearly half as much memory. This
efficiency allows us to conduct more or even larger simulations within given hardware
constraints while ensuring that the final results remain qualitatively comparable. For

61

Default Storesome
runtime speedup runtime speedup

HP 42.43 ms 2.43 × 18.67 ms 2.69 ×
HPSP 47.71 ms 2.16 × 22.13 ms 2.27 ×
SP 56.95 ms 1.81 × 25.00 ms 2.01 ×
SPDP 74.02 ms 1.39 × 37.60 ms 1.34 ×
DP 103.21 ms 1.00 × 50.31 ms 1.00 ×

Table 3.1: Runtime per iteration and speedup compred to the double precision run time of
the TGsym app are shown for the default and storesome generation methods.
Mesh size=2563, M = 0.5, Re=800, 800 iterations. The measurements are
performed on a single NVIDIA A100-SXM4-40GB GPU with an AMD EPYC™
7763 (Milan) CPU.

the performance measurements, I retained the mesh size of 2563 but ran the simulations
for only 10% of the total time steps (i.e. to time t = 2), executing each case five times
and reporting the average of these runs. Then plotted the compute time per iteration,
as this metric remains consistent throughout a simulation. Through my analysis of the
representative TGV application, I illustrate what performance improvements users can
expect in terms of both time and scale. For context, JAXA’s aerofoil buffet applications
run for three to four weeks using 120 Nvidia V100 GPUs [61], [63]. This highlights
that running a substantial industrial application is not cheap; thus, any performance
enhancement can be highly beneficial.

The performance evaluation of the TGsym application, shown in Table 3.1, reveals
significant differences in runtime and speedup across various precision techniques. It
is important to note that the Storesome method, by design, uses significantly fewer
data arrays compared to the default method. This inherent efficiency of the Storesome
approach contributes to its faster runtime performance by default.

As we transition to lower precision methods, we can observe a consistent increase in
speedup. However, the approximate doubling of speedup ceases when using half precision
(FP16). Currently, OPS does not support packed half precision types, such as half2,
meaning that instruction throughput is still as if we were using FP32, and only the
memory movement is reduced. The mixed precision configurations, specifically HPSP
and SPDP, strike a balance between performance and accuracy, yielding speedups that
fall between their respective pure precision counterparts (HP/SP and SP/DP).

Table 3.2 presents the performance of various methods on a CPU platform. Unlike the
GPU, this CPU utilizes fixed 512-bit wide vectors, allowing it to fully utilize these vectors
with smaller data sizes thanks to compiler auto-vectorization. As a result, we observe the
expected doubling of speedup even when employing FP16 precision. Additionally, the
data indicates superlinear scaling, which occurs as more data fits into the cache memory.

Table 3.3 presents the memory consumption associated with each configuration. All
mixed precision cases fall between the memory requirements of their respective pure
precision counterparts. The degree to which data arrays are cast to lower precision directly
influences the overall memory savings. For instance, when fewer arrays are converted,
as seen with the Storesome method, the resulting memory savings are less pronounced,

62

Default Storesome
runtime speedup runtime speedup

HP 68.48 ms 5.71 × 21.39 ms 8.12 ×
HPSP 105.22 ms 3.71 × 47.31 ms 3.67 ×
SP 185.23 ms 2.11 × 65.05 ms 2.67 ×
SPDP 249.11 ms 1.57 × 123.22 ms 1.41 ×
DP 390.71 ms 1.00 × 173.68 ms 1.00 ×

Table 3.2: Runtime per iteration and speedup compared to the double precision run of
the TGsym app using the default and Storesome generation methods. Mesh
size=2563, Minf=0.5, Re=800, 800 iterations. The measurements are performed
on Intel Xeon Platinum 8592+ CPU

Default Storesome
Memory Gain Memory gain

HP 2.21 GB 4.00 × 1.09 GB 4.00 ×
HPSP 2.72 GB 3.25 × 1.60 GB 2.72 ×
SP 4.41 GB 2.00 × 2.17 GB 2.00 ×
SPDP 5.43 GB 1.63 × 3.19 GB 1.36 ×
DP 8.83 GB 1.00 × 4.35 GB 1.00 ×

Table 3.3: Memory used with the TGsym app and memory gain compared to the double
precision run. Size=2563.

as are the resulting speedups. Overall, reducing an application’s memory footprint
enables the accommodation of larger problems within the same hardware constraints.
For example, by halving the data size in an application that fully utilizes a GPU’s
memory, we can effectively double the overall mesh size. This capability is crucial for
improving computational efficiency and expanding the scope of solvable problems in
high-performance computing environments.

Figure 3.9 illustrates the communication requirements associated with utilizing multiple
MPI processes. It is important to note that inter-node communication (usually through
Infiniband) can be significantly slower than intra-node communication (usually through
NVLink). Consequently, the reduction in data sizes has a pronounced effect on speedup
when scaling across multiple devices. This figure also emphasizes the impact of selecting
arrays to use in lower precision during mixed configurations. Since work arrays are
communicated less frequently than other state arrays and the Storesome method utilizes
fewer work arrays, the result is that mixed setups do not substantially reduce the MPI
communication volume when employing the Storesome approach.

Figure 3.10 illustrates both the strong and weak scaling performance of the TGsym
application across different precision levels. As anticipated, all configurations demonstrate
effective scaling behavior. The parallel efficiency results from the strong scaling measure-
ments indicate effective scalability across all precision configurations, with efficiencies
ranging from 90% to 25% as the number of processes increases. It is important to
note that at higher process counts, message latency has a more significant impact on
performance than message size. As the number of processes increases, the number of
messages per process remains constant (and even slightly increases); however, the sizes

63

C
om

m
un

ic
at

io
n

si
ze

 (M
B

)

0

20

40

60

80

HP HPSP SP SPDP DP

Default Storesome

Figure 3.9: Average volume of MPI communications per process per iteration on the
TGsym app, using 4 MPI processes. Size=2563

Number of GPUs

Ti
m

e
(s

)

2

4

6
8

1 2 4 8 16

HP HPSP SP SPDP DP

(a) Strongscaling. Mesh size= 2563

Number of GPUs

Ti
m

e
(s

)

0

2

4

6

8

10

12

1 2 4 8 16

HP HPSP SP SPDP DP

(b) Weakscaling, Mesh size= 2563, multiplied by
the number of processes in X direction.

Figure 3.10: Strong- and weakscaling of the TGsym app with GPUdirect using different
precision levels. Minf=0.5, Re=800, 8000 iterations.

64

of these messages decrease. This reduction in message size helps explain why double
precision (DP) performance approaches that of single precision (SP) in these scenarios.
In contrast, the weak scaling measurements reveal consistently high efficiencies across
all configurations, exceeding 92%. This indicates that the TGsym application scales
exceptionally well, irrespective of the precision level used.

3.4 Conclusions and Future Work

In this work, I have explored the implementation and effectiveness of mixed precision
techniques in compressible turbulent flow simulations using explicit finite difference
schemes. By extending both the OPS library and the OpenSBLI framework to support
mixed precision arithmetic, I demonstrated that significant performance gains can be
achieved without sacrificing numerical accuracy, provided that the precision is selected
carefully. My experiments using the Taylor-Green vortex benchmark revealed that while
reduced precision formats such as single and mixed half-single precision yield acceptable
results, pure half-precision computations suffer from unacceptable numerical inaccuracies.

The proposed mixed precision algorithm effectively balances performance and preci-
sion, allowing for improved computational efficiency, particularly in memory usage and
communication overheads, which are crucial in multi-CPU and multi-GPU environments.
My analysis indicates that mixed precision approaches can provide substantial speedups,
especially in larger-scale simulations, without compromising the integrity of the results.

Several avenues remain for further exploration:

• Larger and More Complex Applications: To fully understand the potential of
mixed precision techniques, future work will experiment with larger and more
complex computational fluid dynamics (CFD) applications. These experiments
will help assess the scalability and generalizability of my methods in real-world,
high-performance computing (HPC) environments.

• Improving Half-Precision Performance: Since pure half-precision (FP16) simulations
did not yield acceptable accuracy in my current tests, I did not prioritize optimizing
FP16 performance in this work. However, there may be specific simulations where
FP16 can produce satisfactory results, particularly on GPU architectures. To
support these scenarios, future work will focus on enhancing OPS to define global
constants in half precision and to utilize packed types, allowing multiple half-
precision calculations within a single warp. These optimizations could unlock
further performance gains on hardware optimized for FP16 computations, such as
modern GPUs.

By addressing these areas, I aim to further optimize the trade-offs between compu-
tational efficiency and numerical accuracy, thereby pushing the boundaries of what is
possible with mixed precision in large-scale turbulent simulations.

65

4 Summary of the Dissertation

As high-performance computing continues to evolve, the pressure to improve computa-
tional performance is matched by a growing need for numerical reliability. Scientific codes
today are executed across a wide variety of architectures and parallel environments, yet
even small changes in configuration – such as the number of MPI processes or the precision
level of a variable – can result in differing outputs. For fields where simulation results
underpin critical design or research decisions, this lack of determinism is increasingly
problematic.

This dissertation explores two distinct, and often opposing, strategies for addressing
these challenges. On one hand, it investigates bitwise reproducibility: ensuring that
floating-point computations yield identical results regardless of the platform or level of
parallelism. On the other, it evaluates reduced and mixed-precision computing, where
parts of a simulation are executed with lower numerical precision to improve performance
and reduce memory usage. While reproducibility prioritizes consistency at the cost of
speed, mixed-precision aims for speed with carefully managed compromises in accuracy.
Both directions respond to real needs in high-performance scientific computing, and both
require new techniques to be effectively integrated into modern simulation workflows.

The core contributions of this work lie in the development and extension of OPS and
OP2: two domain-specific libraries for structured and unstructured mesh applications.
These tools provide the foundation for implementing and evaluating the methods described
in the following sections. The remainder of this chapter begins by summarizing the
computational techniques and frameworks used (Section 4.1), followed by a detailed
presentation of the new scientific results and thesis points (Section 4.2), and a discussion
of potential applications and benefits (Section 4.3).

4.1 Methods and tools

The research described in this dissertation was implemented primarily within the OP2
and OPS libraries: high-level code generation frameworks designed to support portable,
scalable, and performance-efficient simulation codes on modern computing platforms.

OP2 is a domain-specific language and runtime system for unstructured mesh compu-
tations, commonly used in finite volume and finite element methods. It allows users to
express computation over mesh elements (e.g., edges, cells, vertices) while abstracting
away details of data dependencies and parallelization. OP2 supports automatic code
generation for multiple backends, including OpenMP, MPI, and CUDA, enabling efficient
execution on both CPU and GPU systems. In this work, OP2 was extended to support
new mechanisms for enforcing bitwise reproducibility. These included:

66

• a temporary array-based scheme for deterministic accumulation of indirect incre-
ments,

• reproducible graph coloring algorithms, including a distributed version that functions
independently of mesh partitioning,

• and the integration of ReproBLAS routines to support deterministic global reduc-
tions in parallel MPI environments.

OPS is the structured-mesh equivalent of OP2, providing similar abstractions for
stencil-based computations. It serves as the target backend for a number of higher-level
code generation tools – including OpenSBLI, which was used in this work to test and
evaluate reduced and mixed-precision computing strategies. OpenSBLI allows users to
define partial differential equations using symbolic notation, and automatically generates
OPS-based C++ code tailored to the desired simulation and hardware environment.

To explore the trade-offs of reduced precision, modifications were made to the OPS
and OpenSBLI pipelines to support different precision levels for specific variables and
operations. These changes enabled experiments where, for example, residual calculations
could be performed in FP16 or FP32, while conserved state variables remained in FP64.
The goal was to identify combinations of precision that preserved simulation accuracy while
improving runtime performance – especially on bandwidth-limited GPU architectures.

The methodologies developed in this work were validated using several benchmark and
industrial-scale applications. On the unstructured side, reproducibility techniques were
tested on Airfoil, Aero, MG-CFD, and the Rolls-Royce Hydra application, all implemented
in OP2. On the structured side, reduced-precision experiments were conducted using
OpenSBLI on the Taylor-Green vortex benchmark – a widely used test case for evaluating
numerical schemes in compressible turbulence.

Together, the tools and frameworks developed in this dissertation provide a flexible and
extensible platform for exploring critical aspects of numerical correctness and performance
optimization in large-scale scientific codes. The following section presents the new scientific
results derived from these methodologies.

4.2 New scientific results

This section presents the main scientific contributions of the dissertation in the form of
thesis points. Each thesis group highlights a major area of research, while individual
points describe specific results supported by the methods and tools introduced in earlier
chapters.

Thesis group I. Algorithms for reproducible floating-point operations defined on un-
structured mesh applications.

Thesis I.1. Starting from the OP2 DSL abstraction, I showed which floating-point
operations – such as parallel reductions, indirect memory updates, and non-deterministic
execution order – are responsible for the potential violation of the reproducibility property.

67

I showed what steps – temporary array-based accumulation, deterministic graph coloring,
and the use of ReproBLAS – can be taken to ensure that these operations still produce
reproducible results.

In this part of the work, I began by analyzing the computational patterns inherent in
unstructured mesh applications written using the OP2 DSL. These patterns typically
involve indirect memory accesses and accumulation operations – particularly in reductions
and read-write kernels – which are highly susceptible to non-determinism in parallel
environments. I systematically identified the categories of floating-point operations in
OP2 that can lead to violations of bitwise reproducibility, with a focus on those involving
reductions (e.g., OP_INC and OP_RW) over shared data.

To address these issues, I proposed two main algorithmic solutions. First, a temporary
array-based accumulation scheme was introduced, which ensures that increments are
applied in a fixed, deterministic order based on globally unique element IDs. This is
illustrated in Figure 2.4, where the consistent ordering of edge contributions to a cell
guarantees reproducibility across runs. Second, the reproducibility of global reductions
was addressed by integrating the ReproBLAS library into OP2, enabling deterministic
summation of floating-point arrays regardless of thread count, process layout, or reduction
tree structure. These methods were implemented with minimal intrusion into OP2’s
abstraction, preserving the productivity benefits of the DSL while ensuring deterministic
output.

The effectiveness of these methods was demonstrated through test cases such as Aero
and MG-CFD, where non-determinism in the results was visibly reduced or eliminated
under varying process counts. For instance, Figure 1.1 presents a histogram of differences
in a conjugate-gradient solver where bitwise reproducibility was not enforced – highlighting
the numerical drift caused by changes in execution configuration.

Thesis I.2. I introduced a new algorithm that ensures reproducible coloring on distributed,
partitioned graphs, independent of the number of partitions. The algorithm builds on M.
Osama’s graph coloring method originally developed for GPUs, and extends it to ensure
full determinism in a distributed setting. I demonstrated how these algorithms – temporary
array-based accumulation, deterministic graph coloring, and ReproBLAS-based reductions
– can be efficiently mapped to diverse parallelization strategies. I demonstrated that these
methods achieve near-optimal performance on multi-core processors, distributed systems,
and GPUs, and exhibit practical scalability across industrially representative applications.

Graph coloring is a widely used technique in parallel computing to avoid race conditions
during updates to shared data. Traditional coloring methods, however, often depend on
the mesh partitioning strategy, introducing variability when the number or configuration
of partitions changes. To address this, I developed a novel distributed coloring algorithm
that guarantees reproducible color assignments regardless of partitioning. The algorithm
extends existing parallel coloring techniques with a deterministic ordering based on
global element identifiers and hash-based tie-breaking. It is detailed in Algorithm 3 and
illustrated through the use of an additional communication layer (ghost elements) in

68

Figure 2.5. This design ensures that color assignments remain consistent even when
the mesh is redistributed across varying numbers of MPI processes or affected by load
balancing.

The reproducibility of this coloring method was validated across several OP2 applica-
tions, including the industrial-grade Hydra CFD code, where consistent parallel execution
is critical for debugging and validation. Moreover, the algorithm is generic and applica-
ble beyond OP2, making it a robust tool for deterministic parallelism in unstructured
domains.

One of the key challenges in enabling reproducible execution is minimizing its perfor-
mance overhead. To this end, the reproducibility techniques – including the new coloring
algorithm, temporary array accumulation, and deterministic global reductions – were
designed to integrate efficiently with OP2’s code generation system and parallel backends.
I demonstrated how these algorithms can be mapped onto different parallelization strate-
gies with near-optimal performance across diverse architectures, including multi-core
CPUs, distributed-memory clusters, and CUDA-enabled GPUs.

Extensive benchmarking was conducted on representative OP2 applications. Figures 2.6
through 2.10 present detailed performance evaluations, including slowdowns compared
to non-reproducible baselines and scaling behavior across increasing core counts. In
the Hydra case study, the reproducibility infrastructure was tested at scale, and results
showed that overheads remained within acceptable bounds – especially in light of the
benefits offered by deterministic outputs.

On GPU systems, where controlling race conditions is particularly challenging, the
proposed methods were successfully deployed using OP2’s CUDA backend. Reproducible
execution was achieved on Nvidia V100 accelerators without significant restructuring of
user code, demonstrating the practical feasibility and portability of the proposed solutions
across a broad range of real-world computing environments.

Publications related to this thesis group are:[J1], [C1], [C2], [C3], [C4] .

Thesis II.
I introduced a methodology for systematically reducing numerical precision in struc-

tured grid applications and measuring its impact on both performance and numerical
accuracy. Applying this to a representative turbulent simulation (Taylor-Green vortex), I
demonstrated that using 32-bit floating-point representation yields performance gains while
maintaining acceptable accuracy, whereas 16-bit usage significantly alters the physical
conclusions.

Building on this, I extended the OpenSBLI framework to support a mixed-precision
strategy, enabling specific state variables and temporary storage to be computed and stored
at lower precision. This enables the evaluation of mixed precision configurations in a
controlled, quantitative manner, and I showed that carefully selected combinations of 16-
and 32-bit precision can preserve accuracy and lead to substantial runtime improvements
on both modern CPU and GPU architectures.

This part of the dissertation addresses the emerging opportunity – driven largely by

69

hardware developments – to use reduced precision arithmetic in scientific simulations.
Motivated by the increasing support for 16- and 32-bit floating-point operations on
modern GPUs and CPUs, I developed a methodology to systematically evaluate how
such precision reductions impact both simulation accuracy and runtime performance.

The methodology was applied to a canonical fluid dynamics problem: the Taylor-Green
vortex, a 3D unsteady turbulence benchmark. This problem is well-suited for sensitivity
analysis, as it exhibits complex, nonlinear dynamics that can amplify numerical errors
and highlight instability in lower precision settings.

Using OpenSBLI as the frontend for code generation and OPS as the backend for
parallel execution, I implemented double-precision (FP64), single-precision (FP32), and
half-precision (FP16) versions of the simulation. Accuracy was assessed using global
quantities such as kinetic energy dissipation and numerical error norms, while performance
was measured in terms of runtime per iteration and memory usage.

The results, shown in Figures 3.3–3.7, confirm that FP32 precision offers a good balance,
delivering significant speedups (especially on GPU platforms) while preserving physically
accurate behavior. However, simulations run entirely in FP16 precision showed large
deviations in key quantities, leading to altered or unphysical results, particularly near
peak dissipation. This reinforces the conclusion that while 16-bit arithmetic may be viable
in localized contexts, it cannot be blindly applied across an entire CFD code without
compromising scientific validity.

Importantly, the infrastructure developed for this analysis is not specific to the Taylor-
Green vortex. Thanks to OpenSBLI’s symbolic and backend-agnostic design, the same
methodology can be reused to analyze other CFD models using finite difference discretiza-
tions on structured grids. As such, this work lays the groundwork for future investigations
into precision-aware modeling practices in high-performance simulation workflows.

Building on the findings from full reduced-precision simulations, this thesis point
presents a more granular and flexible approach: mixed-precision computing. Rather than
applying the same numerical format across all variables and operations, the strategy
here was to assign precision levels selectively, based on the numerical role and stability
sensitivity of each component.

To enable this, I extended OpenSBLI’s code generation infrastructure to support
variable-specific precision control. This required modifications to the symbolic frontend,
variable type declarations, and the generated OPS kernel code, ensuring that temporary
arrays, work buffers, and conservative state variables could all be defined with differing
levels of floating-point precision. The implementation supports combinations such as
FP64 for conserved variables and FP32 or FP16 for intermediate operations.

Using the Taylor-Green vortex problem again as a testbed, I evaluated several mixed-
precision configurations, such as FP64 state variables with FP32 residuals, or FP32 state
with FP16 temporaries. Performance benchmarks (Figures 3.9 and 3.10) show that these
configurations offer meaningful speedups without the loss of simulation accuracy observed
in the pure FP16 runs. The runtime-per-iteration and memory usage improvements are
summarized in Tables 3.1–3.3, highlighting gains of more than 2× speedup with negligible

70

loss of fidelity in key physical quantities.
Publications related to this thesis group are: [J2], [C5], [C6].
Publication related to this thesis group under review at the time of the submission of

this dissertation: [J3],

4.3 Potential applications and benefits

The techniques and methodologies developed in this dissertation address two pressing
concerns in computational science – numerical reproducibility and efficient use of floating-
point precision – both of which have practical implications for current and future simulation
workflows across a wide range of disciplines.

The reproducibility work in unstructured mesh applications has immediate applications
in industrial CFD codes, such as Rolls-Royce Hydra, and similar engineering simula-
tion platforms used in aerospace, automotive, and energy sectors. For these domains,
consistency of results across executions is not only desirable – it is often required for
validation, certification, and regulatory compliance. The ability to run large simulations
on many different hardware platforms, or with different levels of parallelism, and still
produce bitwise identical results improves debugging, testing, and verification workflows
significantly. In particular, the reproducible coloring and reduction strategies integrated
into OP2 provide a foundation for deterministic behavior in highly parallel environments,
without requiring developers to abandon performance or scalability.

The reduced- and mixed-precision computing strategies, tested using OpenSBLI and
OPS, are highly relevant for modern heterogeneous computing systems, especially those
built around GPUs and AI accelerators. As hardware trends continue to favor lower-
precision execution units (e.g., tensor cores, float16 pipelines), simulation codes that
can exploit these capabilities without compromising accuracy will have a significant
performance advantage.

These techniques are particularly beneficial in scenarios where simulation time is a
limiting factor – such as real-time decision support, design optimization, or large parameter
sweeps in uncertainty quantification. For example, in aerodynamics or combustion
modeling, being able to run more simulations in less time can dramatically accelerate
design cycles. Similarly, in academic research, the ability to run high-resolution simulations
on modest hardware using mixed precision opens new doors for smaller research groups
and under-resourced institutions.

The methodology introduced here – along with the precision-aware infrastructure
integrated into OPS – enables future work on adaptive precision, where the simulation
dynamically adjusts numerical accuracy based on local error estimates or physics-driven
criteria. This points to longer-term potential for even more intelligent and efficient
simulation strategies.

Finally, by embedding all enhancements within OP2 and OPS – rather than developing
standalone prototypes – the work ensures accessibility and long-term maintainability.
Developers using these libraries benefit from reproducibility and mixed precision features
without needing to reimplement their core simulation logic. This lowers the barrier to

71

entry for high-performance, precision-aware computing and supports the broader goal of
sustainable software in computational science.

In summary, the contributions of this dissertation offer robust, production-ready
solutions for two major concerns in scientific simulation. Whether the goal is consistency
of results or speed and efficiency, the methods described here are applicable, portable,
and scalable – ready to meet the evolving demands of high-performance computing.

Use of AI Assistance

Parts of this dissertation benefited from the assistance of AI tools. In particular, ChatGPT
(OpenAI), Perplexity.ai, and GitHub Copilot were used for refining the phrasing of tech-
nical descriptions, organizing text, checking grammar, and accelerating code development
workflows. All results, insights, and critical reasoning remain my own, and the use of
these tools was limited to supporting clarity and productivity.

72

List of author publications

List of journal publications

[J1] B. Siklósi, G. R. Mudalige, and I. Z. Reguly, “Enabling bitwise reproducibility
for the unstructured computational motif”, Applied Sciences, vol. 14, no. 2, 2024,
issn: 2076-3417. doi: 10.3390/app14020639. [Online]. Available: https://www.

mdpi.com/2076-3417/14/2/639 (cit. on p. 69).

[J2] D. J. Lusher, A. Sansica, N. D. Sandham, J. Meng, B. Siklósi, and A. Hashimoto,
“Opensbli v3.0: High-fidelity multi-block transonic aerofoil cfd simulations using
domain specific languages on gpus”, Computer Physics Communications, vol. 307,
p. 109 406, 2025, issn: 0010-4655. doi: https://doi.org/10.1016/j.cpc.

2024.109406. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S0010465524003291 (cit. on p. 71).

[J3] B. Siklosi, P. K. Sharma, D. J. Lusher, I. Z. Reguly, and N. D. Sandham,
“Reduced and mixed precision turbulent flow simulations using explicit finite
difference schemes”, Future Generation Computer Systems, 2025, Under review
(cit. on p. 71).

List of conference publications

[C1] B. Siklósi, I. Z. Reguly, and G. R. Mudalige, “Bitwise reproducible task execution
on unstructured mesh applications”, in 2020 20th IEEE/ACM International Sym-
posium on Cluster, Cloud and Internet Computing (CCGRID), 2020, pp. 889–892.
doi: 10.1109/CCGrid49817.2020.00015 (cit. on p. 69).

[C2] B. Siklósi, “Bitwise reproducible execution of unstructured mesh applications”,
in PhD Proceedings Annual Issues of the Doctoral School, Faculty of Information
Technology and Bionics, vol. 16, 2021, pp. 165–168 (cit. on p. 69).

[C3] B. Siklósi, “Bitwise reproducible execution of unstructured mesh applications”,
in PhD Proceedings Annual Issues of the Doctoral School, Faculty of Information
Technology and Bionics, vol. 15, 2020, pp. 161–164 (cit. on p. 69).

[C4] B. Siklósi, I. Z. Reguly, and G. R. Mudalige, “Bitwise reproducible execution
of unstructured mesh applications”, Jedlik Laboratories Reports, vol. 9, no. 2,
pp. 13–19, 2020 (cit. on p. 69).

[C5] B. Siklósi, “Achieving mixed precision computing with the help of domain specific
libraries”, in PhD Proceedings Annual Issues of the Doctoral School, Faculty of
Information Technology and Bionics, vol. 17, 2022, pp. 187–189 (cit. on p. 71).

73

https://doi.org/10.3390/app14020639
https://www.mdpi.com/2076-3417/14/2/639
https://www.mdpi.com/2076-3417/14/2/639
https://doi.org/https://doi.org/10.1016/j.cpc.2024.109406
https://doi.org/https://doi.org/10.1016/j.cpc.2024.109406
https://www.sciencedirect.com/science/article/pii/S0010465524003291
https://www.sciencedirect.com/science/article/pii/S0010465524003291
https://doi.org/10.1109/CCGrid49817.2020.00015

[C6] B. Siklósi, “Utilizing the op2 domain specific library for adaptive multi-precision
computing”, in PhD Proceedings Annual Issues of the Doctoral School, Faculty of
Information Technology and Bionics, vol. 18, 2023, pp. 141–144 (cit. on p. 71).

List of publications not related to the dissertation

[O1] B. Siklosi, I. Z. Reguly, and G. R. Mudalige, “Heterogeneous cpu-gpu execution of
stencil applications”, in 2018 IEEE/ACM International Workshop on Performance,
Portability and Productivity in HPC (P3HPC), 2018, pp. 71–80. doi: 10.1109/

P3HPC.2018.00010.

[O2] B. Keömley-Horváth, G. Horváth, P. Polcz, et al., “The design and utilisation of
pansim, a portable pandemic simulator”, in 2022 First Combined International
Workshop on Interactive Urgent Supercomputing (CIW-IUS), 2022, pp. 1–9. doi:
10.1109/CIW-IUS56691.2022.00006.

74

https://doi.org/10.1109/P3HPC.2018.00010
https://doi.org/10.1109/P3HPC.2018.00010
https://doi.org/10.1109/CIW-IUS56691.2022.00006

List of references related to the dissertation

[1] I. Foster and J. Foster, Designing and Building Parallel Programs: Concepts and
Tools for Parallel Software Engineering (Literature and Philosophy). Addison-
Wesley, 1995, isbn: 9780201575941. [Online]. Available: https://books.google.

hu/books?id=r5JsQgAACAAJ (cit. on p. 14).

[2] J. Dongarra, P. Beckman, P. Aerts, et al., “The international exascale software
project: A call to cooperative action by the global high-performance community”,
The International Journal of High Performance Computing Applications, vol. 23,
no. 4, pp. 309–322, 2009. doi: 10.1177/1094342009347714. eprint: https://

doi.org/10.1177/1094342009347714. [Online]. Available: https://doi.org/10.

1177/1094342009347714 (cit. on p. 14).

[3] G. E. Moore, “Cramming more components onto integrated circuits, reprinted
from electronics, volume 38, number 8, april 19, 1965, pp.114 ff.”, IEEE Solid-State
Circuits Society Newsletter, vol. 11, no. 3, pp. 33–35, 2006. doi: 10.1109/N-

SSC.2006.4785860 (cit. on p. 15).

[4] R. Dennard, F. Gaensslen, H.-N. Yu, V. Rideout, E. Bassous, and A. LeBlanc,
“Design of ion-implanted mosfet’s with very small physical dimensions”, IEEE
Journal of Solid-State Circuits, vol. 9, no. 5, pp. 256–268, 1974. doi: 10.1109/

JSSC.1974.1050511 (cit. on p. 15).

[5] S. Boldo, C.-P. Jeannerod, G. Melquiond, and J.-M. Muller, “Floating-point arith-
metic”, Acta Numerica, vol. 32, pp. 203–290, 2023. doi: 10.1017/S0962492922000101

(cit. on pp. 16, 17).

[6] “Ieee standard for floating-point arithmetic”, IEEE Std 754-2019 (Revision of
IEEE 754-2008), pp. 1–84, 2019. doi: 10.1109/IEEESTD.2019.8766229 (cit. on
pp. 17, 20).

[7] D. Goldberg, “What every computer scientist should know about floating-point
arithmetic”, ACM Comput. Surv., vol. 23, no. 1, pp. 5–48, Mar. 1991, issn: 0360-
0300. doi: 10.1145/103162.103163. [Online]. Available: https://doi.org/10.

1145/103162.103163 (cit. on pp. 17, 33).

[8] O. Villa, D. Chavarría-Miranda, V. Gurumoorthi, A. Marquez, and S. Krishamoor-
thy, “Effects of floating-point non-associativity on numerical computations on
massively multithreaded systems”, in CUG Proceedings, May 2009 (cit. on pp. 17,
18).

75

https://books.google.hu/books?id=r5JsQgAACAAJ
https://books.google.hu/books?id=r5JsQgAACAAJ
https://doi.org/10.1177/1094342009347714
https://doi.org/10.1177/1094342009347714
https://doi.org/10.1177/1094342009347714
https://doi.org/10.1177/1094342009347714
https://doi.org/10.1177/1094342009347714
https://doi.org/10.1109/N-SSC.2006.4785860
https://doi.org/10.1109/N-SSC.2006.4785860
https://doi.org/10.1109/JSSC.1974.1050511
https://doi.org/10.1109/JSSC.1974.1050511
https://doi.org/10.1017/S0962492922000101
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1145/103162.103163
https://doi.org/10.1145/103162.103163
https://doi.org/10.1145/103162.103163

[9] B. L. Massingill, T. G. Mattson, and B. A. Sanders, “Reengineering for parallelism:
An entry point into plpp for legacy applications”, Concurrency and Computation:
Practice and Experience, vol. 19, no. 4, pp. 503–529, 2007. doi: https://doi.org/

10.1002/cpe.1147. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.

1002/cpe.1147. [Online]. Available: https://onlinelibrary.wiley.com/doi/

abs/10.1002/cpe.1147 (cit. on p. 18).

[10] O. Zienkiewicz, R. Taylor, and J. Zhu, The Finite Element Method: its Basis and
Fundamentals (Seventh Edition), Seventh Edition. Oxford: Butterworth-Heinemann,
2013, isbn: 978-1-85617-633-0. doi: https://doi.org/10.1016/B978-1-85617-

633-0.00001-0 (cit. on pp. 19, 35).

[11] J. D. Zechar, D. Schorlemmer, M. Liukis, et al., “The collaboratory for the study
of earthquake predictability perspective on computational earthquake science”,
Concurrency and Computation: Practice and Experience, vol. 22, no. 12, pp. 1836–
1847, 2010. doi: https : / / doi . org / 10 . 1002 / cpe . 1519. eprint: https : / /

onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.1519. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.1519 (cit. on
p. 19).

[12] L. Teodosio, L. Marchitto, C. Tornatore, F. Bozza, and G. Valentino, “Effect of
cylinder-by-cylinder variation on performance and gaseous emissions of a pfi spark
ignition engine: Experimental and 1d numerical study”, Applied Sciences, vol. 11,
no. 13, 2021, issn: 2076-3417. doi: 10.3390/app11136035. [Online]. Available:
https://www.mdpi.com/2076-3417/11/13/6035 (cit. on p. 19).

[13] J. Ren, Y. Zeng, S. Zhou, and Y. Zhang, “An experimental study on state represen-
tation extraction for vision-based deep reinforcement learning”, Applied Sciences,
vol. 11, no. 21, 2021, issn: 2076-3417. doi: 10.3390/app112110337. [Online].
Available: https://www.mdpi.com/2076-3417/11/21/10337 (cit. on p. 19).

[14] P. N. Sergi, N. De la Oliva, J. del Valle, X. Navarro, and S. Micera, “Physically
consistent scar tissue dynamics from scattered set of data: A novel computational
approach to avoid the onset of the runge phenomenon”, Applied Sciences, vol. 11,
no. 18, 2021, issn: 2076-3417. doi: 10.3390/app11188568. [Online]. Available:
https://www.mdpi.com/2076-3417/11/18/8568 (cit. on p. 19).

[15] L. Elster, J. P. Staab, and S. Peters, “Making automotive radar sensor validation
measurements comparable”, Applied Sciences, vol. 13, no. 20, 2023, issn: 2076-3417.
doi: 10.3390/app132011405. [Online]. Available: https://www.mdpi.com/2076-

3417/13/20/11405 (cit. on p. 19).

[16] F. Petrini, A. Moody, J. Peinador, E. Frachtenberg, and D. Panda, “Nic-based
reduction algorithms for large-scale clusters”, IJHPCN, vol. 4, pp. 122–136, Jan.
2006. doi: 10.1504/IJHPCN.2006.010635 (cit. on p. 20).

76

https://doi.org/https://doi.org/10.1002/cpe.1147
https://doi.org/https://doi.org/10.1002/cpe.1147
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.1147
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.1147
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.1147
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.1147
https://doi.org/https://doi.org/10.1016/B978-1-85617-633-0.00001-0
https://doi.org/https://doi.org/10.1016/B978-1-85617-633-0.00001-0
https://doi.org/https://doi.org/10.1002/cpe.1519
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.1519
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.1519
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.1519
https://doi.org/10.3390/app11136035
https://www.mdpi.com/2076-3417/11/13/6035
https://doi.org/10.3390/app112110337
https://www.mdpi.com/2076-3417/11/21/10337
https://doi.org/10.3390/app11188568
https://www.mdpi.com/2076-3417/11/18/8568
https://doi.org/10.3390/app132011405
https://www.mdpi.com/2076-3417/13/20/11405
https://www.mdpi.com/2076-3417/13/20/11405
https://doi.org/10.1504/IJHPCN.2006.010635

[17] S. Siegel and J. Wolff von Gudenberg, “A long accumulator like a carry-save
adder”, Computing, vol. 94, no. 2, pp. 203–213, Mar. 2012, issn: 1436-5057. doi:
10.1007/s00607-011-0164-x. [Online]. Available: https://doi.org/10.1007/

s00607-011-0164-x (cit. on p. 20).

[18] H. Atmanspacher and S. Maasen, Reproducibility: principles, problems, practices,
and prospects. John Wiley & Sons, 2016 (cit. on p. 20).

[19] J. Demmel and H. D. Nguyen, “Fast reproducible floating-point summation”,
ser. 2013 IEEE 21st Symposium on Computer Arithmetic, 2013, pp. 163–172. doi:
10.1109/ARITH.2013.9 (cit. on pp. 20, 21, 34).

[20] A. Arteaga, O. Fuhrer, and T. Hoefler, “Designing bit-reproducible portable
high-performance applications”, ser. 2014 IEEE 28th International Parallel and
Distributed Processing Symposium, 2014, pp. 1235–1244. doi: 10.1109/IPDPS.

2014.127 (cit. on p. 20).

[21] J. Demmel, P. Ahrens, and H. D. Nguyen, “Efficient reproducible floating point
summation and blas”, EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2016-121, Jun. 2016. [Online]. Available: http://www2.eecs.

berkeley.edu/Pubs/TechRpts/2016/EECS-2016-121.html (cit. on pp. 20, 21,
34).

[22] P. Ahrens, H. D. Nguyen, and J. Demmel, “Efficient reproducible floating point
summation and blas”, EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2015-229, 2015 (cit. on pp. 20, 21).

[23] R. Salgado-Estrada, A. Galván, J. Y. Moreno-Martínez, et al., “Wind vulnerability
of flexible outdoor single-post billboards”, Applied Sciences, vol. 13, no. 10, 2023,
issn: 2076-3417. doi: 10.3390/app13106197. [Online]. Available: https://www.

mdpi.com/2076-3417/13/10/6197 (cit. on p. 21).

[24] X. An, S. Li, and T. Wu, “Modeling nonlinear aeroelastic forces for bridge decks
with various leading edges using lstm networks”, Applied Sciences, vol. 13, no. 10,
2023, issn: 2076-3417. doi: 10.3390/app13106005. [Online]. Available: https:

//www.mdpi.com/2076-3417/13/10/6005 (cit. on p. 21).

[25] W. Kahan, “Pracniques: Further remarks on reducing truncation errors”, Commun.
ACM, vol. 8, no. 1, p. 40, Jan. 1965, issn: 0001-0782. doi: 10.1145/363707.363723.
[Online]. Available: https://doi.org/10.1145/363707.363723 (cit. on pp. 21,
34).

[26] S. Cherubin, G. Agosta, I. Lasri, E. Rohou, and O. Sentieys, “Implications of
reduced-precision computations in hpc: Performance, energy and error”, in In-
ternational Conference on Parallel Computing, 2017. [Online]. Available: https:

//api.semanticscholar.org/CorpusID:3762567 (cit. on pp. 21, 22).

[27] J. Sun, G. D. Peterson, and O. O. Storaasli, “High-performance mixed-precision
linear solver for fpgas”, IEEE Transactions on Computers, vol. 57, no. 12, pp. 1614–
1623, 2008. doi: 10.1109/TC.2008.89 (cit. on pp. 23, 50).

77

https://doi.org/10.1007/s00607-011-0164-x
https://doi.org/10.1007/s00607-011-0164-x
https://doi.org/10.1007/s00607-011-0164-x
https://doi.org/10.1109/ARITH.2013.9
https://doi.org/10.1109/IPDPS.2014.127
https://doi.org/10.1109/IPDPS.2014.127
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-121.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-121.html
https://doi.org/10.3390/app13106197
https://www.mdpi.com/2076-3417/13/10/6197
https://www.mdpi.com/2076-3417/13/10/6197
https://doi.org/10.3390/app13106005
https://www.mdpi.com/2076-3417/13/10/6005
https://www.mdpi.com/2076-3417/13/10/6005
https://doi.org/10.1145/363707.363723
https://doi.org/10.1145/363707.363723
https://api.semanticscholar.org/CorpusID:3762567
https://api.semanticscholar.org/CorpusID:3762567
https://doi.org/10.1109/TC.2008.89

[28] A. Abdelfattah, S. Tomov, and J. Dongarra, “Towards half-precision computation
for complex matrices: A case study for mixed precision solvers on gpus”, in 2019
IEEE/ACM 10th Workshop on Latest Advances in Scalable Algorithms for Large-
Scale Systems (ScalA), 2019, pp. 17–24. doi: 10.1109/ScalA49573.2019.00008

(cit. on pp. 23, 50).

[29] J. D. Hogg and J. A. Scott, “A fast and robust mixed-precision solver for the
solution of sparse symmetric linear systems”, ACM Trans. Math. Softw., vol. 37,
no. 2, Apr. 2010, issn: 0098-3500. doi: 10.1145/1731022.1731027. [Online].
Available: https://doi.org/10.1145/1731022.1731027 (cit. on pp. 23, 50).

[30] N. J. Higham and T. Mary, “Mixed precision algorithms in numerical linear algebra”,
Acta Numerica, vol. 31, pp. 347–414, 2022. doi: 10.1017/S0962492922000022

(cit. on pp. 23, 50).

[31] P. Luszczek, A. Abdelfattah, H. Anzt, A. Suzuki, and S. Tomov, “Batched sparse
and mixed-precision linear algebra interface for efficient use of gpu hardware accel-
erators in scientific applications”, Future Generation Computer Systems, vol. 160,
pp. 359–374, 2024, issn: 0167-739X. doi: https://doi.org/10.1016/j.future.

2024.06.004. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S0167739X24003017 (cit. on pp. 23, 50).

[32] A. Abdelfattah, H. Anzt, A. Ayala, et al., “Advances in mixed precision algorithms:
2021 edition”, Aug. 2021. doi: 10.2172/1814447. [Online]. Available: https:

//www.osti.gov/biblio/1814447 (cit. on pp. 23, 50).

[33] M. Lehmann, M. J. Krause, G. Amati, M. Sega, J. Harting, and S. Gekle, “Ac-
curacy and performance of the lattice boltzmann method with 64-bit, 32-bit,
and customized 16-bit number formats”, Phys. Rev. E, vol. 106, p. 015 308, 1
Jul. 2022. doi: 10 . 1103 / PhysRevE . 106 . 015308. [Online]. Available: https :

//link.aps.org/doi/10.1103/PhysRevE.106.015308 (cit. on pp. 23, 50).

[34] F. Brogi, S. Bnà, G. Boga, G. Amati, T. Esposti Ongaro, and M. Cerminara,
“On floating point precision in computational fluid dynamics using openfoam”,
Future Generation Computer Systems, vol. 152, pp. 1–16, 2024, issn: 0167-739X.
doi: https://doi.org/10.1016/j.future.2023.10.006. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X23003813

(cit. on pp. 23, 50).

[35] E. Goubault, “Static analyses of the precision of floating-point operations”, in
Static Analysis, P. Cousot, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg,
2001, pp. 234–259, isbn: 978-3-540-47764-8 (cit. on p. 23).

[36] F. Benz, A. Hildebrandt, and S. Hack, “A dynamic program analysis to find
floating-point accuracy problems”, SIGPLAN Not., vol. 47, no. 6, pp. 453–462,
Jun. 2012, issn: 0362-1340. doi: 10.1145/2345156.2254118. [Online]. Available:
https://doi.org/10.1145/2345156.2254118 (cit. on p. 23).

78

https://doi.org/10.1109/ScalA49573.2019.00008
https://doi.org/10.1145/1731022.1731027
https://doi.org/10.1145/1731022.1731027
https://doi.org/10.1017/S0962492922000022
https://doi.org/https://doi.org/10.1016/j.future.2024.06.004
https://doi.org/https://doi.org/10.1016/j.future.2024.06.004
https://www.sciencedirect.com/science/article/pii/S0167739X24003017
https://www.sciencedirect.com/science/article/pii/S0167739X24003017
https://doi.org/10.2172/1814447
https://www.osti.gov/biblio/1814447
https://www.osti.gov/biblio/1814447
https://doi.org/10.1103/PhysRevE.106.015308
https://link.aps.org/doi/10.1103/PhysRevE.106.015308
https://link.aps.org/doi/10.1103/PhysRevE.106.015308
https://doi.org/https://doi.org/10.1016/j.future.2023.10.006
https://www.sciencedirect.com/science/article/pii/S0167739X23003813
https://doi.org/10.1145/2345156.2254118
https://doi.org/10.1145/2345156.2254118

[37] A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham, “Harnessing gpu tensor cores
for fast fp16 arithmetic to speed up mixed-precision iterative refinement solvers”,
in SC18: International Conference for High Performance Computing, Networking,
Storage and Analysis, 2018, pp. 603–613. doi: 10.1109/SC.2018.00050 (cit. on
p. 23).

[38] J. Wan, W. Wang, and Z. Zhang, “Enhancing computational efficiency in 3-d seismic
modelling with half-precision floating-point numbers based on the curvilinear
grid finite-difference method”, Geophysical Journal International, 2024. [Online].
Available: https://api.semanticscholar.org/CorpusID:271042153 (cit. on
p. 23).

[39] P. Luszczek, I. Yamazaki, and J. Dongarra, “Increasing accuracy of iterative
refinement in limited floating-point arithmetic on half-precision accelerators”, in
2019 IEEE High Performance Extreme Computing Conference (HPEC), 2019,
pp. 1–6. doi: 10.1109/HPEC.2019.8916392 (cit. on p. 24).

[40] Intel, Bfloat16 – hardware numerics definition, https://www.intel.com/content/

dam/develop/external/us/en/documents/bf16-hardware-numerics-definition-

white-paper.pdf, Nov. 2018 (cit. on p. 24).

[41] Y. Tortorella, L. Bertaccini, L. Benini, D. Rossi, and F. Conti, “Redmule: A mixed-
precision matrix–matrix operation engine for flexible and energy-efficient on-chip
linear algebra and tinyml training acceleration”, Future Generation Computer
Systems, vol. 149, pp. 122–135, 2023, issn: 0167-739X. doi: https://doi.org/10.

1016/j.future.2023.07.002. [Online]. Available: https://www.sciencedirect.

com/science/article/pii/S0167739X23002546 (cit. on p. 24).

[42] F. Rathgeber, D. A. Ham, L. Mitchell, et al., “Firedrake: Automating the finite
element method by composing abstractions”, vol. 43, no. 3, Dec. 2016, issn: 0098-
3500. doi: 10.1145/2998441. [Online]. Available: https://doi.org/10.1145/

2998441 (cit. on p. 24).

[43] G. N. W. e. a. A. Logg K.-A. Mardal, Automated Solution of Differential Equations
by the Finite Element Method. Springer, 2012. doi: 10.1007/978-3-642-23099-8

(cit. on p. 24).

[44] R. Biedron, J.-R. Carlson, J. Derlaga, P. Gnoffo, D. Hammond, and K. J. et al.,
Fun3d manual 13.7 nasa/tm-2020-5010139, 2020 (cit. on p. 24).

[45] G. Mudalige, M. Giles, I. Reguly, C. Bertolli, and P. Kelly, “Op2: An active library
framework for solving unstructured mesh-based applications on multi-core and
many-core architectures”, ser. 2012 Innovative Parallel Computing (InPar), 2012,
pp. 1–12. doi: 10.1109/InPar.2012.6339594 (cit. on pp. 24, 25).

[46] C. Chevalier and F. Pellegrini, “Pt-scotch: A tool for efficient parallel graph
ordering”, Parallel Computing, vol. 34, no. 6–8, pp. 318–331, Jun. 2008, issn:
0167-8191. doi: 10.1016/j.parco.2007.12.001. [Online]. Available: http:

//dx.doi.org/10.1016/j.parco.2007.12.001 (cit. on p. 24).

79

https://doi.org/10.1109/SC.2018.00050
https://api.semanticscholar.org/CorpusID:271042153
https://doi.org/10.1109/HPEC.2019.8916392
https://www.intel.com/content/dam/develop/external/us/en/documents/bf16-hardware-numerics-definition-white-paper.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/bf16-hardware-numerics-definition-white-paper.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/bf16-hardware-numerics-definition-white-paper.pdf
https://doi.org/https://doi.org/10.1016/j.future.2023.07.002
https://doi.org/https://doi.org/10.1016/j.future.2023.07.002
https://www.sciencedirect.com/science/article/pii/S0167739X23002546
https://www.sciencedirect.com/science/article/pii/S0167739X23002546
https://doi.org/10.1145/2998441
https://doi.org/10.1145/2998441
https://doi.org/10.1145/2998441
https://doi.org/10.1007/978-3-642-23099-8
https://doi.org/10.1109/InPar.2012.6339594
https://doi.org/10.1016/j.parco.2007.12.001
http://dx.doi.org/10.1016/j.parco.2007.12.001
http://dx.doi.org/10.1016/j.parco.2007.12.001

[47] G. Karypis, “Metis and parmetis”, in Encyclopedia of Parallel Computing. Boston,
MA: Springer US, 2011, pp. 1117–1124, isbn: 978-0-387-09766-4. doi: 10.1007/978-

0-387-09766-4_500. [Online]. Available: https://doi.org/10.1007/978-0-

387-09766-4_500 (cit. on p. 24).

[48] X. Zhang, X. Sun, X. Guo, Y. Du, Y. Lu, and Y. Liu, “Re-evaluation of atomic
operations and graph coloring for unstructured finite volume gpu simulations”,
ser. 2020 IEEE 32nd International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), 2020, pp. 297–304. doi: 10.1109/SBAC-

PAD49847.2020.00048 (cit. on p. 25).

[49] A. Sulyok, G. Balogh, I. Reguly, and G. Mudalige, “Locality optimized unstructured
mesh algorithms on gpus”, Journal of Parallel and Distributed Computing, vol. 134,
Aug. 2019. doi: 10.1016/j.jpdc.2019.07.011 (cit. on p. 25).

[50] I. Reguly, D. Giles, D. Gopinathan, et al., “The volna-op2 tsunami code (version
1.5)”, Geoscientific Model Development, vol. 11, pp. 4621–4635, Nov. 2018. doi:
10.5194/gmd-11-4621-2018 (cit. on p. 27).

[51] I. Z. Reguly, G. R. Mudalige, C. Bertolli, et al., “Acceleration of a full-scale
industrial cfd application with op2”, IEEE Transactions on Parallel and Distributed
Systems, vol. 27, no. 5, pp. 1265–1278, 2016. doi: 10.1109/TPDS.2015.2453972

(cit. on p. 27).

[52] B. Szilniczky-Erőss and I. Z. Reguly, “Performance portability of the mg-cfd
mini-app with sycl”, in Proceedings of the International Workshop on OpenCL,
ser. IWOCL ’20, Munich, Germany: Association for Computing Machinery, 2020,
isbn: 9781450375313. doi: 10.1145/3388333.3388659. [Online]. Available: https:

//doi.org/10.1145/3388333.3388659 (cit. on p. 27).

[53] I. Z. Reguly, G. R. Mudalige, and M. B. Giles, “Loop Tiling in Large-Scale Stencil
Codes at Run-Time with OPS”, IEEE Transactions on Parallel and Distributed
Systems, vol. 29, no. 4, pp. 873–886, 2018. doi: 10.1109/TPDS.2017.2778161

(cit. on pp. 27, 50).

[54] I. Z. Reguly, G. R. Mudalige, and M. B. Giles, “Loop tiling in large-scale stencil
codes at run-time with ops”, IEEE Transactions on Parallel and Distributed
Systems, vol. 29, no. 4, pp. 873–886, 2018. doi: 10.1109/TPDS.2017.2778161

(cit. on p. 30).

[55] D. J. Lusher, S. P. Jammy, and N. D. Sandham, “OpenSBLI: Automated code-
generation for heterogeneous computing architectures applied to compressible
fluid dynamics on structured grids”, Computer Physics Communications, vol. 267,
p. 108 063, 2021, issn: 0010-4655. doi: https://doi.org/10.1016/j.cpc.2021.

108063 (cit. on pp. 30–32, 50, 55).

[56] I. Ober and I. Ober, “On Patterns of Multi-domain Interaction for Scientific
Software Development focused on Separation of Concerns”, Procedia Computer
Science, vol. 108, pp. 2298–2302, 2017, issn: 1877-0509 (cit. on p. 30).

80

https://doi.org/10.1007/978-0-387-09766-4_500
https://doi.org/10.1007/978-0-387-09766-4_500
https://doi.org/10.1007/978-0-387-09766-4_500
https://doi.org/10.1007/978-0-387-09766-4_500
https://doi.org/10.1109/SBAC-PAD49847.2020.00048
https://doi.org/10.1109/SBAC-PAD49847.2020.00048
https://doi.org/10.1016/j.jpdc.2019.07.011
https://doi.org/10.5194/gmd-11-4621-2018
https://doi.org/10.1109/TPDS.2015.2453972
https://doi.org/10.1145/3388333.3388659
https://doi.org/10.1145/3388333.3388659
https://doi.org/10.1145/3388333.3388659
https://doi.org/10.1109/TPDS.2017.2778161
https://doi.org/10.1109/TPDS.2017.2778161
https://doi.org/https://doi.org/10.1016/j.cpc.2021.108063
https://doi.org/https://doi.org/10.1016/j.cpc.2021.108063

[57] G. Blaisdell, E. Spyropoulos, and J. Qin, “The effect of the formulation of nonlinear
terms on aliasing errors in spectral methods”, Applied Numerical Mathematics,
vol. 21, no. 3, pp. 207–219, 1996, issn: 0168-9274. doi: https://doi.org/10.

1016/0168-9274(96)00005-0 (cit. on pp. 31, 32).

[58] C. T. Jacobs, S. P. Jammy, and N. D. Sandham, “OpenSBLI: A framework for the
automated derivation and parallel execution of finite difference solvers on a range
of computer architectures”, Journal of Computational Science, vol. 18, pp. 12–23,
2017 (cit. on p. 31).

[59] D. J. Lusher, S. P. Jammy, and N. D. Sandham, “Shock-wave/boundary-layer inter-
actions in the automatic source-code generation framework opensbli”, Computers
& Fluids, vol. 173, pp. 17–21, 2018, issn: 0045-7930 (cit. on p. 31).

[60] D. J. Lusher and G. N. Coleman, “Numerical study of compressible wall-bounded
turbulence – the effect of thermal wall conditions on the turbulent Prandtl num-
ber in the low-supersonic regime”, International Journal of Computational Fluid
Dynamics, vol. 36, no. 9, pp. 797–815, 2022 (cit. on p. 31).

[61] D. J. Lusher, A. Sansica, N. D. Sandham, J. Meng, B. Siklósi, and A. Hashimoto,
“OpenSBLI v3.0: High-Fidelity Multi-Block Transonic Aerofoil CFD Simulations
using Domain Specific Languages on GPUs”, Computer Physics Communications,
p. 109 406, 2024, issn: 0010-4655 (cit. on pp. 31, 53, 60, 62).

[62] D. J. Lusher, A. Sansica, and A. Hashimoto, “Effect of Tripping and Domain Width
on Transonic Buffet on Periodic NASA-CRM Airfoils”, AIAA Journal, pp. 1–20,
2024 (cit. on p. 31).

[63] D. J. Lusher, A. Sansica, M. Zauner, and A. Hashimoto, “High-fidelity study of
three-dimensional turbulent transonic buffet on wide-span infinite wings”, arXiv,
p. 2401.14793, 2024. [Online]. Available: https://arxiv.org/abs/2406.01232

(cit. on pp. 31, 62).

[64] S. Pirozzoli, “Numerical methods for high-speed flows”, Annual Review of Fluid
Mechanics, vol. 43, pp. 163–194, Jan. 2011. doi: 10.1146/annurev-fluid-122109-

160718 (cit. on p. 32).

[65] G. Coppola, F. Capuano, and L. de Luca, “Discrete Energy-Conservation Properties
in the Numerical Simulation of the Navier–Stokes Equations”, Applied Mechanics
Reviews, vol. 71, no. 1, Mar. 2019, 010803, issn: 0003-6900 (cit. on p. 32).

[66] G. Coppola, F. Capuano, S. Pirozzoli, and L. de Luca, “Numerically stable for-
mulations of convective terms for turbulent compressible flows”, Journal of Com-
putational Physics, vol. 382, pp. 86–104, 2019, issn: 0021-9991 (cit. on pp. 32,
61).

[67] W. J. Feiereisen, W. C. Reynolds, and J. H. Ferziger, “Numerical simulation of
a compressible homogeneous, turbulent shear flow. ph.d. thesis”, 1981. [Online].
Available: https://ntrs.nasa.gov/citations/19820003523 (cit. on p. 32).

81

https://doi.org/https://doi.org/10.1016/0168-9274(96)00005-0
https://doi.org/https://doi.org/10.1016/0168-9274(96)00005-0
https://arxiv.org/abs/2406.01232
https://doi.org/10.1146/annurev-fluid-122109-160718
https://doi.org/10.1146/annurev-fluid-122109-160718
https://ntrs.nasa.gov/citations/19820003523

[68] W. M. Ahmad K., “Automatic testing of openacc applications”, Chandrasekaran
S., Juckeland G. (eds) Accelerator Programming Using Directives. WACCPD 2017.
Lecture Notes in Computer Science, vol. 10732, 2018. doi: 10.1007/978-3-319-

74896-2_8 (cit. on p. 33).

[69] M. Mascagni, “The white rat of numerical reproducibility”, AIP Conference Pro-
ceedings, vol. 2365, no. 1, p. 020 018, 2021. doi: 10.1063/5.0057176. eprint:
https://aip.scitation.org/doi/pdf/10.1063/5.0057176. [Online]. Available:
https://aip.scitation.org/doi/abs/10.1063/5.0057176 (cit. on p. 33).

[70] L. Xu, X. Ren, Q. Wang, X. Xu, and X. Yang, “Full-neighbor-list based numerical
reproducibility method for parallel molecular dynamics simulations”, Parallel
Computing, vol. 85, pp. 109–118, 2019, issn: 0167-8191. doi: https://doi.org/10.

1016/j.parco.2019.04.002. [Online]. Available: https://www.sciencedirect.

com/science/article/pii/S0167819119300754 (cit. on p. 33).

[71] A. P. Thompson, H. M. Aktulga, R. Berger, et al., “LAMMPS - a flexible simulation
tool for particle-based materials modeling at the atomic, meso, and continuum
scales”, Comp. Phys. Comm., vol. 271, p. 108 171, 2022. doi: 10.1016/j.cpc.

2021.108171 (cit. on p. 33).

[72] P. Langlois, R. Nheili, and C. Denis, “Numerical reproducibility: Feasibility issues”,
ser. 2015 7th International Conference on New Technologies, Mobility and Security
(NTMS), 2015, pp. 1–5. doi: 10.1109/NTMS.2015.7266509 (cit. on p. 33).

[73] Open TELEMAC-MASCARET. v.7.0, Release notes, www.opentelemac.org,
2014 (cit. on p. 34).

[74] Y. He and C. H. Q. Ding, “Using accurate arithmetics to improve numerical repro-
ducibility and stability in parallel applications”, The Journal of Supercomputing,
vol. 18, no. 3, pp. 259–277, Mar. 2001 (cit. on p. 34).

[75] Y. Hida, S. Li, and D. Bailey, “Library for double-double and quad-double arith-
metic”, Jan. 2008 (cit. on p. 34).

[76] M. Taufer, O. Padron, P. Saponaro, and S. Patel, “Improving numerical repro-
ducibility and stability in large-scale numerical simulations on gpus”, ser. 2010
IEEE International Symposium on Parallel Distributed Processing (IPDPS), 2010,
pp. 1–9. doi: 10.1109/IPDPS.2010.5470481 (cit. on p. 34).

[77] R. W. Robey, J. M. Robey, and R. Aulwes, “In search of numerical consistency
in parallel programming”, Parallel Comput., vol. 37, no. 4–5, pp. 217–229, Apr.
2011, issn: 0167-8191. doi: 10.1016/j.parco.2011.02.009. [Online]. Available:
https://doi.org/10.1016/j.parco.2011.02.009 (cit. on p. 34).

[78] K. Ozawa and M. Miyazaki, “A summation algorithm with error correction for
parallel computers”, Systems and Computers in Japan, vol. 24, no. 7, pp. 62–
68, 1993. doi: https://doi.org/10.1002/scj.4690240706. eprint: https://

onlinelibrary.wiley.com/doi/pdf/10.1002/scj.4690240706. [Online]. Avail-

82

https://doi.org/10.1007/978-3-319-74896-2_8
https://doi.org/10.1007/978-3-319-74896-2_8
https://doi.org/10.1063/5.0057176
https://aip.scitation.org/doi/pdf/10.1063/5.0057176
https://aip.scitation.org/doi/abs/10.1063/5.0057176
https://doi.org/https://doi.org/10.1016/j.parco.2019.04.002
https://doi.org/https://doi.org/10.1016/j.parco.2019.04.002
https://www.sciencedirect.com/science/article/pii/S0167819119300754
https://www.sciencedirect.com/science/article/pii/S0167819119300754
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1109/NTMS.2015.7266509
www.opentelemac.org
https://doi.org/10.1109/IPDPS.2010.5470481
https://doi.org/10.1016/j.parco.2011.02.009
https://doi.org/10.1016/j.parco.2011.02.009
https://doi.org/https://doi.org/10.1002/scj.4690240706
https://onlinelibrary.wiley.com/doi/pdf/10.1002/scj.4690240706
https://onlinelibrary.wiley.com/doi/pdf/10.1002/scj.4690240706

able: https://onlinelibrary.wiley.com/doi/abs/10.1002/scj.4690240706

(cit. on p. 34).

[79] D. E. Knuth, The Art of Computer Programming, Volume 1 (3rd Ed.): Fundamental
Algorithms. USA: Addison Wesley Longman Publishing Co., Inc., 1997, isbn:
0201896834 (cit. on p. 34).

[80] S. F. Jalal Apostal, D. Apostal, and R. Marsh, “Improving numerical reproducibility
of scientific software in parallel systems”, ser. 2020 IEEE International Conference
on Electro Information Technology (EIT), 2020, pp. 066–074. doi: 10.1109/

EIT48999.2020.9208338 (cit. on p. 34).

[81] R. A. Olsson, “Reproducible execution of sr programs”, Concurrency: Practice
and Experience, vol. 11, no. 9, pp. 479–507, 1999. doi: https://doi.org/10.

1002/(SICI)1096-9128(19990810)11:9<479::AID-CPE441>3.0.CO;2-S. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/\%28SICI\%291096-

9128\%2819990810\%2911\%3A9\%3C479\%3A\%3AAID- CPE441\%3E3.0.CO\

%3B2-S. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.

1002/%5C%28SICI%5C%291096- 9128%5C%2819990810%5C%2911%5C%3A9%5C%

3C479%5C%3A%5C%3AAID-CPE441%5C%3E3.0.CO%5C%3B2-S (cit. on p. 34).

[82] J. Zhang, Z. Dai, R. Li, L. Deng, J. Liu, and N. Zhou, “Acceleration of a production-
level unstructured grid finite volume cfd code on gpu”, Applied Sciences, vol. 13,
no. 10, pp. 479–507, 2023, issn: 2076-3417. doi: 10.3390/app13106193. [Online].
Available: https://www.mdpi.com/2076-3417/13/10/6193 (cit. on p. 34).

[83] M. Giles, D. Ghate, and M. Duta, “Using automatic difierentiation for adjoint cfd
code development”, Computational Fluid Dynamics Journal, vol. 16, Jan. 2008
(cit. on p. 35).

[84] A. Corrigan, F. Camelli, R.Löhner, and J. Wallin, “Running unstructured grid
cfd solvers on modern graphics hardware”, ser. 19th AIAA Computational Fluid
Dynamics Conference AIAA 2009-4001, Jun. 2009 (cit. on p. 35).

[85] Rodinia: Accelerating Compute-Intensive Applications with Accelerators, https:

//rodinia.cs.virginia.edu/, accessed 2019 (cit. on p. 35).

[86] A. Owenson, S. Wright, R. Bunt, Y. Ho, M. Street, and S. Jarvis, “An Unstructured
CFD Mini-Application for the Performance Prediction of a Production CFD Code”,
Concurrency Computat: Pract Exper, 2019. doi: 10.1002/cpe.5443. [Online].
Available: https://doi.org/10.1002/cpe.5443 (cit. on p. 35).

[87] MG-CFD-OP2 GitHub Repository, https://github.com/warwick-hpsc/MG-CFD-

app-OP2, accessed 2019 (cit. on p. 35).

[88] L. Lapworth, “Hydra-cfd: A framework for collaborative cfd development”, in
International conference on scientific and engineering computation (IC-SEC),
vol. 30, 2004 (cit. on p. 35).

83

https://onlinelibrary.wiley.com/doi/abs/10.1002/scj.4690240706
https://doi.org/10.1109/EIT48999.2020.9208338
https://doi.org/10.1109/EIT48999.2020.9208338
https://doi.org/https://doi.org/10.1002/(SICI)1096-9128(19990810)11:9<479::AID-CPE441>3.0.CO;2-S
https://doi.org/https://doi.org/10.1002/(SICI)1096-9128(19990810)11:9<479::AID-CPE441>3.0.CO;2-S
https://onlinelibrary.wiley.com/doi/pdf/10.1002/\%28SICI\%291096-9128\%2819990810\%2911\%3A9\%3C479\%3A\%3AAID-CPE441\%3E3.0.CO\%3B2-S
https://onlinelibrary.wiley.com/doi/pdf/10.1002/\%28SICI\%291096-9128\%2819990810\%2911\%3A9\%3C479\%3A\%3AAID-CPE441\%3E3.0.CO\%3B2-S
https://onlinelibrary.wiley.com/doi/pdf/10.1002/\%28SICI\%291096-9128\%2819990810\%2911\%3A9\%3C479\%3A\%3AAID-CPE441\%3E3.0.CO\%3B2-S
https://onlinelibrary.wiley.com/doi/abs/10.1002/%5C%28SICI%5C%291096-9128%5C%2819990810%5C%2911%5C%3A9%5C%3C479%5C%3A%5C%3AAID-CPE441%5C%3E3.0.CO%5C%3B2-S
https://onlinelibrary.wiley.com/doi/abs/10.1002/%5C%28SICI%5C%291096-9128%5C%2819990810%5C%2911%5C%3A9%5C%3C479%5C%3A%5C%3AAID-CPE441%5C%3E3.0.CO%5C%3B2-S
https://onlinelibrary.wiley.com/doi/abs/10.1002/%5C%28SICI%5C%291096-9128%5C%2819990810%5C%2911%5C%3A9%5C%3C479%5C%3A%5C%3AAID-CPE441%5C%3E3.0.CO%5C%3B2-S
https://doi.org/10.3390/app13106193
https://www.mdpi.com/2076-3417/13/10/6193
https://rodinia.cs.virginia.edu/
https://rodinia.cs.virginia.edu/
https://doi.org/10.1002/cpe.5443
https://doi.org/10.1002/cpe.5443
https://github.com/warwick-hpsc/MG-CFD-app-OP2
https://github.com/warwick-hpsc/MG-CFD-app-OP2

[89] P. Moinier, J.-d. Muller, and M. Giles, “Edge-based multigrid and preconditioning
for hybrid grids”, AIAA Journal, vol. 40, Apr. 2000. doi: 10.2514/2.1556 (cit. on
p. 35).

[90] M. B. Giles, M. C. Duta, J.-D. Muller, and N. A. Pierce, “Algorithm developments
for discrete adjoint methods”, AIAA Journal, vol. 41, no. 2, pp. 198–205, 2003. doi:
10.2514/2.1961. eprint: https://doi.org/10.2514/2.1961. [Online]. Available:
https://doi.org/10.2514/2.1961 (cit. on p. 35).

[91] C. Bertolli, A. Betts, G. Mudalige, M. Giles, and P. Kelly, “Design and performance
of the op2 library for unstructured mesh applications”, M. Alexander, P. D’Ambra,
A. Belloum, et al., Eds., ser. Euro-Par 2011: Parallel Processing Workshops, Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 191–200, isbn: 978-3-642-29737-3
(cit. on p. 37).

[92] M. Osama, M. Truong, C. Yang, A. Buluç, and J. Owens, “Graph coloring on the
gpu”, ser. 2019 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), 2019, pp. 231–240. doi: 10.1109/IPDPSW.2019.00046

(cit. on p. 41).

[93] B. Jenkins, “Algorithm alley: Hash functions”, vol. 22, no. 9, pp. 107–109, 115–116,
Sep. 1997, issn: 1044-789X (cit. on p. 41).

[94] D. J. Lusher and N. D. Sandham, “Assessment of Low-Dissipative Shock-Capturing
Schemes for the Compressible Taylor–Green Vortex”, AIAA Journal, vol. 59, no. 2,
pp. 533–545, Dec. 2020, issn: 0001-1452. doi: 10.2514/1.J059672 (cit. on pp. 51,
54).

[95] P. Schlatter, M. Karp, R. Stanly, et al., “Impact of low floating-point precision on
high-fidelity simulations of turbulence”, in 77th Annual Meeting of the Division of
Fluid Dynamics, American Physical Society, Presented at 77th Annual Meeting
of the Division of Fluid Dynamics, APS, Chair: Adrian Lozano-Duran, Caltech
/ MIT, Salt Lake City, Utah, Nov. 2024. [Online]. Available: https://meetings.

aps.org/Meeting/DFD24/Session/R37.6 (cit. on p. 52).

[96] S. P. Jammy, C. T. Jacobs, and N. D. Sandham, “Performance evaluation of explicit
finite difference algorithms with varying amounts of computational and memory
intensity”, Journal of Computational Science, vol. 36, p. 100 565, 2019, issn: 1877-
7503. doi: https://doi.org/10.1016/j.jocs.2016.10.015. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877750316302708

(cit. on p. 53).

[97] J. DeBonis, “Solutions of the Taylor-Green Vortex Problem Using High-Resolution
Explicit Finite Difference Methods”, in 51st AIAA Aerospace Sciences Meeting
including the New Horizons Forum and Aerospace Exposition, ser. Aerospace
Sciences Meetings, American Institute of Aeronautics and Astronautics, Jan. 2013
(cit. on p. 54).

84

https://doi.org/10.2514/2.1556
https://doi.org/10.2514/2.1961
https://doi.org/10.2514/2.1961
https://doi.org/10.2514/2.1961
https://doi.org/10.1109/IPDPSW.2019.00046
https://doi.org/10.2514/1.J059672
https://meetings.aps.org/Meeting/DFD24/Session/R37.6
https://meetings.aps.org/Meeting/DFD24/Session/R37.6
https://doi.org/https://doi.org/10.1016/j.jocs.2016.10.015
https://www.sciencedirect.com/science/article/pii/S1877750316302708

[98] J.-B. Chapelier, D. J. Lusher, W. Van Noordt, et al., “Comparison of high-order
numerical methodologies for the simulation of the supersonic Taylor–Green vortex
flow”, Physics of Fluids, vol. 36, no. 5, p. 055 146, May 2024, issn: 1070-6631. doi:
10.1063/5.0206359 (cit. on pp. 54, 55).

[99] Y. Kuya, K. Totani, and S. Kawai, “Kinetic energy and entropy preserving schemes
for compressible flows by split convective forms”, Journal of Computational Physics,
vol. 375, pp. 823–853, 2018, issn: 0021-9991. doi: https://doi.org/10.1016/j.

jcp.2018.08.058 (cit. on pp. 60, 61).

85

https://doi.org/10.1063/5.0206359
https://doi.org/https://doi.org/10.1016/j.jcp.2018.08.058
https://doi.org/https://doi.org/10.1016/j.jcp.2018.08.058

	Introduction
	Scientific Computing
	High Performance Computing
	Floating-Point precision
	The OPS and OP2 Domain Specific Libraries

	Bitwise reproducibility
	Introduction
	Backround
	Theory and Calculation
	Performance Results
	Conclusions

	Reduced precision computing
	Introduction
	Enabling mixed precision in OpenSBLI
	Results
	Conclusions and Future Work

	Summary of the Dissertation
	Methods and tools
	New scientific results
	Potential applications and benefits

	List of author publications

