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1. Introduction 
The attentional mechanism of a healthy person operates in such a 

natural manner and ease, that mainly we are not aware of how 

complex, in fact this mechanism is. With the help of our vision, we 

are informed about the objects and events in the surrounding world 

almost since our birth, and – in fortunate cases – it remains to be one 

of our most important sense-organs until the end of our life. Because 

of its’ importance and triviality – meaning that, as an experience 

vision is a natural sense – many people try to understand it, and also 

to mimic it, to ‘model’ it, for a long while. Although, during that 

time, undeniably, enormous knowledge has been accumulated, we 

are still very far from the complete understanding of how the 

excitation of the photoreceptors in the retina by the photons 

transform into visual experience.  

 

Usually, we feel that we continually sense, ‘perceive’ the outside 

world: we know what is under and above us, what is on the left and 

what is on the right; - in brief, we are constantly being informed of 

every small detail in our environment through our vision. This - 

although not completely baseless – after all, is essentially only a 

false sensation. According to different experiments, our environment 

can change even fundamentally (e.g. the walls turn from blue into 

red, or an object right in front of us disappears), but if this alteration 

is slow and smooth enough, we are unable to sense it. The 

explanation of this lies exactly in the fact, that we have only a 

restored ‘picture’ or ‘representation’ about the surrounding world. 
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However, this has more to do with memory, perhaps with stored 

knowledge, than with vision itself. And of course, this has its’ good 

reason: if we really, permanently processed all the information being 

present in our visual environment, our brain would be extremely 

overloaded needlessly. For example, the shape and colour of the 

bookshelf aside, with all the accurate titles of every book on it, every 

small detail of the picture that can be seen through the half-open 

door from the other room, every tile on the neighboring house’s roof, 

all these, simultaneously, surely are not important for us. Moreover, 

if we think a bit deeply on it, usually only a tiny little piece of our 

environment is important for us at a given moment, whereas the rest 

is redundant (for instance, the recurring motif of the wallpaper), or 

simply irrelevant (for instance the tiles on the next house’s roof). 

Therefore the “stored representation method” is expressly beneficial. 

And, if anything varies compared to our stored data (for example, the 

lamp is being switched on in the adjacent room, the door is being 

opened, etc.), we will be informed through the appropriate, so called 

“bottom-up” attentional method.  

At this point where we reach the concept of visual attention: this 

extremely important ability, which permits the (artificial or living) 

creature of finding the actually important data-fragment in the visual 

environment, without processing all the information, in real time. 

It is hard to over-emphasize the evolutionary importance of this 

ability: a suddenly appearing predator, finding the mellow fruits in 

the bush, or maybe a warning of a tribe-mate. 

 

Thus, from an engineering viewpoint, a system that is able to attend, 

is capable of finding that information-fragment in real time, which is 
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actually important for the given system, right there, at that given 

moment. With this, enormous processing capacity can be saved, 

whereby the processing quality can be increased, whereas the time 

necessary for it can be decreased – since the redundant and/or 

unnecessary information-mass is not getting processed. Of course, 

the phrase “actually important” makes the problem extremely 

complex and difficult. 

 

Our faculty is principally engaged in neuromorphic modeling, that is, 

the bases of our models are primarily living creatures. Human visual 

attention evolves from two different, but closely related, parallel 

working methods: an involuntary, reflex-like, so called “bottom-up”, 

which, for example, directs our attention to a flickering red point in 

front of a grey background, and a voluntary one, so called “top-

down”, which, for example enables us to find our key in a packed 

drawer.  

 

In the course of my Ph.D. studies, my main goal has been to 

understand and to model the bottom-up visual attentional method, as 

precisely as possible. During these years, a neuromorphic model has 

been created, in which the unknown parameters had been adjusted 

after human gaze direction measurements. Similarly, the accuracy of 

the model has been tested via comparing the models’ predictions 

with human gaze direction measurements. 
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2. Experimental methods 
My research area requires the joint application of different 

disciplines. Accordingly, as a first step, via neurobiological studies I 

have got acquainted with the basics of vision and with the 

mechanisms that form visual attention as well. 

The substance of modeling lies in the proper selection of the 

elements forming a complex system (like an animals’ visual system), 

more precisely, the selection of those elements which develop the 

features being important for us. Thus, if these elements are the same 

in different systems, then trespassing is possible among these 

systems. Accordingly, in a general sense, the vertebrate visual 

system can be considered as the basics of my model. (Present-day 

attentional models are by far not precise enough to detect the 

differences, for example between humans and primates.) 

The main steps of the model are depicted on figure 1. As a first step, 

the input image (left hand-side, top) is being decomposed according 

to ten different retina channels (right hand-side, top). Next, each 

channel creates its’ own saliency map, which is a two dimensional 

topographic map of the physical world in the brain (right hand-side, 

bottom). The weighted sum of these maps form the “final” or 

“master” saliency map (left hand side, bottom), which is a 

topographic map of the visual scene as well.  The saliency map 

codes how striking, how obtrusive are the corresponding points in 

the physical world. The most intense point of this map attracts our 

attention the most, thus the corresponding location of the physical 

world is being mapped into the center of the sharp seeing, that is, to 

the fovea. 
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Figure 1.: The functioning of the bottom-up attentional mechanism. As a first step, the 
input image splits up according to the different retina channels (ten different ganglion 
cell types), hereby forming the ten topographic maps of the input scene (right hand-
side, top of the picture). Afterwards, each of these maps creates its’ own saliency map 
(right hand-side, bottom) which will sum up into a “final” or “master” map (left hand-
side, bottom). The most intense point of this final map attracts the attention; all the 
other locations are suppressed. 



MODELING VISUAL ATTENTION 
 

 6 

 

I have realized the above model in (Borland) C++. 

The first main step has been the investigation and the completion of 

the retina channels. The model runs on a CNN (Cellular 

Neural/Nonlinear Network) simulator, which I have also prepared in 

Borland C++. I have got the proper parameters, which define the 

exact spatio-temporal behaviour of the different retina channels, 

from a previous work carried out by David Balya. Further 

developments of the model – of course, under the guidance of my 

supervisor and consultant – constitute my own work. 

 

The principles underlying the retina-model are briefly the following: 

every retinal cell-layer (photo-receptors, horizontal, bipolar, 

amacrine and ganglion cell-layers) corresponds to a CNN-layer 

(figure 1, top, middle). The properties of the different cell-layers 

(average diameter of the dendritic tree, temporal properties of the 

cell responds, etc.) can be approximated with appropriate CNN 

templates and parameters. The connections between these CNN 

layers (excitations, inhibitions, temporal delays, diffusion 

parameters, etc.) have also been defined in a way, so that they 

approximate the output of the corresponding retinal layers, as close 

as possible. The temporal properties of the retina channels have been 

entrapped with the adaptation of a weighted, circular memory buffer: 

the newly processed frame overwrites always the oldest, and the 

overall output of the given channel is the weighted, pixel-wise 

summation of the buffer content (figure 1, top of the image, right 

hand side). 
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The next step is the creation of the saliency maps belonging to the 

individual retina channels (figure 1, right hand side). These maps are 

being formed by differently sized receptive fields (RF). In other 

words, every channel has a different “optimal” receptive field size, 

or else, a different receptive field distribution (figure 3, table 1). In 

the beginning of the cerebral vision-processing (that is, in the “low” 

brain areas), the RFs are relatively small, and also circle-shaped. The 

higher we get in the brain hierarchy, the biggest the RFs are, 

concerning their size, and the more complex they become, with 

respect to their shape. Since in the beginning of my studies, the RF-

sizes belonging to the different channels were practically unknown, 

in the initial state of the model, these have been adjustable values via 

the keyboard. (On figure 1, the parameters for which no literature 

data has been existent up to now are highlighted with red question 

marks.) The other important, yet unknown parameters which 

determine the final saliency map are the weights of the channel-

based saliency maps (figure 1, bottom, middle). 

 

I have approximated these parameters via human gaze direction 

measurements. For this purpose, I have applied an equipment called 

“iView X Hi-Speed System” suitable for gaze direction 

measurements. The “training-set”, that is, the video clip that the 

subjects have seen for the process of estimating the parameters, was 

a ~33 second flow, consisting of 267 frames, 8fps, where, each 

frame had a 512x298 pixel/frame resolution, 96 dpi. The stimulus 

did not contain any voice. It consisted of four shorter natural scenes, 

containing birds, mountains, lakes, horses, etc. The reason behind the 

usage of a moving natural input was justified by the fact that, 
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according to literature-data, if the subject had no specific task to 

perform (e.g. into which continent the subject puts the scene,  or, 

how many red and blue parrots the subject counts, etc.), then these 

conditions primarily trigger bottom-up visual attention. 

During the measurements I have investigated the efficiency of 40 

different receptive field sizes, for all the channels. This means, RF 

sizes spreading from 0.5° up to approximately 26°, expressed in 

terms of the viewing angle. 

For the purpose of defining the channel weights I have applied 

different approaches addressing the following question: considering 

a given stimuli (frame), which channel(s) participate in triggering the 

saccade, and also, in what extent do these determine the new fixation 

position. (We call “saccades” those little eye-movements, “jumps”, 

for which the center of the focus changes, that is, when one changes 

the fixation location.♣) During the measurements I have applied 240 

Hz sampling frequency and I have only taken into account the 

saccades bigger then 1°.  

 

For evaluating the measured data according to the above 

assumptions (differing regarding which channels are being 

considered as saccade-triggering ones with respect to given stimuli) I 

have developed programs under MatLab. 

 

For the purpose of validating the received parameters, I have 

performed similar human measurements on a “test video set” with an 

                                                           
♣ In the literature we can find the word “saccade” in the sense of the shifting of the 
entire visual scene, but in the thesis I use this word in the sense given in the text. 
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analogous topic (that is: moving natural scenes) using the same 

equipment. The other settings had been the same, but for the sake of 

accuracy, I have used a longer-duration stimulus including 9 scenes, 

477 frames, ~ 56 seconds.  

During the validation process, I have measured the correspondence 

between the models’ predictions and human gaze directions. For all 

the frames in the test video set, I have determined more points, as 

possible fixation locations (like: “on this frame, the coordinates of 

the most probable fixation location is the x-y pair, the coordinates of 

the second most probable position is x’-y’ ”, etc.). The results have 

shown a quite accurate correspondence: in ~70% of the cases, the 

measured location was among the first four predicted locations. The 

accidental chance of this is less then 20%.  

 

During the generation of a visual attentional model, the goal is to 

reproduce the accomplishment of living creatures, namely, the 

capability of finding the actually important visual information in the 

redundant and/or irrelevant torrent, in real time. This is possible by 

using heuristic methods and ideas as well, but the final goal is – 

primarily in the case of neuromorphic modeling – to understand and 

mimic the neural structure of the creature that we have used as 

model, as proper as possible. The importance of this lies on the fact 

that during the development of such a model, we can learn a lot 

about the functioning of living systems. Moreover, problems of an 

engineering design create a correlation loop with biological 

measurements as well. Furthermore, regarding efficiency, heuristic 

systems are hardly up to the operational level of the corresponding 

mechanisms in living creatures.  
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3. New scientific results 

Thesis #1: A new efficient method in the development of the 

bottom-up attentional model. The employment of the multi-channel 

mammalian retina model, which is based on the latest biological 

findings, instead of using the heuristic, low level visual feature 

filtering, and its’ consequences. 

 

In living creatures, the information processing starts already in the 

retina. Even more, the information leaves the retina in a highly 

filtered and organized way, and projects towards the higher brain 

areas for further processing. The first precise enough neurobiological 

descriptions of this information-classification – and thus also the 

retina-models built on them – have been appeared only in the last 

few years. Accordingly, this retinal process has been neglected in the 

earlier models, and instead of it, heuristic, different low level visual 

feature extraction algorithms have been applied. 

 The main novelties of the model I have implemented are the 

following: Firstly, the application of the methodology of the above 

mentioned multi-channel decomposition of the visual information, 

and thus the exploitation of the latest results of the retina research. 

Secondly, the estimation of the corresponding receptive field sizes in 

order to form the proper channel-based saliency maps by them. 
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I.1.  I have improved the ‘classical’ visual attention model in a 

way that instead of using the generally applied 3-5 low 

level visual feature extraction (characterizing the 

‘classical’ model), I am using the multi-channel 

mammalian retina decomposition method, which is based 

on the most recent neurobiological discoveries. 

 

The first step in a neuromorphic visual attention model is the 

decomposition of the input image/video, according to the, so 

called, “low level visual features” (figure 1). Present-day models 

characteristically employ 3-5 of them, such as, edge-filtering, 

corner-filtering, color-filtering, etc.  

Instead, in my model I have used the recently revealed and 

modeled mammalian retina network model, which differentiates 

ten channels (figure 2). In the case of five channels, the functions 

can be read of the output (edge-detection, motion-filtering, 

intensity and two color oppositions)∗, while the function of the 

remaining five is unknown, in the sense that, the aim of their 

process could not be formulated explicitly, at least up to present. 

Consequently, none of the heuristic models can incorporate them.  

                                                           
∗ According to the latest researches, certain cells in the retina respond to motion 
direction-dependently, that is, in certain living creatures, another channel could exist, 
which filters motion in a direction selective manner. (Fried, S. I., Muench, T. A., & 
Werblin, F. S. (2002). Mechanisms and circuitry underlying direction selectivity, in 
the retina. Nature, 420, 411-414. ) 



MODELING VISUAL ATTENTION 
 

 12 

 
Figure 2.: The functioning of the mammalian retina channels on moving input. 
Uppermost row, left picture (input): birds flying over a lake. Next image on the right: 
the “Transient” channel, which in-filters everything that moves, and eliminates all the 
steady parts. Only the flying birds trigger answer on the given stimulus. Same row, 
right-most image: “Intensity” channel. Middle row from left to right: Blue-yellow 
contrast, Red-green contrast, LED (Local Edge Detector) and “Bistratified” channels. 
The function of the Bistratified channel, similarly to the channels depicted in the 
bottom-most row, had not been formulated explicitly before. The channels in the 
bottom-most row, from left to right are: Alpha, Beta, Delta and Polar.  

 

Corollary: In my model, similarly to living systems, the 

saliency maps that are based on those retina channels 

having non-explicitly described functions, also take part in 

the allocation of the fixation location. I have investigated 

their role on moving visual input. 

 

The so called “saliency maps” are two dimensional, topographic 

maps of the physical world in the brain, such that, the activity of 

certain neurons are proportional with the ‘vividness’, ‘high-

contrast’ of the corresponding locations in the physical world.  
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Since the retina channels having non-explicitly described 

functions form saliency maps as well, and thus they take part in 

the formation of the final saliency map, neglecting them 

significantly modifies the final results. In my model, I have taken 

into account the saliency maps for all the retina channels, and I 

have determined the weights, the ‘importance’ of the saliency 

maps belonging to these channels by the same method, that I have 

used for the explicitly formulated ones.  

Seven channels’ response (Transient, LED, Bistratified, Alpha, 

Beta, Delta, Polar) out of the ten, depend not only on the actual 

stimulus, but also on its temporal behaviour. In other words, the 

response of these channels – and accordingly the saliency maps 

based on them – more or less react on changes, on motion. The 

effect of these saliency maps, during the formation of bottom up 

visual attention, for the first time has been investigated during my 

measurements.  

 

Thesis #2: The estimation and optimization of the unknown 

parameters – namely, the receptive field sizes belonging to the 

different channels as well as the channel weights – based on 

human gaze-direction measurements. Additionally, the verification 

of the model, based also on human measurements. 

 

The model includes two essential, but unknown parameters: firstly, 

what sized receptive fields form the saliency maps on the different 

retina channels, and secondly, what is the weighting with which the 

channel-based saliency maps form the final saliency map. (These are 
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marked with red question marks on figure 1.) These parameters had 

been estimated via human gaze direction measurements, and I have 

checked the accuracy of the obtained model with similar 

measurements as well.  

 

Directly, we can not measure the channel-based saliency maps (i.e. 

those belonging to a given retina channel) or their effects, but only 

the fixation locations, provided by the observers who have taken part 

in the experiments. We can only infer, deduce these immeasurable 

values by using different assumptions; that is, by using indirect 

methods. This is true for the weighting of the channels based maps as 

well. (It is quite difficult to design an experiment, a “stimulus”, 

which affects only one of the channels – it is enough to mention, that 

if the stimulus is for example dynamic, then it immediately affects 

the seven spatio-temporal channels and the Intensity one as well.) 

Since, according to literature data, the gaze directions controlled by 

bottom-up mechanism are essentially determined by these saliency 

maps, I have estimated their efficiency through their most intensive 

points, namely, via the correspondence between the ‘keenest’ 

locations of these channel-based saliency maps and the measured 

fixation locations. Consequently, I have estimated the missing 

parameters via inferences – which are another reason why the 

validation (comparison with human gaze direction measurements) 

has been so important. 
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II.1. I have determined optimal receptive field (RF) sizes for all 

the ten retina channels in our model, via human 

measurements. These correspond to those receptive fields 

sizes that generate the corresponding saliency maps. This 

process involves the investigation of 40 different RF sizes, 

between ~0.5° and ~26°, expressed in terms of the viewing 

angle. 

 

For the same input, receptive fields with different sizes result in 

different saliency maps. I consider a receptive field size as 

optimal, if the saliency map created by it is the most effective, that 

is, for which the most intense points of the corresponding saliency 

map give the most accurate concurrence with the measured 

fixation locations. 

 

Different saccades are provoked by different channels. The open 

questions are the following: 1) how many channels take part in the 

provocation of a given saccade, and 2) which are these channels 

concretely. Addressing these questions, I have investigated two 

different assumptions: 

1) The channels which trigger a saccade (determine the new 

fixation location), are those being the most “effective” 

according to arbitrary receptive field sizes. 

 

2) The channels which trigger a saccade are those that are 

effective in average, that is, all the saliency maps 

according to all the 40 receptive field sizes participate in 

the averaging.  
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I have investigated the results if the first 1, 3 and 5 most effective 

channels take part in the generation of the final saliency map, 

according to both assumptions. During the evaluation of the 

different cases, I have obtained curves similar to those that can be 

seen on figure 3. This diagram shows the curves that belong to the 

most accurate estimation.  

 

 
Figure 3: Each of the ten diagrams belongs to a retina channel. They show the average 
saliency values in the measured fixation locations, in the function of the 40 different 
receptive field sizes.  
For all the input frames, and for all the ten channels, for every RF size, I have determined 
the average saliency values, and assumed that the channels which take part in triggering a 
saccade are those that achieve the highest average saliency value on the given stimulus 
(frame).  
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For the different channels, the ‘optimal’ receptive field sizes are 

those, by which the corresponding curves reach their maximum 

(table I). The final, “tuned” model uses these RF sizes for creating 

the saliency maps. 

In the ‘real’, living retina, the channels have an interval of RF 

sizes. In a biological viewpoint, the curves like figure 3 preferably 

show the distribution (density) of the different sized RFs, in the 

different retina channels. However, the explanation of the 

biological relevance of these curves was not the subject of my 

research. I emphasize that these investigations are based on a 

model level with aggregated functional tests and are not related to 

the neurobiological details. 

 

 
Int Tr LED R-G B-Y α β δ Bist Pol 

20 9 21 20 31 22 19 4 15 15 

12,9° 5,5° 13,6° 12,9° 20,2° 14,2° 12,2° 2,18° 9,6° 9,6° 

Table I.: The optimal receptive field sizes belonging to the different retina channels. The 
first row indicates the abbreviations of the channels, which are sequentially the followings: 
1)“Intensity”, 2)“Transient”, 3)LED (Local Edge Detector), 4)Red-green color-opposition, 
5)Blue-yellow color-opposition, 6)“Alpha”, 7)“Beta”, 8)“Delta”, 9)“Bistratified”, 
10)“Polar”  
The middle row indicates the indices of the optimal RFs (see figure 3), while the bottom-
most row shows the same, but in viewing angle. The connection between the indices and 
the viewing angle is: 147,0*

100
3i4

2
tg −

=
α , where i indicates the index, and α is the viewing 

angle.  
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II.2 I have investigated different hypotheses addressing the 

question: what is the proportion (“weight”) by which the 

different channels are responsible for provoking the 

saccades, that is, for determining the new fixation 

locations. Based on these, I have obtained different 

channel weightings.  

 

I have analyzed assumptions, in which the channel weights had 

been kept constant, that is, the channel based-saliency maps had 

contributed in the formation of the final saliency map with always 

the same proportion. And also, I have investigated strategies, in 

which the channel weights had been constantly updated, 

according to the actual input. 

• The assumptions for the fix channel-weighting strategies – 

which strongly build onto the previous point –, have been the 

following:  

The channel-weights are proportional to the relative ratio 

(percentage), by which they prove to be saccade-triggering: 

i. by arbitrary receptive field sizes  

(that is, how often do the highest saliency value(s) belong 

to the different channels – according to any RF) 

More concretely, a channel’s weight is proportional to the 

frequency that the channel-based saliency map contained 

one of the highest values. 

ii. by average saliency value  

(that is, how often do the different channels prove to be 

the most salient one in average – using all the RF sizes) 
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More concretely, a channel’s weight is proportional to the 

frequency that the channel-based saliency map was one of 

the highest in average. 

 

The results are depicted on figure 4, whereas the accuracy 

of the different hypotheses can be seen on figure 5. 

The nominations i) and ii) refers to the previous points. 

 

 
Figure 4: The estimated channel weights according to the two different hypotheses. The basics 
of the estimation: which channel how often (in what percentage) proved to be saccade-
triggering according to the two assumptions. The exact values are indicated on the top of each 
bar. The accuracy is depicted on figure 5. 
 

• The hypothesis for determining the channel weights in a 

continually updated manner is based on the assumption that 

the involvement of the different channels depend on the actual 

stimulus. In other words, the actual channel weights depend 

on the input, instead of being pre-defined. 

 

The two basic assumptions are the same than previously: those 

channel(s) are responsible for triggering a saccade on the actual 

stimulus, which: 
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i. contains outstandingly high saliency values belonging to 

any RF size 

ii. are the most salient in average on the given frame 

 

The weighting is proportional to these maximal/average values. 

 

Contrary to the expectations – although the differences were small 

– the fix channel weighting strategies proved to be better than the 

continually updated ones, in the sense that they gave more 

accurate predictions, compared to human gaze direction 

measurements. The former strategies have performed better by 

~5% than the latter ones. 

 

Validation. I have verified the model’s accuracy via human 

gaze direction measurements, and I have shown that the 

model predicts the human fixation locations with high 

conformity on complex natural scenes. 

 

With the model adjusted according to the results of the described 

measurements, I have made predictions of the expected fixation 

locations, and then I have compared them with measured human 

gaze directions. The measured locations were among the four 

most probable predicted locations in ~70% of the cases, on the 

given frames (- the accurate value varies slightly according to the 

different hypothesis.) The accidental chance for this, under the 

same conditions, is a bit less than 20%. I have defined “hit”, if the 
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distance between the predicted and the measured location was less 

then 5°.♦ 

Figure 5 indicates the accuracy of the fix channel weighting 

strategies. The two approaches discussed in the text have been 

completed with a third one, in which the saliency map based on 

the Transient channel (which in-filters everything that moves and 

eliminates all the steady part) forms the final saliency map, on its 

own. According to literature-data on dynamic input, this channel 

is outstandingly strong – which is intuitively not surprising, if we 

take into account how naturally we snap our head at cats, birds, 

etc., if they abruptly make a motion on the periphery of our sight. 

These results have been confirmed by my measurements as well 

(left-most columns in the bar-trios). 

On figure 5, “i” and “ii” refers to the approaches denoted 

similarly throughout the booklet. 

 

 

 

 

 

 

                                                           
♦Counting with 10°, the hit ratio ameliorates significantly – although of course the 
accidental chance as well. The 5° ‘threshold’ seemed to be a reasonable choice, both 
from biological and from evaluational viewpoints. 



MODELING VISUAL ATTENTION 
 

 22 

 
Figure 5. Accuracy of the fix channel weighting strategies.  
The first column-trio indicates the percentage, when the measured fixation location 
overlapped with the predicted point, which was the most salient location defined by the 
model adjusted by the previously estimated RF sizes and channel weights. Similarly, the 
second column-trio indicates the results when the first 2 most salient locations have been 
determined as possible fixation location, whereas the third trio belongs to 3 predicted 
locations. Subsequently, the last bar-collection depicts the results belonging for 4 
predicted locations. As it can be seen, in ~70% of the cases, the measured fixation 
location was among the predicted ones. The accidental chance for this is less than 20% 
(last, red column).  
The different columns in each trio belong to the two different strategies discussed above, 
plus a third one (indicated with light blue), which shows the results if only the Transient 
channel has been taken into account (- that is, the master saliency map equals with the 
one belonging to the Transient channel). The fourth, red column shows the accidental 
chance under the same conditions. 
 
Worthy of note is that two different people, with a good chance, will attend to different 
locations on the same frame, and also, the same person, observing a given frame in a 
video-flow at a second time will easily attend to another location than the he observed 
previously.  
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4. Applications of the results 
Areas where attentional models can be applied are extremely wide, 

the subtasks and methods employed within them can be used in very 

many fields. Accordingly, during the last years, I have had the 

opportunity to test different parts of my model in real practical 

applications as well – namely in the “Bionic Eyeglass Project”.  

 

 This project meant to help the everyday life of blind or 

visually impaired people with mobile equipment, via image-flow 

analysis and different recognition methods. The main lines, alike the 

subtasks, have been developed together with the expert of the 

“Hungarian National Association of Blind and Visually Impaired 

People”. Within this project, I have successfully adapted different 

parts of the discussed model, or rather, of an expanded version of it. 

This version includes a preprocessing part designed to stabilize the 

unstable input that comes from a camera held by a blind walking 

person. These video-flows are usually extremely noisy and unstable, 

often accompanied by fast and unexpected camera motions. 

Additionally, often the picture’s main objects shift significantly from 

one frame to another, e.g. during turning around. The goal of the 

image stabilization step is to keep the steady objects (e.g. buildings) 

in the same pixel positions, while the moving objects (for example 

the pedestrians) can change position. 

The main idea in this step is to combine an optic flow algorithm with 

an affine transformation model, which can handle translation, 

scaling, rotation and shear. By using the optic flow algorithm we 

obtain estimation for the velocity of the pixels by measuring their 
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time and spatial gradients (vertical and horizontal) apiece. Then, 

with the transformation model, the translation (in vertical and 

horizontal directions), scaling, rotation and shear of the frame can be 

estimated.  

By the usage of the mammalian retina channel decomposition, 

the classical difficulty that image processing algorithms nowadays 

face (namely that the intensity or color values of the same object 

largely depend on the actual lighting conditions) can be avoided – at 

least partly. This observation has a fundamental importance in 

practical applications, and it is exploited in the methods aiming to 

solve the following problems raised within the Bionic Eyeglass 

Project: 

 

• Locating LED indicators (in real-life indoor and outdoor scenes) 

• Finding traffic signs in real-life street scenes. 

The main purpose of these two tasks is to realize a fast method 

that locates the areas which contain the traffic signs / LED 

indicators with high probability, on complex real-life outdoor 

scenes. Subsequently, a classifier algorithm has to analyze only 

the located ROIs (“Region of Interest”) instead of the whole 

input, which can fasten up the whole process significantly. The 

main difficulties derive from the instability of the by-default 

bad-resolution input, the unconstrained lighting conditions, and 

from the variety of the possible inputs.  

The accuracy of the introduced methods is around 80%. The 

test database has been made out of complex real-life scenes, for 

all the different tasks. 
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• Finding light sources (lamps) – which task (although it seems to 

be a trivial ‘problem’ for a person with normal vision), could 

prevent annoyance for visually impaired people, for example, 

by preventing the lamps to remain switched-on for weeks after a 

guest. 

Here, the most important criterion is that the solution has to be 

independent from the input’s actual brightness, that is, the 

accuracy should be the same in the case of a sun-drenched room 

and a dark cell. 

The method I have introduced relies only on a single retina 

channel, the “Polar” channel, and achieves a very high 

accuracy: the ratio of the correct answers is around 99%. 

The precise algorithms have been explained in separate publications. 

 

Generally speaking, the possible application-field of a well 

functioning visual attentional system is extremely wide, starting 

from different monitoring systems via robot vision up to different 

‘bionic’ applications. Nevertheless, a well functioning bottom-up 

system (which I have attempted to produce during my Ph.D. studies) 

is not a complete attentional system. It would be complete, if it had 

included the so called “top-down” method as well. However, our 

knowledge of this cortex-originated function is quite restricted for 

the time being, but at any rate, slimmer than necessary for a reliable 

and complete model. 

At the same time, regarding the above task, some knowledge we 

already possess comes from well known data from the literature, for 

example, that this method is “fed-back” at the point of  summing up 

the channel-based saliency maps, right before the creation of the 
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final saliency map (figure 1, bottom, middle). On this schema, 

different practical applications can be constructed, for example via 

the task-dependent modification of these weights (e.g. finding traffic 

signs, from the above discussed applications). 
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