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Introduction

The analog nonlinear dynamics based cellular neural-nonlinear net-
work (CNN-UM) was applied for an increasingly wider range of ap-
plications in the last �fteen years. This network was especially useful
in tasks where the spatio-temporal processing has an important role.
Some of these applications, where the signal-processing begins al-
ready at the sensor level are of especially great importance. One of
the most important branches of these sensing processing devices is
the �eld of visual microprocessors - camera computers. In the �rst
half of my dissertation I examine such an application: Perception of
scenes with large luminance di�erences - high dynamic range.

Such high-dynamic range scenes have the property that their in-
tensity range is wider than the range perceived by usual, 8-bit (256
level) cameras. Even if we use high-dynamic range cameras beside
their high cost we have the problem of displaying this wide range.
This is problematic because most displays have 7-8 bits, 50 dB dy-
namic range. Therefore dynamic range compression methods or im-
age enhancement methods are needed. On the other hand in the
perception we can exploit the fact that the high dynamic range is
mostly caused by spatially unequal illumination. Such scenes are
well perceivable with sensor arrays where the capturing parameters
of the sensors can be set individually. The locally adjustable CNN-
UM visual microprocessor is such a sensor. Using local adjustment
of the pixels we can achieve that both bright and dark parts of the
scene are captured with the appropriate settings. In the �rst part of
my dissertation I discuss an integration time adjustment algorithm
designed for locally adjustable sensor arrays. The method can en-
hance the dynamic range of any sensor by reducing the intensity
di�erences within the image.

In the �eld of vision another application area of the CNN-UM
wave computers is the modeling of animal, principally mammalian
visual system. The architecture is suitable for this because of the sim-
ilarities in the topology and processing. In the year 2001 in Berkeley
based on mammalian retinal measurements, physiological and mor-
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phological knowledge a novel multichannel processing of the retina
was discovered. Based on this qualitative model my colleagues con-
structed a neuromorphic quantitative, CNN-UM model. The advan-
tage of the neuromorphic structure is that the elements of the model
are corresponding to neurons and therefore the activity of the cells
can be analyzed.

By changing the weights of the connections and the characteristic
of the nonlinearities in the model we can switch o� retinal layers and
nonlinearities. In this way we can analyze their e�ects on the output
of the system. In the second half of my work (chapter 4.) I show
such an analysis. Based on recent bipolar cell measurements I altered
the earlier constructed model. Using this model I made my principal
analysis regarding the role of the cross-inhibition between the ON
and OFF systems. The cells of the ON pathway are sensitive to light
or light increase, the OFF cells are responding to light decrease.
Cross inhibition is the inhibition between the two systems.

Methods used in the experiments

In my analyzes I used the multilayer CNN architecture especially in
modeling spatial processes. In the chosen applications the nonlinear,
spatio-temporal computing power of the CNN-UM had an essential
role.

The analysis of biological systems (e.g. rabbit retina) performing
similar tasks had a principal importance for me. In the �eld of model-
ing it is indisputable the I have to use all the available information of
the mammalian retina. This included anatomical, physiological, and
functional knowledge as well as measurements results under di�erent
conditions. Even in the �eld of adaptive perception I heavily relied
on the ideas originating from the retinal adaptation mechanisms.

In both of my topics the obtained results were mathematically
and qualitatively analyzed. In case of the adaptation algorithms I
examined the slope of the camera's response curve. The response
curve shows the camera response with respect to the input light
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intensity.
In some modeling tasks I used linear �lter theory, Laplace trans-

formation and Taylor series expansion.
The target architectures were simulation devices in the �rst line.

For a fast algorithm design and testing I used Matlab environment.
Then the corrected algorithms were implemented using the Al-

addin software, which enabled the portability of the code to hardware
implementations. For the hardware implementation I used the ACE
16k v. 2 visual microprocessor chip. This consisted of a 128 x 128
CNN array executing the analog operations of my algorithm. In the
ACE-BOX architecture this visual microprocessor is accompanied by
a DSP, which executed the digital and logical operations.

In the �eld of retinal modeling the Re�neC simulator (Dávid
Bálya) was used. This simulator is also based on the Aladdin soft-
ware package. The processing of the measurements done by my neu-
rophysiologist colleagues and evaluation of the simulation results was
done under Matlab framework.

Summary of the main results

Thesis 1 Constructing CNN-UM algorithm adapting to spatially
and temporally varying illumination on locally adjustable
sensor array.

Devices adjusting the capturing parameters globally can handle
the intra-scene high dynamic-range with di�culty. Using local adap-
tation mediated by horizontal cells the human eye can handle this.
In the �eld of CNN-UM, as the result of recent chip design, CNN-UM
arrays equipped with locally adjustable sensor array were developed.
Such implementations are the CACE-2k and the Xenon chips. Local
adjustment means that the capturing parameters of the individual
sensors can be speci�ed independently from each other. In our case
the integration time is this parameter, which means that we specify
an integration time map.
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My algorithm adapts to the changed illumination by changing
the integration time map. As a result of the adaptation the obtained
image has no areas being in dark or bright saturation. With the
application of anisotropic di�usion and the local average (DC level)
of the scene I extended my algorithm so, that it yields a human
visual system like response. The operations requiring spatial proces-
sing were implemented on CNN-UM architecture. The method was
compared to other sensors implementing local adaptation or high-
dynamic range perception.

1.1 I designed a retina-inspired dynamic integration

time adjustment algorithm that adapts to the spatio-

temporal light intensity changes of the scene.

The main feature of the method is the reduction of the intensity
di�erences of the scene's local average. Local average is the average
luminance of a pixel's neighborhood, which was calculated using dif-
fusion. The duration of the di�usion (td) can be calculated from the
size of the image (e.g. on 128 x 128 image td = 15τ - CNN time
constant). The σ parameter of an equivalent Gaussian convolution
was 5% of the image size.

My algorithm adjusts the integration time of a sensor element in
a way that the local average around that element becomes a medium
gray value (half of the maximal response) (1).

Tn+1(i, j) = Tn(i, j)
Vmax/2
Vn(i, j)

, (1)

where (i, j) are the coordinates of the sensor, n is a temporal variable
showing the number of the image capture. Tn and Tn+1 is the inte-
gration time of current and the next capture respectively. Vn(i, j) is
the local average of the intensity at pixel (i, j), Tn(i, j) is the local
average of the integration time at pixel (i, j),

Thus the local average is driven to a gray level, its di�erences
are eliminated. There are no regions being too dark or too bright,
though the intensity di�erences within a region are kept. We can
obtain saturated pixels, if these are far darker or brighter than the
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a.)

b.)

Figure 1: Non adaptive and adaptive visual perception, using global
integration time settings a.) and locally varying integration time
map b.)

surrounding, but this is analogous to human perception (headlight
in the night). Furthermore regions being darker or brighter than the
sensor's perceivable range are obviously not adapted to gray level.

An adaptation result can be seen on Figure 1.
The method adjust the integration time continuously, hence it

adapts temporally to changed illumination conditions. The �ow di-
agram and the UMF (universal machine on �ows) diagram of the
algorithm can be seen on Figure 2 and Figure 3.

The adjustment of capturing parameter was chosen because in
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Figure 2: Flow chart of the algorithm. We capture the image
with the integration time computed in the previous step (initially
T0 = 0.2sec). Based on this we calculate the next capture's inte-
gration time (Tn+1). To do this the integration time (Tn, di�usion
D1) and the captured image is di�used (Vn, di�usion D2). The cap-
tured image (Vn) is retrieved, but we may add the DC component
calculated from the integration time.

case of high dynamic range post processing image enhancement
methods do not work because of saturation. Reducing the intra scene
intensity di�erences correspond to the operation of the horizontal
cells, the temporal adaptation is analogous to the cone adaptation.

The operation of the algorithm was demonstrated with simula-
tions. The local adaptation was simulated with the capturing of
a series of images of the same scene. The steps requiring spatial
processing were implemented on analog-logical (mixed-mode) visual
microprocessor (ACE-16k v.2), hence a real-time system was cre-
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Figure 3: The UMF diagram of the algorithm. This is a detailed
version of Figure 2, where the CNN templates can be seen as well.
The formula computing the integration time of the next capture and
computation of the DC component are also shown.
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ated. Here we obtained a result video-�ow with the usual 30 frame
per seconds (fps)

As a result of the adaptation, the di�erences of the local aver-
age (DC level) were abolished. The changes in the illumination are
mostly expressed in the di�erences of the DC component. These are
eliminated by the method. As a human observer also perceives illu-
mination changes, it is often advantageous if these are kept without
saturating any part of the image. The eliminated DC component
was restored from the integration time map and it was added to the
captured image in a reduced manner (2) and Figure 2 ). As a re-
sult an image is obtained, on which the human perceivable intensity
di�erences are visible, but the image has no saturated areas.

VDC(i, j) = −log [T (i, j)] (2)

As illumination often changes suddenly along shadow borders,
anisotropic processes were applied for the computation of the di�u-
sion. (D1 and D2 on Figure 2) Here the integration time di�erence
between neighboring pixels sets a constraint on the spread of di�u-
sion. (3) shows the equation of the anisotropic di�usion in continuous
space and time. The constraint of the spread arises from the term
1/C. The method was simulated in discrete time and space and the
distortions along the shadow borders were abolished.

∂V

∂t
=

1
Cx

∂2V

(∂x)2
+

1
Cy

∂2V

(∂y)2
, (3)

Cx and Cy showing the contrast and

Cx =
∂T
∂x

T
, Cy =

∂T
∂y

T
, (4)

where T is the integration time and V is the intensity.

1.2 Comparing my method to other high-dynamic

range perception methods, I showed that it compresses

the same dynamic range and furthermore it performs

the dynamic range compression of the scene.
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Some of the alternative methods use global adjustable sensors,
where local adjustment is mimicked by capturing an image series with
di�erent settings. Another possibility is to have several sensors with
di�erent setting to a pixel. These methods loose spatial or temporal
resolution. Other methods use integrating to a certain level, here
the dynamic range is coded in the time domain. These methods
result in high-dynamic range images, which need to be processed
for displaying. My algorithm retrieves an image with perceivable
dynamic range. In my method dynamic range compression occurs in
a way that globally the intensity di�erences between the regions are
reduced, but locally (within a region) the contrast is kept. Hence
there is no loss of information about the texture.

The spanned dynamic range of my method depends on the used
sensor. This range is the sum of the dynamic range of the perceived
image at a given global parameter setting and the dynamic range
of the possible integration time values. In case of spatially varying
luminance the method can span 10 dB dynamic range in σdistance.

The comparison of a high dynamic range logarithmic sensor and
the locally adaptive algorithm is illustrated in Figure 4.

We can consider that both the logarithmic sensor and the locally
adjustable sensor can cover the whole dynamic range, but the latter
has a higher rise and gives better contrast.

Compared to locally adaptive algorithms designed on CNN by M.
Brendel my methods yield better contrast in originally dark regions
and avoids saturated dark and/or bright regions.

Thesis 2 Qualitative and quantitative analysis of the retinal
function using multilayer-multichannel CNN mammalian
retina models.

Beside the retina inspired CNN-UM image capture, I exploited
the retina modeling power of the CNN-UM. Earlier the multichannel
retina model was discovered based on ganglion cell measurements
and morphological knowledge. An approximative CNN-UM model
was also created.

Based on bipolar cell measurements I re�ned the model of cone-
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Figure 4: Response curves of a logarithmic sensor and the locally
adaptive sensor at di�erent adaptation states. The logarithmic sen-
sor spans the whole dynamic range with a uniform rise. The linear
adaptive sensor gives a useful response only around the adaptation
state but there its rise is higher hence a higher contrast is achieved.

bipolar pathway with the inclusion of nonlinearities. I also ex-
tended the multichannel retina model with the cross-inhibition (out-
of phase inhibition) between ON and OFF systems. Using simulation
I showed the connection between the cross-inhibition and the cone-
bipolar and bipolar-ganglion nonlinearities. I determined experimen-
tally the qualitative di�erence between the output of the multilayer
CNN-UM retina model and a model built up of linear �lters.

2.1 I showed that ON-OFF cross inhibition reduces
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the distortions caused by the cone-bipolar and bipolar-

ganglion nonlinearities and therefore it enhances the ac-

curacy of the ganglion cell response.

Based on rabbit bipolar cell responses to di�erent temporal fre-
quency sinusoid stimuli my colleagues constructed the frequency
spectrum of the bipolar cell.

Based on these data I modeled the bipolar cell's excitation with a
second order temporal linear �lter (two poles and a zero) and a mem-
ory free nonlinear function. This corresponded to the processing of
the cone-bipolar synapse. From the fundamental harmonics of the
response to di�erent frequencies I derived a linear �lter. The para-
meters of nonlinear function's Taylor series were calculated based on
the upper harmonics. The target of the calculations was to obtain a
proof for the existence of cone-bipolar nonlinearities. Based on these
models I extended the already existing CNN-UM retina model with
the cone-bipolar rectifying nonlinearities. A simpli�ed sketch of the
retina can be seen on 5.

Rectifying nonlinearities occur mostly at synapses because the
activation curve of Ca channels is exponential. Cells whose normal
potential lies at the bottom of the curve can hardly give a response
to negative changes. Rectifying nonlinear synapses can be found
between the bipolar and the ganglion cell as well.

The existence of rectifying nonlinearities gives a proof that the
retina cannot be modeled with spatial and temporal linear �lters
and an output nonlinearity. Such a model cannot explain certain
spatial blurring mechanism. These were caused spatial low-pass �l-
tering (ganglion dendrites) preceded by a nonlinearity (cone-bipolar
synapse). In my dissertation I discuss the abolition of this blurring
by the out-of-phase cross inhibition.

Out-of-phase inhibition is the cross inhibition between the ON
and OFF pathways. This is realized by amacrine cells connecting
ON and OFF cells. It can also act as feed-forward amacrine cells
connecting the bipolar cell with the opposite systems ganglion cell.
In both cases it operates through small dendritic tree glycinergic
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Figure 5: Sketch of the retinal cells. CNN layers correspond to the
layers of retinal cells. Cells in the two right columns are the cells
of ON pathway, the left column is the OFF pathway. We can see
the cone - bipolar synapse, which was modeled with a linear �lter
and a nonlinear function. We can see the large dendritic �eld of
the ganglion cells, which collects the output of bipolar cells thereby
blurring the neural image. We can also see the amacrine mediated
cross inhibition from the OFF bipolar cells.
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amacrine cells. (see Figure 5)
Proof of the existence of cross inhibition are bipolar and ganglion

cell measurements. In these the excitation and inhibition were mea-
sured. Comparing these two 30-40% of these cells receive inhibition
originating from the other system.

The interaction of cross inhibition and rectifying nonlinearities
was analyzed using �ashed square and modulated sinusoid stimuli.
The simulations resulted in the observation that the recti�cation
distorts the outer-retina's spatio-temporal high-pass component en-
hancement. Hence the ganglion response blurs in both space and
time (see Figure 6) .

Cross inhibition restores the signal distorted by the nonlinearities
both at the ganglion and the bipolar level. Hence we obtain the linear
signal containing the outer retina's spatial and temporal contrast
enhancement. This contrast enhanced signal is more stable against
di�usion, and hence the ganglion cell's response is less di�used. (see
Figure 6)

Application of the results

Although both of my theses deal with vision and perception, their
application is di�erent.

The adaptive integration time adjustment algorithm can be im-
plemented on the CACE-2k and the Xenon chips. It can also be
implemented on other, locally-adjustable architecture, where a cap-
turing parameter can be speci�ed externally. My method can be
applied for post enhancement of perceived images. In this case an
enhancement gain is set instead of the capturing parameter.

The EYE-RIS chip is also a suitable architecture for the imple-
mentation of my method. Here the CNN array is accompanied by
a resistive grid, where the cells can be masked which enables the
approximation of an anisotropic wave propagation. On the chip's
sensor array pixel values can be read out non-destructively, hence we
can capture a scene with locally varying integration time. Some other
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Figure 6: Ganglion outputs and cross-inhibition. The left column
shows the OFF, the right the ON ganglion cells signals. Vertical
dashed lines show the frames of the �ashed-square stimulus. Ver-
tical axis shows the relative response with respect to the maximal
response. Top row shows the ganglion output with switched-o� cross
inhibition. Both in case of ON and OFF system the signal crosses
the stimulus frames. The cross inhibition is showed in the second
row. The last row shows the output as the result of cross inhibition.
This follows the frames of the stimulus more accurately.
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operations needed for the implementation of my algorithm, addition
and multiplication of images are also feasible on this chip. Logarith-
mic characteristic needed for the computation of the DC component
can be realized on the accompanying digital chip. Thus the EYE-RIS
chip is an architecture, on which the entire algorithm is feasible.

The results of retinal analysis can be applied in the retinal re-
search. The analysis of the retinal function illustrated and helped
to understand a partially measured assumed operation. Using the
knowledge about the output of the individual cells and their inter-
actions, electro-physiologists can obtain new ideas to the measure-
ment, to the used stimuli. The alteration of the model can improve
its output with regard to the retinal output, and this can improve
its application in retinal prostheses.
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