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1. Introduction

Medical imaging devices are extremely important in today’s patient-centered care

based on scientific results. These appliances have completely changed the way

medicine is practised over the last 30 years. They have made it possible to

identify diseases at an early stage (especially in screening tests) and, thanks to

early treatment, patients’ chances of recovery have improved. The use of X-ray,

ultrasound, CT, MRI and other imaging technologies has become commonplace

in the clinic and thus widely known in society. Medical imaging is particularly

beneficial in detecting and identifying cancer because early detection means better

chances of cure. One of the tools routinely used for this purpose is the gamma

camera, which uses a variety of radioactive isotopes to obtain information about

physiological processes in the body.

I have been working on the improvement of one of the most commonly performed

examinations, bone scintigraphy, a common, relatively inexpensive and widely

available technique, which is invaluable in the diagnostic evaluation of many

pathological conditions due to its sensitivity. In Hungary, an average of 5-600MBq

of MDP isotope activity is administered to the patient and a 15-20 minute scan with

the device is required. Gamma camera images typically have a low signal-to-noise

ratio and are subject to significant Poisson noise. These circumstances motivated

me to develop an image enhancement device during my doctoral studies that would
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allow reducing the injected activity (radioactive dose) and shortening the imaging

time.

Exceptionally high signal-to-noise ratios can be achieved by using noise filtering

neural networks (NNs), which can be configured and trained to act as specialised

noise filters. An important characteristic of NN-based noise filters is that they

learn on noisy input data and also on reference or ground-truth image pairs with

significant noise. It has been shown that, nevertheless, a properly constructed NN

filter trained in this way can synthesize filtered images with a better signal-to-noise

ratio than that of reference images, and outperforms conventional noise filters,

e.g. BM3D method, for either Gaussian or Poisson noise [1]. Considering that

the image database used for filter training usually consists of a highly limited

number of images due to the difficult availability of real patient data, we consider it

particularly important to investigate the robustness of the trained NN-based image

processing algorithm, i.e., its sensitivity to the noise content of the images and

their distribution according to various aspects, including patient age, gender, body

mass index value, and the nature and distribution of characteristic pathological

structures in the image. This analysis can reveal the robustness of such an image

processing algorithm, either on its own or as part of a larger CADx (computer

aided diagnosis) system deployed in clinics around the world.

A common indication for bone scintigraphy is to detect and track bone metas-

tases of various tumours, so as a further step, we started to develop a software to

search for pathological enrichment. This tool will also allow quantification of the

impact of the image enhancement tool on diagnostics, so that an application-specific

lesion-based evaluation can be performed in addition to image-based metrics. One

method to create a software component for abnormal enrichment detection and

prediction is the use of convolutional neural networks. Related to this, we devel-

oped a new segmentation metric, Wave Loss. I would like to show that topological
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information incorporated in the loss function can be used to increase the accuracy

of segmentation networks.

In light of the above, I seek to answer the following research questions:

• Can we use deep learning for high-quality, reliable noise filtering in planar

bone scintigraphy?

• How robust is such a solution in real life?

• How should such a tool be evaluated where we do not have noise-free, perfect

images as a basis for comparison?

• Is it possible to construct a loss function for neural network training that can

take into account the topography of segmentations instead of just pixel-level

comparisons?



2. New scientific contributions
and thesispoints

Thesis I a: I have developed a robust high-quality noise filtering method tai-

lored for planar bone scintigraphy, showcasing the effectiveness of deep learning

in this context. Through validation on a real patient database, isolated for accu-

racy assessment, the top-performing neural network achieved a mean RMSE of

1.15 under normal statistics, outperforming the best non-neural network solution,

BM3D, which attained a mean error of 1.29. Furthermore, when tested under

1/3 statistics, the neural network yielded an average RMSE of 1.38, surpassing

the best non-neural network-based solution, Gaussian 9mm, which attained an

RMSE of 2.07. These findings demonstrate the superior noise filtering capabilities

of neural networks compared to established non-neural network methods used in

clinical practice. Corresponding publication: [2]

In this thesis a neural network based noise filter is proposed that can be

used with planar bone scintigraphy recordings at multiple noise levels, instead of

developing a separate network for each noise level. The proposed denoising solution

is a convolutional neural network (CNN) inspired by U-NET architecture. The

noise-filtering network was trained using bone scintigraphy recordings with real

statistics according to the standard protocol, without noise-free recordings.
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The selection of data suitable for training the neural networks was done with the

Q-Bot software. [3] For the development, 2430 anonymized recordings (from 1215

patients, anterior and posterior) were used, acquired by AnyScan® DUO/TRIO

SPECT/CT (Mediso Ltd.) and InterViewTM processing SW (Mediso Ltd.). All

patients were given 5-600MBq Tc-99m methylene diphosphonate (MDP) (Isotope

Institute LTD, Budapest, Hungary) intravenously with 2-5 hour accumulation time.

The matrix size was 256*1024 with 130mm/min scanning speed.

All recordings were resampled based on a binomial distribution, artificially

generating realistically degraded recordings as if they had been taken at one-third,

one-quarter, one-eighth, etc. recording times.

If we subtract this degraded image from the original measurement, we get an

independent record with better statistics than the data on the input side. This

is also a very powerful augmentation technique, whereby we change not only the

input side, but also the output side.[4]

The task of the neural network is to estimate the transformation between the

two generated recordings. We used Mean Absolute Error (MAE) as a function of

the learning loss between the actual filtered and reference image, as was done in

the [5] article. We used the commonly applied methodology: the backpropagation

algorithm and gradient based optimization to train the neural networks [6].

The resulting solution proved to be robust to the noise level of the images

within the examined limits. During the evaluation, the performance of the networks

was compared to Gaussian and median filters and to the Block-matching and 3D

filtering (BM3D) filter. It has been shown that particularly high signal-to-noise

ratios can be achieved using noise-filtering neural networks (NNs), which are more

robust than the traditional methods and can help diagnosis, especially for images

with high noise content.
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Figure 2.1: The network architectures used for noise filtering were all U-NET based.
The differences between the architectures were in the number of convolutional
layers per level, and the number of convolutional filters. The network, named
L-NN, contained 4 levels and always had 5 convolutional layers following each other.
The filter numbers of the convolutional blocks used at each level were 64, 128, 256
and 512. The neural network named S-NN also contained 4 levels, always with 3
convolutional layers following each other and the number of filters used at each
level were 16, 32, 64 and 128.

From Table 2.1 showing the results by RMSE metric, it can be seen that for all

statistics, the neural network based solutions achieved the best results. Note that

under normal and 1/3 statistics, at this metric, the performance of the BM3D and

Gaussian filters is comparable to the neural network, but with worse statistics, the

performance of these solutions degrades to unusable levels.

Thesis I b: My deep learning-based noise filtering solution for planar bone

scintigraphy demonstrates robustness in real-life applications. Through a compre-

hensive investigation across various homogeneous and biased validation datasets

(including diverse age groups, BMI ranges, and gender categories), I assessed the

performance variability of the denoising algorithm. The evaluation revealed notable

consistency and effectiveness, showcasing that for datasets with normal statistics,

the average RMSE error ranged from 1.05 to 1.28 across different subsets, with

the mixed dataset registering an average error of 1.15. Moreover, the standard
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Statistics

normal 1/3 1/9 1/16 1/32

RMSE: Mean SD Mean SD Mean SD Mean SD Mean SD

BM3D 1.29 0.36 2.07 0.33 4.50 0.36 7.34 0.46 13.76 0.72
Gaussian 11mm 1.99 0.93 2.21 0.91 2.76 0.83 3.27 0.82 4.21 0.81
Gaussian 13mm 2.34 1.21 2.48 1.19 2.85 1.12 3.23 1.10 3.94 1.05
Gaussian 3mm 2.81 0.33 4.85 0.57 8.38 0.97 11.16 1.31 15.80 1.85
Gaussian 5mm 1.69 0.31 2.66 0.37 4.44 0.53 5.87 0.70 8.26 0.97
Gaussian 7mm 1.56 0.47 2.15 0.45 3.33 0.48 4.30 0.57 5.97 0.73
Gaussian 9mm 1.71 0.68 2.07 0.65 2.87 0.60 3.58 0.63 4.82 0.69
L-NN 1.15 0.40 1.38 0.41 1.80 0.47 2.09 0.54 2.54 0.63
Median 3px 1.79 0.47 2.48 0.45 4.36 0.42 6.81 0.37 11.70 0.82
Median 5px 2.64 0.91 3.06 0.87 4.50 0.72 6.71 0.55 11.51 0.82
Median 7px 3.57 1.30 3.91 1.26 5.15 1.08 7.17 0.83 11.82 0.93
Median 9px 4.57 1.67 4.90 1.63 6.01 1.45 7.85 1.17 12.32 1.13
S-NN 1.21 0.35 1.56 0.38 2.09 0.48 2.45 0.56 3.00 0.67

Table 2.1: Performance of different filters calculated by RMSE. From the table, it
can be seen that for all statistics, the neural network based solutions achieved the
best results (smallest Mean and SD). Note that under normal and 1/3 statistics,
at this metric, the performance of the BM3D and Gaussian filters is comparable to
the neural network, but with worse statistics, the performance of these solutions
degrades to unusable levels.

deviation within each subset ranged from 0.4 to 0.48, highlighting the stability

and reliability of the filtering algorithm. When evaluated under 1/3 statistics, the

mean error exhibited a similar range, varying from 1.28 to 1.54, with standard

deviations ranging from 0.41 to 0.49. These findings underscore the adaptability

and consistent performance of our deep learning-based filter across diverse patient

groups, reinforcing its robustness and applicability in real-world scenarios of planar

bone scintigraphy imaging. Corresponding publication: [2]

The measurement results on which the thesis claims are based are given in

Table 2.2. The trends in performance measured on the different sets as a function

of the deterioration of the statistics are the same as those observed on the mixed

set.

Thesis I c: I have created an effective evaluation method for the deep learning-

driven noise filtering tool in planar bone scintigraphy without the need for noise-free



10 2. NEW SCIENTIFIC CONTRIBUTIONS AND THESISPOINTS

Statistics

normal 1/3 1/9 1/16 1/32

RMSE: Mean SD Mean SD Mean SD Mean SD Mean SD

Age High 1.28 0.48 1.54 0.49 2.00 0.54 2.32 0.58 2.82 0.67
Age Low 1.05 0.41 1.28 0.41 1.68 0.47 1.96 0.54 2.41 0.64
BMI High 1.09 0.43 1.31 0.44 1.68 0.47 1.94 0.50 2.33 0.57
BMI Low 1.28 0.48 1.54 0.48 2.02 0.54 2.35 0.61 2.89 0.72
Female 1.20 0.43 1.43 0.44 1.83 0.48 2.12 0.53 2.55 0.61
Male 1.20 0.45 1.46 0.46 1.91 0.54 2.23 0.61 2.71 0.73

L-NN

Mixed 1.15 0.40 1.38 0.41 1.80 0.47 2.09 0.54 2.54 0.63

Age High 1.35 0.43 1.74 0.46 2.31 0.54 2.70 0.60 3.29 0.71
Age Low 1.12 0.35 1.47 0.38 1.99 0.46 2.34 0.54 2.88 0.65
BMI High 1.16 0.39 1.47 0.41 1.93 0.48 2.26 0.53 2.73 0.61
BMI Low 1.34 0.42 1.76 0.45 2.36 0.55 2.78 0.62 3.42 0.74
Female 1.27 0.38 1.62 0.41 2.14 0.48 2.50 0.55 3.02 0.64
Male 1.27 0.41 1.65 0.44 2.21 0.56 2.59 0.63 3.17 0.77

S-NN

Mixed 1.21 0.35 1.56 0.38 2.09 0.48 2.45 0.56 3.00 0.67

Table 2.2: Performance of neural network-based filters computed by RMSE on
different validation sets. The performance of the larger neural network is better than
the smaller neural network for all sets and statistics. The trends in performance
on different sets as a function of the degradation of the statistics are the same as
those on the mixed set.

images as a reference. In the advanced stages of development, we identified a

neural network exhibiting satisfactory performance in processing low noise content

measurements. Using this selected neural network, we created a noise-free validation

dataset of 544 measurements and then had these images analyzed by physicians to

identify any abnormalities, unusual structures, accumulations or artifacts compared

to the original images. Within our evaluation framework, these filtered images

were considered as virtually noise-free, representing idealized images. We further

employed these "noise-free" images, under normal statistical conditions, to generate

Poisson noise-affected images, serving as inputs for our solutions. Additionally,

leveraging these artificially created standard measurement like images, I have applied

additional degradation by employing binomial sampling, thus creating lower-quality

representations for comparative assessments. Corresponding publication: [2]

The whole pipeline and the examples of the images produced by the pipeline
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are shown in Figure 2.2 and Figure 2.3.

Figure 2.2: Evaluation pipeline: We start from the real measurements acquired by
the scanner (1). The second step is to create a noise-free image (2) with a reference
enhancement solution (a), which was a neural network based denoiser in our case
[4]. The ideal image will be then examined by physicians to see if there was any
unusual structure, accumulation or artifact in the image. From this noiseless ideal
image we generate synthetic measurement (3) with adding poisson noise (b), which
will be verified (c) by statistical tests. The next step is to construct the records
with worse statistics (4) using Poisson thinning (d). Finally these images will be
the inputs to the various filtering tools (e), which results’ (5) will be compared (f)
to the ideal images (2).
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(a) Measurement (b) Ideal (c) Input
(1/3 statistics)
PSNR: 30.13 dB

(d) Median filter
(3px) PSNR: 40.63

dB

(e) Gaussian filter
(7mm)

PSNR: 41.78 dB

(f) BM3D filter
PSNR: 42.67 dB

(g) S-NN
PSNR: 45.18 dB

(h) L-NN
PSNR: 46.64 dB

Figure 2.3: Evaluation pipeline: We start from Measurement (a), from which we
create a noise-free image with a reference filter (b). This will be then reviewed by
doctors and taken as a benchmark. From this we generate an artificial degraded
noisy image (c). Images (d), (e), (f), (g), (h) show the results of different filters.
Since we have the noise-free reference image, we can correctly compute the errors
of each method using the metrics.
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Thesis II: I have developed a training loss function for neural networks that

considers the topographical structure of segmentations, as opposed to just pixel-level

comparisons. The proposed method has increased segmentation accuracy by 3%

on both the Cityscapes and MS-COCO datasets compared to cross entropy, using

various network architectures. Corresponding publication: [7]

The solution of segmentation problems with deep neural networks requires a

well-defined loss function for comparison and network training. In most network

training approaches, only area-based differences that are of differing pixel matter

are considered; the distribution is not. Our brain can compare complex objects

with ease and considers both pixel level and topological differences simultaneously.

Comparison between objects requires a properly defined metric that determines

similarity between them considering changes both in shape and values. In past years,

topographic aspects were incorporated in loss functions where either boundary

pixels or the ratio of the areas were employed in difference calculation. During

our work we showed how the application of a topographic metric, called wave loss,

can be applied in neural network training and increase the accuracy of traditional

segmentation algorithms.

Algorithm 1 calculates wave loss for two grayscale images. The input values are

Img1 and Img2 and the output of the algorithm is a scalar variable WaveLoss.
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Algorithm 1: Calculation of wave loss.
Data: Img1, Img2
Parameters :ValInc, SpaInc, SpaW, ValW
Result: WaveLoss

1 Union ← max(Img1,Img2);
2 CurrentWave ← min(Img1,Img2);
3 NewWave ← min(Img1,Img2);
4 WaveLoss = 0;
5 i← 0;
6 num_iter ← int(1/ValInc);
7 while i ≤ num_iter do

/* Loss for intensity differences */
8 NewWave += ValInc;
9 NewWave = min(NewWave,Union);

10 ValueChange = sum(NewWave-CurrentWave);
11 WaveLoss += ValW[i]*ValueChange;
12 CurrentWave = NewWave;

/* Loss for spatial differences */
13 NewWave = maxpool(CurrentWave,[SpaInc,SpaInc], [1,1]);
14 NewWave = min(NewWave,Union);
15 SpatialChange = sum(NewWave - CurrentWave);
16 WaveLoss += SpaW[i] * SpatialChange;
17 CurrentWave = NewWave;
18 i += ValInc;
19 end
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The parameters of the algorithm are the following:

• V alInc will determine how fast the wave propagates along the intensity

differences; every pixel’s intensity will be increased by this amount in every

iteration. This parameter will also determine the maximum number of

required iterations and by this it will also determine the largest distance

from the intersection where topological differences are considered. Having a

larger distance than the maximal receptive field of a neuron in the network is

illogical because this way the error could be derived back to a neuron which

had no vote in the classification of that input pixel. In our experiments, this

value was between 0.05 and 0.1, meaning that the wave from a selected point

could propagate for 20 and 10 pixels.

• SpaInc will determine the spatial propagation speed of the wave. Spatial

propagation is implemented by a max pooling operation with window size

SpaInc and a stride of one. In our simulations, this value was always set to

3.

• V alW is a vector of penalties for the intensity differences. If this value is

constant, the weight differences will be linearly proportional to the penalties

in the loss. If this is increasing, it means larger differences (where more

iterations are required to reach the desired value) will have larger and larger

penalties. In our simulations, we used constant values in V alW .

• SpaW is a vector containing the penalties for topographical differences.

SpaW [0] will weight those points which can be reached in one spatial propa-

gation and which are in the direct neighborhood of the intersection. SpaW [k]

will have a penalty for those values which will be reached at the k-th iteration.

In our simulations, we applied linearly increasing values which were all lower
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than the values of V alW . In most networks, we want to have good results on

average, but minor mistakes about the shape of the object can be tolerated.

Applying lower values than the intensity weights (V alW ) means that the

importance of the shape of the segmented object will become less important.

Monotonically increasing SpaW means that the further we are from the

object, the higher the cost a misclassification will result. Applying higher

weights than V alW , which are monotonically decreasing, would mean that

the boundaries are really important and classifying a pixel around a boundary

is a larger problem than misclassifying a pixel somewhere far from the object.
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Table 2.3: This table contains the average accuracy results of five independent runs
on the Cityscapes dataset using four different network architectures (rows) and six
different loss functions for semantic segmentation.

Model L1 Loss CrossEnt Dice Boundary ShapeAware Wave

SegNet 54.2% 57.0% 57.3% 57.7 58.6% 59.5%
DeepLab 59.7% 63.1% 64.1% 64.3% 65.4% 66.7%
DeepLabv3 77.6% 81.3% 81.4% 81.5% 81.7% 82.2%
HRNET 77.4% 81.6% 81.8% 81.8% 82.1% 83.4%

Table 2.4: Average precision results on COCO 2017 validation set using the same
network architectures with three different loss functions in different columns (ℓ1,
cross entropy, Dice loss, active boundary loss, shape aware loss and wave loss). Two
different architectures (ResNet-50 and ResNet-101) can be found in the rows, with
feature pyramid networks (FPNs) or when the activation of the fourth convolution
layer (C4) was used for region proposals. The results display the mean average
precision for all objects, except the last three rows, where the accuracy results
for the best performing network are detailed for small-, medium- and large-sized
objects as well.

Model L1 CrossEnt Dice Boundary Shape Wave

R50-C4 mAP all 28.75% 32.2% 32.83% 32.9% 34.721% 35.93%
R50-FPN mAP all 29.43% 35.2% 36.14% 36.12% 37.53% 38.11%
R101-C4 mAP all 30.17% 36.7% 37.2% 37.4% 38.86% 38.23%
R101-FPN mAP all 31.67% 38.6% 38.8% 39.3% 40.25% 41.7%
R101-FPN mAP s 14.25% 17.37% 18.18% 18.35% 19.33% 22.24%
R101-FPN mAP m 37.53% 39.23% 39.74% 40.52% 41.27% 43.26%
R101-FPN mAP l 50.14% 51.64% 51.83% 52.17% 52.22% 53.27%

The proposed method has increased segmentation accuracy by 3% on both

the Cityscapes and MS-COCO datasets compared to cross entropy, using various

network architectures.
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2.1 Perspectives of the bone scintigraphy noise fil-
ter

After the robustness test, a study of clinical pre-testing had been accomplished

involving physicians (ScanoMed Ltd., Debrecen, Hungary). The aim of this study

was to allow doctors who have worked with many similar images to point out

possible defects, artificial products and to give their opinion on the usability of the

device. The images of 412 routine bone scintigraphy whole-body examinations at

ScanoMed were denoised using the AI-based application presented here. Patients

routinely received 550-600 MBq of 99mTc-MDP intravenously, and whole-body

images were acquired after 2 hour of accumulation time. Once the planar image

was acquired, the filtered image was obtained within 1-2 minutes and helped

physicians to decide on additional investigations such that if any image showed

a lesion suspicious for metastasis, SPECT/CT was indicated. As we reported in

the Reference [4], the doctors looked at the original unmodified image with normal

statistics and the noise-filtered version of the image in parallel, and evaluated the

images in this way. The physicians found that the neural network based filter

did not delete or generate new lesions, and they don’t identified artifacts on the

pictures. They concluded, that it was easier to localize the abnormalities (count

ribs, vertebrae), decide whether additional examinations (SPECT/CT) was needed,

and all this accelerated the diagnosis itself.

This experiment suggests that the use of a noise filter is useful for images

with normal statistics, but further studies are needed to see how much it is

possible to reduce the measurement time or the activity administered preserving

the original, reliable diagnostic capability. Therefore we have been working on

the complex clinical evaluation of the given denoising algorithm integrated with

lesion detection and classification software components in order to optimize the
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performance regarding ROC (receiver operation curve) analysis. Our future aim

is to ensure clinical diagnostic value regarding sensitivity and specificity even at

significantly lower administered activities or measurement time using the presented

denoising solution.
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