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1 Introduction

The relentless pace of innovation in processing technology has pro-
foundly impacted how programmers and scientists achieve high perfor-
mance. Where twenty years ago, a few gigaflops might reside within
a single CPU, today’s most powerful supercomputers deliver trillions
of calculations per second across hundreds of thousands of hardware
threads. Keeping pace with this exponential growth has required funda-
mental changes in both hardware and software.

In the early 2000s, performance revolved around optimizing for sin-
gle superscalar CPUs. Programmers leveraged techniques like loop un-
rolling, prefetching, and tiling to minimize latency and maximize in-
struction throughput. With the emergence of multi-core chips, a new
dimension of parallelism demanded algorithms designed for concurrent
execution. Shared memory and locks became tantamount, necessitating
careful orchestration to avoid contention bottlenecks.

Graphics processors debuted their immense streaming capabilities,
recasting approximation problems like rendering and machine learning as
highly data-parallel workloads. This transformed programming to follow
a data-parallel mindset, abandoning instruction-centric CPU models for
throughput-oriented many-core architectures. Libraries arose abstract-
ing GPU kernels through frameworks like OpenCL and CUDA, easing
porting efforts.

The use of domain-specific languages (DSLs) has seen growing adop-
tion in technical computing domains as they offer substantial produc-
tivity gains over general-purpose languages. A DSL defines a high-level
abstraction providing a custom language or embedded language to de-
scribe the problem to be solved in terms specific to the problem domain.
By capturing common patterns and structures within the domain, a
DSL allows programmers familiar with the domain to express solutions
in a natural way using domain terms and abstractions, raising the level
of abstraction compared to a general-purpose language. By distilling
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expertise within a domain into abstract syntax and semantics, DSLs
allow domain experts rather than language experts to write programs.
As such, DSLs provide a middle ground between generality and speci-
ficity that has proven useful across diverse fields ranging from cellular
biology to aerospace engineering simulation. Embedded DSLs or eD-
SLs act as a conventional library in a general-purpose language such as
C++ or Fortran for the application developer and use source-to-source
transformation techniques to provide target-specific performant imple-
mentations. This allows the DSL to provide capabilities tailored to the
domain while reusing the existing compiler and runtime infrastructure
of a general-purpose language.

The first exascale supercomputers appeared in the past few years
using trillions of simultaneous threads. No longer can a single device
deliver such prowess. The distributed agenda demands wide-area net-
working to integrate clustered systems. Meanwhile, hardware diversity
proliferates as accelerator technologies like FPGAs join the tussle for
exaflops. More than ever, high performance hinges on software’s abil-
ity to portably extract inherent parallelism while skirting architectural
idiosyncrasies.

Due to the rapidly changing hardware and programming models
that run the most powerful computers in the world, performance porta-
bility and productivity became the focus point of any discussion on
future-proof high-performance software. In this ever-changing landscape,
future-proof applications have become synonymous with performance
portable applications where the ultimate dream is supporting all current
and future hardware with the best performance from a single source [1].
Domain-specific languages and declarative programming hold promise,
raising abstraction to separate concerns of performance and the descrip-
tion of the computations.

In parallel and high-performance computing (HPC), DSLs have
shown particular promise in addressing two key challenges. Firstly, they
facilitate performance portability through architecture-agnostic problem
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descriptions that abstract away low-level processor details. Effectively
allowing the application developer to describe the problem to be com-
puted instead of how the problem should be computed. Secondly, they
aid application productivity by raising the level of abstraction for algo-
rithm expression while retaining control over optimization opportunities.
Together, these advantages have driven extensive research into DSLs for
HPC applications over the past years.

One such domain-specific language family is the Oxford Parallel
Domain-Specific Languages, consisting of two active libraries or embed-
ded DSLs OPS [2] and OP2 [3]. These libraries provide DSL abstrac-
tions targeted at partial differential equation (PDE) solvers embedded
in C/C++ and Fortran. Domain experts author PDE solvers within
these DSLs through high-level parallel loops, expressing computations
through element kernels while abstracting away parallel execution de-
tails and data motion. During compilation, the libraries use a code
generation step to generate target-specific parallel implementations for
the parallel loops, applying a wide range of optimizations.

My main motivation is to further develop the possibilities offered by
domain-specific languages, thus making the performance portability and
productivity available in new areas and problem classes. My research
focuses on computations on structured and unstructured meshes. The
aim of my dissertation is to present my results in extending the problem
classes supported by DSLs and improving the robustness and extensibil-
ity of the code generation steps used by DSLs.

The first part of my dissertation focuses on source-to-source trans-
formation techniques in DSLs or active libraries. The extensibility and
complexity of code generation steps are critical for the longevity of DSLs.
Starting from the domain-specific model, generating the same structure
or code takes a significant portion of the generated code, and formulat-
ing the generation is error-prone. In my first thesis, I concentrated on
the optimal mapping of calculations on unstructured grids to heteroge-
neous hardware. I present the method of parallelization skeleton-based
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generation on the OP2 DSL and compare the performance of various
programming models and languages (Thesis I).

After my work on the code generation step of DSLs, I worked on
extending the support for structured mesh applications. The second
and third thesis focus on extending the OPS DSL. In the second part,
I supplemented the OPS DSL with support for a performance portable
and scalable linear solver library suitable for the Alternating-Direction
Implicit method [4]. ADI applications are an important special case of
structured mesh computations, where, in addition to stencil calculations,
solutions are approximated with the help of linear solvers. Thus, to sup-
port ADI applications, support for batch-tridiagonal solver libraries is
also needed. A key feature of DSLs is generality to provide support
for an entire domain with the narrowest abstraction possible. However,
in the case of batch-tridiagonal solver support, the abstraction is nar-
row enough so we can provide direct library support for CPU and GPU
clusters. The second part deals with the challenges of MPI-scalable so-
lution algorithms for batch-tridiagonal solvers through localizing and
minimizing the necessary communication to find the exact solution and
improving the communication and scaling properties of exact and itera-
tive solvers (Thesis II.).

However, many scientific computing applications require not just a
PDE solution but also the sensitivity information of the outputs with
respect to some input variables. Algorithmic differentiation (AD) is rec-
ognized as a key enabling technique for uncertainty quantification and
design optimization through its ability to automatically and accurately
compute derivatives of computer programs by exploiting the mathemat-
ics of function composition. However, performance portable solutions for
AD are lacking, and no library is applicable to DSLs like OPS. Further-
more, these tools do not consider the performance-critical optimizations
demanded on modern massively parallel processors typified by many-core
GPU accelerators for industrially relevant applications. The third part of
my research focuses on extending OPS with reverse-mode AD support,
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automatically mapping high-level structured mesh code to multi-core
CPUs and many-core GPUs (Thesis III.1 and Thesis III.2), with addi-
tional support for external tools like linear solvers from Thesis II. and
finally, with an abstraction to control the memory overhead of the dif-
ferentiation with checkpointing and recomputing (Thesis III.3.). I show
performance results and the main contributing factors of overheads and
the advantages of using the domain-specific information during orches-
tration of the adjoint loops on multiple representative applications.

2 Methods and tools

The first part of my research is based on the OP2 domain-specific
language [3], which provides a high-level abstraction for the solution of
unstructured-mesh applications defining an API to describe computa-
tional kernels with all the necessary information for orchestrating par-
allelism. The implementation of the new source-to-source generator is
based on the refactoring tool support of Clang’s LibTooling library. The
correctness and performance of the generated code were tested on two
applications written using the OP2 abstraction: a benchmark simulating
the airflow around the wing of an aircraft called Airfoil and a tsunami
simulation software called Volna [5].

The second part of my dissertation focuses on the distributed solu-
tion of batch-tridiagonal systems with special attention to applications
using the Alternating-Direction Implicit method [4]. The base of our
work is the single-node solver library Tridsolver [6]. We combined the
exact iterative PCR algorithm [7] with the distributed communication
strategies of the TridiagLU library [8].

Finally, the third part of my research focuses on the other domain-
specific language of the OP-DSL family OPS [2] and computing sensitiv-
ity information for outputs. The structure and abstraction of OPS are
similar to OP2’s, but OPS targets structured meshes with stencil loops.
We applied reverse (adjoint) mode algorithmic differentiation (AAD) to
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applications written in OPS. We used three applications to analyze the
performance of AAD with OPS: a 2D code solving the Poisson equation
using Jacobi iterations applying AAD directly and using fixed point iter-
ations [9], the CloverLeaf[10] is a mini-app that solves the compressible
Euler equations on a Cartesian grid using an explicit, second-order accu-
rate method and a code for 2D convection-diffusion equation code from
computational finance [11].

The applications and library extensions were implemented in C++
in combination with the CUDA language extension for targeting GPUs.
While the code generator for OP2 was implemented in C++, the code
generator for the AAD support of OPS was implemented in Python.
I used the NCCL and MPI libraries for message passing for distributed
memory parallelism, and for shared memory parallelism, I used OpenMP
and CUDA.

For performance measurements, a range of hardware architectures
and platforms were used. For benchmarking the scaling performance
of the Tridsolver library we used two of the UK’s HPC systems:
ARCHER21, a CrayEX system with AMD Rome CPUs (2 × 64 cores
per node) and 256 GB of RAM, and Cirrus2, a HPE/SGI system with
36 GPU nodes, each with 4×NVIDIA V100 16GB GPUs, interconnected
with NVLink, and FDR Infiniband between nodes. For evaluating the
performance of AAD in OPS, we ran the OpenMP measurements on
a single socket of an Intel(R) Xeon(R) Gold 6226R CPU at 2.9 GHz
without hyper-threading and 376 GB RAM and the CUDA measure-
ments were executed using an AMD EPYC 7F72 24-core Processor and
an NVidia A100 GPU with 40 GB RAM. In most cases, the runtimes
reported are the results of averaging 10 repeated runs.

1https://www.archer2.ac.uk/
2https://www.cirrus.ac.uk/
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3 New Scientific Results

Thesis I.

I designed an automatic translation toolchain that uses a paralleliza-
tion skeleton based approach. My solution improves the stability and
robustness of source-to-source translation in the OP2 DSL, generating
code for CPU clusters and GPUs, and improving memory locality. The
performance of the generated code is demonstrated on a set of represen-
tative applications, and I performed a comparative analysis of the effects
of various programming languages and compilers on the efficiency of par-
allel loops.

Publications related to this thesis: [J1, C3, C4]

The OP2 API was constructed to make it easy for a parsing phase
to extract the relevant information about each loop that will describe
which computation and memory access patterns will be used - this is
required for code generation aimed at different architectures and paral-
lelization. The op_arg_dat provides all the details of how an op_dat’s
data is accessed in the loop. With this information, the op_par_loop

call contains all the necessary information about the computational loop
to perform the parallelization. It is clear that due to the abstraction,
the parallelization depends only on a handful of parameters, such as the
existence of indirectly accessed data or reductions in the loop, plus the
data access modes that lend to optimizations.

The fact that only a few parameters define the parallelization means
that in the case of two computational loops, the generated parallel loops
have the same lines of code with only small code sections with diver-
gences. The identical chunks of code in the generated parallel loops as
an important blueprint of the target code to be generated. This leads us
to the idea of using a parallel implementation (with the invariant chunks)
of a dummy loop and carrying out the code generation process as a refac-
toring or modification of this parallel loop. Figure 1 illustrates partial
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parallel skeletons we can extract for the generated OpenMP implementa-
tion for indirect loops. The code generator can use this dummy parallel
loop as a skeleton (or template) and modify it to generate the required
candidate computational loop. One can imagine similar skeletons for all
target parallelizations. This approach can reduce the cost of introducing
new targets since it requires only to implementation of a dummy loop
to use as a skeleton instead of implementing code generation paths for
the whole kernel. At the same time, since implementing a loop is much
less error-prone than writing code to generate it, this approach reduces
the risk of introducing bugs in the invariant bits of code in the parallel
loops.

Based on the parallelization skeletons, the code generation for a par-
allel loop can be considered as a refactoring step. Clang’s LibTooling
library provides great support for code refactoring tasks by matching
specific parts of the code’s Abstract Syntax Tree (AST) and modify-
ing the source code behind the matched nodes. To complete the whole
process of source-to-source transformation in OP2, the code generator
requires two steps. The first collects data about the parallel loops to
be generated and replaces the original op_par_loop calls with calls to
the generated functions, and the second is generating code for the target
hardware as shown in Figure 2. The first phase parses all the arguments
in the op_par_loop calls to collect all the information that is required to
fill in the loop-specific code in the parallelization skeleton. The second
phase will choose the appropriate skeleton, build the AST, and perform
a set of refactoring steps, such as changing the function signature, to
generate the final specialized loop implementation. This approach pro-
vides two advantages over the conventional Python code generator. The
first is that the code generator can easily reuse bits of refactoring steps
between target structures, making extensions for new targets easier. The
second is that by using the compiler infrastructure, the new code gener-
ator can provide more sophisticated semantic checks over the generated
code at the time of the translation.
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1 // elemental kernel function
2 void skeleton(double * __restrict__ d) {}
3
4 void op_par_loop_skeleton(char const *name,
5 op_set set,
6 op_arg arg0) {
7 //number of arguments
8 int nargs = 1; op_arg args[1] = {arg0};
9 int ninds = 1; op_arg inds[1] = {0};

10
11 /*----------- Invariant code -----------------*/
12 int set_size =
13 op_mpi_halo_exchanges(set, nargs, args);
14 op_plan *Plan = op_plan_get(name, set, 256, nargs,
15 args, ninds, inds);
16 int block_offset = 0;
17 for (int col = 0; col < Plan->ncolors; col++) {
18 if (col == Plan->ncolors_core)
19 op_mpi_wait_all(nargs, args);
20 int nblocks = Plan->ncolblk[col];
21 # pragma omp parallel for
22 for(int blockIdx = 0; blockIdx<nblocks;
23 blockIdx++) {
24 int blockId =
25 Plan->blkmap[blockIdx +block_offset];
26 int nelem = Plan->nelems[blockId];
27 int offset_b = Plan->offset[blockId];
28 for(int n = offset_b; n<offset_b+nelem; n++) {
29 /*--------------------------------------------*/
30 // Prepare indirect accesses
31 int map0idx =
32 arg0.map_data[n * arg0.map->dim + 0];
33 // set up pointers, call elemental kernel
34 skeleton(&((double *)arg0.data)[2*map0idx]);
35 }
36 }
37 }

Figure 1: Skeleton for OpenMP (excerpt) - indirect kernels

Thesis II.

I designed a set of novel high-performance, scalable, distributed mem-
ory algorithms for the solution of batch-tridiagonal systems of equa-
tions, targeting large-scale heterogeneous supercomputers based on mod-
ern multi-core and many-core processor architectures. My algorithms
can compute both the approximate and the exact solution of individual
systems, and seamlessly integrates with Alternating-Direction Implicit
methods commonly used in the solution of large-scale high-dimensional
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Figure 2: The high-level architecture of OP2-Clang and its place within OP2

Partial Differential Equations. I published my implementation as an
extension to the open-source Tridsolver library.

Publications related to this thesis: [J2]

The state-of-the-art distributed memory algorithms for tridiagonal
systems divide the system into subsystems and form a smaller decoupled
tridiagonal system connecting the partitions (reduced system). Then,
commonly, this reduced system is either gathered into a single process
to solve and then the solution is scattered among the processes or solved
via iterative solver algorithms like Jacobi iterations. The former scales
poorly due to the all-to-all communication patterns, and the latter, while
using only point-to-point communications, produces approximate solu-
tions.

In ADI, the coefficients are calculated for each grid point in a way that
matches the underlying data structure of the application. MPI nodes are
defined along all dimensions and data for the diagonals are stored con-
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tiguously in either a row-major (Z is contiguous, Y, and X are strided) or,
more commonly, a column-major (X is contiguous, Y and Z are strided)
format. This poses a challenge for algorithms that then solve multi-
ple tridiagonal systems simultaneously; the different directions will use
different memory layouts, which in turn require different optimizations.
Moreover, improving on the state-of-the-art, our library supports all of
the three different memory layouts possible for 3 or higher-dimensional
problems.

By extending the Thomas-PCR hybrid algorithm to distributed
memory environments, I designed a tridiagonal solver algorithm that
gives exact solutions for batch tridiagonal problems while retaining the
scaling properties of the approximate algorithms. The overall structure
of the distributed tridiagonal solver can be summarized as follows. Each
subsystem of size M belongs to a separate MPI process, which performs
the hybrid Thomas-PCR forward pass. This produces a reduced system
with two rows per MPI process. The solution to the reduced system
is implemented using the distributed PCR algorithm. This algorithm
uses only point-to-point communications, which is a crucial criterion for
scalability. Once the reduced system is solved, the backward pass of the
hybrid Thomas-PCR is performed on each MPI process.

Table 1: Comparison of communications in distributed solver algo-
rithms.

Accuracy Communication pattern number of messages message size
Allgather exact all-to-all 1 3 × 2 × Nproc × Nsys

Jacobi approximate local point-to-point,
all-to-all for error 2 × Niterations Nsys

PCR exact point-to-point with
increasing distance 2 × log2(Nproc) 3 × Nsys

Table 1 shows a comparison between the three major solving strate-
gies for the reduced system and the trade-offs for using them, where
Nproc marks the number of MPI processes and Nsys marks the batch size.
To create a scalable algorithm, it is critical to avoid all-to-all communi-
cations, which would lead to message size correlating with the number
of processes. For the algorithms using point-to-point communications,
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Figure 3: Comparison of the Tridsolver library to TridiagLU. Left:
weak-scaling 5123 grid points per node, Right: Strong-scaling, 8192
points in the direction of solve, and 512 in others. AG - AllGather, GS
- Gather-Scatter

the number of messages and the distance between the communicating
nodes affect the overhead of the communication. We can see that the
PCR algorithm will use bigger messages between nodes that are fur-
ther away from each other, but in return, it does not require any global
communication and produces exact solutions.

Two of the three steps in the hybrid algorithm scales trivially. The
only part that contributes to the scaling properties is the distributed
solver for the reduced system. Figure 3 shows that algorithms relying on
global communication collectives take over the runtime after a certain
point. For point-to-point communications, the message size and the
distance of the nodes that are required to communicate are the two
factors defining the overhead. In the results shown in Figure 3, we
used a problem-specific upper bound on the number of Jacobi iterations
instead of using global reduce calls to compute the error; hence, the
Jacobi iteration used a fixed number of communications, and each node
communicated only with neighboring nodes, but such an upper bound
can’t be defined for the general case. On the other hand, PCR has one
additional communication step at each data point on the figure but does
not need any problem-specific heuristics to compute the solution. The
increasing cost of the communication clearly shows in the case of strong
scaling after 16 MPI nodes, where the cost of the far messages (leaving
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Figure 4: ARCHER2 scaling (MPI+OpenMP): (a),(c) Cirrus scaling
(MPI+CUDA):(b),(d) - All weak-scaling using 5123 points per node.
Strong scaling on ARCHER2 uses 8192 points in the direction of solve
while Cirrus measurements use 2048 points and 512 points in others.

local memory of ARCHER2 nodes) dominates the total runtime while
still beating global communication patterns significantly.

Figure 4 shows the scaling performance of the Tridsolver library for
solver calls in all directions of a 3D application on ARCHER2 and on
the Cirrus system. On CPUs, the PCR version achieves 70% scaling
efficiency up to 128 nodes, while on GPUs, the cost of the communication
outside a single Cirrus node (4 GPUs) is significantly higher due to slower
interconnect, which has a great impact on the scaling of the PCR solver.

Thesis III.

I proposed an advanced, abstract computational model for reverse
mode algorithmic differentiation of complex stencil applications and in-
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tegrated it into the OPS domain-specific language. The model enables
OPS to generate multi-core CPU and massively parallel GPU implemen-
tations for the adjoint loops, leveraging the metadata provided by the
DSL. The model uses a new mapping of the algorithm to novel execu-
tion patterns for the adjoint loops. Furthermore, the extension enables
OPS to follow the computational steps at a loop level by integrating
an AD tape tailored for the OPS DSL, creating a streamlined storage
mechanism thanks to the OPS abstractions.

Publications related to this thesis: [J3, C2]

Subthesis III.1. - I created a computational model based on the OPS
abstraction for structured-mesh stencil applications that describes com-
putational patterns, data, and control flow and described how adjoint
mode Algorithmic Differentiation can be performed with this model. I
extended the OPS abstraction to handle AD active datatypes and code
regions with custom adjoint functions such as linear solvers.

Computing sensitivities efficiently is crucial in many areas, and get-
ting efficient parallel implementations of the gradient propagation in
reverse mode AD is especially challenging. The two key challenges of re-
verse mode AD in a parallel environment are the data races introduced
by the reversal of the access patterns and following the control flow at
runtime. The OPS API uses a description of loops and the data access
inside the loops to generate efficient parallel implementations. Using
this description, I created a model that describes the access patterns,
describing the potential data races for the loops executing the adjoints
of the loops, enabling the generation of parallel implementations. Build-
ing on the loop chain registered at run-time, this model enables OPS to
compute the gradient through reverse-mode AD.

Subthesis III.2. - I designed and implemented a mapping of the high-
level model to optimized, low-level parallel computational kernels support-
ing both multi-core CPUs and many-core GPUs with architecture-specific
optimizations.
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Figure 5: Speedup of the version using the access pattern aware reduc-
tions over atomic operations in kernels for the CDE application with a
mesh size of 10242 and 40962.

In an OPS loop, each dataset is accessed through a stencil with an as-
signed access pattern: read, write, or increment. All loops in OPS must
use gather stencils only, meaning that read can appear with any stencil
with any number of points, but increment and write stencils must have
one single point access with zero offsets. In Reverse mode AD in the ad-
joint loops, the data flow will be reversed from gathering stencils, and we
will get scatter operations on the adjoint data. Due to the reversal, the
write and increment stencils on the datasets will turn into one-point read
stencils on the adjoint data and read stencils will turn into increment
stencils with multiple points. The above has two implications: first, the
primal loops are race-free, the parallelization is trivial, and second, the
adjoint loops will have data races on the adjoint data. However, the lo-
cation and structure of these data races are defined by the read stencils
of the primal loops. I devised and implemented an execution pattern
that avoids race conditions on CPUs executing the loop in two sweeps
with synchronization between. This approach avoids the cost of atomic
operations. On GPUs, the cost of atomic operations is lower; hence, the
adjoint kernels are using atomic operations on the derivatives.

Another important access pattern in terms of performance is read-
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ing to lower dimensional data (data that is invariant in some dimen-
sion). These accesses will result in a large amount of writes on the same
derivative values in the backward pass. I introduced a specialized code
generation path for lower-dimensional datasets in CUDA adjoint kernels
using reductions in only the required dimensions. Figure 5 shows the
speedup gain on an NVidia A100 using this optimization.

Subthesis III.3. - I extended the OPS abstraction to integrate the
model and the mapping, automatically orchestrating the forward and ad-
joint computations, including control over the memory overhead of dif-
ferentiation and enabling the efficient parallelization of the gradient com-
putation. I demonstrated the utility and performance of this extension
on industrially representative applications.

Reverse mode AD tools can only follow the control flow at most
an expression level, leading to high memory usage. Building on the
OPS abstraction, I introduced a tape data structure that keeps track of
the parallel loop descriptors and stores overwritten data for the loops.
The high-level tape drastically reduces the memory overhead of storing
control flow information. However, storing all overwritten data for a
large number of iterations in an application would lead to huge tape. To
address this issue, I extended the tape with the Revolve[12] checkpointing
strategy, providing the user with fine control over the memory usage
of the adjoint computation using loop re-execution to recompute the
intermediate states.

I evaluated the performance of the gradient computation on three
industrially representative applications. Figure 6 shows the relative run-
time of the whole gradient computation(including the evaluation of the
original function) compared to a single evaluation of the original appli-
cation.
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Figure 6: The overhead of AD on the benchmark applications, compared
to a single evaluation of the passive, original application. The values
show that evaluating the gradient takes N times of evaluating the original
application. The Overhead values show the additional cost of collecting
the DAG, saving intermediate states, and storing revolve checkpoints
during the forward pass, Revolve values represent the additional time
spent on replaying sections of the applications to restore states for the
adjoints loops and the Adjoint part shows the time spent in the actual
adjoint loops.
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4 Potential applications and benefits

My work on the OP2-Clang tool was directly applicable as the source-
to-source translation layer of the OP2 DSL. The use of a compiler-based
tool could increase the robustness and diagnostic abilities of the code
generation and make integration into industrial build systems easier at
the same time.

Results carried out in the context of batch-tridiagonal solver libraries
can be used in large-scale scientific applications using the ADI method.
This research was performed partially as part of the UK’s ExCALIBUR
project, which aims to deliver the next generation of high-performance
simulation software. As part of the project, a discussion of the use of
the library in the xCompact3D library [13] is ongoing. This library is an
industrial strength library for simulating turbulent flows and is used for
simulations such as airflow around an entire wind farm.

Adjoint mode Algorithmic Differentiation is often used in computa-
tional fluid dynamics and computational finance. Our results show how
domain-specific languages or abstractions, in particular OPS, can dras-
tically reduce memory overhead and improve the runtime of computing
gradients compared to general-purpose tools. The high-level OPS appli-
cation code provides support for both CPUs and GPUs, which makes
OPS one of the first performance portable adjoint mode AD libraries.
Furthermore, with OPS’s support for AD completed, we plan to enable
this functionality in higher-level libraries building upon OPS, such as
the Navier-Stokes solver OpenSBLI library, which focuses on shocks and
boundary layer interactions.
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