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1 Introduction
Since visual perception provides us with a significant amount of information about

our surroundings, processing visual information to mimic human vision with com-
puters is a widely researched area with many motivations. The speed of computer
vision algorithms is critical in many applications including those that require real-time
information processing, such as a navigation system. Particle filters can be traced back
to at least the 1990s [1] and they correspond to a robust approach to deal with nonlinear
state-space models subject to additive noise, not restricted to Gaussian noise [2]. Particle
filters (PF) are both part of the SMCM algorithm family and can be considered an
extension of the Kalman filter [3]. The potential use of particle filtering goes far beyond
predicting time series, such as in financial mathematics [4, 5] or position tracking, de-
spite the challenge of applying particle filtering to high-dimensional systems [6]. It is
used in many approaches where the input is an image, or a series of images, including
image reconstruction [7], object detection [8], navigation [9], segmentation [10, 11],
contour detection [12], and in tracking with occlusion [13].

A benchmark time series and its observation [2] is illustrated in Figure 1.

Figure 1: A time series (ground truth with blue) and its observation (red) of a particle
filter benchmark model [2].

The PF algorithm is computationally expensive due to the resampling step according
to the complete cumulative distribution [14]. The efficient and high prediction quality
implementation to parallel architectures has been widely researched [15–24].
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Graphics processing units (GPUs) represent an attractive implementation platform
as they have high computational efficiency, while the price of a device is relatively
low. This increased capacity can only be well exploited if algorithms are adapted to
the characteristics of the hardware architecture being used. Nevertheless, the method
used for resampling has a high impact on the prediction quality. As a comparison
shows in [25], different resampling strategies offer trade-offs between speed and pre-
diction quality. Therefore, an adequate parallel implementation of PF that retains local
connections and the information exchange among the particles during resampling can
achieve a remarkable speed-up with no degradation of the estimation quality. During
my research, I addressed the acceleration of the particle filtering algorithm, to re-design
it to fit GPU architectures of the time the most efficiently [A1, A3].

My research goal was to introduce a fast particle filter with sequential importance
resampling (SIR) [26] and provide a novel method that allows the implementation on
GPUs to retain high-quality prediction. Cellular particle filter(CPF) [27] introduces a
promising approach for the resampling problem by changing the logic representation
of the PF to a two-dimensional (2D), locally connected grid inspired by the cellular
neural network (CNN) architecture [28]. Due to the CNN-type representation and the
decreased dimension of resampling sets, CPF offers a solution to the problem of reduced
local information change, which is stated in [17]. Although the prediction is of the same
quality as for sequential implementation, this representation is not optimal in terms of
exploiting GPU architecture to achieve high efficiency. Hence, I intended to re-design
the algorithm to achieve an efficient implementation that fits the characteristics of the
GPUs and thus, can exploit and computational capability and speed of GPUs.

In addition to the importance of increasing the efficiency of the core algorithms, what
really matters in engineering tasks is the total time required for executing a process,
including data acquisition and preparation. In addition to optimizing for the speed
of individual components, such as a particle filter used for tracking, we also need to
consider the need for suitable input usually provided by segmentation. Forming regions
by organizing and labeling each pixel in the image into groups that belong to the same
object, segmentation is a strategy for understanding and processing visual information.
Therefore, I focused on segmentation and contour detection, as it is challenging for
region-based methods based on pixel similarity to avoid merging similar adjacent
objects or parts thereof. In addition to considering region similarities based on colors
on an over-segmented image, created with a segmentation based on Mean Shift [29],
I intended to exploit contour detection based on basic geometrical properties of the
segments [A4, A5].
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However, in addition to image processing and machine learning methods, over the
past decade, there has been a rapid development of deep learning-based approaches
for segmentation [30]. After a break between 2015 and 2021, I began investigating the
segmentation of neighboring, highly similar areas using deep neural networks. The
research was motivated by surveillance videos of unmarked rats, where even state-of-
the-art algorithms failed in multi-animal tracking without a single ID switch due to
heavy occlusions. Deep networks are effective tools for retrieving visual information
automatically, and if sufficient training data is available, the final model can learn a
high-dimensional representation of important image features - similar to the human
brain. Compared to traditional algorithms, deep networks require a task-dependent
amount of labeled data for training. Therefore, we can consider the quality of prediction
and the time spent on data acquisition and annotation as a trade-off. For complex scenes,
the collection of training data may be beyond the possibilities in terms of computational
or human resources. Even if the required amount of data of adequate type is available,
annotation still needs considerable time. Therefore, in terms of efficiency, we need to
consider not only the quality and speed of the prediction, but also the time required to
collect, prepare, and annotate the data for training. In the case of so-called end-to-end
networks [31, 32], the training of a single, even complex structure provides the final
prediction for the raw, not pre-processed input data. However, defining such a network
can be a significant challenge, as it depends on the specific task and the characteristics
of the input images. Composite AI [33, 34] is an approach that can help overcome
limitations of end-to-end deep networks. For a complex task, deep learning, machine
learning, image processing, higher-level logic, and even domain-specific knowledge
can be used to create a pipeline that ensures a high-quality performance for challenging
scenes with multiple unknown objects, occlusions, noises, and similarities, among oth-
ers. Training the network on synthetic data, where the ground truth labeling is available
by construction, saves considerable time and effort. However, the distribution and im-
age characteristics of the synthetic training data must be sufficiently close according to
an appropriate metric to those of the candidate inputs to ensure high-quality prediction
and to avoid overfitting to artifacts, which is often highly challenging.

My goal was to create a method for high-quality segmentation of highly similar
instances with unsupervised trained deep learning based on synthetically generated
data that is automatically annotated to reduce the need for human effort. My research
was motivated by surveillance videos of unmarked rats, where even state-of-the-art
algorithms failed in multi-animal tracking without a single ID switch due to heavy
occlusions.
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I targeted a combination algorithm of a region-based detection approach [35] and
contour detection that exploits inner boundaries of occluding instances, which provides
a high-quality segmentation and allows reliable id-tracking using a propagation ap-
proach presented in [36]. I addressed the training of deep networks for edge detection
based on synthetic data: a dataset is generated fully automatically (based on only
frames with non-occluding instances), without any human annotation to train an edge
detection network for detecting the separating boundary between occluding identical
objects with a static background. A sample image pair is shown in Figure 2.

Figure 2: A real frame (on the left) and a synthetic frame (on the right) of two over-
lapping, highly similar, unmarked rats after background removal. The similar char-
acteristics of a region of a single instance and those of the area created by the two
overlapping rats pose a challenge in recognizing instance boundaries with traditional
edge detection algorithms. Deep networks provide promising edge detection results
and automatically annotated images that are similar to the real frames can significantly
reduce the annotation required for training to facilitate a large number of biological
studies, which otherwise would not be feasible.

As the “continuity” of the inner boundary edges required further improvement
for precise segmentation, I was searching for a generative method, to provide an edge
“completion” suited to the detected edge characteristics.

2 Methods of Investigation
To address the question of adapting a Particle Filter to GPU I relied on the available

literature on parallel, distributed and local particle filters [15–24, 27] during my research
in 2013, considering the following major aspects. First, information share ratio among
the particles to minimize degradation of the quality of estimation compared to the
original algorithm, which resamples according to the complete cumulative distribution.
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Second, characteristics of the different GPU memory types, to improve kernel running
times and on-device approaches for synchronization and random number generation to
minimize the time consuming transfers between CPU and GPU. Although, NVIDIA
Mersenne Twister included in the CUDA SDK seems to offer a promising solution, the
distribution of the random numbers proved to be insufficient for low amount (hundreds
and even thousands) of numbers. Therefore, I explored possible solutions and finally
proposed two different approaches for random number generation.

To compare the quality of the estimation and the running time I used two benchmark
models applied for evaluation in several state-of-the-art articles, available by the time
of the research. On the one hand, the non-autonomous, non-linear model with a
continuous state space used in [2, 37–39], and on the other hand, a bearings-only
tracking model presented in [40] and used in [22, 23]. For evaluation, I used an NVIDIA
GeForce GTX 550 Ti GPU with 1-GB GDDR memory, compute capability 2.1, and CUDA
toolkit 4.1 with driver version 295.49.

To improve the quality of tracking highly similar occluding instances with keeping
identity labels based on instance segmentation I considered the use of composite AI
techniques as described in the Chapter 1. If different approaches as sub-modules
are combined in a pipeline, the accuracy and performance can be better than that
of an end-to-end approach [31, 32], moreover, each sub-module can be developed
and optimized independently, and the results from one sub-module can be used to
guide the development of the next sub-module. To improve instance segmentation
the complete visual context (such as constraints) can be incorporated through higher
logic into appropriately designed pipeline, while machine learning algorithms and
computer vision techniques are used together. Combining two algorithms that can be
considered as dual approaches [41], such as region detection and edge detection, allows
for exploiting the complementary information that helps to mitigate the limitations of
individual methods.

Based on the available literature deep learning methods are more promising for
complex scenes than traditional edge detection techniques. Therefore I relied on the
state-of-the art deep learning approaches presented in the literature [42–45] to train an
edge detection deep pipeline. To train the networks I considered the prediction quality
and the time required for annotating the training data. To avoid the monotone and time
consuming human annotation, I considered the method introduced in [36] and explored
the required transformations to provide a similar characteristic to real, non-augmented
test frames. The dataset is derived from a 20-minute, 25 fps observation video with
a resolution of 1280x720, which was provided by the Department of Physiology and
Neurobiology of the Eötvös Loránd University (ELTE). The frames used as image inputs
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are the same as those in the article [36], which were extracted and cropped to the
region of the box, resulting in a final image resolution of 640x420 saved in png format.
I synthetically constructed the training data from the first 10 minutes of the video
containing 15 000 frames, as described in Thesis I.1 and Thesis 1.2. For training the
Edge Detection [42] and Edge Completion [44] networks I used all 9 233 frames with
non-occluding instances by determining the number of foreground objects based on
histogram intensity and a background image constructed as a mode of 2 000 frames. For
training the CycleGAN I selected 2 200 frames randomly from the ones with occluding
instances. I chose the number of the training images for CycleGAN to be of a similar
order of magnitude as the training dataset shown in the CycleGAN work, and based on
the results, I considered it to be indeed appropriate.

To evaluate the quality of the segmentation results of the pipeline, 18 sequences of 200
images were selected by observation with challenging occlusions for human annotation.
In this set 1 669 frames contain non-separated instances. See the number of training and
test images for the different deep networks of the pipeline in Table 1. My goal was to
minimize human annotation and attention time, therefore, time measurements are only
indicative. 15 epochs for DexiNed took 6 hours, 10 epochs for CycleGAN took 1 hour,
20 epochs for EdgeConnect took 16 hours1.

Table 1: Number of images for training and testing the different deep networks of the
pipeline. 90% of the training images were used as an actual training set, and 10% as a
validation set.

Number of images
Train Test

RGB/aRGB aGT(edge) Non-closed contour

DexiNed 92 330 92 330 3 600
CycleGAN 2 200 2 200 200

EdgeConnect 92 330 92 330 92 3300 3 600

The annotation was split between four annotators and each annotator’s segmentation
was validated by another annotator.

I extended the proposed pipeline with the tracking approach presented in [35] and
compared it to state-of-the-art tracking methods [46–49] by evaluating them on the 3,600
hand-annotated frames of a rat surveillance video. Although the main objective was
to eliminate track switches, I also evaluated the instance segmentation quality of the

1On a single GPU of a server equipped with two Nvidia TITAN RTX GPUs @ 24 GB memory/GPU,
AMD Ryzen TR2920X CPU @ 64 GB RAM
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methods (where it was applicable). For evaluations, we used two servers 2 one with two
NVIDIA TITAN RTX GPUs with 24 GB memory/GPU, AMD Ryzen TR2920X@3.5GHz
24 core CPU, and 64GB RAM, and the other having two NVIDIA GeForce RTX 3090
GPUs with 24 GB memory/GPU, AMD Ryzen TR1920X@3.5GHz 24 core CPU, and
64GB RAM. Both servers had Ubuntu 18.04 operating system, codes were run in an
Apptainer [50] virtual environment using Pytorch 1.4 and 1.9 for Edge Detection and
Edge Completion networks respectively, with OpenCV 4.1.1. (see requirements and
environment script file in the attached code).

3 New Scientific Results
THESIS I. A mapping of particle filtering onto the GPU architecture that can preserve
local connections to prevent information loss

Particle filters can be considered as an extension of the Kalman filter, and therefore
represent an attractive solution for Hidden Markov Model based problems in several
fields, including image processing, robotics, and stock market forecasts. For compu-
tationally demanding approaches or applications required to run real time the GPU
architecture allows efficient implementations. However, the resampling step of the
original particle filter algorithm was considered unsuitable for parallelization without
information loss, meaning a considerable limitation for speed-up. The algorithm pre-
sented in [27] exploits local connectivity of FPGA or Cellular Neural Network(CNN)
chips. While other parallelized methods and distributed particle filters achieve high
speeds with reduced information sharing between particles at the expense of accuracy,
the algorithm presented in [27] is capable of better accuracy than the usual particle filter
while drastically reducing the runtime.

In contrast to CNN and FPGA architectures GPUs, which are highly data-parallel, are
widely spread devices that enable efficient computations. There have been some former
implementations to GPUs, but the speed-up is highly limited at a cost of information
loss in the resampling step.

2nipg8 and nipg10 of Neural Information Processing Group, Department of Artificial Intelligence,
Faculty of Informatics, Eötvös Loránd University
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THESIS I.1. I designed an algorithm to map the Cellular Particle Filter (CPF) to the
GPU architecture, in a way to exploit the GPU memory architecture efficiently to
maximize speed, and at the same time maintaining the local connection property of
the original CPF topology.

I developed a method, based on the cellular particle filtering structure, to provide
information sharing, for GPU architecture. Shared memory with coalesced threads and
synchronization on the global memory provides a faster computation than surface or
texture memory and is not limited to 2D layouts. Therefore, I developed a method to
map the local connectivity of a two-dimensional CNN architecture efficiently to the
one-dimensional, read/write, fast-access on-chip memory of the GPU architecture (see
Figure 3 for illustration of concept).

Figure 3: Restructuring linear representation of N blocks to a ring type topology. Bi
stands for the ith block, and NBi for the corresponding neighbourhood from the previous
block, i ∈ 1, . . . , N.

I showed by experimental evidence that the position error is similar to existing
implementations on GPU, while the speed is better, although the possibility of one-
to-one comparisons is limited by the variety of GPU devices used for measurements.
Also, state-of-the-art works only show kernel runtimes. Those that use a device with
similar performance to ours or provide no details about the used device are in the same
range as our 77 ms total runtime3, which includes I/O operations. Compared to GPU-
implemented distributed particle filters, our algorithm preserves the local connectivity
of the particles, therefore it achieves the accuracy of the original filter, however with
a total running time of less than 12 milliseconds at 16 thousand particles per state,
which corresponds to a 164x speed-up compared to CPU implementation4. Meanwhile,
the method of mapping the 2D layout of the processors and the preservation of the

3Measurements were done on a NVIDIA GeForce GTX 550 Ti GPU with CUDA toolkit 4.1, available
at the time of the research in 2013

4The following NVCC compiler options were used to drive the GPU binary code generation, as
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local connections to the 1D memory architecture allows other algorithms based on
two-dimensional connections to be efficiently mapped to GPU.

Related publications of the Author: [A1, A3]

THESIS II. Unsupervised segmentation of highly similar occluding rat instances
built on a pipeline of deep networks exploiting edge information

In terms of overall pipeline efficiency not only the implementation of each algorithm
should be considered, but also the amount of human attention and time required. Iden-
tity tracking and instance segmentation are crucial in several areas of biological research.
Behavior analysis of individuals in groups of similar animals is a task that emerges
frequently in agriculture, pharmaceutical studies or behavioral ecology, among others,
and usually requires a decent amount of human annotation. Automated annotation of
many hours of surveillance videos can facilitate a large number of biological experi-
ments, which otherwise would not be feasible. Solutions based on machine learning
generally perform well in tracking and instance segmentation; however, in the case of
identical, unmarked instances (e.g., white rats or mice), even state-of-the-art approaches
can frequently fail, as shown in the number of track switches listed in the second column
of Table 2. The challenging task of segmenting highly similar adjacent image regions
can be addressed by traditional methods [A4, A5], but deep-learning-based methods
offer a more promising direction.

We focus on data where mice/rats are very similar without any markers but may
have received different medical treatments, and individual behavior patterns should be
analyzed. In typical setups, the camera is fixed, and the foreground segmentation is
feasible, which simplifies the segmentation process. However, handling the changes in
shape configurations and the heavy occlusions between the instances poses a significant
challenge.

My approach is to build a pipeline inspired by Composite AI [33, 34], to provide
reliable segmentation for identity tracking. Composite AI combines different learning
architectures to achieve superior results and exploits human knowledge to improve
overall performance.

The required time for tracking similar instances with human observation for each and
every frame is highly time-consuming. In comparison, a partially automated solution
can provide a significant speed-up. However, the time needed for the preliminary
annotation for training and for the supervision in the prediction stage may still be

proposed in the CUDA SDK Guide: -arch=sm 20; -use fast math. We also made some measurements
with -arch=sm 13. The host c code was compiled with GCC 4.5; the compiler optimization flag was -O2.
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considerable for each setup. I created a pipeline with an automatic annotation method
to reduce the human need in the process. My method is illustrated in Fig. 4.

Evaluations show that a tracking method built on the segmentation using the pre-
dictions of the trained models further reduces the required supervision during the
prediction stage compared to state-of-the-art methods.

THESIS II.1. I developed a method to generate a synthetic dataset fully automatically
without any human annotation, based on only frames with non-occluding instances,
to train an edge detection network for the detection of the separating boundary
between highly similar occluding rat instances with a static background.

For the 3600-frame demonstration footage of the two rats, the instance annotation for
tracking is a low-skilled task for a human annotator, taking twice the time of the video.
For hours of surveillance videos, this is a significant amount of time that an expert must
invest before performing the tasks that require expertise (analysis and inference).
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Figure 4: Illustration of the training and prediction pipelines. Three main blocks of
the training pipeline: I. synthetic data generation and training Edge Detection model;
II. training the Feature Model; III. extending synthetic dataset and training the Edge
Completion model. Training is built upon synthetic data generation. Overlapping
inputs and augmented ground truth data are constructed from pre-processed frames
with non-occluding instances. The trained Edge Detection network is applied on frames
with occluding instances. The unpaired CycleGAN [51] generates training data on the
synthetic dataset for training the Edge Completion network. The prediction pipeline
applies the Edge Detection model for the foreground of the frames. If the detected
edges are not separating the instances, the foreground mask is a single connected region
and the trained Edge Completion network “extends” the edges inside the foreground
mask. The segmentation algorithm predicts the final segmentation for each frame. The
edge regions and the body regions detected by a pre-trained model [35] are combined
to provide a reliable segmentation for identity tracking of the highly similar and mark-
erless instances including during heavy overlaps. The proposed pipeline is completely
automatic, no human annotation is required. For more details, see the text.

Moreover, this speed is achieved with the trade-off of using only one in six im-
ages, meaning that the temporal resolution, thus overall tracking quality, is degraded
compared to a framewise method. A trained deep network can significantly speed up
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processing videos if it provides a reliable automatic instance segmentation. However,
manual annotation of training data is a long, monotonous, and usually low-skilled
task. Moreover, it is hardly flexible to changes in the annotation protocol and thus
can be revisited when new sub-tasks or changes in recording settings occur to ensure
prediction quality.

We may synthetically generate training data based on instances that can be seg-
mented with high confidence in some of the frames automatically, i.e. with foreground
segmentation. However, it is essential that the synthetic data created by the augmenta-
tion method is sufficiently similar to real frames for the deep network.

For very similar objects to create realistic occluding instances as an RGB training
input, it is a challenge to accurately define the object masks in frames with not-occluding
instances without losing important details, while noise from background pixels or
shadows should not be added. Based on the background segmentation and that the
number of instances is known and constant throughout the video my algorithm selects
the frames with non-occluding foreground objects automatically. The edge images
are also masked using foreground segmentation. An edge detection network [42] is
trained with constructed data only. For each real RGB input of not-occluding instances, I
generated 10 different overlapping positions, with slightly randomized parameters. For
each position, I created both the augmented RGB (aRGB) and the augmented ground
truth edge image (aGT). To overcome the noise in the aRGB images on the inner contours
of the overlapping instances I applied an inpaint-based blur along the contour of the
upper object. To further improve training quality I removed the background from both
the aRGB and the aGT image.

With the trained model, within the frames with overlapping instances, the number of
frames where the contour of the upper instance was not closed was reduced from 81.53%
to 17.83%. This corresponds to a 4.57-fold improvement compared to the pre-trained
state-of-the-art edge detection model (which is better than the traditional Canny [52],
Sobel [53] methods).

THESIS II.2. I designed a method with deep generative networks in a self-supervised
approach to improve the separating contours in an edge image of a frame with
overlapping objects.

I aim to further decrease the number of frames with occluding instances in which the
contour of the upper instance is not closed after applying the model of Thesis I.1. I chose
a deep generative network for edge inpainting as the missing part cannot be closed by
applying binary morphological operators. The required training data was generated
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without human annotation to maintain the self-superwised pipeline. Note that in 3D,
the unoccluded instance is above the other one. This unoccluded instance will be called
the upper instance. I use a Generative Adversarial Edge Completion Network, based
on [44] for the frames where the contour, detected by my Edge Detection model, of the
upper instance was not closed. To train the Edge Completion network edge images
with not-closed contours are required, with a mask defining the region of missing edges.
I generated the edge images with not-closed contours with an unpaired CycleGAN [51],
which is able to learn features of the images. Typically this network is used for learning
RGB features. My idea was that features of edge images of a given type of object could
also be learned by this architecture. I used the aGT edge images and the predictions
of the Edge Detection model on real frames containing occluding instances. Thus, the
generated not-closed contours are similar to the output of the edge detection, and the
corresponding (augmented) ground-truth edge images are provided by construction.
The mask of the edge region is based on the foreground mask of the instances and the
generated edge image with not-closed contours.

As opposed to the inpainting technique in the original application of the [44]
network, I apply no masks on the RGB input. During training the missing contour is
available based on the corresponding aGT image, therefore I modified the loss function
of the discriminator network. The loss of the foreground and the loss of the missing
contour contribute to the overall loss equally. The Edge Completion model, from
training the Edge Completion Network as described above, further reduces the frames
where the upper instance has non-closed contour.

THESIS II.3. I created a segmentation algorithm that combines detected edges and
detected body part regions from an existing unsupervised segmentation model to
provide instance segmentation.

I used the Edge Detection and Completion models as follows. I estimated the
foreground mask and generated edge images. If it was a single connected region then
the algorithm of Edge Completion was invoked.

In the case of a single connected foreground region only the body parts method [35]
was used. If the foreground mask had more than one region then we combined it
with the results of the body parts method. An initial labeling is created for the regions
created by the detected edges, after noise reduction. Edge-defined regions and regions
from body part detection are assigned to each other based on the overlaps. This
labeling provides the anchor regions of the watershed algorithm [54], applied within
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the foreground region. The outcome is the per-frame segmentation. The overview of the
main steps is shown in Figure 5.

Figure 5: Sketch of the test pipeline for a single frame. Our aim is to maximize the
segmentation precision within the frame to provide a strong basis for tracking. Body
parts and edges are predicted and edge completion methods are invoked. A pre-
processing provides the foreground masks and removes the background from the frame.
A post-processing module combines the information and predicts the segmentation of
the instances separately to enable identity tracking. Note the error in the last subfigure:
the head of one of the animals is mislabeled. However, tracking remains error-free.

Per-frame segmentations were connected by a propagation algorithm [36] to measure
the reliability of tracking based on the segmentation. I compared my results to three
state-of-the-art identity tracking methods of similar kinds. No trajectory switches
occurred for my method, whereas the competitive methods made several mistakes, and
are outperformed in identity tracking and instance segmentation of unmarked rats in
real-world laboratory video recordings. Results are presented in Table 2.

Related publication of the Author: [A2]

The codes related to the theses are available at https://github.com/g-h-anna/phd-diss-code.

https://github.com/g-h-anna/phd-diss-code
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Table 2: Comparison of segmentation-based trajectory tracking of methods which do not require prior data annotation, on
our test data of 3600 frames. TS denotes the track switches metric from [36], which measures the number of ID switches
during tracking. Lost ID: there are less than two different foreground labels in the frame. For ToxTrac and idtracker, per frame
segmentation masks are not available. Superscript 1 marks that the result is computed by means of the GUIs of the cited method,
the best we could do for comparisons. BIPED-TL is the model trained with the augmented dataset with transfer learning on the
original BIPED model [42]. Gray highlight: Mean of the Intersection over Union (IoU) values for all frames. For benchmark
measures, we used the same ones as in [36].

ID Tracking Results

Approach
Num.

of TS.

Num. of Frames

with Lost IDs
IoU Mean

IoU &

F Mean

IoU

Recall

F

Mean

F

Recall

ToxTrac [48] 9 2671 N/A N/A N/A N/A N/A

idtracker [46] 8 10551 N/A N/A N/A N/A N/A

idtracker.ai [47] 10 1485 0.5556 0.604 0.59 0.652 0.746

BIPED & Parts 4 2 0.833 0.871 0.978 0.908 0.985

SEPARATS & Parts 0 0 0.846 0.883 0.994 0.921 1.000

BIPED-TL & Parts 0 0 0.845 0.883 0.994 0.921 0.999
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4 Application of the Results
The proposed deep pipeline of highly similar instance segmentation during oc-

clusions outperformed similar approaches in segmentation and tracking quality on
the annotated 3 600 images. After extending training data with a brightness-related
color augmentation, it also tracked the instances without any track switches on a
224 577-frame dataset of four videos without annotated segmentations. Although this
corresponds to a generalized edge detection model that required still no human annota-
tion to deliver reliable tracking for a different setup (using another type of background
or even instances that look differently), there are scenarios when a different approach
can lead to a better solution. Deep models provide the highest prediction quality for
data with the most similar distribution to the training data [55].Therefore, for a new data
set of frames from a video clip containing consecutive scenes, which can be considered
identically distributed data, we can expect the best prediction quality if the training
images are most similar to the frames and, as such, have a similar distribution. We can
make use of the great advantage of the pipeline that it generates training data fully
automatically if provided with a set of frames of occluding and a set of frames with
non-occluding instances, thus, requiring minimal human time and attention to obtain a
training set adapted to the current input. With training data obtained through synthetic
data generation and automatic labeling, we can train the edge detection model on highly
similar images as those in the input video to get high-quality predicted segmentation.
Therefore the proposed pipeline is expected to be well applicable for tasks to provide
instance segmentation for id-tracking multiple, unmarked, sometimes occluding, highly
similar instances with constant background and fixed distance from a fixed upper
camera, if light conditions allow for the observation of visual properties (i.e. shadows)
between the animals during occlusions, with a low amount of human attention and
effort required.

Particle filtering is applied in multiple fields where the Kalman filter is suboptimal
for state estimation due to the nonlinearity of the state dynamics and non-Gaussian
noise. The proposed GPU Cellular Particle Filter retains the advantage of the original
particle filtering being not limited to a specific domain. Be it image processing, au-
tonomous driving, robotics, or any field where the particle filtering approach would
lead to a solution, the proposed method can be exploited to achieve the same prediction
quality with a more efficient, parallel adaption. The proposed adapted filter can be
easily applied for one and two-dimensional inputs (as shown in the evaluation section
for the two benchmark models) and can be modified to deal with higher dimensions.
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In our proposed method, the information sharing ratio is tunable and may be modu-
lated adaptively. Therefore, it broadens the range of options, than using a predefined
information share value to find the optimal share ratio range among particles to achieve
the lowest error at the highest speed. For tasks that use detections generated on the
GPU device by a deep model and particle filtering is required for tracking due to the
noise or other characteristics, the GPU-adapted Cellular Particle Filter can be applied
with a comparable estimation quality of the CPU single-threaded PF, but spare the time-
consuming data transfer between GPU and CPU. Compared to the Fermi architecture
with a compute capability of 2.x available by the time of the research, the Ampere GPU
architecture introduced in 2020 with a compute capability of 8.x, offers significantly
higher efficiency and speed. While retaining the main concept of the algorithm, the
performance of Cellular Particle Filter on GPU would be increased due to several rea-
sons, such as the changes regarding the shared memory. The faster memory access
decreases the overhead of data transfers and computations within the shared memory,
and shared memory size is three times larger on an Ampere device [56] than on a
Fermi [57] thus, can reduce the number of global memory accesses for synchronization
of the particles. Moreover, the memory bandwidth between memory types is also
significantly increased in Ampere architecture compared to Fermi architecture, not only
on-device but also the PCIe-v4 buses double the speed between CPU and GPU, memory
bandwidth is 1.6TB/s (for A100 40GB)–3TB/s (for H100) compared to 192GB/s of Fermi.
The proposed method enables parallel execution on modern GPUs, just as it did on
architectures available 10 years ago. In addition to the numerical acceleration resulting
from architectural advancements the implementation of the GPU CPF algorithm on
current hardware is expected to maintain a similar magnitude difference compared to
the implementation of the sequential CPU PF algorithm.

In my current and future research, I aim to reduce human time in multi-animal
annotation and tracking. In my approach, deep models are trained or fine-tuned on
synthetically generated training samples and, based on the deep models and traditional
computer vision algorithms, I propose id-tracking for multiple ruff instances in side-
view recordings with several occluding positions in collaboration with the Max Planck
Institute for Biological Intelligence.
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