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1 Introduction and aim

The utilization of new sensor technologies for three-dimensional
(3D) data acquisition is a key step for deeply understanding and
widely exploiting spatial information in our environment. Wide-
spread sensor platforms are mapping systems based on Lidar (Light
Detection and Ranging) technology, as they provide accurate 3D
measurement flows with high acquisition speed [6]. However, due to
a trade-off between the available laser scanners’ temporal and spa-
tial resolution, the provided point clouds show significantly different
quality and density characteristics [7], limiting the general usability
of standard point cloud processing techniques or methods devel-
oped for specific sensors with their own domain specific functional
requirements.
On the one hand, autonomous vehicles and mobile event surveil-
lance missions (such as traffic analysis or crowd monitoring) demand
real-time 3D data acquisition and processing techniques operating
onboard on mobile platforms. For dynamic environment percep-
tion and recognition tasks such as advanced scene analysis and un-
derstanding, repetitive, typically rotating multi-beam (RMB) Lidar
sensors (e.g., Ouster OS1 or Velodyne Puck models) [1] are com-
monly utilized devices. RMB Lidars can produce real-time point
cloud streams (300 thousand-2 million points/s), however, their
measurements have low spatial density, and their field-of-view (FoV)
coverage is constant through the whole scanning process: Their
vertical resolution is fixed by the number of the laser beams (16-
128), while their horizontal resolution depends on the sensor’s ro-
tation frequency (5-20 Hz). Alternatively to RMB Lidars, recent
non-repetitive circular scanning (NRCS) Lidar sensors are also ca-
pable of providing measurements for real-time scene analysis, at a
significantly lower cost compared to the RMB technology. Unlike
RMB Lidars, NRCS Lidars (e.g., the Livox AVIA sensor) are able
to densely map large areas from a given scanning position due to
their special scanning technology which follows non-repetitive, e.g.,
rosetta patterns. The main challenge is here to efficiently balance
between the spatial and the temporal resolution of the recorded
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range data using a suitable integration window [2, 8].
On the other hand, city management applications such as urban de-
velopment and planning, public place surveillance, and road main-
tenance need very detailed and accurate 3D spatial maps from the
environment, which are obtained by offline scanning technologies
and stored and maintained in new generation Geo-Information Sys-
tems (GIS). Recent Terrestrial (TLS) and Mobile Laser Scanning
(MLS) platforms equipped with time synchronized Lidar sensors
and navigation units are common choices for such applications, as
they provide dense, accurate and feature rich point clouds precisely
registered to a geo-referenced global coordinate system.
This thesis deals with two main tasks related to advanced envi-
ronment analysis using Lidar sensors. First, I investigate how the
perception capabilities of the state-of-the-art real-time RMB Lidars
can be extended by prior location information, adopting offline and
semantically evaluated 3D point cloud maps captured by an up-to-
date MLS system. Second, I investigate how the perception of the
latest real-time NRCS Lidars can be improved without any external
information, exploiting the spatial and temporal characteristics of
the sensor measurements by deep learning techniques.

2 New Scientific Results

1. Thesis: I have proposed a new method for change de-
tection, which comprises 3D point cloud registration and
point-level change segmentation through fusing Lidar point
clouds with significantly different density characteristics.
I have constructed a new urban dataset by a state-of-the-
art rotating multi-beam (RMB) Lidar scanner (with a point
density of around 50-500 points/m2) and an up-to-date
Mobile Laser Scanning (MLS) system (more than 5000
points/m2). Using this new dataset, I have quantitatively
demonstrated the advantage of the proposed algorithm aga-
inst various state-of-the-art reference techniques.

Published in [1][3][4][5]
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This thesis deals with three consecutive subtasks: First, a cross-
source point cloud registration is performed to precisely align the
sparse RMB and dense MLS data, and a utilization of this algorithm
is introduced for tracking the pose of the capturing vehicle in real
time, even in partially occluded and dynamic environment. Second,
a cross-source change detection algorithm is proposed for finding
every point that changed since the map creation. Third, a new
method is introduced by utilizing the output of the change detection
technique for improved dynamic object detection.

1.1. I have proposed a novel approach for the registration of
sparse RMB Lidar and dense MLS point clouds with a rela-
tively poor initial alignment, which consists of a coarse pre-
alignment step through detecting and matching landmark ob-
ject candidates using geometry-based feature points from the
whole scene, and a point-level refinement step that calculates
the accurate transformation matrix based on the matched ob-
jects’ local point cloud segments for reducing the computational
need. I have demonstrated the advantage of the proposed al-
gorithm against various state-of-the-art reference techniques in
urban scenes, by comparing translation and rotation errors cal-
culated by the decomposition of each transformation matrix
and the manually labelled ground truth (GT), and by measur-
ing point distances between the registered point clouds. I have
shown an efficient utilization of the introduced algorithm for
pose tracking, by estimating the planar pose of the vehicle from
the object-matching result and fusing it in a constant velocity
model-based Kalman filter.

Several point cloud registration algorithms exist in the literature
that perform correspondences between features of handcrafted [9,
10, 11] or learning-based [12, 13] keypoints, segments [14, 15] or
points [16, 17, 18]. In the addressed cross-source application, the
main challenge is that the RMB Lidar frames are too sparse for ex-
tracting meaningful 3D keypoints (which work between dense MLS
point clouds), while the MLS point clouds are in several regions
100-1000 times denser than the corresponding RMB measurement
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(a) Initial alignment, t ≈ 4.17 m trans-
lation and θ ≈ −51◦ rotation error

(b) Results of the proposed registration
algorithm

(c) Results of the coarse alignment in
case of an uneven road surface

(d) Results after the point level refine-
ment

Figure 1: Results of the proposed point cloud registration algorithm.
Subfigures (c) and (d) refer to the same area circled by black in
Subfigure (b). Color codes: RMB points are shown with red, the
segmented MLS regions are marked by various colors depending on
their semantic classes.

segments which misleads the general segment level matching pro-
cesses. Following a different approach, as the first contribution,
instead of aligning the original point clouds, I have separated and
matched landmark objects in the RMB Lidar frames and from the
MLS map. Here, as a remaining challenge, many falsely detected
object candidates can present (e.g., traffic participants, partially oc-
cluded objects), which may result in a possibly large ratio of outlier
matches. To handle their effect, I have applied the voting schema
of the generalized Hough transform. As the second contribution,
I have used the coarse alignment step to initialize the point-level It-
erative Closest Point algorithm [19], which I have executed only for
point cloud segments corresponding to the previously aligned object
pairs. In comparison to six different point cloud registration meth-
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ods [13, 20, 16, 21, 22, 23], the median value of point-level distances
is decreased by 1–2 orders of magnitude by the proposed approach.
To overcome the problem of heavily occluded scenarios without a
sufficient number of matchable object pairs, I have extracted the
planar (3DoF) pose (planar position and yaw orientation) of the
capturing vehicle from the result of the object matching process
and integrated the estimated pose parameters by a constant velocity
(CV) model-based Kalman filter. Starting from a poor GPS-based
positioning with 5-10 meters error, the proposed pose tracking ap-
proach is able to reduce the location error of the vehicle by one order
of magnitude and to keep the yaw angle error around 1◦ during its
whole trajectory without considerable drift, while running in real
time (20-25 Hz).

1.2. I have proposed a new Markov Random Field-based ap-
proach (RangeMRF) for multi-class change extraction and clas-
sification (dynamic, seasonal, or no change) between registered
RMB and MLS point clouds using 2D range image represen-
tations. I have demonstrated the advantage of the proposed
algorithm against various state-of-the-art reference methods by
qualitative and quantitative evaluations.

Three-dimensional change detection is a highly discussed topic in
the literature [24], however, existing point [25, 26], segment [27] or
voxel [28] based methods cannot handle well when the character-
istics of the two comparable point sets are significantly different.
In the addressed scenario, they show notable trade-off between false
positive (e.g., noise, vegetation changes) and false negative hits (i.e.,
loss of details). As the first advantage, the proposed RangeMRF
method detects changes between 2D range images derived from the
point clouds. Using a compact range image representation, the pro-
posed method is notably quick, meanwhile, it can robustly handle
the significantly different density characteristics of the two point
sets by containing only relevant parts of the dense MLS data. Sec-
ond, I have applied a Markov Random Field model, which is highly
robust though noisy measurement data. Third, I have distinguished
three classes in the segmentation model: seasonal changes in veg-
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(a) Range domain (b) 3D domain

Figure 2: Change segmentation results in the range image domain
and in the 3D space on real measurement data. The first two rows of
Subfigure (a) are depth images where brighter pixels denote closer
distance, and black pixels contain no measurements. The third
row displays semantic labels of the MLS data, where vegetation
is marked by green. The last row shows the segmentation output
of the RMB data. Subfigure (b) displays the segmentation of the
same area in the 3D space. The pixels/points for static background
are displayed by blue, for dynamic change by red, and for seasonal
change by green.

etation regions, foreground changes caused by moving objects or
changed/re-located static street furniture elements, and unchanged
background regions. By handling the vegetation areas with a spe-
cific sensitivity, the proposed method can eliminate several false
hits in vegetation areas, while it is able to sharply recognize even
small foreground changes (i.e., pedestrians standing near stations or
facades) between the input point clouds. In comparison to four ref-
erence techniques [27, 24, 28, 26], the proposed method outperforms
them either in F1-scores (by around 10-25%) or in computational
complexity, running 10–1000 times faster.

1.3. I have proposed a new method to utilize the introduced
change detection approach for improving the performance of
Lidar-only dynamic object detection algorithms. I have demon-
strated in high-traffic road sections that the proposed approach
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can efficiently balance the precision and recall values with sig-
nificant overall improvement for both vehicles and pedestrians,
using a state-of-the-art object detection method.

Real-time dynamic object detection in 3D sparse point clouds is a
hot topic in autonomous driving with several geometric [29] and
deep learning [30, 31, 32, 33, 34] based algorithms in the literature.
However, there are a number of limitations of these approaches:
False positive hits may appear in point cloud regions containing
static scene objects with similar appearance and context parame-
ters to the focused dynamic scene objects, while the point cloud
blobs of several dynamic objects can be heavily merged or occluded
by static street furniture elements, yielding many unrecognized traf-
fic participants. I have proposed a new approach that utilizes dense
MLS maps in order to decrease in parallel both the false negative
and false positive hits of object detection algorithms. The proposed
approach includes a map-based object validation, the introduced
cross-source change extraction, and an object-level change analysis
step between registered RMB and MLS map data. As a basis of
comparison, I have chosen the PointPillars [34] state-of-the-art ob-
ject detection method, with which the proposed method achieved
an improvement of 5.96% in precision, 9.21% in recall and 7.93% in
F1-score metrics on our own dataset.

2. Thesis: I have proposed a novel depth completion method
from sparse consecutive measurements of a non-repetitive
circular scanning (NRCS) Lidar using a deep learning model
(ST-DepthNet). I have constructed a new urban dataset
that comprises various simulated and real-world NRCS Li-
dar data samples. Using this new dataset, I have qualita-
tively and quantitatively demonstrated the superiority of
the proposed method against a densified depth map ob-
tained from the raw sensor stream, and against two inde-
pendent state-of-the-art Lidar-only depth completion algo-
rithms.

Published in [2]
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This thesis deals with efficient data-driven completion of NRCS Li-
dar data. Due to their non-repetitive scanning technology, NRCS
Lidars are able to map different areas of their field of view (FoV)
from a given scanning position in consecutive times [8]. The main
challenge of analysing their point cloud streams is to efficiently bal-
ance between the spatial and the temporal resolution of the recorded
range data using a suitable integration window. Allowing a larger
integration time (e.g., 1 s) yields high spatial measurement resolu-
tion with various artifacts, such as blurred shapes of the observed
vehicles, pedestrians or buildings, which phenomena complicate dy-
namic event analysis, while a narrow time window (e.g., 200 ms)
yields spatially more precise but notably sparse measurements with
a significant loss of spatial details. To overcome this spatio-temporal
trade-off of the NRCS Lidar-based perception, I have proposed a
novel deep learning-based approach for the densification of sparse
NRCS Lidar depth data streams while keeping their temporal reso-
lution and spatial accuracy high.

2.1. I have proposed a new training framework for the densifi-
cation of 3D data streams provided by NRCS Lidars, by map-
ping their consecutive point cloud measurements to sparse 2D
depth images, each collected within 200 ms to enable 40% field-
of-view coverage. I have constructed a new synthetic dataset
which contains depth images acquired by simulating the be-
haviour of a NRCS Lidar, and high-quality dense depth images
for each sparse sample exploiting the complete spatial infor-
mation of the virtual world. I have extended the dataset with
sparse real samples using the same depth image representation
and I have made them both publicly available. The proposed
framework enables to train and to test depth completion algo-
rithms on synthetic scenarios, and to validate their reliability
in real-world data as well.

For the 2D representation, I have converted the captured sparse
point clouds of the Livox AVIA NRCS Lidar sensor from the Carte-
sian (x, y, z) to the spherical (distance, azimuth, elevation) polar
coordinate system, then the horizontal and vertical FoVs were quan-
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tized onto a 400×400 pixel lattice using an integration time window
of 200 ms for collecting the consecutive time frames. By this ap-
proach, around 60% of the range image pixels receive undefined
range values, however, they are not notably effected by blurring
and this representation permits the use of two-dimensional convolu-
tional neural networks to fill in the missing structural information
in the image domain. As higher integration time induces blurred
silhouettes due to the independent movements of dynamic objects
of the scene including the ego robot or vehicle, it is challenging
to provide dense, spatially precise GT depth information for real
data. Therefore, besides the real measurements, I have constructed
a synthetic range image dataset from a realistic virtual world using
the CARLA simulator [35], where the behaviour of the Livox AVIA
NRCS Lidar sensor was implemented. The virtual world allows to
extract dense, spatially precise depth information, used as GT for
the Lidar’s sparse depth sample data.

2.2. I have proposed a new depth completion deep neural net-
work called ST-DepthNet, which extends the classical U-Net
architecture with a spatio-temporal downscaling branch for uti-
lizing five consecutive sparse measurements captured by NRCS
Lidars and produces spatially precise high-density depth data
in real time. I have demonstrated the advantage of the pro-
posed algorithm against the state of the art in both synthetic
and real-world scenarios.

First, I have exploited that using the applied Livox AVIA sensor, a
time interval of 1 s contains enough dense range information from
the scene with almost full FoV coverage. Thus, I have taken five
consecutive sparse depth images – each one recorded in 200 ms – as
the network’s input to have enough information about the complete
FoV. To accurately restore the single output image, I have adopted
an image-to-image U-Net [36] architecture and I have extended the
downscaling part of the U-Net network by utilizing Conv2DLSTM
layers [37] to exploit temporal connections between the features de-
rived from the input image sequence. Second, the upscaling branch
of the proposed network remained purely two-dimensional and skip
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(a) Sparse input data captured in a 200 ms time window

(b) RGB image for visual reference only

(c) Output of the proposed ST-DepthNet deep network

Figure 3: Depth completion results on real measurements from Bu-
dapest, Hungary. Accurately predicted fine object structures by
ST-DepthNet are highlighted with green ellipses.

connections at each level were performed by recurrent pooling uti-
lizing the last output of a Conv2DLSTM layer which represents
features of the last 200 ms measurement. Third, I have directly
connected the last input image to the output to exploit that the last
and most up-to-date input image contains spatially precise points,
and therefore, the network only has to learn the missing regions of
the range image. I have trained the model on the introduced syn-
thetic dataset and I have quantitatively shown that the proposed ap-
proach outperforms two state-of-the-art reference methods [38, 39]
on synthetic data, reducing their root-mean-squared error (RMSE)
by more than 1 meter in the range domain, and achieving around a
half meter less error in the 3D domain by the normalized Chamfer
distance and median distance. For real NRCS measurement data, a
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survey from 20 computer vision-related experts demonstrated that
the proposed method performs significantly better than the refer-
ence techniques.

3 Application of the Results

All the developed algorithms can be used in advanced perception
platforms of mobile robots and intelligent vehicles equipped with
RMB or NRCS Lidar sensors. The first thesis can be applied in
urban environment where detailed 3D point cloud maps are avail-
able about the city for assisting vehicles that are equipped with a
RMB Lidar and a GPS receiver. The proposed methods can con-
tribute to map-based real-time scene understanding like accurate
self-localization and pose tracking, change-based scene segmenta-
tion and improved dynamic object detection. The second thesis can
be applied for robot or vehicle platforms that are equipped with a
NRCS Lidar sensor to produce accurate and dense depth maps from
the environment while keeping high temporal resolution, which can
be a crucial middle step for more advanced scene understanding or
mapping. As part of my Cooperative Doctoral Program, many of
the proposed algorithms directly contributed to R&D projects con-
ducted with the participation of the Institute for Computer Science
and Control (SZTAKI) and the Pázmány Péter Catholic University
(PPCU), and we also submitted two patent applications related to
the methods.

4 Datasets and Implementation Details

For joint utilization of both RMB Lidar measurements and MLS
data, I created a new Benchmark called SZTAKIBudapest that con-
tains RMB point cloud streams captured by a Velodyne HDL 64E
64-beam RMB Lidar sensor from different downtown areas of Bu-
dapest, where high-density, geo-referred point cloud maps are also
recorded by a Riegl VMX450 MLS scanner. The Benchmark con-
tains three different road scenarios, each one covering a path of
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around 300 meters with segmented reference MLS data [40]. For
quantitative evaluation, Ground Truth (GT) annotations verified
by operators are available for registration, pose tracking, change
and object detection.
For training and evaluation of the proposed method in the sec-
ond thesis, I constructed a synthetic range image dataset called
LivoxCARLA from a realistic virtual world using the CARLA simu-
lator [35], where I simulated the behaviour of the Livox AVIA NRCS
Lidar sensor. The LivoxCARLA dataset consists of 11726 randomly
sampled input-output range image pairs, from which 10000 were
used for training, 500 as validation and 1226 for testing. Besides the
LivoxCARLA dataset, I also collected real measurement sequences
from Budapest. In these experiments, the Livox AVIA sensor was
mounted on the front-top of our test vehicle on a driving path of
total 5.5 kilometers in both speedways and in the city center.
The main platform for point cloud handling and processing was
implemented in C++ with the OpenCV and PCL libraries, while
the neural network models were implemented and trained in Python
with the Pytorch or Keras frameworks.
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opportunity to study there. Special thanks to those whom I may
have not mentioned by name but who supported me directly or
indirectly in accomplishing my Ph.D. research.

14



I thank the reviewers of my dissertation for their work and valuable
comments.
For financial support, thanks to the National Research, Develop-
ment and Innovation Fund, under the ÚNKP-20-3 and ÚNKP 21-3
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