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Introduction

For precise medical diagnosis the doctor often needs to

see inside the body to have a better understanding of the

underlying bodily state. For avoiding the complications of

surgical interventions, non-invasive medical imaging tech-

niques are promoted.

Endodontics is a good example to show the impor-

tance of high quality images in medical treatments and

diagnosis. In dentistry the 3D structure of the tooth is vi-

sualized using cone beam computed tomography (CBCT),

where the typical resolution is around 500 µm [1]. When

the exact position of the dental canal has to be determined

for root canal treatment, these images are difficult to work

with, since the diameter of the canal is usually in the range

of 0.16-1.6 mm [2]. Even though endodontic treatment is

one of the most common procedures, epidemiological stud-

ies show success rates of only 60-85% for general practice

[3].

The resolution enhancement techniques presented in

the thesis are demonstrated on dental CT scans, but each

of them is adaptable to various modalities.
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Challenges in Medical Image

Enhancement

Recording higher quality images either requires expen-

sive new devices (e.g. denser detector arrays), poses health

risks to the patient (e.g. a higher dose of ionizing radia-

tion), or is limited by physical boundaries (like the diffrac-

tion limit), therefore post-processing resolution enhance-

ment is preferred.

The degradation model of the recorded images as-

sumes a blurred, down-sampled, noisy version of the high-

resolution object. Generic super-resolution algorithms es-

timate this object from a single degraded image (SISR) in-

stead of a series of images or multiple modalities [4]. State-

of-the-art techniques are computationally efficient meth-

ods in the case of two-dimensional (2D) images. However,

most medical images are three-dimensional (3D), and the

size of the data volume does not permit the use of cur-

rent SISR techniques in real life scenarios because of the

extreme run-times (hours for a single dental volume [5]).

In the light of the above, the central research questions

investigated are:

1. Is deep learning a viable method for dental CT single

image super-resolution?

2. How is tensor factorization applicable in 3D single

image super-resolution?
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3. Do tensor implementations of the 3D single im-

age super-resolution problem offer faster algorithms

than the current state of the art does?

4. Can the system parameters be estimated within

a tensor framework of the 3D single image super-

resolution problem?
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New Scientific Results

Thesis I: I have designed a deep learning framework

for the SISR problem, applied to CBCT slices. I have

tested the U-net and subpixel neural networks, which both

improved the PSNR by 21-22 dB, and the Dice coefficient

of the canal segmentation by 1-2.2%, more significantly in

the medically critical apical region.

Corresponding publication: [J1]

Convolutional neural networks (CNN) have shown

promising results for resolution enhancement [6]. To our

knowledge this was the first time that a deep learning al-

gorithm was used for biomedical SISR.

The U-net network [7] allows feature extraction on five

different scales and combines their information on the out-

put. My implementation used batch normalization for

generalization, leaky rectified linear unit activation for

avoiding inactive neurons, and a modified Hubert-loss for

more accurate training. The subpixel network [8] extracts

features directly from the low resolution image through six

layers, and realizes the upsampling with a depth-to-space

tiling operation in the last layer. It offers a computation-

ally lightweight, still efficient solution for SISR.

CBCT – µCT image pairs of 5680 axial slices taken

from 13 teeth were used for training, and 1824 slices

of 4 teeth for testing the networks. Two existing 2D

reconstruction-based super-resolution methods (SRR) us-

ing `2-norm and total variation (TV) regularization were
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used for comparison. Some example outputs are shown in

Fig. 1.

Figure 1: Result of SR methods on different slices from the test set.
On the left of the first column the type of the tooth and the depth of
the slice from the apex of the root are displayed. A 2 mm-scalebar
is displayed on the µCT images. The display range is stretched to
[0,1].

The results were evaluated using different metrics

(in Table 1), in particular the peak signal-to-noise ratio

(PSNR [dB]), structural similarity index (SSI) , and the

difference in canal sizes (DoC) and Dice coefficient (DC)

of subsequent 3D canal segmentation (Fig. 2).

Table 1: Quantitative DL enhancement results

Metrics averaged on the test set, compared to the µCT.
Metric CBCT SRR:`2 SRR:TV U-net Subpixel

PSNR 45.56 64.15 64.80 67.58 66.60
SSI 0.9145 0.8688 0.8830 0.9304 0.9346
DoC 12.39% 12.25% 12.40% 10.12% 6.07%
DC 0.8891 0.8852 0.8913 0.8998 0.9101

The results show the superiority of the proposed

CNN-based approaches over the state of the art in the

case of dental CT images, allowing better detection of
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Figure 2: Volumetric segmentation of the root canal on two teeth of
the test set. Coloring shows the difference between CBCT and µCT
(on the left) and between the subpixel CNN and µCT segmentations.

medically salient features such as the size, shape, or

curvature of the root canal, especially in the critical

apical region. It has been observed that the chosen loss

function of the network is not directly the best measure

for perceptually correct metrics, as they only moderately

affirm the visually observed enhancement.
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Thesis II a: I have designed an algorithm for the

3D SISR problem, using the canonical polyadic decompo-

sition of tensors. This implementation conserves the 3D

structure of the volume, integrating the factorization-based

denoising, deblurring with a known PSF, and upsampling

of the image in a lightweight algorithm with a low num-

ber of parameters. It outperforms the state-of-the-art 3D

reconstruction-based algorithms with two orders of mag-

nitude faster run-time and provides similar PSNR (im-

provement of 1.2-1.5 dB) and segmentation metrics (Dice

coefficient increased on average to 0.89 and 0.90).

Corresponding publication: [J2]

The canonical polyadic decomposition (CPD) of 3D

tensors has recently been used for the fusion of multi- and

hypetspectral images [9]. CPD finds the smallest set of

pure tensors (outer product of three arrays), which sums

up to the tensor in question. In case a smaller set is used,

a denoised tensor may be expressed.

Table 2: Quantitative CPD-SISR results

Sample #1 Sample #3

tooth type upper incisor lower molar
µCT image size 282×266×392 324×306×402

CBCT PSNR 23.17 dB 24.14 dB
LRTV PSNR 24.32 dB 24.61 dB
CPD-SISR PSNR 24.32 dB 25.71 dB

CBCT DC 0.88 dB 0.90 dB
LRTV DC 0.87dB 0.90 dB
CPD-SISR DC 0.90 dB 0.91 dB

LRTV time 6988 s 10301 s
CPD-SISR time 71 s 104 s
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Figure 3: Results on a sample image (#1). The CBCT image is
shown at the higher scale of the HR images, for better comparison.
The location of the slices within the volume is illustrated on the
CBCT images in colored lines.

The proposed CPD-SISR algorithm optimizes for the

set of pure tensors, which composes the denoised, up-

scaled, deblurred (with an estimated PSF) version of

the CBCT volume, and does so in a fused implementa-

tion only alternating among the dimensions. The main

advantage compared to the state of the art lies in the

tensor-implementation, avoiding the formulation of large,

X ∈ RIJK×IJK matrices from X ∈ RI×J×K tensors, still

preserving the 3D information.
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The results were compared to a state-of-the-art,

reconstruction-based algorithm with total variation

and low rank regularization, LRTV (Fig. 3 and 4).

Because of the large matrices this method is computa-

tionally extremely heavy, enhancing a sample volume of

282× 266× 392 pixels in two hours, raising difficulties in

the tuning of its six parameters. The proposed algorithm

executed for the same volume in a little over a minute,

using only three robust parameters. The PSNR increased

similarly for the two methods, while the segmentation

was significantly better in case of CPD-SISR (Table 2.

These results were promising enough for further research,

as described in the following thesis points.

Figure 4: Segmentation results for CBCT, LRTV and CPD-SISR
for a sample tooth (#3). The color-bar visualizes the distance be-
tween the estimated surface of the canal and the one obtained with
µCT segmentation.
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Thesis II b: I have implemented a joint alternat-

ing recovery of the unknown PSF parameters and of the

high-resolution 3D image using CPD-SISR. The algorithm

was compared to a state-of-the-art 3D reconstruction-based

algorithm, combined with the proposed alternating PSF-

optimization. The two algorithms have shown similar

improvement in PSNR, but CPD-SISR-blind converged

roughly 40 times faster, under 6 minutes both in simu-

lation and on experimental dental computed tomography

data.

Corresponding publication: [C1]

For the direct estimation of the PSF a dataset of known

low- and high-resolution image pairs, or dedicated mea-

surements on a phantom are necessary, repeated for any

machinery of which the output images are to be enhanced.

Otherwise the PSF has to be estimated along with the de-

blurred image in a joint manner.

Table 3: CPD-SISR-blind quantitative results

Simulation Experiment

µCT size 287×266×392 274×278×474

ground truth σ [6.0 6.0 6.0] –
initialized σ [8.0 8.0 7.0] [8.0 8.0 7.0]
σ with LRTV-blind [4.7 4.6 6.3] [7.6 6.5 7.4]
σ with CPD-SISR-blind [5.0 4.9 4.8] [8.5 7.8 6.5]

LR–HR PSNR 22.32 dB 19.42 dB
LRTV-blind PSNR 24.39 dB 25.63 dB
CPD-SISR-blind PSNR 26.53 dB 30.07 dB

LRTV-blind time 9087 s 11823 s
CPD-SISR-blind time 298 s 354 s
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In this work a semi-blind estimation was realized, as-

suming that the standard deviations of the Gaussian PSF

(σ) are within a known interval. The problem optimizing

for these parameters can be solved with gradient descent

[10]. This minimization for the PSF and the CPD-SISR

optimizing for the high-resolution image are repeated al-

ternating until convergence.

Figure 5: Qualitative results with CPD-SISR-blind. A coronal slice
was chosen for demonstration. The LR images (artificially degraded
µCT in simulation, CBCT in experimental test) are shown on the
scale of the µCT images using linear interpolation.

11



For comparison the LRTV algorithm was used as in

Thesis II a, combined with the proposed PSF-estimation

in a similar alternating manner, noted as LRTV-blind

(Fig. 5). In simulation the PSNR improved by 18.9%

in CPD-SISR and 9.3% in LRTV-blind, while on the

experimental data by 54.8% and 31.9% respectively

(Table 3). However, the most important improvement of

CPD-SISR-blind remains its runtime, being roughly 40

times faster compared to the LRTV-blind.

Thesis II c: I have proposed a solution for the

3D SISR problem using the Tucker decomposition (TD-

SISR). The denoising step is realized first by TD in order

to mitigate the ill-posedness of the subsequent deconvo-

lution. Compared to CPD-SISR the algorithm runs ten

times faster. Depending on the amount of noise, higher

PSNR (0.3 - 3.5 dB), SSI (0.58 - 2.43%) and segmenta-

tion values (Dice coefficient, 2% improvement) were mea-

sured. The parameters in TD-SISR are familiar from 2D

SVD-based algorithms, so their tuning is easier compared

to CPD-SISR.

Corresponding publication: [C2]

TD is the higher order generalization of the 2D singu-

lar value decomposition [11]. The basis vectors may be

weighted according to their importance in the factoriza-

tion. While the CPD defines a single rank that has to

be estimated, TD uses the nrank, three different values

for 3D tensors. By thresholding the singular values with
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these estimated ranks, a denoised tensor can be composed.

Here the deblurring can not be incorporated into the fac-

torization, therefor they are implemented subsequently.

Table 4: Quantitative results in TD-SISR - simulation

Simulated LR CPD-SISR TD-SISR

runtime - 17.96 s 1.86 s

PSNR (dB)

no noise 28.56 31.48 34.99
30 dB 28.45 31.17 34.39
25 dB 28.36 31.08 31.40
20 dB 27.98 30.01 29.33

SSI [0, 1]

no noise 0.9623 0.9680 0.9823
30 dB 0.9612 0.9650 0.9763
25 dB 0.9572 0.9595 0.9653
20 dB 0.9463 0.9453 0.9417

Segmentation at 25 dB

Dice 0.8976 0.9242 0.9425

Even though two additional parameters have to be

set, it gave faster and quantitatively better results in

noisy simulated and real images compared to the pre-

vious method, CPD-SISR (Table 5, Fig. 6). Images

of 280×268×492 and 324×248×442 pixels were super-

resolved under 2 s with standard Matlab implementation.

The PSNR has improved under added noise in both meth-

ods. TD-SISR outperformed CPD-SISR both in PSNR

and SSI values, except for the extremely noisy, 20 dB case.

The segmentation was carried out at 25 dB. The improve-

ment is confirmed by the DC, showing the superiority of

the TD-SISR method.
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Figure 6: Results of SISR methods under 25 dB noise, both in simu-
lation and in real data. The first row shows a single axial slice taken
from the volumes. The second row shows the distance between the
segmented high-resolution, low-resolution, enhanced volumes.
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Table 5: Quantitative results in TD-SISR - real data

CBCTR CPD-SISR TD-SISR

runtime - 17.71 s 1.46 s

PSNR (dB)

no noise 19.55 21.25 21.61
30 dB 19.30 20.84 21.57
25 dB 19.10 20.13 21.09
20 dB 18.91 20.21 20.29

SSI [0, 1]

no noise 0.8647 0.8907 0.8935
30 dB 0.8610 0.8870 0.8929
25 dB 0.8478 0.8784 0.8908
20 dB 0.8173 0.8555 0.8814

Segmentation at 25 dB

DC 0.8939 0.9189 0.9304
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