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1 Introduction

Deep learning is an ubiquitous machine learning approach which has
been successfully used in many applications to find a practical solution for
complicated problems. I worked on many ideas across many topics dur-
ing my PhD solving problems and enhancing the performance of numerous
deep learning based applications. I will present four different issues sur-
rounding the usage of neural network in practical applications.

• I adopted the idea of evaluating partial solutions from neural network
and applied it to the mutation step of any genetic algorithm method.

• I created a novel algorithm to recover the adversarial samples in a way
that the system can still make the correct decision in case of detection.

• I worked on a new loss function for neural network in the task of image
segmentation where I incorporated the topological properties when
comparing objects.

• I worked on enhancing the performance of deep learning models
by reforming batch normalization layer where I filtered the out-of-
proportion activations when calculating the distribution’s statistic.

2 New Scientific Results

1. Thesis

I have introduced a new mutation variant in genetic algorithm with an
additional parameter that can determine a mutation factor on the individual
gene. I have demonstrated that with the proper tuning of the local mutation
parameter the final accuracy of the investigated algorithmic setups was in-
creased by 64% on the 256-Queens problem and 7% on the TSP problems with
254 cities. [1]

Genetic algorithm (GA), as the most prominent evolutionary algorithm,
is a probabilistic and heuristic search approach to investigate encoded solu-
tions, also known as a chromosome, in an iterative manner, which was suc-
cessfully applied in various practical applications. The algorithm searches
for the optimal solution relying on a fitness function which determines the
quality of each solution candidate. In the traditional approach, selection of
a position for mutation is a random process and its major goal is the ex-
ploration of the high-dimensional search space without taking the current
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state of the chromosome into account. Optimal selection of the gene which
will be modified requires a comprehensive knowledge of three different vari-
ables; the statistics of the inter and intra populations, the chromosomes as
a function of time and the statistic of the genes’ competences which is also
described in the following equation 1.

PM(Popt i j ) = F(Pop l=1...M,k=1...N,q=1...t
qkl , i , j ) (1)

PM calculates the probability of mutation for a given gene j and F is a
function calculating the mutation rate of gene j taking into account all pre-
vious generations (q), chromosomes (k) and genes (l ).

Our new mutation method, locus mutation, designate a different proba-
bility operator for each gene in a chromosome which can only be possible in
partially solvable problems. The simplest model for gene level mutation is
locus mutation as in Equation (2) where all generations and chromosomes
have the same mutation rate but each gene has a different mutation rate
which corresponds with the other genes.

PM(Popt i j ) = F(Pop l=1...M
t i l , j ) (2)

Algorithm 1 depicts GA with locus mutation. It is the same as a regular
GA pseudo code, but we do have a newly introduced gene level mutation
(GeneMuati on()) which depends on partial fitness (Par ti al Fi tness).

Algorithm 1: Genetic algorithm main steps

1 Parameters: Popul ati onSi ze,Mut ati onRate, Iter ati onNumber
2 Results: Opti mum
3 Popul ati on = population initialization
4 for Iter ati onNumber 0 → i do
5 Fi tness,Par ti al Fi tness = Fi tness(Popul ati on)
6 Popul ati on = Sel ect i on(Popul ati on,Val ues)
7 Popul ati on = Cr ossover (Popul ati on)
8 Popul ati on =

GeneMuati on(Popul ati on,Mut ati onRate,Par ti al Fi tness)
9 end

I have investigated two common problems, traveling salesman problem
(TSP) and N-Queens problem. Locus mutation has resulted better solutions
in all cases, regardless of the investigated parameters. Our approach has
always surpassed the baseline solution where in average it yields 300% lower
error than its traditional counterpart.
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2. Thesis

I created a baseline for adversarial attack recovery and showed that it is
a necessary extension of adversarial attack detection in practical problems. I
demonstrated that using an algorithm based on counter-attacks can retrieve
the original input classes with high confidence reaching 68% accuracy over
MNIST, CIFAR-10, and a subset of ImageNet. [2]

Adversarial attacks can cripple any application with critical decision
making tasks. Although many typical solutions were presented to make the
neural network less vulnerable to the attacks by building better models or
detecting the adversarial samples, we can’t rely on their solution to deal with
the malicious samples.

The most commonly applied defenses against adversarial attacks de-
pend on one of three approaches: adversarial training , modifying the net-
work or a detection-based approach. Most non-detection defenses are vul-
nerable to counter-counter attacks, rendering potential exposure and keep-
ing the system in a state of being without any functioning protective shield.
Detection-based defenses, on the other hand, can be continuously updated
but lack the ability to steer the decision-making process obstructing the in-
stallation of any safety measure. Thus, a recovery algorithm has to be em-
ployed after the detection of adversarial attacks, providing robustness and
resilience.

The high dimensionality of neural networks creates convoluted borders
between all the classes, making a targeted adversarial attack highly possible.
Taking into account the complexity of the curvature of the decision bound-
ary, we hypothesize that the distance between the adversarial sample and
the original class’s manifold in the feature space of the decision boundary
is smaller than the distance between the adversarial sample and any other
classes’ manifolds and, hence, all the adversarial samples and their counter
attacks are in the vicinity of the original class manifold. We have imple-
mented our idea, a class retrieval algorithm, on the notion of our former
hypothesis to predict the original class by counter attacking the adversarial
samples, targeting every class and then selecting the class with the mini-
mum loss.

The counter attack can return the attacked sample to its original class
easily since the adversarial sample is on the edge of the original class de-
cision boundary. Due to the high dimensionality of the decision boundary
curvature, there exist an intricate border between the manifold of each of
the two randomly selected classes.

Our class retrieval algorithm for a detected adversarial attack is ex-
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plained as a flowchart in Figure 1. Ad vImg is the adversarial image which
has been selected by an adversarial attack detector filtering any potential ad-
versarial threat. The neural network prediction for the label of the adversar-
ial image is Ad vLab, which is a misclassification according to our detector.
We exterminate the possibility of the adversarial label, Ad vLab, being the
original class by setting its loss to infinity. The original retrieved label is the
class with the minimum loss excluding the adversarial label where we used
ar g mi n function to return the index of the smallest loss.

Figure 1: A flowchart explaining our class retrieval method starting from the
input image until the output label where the ar g mi n process returns the
index of the minimum loss, MaxY is the number of classes and Ad vY is the
adversarial label.

Our retriever is a self-evident addition to adversarial attack detectors and
the combination of these two methods can enable the practical applicabil-
ity of deep network even in case of attacks. I investigated four different ad-
versarial attacks (PGD, MPGD, Deepfool, TPGD and PGDDLR) on three dif-
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ferent datasets (MNIST, CIFAR10 and subset of ImageNet). The results are
promising and consistent across all attacks and datasets, where the average
accuracy is 67%.

3. Thesis

I demonstrated that a three-dimensional extension of wave loss can be
employed as a loss function in the training of deep neural network in case
of segmentation problems. I have shown that, with proper parameters set-
ting, wave loss can increase the accuracy of segmentation with 2% on the
MS-COCO dataset and cityscapes dataset as well. [3]

Image segmentation is applied in various tasks from medical imaging to
self-driving cars. Many deep learning methods are applied which vary sig-
nificantly depending on the selected architectures (U-Net, SegNet, Mask-
RCNN and RetinaNet) or on the exact specification of the segmentation
problem (semantic segmentation, instance segmentation or amodal seg-
mentation), but all of these approaches require a metric which will compare
the actual network output to the expected, ideal outcome or ground truth.

In current applications in almost all cases a pixel based distance is ap-
plied, where two images are compared to each other according to a given
metric (like L1, L2 or Smooth-L1 distances). Similarly the outcome image
and the ground truth can be considered as probability distributions and
cross entropy can be applied to determine a distance between them, but
none of these metrics take into account the position of the differences.

Almost all popularly used metrics such as cross entropy, Dice, Lovász or
Tversky losses are area based metrics, where the area of the different regions
matter, but their topologies are not considered.

Our metric depends on three not-independent measures: The area of the
differences, the topology of the differences and the intensities, values of the
differences. The output and ground-truth images can be imagined as two
two-dimensional surfaces in three-dimensions. From this we can calculate
the intersection and the union (which will also be two-dimensional surfaces)
then the metric can be imagined as a three-dimensional wave propagating
filling out the space between these two surfaces. A weight will be associated
to every new voxel at each time step of the propagation and this four dimen-
sional volume (the weighted sum of the three dimensional changes) will be
called wave loss. Our goal was to differentiate between value and topology
based differences and because of this the propagation speed of the wave is
different in the z (intensity) and x, y (topological directions). A showcase is
described in figure 2 illustrating the wave propagation.
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Figure 2: Illustration of the wave propagation. The first row depicts two pos-
sible binary input images (first and second images from the left) and their
intersection and union (third and fourth images from the left). The last two
rows depict four 3D versions of the wave metric in an increasing manner un-
til reaching the union at iteration 100, 150, 300 and last iteration including
not reached regions. During propagation further and further pixels will be
incorporated in the loss function with higher and higher values. At the last
step a high penalty will be assigned to all pixel which were not reached dur-
ing propagation.
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I have shown on a simple dataset, inspired by CLEVR that the same net-
work can achieve better accuracy and faster convergence using Wave loss,
than pixel based loss functions. I have also shown on a more complex tasks,
that the overall accuracy of instance segmentation could be increased by
3% on MS-COCO and Cityscapes datasets using four different architectures
modifying only the loss function from cross entropy to Wave loss.

4. Thesis

I Created a new method called filtered batch normalization which is a
two steps batch normalization layer which filters out outlier values outside
the σT range of the mean value, where T is a parameter of the algorithm.
This normalization can be used with arbitrary neural network architectures
to eliminate the out-of-distribution activations and by this it improved the
classification accuracy of the investigated networks by 5% on ImageNet. [4]

Batch normalization became an important building block of neural net-
works in the past five years. It was demonstrated in various tasks that this
method can accelerate network training and results higher test accuracy in
practice, if mini-batch size is sufficiently high. The reduction of internal co-
variate shift, which is the imposed change in the input distribution of layers
triggered by the updates of the preceding layers, is hypothesized to be the
reason behind the beneficial effect of batch normalization. Batch normal-
ization is a regularizer which reparametrizes the activations during training
to make the optimization problem more stable by creating a smoother loss
landscape and increasing the predictability of gradients rendering a robust-
ness against exploding or vanishing gradients, hyperparameters and initial-
ization sensitivity.

The aim of batch normalization is to result coherent output distributions
in every iteration at each layer. Assuming that network activations follow a
Gaussian distribution, which can be fully described by the mean and vari-
ance values, we can transform the output distribution of a network to zero
mean and variance of one. After calculating the first two moments (mean
and variance), batch normalization scales and shifts the activations using
trainable parameters maintaining landscape flexibility.

Filtered batch normalization aims to design an algorithm that would fil-
ter out outliers from a distribution which can appear with low probability in
mini-batches, but do not modify the mean and variance values if the input is
a perfect Gaussian distribution without outliers. An example for an out-of-
distribution activations in a common neural network architecture is shown
in 3

8



Figure 3: This figure depicts the distribution of the activations in a pretrained
version of the VGG-16-BN architecture. The dashed lines display the max-
imum and minimum values in each layer, the golden lines contain 98% of
the activations and 50% of them is in the solid red region. This demonstrates
that although the data has zero mean and variance of one, it contains out-
liers especially in layers closer to the logit layer.

In the first step of the algorithm we calculate µi and σi values, but we
do not use these values directly for normalization. We create a Gaussian
candidate distribution x̂ ′

i which might contains outliers, but has zero mean
and variance of one:

x̂ ′
i = 1

σi
(xi −µi ) (3)

Based on this Gaussian candidate, we create a mask ( f (xk )) to select
those values which are only less than Tσ distance from the mean value:

f (xk ) =
{

1 if −Tσ ≤ x̂ ′
k ≤ Tσ

0 if x̂ ′
k <−Tσ∨Tσ < x̂ ′

k
(4)

Tσ is a hyperparameter of the algorithm and the performance of the al-
gorithm does not depend heavily on its value. As it can be seen from the
previous example, Tσ = 7 can filter out most outliers in the data.
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We use this mask to calculate the mean and the variance only including
those which are not considered outliers (which are inside the ±Tσ band of
the mean value).

µ′
i =

1∑
k∈Si

f (xk )

∑
k∈Si

f (xk )xk (5)

σ′
i =

√√√√ 1∑
k∈Si

f (xk )

∑
k∈Si

f (xk )(xk −µ′
i )2 +ϵ (6)

µ′
i and σ′

i values are used to transform the activations which can be cal-
culated similarly to batch normalization:

y ′
i = γ

(xi −µ′
i )

σ′
i

+β (7)

The additional hyperparameter of the algorithm Tσ can be tuned fairly
easily. I also would like to emphasize that this approach can be used together
with any other normalization method.

Our empirical results show that we can create more coherent output dis-
tributions in neural network layers by removing these outliers before mean
and variance calculation, which results faster convergence and better overall
validation accuracies. I investigated filtered batch normalization over three
image classification datasets and one image segmentation dataset achieving
a better confidence in all cases, 1% to 5% higher scores.

Throughout my PhD, I also worked on other interesting topics which
didn’t yield much enhancement to the baseline. I also worked on another
two interesting topics, protecting neural network intellectual property right
and utilizing inter-data correlation for data compression in autoencoder,
which resulted two conference publications [5] [6].
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