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1. Introduction

Brain-Computer Interfaces (BCIs) represent a rapidly evolving
interdisciplinary research field that holds significant potential for
developing systems that allow individuals to communicate, con-
trol, and interact with technology using only their brain activity,
bypassing the need for motor control or other physical input de-
vices. This technology has the potential to greatly improve the
quality of life for individuals with disabilities such as impaired
vision, hearing, movement, or communication, and could be par-
ticularly beneficial for those with Locked In Syndrome, a condi-
tion resulting from illness or injury that prevents individuals from
using their neuromuscular channels to move their body, despite
being in a cognitively intact state.

However, despite the great potential of BCls, there are still
significant challenges to overcome. One of the main challenges is
to improve the accuracy and reliability of the BCI systems, par-
ticularly in real-world scenarios with varying environments and
user states. Additionally, BCIs based on communication systems
may be significantly slower than traditional communication chan-

nels, but restoring the ability to communicate via these systems



can have a profound impact on quality of life, irrespective of com-
munication speed.

This dissertation aims to present a BCI System, which can
be used by subjects with tetraplegia, to control a video game. In
addition, it aims to investigate and compare different classifica-
tion methods to further advance the field of BCI technology. The
study involves the development of signal processing algorithms

and machine learning models.



2. Methods

I designed a BCI system for the Cybathlon [1] 2020 competi-
tion. As a first step of my system the Fully Automated Statis-
tical Thresholding algorithm (FASTER), published by Nolan et
al. [2], was employed for the purpose of artifact rejection. The
Python implementation of the algorithm was derived from the
work of Vliet [3|. After the removal of artifacts, such as eye
blinks, eye movements, and facial expressions, the feature extrac-
tion signal processing step was followed in the frequency domain.
The absolute value of the complex Fast Fourier Transformation
[4] (FFTabs) was calculated for 1-second-long EEG windows as
a feature. From this FFTabs data, I calculated multiple averages
from 2 Hz wide, non-overlapping frequency bins (referred to as
the range40 method). For signal classification multiple SVMs [5]
were trained, each receiving only one frequency bin. The final
decision was determined by taking the maximum vote of all SVM
units. We refer to this ensemble classifier as Voting SVM. To the
best of my knowledge, Voting SVM combined with my range40
method based on FFTabs has not been previously investigated
and compared statistically on MI datasets or used to control a

computer game as part of a BCI application.



To conduct the statistical comparison analyses I utilized the
EEG Motor Movement/Imagery Dataset, accessible via Phys-
ioNet (Physionet) [6], which represents one of the biggest reposi-
tories of MI task-based data, acquired using the BCI2000 system
[7]. The Physionet dataset contains EEG recordings from 109
subjects, obtained using a 64-channel 10-20 EEG system.

In parallel I designed a so-called Two Choice Paradigm to
simplify the execution of the Physionet task as two subjects with
tetraplegia (referred to as pilots), having C5 or higher spinal cord
lesions, reported difficulty in performing four-limb imagination
during some experimental trials.

Prior to each experiment, pilots were instructed to avoid blink-
ing, swallowing, clenching, or making any movements or facial
expressions unrelated to the task during task periods. They were
asked to repeatedly perform only the required MI tasks while
the fixation cross was displayed on the screen. During rest pe-
riods, the paradigm control program presented the next task on
the screen in written form. During these periods, pilots were
permitted to blink, swallow, and make any necessary movements
to prepare for the next task. Pilots were instructed to perform
motor tasks for 4 seconds and rest tasks for 3 seconds.

The Two Choice Paradigm, illustrated in Figure 2.1, began
with a one-minute period during which subjects were required to
open their eyes and focus on the cross displayed on the screen.
This was followed by a one-minute period during which subjects
were instructed to close their eyes. In both cases, subjects were
required to sit as calmly as possible, both physically and men-

tally, without engaging in any thoughts. This introductory ses-



Two Choice Paradigm

Intro MI Session
@ Eyes open Active
1 minute 4 sec
Eyes closed Calm
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. : Repeat Rest
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25 :Shuffle Between all tasks

Figure 2.1: Two Choice Paradigm — It started with a one-
minute open-eye and a one-minute closed-eye task, which served
as a baseline and aimed to get the pilots’ full attention, preparing
them for the MI sessions. Under one MI session, 8 active and 8
calm mental tasks were required from the pilots. The order of
the tasks was randomized. The MI session was repeated 5 times

under one experiment.

sion served as a baseline for the experiments and aimed to capture
the pilots’ full attention in preparation for the MI sessions.

Following the introductory session, the experiment consisted
of 5 MI sessions. Each MI task was presented 8 times per session
in a randomized order. After each completed session, subjects
were allowed to take a self-defined break without leaving the ex-
perimental setup.

For the active MI tasks, pilots were permitted to select and
combine any hand and foot motor movements. However, these
movements had to be decided upon and fixed prior to the start

of the experiment. Pilot B selected Left Hand movements for



the active task, while pilot C selected Both Feet movements. The
calm task required subjects to sit with their eyes open and refrain
from making any movements or engaging in any thoughts or other
potential sources of artifacts.

I compared my range40 feature extraction method, combined
with my Voting SVM classifier with state-of-the-art EEGNet [8]
algorithm to provide a broader perspective on my findings within
the BCI community. To receive reliable classification accuracy
results I conducted 5-fold cross-validations for each subject in
each database and these cross-validated results were averaged.
Accroding to the Wilcoxon statistical tests, my method signifi-
cantly outperformed EEGNet on the Physionet dataset. Repeat-
ing these tests on my Two Choice Paradigm dataset yielded less
significant results. (Figure 3.1)

After conducting these comparisons, I developed a real-time
BCI system that includes a unique control protocol called the
Toggle Switch. This algorithm allowed the pilots to control the
BrainDriver computer game using only two mental commands
instead of four. This approach was inspired by Perdikis et al.
[9], who developed an algorithm that classified two MI signals
using a thresholding technique. When a third active game control
command was required, their pilot initiated two different active
MI tasks within a given time window. In contrast, my method
cycles through active control commands one after another when
the pilots initiate an active MI task, allowing for easy extension
with additional commands.

Using the developed BCI system, I conducted real-time BCI

experiments with the pilots using the BrainDriver game developed



for the BCI discipline of the Cybathlon 2020 competition. During
these gameplay sessions, pilots received immediate feedback from
the computer about the correctness of their mental commands.

To further investigate the effect of different classifiers, used
database and transfer learning I conducted other comparisions
utilizing additional databases, namely BCI Competition IV 2a
[25], Giga [26], and the TTK dataset [Au6]. From the EEGNet
family presented in Table 2.1 I arbitrarily selected Shallow and
Deep ConvNet [10] as predecessors of EEGNet, the EEGNet itself
[8], the EEGNet Fusion [12], and the MI-EEGNet [16] from the
EEGNet family. As best to my knowledge the effect of transfer
learning on these selected neural networks has not been presented
before.

For within-subject classification, 5-fold cross-validation was
performed on a subject-wise basis, with the database split at the
epoch level to ensure that windows originating from the same
epoch were used exclusively in either the training or testing set.
Approximately 10% of the training data was used as a validation
set, with the split performed at the epoch level.

In case of transfer learning test subjects were selected as dis-
tinct groups of 10, with the remaining subjects designated as pre-
train subjects and used to establish the initial optimal weights for
the neural networks. A validation set was separated from the pre-
train data for use with my modified early stopping and model-
saving strategy. Upon convergence of the pretraining phase, ei-
ther through reaching the maximum number of training epochs
or through early stopping, the best network weights were stored.

For each test subject, 5-fold within-subject cross-validation was



Table 2.1: EEGNet family and the used MI EEG databases

Nerual Network Used MI EEG database

BCI Competition IV dataset 2a,

Shallow ConvNet [10]
BCI Competition IV dataset 2b

BCI Competition IV dataset 2a,

Deep ConvNet [10]
BCI Competition IV dataset 2b

EEGNet |[§] BCI Competition IV dataset 2a

S-EEGNet [11] BCI Competition IV dataset 2a

EEGNet Fusion [12]  PhysioNet

BCI Competition IV dataset 2a,

TCNet Fusion [13]
High Gamma Dataset

Sinc-EEGNet [14] BCI Competition IV dataset 2a

BCI Competition IV dataset 2a,

TSGL-EEGNet [15]
BCI Competition III dataset I11a

BCI Competition IV dataset 2a,

MI-EEGNet [16]
High Gamma Dataset

Channel-Mixing- BCI Competition IV dataset 2a,
ConvNet [17] High Gamma Dataset
AMSI-EEGNet [18] BCI Competition IV dataset 2a
ATCNet [19] BCI Competition IV dataset 2a
FFCL [20] BCI Competition IV dataset 2a
BCI Competition IV dataset 2a,
MTFB-CNN |21] BCI Competition IV dataset 2b,

High Gamma Dataset

BCI Competition IV dataset 2a,

TCACNet [22]

High Gamma Dataset
FB-EEGNet [23] No MI databases are utilized
CRGNet [24] BCI Competition IV dataset 2a
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performed as described in case or within-subject classification.
Prior to each cross-validation step, the saved model weights were
loaded and the selected training set for the test subject was used
as fine-tuning data for the neural networks. During fine-tuning,
validation sets were again employed in conjunction with early

stopping and model-saving strategies.
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3. New Scientific Results

3.1. Thesis Points

Thesis group I — Development and Testing of a Real-Time Work-
ing BCI System
Corresponding publication: [J1]

Thesis I: [ developed a novel feature extraction and classifica-
tion pipeline, utilizing Fast Fourier Transformation and Support
Vector Machine algorithms for real-time processing and classifica-
tion of motor imagery EEG signals for Brain-Computer Interface

puTrposes.

Thesis Ia: [ compared my implemented range40 feature extrac-
tion method, combined with my Voting SVM classifier, to the
state-of-the-art EEGNet using the Physionet dataset and found
that it significantly outperformed it according to the Wilcoxzon sta-
tistical test.

The range40 feature extraction method calculates the absolute
of the Fast Fourier Transformation from a given EEG window

and averages the values in 2 Hz wide frequency ranges (2-4 Hz,
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Figure 3.1: 5-fold cross-validated accuracy level comparison of
range40 + Voting SVM with EEGNet. The p-value annotation
legend is the following: non-significant (ns): 5 x 1072 < p; **¥*;
p < 10~%. The mean of the data is presented with the >+’ symbol.
The horizontal line in the box represents the median of the data.
The box shows the quartiles of the dataset while the whiskers
extend to show the rest of the distribution, except for individual

points that are determined to be outliers.
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4-6 Hz, ..., 38-40 Hz) for each EEG channel. The 19 x channel
number generated features are used to train 19 RBF kernelled
SVMs. Each SVM learned distinct characteristics of brain signals
concerning the 2 Hz wide frequency ranges. Each SVM made its
own decision, and the final decision was generated as the max
vote of the SVM units. This ensemble SVM classifier is called as
Voting SVM. The complete signal processing pipeline is presented
in Figure 3.2

13
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Thesis Ib: [ developed a unique control protocol, called the Tog-
gle Switch, to extend the 2-class output of my BCI System to con-
trol a video game requiring 4 commands. My method circulates
active control commands one after the other during active motor
imagery till the subject selects the required command by initiating
the calm mental state. This approach can easily be extended to
have more than four control commands.

The BrainDriver program required four input commands from
the user (three active commands plus the absence of any com-
mands), but the Two Choice Paradigm was designed to elicit only
two. To bridge this gap, a unique mechanism called the Toggle
Switch was introduced, inspired by the Brain Tweaker team [9].
When an active MI task was performed by the user, game con-
trol commands were cycled through in sequence at a predefined
frequency. When the desired control command was reached, the
user had to initiate a calm mental task to maintain that command
and send no further commands to the game. This mechanism is

illustrated in Figure 3.3.
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Figure 3.3: Components of the real-time BCI System and the

Toggle Switch control mechanism.
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Thesis Ic:  With the aid of my complete BCI System, I suc-
cessfully conducted a total of 59 video game control experiments,
inwvolving two pilots diagnosed with C5 or higher spinal cord le-
stons. The results, in terms of online gameplay, were comparable

to those of other teams participating in Cybathlon 2020.

Pilot B Pilot C
r2 = 0.265, p= 0.01 r? = 0.084, p= 0.092

--- competition limit
—— linear trend

Figure 3.4: Gameplay performance of pilots per experimental day.
240 seconds were marked with a red line, which is the time limit
defined by the organizers. The gray lines present the learning

curves.

The pilots completed the game with varying runtimes between
200 and 280 seconds, as shown in Figure 3.4. Pilot B showed
a significant learning curve; however, due to pandemic-related
restrictions, we were only able to conduct 9 experimental days

resulting in a total of 59 gameplay trials for both pilots.
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Thesis group II — Deep Comparisons of Neural Networks from the
EEGNet Family
Corresponding publication: [J2]

Thesis II: [ selected and compared the classification and trans-
fer learning capabilities of Shallow ConvNet, Deep ConuvNet, EEG-
Net, EEGNet Fusion, and MI-EEGNet on artifact-rejected EEG

data from four databases with varying numbers of subjects.

Thesis Ila: [ showed that transfer learning on the selected neu-
ral networks can significantly improve classification accuracy, even
after artifact rejection, compared to within-subject classification.

Upon obtaining five-fold cross-validated accuracy levels for all
combinations of the four databases, five neural networks, and two
learning methods (within-subject and transfer learning), normal-
ity tests indicated a non-normal distribution of the data. Conse-
quently, the Wilcoxon statistical test with Bonferroni correction
was employed for significance analysis. The results are presented
in Figures 3.5. Transfer learning was found to significantly im-
prove performance across all databases except for BCI Competi-
tion IV 2a.

Thesis IIb: [ also demonstrated that significant comparison can-
not be evaluated on databases with less than or equal to 10 sub-
jects.

Databases were ranked based on the number of significant
differences observed between them. Table 3.1 presents the sum
of significance ranges (corresponding to the number of stars in

figures) and count of significant differences alongside the number
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Figure 3.5: EEGNet family comparison on 4 databases handling the
datasets in independent days configuration.

The p-value annotation legend is the following: *: 1072 < p <=5 x 107%;
#1073 < p <= 1072 Rk 107 < p <= 1073; ®REx <= 1074, The
mean of the data is presented with the >+’ symbol. The horizontal line in
the box represents the median of the data. The box shows the quartiles of
the dataset while the whiskers extend to show the rest of the distribution,

except for individual points that are determined to be outliers.
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of subjects in each database. The sum of significance ranges was
found to be strongly correlated with the number of subjects in
each database (r(3) = 0.7709), although this correlation was not
statistically significant (p-value = 0.127014 > 0.05).

Table 3.1: Significance investigation.

Significance Level

Database Sum Count Subjects
Physionet 63 18 105
Giga 49 15 108
TTK 45 16 25
BCI Comp IV 2a 31 15 18

BCI Comp IV 2a-

merged subject data

0 9

Thesis IIc: In order to compare the neural networks, I used two
metrics, “Improvement from chance level” and “Improvement by
transfer learning”. These metrics indicated that Shallow ConvNet
and Deep ConuNet outperformed more recently published networks
from the EEGNet family and highlighted the importance of con-
sidering multiple factors when ranking the performance of neural
networks beyond generally used accuracy differences between net-

works.
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Table 3.2: Ranking the performance of neural networks on all the
databases concerning the independent days configuration.

Avg. Acc.

Classifier Improvement Rank

from Chance Level

Shallow ConvNet 0.2071 2
o Deep ConvNet 0.1249 5
Within
. EEGNet 0.1997 3
subject )
EEGNet Fusion 0.1871 4
MI-EEGNet 0.2306 1
Shallow ConvNet 0.2721 1
Deep ConvNet 0.2598 2
Transfer
" EEGNet 0.2521 4
learning )
EEGNet Fusion 0.2312 5
MI-EEGNet 0.2537 3
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3.2. Potential Applications and Benefits

The BCI System was designed for a concrete application called
the BCI discipline in the Cybathlon 2020 competition, where pi-
lots with quadriplegia compete in a car-racing-like computer game
by controlling their avatar using well-timed imagined mental com-
mands recorded by EEG.

In addition, this work was prepared with the professional sup-
port of the Doctoral Student Scholarship Program of the Co-
operative Doctoral Program (hungarian abbreviation: KDP) of
the Ministry of Innovation and Technology financed from the
National Research, Development and Innovation Fund. The so-
called KDP grant aims to implement scientific research to indus-
trial purposes. Therefore the gained knowledge was transferred
to the domain of electromyographycal signal processing, where a
small, portable, affordable EMG armband was used. The com-
plete study is presented in [Au4| and [Au5|.

I highlighted by the comparison of members of the EEGNet
family, that it is vital for presenting new classification methods
for EEG signal processing to use databases with large numbers
of subjects, such as Physionet or Giga. I also highlighted the im-
portance of considering multiple factors when ranking the perfor-
mance of neural networks. Relying solely on accuracy differences
between networks and using unfiltered datasets with small num-
bers of subjects may lead to inconclusive results. Ideally these
findings could lead to a new comparison procedure when a new

neural network is presented for EEG signal classification.
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