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1 Introduction
In recent years, advancements in 3D perception technology have sig-

nificantly enhanced the understanding of complex environments. This
dissertation covers two research areas of 3D perception using terrestrial
mobile laser scanners, specifically focusing on Lidar point clouds.

The first research topic is change detection in Lidar point clouds.
Change detection is crucial for various applications, including urban
planning, environmental monitoring, and infrastructure maintenance.

The second research topic is human pose estimation using only Li-
dar point clouds. Human pose estimation, which involves detecting and
predicting the positions of various body parts, is traditionally performed
using visual data. However, this research investigates the feasibility and
advantages of utilizing Lidar data.

Together, these topics highlight the potential of Lidar technology
in advancing 3D perception capabilities, paving the way for innovative
applications and improved methodologies in various fields.

I introduce the two research topics in Sections 1.1 and 1.2, followed by
the general introduction to the Lidar sensor (Section 2) and the descrip-
tion of the two types of Lidar sensors used for my research in Sections 2.1
and 2.2.

1.1 Change detection
Due to the increasing population density, and the rapid development

of smart city applications and autonomous vehicle technologies, grow-
ing demand is emerging for automatic public infrastructure monitor-
ing and surveillance applications. Detecting possibly dangerous situa-
tions caused by e.g., missing traffic signs, and damaged street furniture
is crucial. Expensive and time-consuming efforts are required therefore
by city management authorities to continuously analyze and compare
multi-temporal recordings from large areas to find relevant environmen-
tal changes.

From the perspective of machine perception, this task can be for-
mulated as a change detection problem. In video surveillance applica-
tions [16, 17], change detection is a standard approach for scene under-
standing by estimating the background regions and by comparing the
incoming frames to this background model. Change detection is also a
common task in many remote sensing applications, which require the ex-
traction of the differences between aerial images, point clouds, or other
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measurement modalities [18, 19]. However, the vast majority of existing
approaches assume that the compared image or point cloud frames are
precisely registered since either the sensors are motionless, or the accu-
rate position and orientation parameters of the sensors are known at the
time of each measurement.

1.2 Human pose estimation
The main task of pose estimation is to localize the anatomical key-

points of the human body. Human pose estimation is an essential task in
machine perception and has several real-world applications, among oth-
ers in robotics [20], security and surveillance [21, 22], and autonomous
driving [23].

Human pose estimation is usually solved by camera-based meth-
ods [24–26] in the image space. However, such solutions are inherently
limited by the camera’s incapability to directly measure distance, the
high sensitivity of the captured images to various lighting and weather
conditions, and the varying visual appearances of real-world objects.

The consideration of additional depth information can increase the
pose estimation robustness, as shown in [20], which uses an RGBD cam-
era for 3D human pose estimation, outperforming camera-based 3D es-
timators and depth-only methods.

In applications, where privacy is a serious concern, Lidar-based hu-
man surveillance can be efficiently applied as the observed people cannot
be identified by an observer in the sparse point cloud.

2 Lidar sensor
Lidar is an active sensor that illuminates the surroundings by emit-

ting laser beams. Distances are measured precisely by processing the
received laser reflections from the surfaces.

A general Lidar operates by scanning its Field of View (FoV) with
one or several near-infrared (NIR) laser beams.

The laser beam is reflected to the scanner from the environment, the
returned signal is received by a photodetector. Fast electronics filter the
signal and measure the time difference between the transmitted and re-
ceived signals, which is proportional to the reflecting object’s distance.
The range is estimated from the sensor model based on this calculated
time difference. The Lidar outputs 3D point clouds that correspond to
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the scanned environment and the intensities that correspond to the re-
flected laser energies [27]. The Lidar’s maximum range is limited by the
eye-safe transmission power regulations.

The scanning system of a Lidar sensor is responsible for the rapid
exploration of the observed space. A few scanning methodologies at dif-
ferent Lidar types are introduced below. In the mechanical spinning-type
sensors (rotating multi-beam (RMB) Lidar) the laser beams are steered
through a rotating sensor head, having a moving mirror and optics in-
side. The Lidar I used for my change detection research (Thesis 1) works
following this principle, described in detail in Section 2.1.

Another mechanical approach uses rotation of prisms to direct the
laser beams. The Lidar I used for my Lidar-only human pose estimation
research (Thesis 2) works following this scanning method, described in
detail in Section 2.2.

The scanning can also be achieved by moving a “mirror” in a chip
with elastic and electromagnetic forces in a Micro-electromechanical sys-
tem (MEMS) [28].

Flash Lidars does not have any rotating component [29]. A single
emitted laser beam is spread by an optical diffuser to illuminate the
whole scene, and the reflections are detected on an array of photodiodes.

2.1 Velodyne HDL-64 rotating multi-beam Lidar
sensor

The Velodyne HDL-64 sensor (shown in Figure 1a) is a high-
resolution and high-performance RMB Lidar sensor, that is designed
to help the real-time perception of autonomous robots and vehicles. It
captures high-definition and real-time 3D measurements from its sur-
rounding environment. The sensor has 64 laser beams, determining a
26.9° vertical FoV. Due to the rotating head of the sensor, its horizontal
FoV is 360°. The measured data’s spatial accuracy is 1-2 cm. Due to
the sensor characteristics, the point density quickly decreases with the
distance from the sensor.

The Velodyne HDL-64 is a pioneer of the RMB Lidars. Recent RMB
Lidar sensors are available on the market (e.g., produced by Ouster) hav-
ing similar characteristics, but their size and consumption have decreased
significantly, making the measurements and the research conducted with
the Velodyne Lidar in this research still relevant [30].

Ring patterns can be observed in the recorded point clouds, as can be
seen in Figure 1b, as the laser beams are rotated along the vertical axis
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(a) (b)

Figure 1. Velodyne HDL-64 rotating multi-beam Lidar sensor and its
recorded point cloud in urban environment

of the sensor. The sensor continuously streams the 3D measurements,
which are collected to point cloud frames, where the term frame refers
to a single horizontal turnaround of the sensor head.

2.2 Livox Avia Lidar sensor with Non-repetitive Cir-
cular Scanning

Figure 2. Livox Avia Lidar
sensor

The Livox Avia sensor [31], shown in
Figure 2, is a lightweight Lidar sensor
that has a unique, Non-repetitive Circu-
lar Scanning (NRCS) technique. The sen-
sor has six Lidar beams organized in a
linear beam array, which is moved and
rotated inside the sensor to scan its FoV
(horizontal: 70°, vertical: 77°).

Unlike most RMB Lidars, which
boost a repetitive scanning pattern, the
Avia does not repeat the exact scanning
paths in every frame, but instead, the
lasers cover new parts of the FoV. This
key difference is both beneficial and implicates some disadvantages.
NRCS Lidars cover the complete FoV over time, providing rich spatial
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(a) Point cloud recorded with 1s
integration time

(b) Point cloud recorded with 100 ms
integration time

Figure 3. Livox Avia point clouds, colored by the points’ distance

information, especially in static scenarios. On the other hand, because
the same region is scanned less frequently than by using “regular” RMB
Lidars, dynamic objects, such as humans may cause challenges as they
induce heavy motion blur in the recorded NRCS point clouds.

The sensor continuously records distance measurements with cor-
responding timestamps following its non-repetitive circular pattern in
its FoV. By setting a fixed integration time, the consecutively collected
points can be grouped into separate Lidar time frames. The main chal-
lenge is to efficiently balance between the spatial and the temporal res-
olution of the recorded range data.

While allowing larger integration time, the laser beams cover a higher
proportion of the FoV yielding high spatial measurement resolution of
the measurement frame, the object movements of dynamic objects in
the observation area induce various artifacts (e.g., blurred pedestrian
silhouettes), which do not allow efficient dynamic event analysis. For
example, the Livox Avia sensor collects 240000 points within a time
window of 1s, as can be seen in Figure 3a. On the other hand, if the
measurements are collected in a narrow time window (e.g., in 100 ms)
the resulting point clouds are very sparse, which phenomenon yields a
loss of details across the spatial dimension of the FoV:a sample frame of
24000 points is shown in Figure 3b.
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3 New scientific results

1. Thesis: I proposed a novel change detection approach for
coarsely registered RMB Lidar point clouds in complex, street-
level urban environments. The input point clouds are repre-
sented by range images, the result of the method is a pair of
binary masks showing the change regions on each input range
image, which can be back-projected to the input point clouds
without loss of information. I have evaluated the proposed
method in various challenging scenarios, and I have shown its
superiority against state-of-the-art change detection methods.

The method was published in a journal [1] and a submitted patent
application [3]. In the initial phase of this research, a method was pub-
lished in a conference paper [5] for multi-object detection in urban scenes
utilizing 3D background maps and tracking. It uses a dense 3D city map
to increase the accuracy of object detection on a sparse point cloud from
a Lidar sensor. This method can extend the camera-based machine per-
ception of a road vehicle, described in [6]. For the evaluation of the results
considering the object trajectories, a track-to-track evaluation method
can be used [7].

The need to solve the point-based detection of changed regions due to
object displacements between initially unmatched (coarsely registered)
pairs of point clouds can be emphasized with practical cases, where reli-
able registration and therefore the change detection cannot be achieved
with currently available methods. I have identified a new way of posing
a problem: I described the differences among a coarsely registered pair
of point clouds without exactly matching the available input point cloud
measurements.

As a key feature, the proposed method does not require precise regis-
tration of the point cloud pairs. Based on my experiments, the proposed
method is more efficient than existing solutions, and it can efficiently
handle up to 1 m translation and 10° rotation misalignment between the
corresponding 3D point cloud frames. Figure 4 shows the input point
clouds recorded with a Velodyne HDL-64 rotating multi-beam Lidar and
the results of the proposed method.
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Figure 4. Changes detected by ChangeGAN for a coarsely registered point
cloud pair. (a) and (b) show the two input point clouds, (c) displays the
coarsely registered input point clouds in a common coordinate system. (d), (e)
present the change detection results: blue and green colored points represent
the objects marked as changes in the first- and second point cloud, respectively.
The red ellipse draws attention to the global alignment difference between the
two coarsely registered point clouds.

1.1. Subthesis: I have defined a deep neural network struc-
ture, capable of learning and robustly extracting changes be-
tween coarsely registered 3D sparse point clouds obtained in
a complex street-level environment. For the training of this
neural network I proposed a semi-automatic method to cre-
ate a change detection dataset with coarsely registered point
cloud pairs using simulated registration errors.

The proposed deep learning approach takes as input two coarsely
registered 3D point clouds recorded with an RMB Lidar sensor P1 and P2
represented by range images I1 and I2, respectively (shown in Figures 6a
and 6b). The proposed architecture assumes that the images I1 and I2 are
defined over the same pixel lattice and have the same spatial dimensions.

For this purpose, I propose a new generative adversarial neural
network-like architecture, more specifically a discriminative method,
with an additional adversarial discriminator as a regularizer, called
ChangeGAN, which is shown in Figure 5.

Since the main goal is to find meaningful correspondences between
the input range images I1 and I2, I have adopted a Siamese style [32] ar-
chitecture to extract relevant features from the input range image pairs.
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Figure 5. Proposed ChangeGAN architecture. Notations of components: SB1,
SB2: Siamese branches, DS: downsampling, STN: spatial transformer network,
Conv2DT: transposed 2D convolution

The Siamese architecture is designed to share the weight parameters
across multiple branches, allowing us to extract similar features from
the inputs and to decrease the memory usage and training time. Each
branch of the Siamese network consists of fully convolutional downsam-
pling blocks.

The second part of the proposed model contains a series of transposed
convolutional layers to upsample the signal from the lower-dimensional
feature space to the original size of the 2D input images. Finally, a 1 × 1
convolutional layer, activated with a sigmoid function, generates the two
binary change maps Λ1 and Λ2.

To regularize the network and prevent over-fitting, I use the dropout
technique after the first two transposed convolutional layers. To improve
the change detection result, I have adapted an idea from U-net [33] by
adding higher resolution features from the downsampling blocks to the
corresponding transposed convolutional layers.

In this case, as the point clouds are coarsely registered, the same
regions of the input range images might not be correlated with each
other. To achieve more accurate feature matching, I have added Spatial
Transformer Network blocks [34] for both Siamese branches. STN can
learn an optimal affine transformation between the input feature maps
to reduce the spatial registration error between the input range images.
Furthermore, STN dynamically transforms the inputs, also yielding an
advantageous augmentation effect.

For the training of the ChangeGAN neural network I have created
a new Lidar-based urban dataset called Change3D.The measurements
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were recorded over two days in downtown Budapest using a Velodyne
HDL-64 RMB Lidar mounted on a car.

As the main purpose of the proposed ChangeGAN method is to ex-
tract changes from coarsely registered point clouds, for model training
and evaluation a large and annotated set of point cloud pairs collected
in the same area with various spatial offsets and rotation differences
is needed. The annotation accurately marks the point cloud regions of
objects or scene segments that appear only in the first frame, only in
the second frame, or which ones are unchanged, thus observable in both
frames.

The manual annotation of point cloud differences is very challenging,
even if the point clouds originate from the same coordinate system. To
ensure the accuracy of the ground truth, I performed the change labeling
for registered point cloud pairs captured from the same sensor position
and orientation, then I randomly transformed the reference positions
and orientations of the second frames yielding a large set of accurately
labeled coarsely registered point cloud pairs.

The steps of our proposed dataset generation process are as follows.
First, pairs of Lidar frames are taken in the same global coordinate
system, thus they can be considered as registered.

To simulate coarsely registered point cloud pairs, I applied randomly
an up to ±1 m translation and an up to ±10° rotation transform around
the z-axis for the second frame (P2) of each point cloud pair both in the
training and test datasets. The performance of the method was evalu-
ated on sub-datasets with defined rotation and translation offsets. The
ground truth labels remained attached to the p ∈ P2 points and were
transformed together with them, as shown in Figures 6c and 6d.

In the next step spatial cropping was applied, only the points below
5 m and closer than 40 m were kept. In the remaining point cloud, the
distances were normalized to the [0 − 1] range.

The transformed 3D point clouds were projected to 2D range im-
ages I1, and I2, as shown in Figures 6a and 6b. The Lidar’s horizontal
360° FoV was mapped to 1024 pixels and the 5 m vertical height of the
cropped point cloud was mapped to 128 pixels, yielding that the size of
the produced range image is 1024 × 128.

The training database contains 20000 point cloud pairs from 50 lo-
cations, while the test set was composed of 2000 point cloud pairs from
completely different measurement locations.

In summary, I have created a new dataset suitable for training and
evaluating new change detection methods where accurate registration of
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(a) I1: range image of P1 (b) I2: range image of P2

(c) Λ1: ground truth mask of changes
in range image I1

(d) Λ2: ground truth mask of changes
in range image I2

Figure 6. Input data representation. (a), (b): range images I1, I2 from a
pair of coarsely registered point clouds (P1, P2). (c), (d): binary ground truth
change masks Λ1, Λ2 for the range images I1 and I2, respectively.

the compared point clouds is not required.

1.2. Subthesis: I have proposed a novel, competitive classi-
fier - discriminator-based adversarial training method for the
change detection task on a coarsely registered pair of 3D point
clouds.

Figure 7. Proposed adversarial training strategy of the ChangeGAN archi-
tecture.

The classifier network is responsible for learning and predicting the
changes between the range image pairs. In each training epoch, the clas-
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sifier model is trained on a batch of data. The actual state of the classi-
fier is used to predict validation data, which is fed to the discriminator
model.

The discriminator network is a fully convolutional network that clas-
sifies the output of the classifier network. The discriminator model di-
vides the image into patches and decides for each patch whether the
predicted change region is real or fake. During training, the discrimina-
tor network forces the classifier model to create better and better change
predictions, until the discriminator cannot decide about the genuineness
of the prediction.

Figure 7 demonstrates the proposed adversarial training strategy. I
calculate the L1 Loss (LL1) as the mean absolute error between the gen-
erated image and the target image, and I define the Adversarial Loss
(LAdv), which is a sigmoid cross-entropy loss of the feature map gener-
ated by the discriminator and an array of ones. The final loss function
of the method (L) is the weighted combination of the Adversarial Loss
and the L1 Loss: L = LAdv + λ ∗ LL1.
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2. Thesis: I proposed a novel, end-to-end method for real-
time foreground-background segmentation and human pose es-
timation, solely based on point cloud measurements of a Non-
repetitive Circular Scanning Lidar sensor.

The proposed method is based on the ViTPose architecture [35],
which is a transformer-based [36, 37] human pose estimation method
using optical camera images.

(a) (b)

Figure 8. LidPose–2D predictions are shown in red, overlaid on the input
Lidar point cloud (right). The ground truth is shown in green, drawn over the
corresponding camera frame (left). The prediction in red and the ground truth
in green are shown together in the input Lidar point cloud (middle).

I introduced a modified ViTPose approach, which is adapted to the
3D point clouds, and it can efficiently handle the sparsity and the un-
usual rosetta-like scanning pattern of the NRCS Lidars. The proposed
method’s [2] first step utilizes a foreground-background segmentation
technique [8] for the NRCS Lidar sensor to select foreground points. In
the next step, the LidPose human pose estimator network estimates the
human pose in the filtered NRCS Lidar point cloud segments. The pro-
posed method is a complete and end-to-end approach to human pose
estimation from raw NRCS Lidar measurement sequences, captured by
a static sensor for surveillance scenarios. To evaluate the method, I have
created a novel, real-world, multi-modal dataset, containing camera im-
ages and Lidar point clouds from a Livox Avia sensor with annotated 2D
and 3D human skeleton ground truth.

The method was published in a journal [2] and a conference paper [8].
Figure 8 shows the predictions of the proposed LidPose method in 2D.
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2.1. Subthesis: I proposed a point-level foreground-
background segmentation technique for NRCS Lidar point
cloud sequences recorded in a static sensor configuration. I
proved that the proposed method can handle the sparsity of
the NRCS Lidar measurements in a surveillance scenario. I
created a database for the testing and evaluation of the pro-
posed approach and demonstrated its efficiency [8].

(a) Detected foreground (red)
in a single time frame of the

NRCS Lidar point cloud

(b) Detected foreground
regions (red) displayed with

the high-resolution
background model point cloud

Figure 9. Foreground detection results (by red) in the City Center scene,
displayed in 3D point cloud representation.

To solve the point-wise foreground-background segmentation task, it
is required to efficiently balance between the spatial and the temporal
resolution of the recorded NRCS Lidar data, shown in Figure 3. For this
reason, I create and maintain a very high-resolution background model
of the sensor’s FoV using a Mixture of Gaussians-based method [8], dis-
played in Figure 9b. On the other hand, to enable real-time analysis of
dynamic objects, I use low integration time to extract the consecutive
Lidar frames. As a result, the laser reflections from foreground objects re-
flect sparse, but geometrically accurate samples of the silhouettes (shown
in Figure 9a) providing valuable input for higher-level shape description,
object detection, and pose estimation, as described in Subthesis 2.3. I
demonstrated the efficiency of the new approach in different realistic
NRCS Lidar measurement sequences.
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2.2. Subthesis: I have proposed a semi-automatic method to
create a human pose dataset with camera images and NRCS
Lidar measurements.

Figure 10. NRCS Lidar point cloud
with 100 ms integration time repre-
sented as a 2D range image overlaid on
a sample camera image.

Ground truth annotation of
Lidar point clouds is a challeng-
ing process, since the visual in-
terpretation of sparse 3D Lidar
point clouds is difficult for human
observers, and the inhomogeneous
NRCS pattern makes this task
even harder. In the experiments,
a camera was mounted near the
NRCS Lidar sensor to record op-
tical images as well, besides the
point clouds, as shown in Fig-
ure 10. The camera images were
only used for creating the ground
truth information for human pose
estimation, and for helping the vi-
sual evaluation of the results of LidPose. During annotation, the operator
used the camera images to mark, validate, and verify the skeleton joint
positions.

Since the experimental configuration uses both camera and Lidar
data for creating the ground truth human poses and validating the
results, the spatial transformation parameters between the two sen-
sors’ coordinate systems need to be determined by a calibration pro-
cess. The camera’s extrinsic and intrinsic parameters were calibrated
using OpenCV libraries and a Livox-specific, targetless calibration
method [38]. Thereafter, the camera images and the Lidar range im-
ages were transformed into a common coordinate system. The camera
and the Lidar data were properly timestamped using the Precision Time
Protocol daemon (PTPd) [39].

The camera and the Lidar data were recorded with different, sensor-
specific data acquisition rates, at 30 Hz on the camera and at 10 Hz
in the case of the Lidar. The data collection speed was adjusted to the
Lidar’s slower frame rate.

Ground truth generation has been implemented in a semi-automatic
way, exploiting established camera-based person detection and pose-
fitting techniques.

1. In each data sample, the YOLOv8 [40] was run to detect the per-
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sons in the camera images.
2. The initial pose estimation was created on the cropped camera im-

ages by the state-of-the-art 2D human pose estimator ViTPose [35]
network.

3. The camera images were used to manually check, validate, filter,
and fine-tune each 2D human pose, resulting in the 2D ground
truth of human poses.

4. The filtered camera-based human pose model was directly used
as the ground truth of the 2D human poses in the co-registered
Lidar’s range image domain.

5. The 3D human pose ground truth is created by the extension of
the 2D human skeleton dataset, so I attempted to assign to each
joint a depth value, based on the depth measurements of the Lidar
sensor around the joint’s 2D position.

6. Spatio-temporal interpolation was applied on joints without direct
range measurements from the depth values of other nearby joints,
and nearby frames.

In total, the created new dataset contains 9500 skeletons, and 161000
joints. The dataset was split into independent training, validation, and
test sets, having 5500, 500, and 3400 skeletons.

In summary, I have created a new dataset suitable for training and
evaluating a new human pose estimation method that uses only the
NRCS Lidar point cloud as an input. To prove the usability of the
dataset, I have proposed a vision transformer-based neural network to
perform human pose estimation, the details of which are described in
Subthesis 2.3.

2.3. Subthesis: I proposed a novel, visual transformer-based
method for real-time human pose estimation from inhomoge-
neous and sparse Lidar point clouds recorded with an NRCS
Lidar sensor.

The published LidPose method [2] solves the human pose estimation
task using only NRCS Lidar measurements, in a surveillance scenario,
where the sensor is mounted in a fixed position. The LidPose method’s
workflow is shown in Figure 11.

The proposed method is based on the state-of-the-art ViTPose [35]
human pose estimation method working on camera images, based on a
Vision Transformer (ViT) architecture [37], which was trained on the
COCO dataset [41].
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Figure 11. LidPose end-to-end solution:
Lidar data: full Lidar point cloud. Select ROI: selects the 3D points in the
vicinity of the observed human. Projection stores the 3D point cloud in a 2D
array. Input types: 3D XYZ coordinates (XYZ), Depth (D) and Intensity (I).
LidPose network: Both LidPose–2D and LidPose–3D use our patch embedding
module and the encoder backbone, visible in blue. LidPose–2D and LidPose–
3D use the corresponding Decoder head and LidPose–2D+ is calculated from
the 2D prediction and the input point cloud.

First, the moving objects are separated from the static scene regions
in the NRCS Lidar point clouds, as described in Subthesis 2.1 and [8].

Second, the foreground point regions are segmented to separate indi-
vidual moving objects, and the footprint positions of the detected pedes-
trian candidates are estimated. The result of this step is a set of bounding
boxes for the detected people, which can be represented both in the 3D
space and in the 2D range image domain.

In the next step, the NRCS Lidar point cloud and the range image
are cropped with the determined bounding boxes.

To jointly represent the different available measurement modalities, I
proposed a new 2D data structure that can be derived from the raw Li-
dar measurements straightforwardly and can be efficiently used to train
and test our proposed LidPose model. I construct from the input point
cloud a five-channel image over the Lidar sensor’s 2D range image lat-
tice, where two channels directly contain the depth and intensity values
of the Lidar measurements, while the remaining three layers represent
the X,Y,Z coordinates of the associated Lidar points in the 3D world
coordinate system.

The ViTPose [35] network structure was used as a starting point in
the research and development of the proposed LidPose methods’ pose
estimation networks. My main contributions to the proposed LidPose
method:
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• A new patch embedding implementation was applied to the net-
work backbone to handle efficiently and dynamically the different
input channel counts.

• The number of transformer blocks used in the LidPose backbone
is increased to enhance the network’s generalization capabilities by
having more parameters.

• The output of the LidPose–3D configuration has been modified as
well by extending the predictions’ dimension to be able to predict
the joint depths alongside the 2D predictions.

As Figure 11 demonstrates, the LidPose network structure can deal
with different input and output configurations, depending on the con-
sidered channels of the above-defined five-layer image structure. The
optimal channel configuration is a hyperparameter of the method, that
was selected upon experimental evaluation, described in [2].

For the LidPose–3D network, the training loss is composed of two
components: the Mean Squared Error responsible for the joints’ 2D pre-
diction accuracy (Ljoint2D), and the other component reflecting the depth
estimation accuracy (Ldepth). The total training loss is a weighted sum
of the position and depth losses:

LLidPose–3D = Wjoint2D · Ljoint2D + Wdepth · Ldepth (1)

Regarding the depth loss (Ldepth), I tested three different formulas: L1
loss, L2 loss and Structural Similarity Index Measure (SSIM) [42]. Based
on the evaluations and considering training runtime, the SSIM was se-
lected for the depth loss measure in the proposed LidPose–3D network.

The quantitative evaluation of the method was done by calculating
multiple metrics. The best model achieved a 0.694 score with the Area
Under the Percentage of Correct Keypoints Curve. The Average Distance
Error of each predicted skeleton was calculated as well, where the best
model achieved a 0.158 m. For qualitative evaluation, the 3D human
poses predicted with the proposed method are shown in Figure 12. The
obtained results confirm, that the proposed method can detect human
skeletons in sparse and inhomogeneous NRCS Lidar point clouds.

The approach gives accurate human pose estimation results in real-
time in the 3D world coordinate system of the scene, which can be used
in higher-level scene analysis steps of surveillance systems.
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(a) (b) (c) (d)

Figure 12. LidPose3D predicted skeletons. Red skeleton: 3D prediction.
Green skeleton: ground truth. Gray points: NRCS Lidar points.

4 Application and dissemination of the re-
sults

4.1 ChangeGAN
The proposed ChangeGAN [1], [3] can robustly extract changes be-

tween sparse point clouds obtained in a complex street-level environ-
ment. As a key feature, the proposed method does not require precise
registration of the point cloud pairs. Based on my experiments, it can
efficiently handle up to 1 m translation and 10° rotation misalignment
between the corresponding 3D point cloud frames. This makes the pro-
posed method suitable for real-world applications, where the precise
registration of the point clouds is not feasible due to the complexity
of the environment or the limitations of the sensors. The method can
be applied in automatic public infrastructure monitoring, where detect-
ing possibly dangerous situations caused by e.g., missing traffic signs,
and damaged street furniture is crucial. The method can be used for
the efficient update of high-resolution 3D maps for autonomous vehicles.
Expensive and time-consuming efforts can be reduced in city manage-
ment offices by applying this method to automatically and continuously
analyze and compare multi-temporal recordings from large areas to find
relevant environmental changes.
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4.2 LidPose
In the LidPose paper [2] I gave evidence, that the Livox Avia [31]

NRCS Lidar can be widely adopted in real-life scenarios due to its low
price, can be used for solving complex human pose estimation tasks,
while the process highly respects the observed people’s privacy as the
people are barely recognizable by human observers from the recorded
sparse point clouds.

The change detection accuracy can be increased by applying a novel
depth image completion technique, which eliminates the uneven sparse-
ness of the NRCS Lidar data, as described in a submitted patent appli-
cation [4].

4.3 Publications and dissemination
The research results were published mainly in prestigious journals

and conferences, as cited in the theses. [1, 2] [3, 4] [5–8]
On top of those I presented my research progress at the biannual

Conference of the Hungarian Association for Image Analysis and Pat-
tern Recognition (KÉPAF) [9–11] and in the PhD proceedings, annual
issues of the Doctoral School, Faculty of Information Technology and
Bionics [12–15].

I demonstrated my results among others at the Researcher’s Night1,
and at various events organized by the Artificial Intelligence Na-
tional Laboratory (MILAB) and National Lab for Autonomous Systems
(ARNL), including the AI & Aut Expo 20232.
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