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Introduction

Physiological indicators, including pulse rate, respiratory rate, and blood oxygen

level, are routinely monitored in intensive care units and neonatal clinics to assess the

health of premature infants and adult patients. In the case of neonates, behavioral

states such as quiet sleep, active sleep, transient, quiet alert, and active alert, which

are classified according to the NIDCAP (Newborn Individualized Developmental

Care and Assess) scale, are important parameters for describing sleep and activity

patterns. These states are utilized to estimate the amount and quality of sleep and

movement of the patient. Sleep is crucial for proper neonatal development, but it is

also essential for adults to obtain adequate amounts and quality of sleep.

Traditionally, these parameters were measured using contact sensors (that in

many cases were not installed) or relied on the senses of hospital staff. However,

recent advancements in machine vision, image processing, and machine learning

have led to a technological revolution in many applications. Generative algorithms

(such as Dall·E 2 and ChatGPT) are becoming increasingly popular for various

applications. Additionally, image processing algorithms have undergone significant

development, including the emergence of new types of convolutional networks that

are preferred in medical fields. Such new technologies give us the opportunity to

reshape infant observation as well.

The present thesis also contributes to the advancement of the medical field

through the development of novel machine vision and machine learning algorithms

for monitoring premature infants. Specifically, three challenges were explored in this

field including: contact-less monitoring of infants’ breathing, automatic annotation

of the data sets required by the previous algorithm, and classification of observed

behavioral states of neonates. These challenges present significant difficulties in the
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field and were addressed through the creation of innovative algorithms.

Physiological parameters such as respiration rate are routinely monitored in med-

ical settings, particularly in neonatal wards, utilizing medical monitors such as the

’Phillips IntelliVue MP40/MP50’. However, the use of wired sensors in such moni-

tors poses significant issues for both infants and medical staff. For example, ’contact’

sensors can cause skin irritation and discomfort to neonates, while the wires can in-

terfere with medical personnel’s ability to carry out their duties effectively. As a

result, non-contact monitoring methods have emerged as a promising alternative to

wired sensors.

In accordance with ’Practical Skills in the Field of Family-Centered Development

Support Care’ guidelines approved by ’FINE’ [17], medical and nursing personnel

are required to continuously monitor the sleep and activity of neonates manually

to administer appropriate developmental support care. Nevertheless, many medical

institutions are often understaffed, and this level of continuous monitoring can be

difficult to sustain. Consequently, there is an unmet need to automate the classifi-

cation of behavioral states in neonates.

It is evident that in both scenarios, there is a pressing need to enhance existing

methodologies, possibly through the replacement with machine vision and artificial

intelligence-based algorithms. However, a common challenge in the utilization of

AI-based algorithms is the requirement for extensive annotated datasets. Within

this thesis, we address this challenge, particularly with respect to the non-contact

monitoring of breathing, by presenting a viable solution for annotated data genera-

tion.
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Applied methods and tools

To enable the further development and assessment of contactless algorithms for

estimating the physiological and behavioral states of infants, a substantial volume

of annotated data is required. However, due to ethical and other considerations,

publicly accessible databases on this subject are lacking. Thus, we undertook the

construction of our own database for this purpose.

The initial step in the process involved developing a data collection system ca-

pable of acquiring the image inputs and the expected outputs synchronized for our

data-driven algorithms. For breathing monitoring, the task is comparatively simpler

due to the current practice in hospitals, where ECG (electrocardiograph) is utilized

for monitoring breathing, which we aim to replace with a non-contact approach.

Consequently, image data was acquired through a color camera while the respira-

tory signal was obtained through the ECG, which was connected to a ’Phillips Intel-

liVue MP40/MP50’ monitor. We constructed a data collection setup equipped with

an infrared illuminator and a camera, capable of connecting to the aforementioned

medical monitor. As a result, this system could collect image data facilitated by

the infrared illumination even during nighttime, synchronized with the respiratory

reference signal.

During the classification of the infant’s behavioral states, a color camera equipped

with an infrared illuminator was again used to record image data. However, in this

case, the expected outcomes or behavioral states were recorded via a mobile phone

application by the medical personnel who observed the preterm infants in question.

In terms of sources, the initial literature overview involved examining the rele-

vant literature in the form of review articles that focused on contactless breathing

monitoring of infants [9] and that focused on the non-contact monitoring sleep states
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[19]. Subsequently, the literature on breathing monitoring techniques based on color

camera motion analysis [8–10,14] and the observation of infant behavioral states ac-

cording to NIDCAP [2, 7, 17, 20] were comprehensively reviewed.In addition, the

literature on infant observation was thoroughly reviewed from both contact moni-

toring and non-contact monitoring perspectives.

To manage the data and annotations, we created our own customized C++ based

software, which allowed us to query and categorize the data from the database and

display both the image data and the reference signals.

To address the aforementioned issues, machine learning and machine vision

methodologies were applied. In recent years, convolutional neural networks have

undergone significant advancements and have been successfully applied across mul-

tiple domains. Within the domain of motion estimation, various forms of optical

flows have long been an established technique. A concise overview of the non-contact

breathing monitor is depicted in Figure 1.

And RNN-s (recurrent neural network) such as LSTM (long short-term memory)

and GRU (gated recurrent unit) have already been proven in many applications in

both time series analysis and prediction. I have used convolutional networks as ROI

(region of interest) detectors and ’dense’ optical flow as motion estimators in my pro-

posed breath monitoring algorithm. And for the classification of behavioural states,

I used a GRU-based classifier with inputs generated using various machine learning

and image processing techniques (see Figure 2). I also used machine learning and

image processing techniques (e.g. simple morphological methods) and differential

image analysis to generate automatic data annotation.

The custom algorithms were developed using Python programming language and

the Pytorch and Pytorch-Lightning software packages. Subsequently, the algorithms

were implemented and evaluated in C++. Data required for training and testing

the machine learning models was acquired using the aforementioned data collection

system in the Neonatal Intensive Care Unit at Semmelweis University II, Obstetrics

and Gynecology Clinic. The collected data was then classified using our own software

to determine the dataset suitable for training purposes.

The validation procedures were conducted using both Python and C++ on a
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Figure 1: The present study proposes a novel non-contact breathing monitoring algorithm consisting

of a UNET-based ROI detector (1) followed by a dense optical flow-based breathing extractor (2)

and a peak detector-based breathing rate calculator (4). The algorithm also integrates a situation

analysis module (3) that enables the identification of problematic situations, thereby facilitating

reliable breathing rate estimation.

separated test dataset, comprising images of infants for which were not included in

the training set. Furthermore, the proposed algorithms were deployed on resource-

constrained embedded platforms, such as Raspberry Pi or Jetson Nano, and demon-

strated real-time operation.
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Figure 2: The diagram presents a concise overview of the algorithm for estimating behavioral

states, with part a) depicting the video-based feature extraction modules, part b) displaying the

computation of PPG signal-based features and their Principal Component Analysis (PCA), and

part c) illustrating the classification module used for determining the prevailing behavioral state

during the relevant time period.
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New scientific results

The present doctoral research has comprehensively investigated numerous chal-

lenges arising from the monitoring of premature neonates within incubators.

We built a database and created software components that are able for database

management and (even automatic) annotation.

In summary, data collection systems, data annotation tools and software have

been developed, as well as algorithms that take a novel approach to the non-contact

monitoring of certain vital signals and states of infants.

I have explored three challenging research topics in this area. Namely, (i) con-

tactless monitoring of breathing in premature infants, (ii) automatic annotation of

the data set used to train the required ROI detector, and (iii) contactless monitoring

of infants’ behavioural states.

I used machine vision and machine learning algorithms to solve the problems.

Using these, I calculated the breathing of the infants in the image based on movement

and calculated their behavioural states (according to the NIDCAP scale) based

partly on movement and partly on certain vital signs of the infants.

In the following I present my new scientific findings in this thesis, which I have

formulated in 3 thesis points.

The first problem we solved using camera-based algorithm is the non-contact

respiratory monitoring of newborns. For its solution, a new method was applied

involving a neural network-based ROI (Region of Interest) detector that identifies

the infant’s abdomen in the image, quantifies the motion in this area, and determines

the respiratory rate. This process can be divided into four main parts:

1. ROI Detector
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2. Respiratory Extraction Module

3. Respiratory Signal Masking Module

4. Rate Calculation Module

1) ROI Detector

The ROI Detector itself is a U-Net ([11]) applied for trunk segmentation, as this

part of the images carries the most information related to respiration. By doing so,

we can eliminate the interfering motion components of the limbs. The result of ROI

detection is a binary mask, where pixels belonging to the trunk are assigned a value

of 1, while pixels outside the trunk are assigned a value of 0. This binary image

that represents the ROI serves as one of the inputs for the ’Respiratory Extraction

Module.’

2) Respiratory Extraction Module

The task of the Respiratory Extraction Module is to generate a one-dimensional

respiratory waveform from the video. The algorithm includes a sliding window

that is populated with motion images calculated from the incoming camera frames

as follows: From the new incoming frame and the preceding frame, the motion

image is calculated (using Farneback’s optical flow method [5]), and this resulting

motion image is element-wise multiplied by the binary image obtained from the ’ROI

Detector’ according to the following equation:

M = U-Net(I(t))⊙Dense(I(t), I(t− 1)), (1)

where I(t) ∈ Rm×n represents the current frame obtained from the camera at time

t, where our recordings have been characterized by m = 500 and n = 500. The

’U-Net()’ method is the application of the ROI detector on the current frame, while

the ’Dense()’ method calculates the dense optical flow using Farneback’s method

for the current and preceding frames. M denotes the motion image obtained by

multiplying the binary ROI image with the optical flow.

The resulting motion image is inserted at the beginning of the sliding window.

Since the sliding window should remain fixed in length, the last element is removed.
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Next, for each frame in the window, a value (v) is assigned using Equation 2, re-

sulting in a 1-dimensional vector of length N=200. This vector contains elements of

type ’float-64’. In the subsequent step, the 1-dimensional waveform is filtered with a

bandpass Butterworth filter (20–120 RPM) [3] to obtain an output waveform whose

frequency falls within the physiological frequency range of respiration and correlates

with the infant’s respiration.

v =
1

nm

n∑
j=0

m∑
i=0

√
M2

i,j,c1 + M2
i,j,c2, (2)

where Mi,j,c1 represents pixel (i, j) of the current motion image calculated as de-

scribed above, on channel c. The motion image has two channels: c1 represents

horizontal motion, while c2 represents vertical motion. The spatial dimensions of

the motion image are denoted by n and m. The sequence of assigned values v for

each masked motion frame defines the 1-dimensional motion signal that correlates

with the respiration: s = [v1, v2, ..., vN ].

3) Respiratory Signal Masking Module

From the ’situation analysis’ module, based on a Recurrent Neural Network

(RNN), we obtain a decision for each incoming frame, determining whether calm

respiration occurs in the current situation based on the computed features from

the current and preceding frames. The decisions can be binary values of 1 or 0,

which are also stored in a sliding window (decision window). This window contains

1s and 0s, where 1s correspond to time periods when the non-contact respiratory

monitor can reliably provide the respiratory rate, and 0s indicate problematic sit-

uations. The Respiratory Signal Masking Module filters out the motion signals

associated with problematic situations by element-wise multiplication between the

vector containing the obtained waveform and the vector containing the elements of

the decision window. This process zeros out the segments falling within the time

range of problematic situations.

4) Rate Calculation Module

This is the final module of the non-contact respiratory monitor. Its task, as the

name suggests, is to determine the respiratory rate. Its input is the respiratory wave-
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form (s), which is a 1-dimensional vector of type ’float-64’ with a length of 200. The

output is the respiratory rate in breaths per minute (BPM) represented by a ’uint8’

value ranging from 20 to 120 BPM. (This range corresponds to the physiological

range of infant respiration according to our literature review and experiments.)

For rate calculation, we developed a peak detection-based algorithm called Cal-

cRate. This algorithm starts with signal inversion (1) and applies a bandpass filter

(2) that allows frequencies between 20 and 120 to pass. This is followed by an adap-

tive thresholding step, where the threshold level is the adaptive (calculated based on

the current signal’s local environment) mean value (3). This yields a binary signal,

where a value of 1 represents breaths (positive peaks), and the onset of breaths is

indicated by rising edges (4). By counting the rising edges (5), we can determine

the number of breaths in a given ’time window’. In the final step, breaths within 0.3

seconds of each other are merged (6), and the respiratory frequency is calculated by

averaging the time intervals between peaks and converting the result to frequency

value (7).

I. Thesis point: I propose a novel contactless camera-based respiration moni-

toring algorithm that estimates the respiration rate of premature infants in the image

by analysing a sequence of frames captured by a RGB camera and that works reliably

in real hospital conditions, as it is able to detect situations where the estimation of

the respiration rate is not possible, such as when treatment/feeding is taking place

or the infant is removed from the incubator.

Related publications: [J1]

The second algorithm I designed, which I would like to present in more detail,

is closely related to the first non-contact respiratory monitoring algorithm. Specifi-

cally, it performs the automatic annotation of the dataset required for the training

of the first module of the previous algorithm, the ROI detector. Manual annotation,

especially for semantic segmentation with pixel-level annotation, is a laborious task.

Furthermore, when working with a limited number of annotators, subjectivity can

pose a problem. The annotation of the dataset can vary based on individual anno-
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tators’ judgments. With automatic machine annotation, this problem is mitigated,

while saving us from tedious annotation work.

This automatic annotation algorithm can be divided into two main parts:

• Detection module

• Tracking module

The detection module’s task is to locate the region associated with respiratory

motion based on the extent and frequency of motion. The tracking module aims to

track the detected region’s potential motion to avoid running the detection module

continuously.

The more complex part is the detection module, which can be summarized in

four main steps:

• 1) Motion estimation

• 2) Area-based filtering

• 3) Frequency-based filtering

• 4) Displacement-based filtering

1) Motion Estimation The goal of this step is to generate a motion image

that indicates the intensity of motion around each pixel between the current frame

at time t and the preceding frame at time t−1. Several algorithms exist for creating

such motion images, such as dense optical flow, block-matching algorithms [4], or

’DeepFlow’ [18], which was applied by Yue Sun et al. for estimating respiratory

motion [15]. However, the simplest solution is to calculate the difference image

between the two mentioned frames. This procedure does not provide information

about the direction of motion, but it captures the intensity. Since we do not require

direction information for this application, and the squared difference image (D)

effectively reveals the contrast of motion, enabling the detection of large abdominal

movements (especially the motion at the diaper and skin junction), this method is

perfect for our application. The difference image alone would be noisy. However,

squaring the difference image (D2) enables the detection of the largest areas of
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motion, and it can be computed quickly and easily (see Equation (3)). Squaring

enhances stronger motions and suppresses noise, improving the signal-to-noise ratio.

This way, we obtain a single-channel rotation-invariant motion image.

D(x, y, t) = (I(x, y, t)− I(x, y, t− 1))2, (3)

where I(x, y, t) represents the intensity of the pixel at coordinates (x,y) at time t,

and D(x, y, t) denotes the intensity of the squared difference image at coordinates

(x,y) for time t.

2) Area-based Filtering

After calculating the aforementioned motion image, if the infant exhibits calm res-

piration without any other motion in the image, we can locate the region around

the abdomen where respiratory motion occurs. However, if larger connected motion

areas are visible in the D(x, y, t) image or if they are unrealistically small, we can

determine that these do not stem from abdominal respiratory motion. Hence, if the

camera-to-infant distance is fixed, we can establish lower and upper thresholds for

the pixel count of the largest connected component in the D(x, y, t) image. If the

pixel count of the largest component does not fall within this range, the detection

is considered unsuccessful.

To compute this, we first need to apply thresholds to the D(x, y, t) motion image.

Subsequently, on the resulting binary image, we can find the connected regions using

the spaghetti algorithm [1]. The spaghetti algorithm returns a list of pixel clusters,

where a cluster contains pixels that are connected to each other. The algorithm

assigns a cluster label to each pixel in the output image, where the background is

treated as a separate cluster and is not considered further. We then select the largest

connected component that differs from the background (see Equation (4)).

g(x, y) =

1, if l(x, y) = ϕ

0, otherwise
(4)

where l(x, y) represents the group number assigned by the spaghetti algorithm to

the pixel at coordinates (x,y), and ϕ denotes the group number of the cluster that
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contains the most pixels.

In this way, we have selected the largest connected component (g) in which

the image contains only 0s and 1s. Next, we examine whether the pixel count

of g falls within the allowed range: Thlower <
∑M,N

x,y=1,1 g(x, y) < Thupper. These

are empirically set threshold values. If the pixel count of the largest connected

component is too small, it likely does not correspond to the respiratory motion in

the abdominal region. If it is too large, it likely represents intense limb motion or

other interfering moving objects. If the pixel count falls within the allowed range, the

algorithm can proceed to the next step of the detection. Otherwise, the algorithm

returns to the first step, which applies motion estimation to the next incoming frame.

3) Frequency-based Filtering

Area-based filtering alone is not sufficient to find the region associated with respi-

ratory motion in the image, as there may be other motions (e.g., limb movements)

whose extent in the motion image is similar to that of abdominal respiratory mo-

tion. Therefore, additional filtering based on the frequency attribute of respiratory

motion is necessary. To achieve this, we analyze the temporal pattern of motion.

However, before that, we need to transform the sequence of motion images into a

one-dimensional signal.

Similar to previous approaches, we apply a sliding window, but instead of image

frames, the motion images are appended to the window. The window contains 300

motion images calculated according to Equation (3). These images are then fattened

into one-dimensional vectors, referred to as samples, with a length of H = N x M,

where N represents the horizontal and M the vertical extent of the motion images.

Thus, in the sliding window, instead of 2D motion images, we have 1D-transformed

motion images, resulting in a matrix of size (300 x H). We can then apply Principal

Component Analysis (PCA) [16] to this matrix, which maps the samples to the

eigenvector space. By selecting the first component, we perform dimensionality

reduction, reducing the samples to one dimension. As a result, we obtain a 1D

motion signal, which is 300 units long and describes the most emphasized motion

identified by PCA among the motions present in the motion image.

After extracting the signal, we can examine whether its frequency falls within the
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range corresponding to the physiological frequency of respiration. Healthy newborns

typically breathe in the frequency range of 25 to 68 breaths per minute [6]. However,

based on our measurements, in certain (even abnormal) cases, higher respiratory

frequencies may occur. Therefore, we expanded the possible range of respiratory

frequencies to 20-120 breaths per minute. To assess whether the frequency of the

1D signal associated with the current content of the sliding window falls within the

physiological range of respiration, we calculate the Fast Fourier Transform (FFT)

spectrum of the signal and select the frequency corresponding to the highest peak

in the spectrum.

f = b[max
f

{FFT (sM)}], (5)

where sM represents the motion wave associated with the sliding window mentioned

earlier, and b is a vector containing the frequencies of the FFT spectrum.

Next, we examine whether this frequency is within the specified range (20 RPM

- 120 RPM). If the frequency (f) corresponding to the highest peak in the computed

frequency spectrum does not fall within this range, the detection is not successful

on the current motion image, as we cannot guarantee that the detected motion is

related to respiration. If it falls within the range, the algorithm can proceed to the

next step. Otherwise, the algorithm returns to the first step, which applies motion

estimation to the next incoming frame.

4) Displacement-based Filtering

The aforementioned filters may already be suitable for detecting the region con-

taining respiratory motion. However, in certain cases, there might be motion with

the appropriate frequency visible in the sequence of motion images, and the extent

of the largest connected component in the last image might also be appropriate,

yet this connected component is not a consequence of respiratory motion in the

motion image. In such cases, calm respiration can be observed in the image, but

sudden low-intensity motion occurs in a region other than the abdominal area, such

as around the limbs. In rare cases, the extent of this limb motion might coincide

with the search range, resulting in the detection of the region around the limb as
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the source of respiratory motion. To avoid this, we introduced displacement-based

filtering, which monitors the motion of the geometric center of the largest connected

component and considers the detection unsuccessful if a sudden, unrealistically large

displacement is observed.

To achieve this, we again apply a sliding window, which, in this case, contains

coordinates ci = (xi,yi) instead of image frames. If the distance between the

centers within the sliding window never exceeds the empirically set threshold Thst,

the detection is successful.

∀ci ∈ c, d(ci, c0) < Thst (6)

where i < N represents the ith index, N is the length of the sliding window contain-

ing the center points, d() denotes the Euclidean distance between two input points,

and c is a vector containing N = 300 peaces of 2D points, where ci ∈ R2.

Tracking Module

The task of the tracking module is to track the centroid of the detected region us-

ing ’sparse’ optical flow. During tracking, the module saves a binary image that

contains the detected region (annotation) and also saves the corresponding current

input image. Thus, it generates an annotated dataset. Tracking continues until

something occludes the tracked point or it moves out of the image, or the algorithm

switches to a new video. In these cases, we need to return to the running of de-

tection module. If the detection module re-finds the region related to respiration,

automatic annotation can resume.

Thesis point II: I showed that by using a neural network-based segmenter to

find the expected location of breathing, it is possible to automatically generate an

annotated database using continuous video recordings of premature infants. I have

proposed an algorithm that detects and tracks the location of respiratory motion based

on motion extent and frequency to annotate frames for the segmenter from contin-

uous video recordings of premature infants.

Related publications: [C1]
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The third algorithm (Figure 2) I would like to present performs classification into

behavioral states according to NIDCAP using video recordings of infants and pulse

variability data obtained from the Philips IntelliVue MP20/MP50 medical monitor.

The operation of this algorithm can be divided into three main steps:

• 1) Extraction of video-based features

• 2) Extraction of pulse variability-based features

• 3) Application of the classification module

1) Extraction of video-based features

The extraction of video-based features involves detecting predefined informative re-

gions in the image, such as the infant’s abdomen, the image borders, or the area

around the abdomen overlapping with the limbs. Various motion signals are ex-

tracted from these regions, such as the difference image within a given area, dense

optical flow, or the average of pixels within the region in the HSV-transformed

image. We calculate eight types of motion signals for three informative regions,

and these signals are combined with the respiratory signal, resulting in a set of 25

one-dimensional waveforms.

2) Extraction of pulse variability-based features

Since every newborn is continuously monitored with a pulse oximeter but not with

an EKG, we decided to use the pulse signal from the contact sensor and calculate

metrics based on pulse rate variability (PRV). The most straightforward approach

is to apply time-domain metrics. If the peaks are detected, the durations between

them can be calculated. From such a sequence of intervals, more complex metrics

can be computed for comparing different phases. The computation of the complex

features we used is described by equations 7 and 8.

RMSSD =

√∑N
i=1(PPi+1 − PPi)2

N
(7)

SDNN =

√∑N
i=1(PPi − mPP)2

N − 1
(8)
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where PP represents the time difference between two successive pulse peaks,

PPi is the time difference corresponding to the i-th pair of pulse peaks, and N is

the number of pulse peaks. mPP denotes the average of the PP intervals, SDNN

([13]) is the standard deviation of the aforementioned PP intervals from mPP,

which is the square root of the variance, while RMSSD is the square root of the

mean of squared differences between successive normal heartbeats. The calculation

is performed in a 5-minute sliding window, following the HRV metrics overview [12].

The computed PRV-based metrics (which are also one-dimensional signals of a

given length) are concatenated with the previously created video-based features.

Then, a PCA normalization is applied to the resulting feature set. This feature set

serves as the input to the classification module, implemented as an RNN cascade-

based module.

3) Classification module

The classification into NIDCAP-based behavioral classes is performed by an RNN

(specifically, a GRU - Gated Recurrent Unit) cascade-based module. To enhance

performance, the GRU classifiers (blocks) are organized into a cascaded structure

resembling a decision tree. The blocks differentiate behavioral states in the order

of deep sleep, active sleep, transitional, and wakefulness. The order is important

because a subsequent block is only make classification for the given period’s feature

set if the preceding blocks did not yield a positive classification. The most accurate

binary classifiers are listed above. The accuracy of the cascade is thereby increased

for the entire class set. The binary classifier blocks consist of GRU layers, linear

layers with ReLU activation functions, and a sigmoid activation function at the end.

Thesis point III: I propose an algorithm to classify the behavioral states of

infants (NIDCAP scale) by extracting 1D temporal motion signals from a sequence

of consecutive frames (visual actigraph) and to input the resulting signal sequence

combined with pulse variability-based features to a recurrent-neural-network-based

classification cascade. It’s output is one of the behavioural states and, to the best of

our knowledge, it is the first AI-based classifier that classifies into these NIDCAP

scale states using only image data from the camera and pulse variability-based data

17



as input.

Related publications: [C2], [P1], [P2]
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