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Introduction

In financial investments, the investor decides which securities (e.g.
stocks or bonds) to buy. Naturally, the investor’s goal is to maximize
their wealth at a given point in the future. However, I can have no prior
knowlege of the exact result or outcome of a given investment; this un-
certainty is termed risk, which different investors take into account in
differing ways. The investor’s preference, that is, to what extent risk
influences their decision, is called risk aversion.

Since the investor has to make decisions based on available information,
such as the price of a bond, the control theory of stochastical systems
are used to handle the theory of investments. These decisions determine
which part of the available, disposable wealth is invested into financial
assets. The price takes on the role of independent variable, whereas
the objective function depends on the risk senstivity that the investor
wishes to optimize.

Methodology and basic concepts of the re-
search

This research contains numerous simulation results. In these instances,
I used the Monte-Carlo method for the price process of the stocks cor-
responding to the given dynamic system. The research necessitated the
use of numerical integrals and the programming of algorithms that I
had defined. The source code was written in R, while the studies were
carried out on a personal computer (with circa 8 GB RAM and a 2.6
Ghz dual-core processor)

The theses will discuss two types of investments chosen based on the
investor’s goal during investment. This choice is essential because the
degree of risk differentiates investments with identical expected values.
For instance, in a game of chance, if a player has a 50% chance of
winning 100 dollars and a 50% chance of winning 0 dollars, the expected
value of the win is 50 dollars. However, investors consider investments

2



more favorable when the winnings are for certain 50 dollars. This is
because there is no risk - therefore, investors "punish" the presence of
risk.

The risk aversion, that is, the value of the investor’s risk (the amount
of expected profit they are willing to forgo in order to avoid a given
risk) varies from investor to investor. Investors with greater capital are
usually greater risk-takers, while those with less capital are more risk-
averse (for example, to avoid bankruptcy). These two criteria (risk
sensitivity, or in the case of greater wealth, greater risk-taking) are
described by several types of objective functions. Of these, the most
well-known is the log-optimal portfolio, in which the the investor maxi-
mizes the expected value of the weatlh’s logarithm. If the investor does
not take risk into account, the investor is risk-neutral. In this case, I
do not differentiate between the two cases in the above example.

In addition to the objective function, the decision function must also
be given. In both cases I assume that the investor is self-financing ;
that is, in every moment they can only use their present wealth. For
example, they cannot provide or receive loans.

Financial assets may be grouped according to whether their future price
is a deterministic or a stochastic variable. The former case is termed a
risk-free asset (e.g. bonds) and the latter case is termed a risky asset.
For simplicity, I assume that during trading, one of each type of asset is
at the investor’s disposal. This restriction is not a strict one and instead
serves to simplify the notation, as almost every statement would be true
even in the case of several stocks following simple modifications.

Another common assumption is that the objective function does not
depend on the value of the portfolio at a given time but rather on its
value at infinity. These are called long term investments. Its purpose
is to investigate long term behavior of the market rather than its fluc-
tuation in time. That is to stay, its average, characteristic behavior in
time is investigated.

In the following subsections, I will present those basic terms that will
be fundamental to understading the thesees.
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Log-optimal portfolios

Let us presume a discrete trading system with a risk-free asset whose
price at time t is denoted by Bt and a risky asset whose price is St
without a transaction fee in a liquid market. The wealth of the trader
at time t is as follows:

Wt = Wt−1(1− πt)Bt+1/Bt +Wt−1πtSt+1/St,

where the investor’s decision is the πt ∈ [0, 1] trading strategy, i.e. what
percent of their wealth should be invested in stocks. (As an example,
the πt 6∈ [0, 1] would correspond to the loan that I excluded.) A general
assumption is that the bond price evolves in time deterministically with
a fixed (constant) interest rate r ≥ 0, namely, Bt = Bt−1(1 + r), ∀t.
Moreover, I assume that r = 0, in order to exclude the effect of interest
rate. This does not result in an actual limitation to the model and
allows for clearer notation. For statistical reasons, it is convenient to
describe stock dynamics by its log-return Ht := log(St/St−1). In this
way, the above equation may be rewritten as

Wt/Wt−1 = (1− πt) + πt exp(Ht)

following division by Wt−1.

At time t = 0, the investor possesses an initial capital of w0. The
investor’s objective is maximizing the logarithmic utility function by
the long-term trading of their entire wealth, namely,

lim inf
t→∞

1

t
E[log(Wt)]→ max .

(If the limit clearly exists and is finite, I denote it as G∗, and the
investor’s wealth increases exponentially at an average rate of at least
G∗, that is: E[Wt] 'W0 exp(G∗t).)

The investor’s wealth at time t may also be expressed in another way:
Wt = w0

∏t
j=1Wj/Wj−1 for an initial capital w0 > 0. Using one of the

basic properties of the conditional expected value, the tower rule, I find
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that the optimal strategy may be found by maximizing the conditional
expected value of the portfolio value log increments (log(Wt/Wt−1)) at
every time t:

max
πt∈[0,1]

E[log((1− πt) + πt exp(Ht))|Ft−1]. (1)

Provided that there is a strategy π∗t which optimizes the expression at
every t, it must be shown that the objective function thus obtained is
indeed convergent. However, it must be noted that this process– where
at each point in time only the increment of the next point in time must
be optimized– can solely be utilised in the case of log optimal portfolios;
with other cases of utility functions, it cannot be used.

Results thus far may be classified into three groups. On the assump-
tion that the Ht process is Markovian, the problem may be solved using
dynamic programming. When only assuming ergodicity in a more gen-
eral case, the convergence of the objective function is proven, albeit the
procedure to find the optimal strategy is not given. Furthermore, it is
difficult in many cases to prove ergodicity in financially relevant mod-
els. The third method is the set of learning algorithms for large data
sets. However, here the large amount of data provide a strong restric-
tion. Additionally, the results cannot be interpreted as these methods
are generally nonparametric. The model and the investment cannot be
known or interpreted.

In my research, I found a general method of constructing the optimal
strategy for more complex models. I numerically examine and prove
the convergence of the objective function. Further, I also introduce an
effective approximative strategy and define a threshold strategy whose
optimum can be found by a learning algorithm. This learning algorithm
does not assume the availabilitiy of a large amount of data during the
investment, nor does it require knowledge of the type of process (within
reasonable limits).
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Considering transaction fees in the case of risk-neutral
preference

When trading continuously in time, and allowing for a transaction fee
proportional to the rate of trading, let X0

t be the wealth stored in risk
free assets, while X1

t is the number of stocks (risky assets); let the
price process of the stocks be proportional to the fractional Brownian
motion: St = σBHt (that is, a negative price is possible price process
has long memory). Trading takes place in the interval [0, T ] and its
goal is to maximize the expected value of cash at time T , provided that
a maximum exists. It is the investor’s decision how "fast" they trade
at a given point in time t, therefore I denote this as φt. In this way,
the number of stocks is X1

t (φ) = X1
0 +

∫ t
0
φudu.

The value of cash at time t is the following:

X0
t (φ) = X0

0 −
∫ t

0

φuSudu−
∫ t

0

λ|φu|αdu.

The initial conditions of X0
0 and X1

0 can be chosen freely, while the
parameters λ and α are characteristics of the market.

Because it is established that an optimal strategy exists, φ∗t is a speed of
trading that reaches the optimal objective function supφ E[XT (φ)] =:
u∗(T ). However, finding this strategy for a finite T is a lost cause,
although T →∞ may arbitrarily approach the optimal strategy.

It is an established result that for T → ∞ the growth of the optimal
objective function u∗(T ) is

lim sup
T→∞

u∗(T )

TH(1+1/(α−1))+1
<∞.

That is, at the time of expiry T , the expected value of the investment
grows according to a power law u∗(T ) ≈ TH(1+1/(α−1))+1.

Let κ be the trading "intensity," which denotes that the speed of trading
is proportional to κ-th power of the absolute value of the price process.
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The upper bound of the intensity is that κ < 1/(α− 1). The strategy

φt(T, κ) =

{
sgn(St(H − 1/2))|St|κ, t ∈ [0, T/2),

− 1
T/2

∫ T/2
0

φs ds, t ∈ [T/2, T ],

allows the utility function grows such that u(T ) ≈ TH(1+κ)+1. For
κ = 1/(α−1) the growth would be optimal but this is not provided for
by theorem.

The question regarding this investment is what can be known about
the strategy that approaches optimality. Because the investment does
not take into account risk, it is uncertain if the investment’s Sharpe
ratio is meaningful. The Sharpe ratio is the ratio of the expected profit
and the risk; it is vital in the determination of how realistic a theo-
retical investment model is. Furthermore, the way that the investment
depends on the financial parameters is, in theory, only numerically ver-
ifiable (the market parameters: H Hurst parameter, α price impact, λ
volatility; the parameters of the investment: κ intensity). Aside from
this, it is also uncertain whether the optimal growth rate κ = 1/(α−1)
is attainable, despite a lack of theoretical basis.

Research Goals

Studies on investment theory are lacking for parametric models that
take long memory into consideration for stock prices. In my PhD dis-
sertation, I examine constructive trading strategies where it is both
proven the solution exists and where the optimal strategy can be found
numerically. Due to my examination of parametric models, I was able
to examine how the dynamic parameters that desribe the price pro-
cesses affect the optimal decision based on numerical simulations. In
the course of this disseration, my goals include the following:

• Creation of a constructive trading strategy for investors of differ-
ing risk sensitivites in which the stock prices have long memory
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• Defining a general class of models and specific price process dy-
namics which are parametric and have long memory. Further-
more, long memory is taken into account with only one parameter

• Developing an approximative strategy whose computational cost
is significantly more favorable than the log-optimal strategy

• Examining log-optimal and approximative strategies with numer-
ical simulations

• Creation of learning algorithms that adapt to the dual expecta-
tion of financial data arriving both continually and quickly. Due
to this, the method must also be applicable on a small data set
and have a low computational cost.
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Theses

Log-optimal trading in Conditionally Gaussian processes

Let (Ω,F , {Ft}t∈Z,P) be a probability space, where the σ-algebra Ft
is generated by {εj}j≤t and {ηj}j≤t where {εj}j∈Z and {ηj}j∈N are
two i.i.d. sequences that are independent. I assume that εj , j ∈ Z are
standard Gaussian.

The log-return process is called Conditionally Gaussian is it evolves
in time

Ht = F (Zt−1, Yt, εt, ηt), (2)

where F is a measurable function, Yt is a stationary Gaussian process
such that Yt is σ(εj , j ≤ t)-measurable.

Here Zt−1 contains the information about the past values of the log-
return, so it is assumed that Zt−1 = j(Ht−1, Ht−2, . . . ) for some mea-
surable j : RN → B for some Banach space B.

Corresponding publication: [1].

Thesis One: Provided that the dynamics of the price process F (·)
meets a given ergodic-like criteria, then a strategy (π∗t ) can be con-
structed that is a function of the information available at time (t− 1).
The investment based on this strategy converges with probability one
to the log-optimal investment in the long run. Therefore, the following
is also true:

lim inf
T→∞

1

T
E[log(Wπ∗

T )] = max
π

lim inf
T→∞

1

T
E[log(WT )].

Using the function π̂(z, ν, κ), the optimal strategy may be constructed:

π∗t = π̂(Zt−1, νt−1, κt−1),

where νt−1 := E[Yt|Ft−1] and κt := V ar[Yt|Ft−1]. The function π̂
can be determined in advance for any three (z, ν, κ) by applying two-
dimensional numerical integration.
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Comment The importance of the above statement lies in the fact
that Conditionally Gaussian-type processes are compatible with the
majority of price process dynamics used in practice, assuming that the
noise is of Gaussian distribution. This provides a general method for
the construction of the optimal strategy.
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Price Process Models with Long Memory

The Discrete Gaussian Stochastic Volatility (DGSV), a novel proposal
for the dynamics of the log-return (Ht, t ∈ N), is defined in a similar
way to the popular model rough Volatility :

Ht = µ+ αHt−1 + σeYt

(
ρεt +

√
1− ρ2ηt

)
;

Yt =

∞∑
j=0

βjεt−j , µ, σ, βj ∈ R, α, ρ ∈ (−1, 1).

The Bilinear ARCH model, the long-memory version of ARCH (R.
F. Engle and C. Granger’s Nobel prize-winning model), is defined as
follows:

Ht = c0 + c1Ht−1 + ηtσt;

σt = a+

∞∑
j=1

βjHt−j , a, c0, c1, βj ∈ R.

The variables εt and ηt are independent white noise sequences with
Gaussian distribution.

Corresponding publication: [1].

Thesis Two: The following statements may be made about Discrete
Gaussian Stochastic Volatility and Bilinear Arch models. The models
are compared based on the examination of 1,250 price processes of
stocks on the New York Stock Exchange between January 1, 2010, and
December 31, 2016.

1. The parameters of both models may be chosen so that the first
four moments of the generated data reflect reality. In addition,
both models are capable of describing the so-called "leverage ef-
fect", particularly the DGSV model, in which this is controlled
by the ρ parameter.
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2. Several research results, in addition to my own results, confirm
that long memory appears in volatility rather than in the drift of
the log-return. Specifically, while log-returns are not correlated in
time, their absolute values are (therefore τ → Cov(|Ht|, |Ht+τ |)
decays by a power law). Both models are capable of describing
this, provided that βj = b0(1 + j)−b, b > 0.5, b0 > 0, j ∈ N.

Log-optimal Investments with the DGSV and BARCH
models

Corresponding publication: [1].

Thesis Three: Both the DGSV and the Bilinear ARCHmeet ergodic-
like criteria which guarantee the log-optimal investment for each real-
ization (with probability one). Results based on numerical simulations:

1. The steady state is achieved in 1,000-15,000 time steps (which rep-
resents 4-6 years of daily trading), while Thesis One only proves
the limit case t→∞. The speed of the convergence decreases as
the strength of the memory increases.

2. The optimal solution is a decreasing linear function of the strength
of the memory (b0) when the variance of the log-volatility is kept
constant.

3. The rate of the memory’s decay (b) does not effect the optimal
solution.

4. The optimal strategy is "extreme" in the sense that for each re-
alization in the majority of the time, it takes only two values,
either 0 or 1 (the value it takes changes in time). This suggests
that the range of strategies may be reduced from [0, 1] to {0, 1}
in practice.
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Approximative and Threshold Strategies

The threshold strategy is defined as follows:

E[log((1− π)(1 + r) + π exp(Ht))|Ft−1]→ max

π := 1{f(Ht−1)>0} = 1{Ht−1>θ}.

If the σ-algebra Ft−1 does not provide more information on the invest-
ment than the function f(), then the two strategies result in the same
outcome.

Corresponding publication has not peered yet, results are available at
arXiv 1907.02457.

Thesis Four The optimal threshold strategy may be searched for
using the Kiefer-Wolfowitz algorithm, where Isearch for the g(θ) :=
E[log((1−πt) +πt exp(Ht))] function’s maximum when using the πt :=
1{Ht−1>θ} strategy. The alorithm is below:

θt+1 = θt + at
Ht1{Ht−1∈[θt±ct]}

ct
, at = t−1, ct = t−1/3.

With this method, the investment may be optimized without conduct-
ing statistical examinations beforehand on the price process of stocks.
Following the completion of numerical analyses, I found several possible
pitfalls for which I propose solutions.

1. The algorithm’s computational cost is cheap; it contains only mul-
tiplication, addition, and conditional expressions. The incoming
data is processed one at a time without the use of "big data."

2. A vizsgált esetekben a g(θ) függvénynek pontosan egy maximuma
van. , the g fuction has exactly one maximum

3. Although in theory it cannot be confirmed, numerical simulations
show that the θt series converges in mean square to the optimal
value.
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Comment One Numerical results show that the linear approximation
strategy is the same as the log-optimal strategy in the majority of cases,
although its construction does not necessitate numerical integration,
therefore the strategy can easily be constructed for many stocks.

Comment 2 The threshold strategy is similar to the approximative
strategy but does not assume knowledge of Ft−1 which is not available
to the investor when using real data. The statement can be generalised
information other than only Ht−1, such as external market information
which effects the stock price. The algorithm in Thesis Four searches for
the optimal investment during the continuous infux of the data stream
(in general cases, it is impossible to prove that there exists only one
maximum point).
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Trading with Fractional Brownian motion

The definition of the Sharpe ratio is as follows: SR := E[XT ]/D(XT ).

Corresponding publication: [2].

Thesis Five:

1. The Sharpe ratio is bounded with the speed of trading φt(T, κ).

2. Based on numerical results, the Sharpe ratio grows with the
strengthening of the memory (that is, |H − 0.5| is large). The
Sharpe ratio of the trading is a constant function of intensity κ
when memory is weak and a decreasing function when the mem-
ory is strong.

3. From the previous two points, it follows that the maximization
of the objective function and the maximization of the Sharpe
ratio are mutually exclusive expectations: during high-intensity
trading (κ ≈ 1/(α − 1)), the expected value is nearly optimal
but its Sharpe ratio is minimal; at weak-intensity trading, the
opposite holds true.

4. The suggested trading strategy is applicable even in the case
κ = 1/(α − 1) and numerical experiments show that it attains
the optimal growth rate (though this has not been theoretically
verified).
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