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1 Introduction

Floating-point arithmetic is a cornerstone of modern scientific com-
puting. From weather modeling to engineering simulations, it enables
the digital approximation of complex, continuous real-world systems.
However, floating-point operations are inherently limited by finite pre-
cision, rounding errors, and their non-associative nature. These limi-
tations manifest as two key challenges in high-performance computing:
lack of reproducibility and the tension between numerical accuracy and

performance efficiency.

This dissertation addresses both problems through two interrelated
themes. The first is bitwise reproducibility — the guarantee that compu-
tations produce bit-for-bit identical results across different runs, many
hardware platforms, or parallelization levels. Reproducibility is critical
in scientific contexts where conclusions must be robust, verifiable, and
portable. Yet it is often undermined by parallel computation, where the
order of floating-point operations is unpredictable. The second theme
is reduced and mixed-precision computing, which offers the promise
of higher performance and energy efficiency by selectively using lower-
precision representations. However, such performance comes at the risk

of introducing unacceptable numerical inaccuracies.

The aim of this research is to explore both challenges in the con-
text of large-scale computational simulations. Specifically, the disserta-
tion contributes generalizable solutions implemented in domain-specific
frameworks — OP2 and OPS — that address reproducibility and precision
trade-offs without compromising scalability or productivity. Throughout
the research, methods are tested on benchmark problems and industrial-
grade solvers, including the Rolls-Royce Hydra CFD application and the
OpenSBLI library, providing a broad and practical evaluation context.
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2 Methods and Tools

2.1 Floating-Point Arithmetic and Precision Chal-

lenges

Floating-point arithmetic underpins scientific computing by enabling
the representation and manipulation of real numbers in digital form. A

floating-point number is typically represented as

(=1)%9™ x significand x base“*Poment,

where the sign bit indicates polarity, the significand (or mantissa) de-
termines precision, the base is usually 2, and the exponent scales the
magnitude. The IEEE 754 standard [I] defines common formats such
as half-precision (16-bit), single-precision (32-bit), and double-precision
(64-bit), balancing dynamic range and accuracy.

However, floating-point arithmetic introduces inherent limitations,
notably rounding errors and non-associativity of operations [2, 3]. Be-
cause results must be rounded to fit the format, the order of operations
affects the final outcome, which can cause variability in parallel compu-
tations where operation order is non-deterministic. In the Aero bench-
mark (OP2), running the same conjugate-gradient solver with different
numbers of MPI processes produces small but measurable differences in

results due to rounding and non-associativity [4].

This non-determinism complicates reproducibility, which is crit-
ical for debugging, verification, and scientific validation. Bitwise
reproducibility-ensuring identical results across runs regardless of
parallelism-requires controlling or eliminating sources of rounding vari-
ability, especially in reductions. Approaches like ReproBLAS [5] im-
plement reproducible summations by carefully managing floating-point
additions to guarantee bitwise identical results independent of execution

order.



The increasing computational demands of scientific applications have
motivated exploration of reduced and mixed-precision floating-point
arithmetic to improve performance, memory usage, and energy efficiency.

Reduced-precision computing uses floating-point formats with fewer
bits (e.g., 16-bit half precision or even 8-bit formats) to represent num-
bers, which can significantly decrease memory footprint and increase
throughput on hardware optimized for low-precision operations. How-
ever, reducing precision inherently increases rounding errors and limits
representable range, potentially affecting numerical accuracy and stabil-
ity.

Mixed-precision arithmetic combines different floating-point preci-
sions within a single computation to balance accuracy and efficiency. For
example, intermediate calculations may be performed in lower precision,
while critical accumulations or corrections use higher precision. Iterative
algorithms, such as gradient descent or iterative solvers, are particularly
amenable to mixed precision because initial coarse approximations can
be refined progressively with higher precision steps.

This approach leverages hardware capabilities on modern HPC sys-
tems, including GPUs and Al accelerators, which often provide signifi-
cantly higher throughput for low-precision operations. Mixed precision
can yield large speedups and reduce energy consumption without sacri-
ficing overall solution quality when carefully applied.

In this dissertation, the exploration of reduced and mixed-precision
computing is motivated by these trade-offs: achieving computational
efficiency gains while maintaining acceptable numerical accuracy and

reproducibility.

2.2 OP2 Framework

OP2 is a domain-specific abstraction framework for parallel execution
of unstructured mesh computations [6]. It enables developers to express
computations over mesh sets and mappings in a high-level, platform-

agnostic manner. The OP2 runtime then automatically generates opti-
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mized parallel code for various architectures, including multi-core CPUs
and GPUs.

OP2 supports distributed memory parallelism via MPI and shared
memory parallelism through OpenMP or CUDA, allowing scalable per-
formance on heterogeneous HPC systems. It has been successfully ap-
plied to scientific applications such as fluid dynamics and finite element
methods [4].

2.3 OPS and OpenSBLI

OPS (Oxford Parallel library for Structured mesh solvers) is a similar
abstraction framework targeting structured mesh stencil computations
[7]. It provides a high-level API and supports multiple parallel backends
(MPI, OpenMP, CUDA), enabling portable and efficient execution on
diverse HPC platforms.

OpenSBLI builds on OPS to automate generation of high-order fi-
nite difference solvers for compressible flow problems [§]. It translates
symbolic problem specifications into optimized parallel code leveraging
OPS, facilitating rapid development and experimentation with numerical

methods.

Together, OP2, OPS, and OpenSBLI represent modern approaches
to scientific computing that emphasize abstraction, automation, and per-
formance portability, addressing both unstructured and structured mesh
problems. Their high-level APIs allow scientists to focus on the numer-
ical algorithms without modifying low-level code for different architec-
tures. This separation of concerns enables automation in code generation
and optimization, ensuring that applications remain maintainable and
efficient across evolving HPC platforms.
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3 New scientific results

This section presents the main scientific contributions of the disser-
tation in the form of thesis points. Each thesis group highlights a major

area of research, while individual points describe specific results.

Thesisgroup I. — Algorithms for reproducible floating-
point operations defined on unstructured mesh appli-

cations.

Thesis I.1. Starting from the OP2 DSL abstraction, I
showed which floating-point operations — such as parallel re-
ductions, indirect memory updates, and non-deterministic ex-
ecution order — are responsible for the potential violation of
the reproducibility property. I showed what steps — tempo-
rary array-based accumulation, deterministic graph coloring,
and the use of ReproBLAS — can be taken to ensure that these
operations still produce reproducible results.

In this part of the work, I began by analyzing the computational
patterns inherent in unstructured mesh applications written using the
OP2 DSL. These patterns typically involve indirect memory accesses
and accumulation operations — particularly in reductions and read-write
kernels — which are highly susceptible to non-determinism in parallel
environments. I systematically identified the categories of floating-point
operations in OP2 that can lead to violations of bitwise reproducibility,
with a focus on those involving reductions (e.g., OP _INC and OP_RW)
over shared data.

To address these issues, I proposed two main algorithmic solutions.
First, a temporary array-based accumulation scheme was introduced,
which ensures that increments are applied in a fixed, deterministic order
based on globally unique element IDs. Second, the reproducibility of
global reductions was addressed by integrating the ReproBLAS library
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into OP2, enabling deterministic summation of floating-point arrays re-
gardless of thread count, process layout, or reduction tree structure.
These methods were implemented with minimal intrusion into OP2’s
abstraction, preserving the productivity benefits of the DSL while en-

suring deterministic output.

The effectiveness of these methods was demonstrated through test
cases such as Aero and MG-CFD, where non-determinism in the results

was visibly reduced or eliminated under varying process counts.

Thesis 1.2. I introduced a new algorithm that ensures re-
producible coloring on distributed, partitioned graphs, indepen-
dent of the number of partitions. The algorithm builds on
M. Osama’s graph coloring method originally developed for
GPUs, and extends it to ensure full determinism in a dis-
tributed setting. I demonstrated how these algorithms — tem-
porary array-based accumulation, deterministic graph coloring,
and ReproBLAS-based reductions — can be efficiently mapped
to diverse parallelization strategies. I demonstrated that these
methods achieve near-optimal performance on multi-core pro-
cessors, distributed systems, and GPUs, and exhibit practical

scalability across industrially representative applications.

Graph coloring is a widely used technique in parallel computing to
avoid race conditions during updates to shared data. Traditional color-
ing methods, however, often depend on the mesh partitioning strategy,
introducing variability when the number or configuration of partitions
changes. To address this, I developed a novel distributed coloring algo-
rithm that guarantees reproducible color assignments regardless of parti-
tioning. The algorithm extends existing parallel coloring techniques with
a deterministic ordering based on global element identifiers and hash-
based tie-breaking. This design ensures that color assignments remain
consistent even when the mesh is redistributed across varying numbers

of MPI processes or affected by load balancing.

The reproducibility of this coloring method was validated across sev-
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eral OP2 applications, including the industrial-grade Hydra CFD code,
where consistent parallel execution is critical for debugging and valida-
tion. Moreover, the algorithm is generic and applicable beyond OP2,
making it a robust tool for deterministic parallelism in unstructured do-
mains.

One of the key challenges in enabling reproducible execution is min-
imizing its performance overhead. To this end, the reproducibility tech-
niques — including the new coloring algorithm, temporary array accumu-
lation, and deterministic global reductions — were designed to integrate
efficiently with OP2’s code generation system and parallel backends. I
demonstrated how these algorithms can be mapped onto different paral-
lelization strategies with near-optimal performance across diverse archi-
tectures, including multi-core CPUs, distributed-memory clusters, and
CUDA-enabled GPUs.

Extensive benchmarking was conducted on representative OP2 appli-
cations. Figures[I] and [] present slowdowns relative to non-reproducible
baseline. In the Hydra case study, the reproducibility infrastructure
was tested at scale, and results showed that overheads remained within
acceptable bounds — especially in light of the benefits offered by deter-
ministic outputs.

On GPU systems, where controlling race conditions is particularly
challenging, the proposed methods were successfully deployed using
OP2’s CUDA backend. Reproducible execution was achieved on Nvidia
V100 accelerators without significant restructuring of user code, demon-
strating the practical feasibility and portability of the proposed solutions
across a broad range of real-world computing environments.

Publications related to this thesis group are: [J1], [C1], [C2], [C3],
[C4].
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Thesis 1I.

I introduced a methodology for systematically reducing nu-
merical precision in structured grid applications and measur-
ing its impact on both performance and numerical accuracy.
Applying this to a representative turbulent simulation (Taylor-
Green vortex), I demonstrated that using 32-bit floating-point
representation yields performance gains while maintaining ac-
ceptable accuracy, whereas 16-bit usage significantly alters
the physical conclusions. Building on this, I extended the
OpenSBLI framework to support a mixed-precision strategy,
enabling specific state variables and temporary storage to be
computed and stored at lower precision. This enables the eval-
uation of mixzed precision configurations in a controlled, quan-
titative manner, and I showed that carefully selected combi-
nations of 16- and 32-bit precision can preserve accuracy and
lead to substantial runtime improvements on both modern CPU
and GPU architectures.

This part of the dissertation addresses the emerging opportunity —
driven largely by hardware developments — to use reduced precision arith-
metic in scientific simulations. Motivated by the increasing support for
16- and 32-bit floating-point operations on modern GPUs and CPUs, 1
developed a methodology to systematically evaluate how such precision

reductions impact both simulation accuracy and runtime performance.

The methodology was applied to a canonical fluid dynamics prob-
lem: the Taylor-Green vortex, a 3D unsteady turbulence benchmark [9].
This problem is well-suited for sensitivity analysis, as it exhibits com-
plex, nonlinear dynamics that can amplify numerical errors and highlight

instability in lower precision settings.

Using OpenSBLI as the frontend for code generation and OPS as the
backend for parallel execution, I implemented double-precision (FP64),
single-precision (FP32), and half-precision (FP16) versions of the sim-
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Figure 3: Numerical accuracy of TGsym app using different precision
levels. Mesh size = 2563, M = 0.5, Re = 800. The simulations were run
for 8000 iterations using the default method.

ulation. Accuracy was assessed using global quantities such as kinetic
energy dissipation and numerical error norms, while performance was

measured in terms of runtime per iteration and memory usage.

As it can be seen on Figure|3|and Tables the results confirm that
FP32 precision offers a good balance, delivering significant speedups (es-
pecially on GPU platforms) while preserving physically accurate behav-
ior. However, simulations run entirely in FP16 precision showed large
deviations in key quantities, leading to altered or unphysical results,
particularly near peak dissipation. This reinforces the conclusion that
while 16-bit arithmetic may be viable in localized contexts, it cannot be
blindly applied across an entire CFD code without compromising scien-
tific validity.

Importantly, the infrastructure developed for this analysis is not spe-
cific to the Taylor-Green vortex. Thanks to OpenSBLI’s symbolic and
backend-agnostic design, the same methodology can be reused to analyze
other CFD models using finite difference discretizations on structured
grids. As such, this work lays the groundwork for future investigations
into precision-aware modeling practices in high-performance simulation
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workflows.

Building on the findings from full reduced-precision simulations, the
thesis point continues on a more granular and flexible approach: mixed-
precision computing. Rather than applying the same numerical format
across all variables and operations, the strategy here was to assign preci-
sion levels selectively, based on the numerical role and stability sensitivity
of each component.

To enable this, I extended OpenSBLI’s code generation infrastruc-
ture to support variable-specific precision control. This required modifi-
cations to the symbolic frontend, variable type declarations, and the gen-
erated OPS kernel code, ensuring that temporary arrays, work buffers,
and conservative state variables could all be defined with differing levels
of floating-point precision. The implementation supports combinations
such as FP64 for conserved variables and FP32 or FP16 for intermediate
operations.

Using the Taylor-Green vortex problem again as a testbed, I evalu-
ated several mixed-precision configurations, such as FP64 state variables
with FP32 residuals, or FP32 state with FP16 temporaries. Performance
benchmarks show that these configurations offer meaningful speedups
without the loss of simulation accuracy observed in the pure FP16 runs.
The runtime-per-iteration and memory usage improvements are summa-
rized in Tables [IH3] highlighting gains of more than 2x speedup with
negligible loss of fidelity in key physical quantities.

Publications related to this thesis are: [J2], [C5], [C6].

Publication related to this thesis, but still under review at the time

of submission: [J3]

4 Impact and Applications

The methodologies developed in this dissertation address two criti-
cal challenges in computational science: numerical reproducibility and
precision-aware computing. These contributions have direct applications
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Default Storesome
runtime speedup runtime  speedup
HP 42.43 ms 2.43 x || 18.67 ms 2.69 x
HPSP 47.71 ms 2.16 x || 22.13 ms 2.27 x
SP 56.95 ms  1.81 x || 25.00 ms 2.01 x
SPDP 74.02ms  1.39 x | 37.60 ms 1.34 x
DP 103.21 ms  1.00 x || 50.31 ms 1.00 x

Table 1: Runtime per iteration and speedup compared to the double
precision run time of the TGsym app are shown for the default and
storesome generation methods. Mesh size—2563, M = 0.5, Re=800, 800
iterations. The measurements are performed on a single NVIDIA A100-

SXM4-40GB GPU with an AMD EPYC™ 7763 (Milan) CPU.

Default Storesome
runtime speedup runtime speedup
HP 68.48 ms 5.71 X 21.39 ms 8.12 x
HPSP | 105.22 ms  3.71 x 47.31 ms 3.67 x
SP 185.23 ms  2.11 x 65.05 ms 2.67 x
SPDP | 249.11 ms  1.57 x || 123.22 ms 1.41 x
DP 390.71ms  1.00 x || 173.68 ms 1.00 x

Table 2: Runtime per iteration and speedup compared to the double
precision run of the TGsym app using the default and Storesome gen-
eration methods. Mesh size=2563, Minf=0.5, Re=800, 800 iterations.
The measurements are performed on Intel Xeon Platinum 8592+ CPU

Default Storesome
Memory Gain Memory gain
HP 2.21 GB 4.00 x 1.09 GB 4.00 x
HPSP | 2.72 GB 3.25 x || 1.60 GB 2.72 x
SP 4.41 GB 2.00 x || 2.17 GB 2.00 x
SPDP | 543 GB 1.63 x || 3.19 GB 1.36 x
DP 8.83 GB 1.00 x || 4.35 GB 1.00 x

Table 3: Memory used with the TGsym app and memory gain compared

to the double precision run. Size—2562.
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across industrial and academic simulation workflows.

Reproducibility techniques for unstructured mesh applications en-
able deterministic results in industrial CFD codes (e.g., aerospace and
energy systems), where regulatory compliance requires consistent out-
comes across hardware configurations. The OP2 integration delivers
bitwise reproducibility without compromising parallel performance, en-
hancing debugging and certification processes. Notably, the HYDRA
CFD solver used in aerospace design leverages OP2 for large-scale sim-
ulations, where deterministic behavior is vital for both engineering vali-

dation and regulatory approval.

Mixed-precision strategies align with modern GPU/accelerator
architectures, exploiting lower-precision units for speedups while main-
taining accuracy through precision-aware algorithms. This enables faster
design cycles in aerodynamics and combustion modeling, particularly
beneficial for real-time decision support and large parameter studies. A
compelling example is OpenSBLI’s deployment for high-fidelity simula-
tions of aerofoil buffet phenomena at the Japan Aerospace Exploration
Agency (JAXA), where production runs can last three to four weeks
using 120 Nvidia V100 GPUs [1I0]. In such cases, any performance en-
hancement — such as that offered by mixed-precision techniques — can

significantly reduce computational cost and turnaround time.

Embedding these enhancements within OP2/OPS ensures immediate
usability: developers gain reproducibility and precision control without
rewriting application logic. The infrastructure also enables future adap-
tive precision approaches, where simulations dynamically adjust accu-

racy based on local error estimates.

These production-ready solutions balance consistency, efficiency, and
accessibility — meeting evolving demands in high-performance scientific
computing while lowering barriers for under-resourced research groups.
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Use of AI Assistance

Parts of this dissertation benefited from the assistance of Al tools.
In particular, ChatGPT (OpenAl), Perplexity.ai, and GitHub Copilot
were used for refining the phrasing of technical descriptions, organizing
text, checking grammar, and accelerating code development workflows.
All results, insights, and critical reasoning remain my own, and the use

of these tools was limited to supporting clarity and productivity.
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