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1. Introduction 

Cells integrate several processes to perform certain activities. These systems modify or change 

their responses to coordinate with external signals through a series of molecular processes such 

as chemical reactions. Cell signaling is a basic process used by all biological systems to connect 

with their environment [1]. Because of well-coordinated signaling networks, multicellular 

organisms function successfully. Biomolecules such as genes, mRNAs, transcription factors, 

and proteins interact with each other through signaling pathways, resulting in functional and 

structural differences in proteins and their complexes [2]. 

Small regulatory network motifs are the building blocks of larger, more complicated signaling 

pathways. Feedforward loops (FFLs) [3] and feedback loops [4] are two major types of 

regulatory motifs that are grouped by the types of regulation between interacting molecules 

(Figure 1). 

 

Figure 1: Influence diagram of feedforward and feedback loops. 

The coherent feedforward loop (cFFL) and incoherent feedforward loop (iFFL) are presented in subplots (A and 

B), where cFFL has the same net effect on the direct and indirect arms (i.e. both arms are positive), whereas iFFL 

has the opposite net effect on the direct and indirect arms (i.e. one arm is positive while other is negative). The  

panels (C, D) show two forms of Positive Feedback (PFB) Loops: pure PFB (C) with all positive interactions and 

a double negative feedback (DNFB) loop  (D) with two mutual inhibitory interactions resulting in an overall 

positive effect. The schematic diagram of a Negative Feedback (NFB) Loop is shown in panel (E), with two 

species linked by activatory and inhibitory interactions. The pointed arrows indicates activation, whereas the 

blunt-headed arrows implies inhibition.  

It is important to remember that a feedback loop works in both directions, while a feedforward 

loop only works in one direction. How motifs behave dynamically can be changed by how they 
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are linked together in a larger network [5]. It further shows that studying isolated network 

motifs is not enough to explain how a biological system works as a whole in terms of its 

dynamic properties. 

In a biological system, the FFL is a pattern of three genes. It is made up of two input 

transcription factors, one of which controls the other. Together, these two transcription factors 

control a target gene. The response time of the targeted gene can be accelerated or slowed down 

by these FFLs. Also they can act as a noise filter. When FFLs are connected with other FFLs 

(coupled FFLs) [6], their noise-reduction capabilities are altered, making them a better noise 

reducer. 

Feedback loops, on the other hand, change the dynamics of individual units in order to preserve 

the system's behavior. Depending on whether the feedback loop is positive or negative, it can 

be a switch or an oscillator respectively [7]. Oscillators are important for many biological 

processes, such as the cell cycle and the circadian clock [8].  The internal clock of the body is 

referred to as the "circadian clock". It operates on a 24-hour cycle that is synchronized with the 

day/night cycle. It runs in the background to carry out essential actions and functions. One of 

the important and well-known example of circadian rhythms is the sleep-wake cycle. 

Temperature compensation [9] is another well-known basic aspects of a circadian oscillator. 

Temperature compensation makes it possible for the species to keep a rhythm that is similar to 

the day/night cycle even when the temperature changes a lot. How the circadian clock 

keeps  temperature-compensated and robust situations are still unknown. 

Mathematical modeling can be used to create a precise description of dynamical systems, 

allowing the investigation of the dynamical characteristics of networks. A computer simulation 

followed by a mathematical model could be one way to describe a biological network. 

Statistical analysis can help with both quantitative and qualitative understanding of such 

investigations. 

Stochasticity, often known as chemical noise [10], is a property of chemical processes that may 

interfere with and impact the outcome. The goal of this thesis is to understand the dynamic 

properties of different regulatory networks as well as their behavioral changes in a noisy 

environment. In the dissertation, I have thoroughly tested the resilience of these networks using 

a theoretical approach.  

 



5 
 

2. Methods 

The computational analysis of complicated networks delivers rapid, dependable, and cost-

effective solutions. The usage of ordinary differential equation (ODE) models for research on 

biological systems has increased significantly in the recent decades. Object-oriented modeling, 

such as class diagrams or entity diagrams, static perspective, and stability analysis can all be 

done with commercial software [11]. For network analysis in my dissertation, I utilized 

Kaemika and MATLAB. Both deterministic and random simulations work well in these two 

applications. 

Kaemika is a functional programming language that interprets chemical reaction simulations 

graphically [12]. It is a Microsoft program created by Luca Cardelli. Kaemika is constructed 

using the C# programming language. For the stochastic dynamical study of coupled and 

isolated FFLs, it is possible to carry out the linear noise approximation (LNA) [13]  in a single 

click using the Kaemika tools. The LNA simulation offers several statistical measurements 

[14], such as standard deviations, coefficients of variation, variances, fano factors, and more.  

MATLAB, on the other hand, includes advanced programming capabilities. In addition to 

programming and numerical operations, it provides great graphic visualization [15]. I wrote 

and simulated algorithms in MATLAB (ver. R2021b) for the robustness and temperature 

compensation study of feedback loops in various circadian oscillatory networks. During this 

analysis, I have described the reaction rates in terms of the Arrhenius equation [16], such that 

they change with temperature [17].  

To account for the impact of extrinsic noise [10] on the positive and negative feedback 

regulatory arms of the circadian clock, I altered the parameter value about the nominal value 

to induce randomness. As a result, I chose some random numbers from a lognormal distribution 

(https://www.mathworks.com/help/stats/lognrnd.html). In addition, for robustness, I estimated 

total parameter variation [18] by using the arithmetic mean calculation. I expanded noise 

estimation by computing the Bayesian Information Criterion (BIC). It is generally used to 

assess models and decide which one best fits an observation while taking the number of fitted 

parameters in each model into consideration. To investigate the temperature adjustment 

capacity of these biological oscillators, I estimated the temperature coefficients (Q10) related to 

their period of oscillation [19]. In order to take into account the impacts of intrinsic noise [10], 

I have incorporated the Gillespie algorithm [20] in the MATLAB.   

https://www.mathworks.com/help/stats/lognrnd.html
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3. New Scientific Results 

Thesis 1a.  I have discovered that coupled feedforward loops (FFLs) outperformed 

isolated feedforward loops in terms of robustness and signal transduction. 

Related publications: [J1], [C1], [C2], [C3] 

I performed  linear noise approximation (LNA) simulations with two different kinds of FFLs: 

coupled (Figure 2A, right hand side top and bottom panel) and isolated (Figure 2A,left hand 

side panel) subjected to one-step posttranslational modification [21]. The coupled FFLs can be 

of two types: multi input coupled feedforward loop (abbreviated as ‘minp’ FFL, shown in the 

right hand side top panel of Figure 2A) and multi intermediate coupled feedforward loop 

(abbreviated as ‘mint’ FFL, shown in the right hand side bottom panel of Figure 2A). 

In Figure 2B and 2C, both the  noisy input and the output change over time respectively. The 

red rectangle shows the input value for which I have recorded the percentile coefficient of 

variation (% CV) of the output (marked with rectangular red box). I have also estimated the 

slope value I got from a plot of inputs and outputs (Figure 2D). The % CV measures noise, and 

the slope values of the networks from the relationships between inputs and outputs measure 

how well they can transfer signals. 

It's interesting that the percentage CV and slope values usually go in the opposite direction. A 

greater % CV indicates inadequate noise reduction, but a higher slope value indicates improved 

signal transduction capabilities. I showed that coupled FFLs reduce noise more effectively than 

independent FFLs (Figure 2E). In Figure 2E, I demonstrate coupled FFLs has better signal 

transduction capacity than isolated FFLs.  
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Figure 2: Noise attenuation and signal transduction abilities of coupled and isolated FFLs. 

In this figure, few examples of isolated and coupled FFL networks are presented (A). Mean of the noisy input 

(displayed with green color), its % CV (with shading) values at each of 5 input steps are shown. (B). Across all 

the input levels, the mean output levels (displayed with blue color) and the estimated noise for the output are 

recorded. These indicate lower % CV values than it was at the input layer (C). The slope of the input-output 

relation is plotted as a measure of signal transduction (D). To demonstrate how each coupled and isolated FFL 

system operates in noise reduction and signal transduction, the % CV of each FFL is computed at input = 6 

(marked with red rectangular box on panels B and C) and displayed against the slope values (E).  
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Thesis 1b. I have been able to distinguish between FFLs that perform better at minimizing 

noise and signal transduction based on their network architecture. 

Related publications: [J1], [C1], [C2], [C3] 

I have shown a number of fascinating traits that come out of the analysis: The FFLs (Figure 

2A) with the higher signal transduction capacity (Figure 2E) have an activatory direct 

connection between the input and output nodes. This suggests that node X should directly 

activate the node Z to provide the best signal transduction. Successful signal transduction 

occurs when input node X suppresses at least one copy of intermediate species Y and output 

gates follow OR logic. All of these claims are true for FFLs with maximal signal transduction 

capability, including c4-OR, c4c4-mint-OR, c1i4-mint-OR, and c4i1-minp-OR.  

Effective noise reduction may be shown in FFLs with the same activatory direct link between 

nodes X and Z, but this is augmented by a reaction in which Z is activated by Y (Figure 2A) 

and follows OR logic. The best FFLs are i4-OR, c1-OR, c1i4-mint-OR, c1c1-mint-OR, and 

c1i4-minp-OR (Figure 2E). 

Based on this study, coherent type-1 and type-4 and incoherent type-4 with OR connection can 

perform well as noise reducers and signal transducers (Figure 2E).  The results show that c1c1-

minp-FFL-OR is the best noise filter (with the lowest % CV) and c4c4-minp-OR is the best 

signal transducer (with highest value for slope). 

 

Thesis 1c. I discovered that the FFLs' noise reducing capability trends remained 

unchanged even with the addition of stochastic input signal. 

Related publications: [J1], [C1], [C2], [C3] 

Noise through each level of posttranslational modification to FFLs is inherent and unaffected 

by noise at the input nodes. Therefore, changing the input noise level  to higher or lower value 

maintains the conclusion's consistency (Thesis 1a., Thesis 1b.) (Figure 3). 
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Figure 3: Estimation of the noise at every node of the networks, by altering the input noise level. 

Demonstrated how noise propagates along the pathways for c1-OR (A,B,C) and c1c1-minp-FFL (D,E,F) models 

by raising (right panel) and reducing (left panel) the degree of noise in the input and comparing it to the initial 

noisy input (middle panel). The estimation has been done at input = 6 and single step posttranslational 

modification is considered.  
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Thesis 1d. I discovered that OR gates in FFLs are better than AND gates in terms of noise 

reduction. 

Related publications: [J1], [C1], [C2], [C3] 

FFLs with AND logical gates reduce noise less than those with OR gates (Figure 4A). The OR 

configuration of a model has a lower % CV than the AND configuration of a similar model. 

 

 

Figure 4: Comparison of noise reducing abilities of FFLs with OR and AND logic gates (A), and with one-

step and two-step posttranslational modifications (B). 

Panel A illustrates how the % CV of networks driven by OR gates compare to that of networks including AND 

gates. Networks that incorporate OR gates have a lower coefficient of variation (%CV) than those that contain 

AND gates (placed at the below of the diagonal). This result is valid for all types of FFLs, including isolated FFLs, 

minp-FFLs, and mint-FFLs with considering single step posttranslational modification. The models with both the 

AND and OR type of connectivity is plotted here. The slope  and the % CV are displayed along with the 

comparable models that undergo two-step modification processes before being activated at each layer (Panel B). 

Two-step modification process have a greater % CV than one-step modification for isolated FFLs, coupled minp-

FFL, and coupled mint-FFL. The estimation has been done at input = 6.  
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Thesis 1e. I evaluated one-step and two-step post translational modification in FFLs and 

discovered that multisite modification improves signal transduction but decrease noise 

reduction capability.  

Related publications: [J1], [C1], [C2], [C3] 

I have shown that multisite alteration improves both signal transduction and % CV based on 

an analysis of the input-output correlation slopes and the % CV produced by these motifs and 

equivalent networks with single modifications (Figure 4B). As a result, multisite alteration does 

not increase FFLs' noise-reduction abilities (Figure 4B), but it does improve FFL motifs' signal 

transducing abilities. 

 

Thesis 2a. I have investigated four distinct oscillatory modules and identified that the 

delayed negative feedback loop model is the least robust in terms of noise reduction, while 

a model combining positive and negative feedbacks is the most robust among the four 

investigated ones against noise. 

Related publications: [J2], [C4], [C5] 

In Figure 5, each of the four oscillating networks are shown. Figure 5 shows several oscillatory 

systems, including the cyanobacterial oscillatory system in KaiABC (cyano-KaiABC) [22], 

which implements multiple positive and negative feedback loops but operates based on a 

nonlinear equation (A); the Goodwin-NFB network [23], which is a delayed NFB model 

(B); the cPNFB models, which combine positive and negative feedback loops but follow mass 

action kinetics  (C) [7]; and Selkov's substrate depletion oscillatory system [24] (Selkov-PFB), 

which has the basic positive feedback loop (D). 
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Figure 5: Oscillatory networks with positive and negative feedback. 

Schematic illustration of Rust's cyanobacterial oscillatory system in KaiABC (cyano-KaiABC) [22], which works 

through many complex positive and negative feedback loops (A); Goodwin's negative feedback loop between two 

species (Two-Variable-Goodwin-NFB) [23] (B); a single molecule with both positive and negative feedback that 

passes through four chemically changed states while communicating with an outside molecule with two states (A 

and B) [7] (cPNFB) (C); and Selkov's substrate depletion oscillatory system (Selkov-PFB) [24], which has the 

basic positive feedback loop and is driven by substrate depletion (D). The green and red arrows show the reactions 

of activation (phosphorylation) and inhibition (dephosphorylation) respectively. Processes that are inhibited are 

shown by arrows with flat heads, while processes that are activated are shown by arrows with pointed heads. A 

dual arrows in both ways represent the reversible reactions. The direct responses (synthesis/degradation, 

phosphorylation/dephosphorylation) are shown with solid arrows, whereas the regulatory interactions 

(activation/inhibition) are shown with dashed arrows. 

 

In Figures 6A, I have demonstrated that the Two-Variable-Goodwin-NFB network (delayed 

NFB model) is the least resistant to parameter variations (it has a high% CV value for 

oscillation periods), while cPNFB models (which is a combination of positive and negative 

feedback loops) produces the lowest noise for parameter changes. 
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Figure 6: Analysis of robustness and temperature compensation properties of different oscillatory 

networks. 

The subplot A shows how the duration of oscillations varies in accordance with the total parameter changes for 

the four separate oscillatory systems shown in Figure 5. For 1000 randomly chosen parameter combinations, at 

298K, the four distinct models are plotted in different colors. The inset on the upper left records the percentage 

value of the co-efficient of variation (% CV) along with the matching colors for all networks for 200 sampled 

parameter sets for each between 0.005 and 0.015 (0.005 < Total parameter variation < 0.015 , shown by the dashed 

rectangular box). In the subplot B, the Q10 values between the temperature 293K and 303K for every motif are 

also included in the table inset on the upper right.  
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Thesis 2b. I have discovered that the delayed negative feedback loop model is better at 

temperature compensation, while the model combining positive and negative feedbacks 

shows the least temperature compensation from the four investigated models.  

Related publications: [J2], [C4], [C5] 

In Figure 6B, I showed that the Two-Variable-Goodwin-NFB model (delayed NFB model) is 

better at temperature compensation because its Q10 value is lower, while the cPNFB circadian 

oscillatory network (which is a combination of positive and negative feedback loops) is worse 

at temperature compensation because its Q10 value is higher. 

 

Thesis 2c. I have found that in all the investigated cases, temperature-insensitive 

parameters are either direct or indirect controllers of negative feedback.  

Related publications: [J2], [C4], [C5] 

On Figures 7 all models were tested, how their period dependence on temperature changes if a 

reaction rate is temperature insensitive. The Two-Variable-Goodwin-NFB model shows the 

best temperature compensation when the rate (α2) is fixed, which directly controls the negative 

feedback loop. 

 

Figure 7: Temperature dependence of the periods of oscillations in four oscillatory models, where reaction 

rates are temperature insensitive. 

The figure shows how far the periods of oscillations vary with temperature across all four analyzed oscillatory 

networks, where a single reaction rate is fixed (indicated on the legend and  shaded with blue color boxes on 

Figure 5), while all other rates are responsive to temperature variations. Similar tests were performed for all 



15 
 

individual parameters, here the results with the best performing fixed rate are plotted. The image also depicts the 

Q10 values for each model measured in the range from 293K to 303K.  

The parameter, which must be temperature insensitive for temperature compensation, is also a 

negative feedback loop controller for both the cyano-KaiABC (the 𝑘𝐷𝑆
0  rate) and cPNFB (the 

k01) networks. Since the Selkov-PFB lacks an NFB loop, there the most essential parameter is 

the PFB loop's substrate synthesis (k1 rate). The parameters associated with each model are 

indicated in the Figure 5. The primary parameter that is temperature insensitive has been 

displayed with blue color and the secondary temperature insensitive parameter has been 

indicated with yellow color (Figure 5). Based on these, it can be concluded that rates controlling 

negative feedback loops need to be less temperature sensitive to have better temperature 

compensation of oscillation periods. 
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