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1 Introduction

Proteins usually perform their function through molecular interactions. Since they require some
particular interactions for proper working and since aspecific interactions may hamper the func-
tion, the proteins must recognize their biological targets accurately. The recognition basically
rests on the complementarity of surface patterns of the partners. The complementarity, however,
not a static property, in contrast to the assumption of the lock and key hypothesis of Emil Fischer
[1]. Because the structure of proteins is intrinsically dynamic, models assuming the conforma-
tional transition of proteins via binding have emerged. Two mechanisms exist in the literature
for the description of conformational transitions coupled to binding. According to the induced fit
mechanism, proposed by Koshland [2], the binding of a partner induces the conformational tran-
sition of the protein toward its native conformation. In the conformational selection (fluctuation
fit) mechanism, the conformations of the protein preexist in the unbound form and the partner
selects the native conformation from the preexisting pool [3, 4]. As the binding shifts the relative
populations of protein conformations, it is also called population shift mechanism.

It is very typical of a newly indentified class of proteins, intrinsically disordered proteins
(IUPs), that they undergo significant conformational transitions through target binding. IUPs do
not have well-determined secondary and tertiary structure in solution, but through binding to
a partner, they often adopt well defined tertiary structure, which is called coupled folding and
binding [5].

The concept of induced fit and conformational selection is appropriate for the description of
binding and folding of an IUP to a partner not possessing significant flexibility. If, however, both
chains taking part in the binding process are flexible and undergo a conformational transition,
the traditional concept of coupled folding and binding are insufficient [6]. The picture is more
complex, if the sequences of the partners are identical, because the issue of symmetry of the
complex formation process arises.

According to the thermodynamic hypothesis of Anfinsen, the native state of a protein is the
one with the lowest Gibbs free energy [7]. Identification of the native state is an optimization
problem which is NP-hard for all two- and three-dimensional protein models [8, 9], which means
that the time needed for the search increases very fast with increasing system size. Proteins are
systems with a lot of degrees of freedom and a huge state space with complicated transitions be-
tween the states. The limits of calculation power of state-of-the-art computers make necessary the
use of simplified protein models, which range from the discretization of the state space [10, 11],
through the reduction of resolution of the chain representation [12, 10, 11] to the simplification
of the energy function [13, 14, 15].

One of the most simplified model is the 2D HP (hydrophobic–polar) lattice model proposed
by Lau and Dill [11]. In the HP square lattice model, the protein chain is represented as a self
avoiding walk on a square lattice. Only two types of residues, a hydrophobic and a polar one, are
discriminated. Only the H-H pairs adjacent in the lattice but not successive along the sequence
contribute to the energy with a non-zero term. For HP chains, exhaustive enumeration can be
made to discover the full state space up to chains of l = 25 bead long. HP models can be used in
Monte Carlo simulations, as well, and several move sets are available for this purpose [16, 17].
In my work, I used the move set called “pull moves” proposed by Lesh and coworkers, which
contains irreversible moves in the original form, but can be easily made reversible [18].

For the thermodynamic and kinetic description of complex systems with a huge number of
degrees of freedom, one traditionally used the free energy landscape perspective. We obtain the
free energy landscape to depict the free energy of the system as a function of some predefined
reaction coordinates. If we have one reaction coordinate, we obtain a free energy curve, in the
case of two reaction coordinates, we obtain a free energy surface, and with three or more reac-
tion coordinates, we obtain a free energy hypersurface. The main bottleneck of the free energy
landscape perspective is that, because some kinetically well separated states can coexist at the
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same point of the reaction coordinate space, some kinetic barriers may be invisible [19]. This
problem can be solved by the methods of transition networks. Mathematically, the transition net-
work is a Markov model, which is a weighted directed graph, the nodes of which are—in the
case of a countable state space—the microstates of the system, and the directed edges represent
the transitions between them. The edge weights are the probabilities of the transitions. (In the
case of an uncountable state space, the nodes of the graph can be obtained by some discretization
of the state space [19, 20]). The probability distribution of microstates of a system with constant
temperature and pressure is given by the

pi =
e−Ei/kBT

∑
j

e−E j/kBT
(1)

Boltzmann distribution, where Ei is the energy of the i state and kB is the Boltzmann constant.
I chose the weights of the transition graph so that they satisfy the Metropolis–Hastings criterion
[21].

With the investigation of the transition matrix representation of the transition network, we can
identify the metastable states of the system [22]. The methods based on Transition Path Theory
are appropriate for the investigation of the kinetics of the system. With the help of Transition
Path Theory, we can calculate the reaction rate for any transition between arbitrarily defined sets
of microstates. For steady-states of system, the rate constant can be calculated from the reaction
rates.

Investigating systems consinsting of more than one chains is particularly problematic because
their state space is far larger compared to the state spaces of one chain systems. This stems both
from the fact that the chains in the systems explore the same state space as the corresponding
monomers and that the chains can be positioned in many ways relative to each other.

The aim of my work is to thermodynamically and kinetically characterize the homodimer
formation of IUPs, to elucidate the role of different mechanisms in the dimer formation and
to investigate the applicability of concepts originally worked out for conformational transitions
coupled to binding of only one flexible participant to the case where more than one partners have
significant flexibility.
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2 Summary of new scientific results

2.1 Investigating the coupled folding and binding of disordered chains
by exact calculations, using an unbiased model

Dimer formation of proteins has been widely investigated with computational methods, but some
simplifications had to be applied because of the huge computational requirement. Previously
formation of homodimers was investigated by structure based methods (e.g. Gō-model) [23,
24]. Disorder to order transition through binding to an ordered target was investigated by a HP
model[25]. However, to my knowledge, this is the first investigation of the mutual folding of two
disordered peptide chains coupled to their binding without some information about the native
structure built in the energy function.

2.2 Two-layer state network model
The state space of systems consisting of two chains is huge and current computational capacity
only allows building the whole transition network up to for l = 5 chain length. Applying two
simple assumptions, I was able to reduce the size of the state space and establish a two-layer
Markov model which made it possible to investigate dimers of chains up to 8 beads of length.
In the two-layer model, two states, an associated and a dissociated, belong to each conformation
pairs, and they constitute the two layers of the model.

2.3 Method for the calculation of steady-state probabilities in a Markov
model

Based on the conservation of material in the steady-state for any microstate, I set up a linear
system of equations the solutions of which are the corresponding steady-state probabilities.

2.4 The three mechanism of the coupled folding and binding of IUPs
According to the folding state of the binding partners at the moment of association, three mech-
anism can be distinguished. In rigid docking, both chains are in the native conformation. If both
chains are unfolded, the mechanism is induced folding. If one of the chains is folded and the
other is unfolded, the mechanism is conformational selection. Applying Transition Path Theory,
I calculated the reactive fluxes through each mechanism in equilibrium and steady-state, together
with instantanous fluxes as a function of time. The results show that the dominant mechanism for
a particular sequence varies with time and strongly depends on the macrostate the system is in.

2.5 Comparison of equilibrium and steady-state fluxes
Living cells are not equilibrium systems but we can assume for some processes that they are in a
steady-state. I compared the behaviour of the system investigated in my work in equilibrium and
steady-state. Although it may not be general, for my system the two behaviours did not differ
significantly.

2.6 The two chains do not behave fully symetrically in the course of
homodimer formation

Theoretical descriptions of homodimer formation, except some works (e.g. [23]), have not dealed
with the issue of symmetry of the coupled folding and binding process of identical chains. More-
over, the traditional two- and three-state view of homodimer formation implicitly assumed the
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symmetry of the process. I investigated how symmetric the behaviour of the two chains is and
I found that some amount of asymmetry arises for every sequence, but for some particular se-
quences the asymmetry is very expressed at the beginning of complex formation.

2.7 The size of the overlapping region between regions occupied by
ordered and disordered sequences on the average hidrophobicity–
absolute average net charge plane decreases with the chain length

It was observed several times that for disorder-prediction methods, relying on the characteristic
differences between the amino acid compositions of ordered and disordered sequences, the ac-
curacy of prediction increases with increasing length of the disordered regions to be predicted
[26, 27, 28]. One of the main reasons may be the fact that although the ordered and disordered se-
quences occupy distinct regions of the amino acid composition space, these regions overlap. The
separation and the overlap can be observed if the amino acid composition space is mapped onto
the average hidrophobicity–absolute average net charge plane [29]. In our work, we show that
the overlapping region, called twilight zone, becomes narrower and narrower as the length of the
sequence increases. The position of the twilight zone on the average hidrophobicity–absolute av-
erage net charge plane does not vary significantly with chain length. HP and HPN model proteins
also show the decrease in the size of the twilight zone with increasing chain length. In addition,
if chain length dependent contact energies are used then the position of the twilight zone does
not vary with chain length [30].

2.8 The “pull moves” Monte Carlo move set is not fully reversible
Lesh and coworkers introduced an ergodic, local and—according to the statement of the authors—
reversible Monte Carlo move set, called “pull moves” [17]. I proved that the move set originally
proposed contains irreversible moves. Because of the irreversible moves, the system does not
satisfy the detailed balance, which can lead to improper sampling when the move set is used in
sampling methods. I suggested a modification of the move set which makes it fully reversible.
I showed that in some conditions, the flawed move set does not lead to improper sampling. I
showed by Wang–Landau sampling that for short chains, irreversibility can cause severe devia-
tions from the exact values [18].
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3 Outlook, the applicability of results of the work
In my work, a methodological and a theoretical result are worthy of further consideration. Based
on two simple assumptions, I defined a two-layer Markov model to significantly reduce the state
space of the dimeric system. This two-layer Markov model can be used for analysis of results ob-
tained from calculations with protein representations less simplified than that used by me. In the
case of systems consisting of more than one protein chains, the contribution of the huge number
of relative positions enlarges the state space of the system and so the size of the corresponding
Markov model. With the application of the two-layer model, the significant decrease of system
size can be achieved which makes possible more detailed investigation of the conformational
space.

For the description of complex chemical reactions, one often uses kinetic schemes. In experi-
mental studies, the states of the kinetic scheme are defined based on some measurable parameter.
It is not guaranteed, however, that these states are true metastable states of the system. The rate
constants in the kinetic schemes are true kinetic constants, that is their values do not depend
on the instantanous state of the system, only if the defined states are true metastable states. If
not, the measured values are rate constants only under special conditions such as equilibrium or
steady-state.
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