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Abstract

In this dissertation we investigate the interplay between structure, dynamics, and stability
in nonnegative and kinetic systems, with a particular focus on chemical reaction networks
(CRNs), nonlocal conservation laws, and quantum graph models.

In the first part, we study delayed CRNs beyond mass-action kinetics, focusing on
complex balanced systems. We show that, under suitable conditions, these networks
retain asymptotic stability w.r.t. the positive stoichiometric compatibility classes.

Then we analyze a class of multidimensional nonlocal pair-interaction models, proving
well-posedness via semigroup theory. This contributes to the mathematical foundation
of nonlocal conservation laws, generalizing earlier one-dimensional results.

Subsequent chapters investigate how these nonlocal models give rise to discrete CRNs
through finite volume discretization. We examine ribosome flow models (RFMs) and
their generalizations, establishing persistence and stability properties under broad as-
sumptions. We also analyze a nonlocal partial integro-differential equation modeling
gene regulatory networks, showing how discretization aids not only in efficient simulation
but also in qualitative analysis.

Finally, we consider quantum graphs as a spatially refined extension of compartmental
models, where transitions are governed by partial differential equations along edges. We
design an efficient simulation strategy based on a nonoverlapping domain decomposition
method, enabling scalable numerical solutions and setting the stage for future control

and inverse problems.
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Chapter 1

Introduction

1.1 Nonnegative and kinetic systems

Nonnegative systems form an important subclass within dynamical systems, character-
ized by the invariance of the nonnegative orthant with respect to the dynamics. Their
theoretical development is motivated by applications in chemistry, biology, population
and disease dynamics, where state variables in their original physical coordinates are

naturally nonnegative [I].

Compartmental models describe the distribution and transport of entities (for exam-
ple molecules, particles, vehicles, people, or information) among distinct storage compart-
ments over time [Il 2]. These compartments may represent physically separate subsys-
tems, such as interconnected containers, or conceptual states, such as different stages of
a disease in epidemiological models [3|. Accordingly, the applicability of compartmental
systems is rather wide including (bio)chemistry, pharmacokinetics, ecological, epidemi-
ological and transportation modeling [4]. Since the state variables in compartmental
systems correspond to amounts, concentrations, or numbers of molecules, these models
inherently belong to the nonnegative system class |5} [6].

The fundamental properties of compartmental models have been extensively studied,
particularly regarding observability, controllability, realizability, and identifiability [7].
Linear compartmental ODEs and their analytic solutions have been analyzed in kinetic
contexts [§], while qualitative properties of general nonlinear compartmental models, in-
cluding equilibrium structures and stability, are discussed in [9]. The strong descriptive
power of compartmental models allows them to represent numerous complex dynamical
phenomena [I0] [7]. Their associated directed graph structures (compartmental graphs)

provide insights into dynamical properties [9] [IT]. The mathematical theory of compart-

1



2 CHAPTER 1. INTRODUCTION

mental matrices and their dynamics is detailed in [2, [12] 13| [14].

An important related family of models is the class of chemical reaction networks
(CRNs) or kinetic systems. CRNs are dynamical models formally represented by trans-
formations (reactions) between abstract chemical complexes [15, [16]. While originating
in physical chemistry, CRNs have been mathematically generalized [17, 18, [19], broaden-
ing their applicability to non-chemical processes. The scope of reaction networks reaches
far beyond the (bio)chemical application field, since they can be considered as general
descriptors of nonlinear dynamics capable of producing complex dynamical phenomena
such as multiple equilibria, nonlinear oscillations, limit cycles, and even chaos [20]. Many
compartmental models, such as those used in population dynamics or epidemiology, can
naturally be represented in kinetic form, and other non-chemically motivated models can
often be algorithmically transformed into reaction networks [21], 22].

Chemical reaction network theory (CRNT) provides deep results on the relationship
between network structure and qualitative dynamics [23]. A central problem in CRNT
is persistence analysis, which is crucial for proving the global asymptotic stability of
complex balanced networks in which, at equilibrium, the total rate of reactions entering
each complex equals the total rate leaving it [24] 25 26]. Stability in mass-action CRNs
is typically analyzed using entropy-like logarithmic Lyapunov functions [27]. A major
conjecture in CRNT, the "Global Attractor Conjecture," asserts that complex balanced
kinetic systems are globally stable within the nonnegative orthant [26]. This was proven
for networks with a single connected reaction graph component [24]. Related stability
results for zero-deficiency networks extend beyond mass-action kinetics, allowing time-
varying rate coefficients and generalized Lyapunov functions [28]. The stability analysis
of ribosome flow models (RFMs) via CRN representation has also been identified as an

important research direction [29] 30].

1.2 Conservation laws

Local conservation and balance laws have been widely applied in aerodynamics, Eulerian
gas dynamics [31], traffic modeling [32] [33], pedestrian flows [34], and ribosome flows
[35]. Recently, nonlocality has been incorporated into these models to capture more
realistic dynamics. A common approach is to define a nonlocal velocity using a spatial
convolution, which has been applied to supply chain modeling [36, 37, B8] and traffic
flows [39]. However, some nonlocal models fail to preserve monotonicity or violate the

maximum principle. Alternative formulations using integral kernels have been explored
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to address these issues [40} [41] 42]. Peridynamics and other spatial nonlocal models have
also been developed [43] 44], 45]. A key advantage of nonlocal pair-interaction models is
their reduction to local counterparts as the nonlocal horizon vanishes [46], which is not
always true for other nonlocal models [47]. Due to these advantages, nonlocal models are
widely applied in peridynamics [48,[49] and in the formulation of the nonlocal Allen-Cahn

equation [50].

1.3 Quantum graphs

In recent decades differential operators on metric graphs, often called quantum graphs,
have found a myriad of applications when describing quasi-one-dimensional phenomena
in a broad range of fields, such as superconductivity in granular materials [51], classical
wave propagation in wave guide networks [52, 53], membrane potential of neurons [54],
cell differentiation [55], and optimal control [56} 57, 58, [59]. These applications can be
seen, from a modelling point of view, as compartmental models, where the transitions

are explicitly described by partial differential equations.

1.4 Aims and scope of the dissertation
Based on the above, the aims of my doctoral research are:

e Investigate the stability of delayed complex balanced CRNs with non-mass action
kinetics. Our hypothesis was that asymptotic stability w.r.t. the positive stoichio-
metric compatibility classes can be derived, as in the mass action case. The results

are presented in Chapter [2}

e Prove the well-posedness of the multidimensional nonlocal pair-interaction via semi-
group theory. While well-posedness in one-dimension was proved in [60] with a dif-
ferent method, the existence of an underlying operator semigroup is an important
advancement, as well as the generalization to multiple dimensions. The results are

presented in Chapter

e Investigate the persistence and stability of ribosome flows, obtained through finite
volume discretization of the nonlocal pair-interaction model, as well as their gener-
alizations. We generalize both in terms of structure and transition rate functions.

The results are presented in Chapter [4]
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e Investigate the finite volume discretization of the partial integro-differential equa-
tion (PIDE) model of gene regulatory networks, another nonnegative nonlocal con-
servation law. While the main motivation was an efficient simulation technique,
the discretization turns out to be benefitial for qualitative analysis too. The results

are presented in Chapter [f

e Design an efficient simulation for quantum graphs in the form of a nonoverlapping

domain decomposition method. The results are presented in Chapter [0}



Chapter 2

Asymptotic stability of delayed
complex balanced reaction networks

with non-mass action kinetics

In this chapter we consider delayed chemical reaction networks with non-mass action
monotone kinetics and show that complex balancing implies that within each positive
stoichiometric compatibility class there is a unique positive equilibrium that is locally
asymptotically stable relative to its compatibility class. The main tools of the proofs are
respectively a version of the well-known classical logarithmic Lyapunov function applied
to kinetic systems and its generalization to the delayed case as a Lyapunov-Krasovskii

functional. Finally, we demonstrate our results through illustrative examples.

2.1 Introduction

Stability is a key qualitative property of dynamical models and their equilibria. In [27],
the local stability of complex balanced equilibria of kinetic systems was shown using an
entropy-like logarithmic Lyapunov function. The most well-known stability-related result
in CRNT is probably the Deficiency Zero Theorem which states that weakly reversible
deficiency zero CRNs are complex balanced independently of the (positive) values of
reaction rate coefficients [61]. According to the Global Attractor Conjecture, the stability
of complex balanced networks is actually global within the nonnegative orthant |26} 24].
The stability of a wide class of CRNs with more general kinetics than mass action was
shown in [62]. These results were further extended in [28] for time-varying reaction rates

using the notion of input-to-state stability.
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The explicit modeling of time delays is often necessary to understand complex dy-
namical phenomena in nature or technology, and to build models having sufficient level
of reliability [63]. Various phenomena may justify the inclusion of time delays into dy-
namical models such as protein expression time in systems biology [64], hatching or
maturation time in population dynamics [65], driver reaction times in traffic flow models
[66], latent periods in epidemic modeling [67], or communication and feedback delays in
complex networks [68]. The most commonly used approach in the stability analysis of
time-delay systems is the construction of appropriate Lyapunov-Krasovskii functionals

which is generally a challenging problem [69].

The main motivation for introducing delayed chemical reactions was to focus on the
most important species and chemical transformations, and to avoid the detailed descrip-
tion of mechanisms of less interest [70]. In delayed reactions, the consumption of reactant
species is immediate, while the formation of products is delayed either through discrete
or distributed delays. The notion of stoichiometric compatibility classes was generalized
for delayed mass action CRNs in [71], and it was proved using a logarithmic Lyapunov-
Krasovskii functional that complex balanced networks are at least locally stable for ar-
bitrary finite delays. An analogous result for kinetic systems with distributed delays was
given in [72]. In [73] the authors introduced the notion of stoichiometric compatibility
classes for arbitrary delayed CRNs and proved the generalization of well-known persis-
tence results |74} [75] to the delayed case. In [76] the authors prove a delayed version of the
deficiency zero theorem and discuss global asymptotic stability. In [77] the authors pro-
vide several sufficient conditions for the persistence of delayed complex balanced CRNs
with mass action kinetics, and they improve the practical applicability of these results

via semilocking set decomposition in [7§].

Using the achievements outlined above, the purpose of the present chapter is to fur-
ther extend stability results for delayed complex balanced kinetic systems with general
(non-mass action) kinetics. For this, an appropriate Lyapunov-Krasovskii functional is

proposed through which the local asymptotic stability of positive equilibria can be shown.

The structure of the chapter is as follows. Section [2.2] introduces the basic notions
related to kinetic systems. In Section [2.3] we study the set of positive equilibria in the
context of complex balancing and the quasi-thermodynamic/thermostatic properties for
non-mass action kinetics, our first main contribution. The other main contribution can
be found in Section where the local asymptotic stability of positive complex balanced

equilibria is shown. Section [2.6] contains three computational examples to illustrate the
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theory. Finally, conclusions of the chapter are given in Section

Throughout the chapter RV, ]Rf and @f denote the N-dimensional space of real,
positive and nonnegative column vectors, respectively, and the Euclidean norm is denoted
by |.|. For z,y, € Rf the vector exponential ¥ is defined as z¥ = Hl]gV:1 z}* and the inner
product x - y is defined as x - y = Zivzl x;y;. For x € ]Rf the vector logarithm log(z) is
defined element-wise. For every 7 > 0 we denote the Banach space of continuous functions
mapping the interval [—7, 0] into RY into Rf and into @f by C, = C([*T, 0], ]RN), Cir
and C , respectively. We equip the spaces C, Cyr and é.}mT with the standard norm
61 = supier-rg) [0(5)
B.(1)). The space of continuously differentiable functions on R is denoted by C!(R).

, and the open ball around 1 with radius ¢ > 0 is denoted by

2.2 Preliminaries

In this section we introduce of kinetic systems (also called chemical reaction networks)
based on [15] 27]. A kinetic model contains N species denoted by X = {X1, Xo,..., Xy},
and the corresponding species vector is given as X = [X; X3 ... Xx|'. Species are

transformed into each other through elementary reaction steps of the form
K
Cy, —=Cw, k=1,2,...,M, (2.1)

where C, = y,;rX and Cp = yk.T,X are the complexes with the stoichiometric coefficient
vectors yg, Yr € ZJI for k =1,2,..., M. The transformation shown in Eq. means
that during an elementary reaction step between the Cj, reactant complex and Cjs prod-
uct complex [yg]; molecules of species X; are consumed, and [yx/]; molecules of X; are
produced for i = 1,2,..., N. The reaction is called an input (output) reaction of
species X; if [yw]i > 0 ([yg]; > 0). From now on we say that i € supp(yx) if [yx]; > 0.
The directed graph containing the complexes as vertices and reactions as directed
edges is called the reaction graph of a CRN. A directed graph is strongly connected if
there exists a directed path between any pair of its vertices in both directions. A strong
component (also called linkage classes in the theory of CRNs) of a directed graph is
a maximal strongly connected subgraph. A weakly connected component of a directed
graph is a subgraph where all vertices are connected to each other by some (not necessarily
directed) path. A reaction graph is called weakly reversible if each weakly connected
component of it is a strong component. Weak reversibility is equivalent to the property
that each directed edge (reaction) is a part of a directed cycle in the reaction graph.

=N . : .
Let z(t) € R, denote the state vector corresponding to X for any ¢ > 0 (in a chemical



8 CHAPTER 2. DELAYED COMPLEX BALANCED SYSTEMS

context, the state x is the vector of concentrations of the species in X'). Then the ODEs
describing the evolution of z in the kinetic system containing the reactions (2.1)) are given

by

M
b= K@)y —wl, 2(0) e R, (2.2)
k=1

where Ky, : @f — R, is the rate function corresponding to reaction step k, determining
the velocity of the transformation [15]. For the rate functions, we assume the following

fork=1,2,...,M:

(A1) Ky is differentiable,

(A2) Olgk(x) >0 if i € supp(yx), and OKi(x)

=0 if i & supp(yr),
xi Zg

(A3) Ki(x) =0 whenever z; = 0 such that i € supp(yx).

The above properties guarantee the local existence and uniqueness of the solutions as
well as the invariance of the nonnegative orthant for the dynamics in Eq. . The
dynamics of a kinetic system ([2.2)) is called persistent if no trajectory that starts in the
positive orthant has an omega-limit point on the boundary of Rf . A positive linear
conserved quantity (or positive linear first integral) for a CRN is defined as ¢ z for which
ci(t) = 0 for t > 0, where c € Rf and ¢ # 0.

The set of stoichiometric vectors is denoted with K. In some cases we will use the
complex matrix Y that has the stoichiometric vectors as columns. The reaction vector
of reaction k is defined as yp — y5. The linear span of the reaction vectors is called the

stoichiometric subspace S of (2.5)), defined as
S :span{yk/ —yk‘k = 1,2,...,M}

and for p € Rf the corresponding positive stoichiometric compatibility class S, is defined
by
Sp = {xERﬂx—peS}.

It is well-known that the positive stoichiometric compatibility classes are positively in-
variant under ([2.3); that is, we have that z(t) € S, for t > 0 if z(0) € S),.

The deficiency of a CRN is defined as 6 = m — ¢ — s, where m is the number of
complexes, £ is the number of linkage classes and s is the dimension of S.

An important special case in the theory of CRNs is mass action kinetics when the

rate function is given in the following monomial form

N
Ki(z) = nkHa:Ey’“]i, k=1,2,....M
i=1
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where k; > 0 for i = 1,2,..., M are the reaction rate coefficients; that is, the dynamics

of mass action kinetic systems can be given as

M
CE(t) = Z I{,kl‘yk (t) (yk/ — yk) . (23)
k=1

Stability of systems of the form (2.3) can be investigated through the entropy-like
logarithmic Lyapunov function

N N

Viz,z) = Z (xi(log x; —logT; — 1) —i—fi) = Z <xl log % +T; — x,-), (2.4)

i=1 i=1
where T is a positive equilibrium. We aim to generalize certain stability results to include
non-mass action cases like the Michaelis-Menten kinetics or general Hill-type kinetics,
while still relying on a similar Lyapunov function. In order to do so, we consider kinetic

systems of the form

M
B(t) =D mey? (x(t)) (uw — i), (2.5)
k=1

where the function ~ : Rf — Ri\_f is defined element-wise by the increasing functions
7 € CY(R). We recall that in this case the vector exponential Yk (:c(t)) expands to

Hf\i 1 'y? o (xz (t)) This class of systems include a wide variety of interesing and relevant

kinetics, while the product structure of 4% (z) allows us to rely on logarithmic identities in

S
ci+s

the calculations. In particular, the Michaelis-Menten kinetics can be given by 7;(s) =
for ¢; > 0, and more general Hill kinetics can be given by v;(s) = Cli% for ¢; > 0 and
n; > 0.

We impose the following assumptions on the ~; functions. First of all, if the concen-
tration of any reactant is zero, the reaction should not take place; that is, we assume
that 7;(0) = 0. A fundamental case for the choice of the 7; transformations is ~;(s) = s,
which corresponds to mass action kinetics. For regularity, in particular for the exis-
tence of nontrivial equilibria, we usually assume that the ~; functions further satisfy

fol |log vi(s)| ds < oo and that ; : Ry + R, are onto. In this case the inverse of ;' (s)

is strictly increasing from R onto R, , and thus

xlgglo (/x v He®) ds — bw) =00 (2.6)

holds for any 0 < a < oo and any b. While the v;(s) = s mass action case satisfies the
above assumptions, many fundamental examples from biochemistry do not; in particular,
the Michaelis-Menten kinetics and the Hill kinetics fail to do so, since they are not onto

R, and they do not meet assumption (2.6). However, as we will show, a slightly relaxed
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condition still ensures the existence of nontrivial equilibria. Instead of assuming that the
7; function are onto Ry, we only require that they are onto [0,0;), where 0 < o; < 0o

can be finite. Then instead of (2.6 we will require that

lim (/ v () ds — bx) = 00 (2.7)
xTlog oy a

holds for any 0 < a < co and any b. For more details we refer to [62, Section IV.B|.

We note that can be rewritten in matrix form as follows. Assume that the
number of distinct complexes is L and define k;; as ky, if there is a reaction k such that
yrr = y; and Yy = y;, and zero otherwise. Denoting by K the matrix defined element-wise

as [K;j = Kij, the system ({2.5]) takes the form
i(t) =Y (K — diag(1} K))T'(z) = YKT (), (2.8)

where 17, € RY denotes a column vector with all of its coordinates equal to one and

I': @f — @f is defined as
L(z) = [y (z) ¥ () -+ A2 (2)].

Note, that K is the weighted negative Laplacian of the reaction graph of the system.

We also consider the delayed version of (2.5)), having the form
M

i(t) = 3w (7% ((t = 7))y — 7" (2(8) ), (2.9)

k=1

where 7, > 0 are discrete constant time delays. The solution corresponding to an initial
function 1 € C4 . at time ¢ > 0 is denoted by z¥(t) € @f or by xf} € C4 ., when we
use it as a function. A positive vector T € RJX is called a positive equilibrium of
if z(t) = T is a solution of (2.9); that is, the equilibria of and coincide. The
Lyapunov-Krasovskii approach for such delayed systems is formally very similar to the
Lyapunov approach of ODEs [69, [I]. Let 7 = maxy 7, and T be an equilibrium of .
If the functional V' : C4 ; — R is such that V(Z) = 0 and

V(¥) = a(|(0) - =),
V()

holds for 1 € C4 -, where a : R4 +— Ry is a continuous and strictly increasing function

IN

0,

with (0) = 0, then Z is Lyapunov stable. If there exists a v : Ry — R, is a continuous
and strictly increasing function with v(0) = 0 such that
V() < =y(|(0) - 7))

then the system is locally asymptotically stable. Finally, if a(s) — 0o as s — oo, then

the system is globally asymptotically stable.
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2.3 Quasi-thermodynamic property and complex balancing

In this section, we restate some of the stability results described in [62] under milder
conditions using the computational approach of [15]. Here we consider nondelayed kinetic
systems of the form . First, let us recall some definitions. A positive vector T € Rf
is called a positive equilibrium of if z(t) = T is a solution of ; that is, the
equilibria of satisfy the equation

M
F@) =" my (@) (yw — yk) =0,
k=1

where f : @f — S denotes the species formation rate function of the kinetic system
. In the classical terminology of [27, [I5] a kinetic system is called quasi-thermostatic
if there exists a positive vector T € Rﬂ\_f such that the set of positive equilibria is identical
to the set

E={ze ]Rf‘ log (i) — log(7) € S*}.

In this case we say that the kinetic system is quasi-thermostatic with respect to T. Stan-
dard arguments show that then the system is quasi-thermostatic with respect to any
element of £. The distribution of positive equilibria of quasi-thermostatic systems can be
efficiently characterized, namely, each positive stoichiometric compatibility class contains
precisely one positive equilibrium [27].

Furthermore, a kinetic system is called quasi-thermodynamic if there exists an T € Rﬂ\_[

such that the system is quasi-thermostatic with respect to x, and

(log(z) —log(@)) - f(z) <0 (2.10)

holds for € RY, with equality holding only if f(z) = 0 or, equivalently, if log(z) —
log(Z) € S*. In this case we say that the kinetic system is quasi-thermodynamic with
respect to T. Similarly to quasi-thermostaticity, a system is quasi-thermodynamic with
respect to any element of £. The main consequence of quasi-thermodynamicity is that the
unique positive equilibrium of each positive stoichiometric compatibility class is locally
asymptotically stable relative to its class. This arises from the fact that the gradient of

the function
N

H(z,7) = in(loga@i —logm; — 1)
i=1

is given by log(z) — log(Z) which is a term in Eq. (2.10). Thus, the function ({2.4))

is a Lyapunov function for quasi-thermodynamic kinetic models. The short physical
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background of this is that H was used to describe the Helmholtz free energy density of
the system, and its gradient is the chemical potential function.

As noted in [27], while the above definition is physically associated with mass action
kinetics and ideal gas mixtures, it could apply to any kinetic system. In some cases
the definitions can be extended without voiding their consequences. In order to do so,

following [62], we define for z € RY the function

p(z) = log (v(x)),

where v is defined as in Eq. (2.5). A kinetic system of the form ([2.5)) is called quasi-
thermostatic in the generalized sense if there exists an T € Riv such that the set of positive

equilibria is identical to the set
E={zeRY|p(@) — p(x) € S*}. (2.11)

For brevity, we simply say that the kinetic system is quasi-thermostatic with respect
to T. Again, similarly to classical quasi-thermostaticity, standard arguments show that
then the system is quasi-thermostatic with respect to any element of £. Furthermore, the
distribution of the positive equilibria of quasi-thermostatic kinetic systems across positive
stoichiometric compatibility classes can be characterized. We describe that distribution

in the following proposition.

Proposition 2.3.1. Assume that the kinetic system (2.5) is quasi-thermostatic. Then,
for every p € Rf the corresponding positive stoichiometric compatibility class S, contains

precisely one positive equilibrium.

Proof. We first show the existence of a point in S, N €. Let T be an element of £. By

[79, Proposition B.1] there exists a (unique) vector u € S* such that
v(T)et —p e S.

Let  be defined by

Then = € S, and taking logarithm shows that

p(E) = p(T) = p € S

that is, we have that € £ as well.
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In order to show uniqueness, let us assume by contradiction that  and T are distinct
positive equilibria in Sp. Then Z — 7 € S and p(#) — p(T) € S+, and thus

N

0= (p(Z) - p@) - (F—7) =Y (log7i(Fi) — logvi(T:)) (& — Ti).

i=1
Since the functions 7; and the logarithm are strictly increasing, the above expression is

zero if and only if £ = 7. O

Remark 2.3.2. Note that we implicitly used assumption , see [62, Lemma IV.1] and
Proposition for more details.

A kinetic system of the form (2.5)) is called quasi-thermodynamic in the generalized
sense if there exists an T € Rf such that the system is quasi-thermostatic with respect

to T and
(p(z) = p(@)) - f(2) <O

holds for # € RY, where equality holds only if f(z) = 0 or, equivalently, if p(z) — p(T) €

St. Again, for brevity, we simply say that the kinetic system is quasi-thermodynamic
with respect to T, however, similarly to quasi-thermostaticity, a system is quasi-thermodynamic
with respect to any element of £.

The following proposition and its proof shows that the underlying function
N
V(z, @) = z/ (log yi(s) — log (%)) ds (2.12)
i=1"%i

is a Lyapunov function of the system (2.5)). Note, that (2.12)) reduces to (2.4)) in the mass

action case.

Proposition 2.3.3. Assume that the kinetic system (2.5)) is quasi-thermodynamic. Then,
each positive stoichiometric compatibility class contains precisely one positive equilibrium
and that equilibrium is locally asymptotically stable, and there is no nontrivial periodic

trajectory along which all species concentrations are positive.

Proof. The fact that each positive stoichiometric compatibility class contains precisely
one positive equilibrium follows from quasi-thermostaticity.
Let us consider any positive stoichiometric compatibility class S, and denote its unique

positive equilibrium by Z. Then, for any x € S, other than 7, we have that

(p(x) — p(®)) - f(2) <. (2.13)
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It is easy to see that V(z,Z) > 0 and equality holds only if x = 7, and that VV(x,T) =
p(x) — p(Z). This, combined with (2.13) show that

VV(z,Z)- f(x) <0

holds for any z € S, other than Z. Standard arguments show that V(z,Z) is a strict
Lyapunov function for T on its positive stoichiometric compatibility class S, thus T is
locally asymptotically stable relative to S,,.

To show that no nontrivial periodic trajectories can exist along which all species
concentrations are positive, assume by contradiction that = : [0,T] — RJX is such a solu-
tion with z(T") = 2(0) and denote the unique positive equilibrium of the corresponding

positive stoichiometric compatibility class by Z. Then

T
V(2(T),7) - V (2(0),7) = /0 YV (2(t),7) - f(2(t)) dt <0,

and thus

V(z(T),z) < V(2(0),T),
contradicting x(7") = z(0). O

In [62] the author considers systems of the form or, equivalently, of the form ,
and assumes that the complex matrix Y is of full rank and none of its rows vanishes, and
that K is irreducible (implying that the reaction graph is strongly connected). Then,
without using the above terminology, the author shows that such systems are quasi-
thermodynamic. We note, that these assumptions imply that if T is an equilibrium of
(2-8), then KI'() = 0; that is, the vector I'(Z) is in the kernel of K. Thus, systems that
satisfy the above assumptions are complex balanced, defined as follows.

Without any restrictions on Y or assuming that K is irreducible, an equilibrium
is called complex balanced if K I['(Z) = 0 or, equivalently, if for every complex n € K we
have that

Y k@ = Y (@),
kn=yx km=y;s
where the sum on the left-hand side is taken over the reactions where 7 is the source
complex and the sum on the right-hand side is taken over the reactions where 7 is the
product complex. Therefore, complex balanced equilibria are also called vertex-balanced
in the literature [80]. We note that this setting is indeed more general than that of [62],
as for mass action systems complex balancing can occur in weakly reversible systems, not

just in strongly connected systems; that is, there can be more than one linkage classes.
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First, we show that the existence of a positive complex balanced equilibrium affects

every positive equilibrium.

Proposition 2.3.4. Assume that the kinetic system (2.5)) admits a positive complez bal-

anced equilibrium. Then every positive equilibrium is complex balanced.

Proof. Let us assume that x € Rf is a positive complex balanced equilibrium and z € Rf
is a positive equilibrium other than Z. Then € &; that is, we have that p(#)—p(Z) € S*.
Let us define for £k =1,2,..., M the function gy, : Rf — R by

ar(z) = (p(z) — p(T)) - Y-

Then, for any complex n € K we have that

Z Ky (% Z kY (Z) = Z kY (T er Z kY (T er(i)

En=y, kn=y;, k:n=y kn=y;,
= 6‘171(@( Z Kk’y Z ,Qkfyyk ) =0,
k:n=yi km=y,
thus 2 is indeed complex balanced. O

The above Proposition shows that positive complex balancing is a system property.
Thus, a system of the form ([2.5)) is called complex balanced if it admits a positive complex
balanced equilibrium. Finally, the connection between complex balanced systems and

quasi-thermodynamic systems are described in the following proposition.

Proposition 2.3.5. Assume that the kinetic system ([2.5)) is complex balanced. Then it

s quasi-thermodynamic.

Proof. Let us consider the positive complex balanced equilibrium Z; that is, the equality

doom@ = Y s (@

kn=yy kn=y;

holds for any complex 1 € K. Observe that for any x € Rf we have that
(p(z) - Z ey () (qr (2) — qr( Z ki ()™ ) (g (x) — g ().

Using the well-known inequality

e*(b—a) < e — e (2.14)
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leads to

M
() = p(@)) - [(2) £ 3 sy () (en(2) — )
k=1

= eq"“”( > oma@ - ) ffwy‘“(w)> =0,

ne km=y km=y,

(2.15)

e

where equality holds if and only if g (z) = gx(x) for each reaction k = 1,2, ..., M; that
is, if and only if p(z) — p(Z) lies in S*. In particular, if f(x) = 0, then p(x) — p(Z)
lies in S*. Tt remains to be shown that if p(z) — p(Z) lies in S*, then f(z) = 0, as a
quasi-thermodynamic system needs to be quasi-thermostatic as well. Rewrite the species

formation rate function as

f(fE)ZZU( > me) - ) Kkvyk(ar))

nex kn=y km=yy,
- Z 77< Z Ky (T)e® (@) — Z Koy (l»)e‘Ik(:C)>'
nekl  \km=yy kn=yy

If 2 is such that p(z) — p(Z) € S, then p(x) — p(T) is orthogonal to every reaction vector,
and thus

flz) = Zeq”(r)ﬁ< Do oA @ - Y Rmy‘“(:v)> = 0;

nex km=y km=y,

that is, the vector x is an equilibrium. This shows that the set of positive equilibria
coincides with the set £, and thus the system is quasi-thermostatic. This, combined with

(2.15)) shows that the system is quasi-thermodynamic as well. O

2.4 Stability of delayed kinetic models

In this section, we consider kinetic systems with delayed reactions having the form .
In order to do so, first, we have to extend the notion of positive stoichiometric compat-
ibility classes to the delayed case. We note, that the following definition and invariance
proof was already established in [7I] for the case of mass action kinetics and in [73] for

the general case. For each v € RY define the functional ¢, : Cyr—Ras

M 0
Y(O)+ Y (mk / 7 (1(s)) ds) yk] Y ECy
k=1

—Tk

c() =wv-

For each § € Cy ; the positive stoichiometric compatibility class of (2.9)) corresponding
to 6 is denoted by Dy and is defined by

Dy = {1 € Cy r|eu(vh) = cy(0) for all v € S*}.
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Clearly, 1 € Dy if and only if ¢ € C4 ; and

—Tk

M 0
¥(0) — 0(0) + Z (Hk/ (’yy’“ (¥(r)) — ¥ (9(3))) ds) Yk € S. (2.16)
k=1

This shows that if each delay 7 is zero, then the delayed positive stoichiometric compat-
ibility classes reduce to the positive compatibility classes of (12.5)).

The following Proposition establishes the invariance property of Dy.

Proposition 2.4.1. For every 0 € C4 ; the positive stoichiometric compatibility class Dy
is a closed subset of Cy . Moreover, Dy is positively invariant under (2.9); that is, if
¥ € Dy, then xip € Dy for allt > 0.

Proof. The closedness follows from the continuity of ¢,. We will show that for each
v € St the functional ¢, is constant along the trajectories of ([2.9). To see this, let us
assume that z is a solution of (2.9). Then for ¢ > 0 we have that

M
%cv(:zjt) =v- (:’c(t) + )k (vy’“ (2(t)) — ¥* ((t - Tk)))yk)

k=1

M M
=v- (Z ey (2t — 7)) (yr — ?/k)) = ey (x(t — 7))o - (Y — yk) =0,
k=1 k=1

where the last equality follows from the fact that v € S*. Thus, if 1) € Dy, then for every

v € ST and t > 0 the equalities

colef’) = eo(2) = colw) = e (0)
hold, showing that :EZ;Z) € Dy as desired. O

The delayed kinetic system of form ([2.9)) is quasi-thermostatic if its nondelayed ver-
sion, obtained by setting each 7, = 0, is quasi-thermostatic, since their equilibria coincide.

The following proposition is the generalization of Proposition for delayed systems.

Proposition 2.4.2. Assume that the kinetic system (2.9) is quasi-thermostatic. Then,
for every 0 € Cy ;- the corresponding delayed positive stoichiometric compatibility class

Dy of the system (2.9)) contains precisely one positive equilibrium.

Proof. In the nondelayed case (see Proposition [2.3.1)) existence is shown via [79, Propo-
sition B.1| without modification. However, in the delayed case we need to adapt certain
steps of the proof based on [76, Theorem 4.4], where the authors prove the statement for

delayed mass action systems.
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Let us for T € £ define the positive vector b € Rf by

M 0
b; = 6;(0) + Z Hk/ Y% (0(s)) ds
k=1

—Tk

and the continuously differentiable function g : RY — R by

N

g(x) = Z (/ fy;l (%(@-)es) ds+77; — bi:zri) + Z KETE (’y(f)ex)yk.
0 k=1

i=1
We note that adding 7; to the integral is not necessary for the following analysis, but
adding it ensures that g(x) reduces precisely to the analogous function in the known proof
of this theorem for mass action systems.

The gradient of g is given by

M
Vg(z) =~" (’Y(f)6x> —b+ Z KETk (7(5)636)%%
k=1

and that the Hessian of g is written as

1 'y(f)@x S =\ T\ Yk T
Hy(x) = diag s + Z ek (V(@)e”) " yryy
’Y'(’Y_ (’Y(x)em)) k=1

where the fraction in the diagonal matrix is defined element-wise. The corresponding
quadratic form is positive-definite as the first term is a diagonal matrix with positive
entries, and thus is positive-definite, and the second term consists of positive factors and
the positive-semidefinite matrix yky,;r Then the function g is strictly convex everywhere.

From the property (2.7) of the ; functions it follows that for any nonzero vector

x € RN we have that

@i o0, z; # 0,
lim / fyz-_l (% (@)e“s) ds +7x; — abjx; | =
0

a—o0
T; x; =0,
and thus
N x;
: -1 .\ 08 - ; —
all)nolozg </0 v (i(@)e™) ds + T — abia:i> < all}n.}o g(az) = oo. (2.17)

Let g : S — R be the restriction of g to ST, which is also continuously differentiable

and strictly convex. Define the subset
St oG ={z eS8 g(z) < g(0)}.

Clearly G is convex, closed in R, contains the zero vector and contains no half line with

endpoint 0 because of (2.17). Then G is bounded, and thus compact as well, since in
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a finite-dimensional vector space every unbounded closed convex set containing 0 must
contain a half line with endpoint 0 [8I, Theorem 3.5.1]. The continuity of g and the

compactness of G implies that there exists u € G such that
g(u) <g(x), Vzed.
In fact, g(0) < g(x) for x € S*\G, and thus
g(p) <g(z), Vres.

Then for ¢ € S*, the equality

d
=—qg(u+t
0 dtg('u f) o

holds; that is, the vector Vg(u) is in S, and thus

M
77t (7@)@“) —b+ Z KETk (’Y(f)eu)ykyk
k=1 ; 0
=7 (v(@)e) —0(0) + (/ﬂc/ ((’Y(f)e’“‘)yk — Yk (9(8))) d8> yk € S.
k=1 Tk

Let & be defined by
F=4""t (v(@)e").
Then & € Dy and taking logarithm shows that
p(E) = p(T) = p €S+

that is, we have that Z € £ as well.
To show uniqueness, assume by contradiction that £ and T are distinct positive equi-

libria in Dy. Then by ([2.16|) it follows that

-7+ i (Iik /0 (VW5 (Z) — 1Y (T)) ds) yr € S.
k=1 Tk
This, combined with the characterization shows that
M 0
0= (p(2) - p(@)) - [:r T+ <nk / (7 (2) — ¥ (7)) d8> yk]
k=1 Tk

N
= Z (log ~v(2;) — log ’y(fz))(@z — ;)
=1

+
M=

(fim (log v (&) — log Y+ (T)) (v (Z) — A¥* (:L"))) :

k=1
Since the functions 7; and the logarithm are strictly increasing, the above expression is

zero if and only if £ = 7. O
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As a clear consequence of our nondelayed analysis, a delayed complex balanced sys-
tem is quasi-thermostatic. To discuss quasi-thermodynamicity we define the candidate

Lyapunov-Krasovskii functional, a main contribution of the chapter, as

i(0)
V() = Z / (logi(s) — log 7i(%:)) ds
(2.18)

+ Z K /_k ( ()) (1og 7" (¥(s)) — log v (@) — 1) + 7" (x)) ds.

A delayed kinetic system of the form (2.9)) is called quasi-thermodynamic if there exists

T € RJX such that the system is quasi-thermostatic with respect to x, and
V(Jj‘t,f) <0

holds along the trajectories z; for t > 0, with equality holding only if f(x) =
The following theorem is a generalization of Proposition [2:3.3] for delayed systems.

Theorem 2.4.3. Assume that the kinetic system (2.9) is quasi-thermodynamic. Then,
every positive equilibrium of the system is Lyapunov stable relative to its positive stoi-

chiometric compatibility class.

Proof. The fact that each positive stoichiometric compatibility class contains precisely
one positive equilibrium follows from quasi-thermostaticity. Using shows that
the second term of is nonnegative and zero if only if 2 = T, while in [62] the
author shows the same for the first term. Since the system is quasi-thermodynamic, the
functional is a Lyapunov-Krasovskii functional for the system and the proof is
finished. O

Note, that in the nondelayed case Proposition [2.3.3| guaranteed local asymptotic sta-
bility and that there are no nontrivial periodic trajectories. In the delayed case the
anologous definition only implies Lyapunov stability. However, in our final theorem that

generalizes Proposition to the delayed case, we can ensure these properties.

Theorem 2.4.4. Assume that the delayed kinetic system (2.9) is complex balanced. Then
it is quasi-thermodynamic. Moreover, each equilibrium is locally asymptotically stable rel-
ative to its positive stoichiometric compatibility class and there are no nontrivial periodic

trajectory along which all species concentrations are positive.

Proof. Let T be a complex balanced equilibrium. The gradient of the first term of (2.18))

is p(x) — p(Z), and thus the Lyapunov-Krasovskii directional derivative along trajectories
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of (2.9) is given by

Rewrite the above as

M
V(:Et) — Z iy (T) (e%(z(t*ﬂc)) (Qk’ (x(t)) — g (x(t _ Tkz))) + ek (@(t=Tk)) _ e%@(ﬂ))
k=1
and use inequality to find that

M
V(xt) < Z kYR (T) (eqk/(if(t)) _ €Qk($(t)))
k=1

= Ze%(w(t))< Z ke Yk (T) — Z ,{myk(x)) =0,

nex km=y kin=yx

as the system is complex balanced, and V(mt) = 0 if and only if the equality

qk’ (%(t)) = (i (m(t - Tk))

holds for each reaction k = 1,2,..., M. Standard arguments, see |71, Theorem 3|, show

that the largest invariant subset of the set

R={vec,

V) =0} ={vec.,

g (29 () = g (2 (t — 7)), k=1,2,... ,M}

consists of constant functions that are positive complex balanced equilibria.
The fact that there are no nontrivial periodic trajectories along which all species
concentrations are positive can be shown similarly as in [2.3.3] thus we omit the calcula-

tion. O

2.5 Discussion

In this section some further remarks are discussed about the results shown in Sections 3

and 4.
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2.5.1 Interpretation of delayed entropy

In the nondelayed case, the Lyapunov function depends only on the concentration
configuration of the system and does not include any information about the reactions,
such as the reactants, the products or the reaction rate coefficients. Such Lyapunov
functions are called universal, a term used by [82]. In the delayed case, the Lyapunov-
Krasovskii funtional is not universal in this sense, since it explicitly contains the
stoichiometric vectors and the rate coefficients. In the entropy (or free energy) interpre-
tation of the Lyapunov function, the history of the trajectories temporarily increase the
entropy. As we have shown, this residual entropy can be described by the second term
of . While it might be possible to define the delayed entropy with less information
about the reactions, our Lyapunov-Krasovskii functional is inherently tied to the delayed
system. To see this, we can use the chain method to approximate the delayed reactions in
with cascades of first order mass action reactions [83, [84]. The Lyapunov function
of the approximating system will then converge uniformly to on compact subsets
of [0,00). For a more detailed explanation, we refer to [85], where the authors derive this

in the mass action case.

2.5.2 Lyapunov-Krasovskii functional in a different notation

In the literature of CRNs, both system descriptions (2.5)) and ([2.8) are used frequently.
In the former case, we sum the right-hand side w.r.t. the reactions, while in the latter
case we sum w.r.t. the complexes. The delayed system (2.9) can be similarly rewritten

ZZ’%U Yi(a(t = 7ij))ys — " () vi) -

Then the Lyapunov-Krasovskii functional takes the form

V()= Z/ (log7i(s) — log(%;)) ds

+ ZZ Kij / < ()) (1og 7" ((5)) — log 7% (2) — 1) — 7" (ac)) ds.

=1 j=1
The computation on V(xt) can be repeated with minor notational modifications to obtain
Vi) < Z Z ki (T) (% (=(t)) _ eQi(f(t)))'
=1 j=1
The right-hand size is equal to

zL:qu (=(5) (ZR (T )—ie‘h <ZKU> (7) =: Q(x(t)) KT(2).

j=1 i=1
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Since T is a complex balanced equilibrium, the vector I'(Z) is in the kernel of K that is,

we have that V(z;) < 0.

2.5.3 Connection with semistability

Our results also show that the positive equilibria of a delayed complex balanced CRN are
semistable, defined as follows. An equilibrium 7 is called semistable, if it is Lyapunov
stable and there exists 6 > 0 such that ¢ € Bs(¥) implies that z¥(¢) converges to
a Lyapunov stable equilibrium as ¢ — oo. In [7I] the authors showed semistability
for delayed mass action complex balanced CRNs. We note that the existence of an
equilibrium in each positive stoichiometric compatibility class was not known at that
time, but it was since proved in [76] for delayed mass action systems and in Proposition

for the more general case.

2.6 Examples

In the following examples we illustrate our notations and results.

2.6.1 Example 1

First, let us consider the delayed kinetic system from [71] with mass action kinetics. The

system consists of a reversible reaction

k1=1

2X, Xo.

ko=2,72=0.5

The corresponding kinetic system takes the form

j:(t)zm(x%(t) 0 — 22(t) ’ )+f€2<a}2(t—7'2) ’ — (%) ! )
1 0 0 1

The stoichiometric subspace and its orthogonal complement is

2 N 1
S = span S~ = span .
-1 2

It is easy to verify that [2 2]T is a positive complex balanced equilibrium, and thus the

positive equilibria are given by

log 1 — log 2
gx1 — log ESL}.

E= {x ER%F
log zg — log 2
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For any T € £ we consider the set of points

Xx:{xeRi

xr1 — T
€ S}.
(1 + KQTQ)(Z‘Q — fz)

If we construct constant functions in C4 - from T and the elements of A% in the obvious
way, then by (2.16]) we have X5 € Dy.

Let us consider the transformations 7, (s) = f—js and yao(s) = %; that is, the trans-

formed system takes the form

(1+ xl(t))z 1 (1+ 961(t))2 0
2
0

3 (t —
T ko 5(t — 72)
1+ 29(t — 1)

-
Is it easy to verify that [é + % 1} is a positive complex balanced equilibrium, and

thus the positive equilibria are given by

2
log =1 —log 1
5:{meRi gl;ﬁfl gl ESL},
log 7% —log 5
and Xy is given by
xr1 — T
Xy = {xeRi B 2 - ES}.

In Figure 2.1} the positive equilibria, several positive stoichiometric compatibility classes
and trajectories of the original mass action system are depicted with red dashed, green
dashed and green continuous lines, respectively. The same objects for the transformed

system are drawn with black dashed, blue dashed and blue continuous lines, respectively.
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Figure 2.1: Phase plot of Example 1

Using the terminology of [73] [70] it is easy to see that the set W = {X1, X5} is the
only minimal semilocking set (called siphon in the theory of Petri nets). The Ly space

consists of functions w € C4 , such that

’LU,L(S) = 07 X; € W/,

holds for s € [—7,0]. Then [76, Theorem 5.1| states that the boundary equilibria of the

system is contained in

U 59 N Ly,
QEC+,T

but the above set consists of only the constant zero function; that is, all nontrivial equi-
libria are positive and globally asymptotically stable w.r.t. their positive stoichiometric

compatibility classes.

2.6.2 Example 2

Our next example is a delayed version of another complex balanced small reaction net-

work, taken from [86]. We consider the set of reversible reactions

-

4
k1= k3=0.1 r5=0.1
3X1 ——3Xy 3X1 2X1 + Xo 3Xo
n2:2 k4=0.126,74=0.4 k6=0.063,76=0.6

2X1+ Xo

‘*’\zw
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with the transformations 7 (s) = s and va(s) = 18—; Then the system takes the form

PYTA R 0 _ 3 3 . z5(t) 31 ab@®) 0)
" 1( O 7 >+ 2((sz@t)f o (1420 |3
w(m) o 3)
1 0

23t —m) |3 2 T3(t) |2
1+$2(7§—T4) 0

W( I E I ()
(T+z2()? (1] (1 +22(t)”

+ K4 (m%(t —Ty)

14 29(t — 76) Ut o) |y

+ Kg (w%(t — 7'6) ;

The stoichiometric subspace and its orthogonal complement are

szspan{ } SL:Span{ }

It is easy to verify via the Cardano formula that

-3
3

3
3

2
= 1 23 1 23
3 3
\/2+\/108+\/z—\/108

is a positive complex balanced equilibrium, and thus the positive equilibria are given by

log z1 — log 71

2
T3

1+z2o

Ez{meRi

log

and X% is given by

Xy = {xeRi

= 2 73 _ -2 T
r1 — I + 2(:‘147’4 + :‘4357'5) mlm — xlﬁ

=2
_ _9 T
X9 — T + (KaTs + K575) <x1m — 75 1+2§2)

T2
x3
—log 7

ESL},

2
2_Z3

es}.

Similarly to the previous example, it can be shown via [76, Theorem 5.1] that all non-
trivial equilibria of the system are positive and globally asymptotically stable w.r.t. their
positive stoichiometric compatibility classes.

In Figure the positive equilibria, several positive stoichiometric compatibility
classes and trajectories of system are drawn with black dashed, blue dashed and blue

continuous lines, respectively.
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Figure 2.2: Phase plot of Example 2

2.6.3 Example 3

Our final example focuses on the Lyapunov-Krasovskii functional. Of course it cannot
be visualized in general as it maps an infinite dimensional function space to nonnegative
numbers. However, if we restrict the functional to constant history functions as in the
previous examples, then we can compare it to the nondelayed Lyapunov function. In

order to do so, we consider the following delayed reversible reactions

rk1=1,11=1 k3=1
ox, 210X, 2X) 4 X 3X;,
ko=1 k4=2,74=0.5
with transformations v1(s) = s, 7a(s) = ls—js and 73(s) = 135 Omitting the vector

notation, the corresponding delayed differential equation takes the form

2 3
1(t) = —2k177 (1) + 22 (%) — 2m3xf(t)ﬂ T 2Ky (M)

1+ a3 1+ z5(t) [ ——
. _ r3(t — 714) 5 0
$2(t) = K4 <1+$3(t7’4)) — Iigl‘%(t)m
x 2 22 . 3
d3(t) = 2k (t — 1) — 2k2 (%) + 3n3x%(t)1+2x(?(t) — 3Ky (%) )

It is easy to see that the nondelayed system is conservative as x1+x2+x3 is a first integral,;

that is, the nondelayed positive stoichiometric compatibility classes can be characterized
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as
Sp = {l’ € R‘:’_‘xl + 22+ x3 = p1 + P2 +p3},
where p € Ri is arbitrary. Then for any fixed p € Ri we can visualize the Lyapunov

function (2.12) as a two-dimensional function defined on the region
Dy = {z € R} |21 + 22 < p1 + p2 + ps3}-

The delayed positive stoichiometric compatibility class of the delayed system is more
complicated and, in particular, it is not a plane; that is, the delayed system is not
conservative in this sense. However, it can be shown similarly to the previous examples
that the system is persistent, and thus every delayed positive stoichiometric compatibility
class contains precisely one positive equilibrium. Assuming a constant history function
constructed from an element of D), we can compute the value of the functional at the
initial point of the corresponding trajectory. Figure shows the contour plots of the

Lyapunov function and the Lyapunov-Krasovskii functional on D, with p1 +ps +p3 = 1.
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Figure 2.3: Level curves of the Lyapunov function of the nondelayed system and the

Lyapunov-Krasovskii functional of the delayed system for constant history functions

2.7 Conclusions

The stability of kinetic systems with time delays and general kinetics was studied in
this chapter. In preparation for the subsequent analysis, certain stability results of [62]
were slightly generalized using the notion of quasi-thermodynamicity introduced in [27].
Then it was shown for delayed complex balanced reaction networks that each positive
stoichiometric compatibility class contains precisely one positive equilibrium that is lo-

cally asymptotically stable within their positive stoichiometric compatibility classes for
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arbitrary finite time delays. A key result of the chapter allowing the stability proof is the
construction of an appropriate Lyapunov-Krasovskii functional. Thus, the results pro-
posed in [71] have been generalized for a wide class of delayed non-mass action reaction
networks. It was also shown that the global stability of equilibria can be proved as well if
the conditions in [73, [76] are fulfilled. Three illustrative examples were given to visualize
the theoretical results.

The explicit description of time delays can increase our understanding of complex
dynamical phenomena in nature and help to build reliable models. Another natural
extension arises when considering interactions that are distributed in space or over struc-
tured populations. These effects lead to nonlocal models, often described by partial

integro-differential equations, which we study in the next chapter.
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Chapter 3

Nonlocal conservation laws

In this chapter we investigate a class of nonlocal conservation laws in several space di-
mensions, where the continuum average of weighted nonlocal interactions are considered
over a finite horizon. We establish well-posedness for a broad class of flux functions
and initial data via semigroup theory in Banach spaces and, in particular, via the cele-
brated Crandall-Liggett Theorem. We also show that the unique mild solution satisfies
a Kruzkov-type nonlocal entropy inequality. Similarly to the local case, we demonstrate

an efficient way of proving various desirable qualitative properties of the unique solution.

3.1 Introduction

We study the semigroup theory of nonlocal conservation laws of the form

@UT@I h)u oi(T_ 51(huu) dh=0. inR"x Ra:
ot § 16:(h) g lBilp) dh =0, m RO Res

u(z,0) = up(z), x € R,

where TLpu(x,t) = u(x £ h,t) denote a spatial shift of the conserved quantity u(z,t) and
the flux functions ¢; : R x R — R are assumed to be increasing with respect to their
first arguments and decreasing with respect to their second arguments, and to have the
property ¢;(0,0) = 0. The number 1 < k < n denotes the number of subinteractions and

the functions 5; : R™ — R™ are assumed to be of the form

h) = hjej, h = (hi,ha, ... hy),
JEB;

where the nonempty, pairwise disjoint sets B; C {1,2,...,n} are such that Ui-c:l B; =

{1,2,...,n} and e; denotes the jth unit vector in R”. The kernel functions w; € £(R™)N

31
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L>°(R™) are assumed to be nonnegative with sz (B:i() = 1. We further assume

Hcl (Rm)

that the support of the kernel functions are finite and are either

1. symmetric around the origin, in which case we further assume that the kernels are

even, or
2. contained in R’} such that the closure contains the origin.

For example, in the context of nonlocal particle flows, the above cases allows us to
differentiate between multidirectional and unidirectional flows.

Our main examples for the choice of k, 3; and w; are as follows.

1. If k =1 and B1(h) = h, then the conservation law (3.1)) takes the form

% <Z>1(u,7'hu) — ¢1(T,hu,u)
ot Jrn e

w(h)dh = 0. (3.2)

This case describes a natural multidirectional generalization of the one-dimensional
unidirectional nonlocal pair-interaction model investigated in [60]. In fact, if n =1

and supp(w) C Ry, the law (3.2)) coincides with the latter.

2. It k = n and B;(h) = hie; and w;(h) = [, ©;(h;), where the kernel functions w;
have analogous properties to that of w; in R with supp(@;) = (=65, 6;) for 6; > 0,
then the conservation law (3.1)) takes the form

ou LRy Gi(Uy Thye, ) — Pi(T—pe, Uy U) -
— =t =t i(h;)dh; = 0.
ot *;/_& 7 @ilhi)

Should the underlying model allow such considerations, this case corresponds to
interactions that can be unfolded into subinteractions along the individual axes.
A clear advantage of this example is the ease of numerical approximation of the
integral as described in [60, Section 3.1]. If n = 1 and supp(w;) = (0,6;) instead,
then again, we obtain the one-dimensional unidirectional nonlocal pair-interaction

model of [60], as in the previous special case.

We say that the nonlocal flux functions ¢; are consistent with the local fluxes 1; if
¢i(a,a) = 1i(a) holds for all @ € R. For consistent flux functions, if in addition, the
weighting kernels are smooth with their support approaching zero, both special cases

formally lead to the standard local conservation law

Ou o= OPi(u)
E—FZ il (3.3)

1=
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For the formal derivation of (3.1) we utilize the nonlocal vector calculus established
in [87, B8]. Let v,,a : R x R® — RF be vector two-point functions defined by the

coordinate functions

vi(u)(e,y,t) = ¢ (ulx 1) u(z + Bily —2).1) )

i () (2,9, 1) = &5 (u(a? + Bily — o)1), ul, t)),

wi (Bi(y — z))
18i(y — @) llgn

Then, the nonlocal point divergence is defined as

ai(za y) =

D(v(u), () (z,t) = /n (v(w)(z,y,t) — D(u)(z,y,1)) - o, y) dy

and repeated changes of variables in the integral gives

D((u). 5(w)(r.) /nz‘ﬁ’“ﬁ“ T (6,)

[18i (7)) | g
oi(u, T oi(T_ U, u) (34
-/ nZ T s )

The theory of abstract balance laws thoroughly discussed in [87, Section 7] shows that in

the absence of external sources a class of nonlocal balance laws are given by

%(x, t) + D(V(u), D(u))(:ﬁ, t) =0,
which, combined with , gives exactly the law .

It is well known that the solution of (including the local case as well) may
develop spatial discontinuities (shock waves) over time, even if the initial data is smooth.
Hence the Cauchy problem must be considered in a weak or generalized sense. However,
there might be infinitely many weak solutions of for given initial data. This fact
lead to the development of additional constraints, such as the entropy condition, selecting
the unique, physically relevant weak solution, which in this case is the so-called entropy
solution.

The well-posedness of the local conservation law is a thoroughly investigated
problem, heavily influenced by the profound work of Kruzkov [89]. Kruzkov showed
uniqueness via a priori estimates and existence using the vanishing viscosity method for
bounded and measurable initial data and sufficiently smooth flux functions, thus achieving
well-posedness. Existence of entropy solutions can often be proved by the convergence
of an appropriate numerical scheme [90, O] (the technique was first used to prove the

existence of weak solutions [92, 93]). Another classical framework is nonlinear semigroup
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theory and, in particular, the celebrated Crandall-Liggett Theorem [94], which was first
used to prove well-posedness by Crandall [95]. Many combinations of these approaches
were developed, a notable example being the approximation of semigroups of contractions

|96].

The well-posedness of the one-dimensional nonlocal Cauchy problem with §1(h) = h
was investigated in [60], where the existence of an entropy solution was proved through
the convergence of an appropriate finite volume scheme, and the uniqueness of this so-
lution was proved via Kruzkov’s method. While this approach could be extended for
multidimensional non-homogeneous Cauchy problems in some special cases (see our sec-
ond example above), the method is difficult to apply in the generality of if £ < n.
Instead, we will also work with the semigroup framework, which provides an elegant way
of handling further problems like inhomogeneous conservation laws [97] or error control
of finite volume methods [98]. Another particular advantage of semigroup theory is the
ability to handle £!(R™) initial data, while with the methods of [60] one can only show
existence and uniqueness for £!(R™) N £>°(R") initial data. The semigroup framework
considers generalized solutions of abstract Cauchy problems, often called mild solutions.
In general, a mild solution can coincide with a weak solution or an entropy solution or,
in some cases, with neither; after proving well-posedness an additional investigation is

necessary to determine this.

The main results of the chapter are contained in Theorems and and Corol-
lary In Theorem [3.3.8] we give appropriate circumstances under which there
exists an operator satisfying the assumptions of the Crandall-Liggett Theorem. In Theo-
rem we show that the unique mild solution of satisfies a nonlocal Kruzkov-type
entropy inequality and has many other qualitative properties that are desirable from a
physical point of view. In Corollary we extend the well-posedness to conservation

laws under Carathéodory forcing.

The outline of the chapter is as follows. In Section|3.2] we introduce notations and the
abstract framework. In Section [3.3] we give the necessary definitions and state our main
results. Section [3.4] contains the proof of the main results. The main steps of the proofs
are based on [95], however, there are significant nontrivial differences in the details. The
difficulty in carrying out this construction is the absence of flux derivatives rendering the
method of integration by parts and thus many simplifying steps inapplicable. Most of
these complications can be solved by a formally similar technique obtained via changes of

variables in the integrals; the technique is often called integration by parts for difference
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quotients, see, for example [99, page 295]. However, a significant step that cannot be
resolved in such manner is the verification of the range condition. Crandall uses a pertur-
bation results to establish this, namely [100, Theorem 3.2, but this approach does not
seem to be applicable in the nonlocal setting. Instead, we use a fix-point based approach
similar to that of [I01, Chapter 4] and [102, Proposition IV.3]. Throughout the chapter
the arguments of the functions §; and w; are omitted unless necessary and C' is used as

a generic constant that may take on different values at different occurrences.

3.2 Preliminaries

We give a brief introduction of the abstract setting based on [95] 103, [104].

3.2.1 Mild solutions of the abstract Cauchy problem

Let X be a real Banach space and A be a possibly multivalued operator in X and
J=1[0,T] CR and f € £'(J, X). Consider the quasi-autonomous Cauchy problem

u + Au s f(t), teJ;
(3.5)
u(0) = up

for up € D(A). We call u € C(J,X) a mild solution of (3.5) if for every ¢ > 0 there
exists a partition 0 =ty < t; < tg < --- <ty of [0,tx] and sequences {z1, 22,..., 2N},

{f1, f2,..., fn} in X such that

ti —ti—1 <e, i=1,...,N

T—e<ty <T,

N 4
> / 17(s) — fillds < e,

Zi — Zi—1

+ Az > fi, i=1,...,N
ti —ti1

and [|z(t) — u(t)|| < € on [0,ty], where z : [0,tn] — X is defined by
w(t)=2  fortig<t<t, i=12,... N

The piecewise constant function z is called an e-approximate solution of (3.5]).

Let F: J x D(A) — 2X\(). A mild solution of the Cauchy problem

u € —Au+ F(t,u), teJ;

u(0) = ug
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is a function that is a mild solution of the quasi-autonomous problem
o+ Au s f(t), teJ;
u(0) = ug

with some f € £(J, X) such that f(t) € F(¢t,u(t)) a.e.

3.2.2 Crandall-Liggett Theorem

Let X be a Banach space and A be a possibly multivalued operator in X. The operator
A is called accretive if, for any A > 0 and z,y € D(A), the inequality

1@+ Au) = (y + M) || = [lz — y]|

holds, where u € Ax and v € Ay. The operator A is called m-accretive if it is accretive

and the operator I + AA is surjective for A > 0; that is, we have
RI+x)= ) | {z+Mn}=X (3.6)
z€D(A)vEAx

Theorem 3.2.1 (Crandall-Liggett Theorem). Let X be a Banach space and A be a
possibly multivalued m-accretive operator in X. Then for e > 0 and ug € X the problem

L= ult—) +Au() 30, t>0

(3.7)
ue(0) = uo, t<0

has a unique solution uc(t) on [0,00). Ifug € D(A), then lime_,ou.(t) converges uniformly

to the unique mild solution of (3.5) in bounded sets and (S(t))t>0 defined by S(t)up =

lime_0 uc(t) is a semigroup of contractions on D(A); that is, we have
(1) S(t) : D(A) — D(A) fort >0,
(ii)) S(t)S(r)=S({t+ 1) fort,7 >0,

(iii) [[S(t)v = St)w| < ||v —w]| fort >0 and v,w € D(A),

(v) S(t)v is continuous in the pair (t,v).

3.3 Statement of new results

The abstract framework of operator semigroups and, in particular, the fundamental

Crandall-Liggett Theorem utilizes the notion of mild solutions. Later we will show that
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the unique mild solution of the conservation law (3.1]) also satisfies a Kruzkov-type en-
tropy inequality. For the exact formulation of this inequality let us define the function
7 : R™ — R to be an entropy of (3.1]) with entropy fluxes ¢; : R™ x R™ — R given that it

is continuously differentiable and the equality

czSi(u, Tgiu) — (Z)Z (T_gi’u,, u) w; dh = / ql-(u, Tgiuﬁﬁ_HQi(T—ﬁiu, U)
n 7 Rn

holds for all i = 1,2, ..., k. Then if u(t,z) is a C! solution of (3.1)) then it also satisfies

/ Zqz u, T8, U \|5 — qi(T_p,u, u) i dh = 0,

[

! i dh 3.8
S 7 el 0

In the case of an i € C? convex entropy standard vanishing viscosity arguments (using

integration by parts for difference quotients) show that the inequality

Tgf—
dxdt—l—/ / / : qi(u, 78, )w; dh dz dt > 0
/ / S5 v Jro & Bl 7

holds for any 7' > 0, nonnegative f € Cg° (]R” X (O,T)). Our goal is to utilize classical
Kruzkov-entropies of the form n(u) := n(u, c) = |u — ¢|, however, in this case, an explicit
formula for ¢; does not seem to reveal itself. Instead, during the vanishing viscosity
derivation we rely on to arrive at the following definition:

Definition 3.3.1. A function u € LYR™ x (0,T)) N L®(R"™ x (0,T)) is an entropy
solution of if the inequality

OS/T/HOU—C‘?){—F

/ Z 73, f signg (75,4 — ¢) — fsigng(u — c) (¢ (u, ,u) — i(c, c) )w; dh) dz dt

1Bl

holds for any T > 0, nonnegative f € Cg° (R” x (0, T)) and ¢ € R.
Remark 3.3.2. Let the functions q; be given bgﬂ

Gi(a,b,c) = pi(aVe,bVe)—oi(aNec,bAc)

¢i(max {a, c}, max {b, c}) — ¢;(min {a, c}, min {b, c})
signy(a — ¢ signy (b — ¢

_ S8 of )42‘ gno( )(qbi(a,b) — ¢i(c,c))

N signg(a —¢) ; signg (b — ¢) (¢i(a,c) — di(c, b)),

! As already noted by [I05, Definition 2.2], the second line is not identical to the corresponding equation

in [60, p. 2470], which is assumed to be a misprint. Here we gave a more straightforward formula.
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where
1 x>0,
signg(z) = € 0 z =0,
-1 z <0

For the sake of notational simplicity, let us omit the sum in this remark. The properties

of ¢i after adding and subtracting ¢;(c,c) imply that

Wq dh,

signy (1 — ) $i(u, 75,u) — di(T_p,u, u) wrdh > / Gi (u, 78,u, ¢) — Gi(T_p,u, u, ¢)

Rn [1Bill g [1Bill g
and thus it seems reasonable to define entropy solutions using §; as entropy fluzes corre-

sponding to the entropy |u—c|. But, in fact, using the product rule for difference quotients

shows that

/ / / 75, f signg(7s, uHTBCH)Rn [ signg(u —¢) (6400, 730) — (e, €)oo bl

— /0 /n /n m}esigno(miu — c)((]ﬁi(u,rgiu) — ¢ile, c))wi dhdz dt +

T i i
/ / f51gn0(7'52.u — ¢) —signg(u — c) (¢i(u, T3,u) — ¢i(c, ¢))w; dh dz dt .
L o 3

il gn

Clearly

signg (73,0 — ¢) [¢i (v, 75,0) — ¢i(c, ¢)]

< ¢i(vVe,m3,vVe)—gi(vAc, 80 Ac) = G(v,Tv,c)
and similarly

—signg(v — ¢) [qﬁi(v, 78,V) — ¢i(c, c)] < —Gi(v, 18,0, ¢)

holds, thus
[signo(Tﬁiv —¢) —signgy(v — c)] [(;ﬁi(v, 78,0) — ¢i(c, c)] <0 (3.9)
and finally
78, f signg(7g,u — ¢) — fsigng(u — c) ‘ s |
/ /n /n | Billgn (61 (u, 75,u) — di(c, ) )w; dh dz dt

///Tﬁ’f iy ¢i(u, 78,u, ¢)w; dh da dt ;
w S 1Billgn

that is, in some sense, the inequality in Definition |3.5.1] is more precise in selecting the
physically relevant weak solution than the right-hand side of the above inequality. This
precision turns out to be crucial in later steps; the operator defined in Definition
does not seem to be accretive with the functions ¢; which is an essential property to derive

uniqueness of solutions via the Crandall-Liggett theorem.
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Throughout the chapter difference quotients will be denoted by
Tyf —f
yllgn
where y € R™ and the partial derivative of the ¢; functions with respect to their first and

DVf =

second argument will be denoted by #,1 and ¢;72, respectively. For open subsets 2 of
R™ let W*P(§2) denote the Sobolev space of functions whose distributional derivatives of
order at most k are in £P(€2). The space Wg P(Q) € WFP(Q) denotes the set of functions
vanishing at the boundary of {2 and Wfo’f (€2) denotes the set of locally integrable functions
whose restriction to any pre-compact @ € Q lies in WFP(Q). We will use the standard
notation H*(Q) := WkE2(Q).

We rewrite the nonlocal conservation law using the operator

¢i(u, T3,u) — ¢i(T—p,u, u)
Bu = i dh
! / Z 1Bl “

as

ou

The following lemma shows that for continuously differentiable fluxes the operator B

maps WHP(R™) to LP(R™).

Lemma 3.3.3. Let ¢; € C}(R x R) have bounded partial derivatives. Then v € WHP(RM)
implies Bv € LP(R™) for all 1 < p < co. In particular, there is a constant C' = C(p) > 0
such that || Bvl| zpgny < ClIVVl| pgny for all v € WHP(R™).

PTOOf. Let |¢;’1‘ < Ki,l and ‘(]5;72’ < K@Q and %—l—% = 1. Setting Kz — Imax {KZ‘J,KZ"Q}

dx

we find that
64l — i ) L
i(V, T8, i(T—p, v, v
1By = [ | Z B u/ﬁ (SR

p
S/ / ZKJ” S Ll 1 L BT R
o \ o & BT

k
< kPt ZK;D/ </ (‘DﬁiT_giv} + ‘Dﬁiv

)wi dh)pdx (3.11)

< kP 1ZKP [willZa geny / / }Dﬁif_ﬂiu|+\Dﬁiv )pdhd:p
supp wz)

< op=1pp— 1ZKP|%HUI Rn)/ ||Vv||£p oy dh = CHVUHLp(Rn
i—1 supp(w;)

where we used the Lipschitz continuity of ¢ in the first inequality, Holder’s inequality
in the third inequality and finally Fubini’s theorem and [I06, Proposition 9.3(iii)| in the

fourth inequality. O
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The continuity of B is established by our next lemma.

Lemma 3.3.4. Let the assumptions of Lemma hold. Then B is continuous from
HEH(R™) to L2(R™).

Proof. Let u,v € H'(R™). Similar estimates as in the proof of Lemma lead to

|Bu — BU”;(W)

k 2
— /R" (/R ZDﬂi [0 (T—p,u,u) — di(T—p,v,v)|w; dh) da

n
=1

k
2
<C / DB (i (T_gu,u) — ¢i(T— U, U dh
z; supp(w) [P 81t = i ) @)
- 2
< C’Z/ HV[qbi(T_/giu,u) — ¢i(T_p,v,v)] Hﬁ(Rn) dh
=1 Supp(wz’)
k
=C Z/ ‘ ¢’Ii,1(7-_6iu> U)VT—B@-U + ¢;,2(T—5iu, u)Vu
i—1 “supp(w;)
2
- ¢;71(T*Biv’ V)VT_gv — ¢§,2(Tfﬁiva v)vv‘ L2(Rm)
By introducing mixed terms we find that
| Bu — BvH%z(Rn)
k
= CZ/ (wi) (H (051 (T-piwsw) = 1.1 (75,0, 0)] VT giu]| o
i=1 supp(w;

3.12
+ H [d)gﬂ (T—ﬁiuv u) - ¢;,2(T—Biva U)] VUHLQ(Rn) ( )

2 2
161 =0, 0) o oy | 975, (1= ) 22 gy
2 2
0427500, 0) B oy IV (0 = )y ) B
Let v converge to u in H!(R™) through a sequence {u,} C H(R™) and let {uy,} be a
subsequence of {u,,}. Since u,, also converges to u as ny — 0o, there exists a subsequence

{uny, } of {un,} such that u,, — wae. asng — o0o. Let [¢;,] < K1 and ¢ o] < K

and observe that

)

’ [(;5;71(7'_52,’11,, u) — gzﬁg,l(T_giunkl,unkl)]VT_giu‘ < 2Ki,1‘V7'_5iu

(62—t 0) = G (7t 0y )] V-] < 2KV,
Using the dominated convergence theorem and the continuity of ¢; we find that the first
two terms in converge to zero as ny, — oo. Similarly, since qb;?l and <Z>;72 are bounded

and Un,,, = u in H'(R™), the second two terms also converge to zero as ny, — oo. Since

{un, } was arbitrary we conclude that each subsequence of the sequence || Bu — Buy, Hig(R)



3.3. STATEMENT OF NEW RESULTS 41

has a convergent subsequence with limit zero; that is, the sequence itself converges to

zero and the proof is complete. O
Remark 3.3.5. In [105] the authors consider the case (in one dimension) when [g., %

oc. In this case the above calculations can be modified to show that B : LY(R™) — L1(R™)
18 Lipschitz continuous. Hence, standard contraction mapping principle shows existence
and uniqueness without entropy conditions. However, in this special case the kernels
wj assign small weight to close interactions and more weight as the interaction distance

increases. As such, the model’s applicability to physically relevant problems is reduced.

We will consider X = £!(R") and proceed by verifying the hypotheses of the Crandall-
Liggett Theorem for an appropriate operator A in £'(R") that is, in some sense, the
generalization of the B of (3.10). The operator A will be the closure of the operator Ag

defined as follows.
Definition 3.3.6. Let Ag be the operator in LY(R™) defined by: v € D(Ap) and w € Agv
if
(i) v,w e LYR"),
(ii) ¢i(v,75,yv) € L' (R™) for h € supp(w;) and i =1,2,... k,
(iii) the inequality

/n signg(v — c)w f dz
k (3.13)
+ / / ZDﬂi [f signg (v — c)] (qﬁi(v,Tﬁiv) — ¢ile, c))wi dhdx >0
rIR™ =1

holds for any nonnegative f € C3°(R™) and c € R.

As we will see later, inequality in Definition ensures that if u € D(Ap) is
a solution of the abstract Cauchy problem, then it satisfies the entropy inequality in
Definition [3.3.1] Lemmata and show that under appropriate circumstances Ag
is single-valued and coincides with B, further substantiating our definition.

While the accretivity of Ay, and thus the accretivity of its closure A, can be established
in a straightforward manner using a tool described in [95], Proposition 2.1| (see Proposition
, the verification of the range condition is more intricate. In fact, it requires

the treatment of the stationary equation
u+ Bu=g. (3.14)

We define the generalized solutions of (3.14)) in terms of A.
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Definition 3.3.7. Let g € LY(R"). Then u € LY(R™) is a generalized solution of (3.14))
ifue D(A) and g € (I + A)u.

Our first main result is the following theorem.

Theorem 3.3.8. Let ¢; € Wllo’so(R x R) and g € LY(R™). Then A satisfies the assump-

tions of the Crandall-Liggett Theorem on L'(R™) and the unique generalized solution of
(3.14)) is given by u = (I + A)~lg.
Theorem [3.3.§ and the Crandall-Liggett Theorem show that a semigroup of contrac-

tions is determined by the operator A, whose various properties are listed in the next

theorem.

Theorem 3.3.9. Let the assumptions of Theorem [3.5.8 hold and S be the semigroup of
contractions on D(A) obtained from A wvia the Crandall-Liggett Theorem on L'(R™). Let

u,v € D(A) N L®(R™) and t > 0. Then

~—

(i) (integrability) S(t)v € LP(R") for p > 1, furthermore the estimate ||S(¢)v]| zpgny <
1

1 11
Hvuzl(R”)HvHﬁoop(Rn) holds,
(i) (maximum principle) —‘|U7‘|£oo(Rn) < St < ||U+”Loo(1Rn): where v~ = max {0, —v}

and v+ = max {0, v},
(iii) (monotonicity) [|(S(t)u — S()v) || g1 gny < [[(w = )" 21 gny
(iv) (equicontinuity) if y € R”, then
/n S(t)o(e +y) — S(t)o(x)| de < /R lo(z + ) — v(z)| de,

(v) (conservation of mass) [p, S(t)v(z)dz = [p, v(x)dz,

(vi) S(t)v satisfies the nonlocal entropy inequality in Definition |3.3. 1]

Remark 3.3.10. Note that the properties (iii)-(v) still hold if we only assume u,v €
D(A).

Corollary 3.3.11. Let g : [0,T] x D(A) + LY(R™) be strongly measurable with respect

to t and locally Lipschitz with respect to u such that

lg(t Wl 21 @y < e (1 + llull 21 @m))

holds for some ¢ € LY([0,T]). Then the Cauchy problem

k
ou / oi(u, Tg,u) — ¢i(T_p,u, u) )
—+ - . w; dh = g(t,u), in R™ x (0,T7;
ot Jgn Zl | Bill gn (t) (0. 7]

u(z,0) = up(z), reR
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has a unique mild solution for each ug € D(A) that depends continuously on ug; that is,

the map uo(.) — u(.,t) is continuous in the Banach space X = L1(R™).

Proof. The statement follows directly from [97, Theorem 5.2]. OJ

3.4 Proofs of the main results
The following lemma shows that Ag is single-valued for bounded functions.

Lemma 3.4.1. Let Ay be given by Definition[3.3.6 and v € D(Ag) N L>®(R™). Then Ay

1s single-valued and the equality

k
Agvfdx = —/ / Z Dﬁifgbi(v, 78,0)w; dh dx
holds for any nonnegative f € C§°(R™).
Proof. Let w € Agv. Then by (3.13)) for any nonnegative f € C5°(R") and ¢ € R we have
k
/ wfdr+ / / Z DPi [f signg (v — ©)] (¢i(v, 78,v) — di(c, ¢))w; dhdz > 0,

thus for ¢ = [|v|| oo (gn) + 1, We have that

k
/ wfdr < —/ / ZDﬁ"fqbi(v,T,giv)wi dhdzx.

Similarly, letting ¢ = —({[v]| zoo(gn) + 1) yields

k
/ wfdx > —/ / ZDﬁifd)i(v,Tgiv)wi dhdzx,
R” R n i—1

showing that for any w € Agv, the following equality holds

/Rn wfde= _/n /ngDﬁif¢i(vaTﬁiv)widhdx.

To show that Agv is single-valued, suppose that wi,ws € Agv. Then the equality
fR" wi fdax = fRn wy f dz holds for all nonnegative f € C5°(R"™), thus wy = wy a.e. O

The following lemma shows that Ay extends B on C}(R™).

Lemma 3.4.2. Let ¢; € C1(R x R) and Ay be given by Definition . Then C§(R™) C
D(Ap) and for any v € C§(R™), the equality Agv = Bv holds.
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Proof. The fact v € Cj(R™) implies that ¢; (v, 75,,yv) € L(R™) holds for all h € supp(w;)
and i = 1,2,...,k. Let f € C§°(R") be nonnegative and ¢ € R. Multiply Bv by

signg(v — ¢) f and integrate over R™ to find that

/ § signg(v — ¢) fBv dx

a (3.15)
= _ /n /n ZD@- [f signg(v — c)](qﬁi(v,rgiv) — ¢i(e, c))wi dhdz;

i=1

that is, we have v € D(Ap) and Bv € Agv. This, combined with Lemma implies
that Agv = Bv a.e. O

We will use an efficient tool of Crandall to prove accretivity, characterized by the

following definition and the two subsequent lemmata.

Definition 3.4.3. [95, Definition 2.1] For u : R™ — R measurable, let
sign(u) := {v: R" = R|[v| <1 a.e. and vu = |u| a.e.}.
Note that signg(u) € sign(u), thus sign(u) is always nonempty.

Lemma 3.4.4. [95, Lemma 2.1] Let u,v € LYR™) and « € sign(u). If [, ovdz >0,
then |lu+ Aol g1gny 2 [ull g1 gny holds for A> 0.

Lemma 3.4.5. [95, Lemma 2.2] Let {81} be a sequence in LY(R™) with lim B}, = 3 in
LYR™). If oy, € sign(By), then there exists a subsequence {au,} and function o € sign(p)

such that {ax,} converges to o in the weak-star topology on L>(R™).
Proposition 3.4.6. Let Ay be given by Deﬁnition. Then Ay is accretive in L*(R™).

Proof. Let v € D(Ap) and w € Agv and choose u € £L1(R™) such that Deﬁnitionm (ii)
holds. Set ¢ = u(y) and f(x) = g(z,y) in (3.13)), where g € C§°(R™ x R™) is nonnegative.

We introduce the notations II = (R”)2 and

g(x+ Bi,y) — g(x,y)

Diig(z,y) = e ,
) g(z,y+ 6i) — g(z,y)

For the sake of readability we omit most arguments in this proof. Integrating over y

yields

/ signg(v — w)wg dz dy
I

- (3.16)
+ /H /n ; Dfi [g signg (v — U)} (¢i(U7Tgi’U) - qbi(u,u))wi dhdzdy > 0.
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Suppose that u € D(Ag) as well and let z € Agu. Set ¢ = v(z) and f(y) = g(z,y) in
(3.13) and integrate over x to find that

/ signg(u — v)zg dy da
1

u (3.17)
+ /H /n ;Dgz [gsigng(u — v)] <¢i(u,75iu) — qﬁi(v,v))wi dhdydz > 0.

and adding the inequalities (3.16)) and (3.17)) yields

/HSigno(U —u)(w — z)gdzdy
+ /H /n zk: <Dfl [g signg (v — u)] (czﬁi(v,miv) - gbi(u,u)) (3.18)
i=1

+ Dy [gsigng(u — v)] (@(u, Ta,u) — di(v, U)))% dhdzdy > 0.

Let 6 € C3°(R) be nonnegative and even such that ||| z1gny = 1 and

Az) = H5(iﬁi),

)

Ac(z) =

=1
()
€\ €
for e > 0. Let f € C3°(R™) nonnegative and set
r+y rT—y
= Ae :
9(z,y) f( 5 ) ( 5 )

Setting 26 = x + vy, 2n =z — y in (3.18) yields

I3 ( [ signafo — w)(w - 2)1 d£> Andn+ [ Temdcan=o.  (319)

where

k w.
JE — KA
ien=[ 2= TBln

X [(T@i fT% Aesigng(7,v — u) — fAesigng(v — u)) (qﬁi(v, T8,0) — ¢i(u, u))

+ (T%ﬁ'ﬁ%/\g signg(7g,u — v) — fAcsigng(u — v)) (gi)z(u, Tg,u) — ¢i(v, v))] dh.

Denote the integral in parenthesis in the first term of (3.19) with I7(n). We want to let

€ — 0. Since I is bounded and |[Ac[| z1(gny =1 we have that

lim inf/ It (n)Ae(n)dn < limsup I¢(n).

=0 ]l gn—0

A similar argument after a change of variables shows that

e—0

lim inf /H J5(€,m) A€ dn
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< limsup/ / ||5 || ( Igifqgl)(v,Tgiv,T@iu) — fqz-(Z)(v,Tgiv,u)
n n -, 1||R™

[Im7llgn—0
+ Tﬁz'f%(l)(u: TB; U, Tﬁz‘v) - fqu (u, T8, U, v)> dhdg,
where
g (a,b,¢) = signg(a — ) (¢i(a, b) — ¢i(c, ),
q'L@) (av bv C) = SignO(b - C) (¢i(a’ b) o ¢i(c’ C)) ’

Introducing mixed terms yields

liminf/ J5(€,n)dEdn

e—0

§limsup/ / Z( ("~ i2))(v,fﬁiv,U)+(qfl)—qf))(u’%u,v))

17llzn —0

+ (rauf = Fa" (0, 7,0, 7o) + (75, f — f>q§”<u,mu7w>> Tl -
il|Rn

But then (3.9)) shows that the first two terms are nonpositive, thus we conclude that

liminf/ J¢(&,n)dEdn < limsup/ /
=0 Jp F&m) [nllgn—0JRA JRA 4 |5z||Rn
X ((T@if — f)qz-(l)(v,Tﬁiv,Tﬁiu) + (73, — f)qi (U,Tgiu,Tgi’U)> dh d¢

=: limsup J¢(n).

lI7llgn—0

Choose a sequence {n;} C R" such that |[7x[|gs — 0 and limy_,oc Iy(nk) = Iimsupy, . I;(n)
and limy, o0 J(n1)) = lim SUD| ||| —50 J¢(n) (note that it might be necessary to choose
two different sequences for Iy and J #). Using Lemma we assume (passing to subse-

quences if necessary) that the sequence

(&) = signg (v(€ 4+ mk) — u(€ — k)

converges weakly-star in £>°(R™) to o € sign (v(€) — u(§)). We similarly assume that
the sign, sequences appearing in .J +(nk) converge weakly-star in £°(R") and we denote

the limit as

k
i 7 _ DB ; , . ’ ‘ . i '
Jim Jr (k) /n /n Z f(’Y (v, 78,0, T8,u) + Vi(u, 78,u, ngv))w dhd¢
Then

ln (1) + ) = [ aw - 2)f dg
k (3.20)
+/ / ZD’Bif(’yi(v, Tg,V, Tg,U) + 'yi(u,Tgiu,Tﬁiv))wi dhd€ > 0.
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Let k € C3°(R) be nonnegative such that x(s) =1 for |s| < 1. Set fi(§) = f@(”"cll“@"> and

let [ — oo. Since the difference quotient

1
DP fi(x) :/O V filx + Bis) ds (3.21)

LB
1Bl e
is bounded and is zero for x € R™ such that ||z & 3;||gn < I, the second integral in ([3.20))

converges to zero; that is, we conclude that
/ alw—z)d€ > 0.
Lemma [3:4.4] shows that the inequality
[0 —u+Aw = 2)l| g1gny 2 v —ull 1 (g

holds for A > 0. Since u,v € D(Ap) were arbitrary we conclude that Ay is indeed

accretive. O

Remark 3.4.7. One can observe that in the above proof we did not use the fact that the

kernels w; have finite support.
The stationary equation (3.14)) will be investigated through the regularized equation

u~+ ABu — eAu = g, (3.22)

where A\, e > 0. In [95, Proposition 2.2| the author shows existence of solutions using a
special version of the perturbation result [I00, Theorem 3.2| without further preparations.
A key step of the proof is the fact that for u € £2(R™), the B local version of the operator
B (see (3-3)) has the property (Bu,u) = 0. However, this is no longer true in the nonlocal
case, and thus we instead use a fix-point approach based on [101, Chapter 4] and [102],
Proposition IV.3]. In order to do so, we first establish some a priori estimates on the

solutions.

Lemma 3.4.8. Let ¢; € C'(RxR) have bounded partial derivatives and let u € H*(R™)N
H2 (R™) satisfy for g € LY(R™) N L®(R™). Then we have u € L} (R™) N L (RM)
and

[ull 21 gny < 119l 21 ()

]l goo(mny < gl £oo -
Proof. We treat the case of L}(R") first. Define

i(s) =9 b2+ 4 if[s| <1, (3.23)
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and let f € C§°(R"™) be such that 0 < f < 1. Multiplying (3.22)) by ®}(u) f and integrating

over R" gives

/n (u®)(u) f + ABu®j(u) f — eAud)(u)f) dz = /Rn g®)(u)fdzx < 9/l g1 mmy- (3.24)

Since the sequence {uq); (u)f } is a nonnegative and pointwise non-decreasing sequence
with u®j(u)f — |u|f as | — oo, the monotone convergence theorem and the fact that
0 < ®;f <1 implies

lim u®)(u) f do = / ufdz. (3.25)

=00 Rn n
Since @] is monotone, and f is nonnegative we have that

Au®)(u)fdz = —/ ) (u)|Vul?f dz — / ) (u)VuV f dx
R R™ R”

:—/ @E’(u)|Vu]2fd:L‘+/ @l(u)Afde/ Q) (u)Afdx.
R” R”

n

(3.26)

By letting | — co we conclude that

— lim sup Au®)(u)fdz > — / uAfdx.

l—00 R™ n

Finally, the sequence { Bu®(u)f} converges pointwise to Busigng(u)f as | — oo and is
dominated by |Bu|f. The fact that |Bulf is integrable follows from Sobolev’s embedding
of H? into Wb on the support of f and Lemma m Thus, using the dominated

convergence theorem yields

lim Bu®)(u) fdz = Busigng(u) f dz.

l—00 Rn Rn

Use the integration by parts formula for difference quotients to find that

k
lim Bu®)(u)fdz = — / / Z DPi signg (u)7s, f ¢i(u, 75,u)w; dh da

=00 Rn

_/ / @) (u) D% f ¢ (u, 75,u)w; dh da ,

and apply inequality (3.9) with ¢ = 0 to conclude that

k
lim Bu®j(u)fdz > — / / Z signg (u) D% f i (u, 75,u)w; dh dz . (3.27)
R JR™ 5

l—0o0 Rn
Substituting (3.25)), (3.26) and (3.27)) into (3.24) yields
k
/ (uf — euAf)dx —/ / Zsigno(u)Dﬂif@(u,Tgiu)wi dhdz < gl 21 gn)-

Let k € C§°(R) nonnegative such that x(s) =1 for |s| < 1. Set fi(§) = /@(%). Since

the difference quotient D f; is bounded and is zero for = € R” such that ||z & B;|gs <1
(see (3.21), letting I — oo yields

HUHU(R") < HgHﬁl(R")'
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For the case of L>®(R"), let M € R be such that M > g" a.e. Subtract M from
(3.22), multiply by <I>2+ (u — M) and integrate over R™ to find that

/ (u—M—l—/\Bu—eAu)@fr(u—M)da::/ (g— M)®/"(u—M)dz <0. (3.28)

n

A similar argument as in ([3.26)) gives

lim Au®t(u— M)dz <0, (3.29)

l—o00 Rn

as before. Again, integration by parts for difference quotients and the inequality (3.9)

with ¢ = M (the reader may want to check that sign, and s.igmaE are interchangeable in

(3.9)) imply that

lim Bu®;"(u— M) dz

l—00 Rn

i (3.30)
= _/R" /n ZDﬁz‘ signg (u — M) [¢i(u, 78,u) — ¢3(M, M)|w; dhdz > 0.

Substituting (3.29) and ( into ( - yields
/ (u— M)®"(u— M)dz <0,

which implies that v < M a.e.
To establish an analogous lower bound, let M be such that M < g~ a.e. Add M to
(3:22), multiply by ®; (u+ M) and integrate over R™ to conclude that

/(u+M+ABu—eAu)<I>;‘(u+M)da::/ (g+ M)®)(u+ M) dx <0.

n

Similar estimates as before show that
/ (u+ M@~ (u+ M)de <0,
which implies that —M < u a.e. Setting M = ||g[| ;oo (gn) concludes the proof. O

Remark 3.4.9. The proof also shows that the maximum principle holds for equation
(3:22); that is, any solution u € H'(R™) N HZ (R") of (3:22) satisfies the inequalities

_||9_”coo(Rn) Su< ||g Hﬁoo(Rn) a.e.
Holder’s inequality immediately yields the following result.

Corollary 3.4.10. Let the assumptions of Lemma |3.4.8 E hold and let g € LY(R") N
L>®(R™). Then u € LP(R™) for p > 1 with ||u||Lp Rn) < HgHEl - HgHEOO(Rn)

The next result shows the uniqueness of solutions of (3.22)) for g € L1(R").
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Lemma 3.4.11. Let the assumptions of Lemma hold and let u,v € HY(R™) N
HZ (R™) satisfy
U+ ABu — eAu = g1,

v+ ABv — eAv = go.
If 91,90 € LY(R™), then
H(“ - U)JFHL1(R”) < H(g1 - 92)+Hcl(w)'
Proof. The proof follows the proof of Lemma Let w = u —v. Then w satisfies
w + AN Bu — Bv) — eAw = g1 — go. (3.31)

Let f € C3°(R™) be such that 0 < f < 1. Define ¥; by setting ¥} = ®* and ¥;(0) = 0.

Multiply (3.31) by ¥;(w)f and integrate over R™ to find that

/ (w + A(Bu — Bv) — eAw) Vj(w) f dz

! (3.32)

— [ (o= )W) do < (01 = 90)"

holds, since 0 < W)f < 1. The facts that ¥;(w) € H},.(R") and that both ¥}, f > 0
imply that

n

AwVj(w)fdz < / U (w)Af dez,
R'ﬂ

and thus
—limsup | AwVj(w)fdz > —/ wrAfdz. (3.33)

l—0o0 R n

as before. Integration by parts for difference quotients yields

/ (Bu — Bv)¥)(w)f dx
R

k
= /n /n ZDﬁi\IIE(w)TBif[Gbi(u,Tgiu) — ¢i(v, 78,0)|w; dh dz
i=1

k
[ ]S @D 60 - it ) s
i=1

Letting | — oo in the first integral and using a similar argument as in (3.9)) we find that

k
— lim / / ZDﬂi\Pg(w)TBif[gbi(u,Tﬁiu) — ¢i(v, 78,v)|w; dh dz > 0,
tIRY =

l—0o0

and thus, by the dominated convergence theorem,

lim (Bu — Bv)¥j(w)f dx

l—o00 Rn

. (3.34)
= /n /n ZSignb‘_(w)Dﬁif[(bi(u?Tﬁiu) - ¢i(va'rﬁi’0)]wi dhdx.
=1
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Using (3.33) and (3.34) in (3.32) and letting | — oo gives
k
/ wt fdx — /\/ / Zsignar(w)Dﬁif[d)i(u,Tgiu) — ¢i(v, 75,0)|w; dh dx

- e/nw+Afda: < H(gl _92)+HL1(R")'

By the same argument as before, let x € C§°(R) nonnegative such that x(s) = 1 for
|s| < 1. Set fi(&) = /{(%). Since the difference quotient D% f; is bounded and is zero
for x € R™ such that ||z £ Bil|gn <1 (see (3.21))), letting | — oo yields

[ o= = o ey < 01 = 90 sy
O

Corollary 3.4.12. Let the assumptions of Lemma hold and let u,v € HY(R™) N
H? (R™) satisfy

loc

u+ Bu —eAu = g;

v+ Bv — eAv = go.

If g1, 92 € LY(R™), then

lw = vll g1 (gmy < llg1 = g2l 21,y -

Proof. Notice that the equality

la — bHU(R”) = H(a o b>+H£1(Rn) + H(b o a)+HL1(R”)

holds for any a,b € £!(R"). Lemma [3.4.11| shows that

1= o) [l 1y < (o1 = 92) || 1y

(v~ u)+H£1(R”) < (g2 - gl)+||51(R")'
Hence, the inequality ||u — v[|z1(gny < [lg1 — g2l z1(gn) holds as claimed. O

The next result shows the existence of a unique generalized solution of (3.22|) for
g € LY(R™) N £L>®(R") and plays an essential role in our developments. In order to do
so we consider the problem on the ball B, C R” for r > 0 with zero Dirichlet boundary
condition. Let u” € H{(B,) N H2(B,) =: H:(B,) satisfy
u"(x) + ABu"(x) — eAu" (z) = g(z), x € By

(3.35)
u"(z) =0, r € 0B,
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where A denotes the Dirichlet-Laplacian Ap on £2(B,) with D(Ap) = HZ(B,). For the
operator B to remain meaningful we use the E : H(B,) — H*(R") extension operator
[09, Chapter 5.4] on u” supplemented with the fact that supp(Eu") = supp(u”) and
[Eu" |30 @ny = HUTHH})(BT) [T07]. Then we use the restriction operator R : £2(R") ~
L%(B,) on BEu" to obtain the operator RBE : H{(B,) — L*(B,). As in (3.35)), we will
denote Ap by A and RBE by B for brevity.

Remark 3.4.13. One can verify from the proof of Lemmatal3.5.9,153.5.4,13.4.8 and|3.4.11]
and Corollaries[3.4.10 and[3.4.12 that they all hold for the Dirichlet problem too. Minor

steps of the proofs have to be modified, for example, in the proof of Lemmal3.4.8, instead
of multiplying by ®j(u) and integrating over R™ we multiply by ®j(Eu") and integrate
over B,. Then we can repeat the same estimates as before. Similar arguments should be

used in the rest of the proofs as well.

Proposition 3.4.14. Let the assumptions of Lemma hold. Then for each g €
LYR™) N LZ(R™) there is a unique solution u € H'(R™) N HL (R™) of (3.22).

Proof. We consider the Dirichlet problem (3.35) first. Define the operator T : H(B,) —
HE(B,) by T = —(I — eA)"'ABu+ (I — eA)~1g and let

S:={ue HY(B,) : u=nTu, n €0, 1]}.

Note that H3(B,) can be compactly embedded into Hy(B,), which implies that T is
continuous (see also Lemma [3.3.4)) and compact and maps the Banach space H}(B,) into

itself. Observe that u € S implies in fact u € H3(B,), and thus u = nT'u is equivalent to
u+ nABu — eAu = ng (3.36)

on B, a.e. Multiply by u and integrate over B, to find that

lalZa ) + €l Vul 2y =1 /B gudz — nA / Buudz

< 0llgllz2pylull 22,y + nABull 2 1wl 225,
o2 n 2 2 nA 2

< Sllallze s,y + 5 llullzes,) + A0 Bullzz g,y + 52 ullz2(s,)
L2 L2 2 A2

< 5”9“52(&) + 5”“”52(&) + MQHBUH[,?(BT) + ﬁHUHN(Br)

for any 6 > 0. Using (3.11)) and Corollary [3.4.10] (note that the right-hand side is ng in
(3.36) and ¢ in (3.22)) we find that

lalize(,) < nllgll 1 (polgll e s,y < 19l 21,190 25, (3.37)
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and that

N

1 1 A
(e = CAP)IVull o,y < 5 ll9l 22z, + <2 + 52) lullZ2 5,
(3.38)

IN

(1+ ) lobes o e

52 v v
The inequalities and show that by choosing § small enough S is bounded
in H3(B,). Then Schaefer’s fixed point theorem shows that 7" has a fixed point [108|
Corollary 8.1] and, in fact, Lemma ensures that the fixed point is unique on B,..

Choose a sequence {7} C R such that r,, — oo in an increasing fashion as m —
oo and let u™ € HE(B,,) be the corresponding sequence of solutions. Then clearly
{Eu™} C H?*(R™) and by Lemma we also have [[Eu"™ zoo(p, ) < ||9llzoo(p,, ) <
191l oo (- For any 7 < " we have by Corollary that

HEUT — Eu”

<
L1(R7) Hg“£1 (BT/\BT)7
and thus the sequence is Cauchy and converges in £!(R") to some u € L1(R™)NL>(R").

Futhermore, elliptic regularity [99, Section 6.3.1] combined with inequalities (3.37) and
(3.38) imply that { Fu"} is uniformly bounded with

1Ew™ lgg2gny = 0™ 9z (,,,,) < CUI9] 22(8,,,) + 1BU™ll22(8,,,) (3.39)

< Ol 2,y + 1 ) < C (gl cagamy + 191121 gy 191 2oy )

Let us consider B,, for some 79 > 0 and let {Eu ™} be any subsequence, which is
then bounded in #?(B,,) and thus by the compact embedding of H2(B,,) into H*(B,,)
it has a subsequence {Eurm’“l} that converges in H!'(B,,) to u. Since any subsequence
has a convergent sequence with the same limit the original sequence converges in H!(B,,)
to u. By H“HHI(BTO) < C independently of 7y showing that u is in fact in H!(R"™)
and is a weak solution. Thus, by elliptic regularity u € HZQOC(BTO) as well and since g > 0

was arbitrary we conclude that u € H!(R") NH2 (R™) is a strong solution solution and

by Corollary it is unique. O

In our next result we take the limit ¢ — 0. This will not only allow us to consider flux
functions in WIIO’SO(R x R) but will show that the various properties established for the
solutions of (3.22)) hold for the generalized solutions of (3.14)), which in turn will imply

that they hold for the semigroup as well.

Proposition 3.4.15. Let ¢; € Wllo’go(]R x R) and Ag be given by Definition . Then
LYR™) N L®(R™) C R(I + AAg) for X > 0. Accordingly, let Ty : L1(R™) N L®(R")
L1 (R™) be the restriction of (I+AAg) ™t to LYR™)NL®(R™). If g1, 92 € LYR™")NL®(R™),
then
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1 11
P

(i) Tagr € LP(R™) forp > 1 with | Tagi ] goggny < 1911 71 gy < 1911l podin)-
.. p— Jr

(i) *Hgl HEOO(Rn) <Thg1 < Hgl HLOO(R?L))

(ii)) [[(Thgr — Tag2) Ml 21 ey < (g1 = 92) Ml 21 )

(iv) Ty commutes with translations,

(v) fRn Thg1dx = fRn g1 dx.

Proof. Let {¢i"} € C}(R x R) be a sequence such that each ¢ is bounded and have the

property ¢/*(0,0) = 0 and {¢}"} converges to ¢; uniformly on compact sets. Define

ko om om
Bmu — / Z ¢’L (’U/, T/Bzu) ¢7, (Tfﬁiu7 U) w; dh
a 1Bl
and the operator T, : L1(R™) N LP®(R") — LYR™) N L®(R") by Thmg = u if u €
HY(R™) NHE(R™) and

1
u~+ ABpu — EAU =g. (3.40)

Proposition [3.4.14] Lemmata[3.4.8 and [3.4.11] Remark[3.4.9] Corollaries[3.4.10]and [3.:4.12

and the fact that T),, commutes with translations imply that T) ,, is well-defined and

has the properties (i)-(iv). Let g € LY(R™)NL®(R") and uy, = Ty mg. By Lemma/|3.4.11

and the translation invariance of T} ,, we conclude that

/\um<x+y>—um<w>|dx§/ l9(z +3) — g()| dz
Rn Rn

for y € R™. The above estimate and ||um | z1(gny < [|9]l 1 (ny, by the means of the Fréchet-
Kolmogorov compactness theorem, imply that {u,,} is precompact in £} (R™). Thus,

loc

there is a subsequence {uy,; } which converges a.e. in £}, (R") to a limit u € L'(R™).

This convergence will be denoted as um; — u. Let f € C§°(R™) be nonnegative and &

be given by (3.23)). Multiply by @} (un, — ¢)f and integrate over R" to find that
/ <um + ABpy ity — ;Aum> O} (U, — ) f dz = / g®)(um —c)fdx .
Integration by parts gives
[ (= 980 = 0f 4 AB i, = )f
L (0] = VT~ il — IB) ) =0
Note that both ®}, f > 0 implies that
1

— [ O (U — )|V 2f dz >0
m Jgrn
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and |[um || zoo(gny < 1|9/l zoo(rny implies that the integral

/ D) (up — ) Af dx

is bounded. Letting m — oo through the subsequence {m;} and using the convergences

Um; — u and @ — ¢; uniformly on compact sets yields
/ ((uw—g)®y(u—c)f + ABu®(u —c)f) dz < 0.

Letting | — oo and using (3.15]) gives

/n (signo(u —c)(u—g)f

k
_ )\/n > D[ fsigng(u — )] (i(u, 75,u) — ¢ilc, ¢))w; dh> da < 0.
=1

Since |[ul oo (mny < |9/l £oo (rn) and ¢; € WE(RxR) we have ¢, (u, 75,u) € £'(R™). Thus,

loc

we have g € (I + AAp)u by Definition and, in fact, by Lemma the equality
u+ Nou =g (3.41)

holds. The accretivity of Ag shows that u is unique, hence lim,, o T ;,g = Thg holds

1

with convergence in £} _(R™). Properties (i)-(iv) are preserved under £}

loc (R™) conver-

gence. Choose f € C5°(R"™) nonnegative, multiply (3.41)) with f and integrate over R" to
find that

/ufdx—i—)\/ Apuf dx
n RTL

—/Rnufdx—)\/n /ngDﬂif(ﬁi(u,Tgiu)widhdx—/Rngfdx

also holds by Lemma [3.4.1} Let x € C§°(R) be nonnegative such that x(s) =1 for |s| < 1.
Set f1(&) = /ﬁ;(%) and let | — oo. Using (3.21]) we find that the integral

k
/ / Z DP f1¢i(u, 78, u)w; dh dz

converges to zero as [ — oo and thus property (v) holds as well. O

Remark 3.4.16. By Deﬁmtion it is clear that D(A) C LY(R™) and in some cases,
in fact, the equality D(A) = LY(R™) holds, see Lemma . Howewver, this remains to

be shown under our general assumption that ¢; € Wlloso (R x R).
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Proof of Theorem[3.3.8 Since Ay is accretive it follows that the closure A is also accre-
tive. Let g € LYR") and {gn} C LY(R™) N L>®(R") be such that g, — g in £'(R").
Since T} is a contraction, the sequence {Thgn,} is Cauchy. Let Aw,, = (I — T)\)gm, so
W, € AgTrgm and the sequence {w,,} is also Cauchy. If T\g,, — v and w,, — w, then
w e Av and g = v+ Aw € (I + AA)v. This shows that A is m-accretive and the proof is

complete. 0

Proof of Theorem[3.5.9. The solution u.(t) of (3.7) is given by

t
€

we(t) = (I + ed)~ £l =1,

The uniform convergence lime_,ouc(t) = S(t)up for ¢ in £!'(R™) shows that properties
(i)-(v) hold for S(t), since by Proposition [3.4.15| they hold for Ty = (I + A\A)~L.
For property (vi) let ug € £1(R™) N L>(R™) (note that by Lemma the operator

Ay is single-valued in this case) and wu,(z,t) satisfy

%(ue(x,t) —ue(z,t —€)) + Ague(z,t) = 0, (z,t) e R" x (0,T);

ue(z,0) = up(x), x € R".

The definition of Ay implies that
/ signg (ue(z,t) — ¢) Ague(z, t) f d
k
+ / / ZD& [f signg(u — ¢)] (¢i(ue, 78,ue) — ¢i(c, ¢))widhdz > 0
holds for any nonnegative f € C3°(R™ x (0,7T)) and any ¢ € R. Notice that
1
Aoue(z,t) = = (ue(z, t — €) — uc(x, 1))
€

and that

signg (ue(z,t) — ¢) (ue(z,t — €) — ue(z,t)) = signg (ue(z,t) — ¢) (ue(z,t — €) — ¢

+ signg (ue(z,t) — ¢) (ue(z,t) — ) < |ue(z,t —€) — | — |ue(,t) — c|.
Using the above and integrating over (0,7") yields
Tro
/ / f(‘ue(m,t—e)—c‘ - !ue(x,t)—ch(m,t)dxdt
0 JRm €

! . (3.42)
Bil fsieng(u — ¢ (e 1) — bile. ) ws . .
+/(; /n /n;D [f g 0( )] (¢z( € T8; e) ¢z( , )) Zdhd dtzo
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Observe that

% /OT /R (Juetw,t — &) = ¢ = Juelw, t) — ) f(a, 1) da

:1</0/ ‘ug(a:,t—e)—c‘f(:c,t)d:z:dt—/TTE/n ‘ue(x,t)—c|f(x,t)dxdt>
+/6T€/Rn ‘ue(m,t)—c‘%(f(a:,t—i—e)—f(x,t)) dz dt.

Since f € Cy° (R” x (0, T)) the first two integrals after the equal sign vanish for e small

enough. The uniform convergence lim_,o uc(x,t) = S(t)ug(z) in L}(R") implies that the

T
/0 /n |S(t)uo(x) — c‘%dxdt;

that is, by taking the limit € — 0 in (3.42) the proof is complete. O

third integral tends to

3.5 Conclusions

In this chapter we inverstigated a class of nonlocal conservation laws and established well-
posedness results via nonlinear semigroup theory. This ensures that the mathematical
model reliably models the underlying physical phenomena. To connect these models back
to the spatially discrete framework of CRNs, the next chapter considers the discretization
of the nonlocal equations developed here. We will show that, under suitable assumptions,
these discretizations give rise to finite-dimensional reaction networks whose dynamics

approximate those of the original nonlocal system.
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Chapter 4

Dynamical analysis of generalized

ribosome flows

In this chapter we consider compartmental systems and their representation as a chemical
reaction network. We show that one-dimensional nonlocal flow models in PDE form with
Lighthill-Whitham-Richards flux can be spatially discretized with a finite volume scheme
to formally obtain a special case of generalized ribosome flows. The CRN representation,
called generalized ribosome flows, have physically meaningful reaction graphs structure,
allowing the utilization of the vast theory of CRNs. We demonstrate this via the stability
analysis of a flow model with circular topology. We then consider generalized ribosome
flow models. The existence and stability of equilibria are investigated for strongly con-
nected systems. Finally, we consider general time-varying rate functions corresponding
to the transitions. Persistence of the dynamics is shown using the CRN representation
of the system. The L' contractivity of solutions is also proved in the case of periodic
reaction rates having the same period. Further we prove the stability of different com-
partmental structures including strongly connected ones with entropy-like logarithmic
Lyapunov functions through embedding the model into a weakly reversible CRN with
time-varying reaction rates in a reduced state space. Moreover, it is shown that different
Lyapunov functions may be assigned to the same model depending on the non-unique
factorization of the reaction rates. The results are illustrated through several examples

with biological meaning including the classical ribosome flow model on a ring.

99
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4.1 Introduction

The dynamical modeling of the mRNA translation process has been in the focus of re-
search since the second half of the 20th century (see, e.g. [109, 110, 111]). The first
large scale analysis of gene translation through the so-called ribosome flow model (RFM)
was presented in [112], where the applied second order nonnegative and nonlinear model
based on the principle of Totally Asymmetric Exclusion [113] was able to capture the most
important dynamical features of the translation process. Also in [112], the RFM model
was validated through biological data obtained from three different organisms, and it was
clearly shown that its predictive power is superior to several other popular techniques.
In [114] the RFM was equipped with an appropriate input-output pair, and it was shown
that after applying an affine positive output feedback, the system had a unique equilib-
rium point which is globally stable in the bounded operating domain. A circular RFM
structure was analyzed in [35], where the authors proved using the theory of cooperative
systems that the system has a continuum of equilibria, but each equilibrium is globally
asymptotically stable within the equivalence class of trajectories determined by the initial
conditions. The stability of periodic solutions was also shown. In [I15] a bounded pool
of free ribosomes was added to the RFM generating a competition among the arbitrary
number of mRNA molecules for ribosomes. This generates a special network structure
for RFM subsystems, for which the uniqueness and stability of equilibria together with
the properties of periodic solutions were proved, too. Different compartment sizes of the
RFM were assumed in [116], and it was shown that this modification does not change
the favorable dynamical properties of the system. In [I17], the ribosome flow model with
Langmuir kinetics (RFMLK) is introduced, and a network structure is constructed with
RFMLK subsystems connected through a pool. Among other results, it is shown that the
trajectories of such a network always converge to a unique equilibrium. We also mention
that ODE models with essentially the same structure can be obtained by an appropri-
ate finite volume discretization of local conservation laws governed by hyperbolic partial

differential equations describing the flow of material or vehicles [118].

It is well-known that the (nonlocal) conservation laws described by hyperbolic par-
tial differential equations (PDEs) may develop irregularities even with smooth initial
functions [I19]. This implies that solution concepts of these equations have to allow for
discontinuous functions. Another consequence of the loss of regularity is that one is con-
fined to a restricted class of applicable numerical schemes, such as, for example, finite

volume methods [120]. Two of the most commonly used schemes in the field of traffic
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flows are the modified Lax-Friedrichs scheme and the Godunov scheme [12I]. While these
schemes possess numerous desired properties, the obtained form of ordinary differential
equations (ODEs) computed via spatial discretization (also called semi-discretization) is
often not optimal for dynamical analysis.

The aim of the chapter is to apply a finite volume method to nonlocal conservation
laws and to show that the semi-discretized system inherits several advantageous properties
from the PDE. Then we generalize the interconnection structure and the reaction rate
functions and finally, we investigate the persistence and stability for strongly connected
systems.

The structure of the chapter is as follows. In Section we give a brief overview of
nonlocal flow models, kinetic systems and compartmental systems. In Section [£.3] we in-
troduce the kinetic representation of general compartmental models. Section [4.4] contains
the spatial discretization of the nonlocal flow, including the derivation of the kinetic prop-
erty with the exact topology and interpretation of compartments and reactions. Section
[45] contains stability results for strongly connected systems. Finally, Section [.6] con-
tains presistence and stability results for strongly connected systems with time-varying

transition rates.

4.2 Notations and background

4.2.1 Nonlocal flows

In this subsection we introduce the unidirectional nonlocal flow model based on the
nonlocal pair-interaction model of Chapter 3, supplemented with terms representing in-
and out-flows.

Let R denote the set of nonnegative real numbers. Nonlocality is formally introduced
as a continuum average of the finite difference approximation weighted with a bounded
and nonnegative nonlocal interaction kernel w € L£}(R) supported on (0,§) with § > 0

and [[w[[z1 gy = 1, as follows:

1 _
@ +/ F(p,mhp) — F(—_np, p)w(h) dh =r —s;
ot 0 h (4.1)

p(x, O) = po(l‘),

where p : R x (0,7) — R, is the conserved quantity at a given point and at a given
time, F': R x R+ R is the flux function, 74pp(z,t) = p(x £ h,t) denotes a spatial shift

and 7,5 : R x (0,t) x Ry ~ R are the source and sink terms, respectively. Throughout
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the chapter, we call (4.1)) closed if the functions r and s are identically zero; that is, the

system does not have in- and out-flows. In any other case, the system is called open.

4.2.2 Compartmental models

Throughout the chapter we consider systems containing a set of interconnected compart-
ments and objects (such as ribosomes, particles, molecules, vehicles etc.) moving between
them. We assume that the rate of transfer between compartments depends on the amount
of objects in the source compartment as well as on the amount of free space in the target
compartment. This naturally implies that each compartment has a well-defined finite
capacity that limits the amount of modeled quantities that can be contained in the given
compartment. We also allow explicit time dependence and in some cases dependence on
the amount of objects and free space in other compartments.

For the formal definition, let us consider the set @ = {q1, g2, - . ., ¢m } of compartments
and the set A C @ x @ of transitions, where (g;,q;) € A represents the transition from
compartment g; into ¢;. Then, the directed graph D = (Q, A) is called the compartmental
graph and it describes the structure of the compartmental model. The transitions are
assumed to be immediate, thus loop edges are not allowed in the model since they do not
introduce additional dynamical terms. Similarly, we do not allow parallel edges between
two compartments in the same direction since they can be replaced by a single transition.
In general, any compartment can be connected to to the environment in both directions.
We denote with Fj; the flow from the compartment ¢; to the compartment g¢;, with I;
the material inflow from the environment to compartment ¢; and with Fy; the material
outflow from compartment g; to the environment. Loop flows are not allowed, i.e. ¢ # j in
F;;. Then the time-evolution of the system is given by the following system of differential
equations:

Gi =Y (—Fji+ Fy) + L — Foi. (4.2)
J#

We impose the following physical assumptions to the system:
1. for any i, j,t > 0, 7 # j we have that F;; > 0, I; > 0 and Fp; > 0,
2. for any i,t > 0 if ¢;(t) = 0, then Fy; = Fj; = 0 for each j.

These properties ensure the invariance of the nonnegative orthant; that is, assuming a
nonnegative initial condition, our solution is guaranteed to be nonnegative. In general,

the above functions can depend on the mass of any compartment and possibly on ¢ as
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well. Then it can be shown that if each Fj; and Fp; is at least C*. then we can rewrite
(@2 as
¢ = _<f0i+iji>Qi+Zfiij+Iia (4.3)

J#i J#i
where Fj; = f;;q; and the so-called fractional transfer coefficients f;; are at least ck-1,

We can then naturally rewrite (4.3)) in matrix form as

q=fq+ 1.

If each fractional transfer coefficient f;; only depends on g;, then the system is called a
donor controlled system. If each coeflicient is constant, then the system is called a linear
donor controlled system.

Linear donor controlled systems can naturally be represented as chemical reaction
networks, or kinetic systems. For a brief introduction, we refer to [23|. For each com-
partment with index i, ¢; represents the mass (or alternatively, the concentration) of the
one-specie complex @);, and for each transition from compartment ¢ to j, we assign the
reaction ; — ;. Using this construction, we can not only rely on the comprehensive
theory of compartmental models but on that of kinetic systems as well.

We say that a (compartmental) graph is strongly connected if there exists a directed
path between any two vertices in both directions, and we say that a graph is weakly
reversible if it is a collection of isolated strongly connected subgraphs.

For each compartment ¢; we introduce the sets of donors and receptors, respectively,
as

D; = {j € {1,2,...,m}‘(qj,qi) € A},

Ri={j € {L.2....,m}|(a,q)) € A};
that is, the set of donors of a given compartment are the compartments where an incom-
ing transition originates from and the set of receptors are the compartments where an

outgoing transition terminates in.

4.3 Kinetic representation of compartmental models

In this section we construct a kinetic representation of the above compartmental system
class. To do so, we assign a CRN that incorporates the compartmental structure. This
allows the introduction of a system of ODEs of the form describing the time evolution
of the compartmental model.

Let us consider a compartmental model D = (Q, A). Let the set of species be ¥ =
{N1,No, ..., Ny} U{S1,S52,...,S,} where N; and S; represent the number of particles
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and available spaces in compartment g;, respectively. To each transition (g;,q;) € A we

assign a reaction of the form (see, also [30])
Kij
Ni+8; = N; + Si,

where K;; is the rate function of the transition. Such a reaction represents that during

the transition from compartment ¢; to compartment g; the number of items decreases in

¢; and increases in ¢j, while the number of available spaces increases in g; and decreases

in g;. Let n; and s; denote the continuous amount of particles and free space in g;,

respectively.

Based on the dynamics of the system is given by
=Y Kjilngsi) = Y Kij(ni, s5),
j€D; JER;

s5i=— Y Kjilng,si) + Y Kij(ni,s)),

J€D; JER

(4.4)

where n and s denote the vectorized form of the variables n; and s;, respectively. It is
easy to check that the model class in Eq. contains ribosome flow models described
in [29] or [116], and extends them in two ways: firstly, the reaction rate function K
is not necessarily mass-action type and moreover, is time-varying, and secondly, the
compartmental graph of the system can be arbitrary (i.e., there can be transitions between
any two compartments). Therefore, we call a generalized time-varying ribosome flow
model. Thus, our novel results not only extend the theory of ribosome flow models, but
can be applied to other TASEP based transport models [122, [123] 124, 125], 126] and
other flow models, such as the Traffic Reaction Model of [II8]. Finally, we note, that
while more complicated network structures may not be biologically relevant in the case of
ribosome flows, but can serve as a great tool for the analysis of other flow based physical
models, e.g. traffic flows.
System ([4.4]) exhibits conservation in several senses. First of all, we have that
m
(7i + $i) =0,

i=1

thus the sum of modeled quantities and free spaces in the system is constant along the

trajectories of (@.4)); that is, the function H : R?™ — R defined for z € R?™ as

2m
H(z) = in, (4.5)
i=1

is a first integral, where x1, 22, ..., 2y and Tmi1, Tm+2, - - ., oy correspond to the vari-

ables ni, na, ..., Ny, and 81, 82, . . ., Sm, respectively. Our next observation is that n;+$; =
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0 holds for each compartment, thus ¢; := n; + s; is the constant capacity of compartment
gi. Substituting s; = ¢; — n; we can rewrite (4.4) in a reduced state space as
i =) Kji(ngci—ni) = Y Kij(ni, ¢ — ny) (4.6)
J€D; JER;
or after an analogous substitution, as
si=— 2y Kii(ej —sj.s0) + Y Kijlei = sivsg). (4.7)
J€D; JER;
As a consequence of the preceding observations, the function H : R™ +— R, defined for

z € R™ as
H(z) = sz (4.8)
i=1

is a first integral for (4.6]), in which case each z; = n; (and similarly for (4.7) if each
x; = s;). This shows that while the state space of the decomposed systems is C' :=
[0,c1] x [0,¢2] X -+ x [0,¢p], for a given initial condition z(0) € C' the trajectories are

contained in the (m — 1)-dimensional manifold (hyperplane) defined by
{z € C|H(z) — H(x(0)) =0}.

For a generalized ribosome flow define ¢ = """ | ¢; and for r € [0,¢] let L, C C be the

level set of H corresponding to r; that is,
Lyr={acC:H(a)=r}. (4.9)

Using the terminology of CRN theory [I5], the level sets defined in Eq. are also
called stoichiometric compatibility classes.

Clearly the reaction graph of the assigned CRN of a compartmental model is generally
not strongly connected nor weakly reversible even if the compartmental graph is strongly
connected. In fact, the reaction graph is weakly reversible if and only if each transition
in the compartmental system is reversible. Even though the reaction graph, in some
sense, loses the regularities of the compartmental graph, we can explicitly determine its
deficiency from the compartmental topology.

For a compartmental system D = (Q,A) let |D| = (Q,fl) denote the undirected

graph where the parallel edges are merged.

Theorem 4.3.1. The deficiency of a CRN assigned to a compartmental model D =
(Q, A) is equal to the number of chordless cycles in the undirected graph |D| = (Q, A)

Proof. For each transition between ¢; and ¢; we assign two complexes, namely IV;+.S; and

S; + Nj, regardless of the transitions’ direction, so reversible reactions do not introduce



66 CHAPTER 4. ANALYSIS OF GENERALIZED RIBOSOME FLOWS

additional complexes, and thus the number of stoichiometrically distinct complexes is
m = 2|f~1] A complex of the form IN; 4 S; is only connected with the complex S; + Nj,
and thus we have ¢ = \fl] linkage classes each consisting of exactly two complexes. To
find the dimension of the stoichiometric subspace, denoted by s = dim S, observe that

the reaction vector of a reaction of the form N; +S; — N; +5; is
Yimsj = —€i + €j + Empi — €m,, (4.10)

where e, € R?™ denotes the kth unit vector. Again, since Yisj = —Yj—i it suffices to

consider the undirected graph |D|. Assume that y;_,; is such that

Yisj = E =Yl -

Then by we have that for each non-zero term of the form ¢ _,;y _; the right-hand
side also contains at least one non-zero term cy_, yy_, , including the terms ¢;—, ;. and
€.—;Y.—;j. This shows that the edges corresponding to the reaction vectors of the right-
hand side form possibly multiple cycles in |D|. Without the loss of generality we may
assume that this subgraph does not contain cycles isolated from (g¢;,q;). We have to

consider the following cases:

1. First, we assume that the right-hand side is a single chordless cycle and contains

the transitions

qi = qiy, = qly = > ql,. — g — g;.

Taking the inner product of unit vectors e;, e, €,, - .., €., e; and
r—1
Yisj = Cimsly Yimsly T+ § Cly—lg1 Y=oy T CloojYl—j
k=1

yields the system of linear equations:
—-1= _ci%ll

0= Ci—ly — Cly—lo

0 = Cl1—>12 - ClQ—)lg

0 = Cl'rfl_ﬂr - CZT—>j
L=,

which clearly has one solution where each weight is equal to one.
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2. If the right-hand side consists of multiple cycles, then repeatedly using the previous
argument we can replace the arcs not containing (g;, ¢;) with chords. Note, that
if the reaction vector corresponding to the chord is already on the right-hand side,
then we just have to modify its coefficient. This method decomposes the right-hand
side and will leave us with one chordless cycle containing (g;, ¢;), leading back to
the previous case with exactly one solution. Repeating the arc substitutions we can
see that each arc becomes a chordless cycle with the reintroduced edges and the

arising systems of linear equations have exactly one solution.

The first case above shows that the dimension of the stiochiometric subspace reduces by
one for each set of reaction vectors that correspond to edges forming a chordless cycle
in |D| and the second case shows that is reduced by that exact amount. If o denotes
the number of chordless cycles in @, then the deficiency of the reaction network can be

computedasézm—E—SZQ\m—|f‘~1|—(|A’_‘7):‘7' -

4.4 Discretization of one-dimensional nonlocal flows

In this section we consider nonlocal flows and carry out the spatial segmentation of the
flow model , with clear compartmental interpretation.

Our main motivation comes from the theory of particle flows, thus p will denote
particle density; that is, the number of particles per unit length. There are multiple flux
functions appropriate for modeling such flows. One of the most widely used flux functions
is the so-called Lighthill-Whitham-Richards (LWR) flux, which assumes that the speed
of the flow is proportional to the particle density and available free spaces [127, [128§].
Note that this assumption is applicable in many areas, including ribosome flows [112].

The local flux is given by

)
flu) = maxu(pmax —u) = wu(Pmaz — U),
Pmazx

where vV and pmge. are the maximal particle speed and density, respectively. The

nonlocal flux is given by
F(u,v) = wu(pmaez — v)-

We assume that the in- and out-flows (source and sink terms) of an open system are of

the form

r(@,t,p) = Lin(x)w(z)pin(t) (Pma:v - p(a:,t))

S(l‘, t, p) = 10ut(x)w(x)pout(t)p($v t)v
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where pin, pout : Ry +— R, are the rates of the in- and out-flows, respectively. The spatial

positions are described by the indicator functions 1;,, 1, defined by

k3

J
Lin(w) =) X[einzip] (), Lout(®) = > Xagut zop] (),
; st
where the space coordinates defining the above intervals are strictly ordered as follows:

et <ol <o <P <oy,

Pt < aft << 2%t < a%t

We will use the finite volume approach to spatially discretize (also called semi-
discretize) the flow model by introducing a grid defined by an increasing sequence
of real values (LUH_%)Z ” such that R = (J;cy, [:ci_%,xH%] Then the grid is the set as
the set {Kz = (wi_%,xH%)

7%y

1€ Z} where the length of the cell K; is h; = x;
The derivation of the discretized model is analogous to the local case in [118] with the
additional approximation of the integral in (4.1)).

We introduce the variables p;(t) approximating the average particle density in the ith

cell at time ¢ as

and the variables 1;,; and 1,y ; as

1 1
1in,i = / 1zn(x) dx, 1out,i = / 1out($) dx.

Let f; be such that 37" hi; > 6 and 3/ hiy; < 6 and b; be such that S0 hy_j > §
and Z?i:_ll hi—; < 0; that is, f; and b; denote the number of cells affected by the ith cell

and the number of cells affecting the ith cell, respectively. Finally, define

1 hiyj i1
Wi,': ; / w hi k—|—h dh,
7 ghivg Jo ; "
j—1

I
Wi_j = / "W S hig +h )| dh.
Jhi—j Jo 1

The approximation for the ith cell at time ¢ is

fi b;
hydh =Y Gpi, pir))Wis — Y Glpimjs pi) Wiy,

j=1 j=1

/‘S F(p,mhp) — F(T_np, p)w(
o h

where G is the so-called numerical flux. Since w is of unit norm, we have

fi

b;
ZjhiJeri,j =1, ZjhifjWi,fj =1
=1 =1
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The choice of the numerical flux G determines many important qualitative properties
of the numerical scheme. The two most commonly used schemes especially in the field of
traffic flows are the modified Lax-Friedrichs scheme and the Godunov scheme [I19]. The

former uses
flu) + f(v)

G(u,v) = 5

+ D(u—v)
where 2D > v, is the coefficient of the numerical diffusion term, and the latter utilizes

minse[u,v] f(s) if u <o,

G(u,v) =
MaX ey f(5) otherwise.

When used in time-space discretization of local conservation laws, both schemes are
monotone flux schemes implying advantageous properties like the maximum principle,
also called ¢*°-stability [120], but the physical interpretation is not straightforward. Fur-
thermore, these fluxes are complicated to handle from a control point of view. Note
that while the theory of monotone flux schemes have been widely studied for local equa-
tions the theory is rather incomplete for nonlocal models. Recent advancements include
the characterization of equidistant monotone flux schemes for closed nonlocal conserva-
tion laws and an appropriate Courant-Friedrichs-Lewy (CFL) condition under which the
scheme is conservative, consistent, enjoys the maximum principle and is total variation
diminishing (TVD) [60].

Our main result is that using the naturally defined nonlocal flux as the numerical
flux G(u,v) = F(u,v) = wu(pmaz — v) in the case of open conservation laws, the (not
necessarily equidistant) discretization scheme will still have many desired qualitative
properties mentioned above and the obtained system of ODEs is of a quite special form,

namely, it is kinetic.

Definition 4.4.1. The spatial numerical segmentation of (4.1)) is given by

b; fi
pi = pri—j (pmam - pi)Wi,—j - Z wpi(pmax - pi+j)Wi,j+
Jj=1 J=1
+ 1in,iwpin(pmax - pz) - 1out,iwpoutpiy (ia t) €L x RJr;
1 .
pi(0) = h/ po(z)dz, i€Z.
i JK;

For the sake of generality we may also consider variable maximal density and particle
speed at different spatial points. These will be given by the functions pme. : R — R4

and Vmqz : R — R4, respectively. The local flux in this case is

= Umazx ($)

f(u’$) = pmax(x)u(pmax(x) - ’LL) = w($)u(pmaz(l‘) - U)
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and the nonlocal flux is
F(u,v,2,y) = w(z)u(pmaz(y) — ).

We further introduce the variables py,qz,; and vpqz,; denoting the average maximal par-

ticle density and speed in cell K; as

1 1
Pmaz,i = / Pmazx (33) dz, Umazx,i = / Umaz (37) dx
hi Jk, hi Jk,
and the variables w; = % Using the numerical flux

G('LL, v, Za]) - wiu(pmax,j - U)

we obtain the following generalization.

bi fz
pi(t) = Z Wi pi—j (t) (Pmazi — pi(t))Wi—j — Z wipi(t) (Pmaz,ivi — Pitri(t)) Wi
j=1 =1

+ Ri(tnoi) - Si(tnoi)v (i>t) € Z xRy;

pz-<0>=/K_ po(z)dz, i€,
1 (4.11)

Ri(t, pi) = Lingwipin(t) (Pmazi — pi(t)),
Si(t, pi) = Lout,iWipout () pi(2).

Equation is formally kinetic, which ensures some advantageous properties of
the model and most importantly, allows us to use the well-developed theory of chemical
reaction networks [20} [I5]. Furthermore, the underlying CRN has physically meaningful
compartments and topology. In fact, let IV; and S; denote particles and available space
slots for particles in the ith cell, respectively. Then the particle flow can be represented

as transformations of complexes (that is, as reactions) as follows:

ki—ji .
Ni_j—l-SZ' —J'>NZ‘+S¢_]‘ 1=12...b (4.12)
ki itj .
N; + Sitj — Niyj +5; =12 ... f (4.13)
Kin.i
Si — N; (4.14)
kfou i

Reaction (4.12) shows that during the particles’ transition from the (i — j)th cell to the
ith cell the available spaces increase in the (i — j)th cell and decrease in the ith cell, while
the number of particles decrease in the (i — j)th cell and increase in the ith cell. Reaction

(4.13) expresses the same transition from the ith cell to the (i4j)th cell. Finally, reactions
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(4.14) and (4.15)) show the behaviour of in- and out-flows. Note that (4.12) and (4.13])

are redundant when enumerating all reactions. Figure shows the exact structure of

the compartments and the topology of the intra- and intercell reactions.

_{FrtS)

Kijis
kifbi,i

Figure 4.1: Compartmental model of the generalized (4.11))

Let n; and s; denote the continuous number of particles and available spaces in the
ith cell per unit length, respectively. Using Eq. (2.2)), the system of ODEs derived from
the reactions are:

bi i
o= kijinigsi— Y Kiitjnisiv; + kinisi — Koutini,
Jj=1 Jj=1
(4.16)

b; i
Si=— Y ki jini—jsi+ Y Kiitjnisiy; — kinisi + Koutini.
=1 =1

We can see that n; + $; = 0; that is, the sum of particles and available spaces is conserved

in each cell. Let n; + s; = ¢;, and substitute s; = ¢; — n; into (4.16)) to obtain

kijini—jci — kiojini—jni) + kini(ci — ny)

Kijitjnicivj — Kijivjninivs) — Koutini,

m:zj:(
-
_Z(

which is equivalent to (4.11) with n;, = p;, ¢; = Pmazis Ki—ji = Wi—iWi _j, kiir; =

Wit i Wiy Ring = liniWinpin and Koyt i = Lout,iWiPout-

Theorem 4.4.2. The following statements hold for the proposed numerical scheme (4.11)):
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(i) It is nonnegative and capacitated; that is, we have 0 < p;(t) < pmazi for alli € Z
and t > 0.

(ii) It is conservative in the sense that

D it =) pi0) / Ri(7, pi) — Si(7, pi)) dT

€L €L

holds for any t > 0.

Proof. (i) These are immediate consequences of the kinetic property [15].
(ii) Since
> ilt) = Y (Rilt.pi) = Silt, o)
i€Z i€Z

the scheme is conservative. O

Let us consider a closed system with constant maximal particle density and speed and
with circular or ring-like topology obtained via equidistant spatial discretization. Let the

number of compartments be N. In an equidistant setting b; = f; =:r fori=1,2,..., N

and W; _; = W; ; = Wjfori=1,2,...,Nand j = 1,2,...,r. Forsimplicity of notations
we assume that N > 2r; that is, the nonlocality does not loop. Under such assumptions
ring topology means that pn4; = p; and p1—; = py—j for j = 1,2,...,r. An equilibrium

point with densities p; satisfies the following constraints
s T
Z wp;kfj (pma:v - p”Wj = Z wpf (pmax - p:Jrj)Wj
j=1 j=1

fori =1,2,..., N. This shows that we obtain an equilibrium if each cell has equal density

and since the number of particles is constant in the closed system we have
N
e

We will use the entropy-like Lyapunov function candidate well-known from the theory of

chemical reaction networks [I5, Section 7.7]
N p N o
Vip)=> pi [log <Z> - 1] +Np=) pilog <Z)
i=1 P i=1 P

Note that p = 0 is only possible when there are no particles in the system which is clearly

not relevant.
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It is easy to see that V(p*) = 0 and p # p* implies V(p) > 0. Furthermore, partial
summation yields

T

Zlog <m>ﬁ’z Zlog <p> 2 wlpi-i(pmaz = pi) = pilpmar = piss)| Wi
j=1
_ PZZ pi( Pmam p’H—J) [l og (pl;j> — log <ij>:| W;.

=1 j=1

Pitj )

Using the inequality e?(b — a) < e’ — e with a = log (%) and b = log ( > and noting

that equality holds if and only if a = b, we find that

r

N r N
p) <w Z Z(pmax = piti)(Pirj — p)Wj =w Z Z (—pij + pipiss) W

i=1j=1 i=1 j=1
w N r w N
T2 ZZ (07 = 2pipis + P}y ) Wj = -3 ZZ(P — pitj)?W; <0.

i=1j=1 i=1 j=1

This shows that V(p*) = 0 and p # p* implies V(p) < 0 and we conclude that this
equilibrium point is asymptotically stable.
4.5 Stability of generalized ribosome flows

Consider a generalized ribosome flow with strongly connected compartmental structure,

in reduced state space. The Jacobian of (4.6|) is given by

~ T jep, Ll g Hulen) o,
78’%%1'—”0 if k€ D; and k ¢ Ry,
[T(n)], = § Pmlmncne) if k ¢ D; and k € Ry,
Phictoery vl y dhalite nl if k€ D; and k € R;,
\0 otherwise.

The (A2) property of the rate functions imply that each diagonal entry is nonpositive
and each off-diagonal entry is nonnegative. Since the sum of each column is zero, we
conclude that the system is compartmental in the sense of [9]. Systems satisfying the
latter property are also called cooperative.

The following lemmata and proofs will adapt the ideas of [29] and [35] for the studied
more general system class. Moreover, we will also use the persistence result of [129]

Corollary 4.9].
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Lemma 4.5.1. Consider a compartmental system of the form (4.6) with a strongly con-
nected compartmental structure. Then, for any n(0) in the interior of C, denoted by

int(C), the solution satisfies n(t) € int(C) for any t > 0.
In other words, int(C) is an invariant set of such a system.

Proof. To obtain a contradiction, suppose that there exists a (minimal) time 7 > 0 such

that n(7) € 9C. We need to consider the following two cases.

1. There exists an empty compartment. In this case, due to the strongly connected
structure, there must exist an empty compartment with at least one non-empty
donor compartment as well. To see this, consider a directed path from any non-
empty compartment to any empty compartment. Stepping backwards from the
empty compartment along this path until we reach a non-empty compartment es-

tablishes our assertion.

Let i be an index such that n;(7) = 0 and ng(7) > 0 holds for some k € D;. Then
takes the form
ni(r) = Y Kjilng, i) = Kgi(ng, ¢) > 0
J€D;
which means that n;(¢) > 0 on the interval [T — o, 7] for some ¢ > 0. This leads to
a contradiction with n;(7) = 0, further implying that there are no empty compart-

ments altogether.

2. There exists a full compartment. In this case, by a similar argument, there must
exist a full compartment with at least one non-full recipient compartment as well;
that is, there exists an index i such that n;(7) = ¢; and ng(7) < ¢x holds for some
k € R;. Then takes the form

ni(r) == Y Kijlei,¢j —nj) < —Kir(ci, e —ni) <0
JER;
which means that 7;(t) < 0 on the interval [T — o, 7] for some o > 0. This leads to a
contradiction with n;(7) = ¢;, further implying that there are no full compartments

altogether.

Let 00™) (™) € R™ be defined by

0™ =1o o0 ... 0 c(m):[cl cy v Cm}T-
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Lemma 4.5.2. Consider a compartmental system of the form (4.6) with a strongly con-
nected compartmental structure. Then, for any n(0) € dC, n(0) # 0™ n(0) # (™ the

solution satisfies n(1) € int(C) for some 7 > 0.

Proof. First we define the following boundary-repelling property.

(BR) For each § > 0 and sufficiently small A > 0, there exists K = K(§, A) > 0 such
that for each ¢t > 0

1. the conditions

(a) ni(t) <A,

(b) there exists k € D; such that ng(t) >4
imply n;(¢t) > K, and
2. the conditions

(a) ni(t) > ¢ — A

(b) there exists k € R; such that ng(t) <cp — 9
imply n;(t) < —K.

Eq. (4.6) satisfies the above property. To see this, consider any compartment g;.
Without the loss of generality we can assume that D; contains at least one index, let this

be k. In this case
nz(t) Z ,C]ﬂ(d, C; — A) — Z K:ij(A,Cj) = Kl.
JER;
Similarly, we can assume that R; contains at least one index, let this be [. In this case
nl(t) S Z /Cji(Cj,A) — ICil(ci — A,C[ — (5) = —KQ.
J€D;
The properties of the rate functions imply that for a sufficiently small A we have K7 > 0

and —Ky < 0, thus taking K = min {K;, K2} concludes our assertion.

Next, we will show that for each compartment n;(7) > 0 holds for some 7 > 0.
Without the loss of generality we can assume that there exists an index ¢ such that
ni(t) > € on the interval [0, 7] for some ¢y > 0 and 7 > 0. Define 7, = - and proceed

by induction. For £k =1,2,...,m we will define an appropriate ¢, > 0 and show that the
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kth generation recipients of the compartment ¢; have particle concentration of at least €
on the interval [k7y,, T].

Pick any j € R; (first generation recipient) and sufficiently small A > 0, define
K = K(ep,A) and ¢ = min {A, K'7,,} and let ¢y € [0, 7,,] such that n;(tg) > €;. Such a
to must exist, since assuming n;(t) < e; < A for each t € [0, 7,,,] would imply via (BR)
that n;(t) > K for each t € [0, 7y,]. This further implies that n;(7,,) > n;(0)+ K71y, > €.
This leads to a contradiction with n;(7,,) < ;.

Our next claim is that n;(t) > € for each t € [tg, 7] and in particular [7,,,7]. Con-
versely, suppose that there exists some ¢; € (to,7] such that & := n;(t;) < € and
define 0 = min {t € (tp,7) : n;(t) < &}. Since nj(o) < £ < 1 < A, (BR) shows that
nj(o) > K; that is, n;(t) > 0 on the interval [c — v, o] for some v > 0. But this would
imply that n;(c — v) < n;(o), contradicting the minimality of o.

Define K = K(e1,A) and €2 = min{A, K7,,,} and repeat the above steps for the
set R; for j € R; (second generation recipients). In subsequent induction steps define
K = K(ex, A) and €x41 = min{A, K7,,} and repeat the above for the kth generation
recipients of the compartment ¢;. Since the compartments are strongly connected after
at most m induction steps we conclude that n;(7) > 0 for each i = 1,2,...,m.

To show that n;(7) < ¢; holds as well, consider the complementary system given in
(4.7). Repeating the above steps for shows that s;(7) > 0, further implying that

ni(T) < ¢;; that is, indeed n(7) € int(C). O

Remark 4.5.3. The proof also shows that for each T > 0 there exists e(7) > 0 with
€(1) = 0 as 7 — 0, such that n(7) € [e,c1 — €] X [€,ca — €] X -+ X [€, ¢y, — €]; that is, even

if the initial value is on OC the orbit enters int(C) after an arbitrarily short time.

Remark 4.5.4. A similar argument shows that C only contains the two trivial equilibria
corresponding to an empty and a full network.

To see this, let us first assume that n* is an equilibrium and for a compartment q; we

have n} = 0. Then, by (4.6)
nr =Y Kji(n},e)=0
J€D;
which is only possible if n;‘ =0 for each j € D;. Induction shows that n* = 0(™).
Neat, let us assume that for a compartment q; we have n} = ¢;. Then, by (4.6)
==Y Kij(ei,e; —nj) =0
JER;

which is only possible if n; = ¢; for each j € R;. Induction shows that n* = clm),
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For a given initial condition a € C, let o(t,a) denote the solution at time ¢ with

0(0,a) = a; that is p(t,a) = n(t) with n(0) = a.

Proposition 4.5.5. Consider a compartmental system of the form (4.6)) with a strongly
connected compartmental structure. Then, for any s € {O, H(c(m))}, where H is given in
(4.8), the set Ly contains a unique steady state es satisfying lim;_,oc 0(t,a) = es for any

a € L.

Proof. Since Ly = {O(m)} and g(t,O(m)) = 00" the statement holds for an empty
network with ey = 00™). Similarly, since LH(c<m)) = {c(m)} and o(t, c(m)) = ™) the
statement holds for a full network with e H(cm)) = em),

Choose s € <0,H(C(m))) and a € Ls;. By the strongly connected compartmental
structure the Jacobian J(n) is irreducible on int(C) but may become reducible on 9C.
However, Lemmata and along with Remak show that has repelling
boundary; that is, o(¢,a) € int(C') after an arbitrarily short time even if a € L;N0C. As
a consequence, (|4.6)) is a cooperative irreducible system evolving in int(C) admitting a
first integral with positive gradient. The result [I30, Theorem 10.| shows that L, either
has precisely one equilibrium that attracts the whole level set or has zero equilibria and
each w-limit set of the level set is empty. However, by the boundedness of the sequence
{o(k,a) : k=1,2,...} C int(C) the Bolzano-Weierstrass theorem implies that there is
a convergent subsequence; that is, the w-limit set of ¢ cannot be empty. Furthermore,

[129, Corollary 4.9] implies that w(a) N OC' = () and the proof is complete. O

In the proofs above we used the notion of cooperative systems directly, however, the
underlying theory involves so-called (strongly) monotone systems, which in our case, is a
direct consequence of cooperativity, as shown by our next result.

For two points x,y € R™, let

x <y ifx; <y; fori=1,2,...,m,
<y if x <yandx#y,
Ty ifo; <y; fori=1,2,...,m.
Proposition 4.5.6. Consider a compartmental system of the form (4.6) with a strongly

connected compartmental structure. Then, for any s € [O,H(C(m))} and a,b € Lg, the

relation a < b implies o(t,a) < o(t,b) and a < b implies o(t,a) < o(t,b) for any t > 0.

Proof. If  or y is equal to 0™ or ¢{™)| then the statement trivially holds. In any other
case, use the proof of Proposition to conclude that (4.6) is a cooperative irreducible
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system evolving in a convex and open set, namely, int(C'). The statement is a direct

consequence of [130, Theorem 1., Theorem 3.]. O

Our final result in this topic gives further insight into the qualitative behaviour of

[5).

Proposition 4.5.7. Consider a compartmental system of the form (4.6 with a strongly

connected compartmental structure. Then, for any a,b € C initial values and t > 0

lo(t, a) — o, b)l[pmmy < lla = bllp(gm)-

In other words, using the usual ¢!(R™) norm, the distance of two trajectories at
any given time cannot be larger than the distance of the initial values. In particular, if

b= ep(q), then we find that the convergence to e (,) is monotone.

Proof. By [131, Chapter 2.2] the induced matrix measure by the ¢! vector norm is

p(A) = max {[A]u' + Z |[Al 4] }

J#i
Since N(J (n)) = 0, the result [I32, Theorem 1.] implies the assertion of the proposition.
O

Remark 4.5.8. [t is straightforward to extend our persistence and stability results to
systems with a weakly reversible compartmental graph, when the dynamics unfold into
1solated subsystems having strongly connected compartmental graphs. Furthermore, some
of the above results on the qualitative behaviour, for example the monotonicity in Proposi-
tion[4.5.0 and Proposition[{.5.7 can be extended to systems with arbitrary compartmental
topology.

Propositions[4.5.5], [£.5.6] and [.5.7| imply that the steady states form a linearly ordered

set. For i =1,2,...,mlet ¢; : [0,c] — [0, ¢;] denote the ith coordinate function of the

steady state; that is, let

ei(r) := lim p(t,n(O))l.

t—o00

where n(0) € L, is arbitrary and p(¢,n(0)) denotes the solution at time ¢ with p(0,n(0)) =
n(0). Clearly each e; is continuous and the monotonicity of the system also shows that
each e; function is strictly increasing; that is, they are differentiable almost everywhere

and their derivative are positive.
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Example 1: (generalized) RFMR

As a small example let us consider a Ribosome Flow Model on a Ring (RFMR) [35] with

three sites. The underlying compartmental model is given by D = (Q, A), where

Q = {QI>Q2aq2}a
A={(q1,9), (g a3), (g3, ¢1) }-
The topology is shown in Fig[4.2]

q1

q3 q2

Figure 4.2: Compartmental graph of a three-dimensional RFMR

The corresponding CRN has the following species and reactions:
Y = {Ni, No, N3, 51,59, 53}
Ri: N+ S X2 ) 4 Ny
Ry: Ny + S5 22 Sy + Ny
Rs: Ns+ S &2 Sy 4 Ny
It is easy to see that, indeed, the reaction graph is not weakly reversible and its deficiency
is one. The dynamics of the model in the full state space is given by as
n1 = K31(n3, 51) — Ki2(n1, 52)
81 = —Ksz1(ns, s1) + K12(na, s2)
ng = Ki2(n1, s2) — Kas(nz, s)3
59 = —Ki2(n1, s2) + Kaz(na, s3)
n3 = Kaz(n2, s)3 — Kai1(n,3 s1)
3 = —Kaz(n2, s)3 + Ks1(n3 s1)
which can be rewritten in the reduced state space based on as
n1 = Kz1(n3, c1 —n1) — Kia(n1, c2 — no)
ng = K12(n1, ca — na) — Kaz(na2, c3 — n3)

ng = Kag(ng, c3 — n3) — Kzi(n3, c1 — ny).
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In a classical RFMR each ¢; = 1 and each transition-rate IC;; follows the mass-action law.
In an RFMR with different site sizes [116] we allow arbitrary site sizes, in which case the

above equation can be written as

n1 = ksinz(c1 —n1) — kizna(c2 — n2)
ng = kiani(ca — n2) — kazna(cs — n3)
ng = kagna(cs —nz) — kains(cr —na).
Fig shows the equilibrium curves of the system with capacities ¢; = 5, co = 25,

c3 = 50 and k13 = 100, kog = 40, k31 = 60. We consider the above mass action case along

with

K (l + ni)?’ (l +c; — nj)3

Kij(ni,cj —n;) =

for various { > 0.

40

30

g mass action
c 20 rational [ =5
rational [ = 25
e Tt iONAL [ = 50
10 rational [ = 100

ot

ny

Figure 4.3: Loci of equilibria of a generalized RFMR as a function of the total number

of ribosomes for different [ saturation parameters

Example 2: not strongly connected model

Let us consider consider a not strongly connected compartmental model given by D =

(Q, A), where

Q={q,q, ¢},

A= {(g2,43). (43, 42) (a3, q1) }-
The topology is shown in Fig[4.4]
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q1

q3 q2

Figure 4.4: Compartmental graph of a not strongly connected model

The corresponding CRN has the following species and reactions:

Y = {Ni, Na, N3, 51, 52, 53}
Ry: N+ S5 52 65+ Ny
RQ:N3+S2&>53+N2
Rs: N3+ 81 525 S5+ Ny,

The dynamics of the system in the reduced state space is given by

i1 = Ks1(ns, c1 —n1)

g = Kaa(ns, ca — n2) — Kaz(n2, c3 — n3)

i3 = Kaz(n2, cs —n3) — Kaa(ns, ca — n2) — Kai(n3, c1 —n1).
Since the compartmental graph is not strongly connected the persistence and stability
results of [I129] are not applicable. However, empirical results show that the long-time

behaviour of the system still exhibits some regularity, which can be divided into two cases

base on the initial values of the system:
1. If 7 := H(n(0)) < ¢, then

tliglo na(t) = tlgrolo n3(t) =0 and tli>I£10 ni(t) =r.

2. If r :== H(n(0)) > ¢, then

Jim mt) =

and nq(t) and na(t) will converge to the unique equilibrium on the level set
{(n2,n3) € [0,c2] x [0,c3][ne +n3 =r —c1}

of the reduced compartmental model D' = (Q’, A") given by Q' = {q2,¢q3}, A’ =
{(qg, q3), (g3, qg)}. Note that since D’ is strongly connected, the results of [129] and

the above investigation can be applied.
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For the simulations we set ¢; = ¢co = ¢3 = 100. The rate functions in the different cases
are assumed to have form K;;(n;, ¢; —nj) = kijni(c; —nj) (corresponding to mass-action
kinetics) or to be rational functions of the form

oo G TN
”l—i—ni l—l—cj—nj

Kij(ni, ¢; —ny) =

for some [ > 0 with ko = 15, k3o = 25, k3 = 35. Fig[£.5] shows the equilibrium curves
for these rate functions with various [ values. As described by the above cases we see that
until the sum of the initial value exceed the capacity of the ¢; compartment the equilib-
rium lies on the nj axis. After that the equilibrium lies on the plane {nl = 01} c R3
and since D’ is strongly connected we have that the coordinate functions of the equilibria

ea(r) and e3(r), restricted to the set [c1, ¢], are continuous and strictly increasing.

y \/
80
mass action
60 rational [ =5
e rational [ = 25
N rational [ = 50
40 rational [ = 100
20 4
0 100
100

60

40 20

%) n

Figure 4.5: Loci of equilibria of a not strongly connected model as a function of the

amount of modeled quantities for different [ saturation parameters

Remark 4.5.9. The authors hypothesize that the long-time behaviour of a compartmen-
tal model with arbitrary compartmental structure can be similarly described. Recall that
a (compartmental) graph D = (Q, A) can be written as a directed acyclic hypergraph of
strongly connected components. The hypergraph will then contain three types of compo-

nents:
1. we call a component trap if it does not have any outgoing edges,

2. we call a component source if it does not have any incoming edges,
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3. we call a component intermediate if it is not a trap and not a source.

Based on the initial value and the exact compartmental structure the following phenomena

can be observed:
e Traps (and only traps) can become full, thus possibly creating new traps.
e Sources (and only sources) can become empty, thus possibly creating new sources.

o After a sufficient number of traps are filled and sources are emptied, the compart-
mental graph D is decomposed into isolated strongly connected components; that is,
the resulting graph is weakly reversible, in which case the results of [129] can be

applied.

While these observations are elementary and show that the system is stable, the equilibria
are clearly non-unique with respect to the total mass of the network and in general it is

not straightforward to predict from the initial value which components will fill and empty.

4.6 Persistence and stability of generalized ribosome flow

models with time-varying transition rates

In this section we consider time-varying systems, where the transition rates can depend
on all compartments, not just the donor and the recipient. That is, based on (4.4)), we
consider systems of the general form
n; = Z K:jl(na S7t) - Z K%](nv Svt)a
J€D; JER;

S = — Z Kji(n,s,t) + Z /Cij(n,s,t).

JE€D; JER

(4.17)

The exact assumptions on the reaction rates will be specified later.

4.6.1 Persistence

First, we will investigate the persistence of time-varying generalized ribosome flows of the
form only under mild regularity assumptions described by the following theorem,
which is based on the results of [75] but the statements are rephrased to be more aligned
with our framework. For the definition of notions related to Petri nets (e.g. siphons) and

their exact connection with CRNs we refer to [75, [129].

Theorem 4.6.1. [75] The dynamics of a CRN of the form (2.2)) is persistent if
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(i) Each siphon of the CRN contains a subset of species which define a positive linear

conserved quantity for the dynamics.
(i) There exists a positive linear conserved quantity ¢’z for the dynamics.
(ili) There are nonnegative, continuous functions KC;(x), K;j(z) such that

(a) if x> Zp for each k € supp(y;), then K;(x) > K;(Z) (and similarly for K;)
holds for each j =1,2,..., R, and

(b) for each j = 1,2,..., R, for all x € Rf and for all t > 0 we have K;(z) <
Ki(z,t) < Kj(z).

To verify condition (i) we would, in general, need to enumerate all siphons of the CRN,
which is well-known to be an NP-hard problem. However, in our recent paper [129] we
explicitly characterized the siphons of a CRN assigned to a strongly connected compart-
mental models in the time-invariant case. However, one can observe that conditions (i)
and (ii) of are independent of the choice of transition rates and even independent
from whether the system is time-invariant or not; that is, our results, formulated in the

following theorem, hold for time-varying compartmental systems as well.

Theorem 4.6.2. [129, Corollary 4.6] A siphon in the Petri net of a strongly connected
compartmental graph either contains the vertices N; and S; corresponding to the same

compartment q;, or it contains all the vertices N1, No, ..., Ny, or S1,59,...,5n.

Then the conclusions of Section show that conditions (i) and (ii) are satisfied by
virtue of the first integrals and , respectively.

It is not straightforward to determine exactly what types of reaction rates satisfy
condition (iii). For the sake of specificity, we characterize a class of reaction rates of

special interest which can be written in the following form
0;(n;)vi(s;)
j o 1) = koo () WINPT 4.18
Zﬂ<nasa ) Z]()].—F\I/U(TL,S) ( )
where we assume that the transformations 6;,v; € C'(R) are nondecreasing, have 6;(0) =
v;(0) = 0 and satisfy fol |log 6;(r)|dr < oo and fol |logv;(r)|dr < oo for each i,j =
1,2,...,m. We also assume that the functions ¥;; take the form
@)

o (1)
Uij(n,s) =Y oo [[6 )y (s1)
=1

where r) | 7(2) e N™ and Q. 2 € Ry. We further assume that for k;;(¢) there exist

k

71-]-,E¢j > 0 such that k;; < kij(t) < Eij for all t > 0. In this case we have

k;:0;(ni)vi(s;) — =
N +J\I/ij(c(m)], C(jm)) < Kij(n,s,t) < kij0i(ni)vi(s;) =: Kij(ni, ),

Kz‘j(”iasj) =
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which are clearly monotonous in the sense of Theorem and thus condition (i) is

satisfied and the system is persistent.

Remark 4.6.3. The above investigation and, in particular, condition (iii) of Theorem
shows that Lemmata 5.1, 5.2 and Remark 5.3 of [129] can be modified to the time-
varying case; that is, for a system of the form with strongly connected compart-
mental graph and reaction rates of the form , for each T > 0 there exists e(1) > 0
with €(7) — 0 as 7 — 0 such that n;(t), s;(t) € [e,c; — €] holds for each i = 1,2,...,m

andt > 1.

The denominator of contains positive terms which can be interpreted as the
inhibitory effect of other species, and the time-varying coefficient k;;(t) introduces the
dependence of the system parameters on various factors such as temperature or the
dynamical behaviour of other species that are not explicitly modeled as state variables.
This class of rate functions contains many well-known examples, demonstrating the range

and flexibility of reaction rates of the above form:

1. Setting each 6;(n;) = n; and vj(s;) = s; and ¥;;(n,s) = 0 we obtain the case
of classical mass-action kinetics with time-varying rate coefficients: IC;;(n,s,t) =

kij(t)nisj.
2. Setting each 0;(n;) = n; and vj(s;) = s; and W;;(n,s) = 12 — 1 + In; + 1sj + n;s;
for some [ > 0 yields

n;iSj

Kij(n,s,t) = kz‘j(t)m

corresponding to simple saturating kinetics described by the Monod equation.

3. The previous example can also be obtained by setting 0;(n;) = =~ and v;(s;) =
lj-jsj and W;;(n,s) = 0, showing that (4.18) is not unique. Notice however, that for

fixed 0;,v; transformations the function ¥;;, and thus the fraction itself, is unique.

L

L -
4. Setting each 0;(n;) = l:ﬁ and v;(s;) = % for some [ > 0 yields the classical Hill
i i

kinetics.

4.6.2 Stability of the solutions for periodic transition rates

In this section we investigate the periodic behaviour of the generalized ribosome flows
based on the ideas of [I33]. Let us consider a generalized ribosome flow in the reduced

state space of the form (4.6) with transition rates of the form (4.18) and assume that
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the transition functions are C' and periodic with the same period (but having possibly
different phases). Write as n = F(t,n) and assume that the right-hand side satisfies
the following monotonicity condition: F;(¢,z) < F;(t,y) for any two distinct points x,y €
C such that x; = y; and x; < y; for j # i. This condition is satisfied if, for example,
the transition rates are such that ¥;; = 0; that is, if there are no inhibitory phenomena.

Then the system phase locks (or entrains) with the periodic excitations.

Theorem 4.6.4. Consider a system of the form (4.6) satisfying the above monotonicity
assumption, where each K;j(t) is periodic with a common period T. Then for each r €
[0, c] there exists a unique periodic function ¢, : Ry > C with period T such that for all

a € L, we have that

Jim lo(t, @) — 6,(8)][ 2 = 0.

Proof. The properties of the rate functions and the fact that VH is positive implies the
result via [134, [135]. O

Remark 4.6.5. Since, in some sense, time-invariant systems can be seen as periodic,
the stability result [129, Proposition 5.5] is a special case of the above theorem, where ¢,

1s reduced to a single point of the manifold L.

Example 3: entrainment of generalized RFMR

Let us again consider a generalized version of the REMR from Fig[f:2] For this example

we set ¢ = ¢ = ¢g = 100 and

Kia(n1, ¢2 = na, t) = 100(3 + 2 cos(t +0.5)) i+ ZSEZQJ:ZZ)— nz)’
Kas (2,5 — ms,£) = 100(7 + 5sin(3t = 2.5) 253;2)’3)— .
n3(c1 —n1)

Ks1(ng,c1 —nq,t) = 100(2 + cos(2t — 1 ,
s1(n3,c1 =1, 1) ( ( ))(l—i—ng)(l—i-cl—m)

which clearly have the same period T' = 27. Figs and show the phase portrait

of the system starting from various initial conditions with { = 100, H(n(O)) = 150 and

the time evolution of the state variables with n(0) = [5 45 100] ", respectively.
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(a) Phase portrait of the system (b) Time evolution of state variables

Figure 4.6: Entrainment of a generalized RFMR with periodic transition rates

4.6.3 Lyapunov stability analysis

In this section we show that generalized ribosome flows with reaction rate functions of
the form with piecewise locally Lipschitz k;;(t) coefficients satisfy a certain notion
of robustness to the changes in the time-varying rate functions that can be traced back
to the input-to-state stability of rate-controlled biochemical networks thoroughly inves-
tigated in [28]. The main difficulty in applying these results lies in the aforementioned
fact that the CRN assigned to a compartmental model is generally not weakly reversible
and its deficiency is generally not zero (see, Theorem even if the compartmental
topology is strongly connected. In order to circumvent this, we will perform a model
reduction and rewrite by factoring out appropriate terms. Let us first recall the

most important notions and results of [28].

Consider the system corresponding to a CRN with R reactions

n

R
= fru) =Y > uy(t) [T 077 (@i)lys — wyl, (4.19)

i=1 j=1 I=1
where the nonnegative functions u;; are piecewise locally Lipschitz with a finite number
of discontinuities and the stoichiometric coefficient vectors y;,y; are as described in [2.2]
Motivated by control designs for ribosome flow models [136] we introduce such time
dependence not only to handle some uncertainty originating from fluctuating external
factors but to measure the robustness of the system to certain control inputs.
In this section, however, we restrict the conditions on the transformation functions

0; : Ry ~ [0,00). Namely, we assume that
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1. 0; is real analytic,

3. fol |log 0;(r)|dr < oo
4. 0; is strictly increasing and onto the set [0, 0;) for some o; € [0, 00),

5. limy 10 o, f(f pi_l(r) dr — pt = oo for any a < logo; and any constant p > 0, where

pi = log ;.

Before continuing with the definitions, we consider the case when u(t) is a constant
matrix A. We assume that A has nonnegative entries and is irreducible; that is, the
underlying reaction graph is strongly connected. We denote the set of such A matrices as
A. Then the equilibria of & = f(x, A) can be divided into the sets of boundary equilibria
and positive equilibria:

Ey = {:1: S 8@i|f(a:,A) = 0},

Eaq = {z e R}|f(z,A) =0}.
Then, the result |28, Theorem 2.1| (and also [62, Theorem 2|) shows that if there are
no boundary equilibria in any positive class, then each positive class contains a unique
globally (relative to the positive class) asymptotically stable positive equilibrium. Denote
the unique positive equilibrium in the same class as g as T(zg, A) and notice that E4 4 =
{Z(o, A)’m € R }. Finally, denote

E=J Eas
AeA

Definition 4.6.6. We define the following function classes:

1. A function o : Ry + Ry is said to be of class K if it is continuous, strictly

increasing and has o(0) = 0.
2. The subset of unbounded functions of class K are denoted by K.

3. A function B : Ry x Ry is said to be of class KL if B(.,t) is of class K for allt >0

and B(r,.) is strictly decreasing to zero for all r > 0.

We consider nonnegative time-varying inputs such that at any time instant the reac-
tion graph is strongly connected; that is, the input-value set U is a subset of A. Fur-
thermore, let |.||; denote the spectral norm induced by the Euclidian norm and for

u: Ry — U define

[ully = ess sup [|u(t)]],-
te[0,00)
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Definition 4.6.7. A system & = f(x,u) is uniformly input-to-state stable (ISS) with
input-value set U if for every compact set P C £ and every compact set F' C EZ containing
P, there exist functions 8 = Bp of class KL and ¢ = ¢pp of class K such that, for every

T, € PN Ey, + for some ug € U we have that

lz(¢) = Zoll < B(llwo — Toll, ) + d(Ilu — uolly)

holds for each u : Ry + U input and every initial condition xo € F N Sz, and for all

t > 0 such that z(s) € F for s € [0,1].

According to the above definition we say that a system is ISS if it is globally asymp-
totically stable in the absence of external inputs and if its trajectories are bounded by
an appropriate function of the input. In some sense this definition is intended to capture
the idea of "bounded input bounded output" stability, since for bounded w input (u — wug
to be more precise) the trajectories will remain in a ball and, in fact, approach the ball

é(|lu — uol|y) as t increases [137).

We assume that there exists a uniform lower bound on the parameters; that is, we

consider input-value sets of the form
ADUe = {u € Alug;(t) > eVt >0, or u;(t) =0Vt > 0}.

We also recall that the input functions are piecewise locally Lipschitz in time with a finite

number of discontinuities, thus we introduce
W = {w ‘R — [U€|w is piecewise locally Lipschitz}.
Then the main Theorem of [28] states:

Theorem 4.6.8. Consider the system (4.19)) and suppose that is is mass-conservative;
that is, there exists v € R such that v" f(z,u) =0 for all z € R, and u € A. Then the

system with input maps u € W is uniformly ISS with input-value set U,.

The proof relies on the candidate ISS-Lyapunov function (for the definition of which

and for the exact connection with ISS stability we refer to [28])
V(z,x) = 2/ (log 0;(r) — log 0;(;)) dr (4.20)
i=1" %

which, for mass-action systems, yields the classical entropy-like Lyapunov function well-

known from the theory of chemical reaction networks, see (4.27). We note that V(x,7)
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is uniquely determined by the #; functions and does not depend explicitly on the reac-
tion/compartmental structure or the time-varying u;;(t) functions; that is, it is universal

in the sense of [138].

Remark 4.6.9. We note that the assumption that the compartmental graph (and thus
the reaction graph of the factored model) is strongly connected is purely technical. For
time-invariant systems it simply ensures that the unique equilibrium on each level set of
the first integral is positive (except for the trivial case of an empty network of course).
In fact, in some cases the initial values of the network can ensure the positivity of the
equilibrium even for not strongly connected systems (see Example @), in which case the

above Lyapunov function can be applied.

Factorization of the transition rates

Let us consider a generalized ribosome flow (4.17)) in the reduced state space, in this case
given by
n; = Z Kji(n,c—n,t) — Z Kij(n,c—n,t)
J€D; JER;

= ZD ]fji(t) 1 ij(\;jl)(’z’(?(n:) Tiz)n) B Z kij(t) gi(ni)lfj(cj _ nj)

(4.21)

Notice that we can naturally factor some terms of the transition rates into the time-

varying coefficient as

Oi(ni)vi(c; —mng)  kii@®vile; —ng) o =
ij(t)l - \I/ij(j'L,C](m) —Jn) = _:\IIU(;’ é(m) _]C) 0:(ni) =: kij(t)0i(n;).

Then (4.21)) can be rewritten as
’fli = Z l;:ji(t)ﬁj(nj) — Z l;:”(t)ﬁz(nz) (4.22)
J€D; JER;
This equation can be clearly embedded into the class of strongly connected sys-
tems of the form (4.19), since the reaction graph of (4.22) consists of species ¥ =

{N1, Na,..., Ny}, has the m x m identity matrix as its stoichiometric matrix and for
each transition (¢;,¢j) € A we assign a reaction of the form
ICii(t
N, i (1) N;,

and thus the system of differential equations can be written as

n = TAL(t)0(n) (4.23)
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where the elements of Ay, are given by

— e, ka(t)  ifi=j,
[Ak(t)] i k‘ji(t) if j € Dy,
0 otherwise.

Note that the fractions % are differentiable (and thus Lipschitz) and each
k;j(t) is piecewise locally Lipschitz, hence each k;;(t) is piecewise locally Lipschitz. This
shows that generalized ribosome flows can be embedded into the class of rate-controlled
biochemical networks described in [28] in a way that preserves the compartmental struc-
ture; that is, the reaction graph of is topologically isomorph to the compartmental
graph. In particular if the compartmental model is strongly connected, then the reaction
graph of the reduced system is strongly connected as well. Furthermore, combining
the persistence of the system with Remark we find that A, € W, and thus Theorem

ensures input-to-state stability.

Quasi-LTV factorization

A classical argument shows that the model reduction above can result in a Linear Time-
Varying (LTV) system [J]. Consider an F(z) € C*(R) nonnegative function such that
F(0) =0, where k > 1. Then for the function F'(rz) we have

dF(rz)

P oF' (rz)

and thus
1
F(z)—-F(0) = x/ F'(rz)dr = zf(z)
0
and since F'(0) = 0, we find that F(z) = zf(x). Note, that the calculation also shows
that f € C*~1(R). Since 6; is real analytic we have that 6;(n;) = cél(nl)nZ for some 6; real
analytic function. Then (4.22)) can be rewritten as
n; = Z l%ji(t)nj — Z /;‘U(t)nl (424)
JjE€D; JER;

where

]%(t) — kij(t)éi(ni)yj(cj - nj)
1) 1 + \IJ”(n7 C(m) - n) .

Similarly as before, the reaction graph of (4.24)) consists of species ¥ = {N1, No, ..., Ny, },

has the m xm identity matrix as its stoichiometric matrix and for each transition (g¢;, ¢;) €

A we assign a reaction of the form

N, Kij(t) N;,
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and thus the system of differential equations can be written as

n=TITAg(t)n
where the elements of A, are given by

~Yier, ka(t)  ifi=j,

0 otherwise.

Again, each l;‘ij(t) is piecewise locally Lipschitz, thus for strongly connected compartmen-

tal models Theorem [£.6.8] ensures input-to-state stability via Remark [£.6.3]

Factorization of Monod kinetics

Let us consider a generalized version of the REMR in Fig[.2| with rational rate functions
corresponding to Monod kinetics of the form

n3 c1—m
l+n3l+c—m
ni Co — N2
l+n1l+co—n9
ng 3 — N3
l+n9l+c3—n3

ni C2 — N2
l4+n1l+co—mno
n2 €3 — N3
l—|—n2l—|—03—n3
ns C1 —ni1
l—l—ngl—l—cl—nl

— kia2(t)

— kas(t)

’le = k?31 (t)

(4.25)

ng = k12(t)

ng = kzg(t) — kgl(t)

for some I > 0. As discussed before, the corresponding CRN is not strongly connected.
However, using the functions

Ccl1 —nNnq Co2 — Ny ~ C3 — N3
_— kos(t) = kos(t) —————
[+ co —mn2 2z (t) 23()l+63—n3

L Ra(t) = kot
pp— 12(t) = k12(t)

k31 (t) = ka1 (t)

we can to rewrite (4.25)) as

~ n3 ~ ny
= t — t
= k(1) e = ()
~ ni ~ no
= t — kos(t 4.2
2 12()1—1—711 23()l—|—n2 (4.26)
= n9 ~ ns
ng = 23(t)l+n2 —k31(t)l+n3-

Then the CRN corresponding to (4.26]) has the following species and reactions:

= {NlaNQaN3}

k12

R1:N1—>N2
R21N2@>N3

k31

R3:N3 — Nj.
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which is strongly connected and isomorph to the compartmental model in Fig We

arrive at the same conclusion if we instead use the functions

~ 1 Ccl1 — Ny
ks1(t) = ks1(t
a1(t) 31()l+n31+01—n1
~ 1 Co2 — N9
ki2(t) = kqo(t
12(t) 12()l+n1l+02—n2
1 C3 — N3

kag(t) = k23(t)l P S

to rewrite as
i = ks1(t)ns — kia(t)m
fio = k1o (t)ng — kaz(t)no
fig = kos(t)ng — ka1 (t)ns.
Note that the quasi-LTV factorization might be more complicated in some cases, but the

construction described in Section guarantees its existence.

Induced family of Lyapunov functions

The above investigation demonstrates that generalized ribosome flows can be embedded
into rate-controlled biochemical networks in at least two different ways, where each em-
bedding induces a different Lyapunov function of the form . Thus, in general, we
may use at least two different Lyapunov functions governing the same dynamics. To
characterize their exact relation, consider a factored system of the form with its
ISS-Lyapunov function V(n,7). The quasi-LTV representation of the system admits an

ISS-Lyapunov function of the form

VLTV / logr — log nl) dr

(nz log — + n; — nz) = Z V;'LTV(TLi,ﬁi)

=1

(4.27)

i Ms ||M3

so that we can write

V(n,m) = Z /m (log (él(r)r) — log (é (1) nl dr = Z/ logO —log éz(ﬁz)) dr
i=1""

+ Z/ (logr —logm;) dr = Z/ log9 — log éz(ﬁz)) dr + VTV (n, 7).
i=1 " "

Remark 4.6.10. Since ) " 7; = >, n; we have that

m
VLTV 7) — 1 i
(1) = 3o
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which is exactly the Kullback-Leibler divergence Dgr(n||[m). It is important to note that
the Kullback-Leibler divergence is not a metric, since Dgr,(n||n) # D (7||n) and it does
not satisfy the triangle inequality. However, it is a nonnegative measure, meaning that it
!

1s nonnegative and zero if and only if n =7 and it is often used to measure the "distance’

of probability distributions for example in information theory and machine learning [139).

While in general we are restricted to the above factorizations, in some special cases

we may use a whole family of factorizations and corresponding Lyapunov functions. To

r%
(I+7)b
b; € Ng, a; > b; (these properties ensure that the functions 6; are nondecreasing). Then,

after the factorization described in Section the Lyapunov function (4.20) becomes

illustrate this, consider an example when each 0;(r) = for some [ > 0 and a; € N,

m

: I +7;
VEab) (n m) = i — b)) (7 — i) + anilog = + by(1 + ;)1 -
(n,m) ; (a )T — ng) + ain ogﬁi—i- (+n)0gl+n,~

> . (4.28)

We emphasize that only depends on the 6; functions, in this case parametrized
with the [, a;, b; values; that is, it is independent of the network structure and transition
rate coefficients. We can also perform the factorization 6;(r) = 6;(r) (l.:ji)l% with a; € N,
a; < aj, b € Ny, a; > I;l yielding the Lyapunov function Vab) of the same form as in

(4.28). This shows that the parameters a and b can be freely (apart from the constraints
above) chosen in (4.28). We may also observe some interesting behaviour at the extrema
of the parameters b and [, namely, that if we choose each b; = 0 then the Lyapunov

function in (4.28) is independent of [; that is, we have that

v mn) =3 @Vt (ng,mi).
=1

Moreover, letting [ — oo yields the convergence

lim V4D (n,7) = 3 4, VETY (ng, ;) (4.29)

l—00 ;
=1

where V;LTV is defined in (4.27)).

Example 4: family of Lyapunov functions of a generalized RFMR

Let us again consider a generalized version of the RFMR in the reduced state space from
Fig 4.2l For a given initial condition ng we can substitute ng = H(ng) — n; — ne, and
thus the Lyapunov function restricted to the manifold {H(n) = H(ng)} can be seen as
a two dimensional function with local coordinates nqy and ns.

We set the capacities as ¢; = co = ¢3 = 100 and k1o = 100, ko3 = 60, k31 = 20. The

system has transition rates as described above with each a; = b; = 3; that is, we have
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that 5 ,
n (c2 — na2)
K —ng) =100 - L.
12(n1, ¢ — na) (xm) (+e—n)
nj (c3 — n3)3
K ,c3 —ng) =60 - 2 __.
23(n2; €3 — ) (U +n2)3 (I+c3—ng)
n3 (c1 —mp)?

IC31(n3, CcC1 — 77,1) =20- .

(l + n3)3 (l +c1 — n1)3

250
200
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100

2 50
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Figure 4.7: Comparison of Lyapunov functions for a generalized RFMR

The simulations were performed with H(ng) = 150. Figs show the Lyapunov
function V49 for various choices of a and b with I = 25 fixed. The second and third
rows demonstrate the convergence characterized in (4.29)); figs mm show V(@b for
increasing [ values and show Y, diViLTV for the same increasing [ values.

While the level sets of these Lyapunov functions are similar, their anisotropy and range
is quite different, suggesting, for example, that they might lead to different convergence

speed estimates.
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Example 5: family of Lyapunov functions for a larger network

Let us consider a compartmental system with m = 100 compartments in the reduced state
space. We assume that the transition rate functions are corresponding to Hill kinetics
(modified intentionally to have different powers in the numerator and the denominator)

and are of the form

ny(cj —n;)°

KCii(ni,ci —n;) = ki; 4.30
ij(nis ¢j — nj) = kij I+ n2) (1 + (¢; — ny)?) (4.30)
with [ = 350. We assume that the only nonzero coefficients are
Ki(iv1) =20 kiiy2) =18 kiip3) =16 Kj(ipq) = 14
Kiivs) =12 Kiipe) =10 Kiipry =8 ky(i48) =6
for i = 1,2,...,m, where indices are understood as modulo m. Clearly this compart-

mental graph is strongly connected. Finally, we set capacities
61262:"-2650:50 C51:C52:'--26100:100

Then the Lyapunov function (4.20)) takes the form

m —2

l7 ) — — n; nZ +l

Vl&ri?ﬁ)(”a n) = Z <(”z’ —n;) + 3n;log . +nilog n2 +1
i=1 i i

+ 2\/i(atan :L/’l — atan \%)) .

We can also factorize as 6;(r) = éz(r)li%, when (4.20) becomes

m

1,2,2 — n; n; +
V}(”ll )(n,n) = Z (2ni log ﬁ—: + n;log né "
i=1 i

l ; n;
+ 2\ﬁ<atan — — atan Z) .
v Vi
Fig shows the time evolution of Lyapunov functions Vg@ff’l’m, Vg;?l’m and VTV and

their time derivatives.

Remark 4.6.11. In the above examples we restricted the factorizations to integer expo-
nents so that we have real analytic transformations. However, the underlying dynamics
18 not changed through the factorizations and real analyticity is not directly used in the
wnvestigation of the 1SS-Lyapunov function (4.20). Thus, as long as the factored l;:ij (t) s
piecewise locally Lipschitz (which holds after an arbitrarily short time in virtue of Remark
, we can generalize (4.28]) for other values as well; to be precise, we can use any

0<a; <a; and 0 < i)l < a; real numbers.
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Next, focusing on the Hill kinetics in (4.30), we note that while the demominator
of the transformation 0;(r) = l-:% in (4.30) cannot be factorized we can rearrange the

transformation as

S Un o) O A
I+ 12 I+r2 I+ [ 4 rbi
N————

0:(r)

91(7")

where choosing 0 < a; < 3 and 0 < b; < a; ensures that the time-varying coefficient
functions are piecewise locally Lipschitz. In this case the exact value of the integral in
inwolves the generalized hypergeometric function and generally cannot be expressed
in a closed form. However, in some special cases (such as b; =2 above) we can calculate
the integral explicitly; for example setting a; = 1.5 and b; = 0.5 yields

(1,1.5,05),  — _ N 3 n; 9 VT + 1 -
Vi (n,m) = 3 <(”i — i) + gnilog =+ (ni — 1 )1ogW + (Vi — i) |.

800 - - : : 0 : : —

—(3,2) —_—(3,2)

—(2,2)| —_(2,2)
LTV LTV
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600
500
g 400 +
300 +
200 +

100 -
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t t

(a) Time evolution of Lyapunov functions  (b) Derivative of Lyapunov functions

Figure 4.8: Time evolution and time derivative of Lyapunov functions obtained from

various factorizations of the transition rates

Example 6: competition for ribosomes in the cell

In this example we introduce a set of generalized ribosome flows connected by a finite
pool of ribosomes to model competition in the cell. We follow [115], where the authors
introduced a model for simultaneous translation and [I17], where the authors generalized
the model to include premature drop-off and attachment effects modeled with Langmuir
kinetics. We will focus on the latter case and show that with a slight modification
it can be formalized as a generalized ribosome flow model with a clear and natural
compartmental interpretation. This demonstrates the usefulness and modeling power of

generalized ribosome flows as one can prove various properties of many existing models of
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different conceptual levels. Moreover, our results show that many qualitative properties
of the system carry over to more general settings, e.g. when the translation, drop-off and
attachment rates are modeled with more sophisticated functions or when some (or all)
rates are time-dependent.

For the sake of simplicity we will present this example in the reduced state space. Let
us consider N mRNAs consisting of mi,ms, ..., my number of sites. Let nf denote the
continuous amount of ribosomes in the ith site of the j mRNA stand and let Cf denote its
capacity. Let ¢, denote the capacity of the pool and n, denote the amount of ribosomes
in the pool. For the sake of notational simplicity let n‘é and nznj 41 also denote n, and
similarly for the capacities. Let the translation rate functions from the ith site the to
(¢ 4+ 1)th site on the jth mRNA be denoted as ng(Z.H). Finally, let the detachment and
attachment rates at the ith site of the jth mRNA be denoted respectively as ng . and IC;
The attachment rate to the first site and the detachment rate from the last site will be

called initiation rate and production rate, respectively. Then the dynamics of the model

is given by:

ny = Kzifl)i (ni_y, el —ni.t) - ’Cg(iﬂ) (nf, i1 — Mg t)

+ Icil(nz’cz B nz’t) B ng(”{ﬂz - nzat)7
N ' 4 | | |
e = Z (IC%J’Z(H%%’CZ —nzyt) = Ky (nz, o — n{ﬂf))
Jj=1
N my ' ‘ | | |
F3 (Kh s ) — K (e — 1))
j=11i=1

Thus, indeed, simultaneous translation with a finite pool can be described by a generalized

ribosome flow. Clearly the following function defines a linear first integral

N my

H(n):nz+22ng

j=1 i=1

and is a crucial factor in the dynamical analysis of the system.
Remark 4.6.12. In [117] the authors consider the following special case:
e the capacity of each site is one; that is, each cZ =1,

e the translation rate are time-invariant and obey the mass-action law; that is, each

Kg(i+1)(ng, 1-— ngﬂ,t) = )\fnf(l — ng_H) for some /\g >0,

o the initiation and attachment rates are time-invariant and are given by Kgi(nz, 1—
n{,t) = Bng(z)(l — nf) for some ﬁf > 0 and Gj(z) continuously differentiable

strictly increasing function with G;(0) =0,
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o the drop-off rates are time-invariant and are given by IC _(n] cZ ns,t) = al for

some ag > 0.

Since the drop-off rates are donor controlled the pool does not have a predefined capacity
and the amount of ribosomes in the pool are only bounded by H(n(O)) Therefore, this
special case does not fit in our compartmental framework, although, as most of our results
are a consequence of the linear first integral combined with the cooperativity of the system
they can be generalized to include donor controlled terms as well. It is assumed that
the authors consider this case to capture the fact that the capacity of the pool might be
several orders higher than the actual number of ribosomes, and thus the dependence on
the available space in the pool may be negligible. However, some physical meaning is lost
with this assumption and it might in fact lead to less precise simulations.

To see this, let us consider a network with N = 10 mRNAs with m = 5 sites. For
the sake of simplicity let )\] = ﬁl = a5 1 for each i and j, and assume that there
are no premature drop-offs and attachments. We consider initation rates G;(z) = z,
Gj(z) = tanh(2) and G;(z) = 2? and set c, = 10%. Since the equilibrium is unique on the
level sets of the first integral we set each nf = 0 and we only change n,(0). Fig. shows
the ratio of the steady state of the pool in the case of donor controlled and mass-action

production rates as we increase the ratio nzc—io) from 5-1072 to 1.

1.008 :
mass-action
tanh

.8 quadratic

= 1.006

-

)
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o

n
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<

]

n
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Figure 4.9: Steady state ratio of the donor controlled and the mass-action production
rate for various initiation rates as a function of the ratio of the total number of ribosomes

and the capacity of the pool

As expected, the steady state ratio is close to one for saturating rate functions and

for n,(0) < c¢,. However, the ratio can get higher when the total number of ribosomes
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have the same magnitude as the capacity; that is, the inaccuracy of the donor controlled
kinetics increases. While this assumption might be valid for realistic parameters of ribo-
some flows in other TASEP based flow models (especially with non-saturating kinetics)
it might be crucial to model these transitions accurately.

Effect of the total number of ribosomes. In the next simulation we follow [117,
Example 3.2] and we consider a single mRNA strand with m; = 3 sites. The initiation
rate is set to 81 = 1 while the attachment rates are 33 = 0.1 and 3} = 0. The drop-off
rates and production rate are set as ai = 0, ol = 0.01, a% = 1. We assume that the
translation rates obey the mass-action law with each )\Zl = 1. We set the initial values
to nj1 = 0 and ng(z) = ¢, as before. Fig. shows the steady state of the system as
we increase ¢, from 0 to 5 for various rate functions. One can see that in each case the
mRNA saturates as we increase the number of ribosomes and the rest of the ribosomes
are accumulated in the pool. Finally, the same effect as in Fig. [I.9] can be observed;
that is, the donor controlled detachment rates shift the steady state of the pool to higher

values.

3.5 3.5 3.5

3 ——pool
1

—n

95

2.5 ny

—n3

steady state
steady state
steady state

(c) RFM, Gy (2) = gt
3.5

——pool

w

1
—n%
-

2.5 —y

nj

steady state
steady state

(d) GRFM, G4 (z) = = (e) GRFM, Gi(2) = tanh(z)  (f) GRFM, G1(2) = 152

Figure 4.10: Steady state of a single mRNA strand in a pool modeled with an RFM
and a GRFM with mass-action translation rate and drop-off rates, and attachment rate

corresponding to different G1(z) functions

We again emphasize the versatility of generalized ribosome flows as the initiation,

translation, production, attachment and detachment rate function can be different on
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each site. For example let us consider a particular mRNA strand with saturating initation

and attachment rates given by Kl (n.,nl) = B} tanh(n,)(c} — n}), with mass-action

translation rates and with production and drop-off rates given by KL (nl,n,) = al -

1

1?@1 -n3. Fig. [4.11| shows evolution of the steady states as we increase n.(0) = c, as

before. As expected the steady states of the mRNA sites are moved to lower values.

3.5

3

2.5

steady-state

Figure 4.11: Steady state of a single mRNA strand in a pool modeled with a GRFM with
mass-action translation rate, rational fraction drop-off rates, and saturating attachment

rates

4.7 Conclusions

We considered compartmental models and their kinetic representations, called general-
ized ribosome flows, with physically meaningful reaction graph structure. We showed
that one-dimensional nonlocal particle flows with Lighthill-Whitham-Richards flux sup-
plemented with appropriate in- and out-flow terms can be spatially discretized with a
finite volume scheme to obtain special cases of generalized ribosome flows. Then it was
shown that for strongly connected compartmental models, a unique equilibrium point ex-
ists within each stoichiometric compatibility class, and this equilibrium is asymptotically
stable within each compatibility class even if the initial conditions are on the boundary
of the nonnegative orthant (except for the two trivial boundary equlibria).

Finally, we considered time-varying transition rates. We showed that time-varying
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generalized ribosome flows are persistent under mild regularity assumptions on the tran-
sition rates, and a wide set of reaction rates satisfying this assumption was characterized,
containing well-known examples such as mass-action type rates. It was shown that the
studied models can be embedded in at least two ways into the class of rate-controlled
biochemical networks originally described in [28]. This embedding allows us to prove sta-
bility with entropy-like logarithmic Lyapunov functions known from the theory of CRNs.
It was illustrated that the non-unique factorization of the rate functions gives rise to a
whole family of various possible Lyapunov functions. Finally, periodic model behaviour
was also studied, where we showed that trajectories with the same overall initial mass and
periodic transition rates having the same period (but possibly different phase) converge
to a unique periodic solution.

While the nonlocal equations considered here are based on a particular pair-interaction
coupling, alternative forms of nonlocality can lead to qualitatively different discretizations
and network structures. In the next chapter, we investigate a distinct class of nonlocal
models and show how their discretization likewise produces CRNs, though with different
topologies and interaction patterns. This further illustrates the breadth of CRN dynamics

that can arise from spatially or structurally extended systems.



Chapter 5

A kinetic finite volume discretization
of the multidimensional PIDE model

for gene regulatory networks

5.1 Introduction

Gene expression is a fundamental biological process of actually realizing DNA information
in the form of proteins in living organisms. Therefore, the (quantitative) modeling of
gene expression has been in the focus of research during the last decades [140, 141]. Gene
regulatory networks (GRNs) are complex mechanisms through which cells are able to
react to internal and external signals in a controlled way [142]. The set of techniques
successfully applied for the modeling of GRNSs is really wide [143], 144} [145]. It was pointed
out already in the 1970s that the stochastic nature of gene expression has to be taken
into consideration during modeling [146]. Experimental results and model analysis clearly
show that both translational and transcriptional bursting contribute to stochasticity in
prokaryote and eukaryote gene expression [147, [I48]. It is also known that in many cases,
stochasticity in gene expression is functionally advantageous, and it can even result in
robust phenotypes [149].

The dynamical model studied in this chapter is originated in [I50], where an analytical
approach is proposed for describing the stationary distribution of protein concentration
in living cells in the form of partial integro-differential equations (PIDEs). The model is
based on the master equation, and considers protein production in random bursts (see,
also [I51, [152]) extended by transcription autoregulation. Feasible stationary distribu-

tions for this PIDE model with a slightly modified transcription rate were derived and

103
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classified in [I53]. The so-called generalized Friedman (or multidimensional PIDE) model
was later introduced in [I54] which describes the operation of a genetic circuit of n genes
expressed into n different protein types. Since finding analytical solutions for the sta-
tionary distributions of the generalized Friedman model is not straightforward due to its
generality, [I54] proposed a numerical procedure for the computation. The approach is
based on a semilagrangian method for the discretization of the PIDE, and the computa-
tional results show that it is suitable to describe the behaviour of a wide class of GRNs
with several different regulatory interactions and protein degradation rates. The gener-
alized Friedman model and the subsequently developed simulation framework SELANSI
[155] has since been widely used for design [156], identification [I57] and control [158, 159]
of GRNs. In [I60] a truncated version of the master equation corresponding to a special
version of the one-dimensional Friedman model was proposed. As we will show later, this
can be formally seen as a semi-discretization of the PIDE and can be generalized to both

variable degradation rates and multidimensional GRNs.

Many hyperbolic conservation laws are derived in a so-called integral form, which,
in the case of sufficiently smooth solutions and fluxes, can be rewritten in their usual
differential form [I19]. However, many practical problems involve discontinuous solutions,
where shocks can develop quickly even from smooth initial data. Thus, numerical methods
derived from the differential form, such as finite differences, are expected to lose accuracy
near discontinuities. This problem can for example be mitigated by an appropriate Finite
Volume Method (FVM) based on the integral form of the PDE. Instead of computing
possibly unreliable pointwise approximations we define grid cells and approximate the cell
averages of the solution. This approach introduces a clear compartmental interpretation
of semi-discretized PDEs and can naturally capture the underlying conservation law, too.

[120].

Motivated by the above results, the aim of this chapter is to propose an efficient
novel computational approach based on compartmental discretization for the numerical
solution of the multidimensional PIDE model introduced in [154], and to use to for solving
control problems. Section [5.2] gives a brief overview of the PIDE model. In Section[5.3] we
introduce the kinetic discretization. Section [5.4] contains the qualitative analysis of the
kinetic discreziation. In Section [5.5) we perform numerical experiments. Finally, Section

[5.6] contains the control of a genetic toggle switch.
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5.2 Multidimensional gene regulatory networks

In this section we give a brief introduction of multidimensional GRNs based on [I50,
154]. We consider a gene regulatory network consisting of n different genes, denoted
by G = {DNA;,DNA,,...,DNA,}, that express n proteins X = {X1,Xs,...,X,}
via the corresponding messenger RNAs M = {mRNA;,mRNAy,...,mRNA,}. We
follow the central dogma of molecular biology, which asserts that the gene instructions
are transcribed into messenger RNAs, that are translated into proteins. The continuous
number of mRNA molecules and proteins are denoted by m,x € R™, respectively.

The promoters corresponding to each gene are assumed to switch between active
and inactive states, denoted by DN A; o, and DN A; o, respectively. The transition is
controlled by the binding of proteins. Note that in general, the feedback mechanism may
require the binding of multiple types of proteins besides the one expressed by the given
gene. For the sake of generality, we assume that any protein can repress or activate any
gene in the network. This mechanism is typically modelled by multivariate Hill functions.
We define the matrix H € Z"*", where H;; represents the Hill coeflicient of the cross-
regulation. If H;; is positive (respectively, negative), then X; inhibits (respectively,
promotes) the expression of X;.

The transcription of DN A; into mRN A; is assumed to be a first order processes
occurring with rate k%, per unit time and with transcriptional leakage ¢; € (0,1). Then

the transcription can be written as
where ¢; : R — [¢;, 1] depend on the feedback regulation mechanism. See, section |5.5|for
some examples off ¢; Hill functions. Finally, the translation rate of protein X; is defined
as
The messenger RNA and protein degradation is assumed to take the form
G(mi) = —ym; G (z) = = (@),

where 7, > 0 and 7% : R? — R, . Following [I54] it is assumed that 7’1'; > 1 in order

7s ()

to ensure the validity of the subsequent model.
We use the standard exponential distribution to model protein bursting; that is, the
conditional probability of the protein level jumping from y; > 0 to z; > y; is

xi_yi:|

1
wi(@; — y;) = -~ exp {— b

bi
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kg
where b; = -

m

With the above assumptions the probability density function (PDF) of the protein
level, p(t, x), can be modelled with the following PIDE:

op(t,x) "9 ; "~ [
5 = ; 52 (Ve (m)zip(t, )] + ;km/o Bi(zi — yi)ei(ys)p(t, ya) dyi,  (5.1)
where y; = ¢ + (y; — z;)e; and the §; functions have the following form:

Bi(z) = wi(z) — 0(x).

In [I61] the authors show the well-posedness of ([5.1]), under assumptions satisfied by our
setup, in the generalized (mild) sense; that is, for pg € £!(IR™) there exists a unique mild

solution p € C (R+; El(R”)) with the following properties:

(i) nonnegativity: if py is nonnegative, then so is the solution p(t,.) for all ¢ > 0,

/

In fact, if pg € Cl’b(Ri) for some appropriate b > 0 (e.g., in one dimension b = by),

(ii) mass conservation:

p(t,a:)d:p:/]R po(x)de.

¥ ¥
then there exists a unique classical solution p € C!'(Ry;L'(R%)). Note, that in the
probabilistic setting in applications we usually assume that pg is nonnegative and its

integral is one.

5.3 Kinetic finite volume discretization

In this section we formulate a finite volume discretization of (5.1]), the result of which is
a mass conservative kinetic system. We also note that since (5.1)) is linear (that is, if p
and ¢ are solutions, then so is p + ¢), the result of the semi-discretization is anticipated

to also be linear.

5.3.1 One-dimensional case

Let us first consider the one-dimensional Friedman model describing the temporal evolu-

tion of protein distribution given by

op(t, x) 0

ot oz [va(z)zp(t, 2)] + Ky, /Om B1(z —y)er(y)p(t,y) dy, (5.2)

with initial condition p(0,x) = po(x) that has integral one. The mass conservation of

(5.2) is well-known but the subsequent informal investigation provides further insight
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that can be transferred to the design of the numerical scheme. Integrating over R, shows

that

/O“ onlta) g, 2 / " () da = / "2 it )) do

+ kﬂn/o /0 Bi(z — y)er(y)p(t,y) dy do = lim v (x)ap(t, z) =y, - 0+ p(t,0)

=0

00 o0 (5.3)
R /0 /y Br(z — y)er (w)p(t, ) da dy

=k;/0mcl<y>p<t,y> /Ooﬁl(x—y)dxdy:o,
Yy

=0

/Ooop(t,:n)dx:/ooopo(x)dz: |

so that the equality

holds for any t > 0.

In a finite volume setting the coefficients are calculated as averages (that is, integrals)
over appropriate subdomains. Hence, as an intuition we should note that the mass
conservation property of the novel scheme should be the result of a calculation very
similar to (5.3)).

Our main goal is to perform a spatial discretization (with resolution h) to obtain an
infinite dimensional dynamical system describing the temporal evolution of the functions

{pi(t)}iez with the usual properties of a PDF; that is, we should have that:
1. 0<p;(t)foralli € Z and t > 0,
2. > 2 hpi(t) =1for all t > 0.
In order to do so, consider the set of intervals
K; = [xifé,x%] = [(i = Dh,ih], i=1,2,...

for some h > 0 and introduce the set of variables p;(t), where

1 1
t,y)d :/ t,y)dy;
!KiI/K,.p( y)dy 3 Kip( y)dy

that is, the value p;(t) is assumed to approximate the average in the cell K; and we set

Di (t) ~

the initial values accordingly. Further introduce the cell averages of the functions +} and

c1 given as
1

1
1 1 1
- d - dy.
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Let x; be the midpoint of K; for ¢ = 1,2,... and define

1 1
bi; = / Bi(zi —y)dy = / Bi(z; —y)dy,
T h/2 h,(i—1/2)h) ! ) W2 Jwi—n2.m . )
b = |K|/ Bi(zi —y)dy, j=1,2,...,i—1.

As the derivative on the right-hand side of ([5.2)) describes protein degradation (that is, a
vector field pointing towards the origin) we will approximate it with a difference quotient

of the form

0

57 D (@)ap(t, 7)) (i1 1P () = Vi _1pi(h)).

E\H

K;

Then approximating the integral in ((5.2)) with a sum yields the system
. 1 1 1 171
pi (t) E (V'L+1xz+ 1pl+1(t) Vi xi—%pl + k Z hz ]bz ]c]

P = 7 [ ) ay.

where

h, i j.
Observe, that the resulting infinite dimensional system (5.4)) is clearly a linear donor

controlled compartmental system of the form

p(t) = Ip(d),

where the infinite matrix defined element-wise as

131 21 . .
kmhljblj 7 J <z,
_%Vzlxz 1 +k71nh’zlzbzlz Cis j: i?
%%’1+1$1;+§’ j=i+1
0, j>1+1

is an infinite Kirchhoff matrix; that is, it has nonnegative off-diagonal elements (i.e. it is

a Metzler matrix) with zero column-sums.

Remark 5.3.1. In the following calculation we assume that lim;_, s ’Yll+1$l+%pl+1(t) =0,
and we will do so in the multidimensional case as well. This is a natural assumption based
on the well-posedness results of [161)] and it is satisfied if for example v is bounded and

p has finite expectation. This, however, is not trivial in the infinite case, since I' is
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unbounded with respect to (w.r.t.) the usual matriz norms. The authors are investigating
the behaviour of the infinite system, however, the derivation can be transferred to the
truncated system (described in the forthcoming section , which is of more practical

interest.

Formally, we have that

oo

oo
Zpl ZE ’Yz+1$i+%pi+1() ’YZ Z—,AZ% +/€1 ZZh%]blecj
i=1

i=1 j=1

—_

.1 1
= lim EW’ﬁﬂu%PHl(i) - EV% 0 pi(t) + ki, z:lzhzlybzlgcg
J =]
= k}an}p] Zhllybzlj
j=1
ZRLZC}M(U</ Bi(zj —y)dy + Z )dy>
j=1 [z —h/2,2;] i=j+1
L i ) h/2 i
=k D) cipi(t) Pr(y) dy + /
= ! 0 i1 1G—i=1/2)h (i j+1/2)h]

—kL Yo edn() [ By =o.
j=1 <L

so that the equality

D hpi(t) =) hpi(0) =1
=1 =1

holds for any ¢t > 0. The above facts combined also show that p;(t) < % for any t > 0.

5.3.2 Multidimensional case

Let us consider the multidimensional model (5.1) with n > 1. Define the positive step

sizes hi, ho, ..., h, and sets

= >"< [(cti = 1)hs, ashi]
i=1

where v € N™ is a multi-index. Let us note that each cell has the same size and define
= |Ka| = []}=; hi. Similarly to the one-dimensional case, for each cell K, we introduce

the function p,(t) assumed to approximate the cell average as

Pal(t) =~ ;L/ p(t,y)dy.

@

For ¢ =1,2,...,n we also compute the variables
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. . . i+
Let 2o = [z} 22 ... 2]T be the midpoint (w.r.t. each dimension) of Ko and zq 2 =

; ) . . i+1 . .
xl, £ @; that is, the variables To 2 correspond to the coordinates of the boundaries of
K,. Fori=1,2,...,n define

) 1 ) 1 ;
Voo, = / Bi(zg, —y)dy = / Bi(re —y) dy,
’ h/2 [(i—1)hi,(i—1/2)h;] ( ) hi/2 [zl —h;/2,2%] ( )

Bi(xt, —y)dy, i=1,2,...,0; — 1.
7‘7 h /(.7 1 Zvjh]

Similarly to the one-dimensional case the derivatives are approximated with difference

quotients of the form

o (@)t 2)]

1 . i+ 1 T |
~o (VoresTa *Pate; (t) = Vaa *pa(t))-
Ko ’

Approximating the integrals in ([5.1)) with sums as before, yields the system

Pa(t) = Z E('Y;Jreixzx *Pate, (t) — 72;35; 2pa(t))
i=1 "

Zk’ Zh’ e Do (£); (5.5)

Pal )dy,
h/Po Yy

where a; j = o+ (j — «;)e; and
hz/27 .7 = Oy,
h;, J# .

Again, the system is clearly kinetic and the mass conservation follows from a calculation

very similar to the one-dimensional case:

1 P o
Zpa ZZ vamm’if Pate (t) = Vota ?pa(t))

a =1
+szl Zha]ba,] ;!lgpa'l,g(t)
a =1
n
_ZZkZ thxz],] ”,jcgpa(t):Zkiangpa Zhazw] Qi gy =0.
a =1 Jj=0oy =1 a Jj=a;

=0

This shows for any ¢ > 0 that

thoz(t) = tha(o) =1,

« o

further implying that pa(t) < f for each a.
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5.3.3 Discretization on a truncated domain

In practical applications we may assume that there can only be a finite number of proteins
of each kind. This consideration is naturally backed by the fact that the solution of
is integrable so that limg_, oo p(t,x) = 0 for any ¢t > 0. Thus, we discretize over the
finite domain 2 = X?:l(O, L;) for appropriately large L; > 0 values. According to these
considerations we also assume that [, po() dz = 1.

We divide the (0, L;) intervals into INV; equal subintervals and proceed to calculate the
variables p,(0) and the coefficients 7 and c§. as before. We similarly compute bg’j for
7 =1,2,...,a; — 1, but modify bg’ai to capture the fact that the number of ith kind of
protein is maximalized in L;.

Note, that the resulting system can still be given by with the difference that
the set of variables {p,} is finite. While the bursts and degradations inherently define
some “spatial” structure between the p, variables (discussed in detail later), it might be
more useful to think of the truncated semi-discretized model as a flattened N-dimensional
system of the form .

pt) =T™p(t) with N := [] Vi (5.6)
i=1

5.4 Qualitative analysis

In this section we show that the result of the truncated kinetic finite volume discretiza-
tion is not only a mass conservative nonnegative system but it has several advantageous

qualitative properties.

5.4.1 Structural descriptions

While we could rely on the linearity of to investigate its dynamical behaviour, the
large number of variables and the complexity of the coefficient matrix T™Y) renders this
approach futile. Instead, let us focus on the inner structure of the system through its
compartmental and CRN representations. These observations will immediately imply

most qualitative properties of interest.

Compartmental representation
Consider the N-dimensional truncated system of the form ([5.5). Based on the burst and

degradation structure the system has a compartmental topology as follows:

e Fach compartment K, has an incoming edge from K., due to protein degradation
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ifa; < N; fori=1,2,...,n.

e Each compartment K, has an incoming edge from K, ; for i = 1,2,...,n and

7=1,2,...,a; — 1 due to protein production in bursts.

Clearly, the compartmental topology is strongly connected, which property is essential
for our further analysis. Based on this structure (and the flattening method) one can
easily determine the elements of the matrix L) e RVXN of .

To gain further insight into the compartmental topology, let us focus on some low-
dimensional (in terms of the PIDE) examples. Figure shows the structure of com-
partments for a two-dimensional PIDE. Degradations and bursts are denoted with red
and blue arrows, respectively. Let GV1:N2) denote the graph in Figure ; that is, a

compartmental graph of appropriate size corresponding to (5.6). Notice, that the graph
0 GO Gl

GW1N2) can be decomposed to the interconnected G 21 graphs that
are isomorphic to the compartmental graph of a one-dimensional model of size N7. This
shows that GV1:N2) is isomorphic to the Cartesian product GV x GV2) | In fact, the
GW1:N2p:Nn) - compartmental graph of an n-dimensional model is isomorphic to

X GV,

- ~
G(N1) L ¥ i
1 Kiq Ky1 |« . Kp, 1
N\ 1 Y,
(" N\
(N1)
G K19
N T y,
A
G(Nl)
N L > Kin,

Figure 5.1: Compartmental topology of a two-dimensional model. Each subsystem is

isomorphic to that of a one-dimensional model.

CRN representation
For each continuous variable p, we introduce the specie P, and assign the complex P,
to the compartment K. Then the complex composition matrix containing the stoichio-

metric coefficients of the complexes as its columns is the identity matrix I € RV*N,
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and the reaction structure is identical to the above compartmental topology; that is, the
reaction graph is identical (isomorphic) to the compartmental graph and, in particular,
is strongly connected. This readily shows that the deficiency of the reaction graph, as
defined in CRN theory [162], is zero as there are N distinct complexes, one linkage class
and a spanning tree in the reaction graph of size N — 1. Since the system is linear, the
reaction vectors corresponding to the edges of the spanning tree spans the stoichiometric

subspace. Hence the deficiency is indeed § = N —1— (N —1) = 0.

5.4.2 Long time behaviour

Asymptotic stability
By standard results on compartmental systems, since the truncated system (5.6) is
strongly connected, there is a unique positive equilibrium (that is, a stationary PDF)

p € RY that attracts every admissible initial value [163, Theorem 6.

Remark 5.4.1. As a conclusion of the above assertions a mass-action CRN can be
assigned to the truncated conservative system ((5.6) whose reaction graph is strongly con-
nected and has deficiency zero. thus, the same assertion follows from CRN theory and,

in particular, from the deficiency zero theorem [162, [167).

Furthermore, we also know that the system is Lyapunov stable with the standard
entropy-like logarithmic Lyapunov function

V(p,p) =) <pa log %a + P —pa>. (5.7)

@ a

Finally, a well-known result [I65] shows that for two solutions p(t) and ¢(t) of (5.6), the

following inequality holds:

Ip(t1) = q(t)llpy < llp(t2) —q(E2)llpr =12 > 0.

In particular, if we set ¢ = P this shows that the convergence to the unique equilibrium

is monotone in the L' norm.

5.4.3 Computing the equilibrium

We can easily approximate p by simulating the system on an appropriately large time
interval. However, such a simulation can be computationally expensive and it is not
trivial to determine the necessary time interval. Furthermore, in many applications we

may not be interested in the time evolution of the system, only in the equilibrium p.
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Instead, relying on the linear nature of the system ([5.6) we may explicitly compute the
equilibrium with the following approach.

We can incorporate the conservation into the equilibrium condition as
F(N) '
Ir''™Mp=110 0 --- 0} =€ (5.8)

where I'™) is obtained from T'™) by replacing the first row with hl}\} e RY. Since T
has a one-dimensional left kernel (by virtue of the rank-nullity theorem and the fact that
zero is a simple eigenvalue, see [166]) spanned by 1y, any N — 1 rows are independent.
To see this, assume by contradiction that not any N — 1 rows are independent. Then
there exists a nonzero vector in the left kernel of I™) that has a zero coordinate, but
then the left kernel cannot be spanned by 1. Clearly 1y is not in the left kernel of V)
and ImI'®) - Imf‘(”)7 and thus rank ') = N, hence we can find the equilibrium p by

simply solving the linear system of equations (/5.8]).

5.5 Numerical experiments

In this section, we present biologically relevant examples from the literature and compare
the performance of our method to that of SELANSI [155]. For more information about the
examples the reader is referred to [I54]. The numerical simulations have been performed
on a computer with Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz and 16 GB of RAM in
MATLAB R2022b. The solution is solved with built-in iterative solvers. The final

time and time step of the SELANSI simulations are noted for each example.

Example 1: single gene self-regulation with positive feedback

The first example is a GRN consisting of a single gene. The regulation is described by

the Hill function
K1H11 +61${IH
KlHn + xllqu ’

We consider a negative Hill coefficient, corresponding to a positive self-regulation. In this

c1(zy) =

case, as described in [I53] (see also [I50]) the stationary solution of (5.2)) can be explicitly

calculated as follows:
ki, (1—€1)

pla)=Cp M (z)a~kmee o,

Hyy . . _ .
m and C > 0 is a constant ensuring that p(x) integrates to one.

The computational times of both methods are depicted in Table from where we

where p(x) =

can observe that the FVM has also better computational efficiency compared to that of

SELANSI.
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Mesh

FVM

SELANSI

2.5 x 10* x 800

2.5 x 10* x 1200
2.5 x 10* x 1600
2.5 x 10* x 2000
2.5 x 10* x 5000

0.0335 s
0.0899 s
0.1460 s
0.3561 s
3.8066 s

1.8208 s
2.1993 s
2.5510 s
2.8866 s
7.9131 s

Table 5.1: Average runtime of 100 simula-

tions of a one-dimensional GRN with var-

ious mesh sizes.

Table [5.2shows the relative error (in the L2 norm) of the different methods compared

to the analytical solution, computed as follows:

= preglys _ VR ) —preg()”

E =
PO gl S 7y (20)
FVM (x1073) SELANSI (x1073)
Mesh
Ly =300 L;=350 L; =400 L; =300 L;=350 Ly=400

2.5 x 10* x 800  7.4358 8.6799 9.9106 29.6010  5.4881 9.2314
2.5 x 10* x 1200  4.9886 5.8169 6.6366 28.6252  4.3113 8.3388
2.5 x 10* x 1600  3.7665 4.3870 5.0013 29.5308  3.4255 8.0746
2.5 x 101 x 2000  3.0335 3.5298 4.0209 29.9408  2.8899 7.2511
2.5 x 10* x 5000 1.4271 1.4761 1.6675 31.0859  2.5960 6.0042

Table 5.2: Relative error of the simulation of a one-dimensional GRN on various domains.

Figure [5.2] shows the simulation results for different L, values.



116 CHAPTER 5. PIDE MODEL FOR GENE REGULATORY NETWORKS

Stationary probability distribution function

0.01 T
SELANSI
0.009 analytical |
FVM
0.008 s
0.007 B
0.006 s
B 0005} 1
0.004 F s
0.003 4]
0.002 B
0.001 8
0
0 50 100 150 200 250 300 350
x
(a) Ly = 350
001 Stationary probability distribution function 001 Stationary probability distribution function
SELANSI SELANSI
0.009 - analytical | 4 0.009 - e analy'tical | -
FVM FVM
0.008 | . 0.008 4
0.007 . 0.007 1
0.006 x10 ! 1 0.006 .
B 0.005 s . B 0.005 R
= =4 =
0.004 . 0.004 1 .
2
0.003 230 240 250 260 | 0.003 | 5 0
x
0.002 . 0.002 4
0.001 . 0.001 | .
0 ! L € 1 1 n 0 1 1 L L 1
0 50 100 150 200 250 300 0 50 100 150 200 250 300 350 400
X T
(b) Ly = 300 (¢) Ly = 400
Figure 5.2: Self-regulated single gene network with parameters Hy; = —4, K = 45,

e1 = 0.15, k., = 32 x 1073, by = 16 and vi(z) = 4 x 1074 The simulations are
performed with Ny = 2000, 7 = ty} = 50 and At = 0.002.

We can see that on an appropriately large domain both methods perform well, how-
ever, SELANSI seems to be more sensitive to the choice of the domain. This is assumed
to be because SELANSI renormalizes the solution in each iteration and it imposes zero
boundary condition at both boundaries, since the solution is expected to decay as x in-
creases. However, this method perturbs the solution if the domain is not set properly,
which might be the case for unknown gene regulatory network structures or parame-
ter sets. Compared to this, the kinetic discretization does not impose such boundary
conditions, does not require renormalizations and, in fact, as noted in section [5.4] the

equilibrium is strictly positive, and thus adapts better to different domains.
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Example 2: mutual activation of two genes

In this example we consider Hill functions in the form of

H H
K1212 _"_ 61.’1}2 12
al®) = —F— 5.

Hyo Hyo
Ki5" +

H. H
B K2121 +62x1 21

02($) - K2111r21 +${.121 s

where His < 0 and Ho; < 0, corresponding to positive cross-regulation or activation.
Figure shows the stationary joint PDE.
Stationary probability density function x107° Probability density function 7 = 50 x1079

x10* 8 x10~ 8
1 1

p(t, 1, 22)

300 300

=

300 350

200 250 0

25
0 wo 10 200 20 0

150
o 80 o 50 loo 19

Ty Ty
(a) Kinetic FVM with Ly = Ly = 400. (b) SELANSI with Ly = Ly = 400.
Figure 5.3: Mutual activation with parameters Hio = Hoy = —4, K19 = K91 = 70,

€= e =02, ki, = k2 =34 x1073 by = by = 18, v(z) = 72(x) = 4 x 1074,
Ny = Np = 400, 7 = ty.=50 and At = 0.005.

Note, that the GRN is symmetric w.r.t. the proteins, thus we only plot one set of
marginal PDFs. We can observe the sensitivity of SELANSI to the domain, while the
finite volume discretization is quite robust to it. In this example we can see that the
solution computed by SELANSI deteriorates not just for too small, but even for too
large domains. Since for multidimensional GRNs the analytic solution of cannot
be computed in a straightforward manner, we cannot compute the empirical error as in
the case of the one-dimensional example. Instead, we only compare the running times of
the two methods, the results of which are collected in Table Figure shows the

stationary marginal stationary PDF on multiple domains.
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001 Stationary marginal probability density function

SELANSI
FVM

T
1

0.009

0.008 L x1073 |

0.003

0.002

0.001

0 50 100 150 200 250 300 350
€1

(a) Marginal PDF with Ly = Ly = 350.

001 Stationary marginal probability density function o1 Stationary marginal probability density function

SELANSI SELANSI

0.009 F FVM | 0.009 | FVM |4
0.008 F . 0.008 | x107%

6.8
0.007 | - 0.007 |

0.006 - . 0.006

5 0.005 F q 5 0.005
~ ~

1 [S%
-3 A
0.004 os x10 B 0.004 120 130 1
0.003 — B 0.003
266
0.002 [ 1 R 0.002 i
6.4
0.001 100 120 4 0.001
0 1 . L I L 0 1 1 L 1 L
0 50 100 150 200 250 300 0 50 100 150 200 250 300 350 400
Ty Ea
(b) Marginal PDF with L; = Ly = 300. (¢) Marginal PDF with L; = Ly = 400.
Figure 5.4: Mutual activation with parameters Hios = Hoy = —4, K19 = Ko1 = 70,

€61 = e =02, kb = k2, =34 x1073 by = by = 18, vl(z) = +2(x) = 4 x 1074,
Ny = Ny =400, 7 = ty.=50 and At = 0.005.

Example 3: mutual repression of two genes

In this example we consider Hill functions in the form of

B Kg”Jrela:f” Hoy +62$H21

P S — 21 U el
Cl(m) = Kglz —|—.CL'§112 ) C2($) = KQI_{ZI —|—l‘{121 )

where His > 0 and Ha2; > 0, corresponding to negative cross-regulation or repression.

Figure shows the stationary joint PDF and the marginal stationary PDF on multiple

domains. Again, the GRN is symmetric w.r.t. the proteins and the same dependence on
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the domain can be observed in the case of SELANSI. The running time of both methods

with various mesh sizes are presented in Table [5.3]

Stationary probability density function x107* Probability density function 7 = 50 x107*
o 2‘ 1.2 1.2
1 1
410.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2

L1

(a) Kinetic FVM with L; = Ly = 400.

Stationary marginal probability density function

0.02

0.018 -

0.016 -

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0.014

SELANSI
FVM |

0.0135

0.013

—
—

8
25
I\S‘ 0.0125

0.012

0.0115

0.02

0.018

0.016

0.014

0.012

0.01

0.008

0.006

0.004

0.002 |

0

Z

(b) SELANSI with L; = Ly = 400.

Stationary marginal probability density function

0.014
0.0135

0.013

—
—

8
— 5
= 0.0125

0.012

0.0115

SELANSI
FVM -1

20

0 50 100 150 200 250 0 50 100 150 200 250
x1 Ty

300 350 400

(c¢) Marginal PDF Ly = Ly = 250. (d) Marginal PDF with L; = Ly = 400.

Figure 5.5: Mutual repression with parameters His = Ho1 =

16, vi(z)

4, K19 = Ko1 = 45,
€1 = € = 0.15, kl, = k2, =32 x 1073, by = by = = 92(x) = 4 x 1074,

Ny = Ny =400, 7 = ty. = 50 and At = 0.005.

Example 4: self and mutual regulation

In this example we consider two genes, one of which is activated by both, the other is

repressed by both. The corresponding Hill functions can be given as follows:

Ellx{{nxéﬁz + 612Kﬁ11x§12 + 613x{1’11]'(g12 + Kﬁqulz
x{ﬁlxéfu +Kﬁllx§12 _'_.,L.{Illng +K511Kg12

621$11LI21$§22 + 623Ké7{21$£{22 + 61223521[{%22 + KﬁQIKgQQ
x{{mxéfm +K§21x§22 —}-.chleg” +Kﬁ21 211;22 ’

where Hi1 < 0, Ho1 < 0, Hio > 0 and Hss > 0. We note that the above functions are

c1(x) = ,

co(x) =

generalized Hill functions, and thus have to be defined in a separate file for the SELANSI

simulation. Figure [5.6] shows the stationary joint PDF.
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Stationary probability density function x107%
x10°%
2

0 50
1

(a) Kinetic FVM with Ly = 150, Lo = 200.

Probability density function 7 = 50 le 3
%103
2

0.8
10.6
0.4
0.2

0

0 50
z

(b) SELANSI with L; = 150, Ly = 200.

Figure 5.6: Self and mutual regulation with parameters Hiy = —4, Hoy = —6, Hi3 =
Hyy = 2, K11 = K12 = 45, Ko1 = Koo = 70, €11 = €21 = 0.002, €12 = 0.02, €32 = 0.1,
€13 = €23 = 0.2, kL, = 4x1073 k2, = 8x 1073, by = 10, by = 20, vL(x) = v2(z) = 4x1074,

Ny = Ny = 400, 7 =t} = 50.

Stationary marginal probability density function

0.1
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(a) Marginal PDF with L; = 150, Ly = 200.

o1 Stationary marginal probability density function

= SELANSI

0.09 | FVM
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80 100

(¢) Marginal PDF with L; = 100, Ly = 150.
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(b) Marginal PDF with L; = 150, Lo = 200.
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(d) Marginal PDF with L; = 100, Ly = 150.

Figure 5.7: Self and mutual regulation with parameters Hiy = —4, Ho; = —6, His =
HQQ == 2, Kll == K12 == 45, K21 == K22 == 70, €11 =— €21 — 0002, €12 = 002, €29 — 0.1,
€13 = €23 = 0.2, kL = 4x1073 k2, = 8x1073, by = 10, by = 20, v1(z) = v2(z) = 4x1074,

Ny = Ny =400, 7 = tyl = 50.
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Figure shows the marginal stationary PDF on multiple domains. This example is
not symmetric w.r.t. the different kind of proteins, thus we plot both marginal density

functions. The running time of both methods with various mesh sizes are presented in

Table 5.3

Example 5: bacterial competence

In Bacillus subtilis, competence is a probabilistic and transiently differentiated state. In
this physiological state bacteria has the capability of DNA uptake from their environment.
The phenomena is modelled with a two-dimensional gene regulatory network, consisting of
the master regulator self-activated ComK which represses the transcription factor ComS
[167]. Protein degradation is mediated by the MecA complex. After ComK (ComS) binds
to the complex an intermediate complex MecA-ComK (MecA-ComS) complex is formed,
in which the ComK (ComS) protein is degraded by the ClpP-ClpC proteases [16§]. In-
stead of explicitly modelling the effects of the MecA complex, the authors consider a
variable degradation rate. Using this reduced order stochastic differential equation de-
veloped in [I68] a discrete stochastic CME model is presented in [169], simulated using a
Monte-Carlo based Stochastic Simulation Algorithm. A corresponding PIDE is presented
in [I54] with parameters adapted from the CME model of [I69] as follows: «aj = 0.0028,
Br = 0.049, Bs = 0.057, K;, = 100, K, = 110, d;, = d; = 0.0014, I', = 500, I'y = 50,

bl = 2, bQ = 5, krln = 70%;;6’“, k;?n = f—;, €1 = akcfﬁk, €y = O, H11 = —2, H21 = 5. The

coefficient functions are set as:

(@) KM 4 e () 0L L's

cale) = —F———F—, r) = )

1 K,?ll + x{'lu Va Il + Dxq + Tixo
KH21 +€ xH21 5 F F

co(x) = Q, ’Y%(m) -

K 4 g T Tl + Dazy + Dy’

We note that the currently publicly available SELANSI version cannot handle variable
degradation rates, thus we could not reproduce the plots of [154]. Figure shows the
stationary PDFs and its contour plot, both of which are in accordance with the plots of
[154]. The running times of the finite volume method for various mesh sizes are shown

in Table
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) Contour of stationary probability density function

Stationary probability density function

%1071
4

T

Figure 5.8: Kinetic FVM of Example 5 with N7 = Ny = 400.

FVM SELANSI
GRN
1002 2002 3002 4002 1002 2002 3002 4002
Ex. 2 0.2223 s 1.6485 s 5.2159 s 11.5707 s 9.0423 s 21.5449 s 40.6726 s 71.1792 s
Ex. 3 0.2128 s 1.3679 s 4.5709 s 10.3817 s 9.0443 s 21.3982 s 40.7456 s 72.3397 s
Ex. 4 0.3241 s 1.8639 s 5.7925 s 12.3953 s 9.1355 s 22.0259 s 41.9351 s 73.4001 s
Ex. 5 0.7064 s 4.9921 s 17.0973 s 45.0809 s — — — -

Table 5.3: Average runtime of 100 simulations of several two-dimensional GRNs with

various mesh sizes.

5.5.1 Memory requirement of the kinetic FVM

A notable technical challenge in our method is the efficient assembly and storage of the
coefficient matrix ITW). For n > 2 one should store T'N) in a sparse representation, but
even then the memory requirement can grow quickly. However, we can explicitly calculate
the number of nonzero elements of the matrix to aid the design of the simulation. To
be precise, the number of nonzero elements of the coefficient matrix corresponding to an

n-dimensional PIDE discretized on a grid of size [[;—; IV; is as follows:

> (S0 I Soos-nTTw+ [T

i=1 \k=1
7 )
j7é ~ J;é diagonal
bursting of protein Xj; degradation of X;
n 1 n n
=3y (=) T o f - ST + [T
i=1 j=1 i=1 i=1 j=1
J#i J#i

:_anNJr (ZN)(i[lNi)—i-(n—i-l)ﬁNz (i;)(ﬁ )
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1 n n 2 n
= 2<n+2+ZNi—ZNi> (H]\G)
=1 =1 =1
Figure shows the number of nonzero elements on an equidistant grid for a matrix
corresponding to a mesh of size N = 100 (that is, the matrix has 10% total elements)
as a function of n. The logarithmic scaling suggests that as the dimension of the PIDE
is increased, we can increase the number of finite volume cells on the grid even without

exceeding the memory limits.

L0 Nonzero elements for N = 1010
I3 . . : : . . . .

101 |

100 L 3

104 L

# of nonzero elements
.

12 [ ]
10" E [ ] °

1010

Figure 5.9: Memory requirement of an n-dimensional GRN with N = 10'° total number

of cells.

5.6 Control of a genetic toggle switch

In this section we introduce a version of the kinetic FVM, modified to be suitable for
control design. We wish to employ an exogenous control on the population level through
appropriate inducers affecting protein bursts; that is, we assume that ¢;(x) = ¢;(x, I)
in (5.1), where I denotes the concentration vector of the inducers. In order to adhere
certain biological constraints we assume that the range of ¢; remains in € (0,1). For the
sake of simplicity we assume that I € R™ and note that we set I; = 0 if we do not control
the production of protein P;.

We slightly modify the kinetic FVM in the case of the functions ¢; and instead of
computing their average over the cells, we use their midpoint values; that is, we set

i

Ca

(I = ¢i(za,I). Let us collect the degradation coefficients ~%, burst coefficients bfg’j
and controlled coefficients ¢t (I) into the matrices G, B and C(I), respectively. Then

(5.6)) can be rewritten as

p(t) = Gp(t) + (B © C(I))p(t),
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where ® denotes the Hadamard (or elementwise) product.
We note that the Lyapunov function given in (5.7) simplifies to the well-known
Kullback-Leibler divergence in a mass-conservative setting, given as follows

N

N
Vip.p) =) <pj log % + ] —pj> =Y log % = Drcw (pllp"):
j=1 J j=1 J

While the Kullback-Leibler divergence is not a metric as it is not symmetric and fails to
satisfy the triangle inequality, it is a nonnegative measure and it is often used to estimate
the difference of discrete probability distributions [139].

As described before, the mesh size directly determines the number of variables of the
system . We consider an explicit Euler scheme on and denote the approximation
of pa(ty) as pk. Clearly we have that Yoa pktl = Yoa pk for each k > 0 since is
governed by a linear conservation law. An elementary computation shows that if the step

sizes satisfy the following Courant-Friedrichs-Lewy (CFL) condition, then pf > 0 holds

for any k > 0 and a:

1. . h;
At ) [ — " e <1.
Atz:rggéc (hiyz(:n)xl + k;, exp ( 2bi>cz(m,1)> <1

We note that the ¢; functions are usually Hill-type saturating functions with the property
c¢i(z,I) <1 and that exp (_2%) < 1, thus the second term is bounded by k¢ . This shows
that the degradation terms are often more dominant, hence in applications of biological
relevance the CFL condition can be estimated as

n
1 .
At Z e maé(v;(a:)xi <1
i=1

i TE

Of course we can normally set larger At values when applying a more sophisticated time
discretization method. However, this demonstrates a further benefit of the FVM-based
population level control, since our investigation shows that usually one can resort to
very coarse grids leading to smaller systems and larger admissible temporal steps. The
computed control trajectory (or the steady-state constant control) can then be applied
to a system with a finer mesh.

A crucial question is what kinds of probability distributions can be reached from an
initial one. The considered control structure is strictly positive and bounded from below
and above, thus it is anticipated that we cannot reach arbitrarily low and high expected
values. However, relying on the above observations we can estimate the reachability set
of the system numerically by computing the considered statistical measures of the unique

equilibrium for a simple scan of control configurations. The continuous dependence on
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parameters (see, [LI70, Chapter V|) shows that the reachability set should be a connected
set in R™, thus we could even interpolate control values based on an appropriately fine

scarll.

A natural design principle of PID controllers can be to use as few control terms as
possible. In many applications a well tuned proportional controller may suffice. This is
not the case for semi-discretized gene regulatory networks as the above discussions show
that in general we need nonzero steady-state control; that is, the steady-state error of the
controlled system will be proportional to the required control value. While integral control
has proven to be reliable for biomolecular networks [I71], we found that its performance
can be inferior to proportional-integral control. In certain cases introducing a derivative
term could further increase the convergence speed or reduce overshoots and oscillations,

but it does not seem to be necessary.

We consider the classical toggle switch configuration consisting of two repressible
promoters in a mutually inhibitory network. We introduce two corresponding inducers,
each affecting one of the promoters. Our goal is to shift the expected values of the
stationary probability density to some prescribed values. Figure[5.10|shows the structure

of the controlled gene regulatory network.

_——
express

inhibit
inhibit €xpress

Figure 5.10: Structure of the gene toggle switch.

Following [I72] we introduce the parameters 6y,,0x, and py, associated with the in-
ducers’ effects in the protein regulation. The burst coefficients are given by the following
Hill-type functions

Kip(h)" + ezl
ci(x,I) =ci(w2, 1) = )
( ) ( ) Klg(Il)H +:L'5I
Ko1 (1) + egzl!
Koy (I)H + 21’

CQ(iB, I) = CQ(iL‘l, Ig) =
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Il 12261
K12(Il) = 0)(2 1+ <9> s

I

T Ky
Kgl(lg) = 0X1 (1 + <92> )

I

We consider H = 4 and Table shows the rest of the parameters of the system.

with

v ki bi e Ox, 0 1,
1 12 6 0.1 31.94 11.65 2
1 7 013 9.06x107% 2

Table 5.4: PIDE parameters of the gene

toggle switch.

First, we compute the equilibrium of the open-loop system (that is, when I} = Iy = 0)
and then apply a PI controller to shape the protein density function. We consider a simple
population level controller based on the expected values of the number of proteins. The
desired and actual expected values are denoted as mj, mb and my(t), ma(t), respectively.
We note, that we may use other statistical measures, for example the modes of the
marginal probability density functions as in [I59]. Defining the errors e; (t) = mj —mi(¢)

and ez (t) = mb — ma(t) the dynamics of the PI controller is of the form

t

L(t) =1 + Kbey(t) + K}/ e1(s)ds,
0
t

L(t) =19 + K2ey(t) + K?/ ea(s)ds,
0

where we assume based on biological constraints that I; € [0,50] and I € [0,1]. The
initial values are set as I = 20, I3 = 0.25 and the feedback gains, based on [172} [159],
as Kp = 60, K} =20, K3 = 2.5 and K? = 6.94-107'. We note that for a new model
these values could be obtained through the linearization of a coarse discretization. Figure

shows the open-loop equilibrium, while Figures[5.11b|and [5.11¢show the closed-loop

equilibrium for m] = 41 and m3 = 55 on a 300 x 300 and a 50 x 50 mesh, respectively.
Table [5.5] shows the performance of the FVM with an explicit Euler discretization on

different mesh-sizes with the same CFL ratio.

50 x 50 100 x 100 200 x 200 300 x 300
0.2087 s 2.4426 s 20.7634 s 90.4794 s

Table 5.5: Average runtime of 100 simula-

tions
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Probability density function 7 = 100.00 %107 Probability density function 7 = 110.00 %107 Probability density function 7 = 110.00 %107
5 5 5

250 300

(a) Open-loop system on 300 x (b) Closed-loop system on (c) Closed-loop system on 50 x
300 mesh. 300 x 300 mesh. 50 mesh.

Figure 5.11: PI control of the genetic toggle switch on various mesh sizes with prescribed

expected values m] = 41 and mj = 55.

Time-evolution of the Kullback-Leibler divergence Empirical reachability set

90

0.6

constant control
PI control 80 -
P control

70 F

60 -

40 +

30 -

20

10 - L L L L L
2.5 3 10 20 30 40 50 60 70 80

Eil?l

(a) Time-evolution of the Kullback-Leibler di- (b) Empirical reachability set computed on a
vergence of the PI control and the constant con- mesh of size 50 x 50 for 200 equidistant control

trol. values I; € [0,50] and I, € [0,1].

Figure 5.12: Self-regulated single gene network with parameters Hiy = —4, K1 = 45,
€1 = 0.15, k}, = 32 x 1073, by = 16 and v(z) = 4 x 1071 The simulations are
performed with N7 = 2000, 7 = ty2 = 50 and At = 0.002.

Figure shows the performance of the PI control and the constant control mea-
sured as the time-evolution of the Kullback-Leibler divergence of the state and the equi-
librium. While in this case the PI control outperforms the constant control, it is clear that
the monotonicity cannot be guaranteed, while in a constant control setting Dy (.|[p*) is
known to be a Lyapunov function, thus it is strictly decreasing. We emphasize that the
control is based on the error of the expected values, not on the Kullback-Leibler diver-
gence. Figure shows the estimated reachability set of the system discretized on a

50 x 50 mesh. For 200 evenly spaced control values I; € [0,50] and I3 € [0, 1] we compute
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and plot the expected values of the protein molecules. Each point has color represented
with an RGB triplet, where the green channel is constant and the red and blue channels
correspond to I; and I, respectively. The black polygon in the background is the filled

boundary polygon of the computed points.

5.7 Conclusions

A novel discretization scheme was proposed in this chapter for the simulation and anal-
ysis of multidimensional PIDE models used in the stochastic dynamical description of
gene regulatory networks. It was shown that using an appropriate finite volume scheme,
a fully conservative linear compartmental dynamics is obtained in ODE form. The in-
terconnection structure of the discretized system was studied in detail, and it was shown
that the associated directed graph is always strongly connected. Therefore, the theory
of kinetic and compartmental systems can be used to conclude that the equilibrium of
the discretized dynamics representing the stationary distribution of molecules is unique
and globally stable for any biologically meaningful parameter values in the PIDE model.
Moreover, the stationary distribution can be obtained by solving a set of linear equa-
tions without performing the time-domain simulation. The memory requirement of the
method can be precisely pre-computed based on which the applicable resolution can be
determined. Five illustrative examples were presented to show the operation and per-
formance of the method. Whenever possible, the obtained solutions and running times
were compared with those given by the SELANSI toolbox, and these comparisons clearly
justified the advantageous properties of the proposed approach both in terms of precision
and performance. The compartmental description can be a basis of further dynamical
analysis or controller design for stochastic gene regulatory network models.

The networks obtained by discretization of nonlocal models thus far can be interpreted
as compartmental models, where each node represents a distinct spatial or functional unit.
In the final chapter, we extend this perspective further by introducing quantum graphs,
a framework in which compartments are connected by partial differential equations that

model continuous transitions along edges.



Chapter 6

Domain decomposition for elliptic

problems on metric graphs

In this chapter we develop a Neumann-Neumann type domain decomposition method
for elliptic problems on metric graphs. We describe the iteration in the continuous and
discrete setting and rewrite the latter as a preconditioner for the Schur complement
system. Then we formulate the discrete iteration as an abstract additive Schwarz iteration
and prove that it converges to the finite element solution with a rate that is independent
of the finite element mesh size. We also show that the condition number of the Schur
complement is uniformly bounded with respect to the finite element mesh size. We
provide an implementation and test it on various examples of interest and compare it to

other preconditioners.

6.1 Introduction

We consider a quantum graph; that is, a metric graph G equipped with an elliptic differ-
ential operator on each edge and certain standard vertex conditions. The graph consists
of a finite set V of vertices and a finite set E of edges connecting pairs of vertices. We
assume that the graph is simple and does not contain parallel edges or loops. Let n = |V|
denote the number of vertices and m = |E| the number of edges. We assume that the
graph is directed; that is, each edge has a specified (but otherwise arbitrary) orientation,
and thus an origin and a terminal vertex. Each edge e € E is assigned a length /. € (0, 00)
and a local coordinate x € [0, £e].

A function u on a metric graph G can be defined as a vector of functions and we write

u = (Ue)ecE, and consider it to be an element of a product function space, to be specified

129
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later. Let ue(v) denote the value of v at v € V along the edge e € E.

To define the vertex conditions, let us denote by E, the set of edges incident to the
vertex v € V, and by d, = |E,| the degree of v € V. We denote by int(G) the set of vertices
with degree d, > 1 and by 0G the set V\int(G). We seek solutions that are continuous
on G and satisfy the Neumann-Kirchhoff (often called standard) condition, given as

Z ub(v) =0, vev,

ecky
where the derivatives are assumed to be taken in the directions away from the vertex.
When there are (variable) diffusion coefficients or conductances present, represented by
the function ¢ = (ce)eck defined on the graph, the Neumann-Kirchhoff condition is defined

as

Z ce(V)uL(v) =0, vev.

ec Ev

If dy = 1, then this reduces to the classical zero Neumann boundary condition.
In order to write the vertex conditions more compactly, let us define the vector of

function values at v € V as
Uv) = (ue(v))eeEv e R%

and the bi-diagonal matrix

Iv — ER(dv_l)de.
1 -1

Then IL,U(v) = 0 € R¥~! implies that the function values along the edges in E, coincide

at v € V. Similarly, we define
U'(v) = (u'e(v))eeEv e R,
the vector of function derivative at v € V and the row vector

Cv)" = (cel (V) Cen(V) ... Cey (v)) e Rxdv,

Then C(v)"U’(v) = 0 implies that the function u satisfies the Neumann-Kirchhoff con-
ditions at v € V.

Then a quantum graph can be formally written as
—(ceul) () + pe(z)ue(z) = fe(x), xz € (0,0), ecE, (a)
0=LU(v), v € int(G), (b) (6.1)

0=C\) U (v), vev, (e
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where the function p = (pe)ece represents a potential. The exact assumptions on the

functions u, ¢, p and f = (fe)ece are to be defined later in

We wish to approximate the solution of in the finite element framework. In
[173] a special finite element is assigned to the vertices that have a star shaped support
on the neighbouring edges ensuring the continuity of solutions, and use standard finite
elements on the edges. Then the authors prove usual error estimates and an upper
bound for the Neumann-Kirchhoff residual of the discrete solution. However, the size of
the corresponding stiffness matrix can grow quickly and it loses its banded (tridiagonal)

nature compared to one-dimensional problems.

To overcome such issues, we investigate a Neumann-Neumann type nonoverlapping
domain decomposition method. The mathematical background of overlapping domain de-
composition methods originate from [I74], which was further developed in [I75] 176 177].
Later nonoverlapping methods gained attention due to their natural parallelism and ef-
ficiency in numerical applications along with the growth of high performance comput-
ing [178, 179, [180]. Many variants have been developed since, such as Lagrange multi-
plier based Finite Element Tearing and Interconnecting (FETI) methods [I81], [182], least
squares-control methods [183] [184], and multilevel or multigrid methods [185] 186 [187].
In particular, Neumann-Neumann methods can be traced back to [I88| 189, 190] 191].
For introductory surveys we refer to [192] 193], see also [194, Chapter 7|, while more
thorough theoretical background and historical overview can be found in [195] 196, 197].
While certain domain decomposition methods have been successfully designed and ap-
plied for optimal control on networks [198], 199, 200, 201] and its theory was established
in [202], to the authors knowledge, the performance and the convergence of Neumann-
Neumann type iterative substructuring methods was never addressed. First, we rewrite
the method as a preconditioner for the Schur complement system, then rigorously show
via the abstract additive Schwarz framework that the iteration converges to the finite
element solution with a geometric rate that is independent of the finite element mesh
size, see Theorem [6.3.6l While preparing for this proof we show in Corollary [6.3.4] that
the condition number of the underlying Schur complement is uniformly bounded with
respect to the finite element mesh size. The chapter is organized as follows. Section [6.2
contains a brief overview of the abstract problem, the corresponding weak formulation
and its FEM solution, and the abstract additive Schwarz framework. In Section [6.3] we
introduce the Neumann-Neumann method and prove its convergence to the FEM solution

through the Schwarz framework. We also formulate the method as a preconditioner to
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the Schur complement system. We note because of the quasi-one-dimensional nature of
the problem we can use powerful tools like Sobolev’s embedding, and thus our proofs are
much simpler and more transparent then that of classical domain decomposition methods
in two or more dimensions. Finally, in Section we demonstrate the strength of our

approach through various examples and compare it to other preconditioners.

6.2 Preliminaries

Let L?(a,b) be the Hilbert space of real-valued square-integrable functions equipped with

the norm
b
2
T / f@)[de,  feL’(ab),

and L*°(a,b) be the Banach space of real-valued essentially bounded functions equipped

with the norm

||f||L°°(a,b) = ess Sup‘f(l‘)|, fELOO(a’b)'

z€e(a,b
Let H k(a, b) be the Sobolev space of real-valued square-integrable functions whose gen-
eralized derivatives up to the kth order are also square-integrable, equipped with the

norm

,  feH"a,b).

1 1oy = i | £9]
j=0

Finally, let Cla, b] be the Banach space of real-valued continuous functions equipped with

2
L?(a,b)

the supremum norm. Using these, we define the Banach spaces

L*G) =@ L*0.L), LG =EPL¥0,L), H*G) =D H"0,L)

ecE ecE ecE

endowed with the natural norms

lullZa6) = D luellZ20.0s u = (ue)eck € L*(G),
ecE

e () = max [[tel| Lo o,6,), u = (ue)ect € L>(G),

lullFree) == D luellzm 0.0, u = (ue)ece € H(G).
ecE

We note that the spaces L?(G) and H¥(G) are Hilbert spaces with the natural inner

products. Finally, we define the space of continuous functions defined on G as

C(G) = {u = (ue)ece|LU(V) = 0, Ve € E : ue € C[O,Ee]}.
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6.2.1 The abstract problem

On L%(G) we define the elliptic operator

d d
Amax := diag <_dx <Ced$> +pe> s D(AmaX) = HQ(G)'

ecE

We further define the boundary operator B : D(Apmax) — ) by

(IVU(V)) vev

Bu =
(C(v)TU'(v))

] , D(B) = D(Amax),

vev
where the boundary space ) is isomorphic to R?” endowed with the standard inner

product. Finally, we define
A = Anax, D(A) := {u € D(Apax) : Bu= Oy}.

Throughout the chapter we assume that ¢ = (ce)e cE ¢ G — R is a positive Lipschitz

function, that the function p = (pe) € L*(G) satisfies ess inf,cg p(x) > po for some

ecE
po > 0, and that f = (fe)eeE € L?(G). Using this, we can reformulate (6.1 as follows:
find v € D(A) such that

Au = f. (6.2)

While (6.2) is well-posed w.r.t. a classical solution [203], Proposition 3.1], for our purposes

it is convenient to introduce a weak formulation of (6.1)).

6.2.2 Weak formulation and FEM

The corresponding bilinear form a is defined as

a(u,v) = Z (/ce(x)u’e(a:)vé(:c) dz + /pe(x)ue(:n)ve(:n) d:z:),

ecE €

D(a) = HY(G)NC(G),

see [204] Lemma 3.3] and [205, Lemma 3.4]. We highlight that the Neumann-Kirchhoff
condition do not appear in this bilinear form or in its domain. Thus, we seek a solution
u € D(a) such that

a(u,v) = f(v),  veD(a), (6.3)
where f(v) := (f,v)2()- It is well-known that under our assumptions the symmetric

bilinear form a(-,-) is bounded and coercive, and thus (6.3 is well-posed in light of

the Riesz representation theorem. Moreover, the unique solution of (6.3]) is the unique

solution of (6.2]).
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Following [I73] for the sake of notational simplicity we consider an equidistant dis-
cretization on the edges. This approach and our subsequent analysis can be trivially

generalized to the nonequidistant case. We divide each edge e = (v§,vf) into ne > 2

intervals of length he € (0,1). For the resulting {:L’?} , ) nodes we introduce the
j:]-a seeyTle—
standard basis {1/1?} of hat functions
j=1,2,...;ne—1
|25 —=| .
1-— itz e [xe- x$ ]
he J=1 5410
¥j(z) =
0, otherwise,

where z§ = v; and x5, = vj. These functions are a basis of the finite-dimensional space
Vie C H}(0,€e) N C[0, 4] of piecewise linear functions.
To each v we assign a special hat function ¢, supported on the neighbouring set W,

of the vertex defined as
W, = ( U [v,xﬂ) U ( U [a:fle_l,vo.
ecE:vg=v ecE:vj=v

Then ¢, is defined as

The if ¢ € Wv,

0, otherwise,

where x¢ is either 0 or /. depending on the orientation of the edge.

We define the space
(0= (@) o wunle e
ecE

of piecewise linear functions. Note, that V,,(G) € H'(G) N C(G) by construction. Any

function wy, € V3(G) is a linear combination of the basis functions:

ne—1
wn(e) =D D a5e5(@) + 3 Bvv(a).
ecE j=1 vev

Thus the solution of (6.3) can be approximated by finding uj € Vj(G) such that
a(uh,vh) = f(vh), vp € Vh(G) (6.4)

Equivalently, we can test only on the basis functions. Since the neighbouring set of
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distinct vertices are disjoint we have that

Ne—1

a(wn,UE) = 32 3 [ catf ' + paut) do
eckE j=1 €
+ Zﬁv / (Ce¢v/¢2/ +pe¢v¢]§) dl’ = f(wlf;% k = 1) 27 R ne_l) € E E7
vev €
o (6.5)
afwn, ) = 30 3 0 [ (et + pein) do
ecE j=1 €
+30B [ eat// + pedud) do = F0R). vEV.
vev €

Let us denote by

u u§ Uy,
e e
Ug u . u$ Uy,
u = ) UE = . ; U = ) uy =
uv :
e
ur Up—1 Uy,

the vector of values that define the finite element function

Ne—1
up () = Z Z uquj(‘r) + ZUV¢V(I)’
ecE j=1 vev
and by
fe T fur
lefE], A R T O P o
Iv : : :

fer e—1 Jun

the vector of values
fi= [fupde. f= [ pods.
e Wv
Then (6.5) can be rewritten as
Au=f, (6.6)
where the stiffness matrix A has a block structure as follows:

A Apy
Ave Ay

Be  Bgy
Bve By

Here

1. the matrix Ag = diag(Ae)ece is block diagonal and the entries of the tridiagonal

matrix Ae are given by

[Aebszcew;’wz’dx, G k=1,2,...,me—1
e



136 CHAPTER 6. DOMAIN DECOMPOSITION FOR QUANTUM GRAPHS

2. the entries of the blocks of A—lE—V = Avg = (Ae)ecE are given by
[Ae]\,k:/ ced/ vy dz, k=1,2,...,ne—1, veV,
Wy
3. the entries of the diagonal matrix Ay = diag(A,)vev are given by

A, = / ced'd’ dz,
Wy

4. the matrix Bg = diag(Be)ecg is block diagonal and the entries of the tridiagonal

matrix Be are given by
(Balji = /epew;'zpzdx, k=12 ne—1
5. the entries of the blocks of BETV = Bve = (Be)eck are given by
[Be]vk:/wpe¢vwzdm, k=1,2,....,ne—1, veV,
6. the entries of the diagonal matrix By = diag(By)yecv are given by

B, = / DePy@Py dx .

Similarly to standard error estimates in the FEM framework the H'(G) error of the finite
element solution u;, and the weak solution u is O(ﬁ), where b := maxecg he and the
L2(G) error is O(h?), see |[I73, Theorem 3.2] for the special case when ¢ = 1 and [203,

Propositions 6.1-6.2] for the general case.

6.2.3 Abstract additive Schwarz framework

In this section we recall the abstract Schwarz framework based on [206], 197]. Let V be a

finite dimensional space with the inner product b(u, v) and consider the abstract problem
b(u,v) = f(v), veW (6.7)

Let
V=Vi+Vo+4+---+Vy

be a not necessarily direct sum of spaces with corresponding symmetric, positive definite
bilinear forms b;(-, -) defined on V; x V;. Define the projection-like operators T; : V +— V;
by

bi(Tiu, v;) = b(u,v;), v; €V;
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and let
T=T1+T15+---+1Tn.

Note that if b;(u,v) = b(u,v) then the operator T; is equal to the b(:,-)-orthogonal
projection P;. However, the generality of this framework allows the use of inexact local

solvers.

The operator T is used to equivalently reformulate as

N N
Tu=g= Zgz‘ = ZT@'U, (6.8)
i=1 i=1

where g; is obtained by solving
bi(gi,vi) = b(u,v;) = f(v), v; € Vi.

The following theorem is the cornerstone of the abstract additive Schwarz framework

[206, Theorem 1].
Theorem 6.2.1. Assume that

(1) there exists a constant Co > 0 such that there exists a decomposition u = Zz]\il U

for allv € V', where u; € V;, such that
N

i=1

(ii) there exists a constant w > 0 such that the inequality
b(u, u;) < wbi(ug, u;), u; €V;
holds fori=1,2,..., N,
(iii) there exist constants €;; > 0 such that
b(ug, uj) < eijb%(ui,ui)b% (uj,uy ), u; € Vi, u; €V,
fori,j=1,2,...,N.
Then T is invertible and

Cy ?b(u,u) < b(Tu,u) < p(E)wb(u,u),  uweV,

N
ij=1"

where p(E) is the spectral radius of the matriz € = {e;;}

Theorem ensures the existence of a unique solution of and provides the
bound #(T) < Cy2p(€)w for the condition number of T w.r.t. the inner product b(-, ),
through its Rayleigh quotient. Thus, an upper bound can be computed for the geometric

convergence rate of a conjugate gradient or minimal residual method applied to .
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6.3 Neumann-Neumann method

In [I73] the authors proposed a nonoverlapping decomposition, where each subdomain
consisted of a single edge. We generalize this approach by decomposing G into arbitrary
disjoint (w.r.t. its edges) subgraphs {G; = (V;, Ei)}i:1,2,..‘,N with n; = |V;| and m; = |E;|.
We note that each subgraph is itself a metric graph and that a subgraph may consist of
only one edge. The set of vertices that are shared on the boundary of multiple subgraphs
will be denoted with I" and called the interface. The corresponding function values are
denoted as up = (u(v))

vel™

6.3.1 Continuous version

The idea of Neumann-Neumann methods is to keep track of the interface values and itera-
tively update these values based on the deviation from the Neumann-Kirchhoff condition.
Formally, we start the algorithm from a zero (or any inexpensive) initial guess u%. For

n > 0 the new iterate is computed as follows: first we solve the Dirichlet problems

Fo(@) = —(cett 2 Y (@) + pe(a)i B (@), @ e (0,4, e € Esy (a)
0= I,U2 (), veViT, (b)
(Dl) k k+1
up(v) =U; 2(v), veV;NnT, (¢
0= Ci(v)TUer%/(v), veVAL (d)

Here the function C; is the restriction of C' to G;. Note, that we impose natural boundary
conditions on the set of vertices 0G; N 9G, but we will still refer to these problems as

Dirichlet problems. Then we compute the solutions of the residual Neumann problems

0 = —(cewt ™Y (x) + pe(2)wE+ (2), z € (0,0), e €Ei, (a)
0= LW ), veVAD, (b)
(V2) 0=Ci(v)TWH (v), veVi\l, (o)
3 C’i(v)TUZH%/(v) = Ci(v) T WY (v), veV,nT. (d)
\ veV;

Finally, we update the interface values as

W) = k() =63 wbt(v),  ver,
eGEv

with an appropriate 6 € (0, Oax), for some Oy > 0 [197, Chapter C.3|.
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6.3.2 Discrete version

In this section we briefly overview some technical tools essential for our subsequent results
based on [195, 197]. While in our analysis we will mostly rely on variational notations
we will introduce some of the tools in matrix form. For the sake of notational simplicity
the following introduction is carried out for a decomposition into two subgraphs.

Let us consider the linear equation Au = f arising from the finite element approxi-
mation of an elliptic problem on the quantum graph G = (V, E), where 4 is a symmetric,
positive definite matrix. We assume that G is partitioned into two nonoverlapping sub-

graphs {Gi = (Vi, Ei)}i:1 »; that is, we have that

E=E{ UEs, ElﬂEQZQ), I'=V;NV,.

We recall that in traditional domain decomposition methods we would require that the
solution be continuous along the interface and that the normal derivatives w.r.t. the
domains sum to zero; that is, they are virtually identical to the continuity and Neumann-
Kirchhoff conditions at the vertices. We highlight, that while the latter condition is quite
natural and has a clear interpretation for quantum graphs, it is not straightforward to

define its functional meaning for problems on domains.

Subassembly and Schur complement systems

Let us partition the degrees of freedom into those internal to G; and to Gg, and those on

I" and introduce

1 1 1 1
N I T
A=|o AD AR u= P, f=|r?
AR AR Arr ur Jfr

A crucial observation is that the stiffness matrix A and load vector f can be subassembled

from the corresponding components of the (two) subgraphs. If for i = 1,2 we denote by

0
s — [T 40
i)

(1) (%)
o
AI‘I AFF

the right hand sides and local stiffness matrices of the corresponding elliptic problems

with Neumann conditions, then we have that

Arr = AR+ AR, fro= £+ 12
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We can find an approximation of the coupled problem as

A+ Al = 0, =12

u%l) = ul(?) =:up (6.9)
1 2

AfJuf? + AR — (Y = —(4 AR P + AR — 1 ):5)‘Fv

which is equivalent to . Clearly if we know the boundary values ur or the approximate
normal derivative Ar the approximate solution inside the domains can be computed by
separately solving two Dirichlet or two Neumann problems, respectively. Two well-known
corresponding families of domain decomposition algorithms are the Neumann-Neumann
and FETI methods. In this article we focus on the former.

To prepare our formal analysis the first standard step of iterative substructuring

(4)

methods is to eliminate the unknowns u;” with a block factorization

I 0 of [a% o Al
A= 0 I o [ o AP AP},

—1 —1
AR AR AR 1 Lo o s

-1 -1
where [ is the identity matrix and S = App — A(Flj) Agll) A(I? — Al(gj) A?I) A(I%) is the

Schur complement relative to the unknowns on I'. The corresponding linear system is

given by
1 1 1
A 0w
0 A7 AR u=1{£7]
0 0 S ar

-1
where gr = fr — AQI) A( ) (1) — A(FQI) A(IQI) f1(2). This can be further reduced to the
Schur complement system

Sur = gr. (6.10)

The Schur complement S is a sparse matrix that has the same sparsity pattern as the
graph Laplacian of the underlying graph G [173] 207]. The fact that Arp and fr can be
subassembled from local contributions shows that the same holds for .S and gr. Indeed,

if for ¢ = 1,2 we define the local Schur complements by
S0 = A — Af)af) " AR

and
(6 _ (i) i i
o0 10— A7 10
we have that S = S + 8@ and gr = gl(ﬂl) + 91(“2)- We recall the elementary fact that the

Schur complement of an invertible block w.r.t. a positive definite matrix is also positive

definite.
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Let us define the discrete version of the Neumann-Neumann iteration. Starting from

a cheap initial guess u%, in an iteration first we solve the Dirichlet problems
i 2 .
(Dl) Agf) y) 2+AIF F_fl ) 221727

then using the approximation rr for the flux residual (see the third row of (6.9)) we solve

w§i),k+1 B 0 1
wHH ol &

Finally, we update the interface values as

the Neumann problems

@) 40)
A Apr

(IN:) i i
Ay AR

ullgﬂ _ u{i _ G(wg)’kﬂ + w§2),k+1)‘

Eliminating the variables interior to the subdomains of both Dirichlet and Neumann

problems shows that
-1 -1
Wyl — 9(5(1) L 5@ )(gp — Sub);

that is, the Neumann-Neumann algorithm is a preconditioned Richardson iteration for
: -1 -2 e .

(6.10) using S~ 45377 as a preconditioner. Often an improved convergence rate can

be reached if a further diagonal scaling is used based on the degrees of the vertices on I'

leading to a preconditioner of the form
_ -1 -1\
DF1<S(1) +5@ )DF :

where the diagonal elements of Dr are d, for v € I'.  We note that we formulate this
Richardson iteration mainly for historical reasons and to avoid the inconvenience of ex-
pressing the update of ur in the case of a more sophisticated iteration. However, in
practice, one should instead use a preconditioned conjugate gradient (PCG) or minimal
residual method. Furthermore, the S matrices and especially their inverses should usu-
ally not be formed, unless the solver is to be reused multiples times, since we only need
to know their effect when applied to a vector. Indeed, instead of multiplying with S (@)
(and in particular with the inverse of Agzl)) we solve a Dirichlet problem and instead of
multiplying with S ()~ we solve a Neumann problem. The complexity of each iteration
is O(mng), where ng = maxecg Ne.

Other well-known iterative substructuring methods can similarly be characterized by
finding a preconditioner for . For example, the Dirichlet-Neumann (or Neumann-

Dirichlet) corresponds to multiplying the equation with S @~ (or S (1)_1). Then the
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preconditioned operator St = 1 + s@ g corresponds to solving a Dirichlet
problem on one subgraph and then solving a Neumann problem on the other.

If we partition G into many subgraphs a region is called floating if 9G; N 9G = .
On floating subgraphs Neumann problems of certain elliptic equations, for example if
there is no potential, are not uniquely solvable. A possible solution is to use balancing
Neumann-Neumann methods, in which we choose a unique solution according to some
compatibility condition. In this case the subsequent proof have to be slightly modified,
see [197] for more details.

Finally, the use of domain decomposition was proposed in [I73|, where the Schur
complement system was solved with conjugate gradient method equipped with diagonal
or polynomial preconditioner. These preconditioners are obtained by truncating the

Neumann series expansion of

7' = (I- D5 (Ds—S)) " 'Dg' = i (D5'(Ds — 5))" D3
k=0

to zeroth and first order, respectively, where Dg is a diagonal matrix containing the
diagonal elements of S. While the assembly of S can be avoided, the diagonal Dg needs
to be extracted, for example via probing techniques or approximated with randomized
methods [208], 209]. This means that preparing a diagonal or polynomial preconditioner
can be more expensive than the Neumann-Neumann preconditioner, but the complexity
of a single iteration is the same for all of them. Alternatively, diagonal preconditioning
can be performed with D Uinstead of Dgl. This diminishes the cost of preparing the
preconditioner but yields similar results, as in certain cases the Schur complement is
equal to the graph Laplacian of G, see [I73, Theorem 4.3].

While usually the condition number of the stiffness matrix A is O (3_2) and that of the
Schur complement S is (’)(ifl), the authors in [I73] observed that for scale-free graphs
the condition number of S seems to be independent of h and proportional to the maximum
degree. Furthermore, the dependence on the degree could be rectified with diagonal or
polynomial preconditioning. However, these are purely algebraic preconditioners without

the formalism of subdomains and without rigorous analysis.

Discrete harmonic functions

The space of discrete harmonic functions is an important subspace of finite element
functions and are directly related to the Schur complements and to the interface values

ur.
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Let us define for u,v € V},(G) the bilinear forms corresponding to the global stiffness
matrix A and local stiffness matrices A; as
N . N AT, .
alu,v) =u' Av = Za(z)(u, v) = Zuy) A(Z)vy).
i=1 i=1

A function u(® defined on G; is said to be discrete harmonic on G; if
AP 1 A0 — o, (6.11)

Clearly such a function is completely defined by its values on V;NI" and it is orthogonal, in
the a;(-, -)-inner product, to the space V;,(G) N Ha(G;, V; NT), where H}(G,Vp) C HY(G)
is the Sobolev space of functions that vanish on Vp C V. We denote the discrete harmonic
extension as u(?) =: H; (ul(f))

We denote the space of global, piecewise discrete harmonic functions by V3 (') C
V1 (G), which consists of functions that are discrete harmonic on each subgraph. Based
on subassembly arguments a function u is in Vj(T') if and only if Ajjur + Apur = 0
and such a function is completely determined by its values on the interface I'. The space
Vi (T') is orthogonal, in the a(-,-)-inner product, to each space V, N H}(G;,V; NT). We
denote the piecewise discrete harmonic extension as u =: H(ur).

In the subsequent analysis we will also rely on the bilinear form defined by the Schur
complement given by

s(u,v) = up Sr.
We recall that s(-,-) is symmetric and coercive.

The preceding argument shows that Neumann-Neumann methods can be regarded as
computing the global, piecewise discrete harmonic part of the solution of by defining
an appropriate preconditioner for the Schur complement S. Before we investigate the
convergence we must show the equivalence of the interface space, the Schur complement
energy and the space of piecewise discrete harmonic functions in H'. The following
Lemma shows the energy equivalence of the Schur complement systems and piecewise

discrete harmonic functions.

Lemma 6.3.1. Let ul(j) be the restriction of a finite element function to V; NT'. The

discrete harmonic extension u() = H; (u(FZ)) satisfies

si(u(i),u(i)) =ay; (u(i),u(i)) = min » a; (v(i),v(i)).

v(i)|ViﬁF:uF
Similarly, if ur is the restriction of a finite element function to I', the piecewise discrete

harmonic extension w = H(ur) satisfies

s(u,u) = a(u,u) = vl]fpnu;F a(v,v). (6.12)
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Proof. The statement follows directly from the definition of (piecewise) discrete harmonic

functions in (6.11)). O

We define d; = ‘Vi N F‘ to be the number of vertices of G; on the interface and the
norm ||+l = [I*[lge; - Let Ajmax : H?(G;) = L*(G;) be the operator corresponding to
G, inherited from G with D(A; max) = H?(G;) and define B; : D(A; max) — Vi by

Bju = (I U( ))VEV

(CW)'U'(v)

i ] D(Bz) = D(Ai,max)a

veV\T'
where J; = R?%~%_ Finally, we define the continuous operator A; : H*(G;) — L?(G;) as

Ai = Aimax,  D(Ay) = {u € D(Aimax) : Biu =05 }.

That is, a function v € D(A;) is continuous and satisfies the Neumann-Kirchhoff condi-
tion at the vertices but not necessarily on the interface I'. A function u € D(A;) is said
to be harmonic on G; if u € Ker(A;). A function v € H?(G)NC(G) is said to be piecewise
harmonic if u| G € D(A;) N Ker(A;). Similarly to the discrete case, such a function is
expected to be completely determined by the values at V; N I'. The following lemma
establishes the existence of the harmonic extension and the equivalence of the interface

space and the space of piecewise harmonic functions in H?(G;).

Lemma 6.3.2. For given boundary data upr there exists a unique harmonic extension
into G;, and consequently a unique piecewise harmonic extension u into G. Moreover,

there exist positive constants ¢ and C' such that

2 2 2
c”uFHVmF < HUHH2(GZ-) < CHUFvaF'

Proof. Let us define the L : H?(G;) — R% trace operator. Then for any v € H%(G;) we

have that

[Lvlly,ar < lollzee(ey < cllvllmne,) < ellvllmz, (6.13)

Clearly Ao := A; |Ker( /) is the generator of a strongly continuous semigroup [205], see also
[210, Section 6.5.1]. We have that 0 is in the resolvent set of Ay since Ag is invertible,
and thus |21, Lemma 1.2] shows that L‘Ker( 4, Is an isomorphism of Ker(A;) onto R%;

that is, the following inequality holds
ull g2 (c,y < CllLully,Ap,

and the proof is finished. ]
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Finally, the following lemma shows that a similar statement holds for discrete har-

monic functions.

Lemma 6.3.3. Let u be a piecewise discrete harmonic function on G. Then there exist

positive constants ¢ and C independent of h such that
2 2 2
cllurllv,ar < lullze,) < Cllurllv,ae-

Consequently, for some positive constants ¢ and C' independent of h, we have that

N N

~ 2 ~ 2

3 Nurldy e < s(uu) < C 3 furlf,or- (6.14)
=1 =1

Proof. Let u be piecewise discrete harmonic on G with boundary data up. The first
inequality follows from . For the second inequality, let us consider the harmonic
extension v € H?(G;) of ur into G;, which uniquely exists in light of Lemma m
Furthermore, the function v is continuous and the standard linear interpolation operator

I}, can be used resulting in the finite element function I,v € H'(G;). Then by (6.12)) we
have that

[ull 16,y < Cailu, v) < Cai(Ipv, Ihv) < Ol g6y,

since the H'(G;) norm is equivalent with the a;(-,-)-norm. Furthermore,
1100l 16,y < v = vll e,y + 10l gie,y < (Ch+Dlvllg2e,y < Cllurlly,qp-

The third inequality is shown in the proof of [I73] Theorem 3.2| and in the last inequality
we used Lemma [6.3.2] O

Let us define d = |I'|, the norm ||| = || ||ga and dmax = maxyer H] VRS Vj}’. Then
(6.14)) implies that

clurllza < s(u,u) < Cdaxfur|za.

The following statement is an immediate consequence.

Corollary 6.3.4. The condition number of the Schur complement S is uniformly bounded
in h and satisfies the explicit bound k(S) < Cdpax, for some C' > 0 that is independent
of h.

We note that this phenomenon was already observed, although not rigorously inves-

tigated, for scale-free graphs in [173].



146 CHAPTER 6. DOMAIN DECOMPOSITION FOR QUANTUM GRAPHS

6.3.3 Schwarz iteration

With the above auxiliary results we can reformulate the Neumann-Neumann method as
an abstract additive Schwarz iteration. We choose V' = V4 (') and V; = V;(T'), where
Vi(T') € Vi(I") denotes the subspace of discrete harmonic functions that vanish on I'\V;.

For the bilinear forms we set b(u,v) = s(u,v) on V x V and
bi(u,v) = s;(In(viw), In(viv)) = a; (Hi(viu), Hi(viv))
on V; x V;. The counting functions v; are defined on I' U 9G by

‘{j:vGVj}, ve ('NV;)UaG;,

0, VvV € F\Vi.

vi(v) =

The pseudoinverses VZT of the v; functions, given as

v H(v), ve (I'nV;)UoG,,

0, VAS F\Vl,

ZVT(V)EL vel'UoG.
Finally, the operators T; : V' +— V; are defined by
bi(Tiu,v) = b(u,v), v eV,
and the operator T' by
T'=T1+T+--+1Tn. (6.15)

Proposition 6.3.5. The operator T defined by (6.15)) is invertible and for all uw € V' the

following inequality holds
Yos(u,u) < s(Tu,u) < v1p(E)s(u,u),

where vy and y1 are constants independent of il, where & = {eij}zszl 1s defined element-
wise by

1, V; NV, + 0,
€ij =
0, otherwise.

Proof. We have to establish the three estimates of Theorem [6.2.1]
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Assumption (i): For u € V' we choose u; = I, (V;fu), 1=1,2,...,N. Clearly u; € V;

and u = S w; holds, and
bi(ui, u;) = a;(Hiu, Hiuw) = a;(u, u).

By subassembly, this shows that

N

Zbi(ui,ui) = a(u,u) = s(u,u) = b(u,u).

i=1

Assumption (ii): For u; € V; we have that

s(ui i) = si(uiu) + Y 8w, wi).

J:V;NV,;#0

Using Lemma shows that s;(u;,u;) < C|luglly,~r and that

2 2
sj(ui, ui) < CHuiijmr < Clluilly,ars

since u; € Vj, and thus u;(x) = 0 for z € (V;NI)\V;. Using Sobolev’s embedding we can

further bound ||“1||\2/an as

2 2 2
il p < Clluil ey < Clluili g, < Cailuiuy)

= Csi(ui, u;) < Csi(In(viw), In(viug)) = Cby(ug, ;).

Combining the above yields b(u;, u;) < Cb;(u;, u;) for u; € V; as required.

Assumption (iii): It is easy to see that

1, ViﬁVj#(D,

Eij =
0, otherwise,

as V; NV, # 0 if and only if V; NV, # 0.

O

This shows that the condition number of the preconditioned system is independent

of h. We note that p(E) < dmax via Gershgorin’s theorem. Finally, we state our main

theorem.

Theorem 6.3.6. The Neumann-Neumann algorithm converges to the solution of

with a geometric rate that is independent of h.

Proof. The statement follows from Proposition [6.3.5| and Lemma [6.3.3

O

Remark 6.3.7. We note that in a multidimensional setting one usually assumes that the

substructures and the elements are shape reqular, meaning that the number of neighbours
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of any subdomain, and thus p(£E), is bounded by a constant. Furthermore, the verifi-

cation of assumption (i) and (ii) is more challenging, and accordingly the estimates on

s(Tu,u)
s(u,u)

~ =\ 2 ~ _
h—2 (1 + log %) appear, where h denotes the size of a typical subdomain, see [2006, [197].

are more complicated. In particular, usually polylogarithmic bounds of the form

The main technical difficulty is the fact that the boundary spaces of the domains are
equipped with the H> Sobolev-Slobodeckij seminorm, which cannot be so straightforwardly

estimated as in our case.

6.4 Numerical experiments

In this section we introduce and discuss some numerical experiments. The C++ imple-
mentation mainly relies on Eigen 3.4.0 and is compiled with GCC 13.2.1. The graphs
are generated with NetworkX 3.1 in Python 3.11.6. The experiments have been per-
formed on a computer with Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz and 16 GB of
RAM. The Schur complement problems are solved respectively without preconditioning,
with degree preconditioning, with diagonal preconditioning, with first-degree polynomial
preconditioning and finally, with Neumann-Neumann preconditioning. While our con-
vergence theory holds for arbitrary (nonoverlapping) decomposition, in all experiments,
we completely decompose the quantum graph so that each subgraph consists of a single
edge. Despite this, to anticipate more general decompositions, we solve the subproblems
with Cholesky decomposition without assembling the S matrices or their inverses. The
Dg diagonal is extracted in a naive way by solving n equations where the right-hand
sides are set to unit vectors of R”. We set the length of each edge to 1. Furthermore,
the ce conductances are set to sigmoid functions, the pe potentials are set to double-well

functions and the f forcing is set as a short shock at the start of the edges; that is, we

have
ce(z) = = +1
Y 1+exp (—25(x—0.5))
0.05 2
pe(x) = W“x —0.5] = 0.2)" 4 0.05,

fe(x) = exp(fl()OOxQ) .

The initial guess is set to the zero vector and the iteration is stopped after the relative
residual norm reduces below the square root of the machine precision e ~ 2.2204 - 10716,
While Corollary shows that condition number of the Schur complement is inde-

pendent of il, it might still increase as the number of vertices, and thus the maximum
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degree grows, as indicated by the results below. Interestingly, this dependence is al-
ready somewhat mitigated with a diagonal preconditioner and seemingly eliminated with
a polynomial or Neumann-Neumann preconditioner. Instead, the condition number of
these preconditioners seem to only scale with the average degree. In fact, without We
found that for small graphs with |V| < 1000 solving the Schur complement system with-
out preconditioning is the fastest independently of iz, but for larger graphs preconditioning

is more and more crucial as logy (h_l) increases.

6.4.1 Dorogovtsev-Goltsev-Mendes graphs

The first set of test graphs are a family of scale-free planar graphs introduced in [212],
defined iteratively as follows. The graph DGM(0) is the path graph with two vertices. The
graph DGM(k + 1) is generated from DGM(k) by adding a new vertex for each edge and
connecting it with the endpoint of the edge. The graph DGM(k) has |V| = %(3’“ +1) and
|E| = 3. Figureshows the first few graphs of this iteration. First we set log, (iAfl) =6
and apply PCG to the Schur complement system of DGM graphs of increasing size. Table
shows the number of necessary iterations without preconditioning and with degree,
diagonal, polynomial and Neumann-Neumann preconditioning. Table [6.2] shows the same

for DGM(7) with increasing log, (ffl).

Figure 6.1: The graphs DGM(1), DGM(2) and DGM(3).
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Graph No prec. Degree Diagonal Polynomial Neumann-Neumann
DGM(5) 26 14 13 9 10
DGM(6) 35 14 13 11 11
DGM(7) 53 15 15 12 12
DGM(8) 73 19 16 13 14
DGM(9) 90 20 19 13 14

Table 6.1: Number of PCG iterations for the Schur complement systems of

Dorogovtsev-Goltsev-Mendes graphs of increasing size with log, (i)fl) = 6.

logs (ﬁ_l) No prec. Degree Diagonal Polynomial Neumann-Neumann

4 53 15 15 12 12
6 53 15 15 12 12
8 93 15 15 12 12
10 53 15 15 12 12
12 59 15 15 12 12

Table 6.2: Number of PCG iterations for the Schur complement system of

DGM(7) with increasingly finer meshes.

6.4.2 Barabasi-Albert model

Next, we test our method on scale-free graphs with |E| ~ 2|V| generated using the
Barabasi-Albert model [213]. Unlike the DGM graphs, which are generated determin-
istically, the Barabési-Albert model has randomness involved, and thus the following
results have to be understood in a probabilistic sense.

Again, we set logy (ﬁ_l) = 6 and apply PCG to the Schur complement system of
scale-free graphs of increasing size. Table [6.3] shows the number of necessary iterations
without preconditioning and with degree, diagonal, polynomial and Neumann-Neumann

preconditioning. Table shows the same for SF(1000) with increasing log, (ﬁ_l).

Graph No prec. Degree Diagonal Polynomial Neumann-Neumann
SF(100) 39 25 25 13 13
SF(500) 63 28 28 15 15
SF(1000) 74 29 29 15 15
SF(2000) 90 28 28 15 15
SF(5000) 106 28 28 14 14

Table 6.3: Number of PCG iterations for the Schur complement systems of

scale-free graphs of increasing size with log, (ﬁ_l) = 6.
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log, (ifl) No prec. Degree Diagonal Polynomial Neumann-Neumann

4 73 29 29 15 15
6 74 29 29 15 15
8 74 29 29 15 15
10 75 29 29 15 15
12 74 29 29 15 15

Table 6.4: Number of PCG iterations for the Schur complement system of
SF(100) with increasingly finer meshes.

6.5 Conclusions

A Neumann-Neumann type domain decomposition method was developed for elliptic
problems on metric graphs. We have defined the iteration in the continuous and discrete
setting and rewritten the latter as a preconditioner for the Schur complement system. The
discrete iteration was then formulated as an abstract additive Schwarz iteration and we
proved that it converges to the finite element solution with a rate that is independent of
the finite element mesh size. Moreover, we have shown that the condition number of the
Schur complement is also independent of the finite element mesh size and depends on the
maximum degree. We implemented the algorithm along with a diagonal and polynomial
preconditioners and tested them on various examples. The numerical results confirm our
theoretical results regarding the condition number of the Schur complement and that
of the Neumann-Neumann preconditioner. Moreover, the numerical results suggest that
the condition number of the Schur complement scales with the maximum degree, while
the polynomial and Neumann-Neumann preconditioners seem to scale with the average

degree.
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Chapter 7

Conclusions

7.1 New scientific results

Thesis 1.

I have shown that a class of multidimensional nonlocal conservation laws
are well-posed for a broad class of flux functions and initial data, using the
theory of nonlinear operator semigroups. I have also shown that the unique
mild solution satisfies a Kruzkov-type nonlocal entropy inequality, along with
several desirable qualitative properties.

The results are described in detail in Chapter

Related publication: [221].

Thesis I1.

I have proven new results regarding two important classes of kinetic dynamical

systems.

Thesis I1.a

I have introduced generalized ribosome flows (GRFs) by generalizing the
graph structure and the transition rate functions of existing ribosome flow
models in the literature. I have shown that GRFs can be interpreted as
finite volume approximations of nonlocal conservation laws. I have proven
that GRFs with a strongly connected compartmental structure are asymptot-
ically stable relative to the level sets of the linear conserved quantity. I have
proven that strongly connected GRFs with time-varying transition rates are

persistent and input-to-state stable.
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The results are described in detail in Chapter [4]
Related publications: [216, 129, 218 219, 220].

Thesis II.b

I have shown that delayed complex balanced reaction networks with non-mass
action kinetics are quasi-thermostatic; that is, each positive stoichiometric
compatibility class contains a unique equilibrium points. I have shown that
delayed complex balanced reaction networks with non-mass action kinetics
are quasi-thermodynamic; that is, each positive equilibrium is asymptotically
stable relative to its compatibility class.

The results are described in detail in Chapter [2]

Related publication: [226].

Thesis II1.

I have proposed an efficient finite volume discretization of the multidimen-
sional PIDE model of gene regulatory networks that result in a kinetic system.
I have shown that the semidiscretized model has a unique steady-state, which
is globally asymptotically stable. I have used the semidiscretized model to de-
sign novel population level exogenous controllers that can drive the expected
value of the system to desired values.

The results are described in detail in Chapter [5]

Related publications: [222, 225] 228].

Thesis TV.

I have developed a Neumann-Neumann type nonoverlapping domain decom-
position method for elliptic problems on metric graphs. I have proven that the
iteration converges to the finite element solution with a geometric rate that
is independent of the mesh size, via the theory of abstract additive Schwarz
methods.

The results are described in detail in Chapter [6]

Related publication: [224].

7.2 Future plans

The above results can serve as the bases for several further research directions, including:
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e The results of Chapter [2]can be used to investigate the stability of complex balanced
systems with distributed delays. A major shortcoming of the model class is that
a given species has a fixed reaction rate function associated with it. Thus, it is
not possible, for example, that a species is involved in a reaction with mass-action
kinetics and involved in an other reaction with Hill kinetics. To our knowledge, this

is not handled in the literature yet, thus it would be an important extension.

e The results of Chapter [4] can be used to investigate ribosome flow models with not
strongly connected compartmental structure, or with discrete delays or distributed
delays. Flows open to the environment can also be investigated and used to solve

control problems motivated by real-world examples.

e The results of Chapter 5] can be used to implement the finite volume discretization
for gene regulatory networks with more than two proteins. The discretization can

also be used for model reduction and further control.

e The results of Chapter [6]can be used to implement the Neumann-Neumann iteration
for decomposition where the domains are not edges. The theoretical results can be
used to prove the convergence of overlapping decompositions. These iterations can
be used to solve further problems, for example, the efficient generation of Gaussian
Whittle-Matérn fields on metric graphs. The key problem there is white noise
realization, since that requires the assembly of the mass matrix and its Cholesky
decomposition. This could be mitigated with the lumped mass method, where
a diagonal approximation of the mass matrix is used, in which case white noise

generation can be performed domain-wise.
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