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Abstract

In this dissertation we investigate the interplay between structure, dynamics, and stability

in nonnegative and kinetic systems, with a particular focus on chemical reaction networks

(CRNs), nonlocal conservation laws, and quantum graph models.

In the first part, we study delayed CRNs beyond mass-action kinetics, focusing on

complex balanced systems. We show that, under suitable conditions, these networks

retain asymptotic stability w.r.t. the positive stoichiometric compatibility classes.

Then we analyze a class of multidimensional nonlocal pair-interaction models, proving

well-posedness via semigroup theory. This contributes to the mathematical foundation

of nonlocal conservation laws, generalizing earlier one-dimensional results.

Subsequent chapters investigate how these nonlocal models give rise to discrete CRNs

through finite volume discretization. We examine ribosome flow models (RFMs) and

their generalizations, establishing persistence and stability properties under broad as-

sumptions. We also analyze a nonlocal partial integro-differential equation modeling

gene regulatory networks, showing how discretization aids not only in efficient simulation

but also in qualitative analysis.

Finally, we consider quantum graphs as a spatially refined extension of compartmental

models, where transitions are governed by partial differential equations along edges. We

design an efficient simulation strategy based on a nonoverlapping domain decomposition

method, enabling scalable numerical solutions and setting the stage for future control

and inverse problems.
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Chapter 1

Introduction

1.1 Nonnegative and kinetic systems

Nonnegative systems form an important subclass within dynamical systems, character-

ized by the invariance of the nonnegative orthant with respect to the dynamics. Their

theoretical development is motivated by applications in chemistry, biology, population

and disease dynamics, where state variables in their original physical coordinates are

naturally nonnegative [1].

Compartmental models describe the distribution and transport of entities (for exam-

ple molecules, particles, vehicles, people, or information) among distinct storage compart-

ments over time [1, 2]. These compartments may represent physically separate subsys-

tems, such as interconnected containers, or conceptual states, such as different stages of

a disease in epidemiological models [3]. Accordingly, the applicability of compartmental

systems is rather wide including (bio)chemistry, pharmacokinetics, ecological, epidemi-

ological and transportation modeling [4]. Since the state variables in compartmental

systems correspond to amounts, concentrations, or numbers of molecules, these models

inherently belong to the nonnegative system class [5, 6].

The fundamental properties of compartmental models have been extensively studied,

particularly regarding observability, controllability, realizability, and identifiability [7].

Linear compartmental ODEs and their analytic solutions have been analyzed in kinetic

contexts [8], while qualitative properties of general nonlinear compartmental models, in-

cluding equilibrium structures and stability, are discussed in [9]. The strong descriptive

power of compartmental models allows them to represent numerous complex dynamical

phenomena [10, 7]. Their associated directed graph structures (compartmental graphs)

provide insights into dynamical properties [9, 11]. The mathematical theory of compart-

1



2 CHAPTER 1. INTRODUCTION

mental matrices and their dynamics is detailed in [2, 12, 13, 14].

An important related family of models is the class of chemical reaction networks

(CRNs) or kinetic systems. CRNs are dynamical models formally represented by trans-

formations (reactions) between abstract chemical complexes [15, 16]. While originating

in physical chemistry, CRNs have been mathematically generalized [17, 18, 19], broaden-

ing their applicability to non-chemical processes. The scope of reaction networks reaches

far beyond the (bio)chemical application field, since they can be considered as general

descriptors of nonlinear dynamics capable of producing complex dynamical phenomena

such as multiple equilibria, nonlinear oscillations, limit cycles, and even chaos [20]. Many

compartmental models, such as those used in population dynamics or epidemiology, can

naturally be represented in kinetic form, and other non-chemically motivated models can

often be algorithmically transformed into reaction networks [21, 22].

Chemical reaction network theory (CRNT) provides deep results on the relationship

between network structure and qualitative dynamics [23]. A central problem in CRNT

is persistence analysis, which is crucial for proving the global asymptotic stability of

complex balanced networks in which, at equilibrium, the total rate of reactions entering

each complex equals the total rate leaving it [24, 25, 26]. Stability in mass-action CRNs

is typically analyzed using entropy-like logarithmic Lyapunov functions [27]. A major

conjecture in CRNT, the "Global Attractor Conjecture," asserts that complex balanced

kinetic systems are globally stable within the nonnegative orthant [26]. This was proven

for networks with a single connected reaction graph component [24]. Related stability

results for zero-deficiency networks extend beyond mass-action kinetics, allowing time-

varying rate coefficients and generalized Lyapunov functions [28]. The stability analysis

of ribosome flow models (RFMs) via CRN representation has also been identified as an

important research direction [29, 30].

1.2 Conservation laws

Local conservation and balance laws have been widely applied in aerodynamics, Eulerian

gas dynamics [31], traffic modeling [32, 33], pedestrian flows [34], and ribosome flows

[35]. Recently, nonlocality has been incorporated into these models to capture more

realistic dynamics. A common approach is to define a nonlocal velocity using a spatial

convolution, which has been applied to supply chain modeling [36, 37, 38] and traffic

flows [39]. However, some nonlocal models fail to preserve monotonicity or violate the

maximum principle. Alternative formulations using integral kernels have been explored
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to address these issues [40, 41, 42]. Peridynamics and other spatial nonlocal models have

also been developed [43, 44, 45]. A key advantage of nonlocal pair-interaction models is

their reduction to local counterparts as the nonlocal horizon vanishes [46], which is not

always true for other nonlocal models [47]. Due to these advantages, nonlocal models are

widely applied in peridynamics [48, 49] and in the formulation of the nonlocal Allen-Cahn

equation [50].

1.3 Quantum graphs

In recent decades differential operators on metric graphs, often called quantum graphs,

have found a myriad of applications when describing quasi-one-dimensional phenomena

in a broad range of fields, such as superconductivity in granular materials [51], classical

wave propagation in wave guide networks [52, 53], membrane potential of neurons [54],

cell differentiation [55], and optimal control [56, 57, 58, 59]. These applications can be

seen, from a modelling point of view, as compartmental models, where the transitions

are explicitly described by partial differential equations.

1.4 Aims and scope of the dissertation

Based on the above, the aims of my doctoral research are:

• Investigate the stability of delayed complex balanced CRNs with non-mass action

kinetics. Our hypothesis was that asymptotic stability w.r.t. the positive stoichio-

metric compatibility classes can be derived, as in the mass action case. The results

are presented in Chapter 2.

• Prove the well-posedness of the multidimensional nonlocal pair-interaction via semi-

group theory. While well-posedness in one-dimension was proved in [60] with a dif-

ferent method, the existence of an underlying operator semigroup is an important

advancement, as well as the generalization to multiple dimensions. The results are

presented in Chapter 3.

• Investigate the persistence and stability of ribosome flows, obtained through finite

volume discretization of the nonlocal pair-interaction model, as well as their gener-

alizations. We generalize both in terms of structure and transition rate functions.

The results are presented in Chapter 4.
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• Investigate the finite volume discretization of the partial integro-differential equa-

tion (PIDE) model of gene regulatory networks, another nonnegative nonlocal con-

servation law. While the main motivation was an efficient simulation technique,

the discretization turns out to be benefitial for qualitative analysis too. The results

are presented in Chapter 5.

• Design an efficient simulation for quantum graphs in the form of a nonoverlapping

domain decomposition method. The results are presented in Chapter 6.



Chapter 2

Asymptotic stability of delayed

complex balanced reaction networks

with non-mass action kinetics

In this chapter we consider delayed chemical reaction networks with non-mass action

monotone kinetics and show that complex balancing implies that within each positive

stoichiometric compatibility class there is a unique positive equilibrium that is locally

asymptotically stable relative to its compatibility class. The main tools of the proofs are

respectively a version of the well-known classical logarithmic Lyapunov function applied

to kinetic systems and its generalization to the delayed case as a Lyapunov-Krasovskii

functional. Finally, we demonstrate our results through illustrative examples.

2.1 Introduction

Stability is a key qualitative property of dynamical models and their equilibria. In [27],

the local stability of complex balanced equilibria of kinetic systems was shown using an

entropy-like logarithmic Lyapunov function. The most well-known stability-related result

in CRNT is probably the Deficiency Zero Theorem which states that weakly reversible

deficiency zero CRNs are complex balanced independently of the (positive) values of

reaction rate coefficients [61]. According to the Global Attractor Conjecture, the stability

of complex balanced networks is actually global within the nonnegative orthant [26, 24].

The stability of a wide class of CRNs with more general kinetics than mass action was

shown in [62]. These results were further extended in [28] for time-varying reaction rates

using the notion of input-to-state stability.

5



6 CHAPTER 2. DELAYED COMPLEX BALANCED SYSTEMS

The explicit modeling of time delays is often necessary to understand complex dy-

namical phenomena in nature or technology, and to build models having sufficient level

of reliability [63]. Various phenomena may justify the inclusion of time delays into dy-

namical models such as protein expression time in systems biology [64], hatching or

maturation time in population dynamics [65], driver reaction times in traffic flow models

[66], latent periods in epidemic modeling [67], or communication and feedback delays in

complex networks [68]. The most commonly used approach in the stability analysis of

time-delay systems is the construction of appropriate Lyapunov-Krasovskii functionals

which is generally a challenging problem [69].

The main motivation for introducing delayed chemical reactions was to focus on the

most important species and chemical transformations, and to avoid the detailed descrip-

tion of mechanisms of less interest [70]. In delayed reactions, the consumption of reactant

species is immediate, while the formation of products is delayed either through discrete

or distributed delays. The notion of stoichiometric compatibility classes was generalized

for delayed mass action CRNs in [71], and it was proved using a logarithmic Lyapunov-

Krasovskii functional that complex balanced networks are at least locally stable for ar-

bitrary finite delays. An analogous result for kinetic systems with distributed delays was

given in [72]. In [73] the authors introduced the notion of stoichiometric compatibility

classes for arbitrary delayed CRNs and proved the generalization of well-known persis-

tence results [74, 75] to the delayed case. In [76] the authors prove a delayed version of the

deficiency zero theorem and discuss global asymptotic stability. In [77] the authors pro-

vide several sufficient conditions for the persistence of delayed complex balanced CRNs

with mass action kinetics, and they improve the practical applicability of these results

via semilocking set decomposition in [78].

Using the achievements outlined above, the purpose of the present chapter is to fur-

ther extend stability results for delayed complex balanced kinetic systems with general

(non-mass action) kinetics. For this, an appropriate Lyapunov-Krasovskii functional is

proposed through which the local asymptotic stability of positive equilibria can be shown.

The structure of the chapter is as follows. Section 2.2 introduces the basic notions

related to kinetic systems. In Section 2.3 we study the set of positive equilibria in the

context of complex balancing and the quasi-thermodynamic/thermostatic properties for

non-mass action kinetics, our first main contribution. The other main contribution can

be found in Section 2.4, where the local asymptotic stability of positive complex balanced

equilibria is shown. Section 2.6 contains three computational examples to illustrate the
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theory. Finally, conclusions of the chapter are given in Section 2.7.

Throughout the chapter RN , RN+ and RN+ denote the N -dimensional space of real,

positive and nonnegative column vectors, respectively, and the Euclidean norm is denoted

by |.|. For x, y,∈ RN+ the vector exponential xy is defined as xy =
∏N
k=1 x

yk
k and the inner

product x · y is defined as x · y =
∑N

k=1 xiyi. For x ∈ RN+ the vector logarithm log(x) is

defined element-wise. For every τ ≥ 0 we denote the Banach space of continuous functions

mapping the interval [−τ, 0] into RN , into RN+ and into RN+ by Cτ = C
(
[−τ, 0],RN

)
, C+,τ

and C+,τ , respectively. We equip the spaces Cτ , C+,τ and C+,τ with the standard norm

∥ψ∥ = sups∈[−τ,0]
∣∣ψ(s)∣∣, and the open ball around ψ with radius ϵ > 0 is denoted by

Bϵ(ψ). The space of continuously differentiable functions on R is denoted by C1(R).

2.2 Preliminaries

In this section we introduce of kinetic systems (also called chemical reaction networks)

based on [15, 27]. A kinetic model contains N species denoted by X = {X1, X2, . . . , XN},

and the corresponding species vector is given as X = [X1 X2 . . . XN ]
⊤. Species are

transformed into each other through elementary reaction steps of the form

Ck
Kk−−→ Ck′ , k = 1, 2, . . . ,M, (2.1)

where Ck = y⊤k X and Ck′ = y⊤k′X are the complexes with the stoichiometric coefficient

vectors yk, yk′ ∈ ZN+ for k = 1, 2, . . . ,M . The transformation shown in Eq. (2.1) means

that during an elementary reaction step between the Ck reactant complex and Ck′ prod-

uct complex [yk]i molecules of species Xi are consumed, and [yk′ ]i molecules of Xi are

produced for i = 1, 2, . . . , N . The reaction (2.1) is called an input (output) reaction of

species Xi if [yk′ ]i > 0 ([yk]i > 0). From now on we say that i ∈ supp(yk) if [yk]i > 0.

The directed graph containing the complexes as vertices and reactions as directed

edges is called the reaction graph of a CRN. A directed graph is strongly connected if

there exists a directed path between any pair of its vertices in both directions. A strong

component (also called linkage classes in the theory of CRNs) of a directed graph is

a maximal strongly connected subgraph. A weakly connected component of a directed

graph is a subgraph where all vertices are connected to each other by some (not necessarily

directed) path. A reaction graph is called weakly reversible if each weakly connected

component of it is a strong component. Weak reversibility is equivalent to the property

that each directed edge (reaction) is a part of a directed cycle in the reaction graph.

Let x(t) ∈ RN+ denote the state vector corresponding to X for any t ≥ 0 (in a chemical
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context, the state x is the vector of concentrations of the species in X). Then the ODEs

describing the evolution of x in the kinetic system containing the reactions (2.1) are given

by

ẋ =
M∑
k=1

Kk(x)[yk′ − yk], x(0) ∈ RN+ , (2.2)

where Kk : R
N
+ −→ R+ is the rate function corresponding to reaction step k, determining

the velocity of the transformation [15]. For the rate functions, we assume the following

for k = 1, 2, . . . ,M :

(A1) Kk is differentiable,

(A2)
∂Kk(x)

∂xi
≥ 0 if i ∈ supp(yk), and

∂Kk(x)

∂xi
= 0 if i ̸∈ supp(yk),

(A3) Kk(x) = 0 whenever xi = 0 such that i ∈ supp(yk).

The above properties guarantee the local existence and uniqueness of the solutions as

well as the invariance of the nonnegative orthant for the dynamics in Eq. (2.2). The

dynamics of a kinetic system (2.2) is called persistent if no trajectory that starts in the

positive orthant has an omega-limit point on the boundary of RN+ . A positive linear

conserved quantity (or positive linear first integral) for a CRN is defined as c⊤x for which

c⊤ẋ(t) = 0 for t ≥ 0, where c ∈ RM+ and c ̸= 0.

The set of stoichiometric vectors is denoted with K. In some cases we will use the

complex matrix Y that has the stoichiometric vectors as columns. The reaction vector

of reaction k is defined as yk′ − yk. The linear span of the reaction vectors is called the

stoichiometric subspace S of (2.5), defined as

S = span
{
yk′ − yk

∣∣k = 1, 2, . . . ,M
}

and for p ∈ RN+ the corresponding positive stoichiometric compatibility class Sp is defined

by

Sp =
{
x ∈ RN+

∣∣x− p ∈ S
}
.

It is well-known that the positive stoichiometric compatibility classes are positively in-

variant under (2.3); that is, we have that x(t) ∈ Sp for t ≥ 0 if x(0) ∈ Sp.

The deficiency of a CRN is defined as δ = m − ℓ − s, where m is the number of

complexes, ℓ is the number of linkage classes and s is the dimension of S.

An important special case in the theory of CRNs is mass action kinetics when the

rate function is given in the following monomial form

Kk(x) = κk

N∏
i=1

x
[yk]i
i , k = 1, 2, . . . ,M
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where κi > 0 for i = 1, 2, . . . ,M are the reaction rate coefficients; that is, the dynamics

of mass action kinetic systems can be given as

ẋ(t) =

M∑
k=1

κkx
yk(t)

(
yk′ − yk

)
. (2.3)

Stability of systems of the form (2.3) can be investigated through the entropy-like

logarithmic Lyapunov function

V (x, x) =
N∑
i=1

(
xi(log xi − log xi − 1) + xi

)
=

N∑
i=1

(
xi log

xi
xi

+ xi − xi

)
, (2.4)

where x is a positive equilibrium. We aim to generalize certain stability results to include

non-mass action cases like the Michaelis-Menten kinetics or general Hill-type kinetics,

while still relying on a similar Lyapunov function. In order to do so, we consider kinetic

systems of the form

ẋ(t) =

M∑
k=1

κkγ
yk
(
x(t)

)(
yk′ − yk

)
, (2.5)

where the function γ : RN+ 7→ RN+ is defined element-wise by the increasing functions

γi ∈ C1(R). We recall that in this case the vector exponential γyk
(
x(t)

)
expands to∏N

i=1 γ
yk,i
i

(
xi(t)

)
. This class of systems include a wide variety of interesing and relevant

kinetics, while the product structure of γyk(x) allows us to rely on logarithmic identities in

the calculations. In particular, the Michaelis-Menten kinetics can be given by γi(s) = s
ci+s

for ci > 0, and more general Hill kinetics can be given by γi(s) = sni

ci+sni for ci > 0 and

ni > 0.

We impose the following assumptions on the γi functions. First of all, if the concen-

tration of any reactant is zero, the reaction should not take place; that is, we assume

that γi(0) = 0. A fundamental case for the choice of the γi transformations is γi(s) = s,

which corresponds to mass action kinetics. For regularity, in particular for the exis-

tence of nontrivial equilibria, we usually assume that the γi functions further satisfy´ 1
0 | log γi(s)| ds <∞ and that γi : R+ 7→ R+ are onto. In this case the inverse of γ−1

i (s)

is strictly increasing from R+ onto R+, and thus

lim
x→∞

(ˆ x

a
γ−1
i (es) ds− bx

)
= ∞ (2.6)

holds for any 0 ≤ a < ∞ and any b. While the γi(s) = s mass action case satisfies the

above assumptions, many fundamental examples from biochemistry do not; in particular,

the Michaelis-Menten kinetics and the Hill kinetics fail to do so, since they are not onto

R+ and they do not meet assumption (2.6). However, as we will show, a slightly relaxed
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condition still ensures the existence of nontrivial equilibria. Instead of assuming that the

γi function are onto R+, we only require that they are onto [0, σi), where 0 < σi ≤ ∞

can be finite. Then instead of (2.6) we will require that

lim
x↑log σi

(ˆ x

a
γ−1
i (es) ds− bx

)
= ∞ (2.7)

holds for any 0 ≤ a <∞ and any b. For more details we refer to [62, Section IV.B].

We note that (2.5) can be rewritten in matrix form as follows. Assume that the

number of distinct complexes is L and define κij as κk if there is a reaction k such that

yk′ = yj and yk = yi, and zero otherwise. Denoting by K the matrix defined element-wise

as [K]ij = κij , the system (2.5) takes the form

ẋ(t) = Y
(
K − diag(1⊤LK)

)
Γ(x) =: Y K̃Γ(x), (2.8)

where 1L ∈ RL denotes a column vector with all of its coordinates equal to one and

Γ : RN+ 7→ RN+ is defined as

Γ(x) =
[
γy1(x) γy2(x) · · · γyL(x)

]
.

Note, that K̃ is the weighted negative Laplacian of the reaction graph of the system.

We also consider the delayed version of (2.5), having the form

ẋ(t) =
M∑
k=1

κk

(
γyk
(
x(t− τk)

)
yk′ − γyk

(
x(t)

)
yk

)
, (2.9)

where τk ≥ 0 are discrete constant time delays. The solution corresponding to an initial

function ψ ∈ C+,τ at time t ≥ 0 is denoted by xψ(t) ∈ RN+ or by xψt ∈ C+,τ when we

use it as a function. A positive vector x ∈ RN+ is called a positive equilibrium of (2.9)

if x(t) ≡ x is a solution of (2.9); that is, the equilibria of (2.9) and (2.5) coincide. The

Lyapunov-Krasovskii approach for such delayed systems is formally very similar to the

Lyapunov approach of ODEs [69, 1]. Let τ = maxk τk and x be an equilibrium of (2.9).

If the functional V : C+,τ → R is such that V (x) = 0 and

V (ψ) ≥ α
(∣∣ψ(0)− x

∣∣),
V̇ (ψ) ≤ 0,

holds for ψ ∈ C+,τ , where α : R+ 7→ R+ is a continuous and strictly increasing function

with α(0) = 0, then x is Lyapunov stable. If there exists a γ : R+ 7→ R+ is a continuous

and strictly increasing function with γ(0) = 0 such that

V̇ (ψ) ≤ −γ
(
|ψ(0)− x|

)
then the system is locally asymptotically stable. Finally, if α(s) → ∞ as s → ∞, then

the system is globally asymptotically stable.
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2.3 Quasi-thermodynamic property and complex balancing

In this section, we restate some of the stability results described in [62] under milder

conditions using the computational approach of [15]. Here we consider nondelayed kinetic

systems of the form (2.5). First, let us recall some definitions. A positive vector x ∈ RN+
is called a positive equilibrium of (2.5) if x(t) ≡ x is a solution of (2.5); that is, the

equilibria of (2.5) satisfy the equation

f(x) :=
M∑
k=1

κkγ
yk(x)

(
yk′ − yk

)
= 0,

where f : RN+ 7→ S denotes the species formation rate function of the kinetic system

(2.5). In the classical terminology of [27, 15] a kinetic system is called quasi-thermostatic

if there exists a positive vector x ∈ RN+ such that the set of positive equilibria is identical

to the set

E =
{
x̃ ∈ RN+

∣∣ log(x̃)− log(x) ∈ S⊥}.
In this case we say that the kinetic system is quasi-thermostatic with respect to x. Stan-

dard arguments show that then the system is quasi-thermostatic with respect to any

element of E . The distribution of positive equilibria of quasi-thermostatic systems can be

efficiently characterized, namely, each positive stoichiometric compatibility class contains

precisely one positive equilibrium [27].

Furthermore, a kinetic system is called quasi-thermodynamic if there exists an x ∈ RN+
such that the system is quasi-thermostatic with respect to x, and

(
log(x)− log(x)

)
· f(x) ≤ 0 (2.10)

holds for x ∈ RN+ , with equality holding only if f(x) = 0 or, equivalently, if log(x) −

log(x) ∈ S⊥. In this case we say that the kinetic system is quasi-thermodynamic with

respect to x. Similarly to quasi-thermostaticity, a system is quasi-thermodynamic with

respect to any element of E . The main consequence of quasi-thermodynamicity is that the

unique positive equilibrium of each positive stoichiometric compatibility class is locally

asymptotically stable relative to its class. This arises from the fact that the gradient of

the function

H(x, x) =

N∑
i=1

xi(log xi − log xi − 1)

is given by log(x) − log(x) which is a term in Eq. (2.10). Thus, the function (2.4)

is a Lyapunov function for quasi-thermodynamic kinetic models. The short physical
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background of this is that H was used to describe the Helmholtz free energy density of

the system, and its gradient is the chemical potential function.

As noted in [27], while the above definition is physically associated with mass action

kinetics and ideal gas mixtures, it could apply to any kinetic system. In some cases

the definitions can be extended without voiding their consequences. In order to do so,

following [62], we define for x ∈ RN+ the function

ρ(x) = log
(
γ(x)

)
,

where γ is defined as in Eq. (2.5). A kinetic system of the form (2.5) is called quasi-

thermostatic in the generalized sense if there exists an x ∈ RN+ such that the set of positive

equilibria is identical to the set

E =
{
x̃ ∈ RN+

∣∣ρ(x̃)− ρ(x) ∈ S⊥}. (2.11)

For brevity, we simply say that the kinetic system is quasi-thermostatic with respect

to x. Again, similarly to classical quasi-thermostaticity, standard arguments show that

then the system is quasi-thermostatic with respect to any element of E . Furthermore, the

distribution of the positive equilibria of quasi-thermostatic kinetic systems across positive

stoichiometric compatibility classes can be characterized. We describe that distribution

in the following proposition.

Proposition 2.3.1. Assume that the kinetic system (2.5) is quasi-thermostatic. Then,

for every p ∈ RN+ the corresponding positive stoichiometric compatibility class Sp contains

precisely one positive equilibrium.

Proof. We first show the existence of a point in Sp ∩ E . Let x be an element of E . By

[79, Proposition B.1] there exists a (unique) vector µ ∈ S⊥ such that

γ(x)eµ − p ∈ S.

Let x̃ be defined by

γ(x̃) := γ(x)eµ.

Then x̃ ∈ Sp and taking logarithm shows that

ρ(x̃)− ρ(x) = µ ∈ S⊥;

that is, we have that x̃ ∈ E as well.
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In order to show uniqueness, let us assume by contradiction that x̃ and x are distinct

positive equilibria in Sp. Then x̃− x ∈ S and ρ(x̃)− ρ(x) ∈ S⊥, and thus

0 =
(
ρ(x̃)− ρ(x)

)
· (x̃− x) =

N∑
i=1

(
log γi(x̃i)− log γi(xi)

)
(x̃i − xi).

Since the functions γi and the logarithm are strictly increasing, the above expression is

zero if and only if x̃ = x.

Remark 2.3.2. Note that we implicitly used assumption (2.7), see [62, Lemma IV.1] and

Proposition 2.4.2 for more details.

A kinetic system of the form (2.5) is called quasi-thermodynamic in the generalized

sense if there exists an x ∈ RN+ such that the system is quasi-thermostatic with respect

to x and (
ρ(x)− ρ(x)

)
· f(x) ≤ 0

holds for x ∈ RN+ , where equality holds only if f(x) = 0 or, equivalently, if ρ(x)− ρ(x) ∈

S⊥. Again, for brevity, we simply say that the kinetic system is quasi-thermodynamic

with respect to x, however, similarly to quasi-thermostaticity, a system is quasi-thermodynamic

with respect to any element of E .

The following proposition and its proof shows that the underlying function

V (x, x) =

N∑
i=1

ˆ xi

xi

(
log γi(s)− log γi(xi)

)
ds (2.12)

is a Lyapunov function of the system (2.5). Note, that (2.12) reduces to (2.4) in the mass

action case.

Proposition 2.3.3. Assume that the kinetic system (2.5) is quasi-thermodynamic. Then,

each positive stoichiometric compatibility class contains precisely one positive equilibrium

and that equilibrium is locally asymptotically stable, and there is no nontrivial periodic

trajectory along which all species concentrations are positive.

Proof. The fact that each positive stoichiometric compatibility class contains precisely

one positive equilibrium follows from quasi-thermostaticity.

Let us consider any positive stoichiometric compatibility class Sp and denote its unique

positive equilibrium by x. Then, for any x ∈ Sp other than x, we have that

(
ρ(x)− ρ(x)

)
· f(x) < 0. (2.13)
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It is easy to see that V (x, x) ≥ 0 and equality holds only if x = x, and that ∇V (x, x) =

ρ(x)− ρ(x). This, combined with (2.13) show that

∇V (x, x) · f(x) < 0

holds for any x ∈ Sp other than x. Standard arguments show that V (x, x) is a strict

Lyapunov function for x on its positive stoichiometric compatibility class Sp, thus x is

locally asymptotically stable relative to Sp.

To show that no nontrivial periodic trajectories can exist along which all species

concentrations are positive, assume by contradiction that x : [0, T ] 7→ RN+ is such a solu-

tion with x(T ) = x(0) and denote the unique positive equilibrium of the corresponding

positive stoichiometric compatibility class by x. Then

V
(
x(T ), x

)
− V

(
x(0), x

)
=

ˆ T

0
∇V

(
x(t), x

)
· f
(
x(t)

)
dt < 0,

and thus

V
(
x(T ), x

)
< V

(
x(0), x

)
,

contradicting x(T ) = x(0).

In [62] the author considers systems of the form (2.5) or, equivalently, of the form (2.8),

and assumes that the complex matrix Y is of full rank and none of its rows vanishes, and

that K̃ is irreducible (implying that the reaction graph is strongly connected). Then,

without using the above terminology, the author shows that such systems are quasi-

thermodynamic. We note, that these assumptions imply that if x is an equilibrium of

(2.8), then K̃Γ(x) = 0; that is, the vector Γ(x) is in the kernel of K̃. Thus, systems that

satisfy the above assumptions are complex balanced, defined as follows.

Without any restrictions on Y or assuming that K̃ is irreducible, an equilibrium x

is called complex balanced if K̃Γ(x) = 0 or, equivalently, if for every complex η ∈ K we

have that ∑
k:η=yk

κkγ
yk(x) =

∑
k:η=yk′

κkγ
yk(x),

where the sum on the left-hand side is taken over the reactions where η is the source

complex and the sum on the right-hand side is taken over the reactions where η is the

product complex. Therefore, complex balanced equilibria are also called vertex-balanced

in the literature [80]. We note that this setting is indeed more general than that of [62],

as for mass action systems complex balancing can occur in weakly reversible systems, not

just in strongly connected systems; that is, there can be more than one linkage classes.
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First, we show that the existence of a positive complex balanced equilibrium affects

every positive equilibrium.

Proposition 2.3.4. Assume that the kinetic system (2.5) admits a positive complex bal-

anced equilibrium. Then every positive equilibrium is complex balanced.

Proof. Let us assume that x ∈ RN+ is a positive complex balanced equilibrium and x̃ ∈ RN+
is a positive equilibrium other than x. Then x̃ ∈ E ; that is, we have that ρ(x̃)−ρ(x) ∈ S⊥.

Let us define for k = 1, 2, . . . ,M the function qk : RN+ 7→ R by

qk(x) =
(
ρ(x)− ρ(x)

)
· yk.

Then, for any complex η ∈ K we have that∑
k:η=yk

κkγ
yk(x̃)−

∑
k:η=yk′

κkγ
yk(x̃) =

∑
k:η=yk

κkγ
yk(x)eqk(x̃) −

∑
k:η=yk′

κkγ
yk(x)eqk(x̃)

= eqη(x̃)

( ∑
k:η=yk

κkγ
yk(x)−

∑
k:η=yk′

κkγ
yk(x)

)
= 0,

thus x̃ is indeed complex balanced.

The above Proposition shows that positive complex balancing is a system property.

Thus, a system of the form (2.5) is called complex balanced if it admits a positive complex

balanced equilibrium. Finally, the connection between complex balanced systems and

quasi-thermodynamic systems are described in the following proposition.

Proposition 2.3.5. Assume that the kinetic system (2.5) is complex balanced. Then it

is quasi-thermodynamic.

Proof. Let us consider the positive complex balanced equilibrium x; that is, the equality

∑
k:η=yk

κkγ
yk(x) =

∑
k:η=yk′

κkγ
yk(x)

holds for any complex η ∈ K. Observe that for any x ∈ RN+ we have that

(
ρ(x)− ρ(x)

)
·f(x) =

M∑
k=1

κkγ
yk(x)

(
qk′(x)− qk(x)

)
=

M∑
k=1

κkγ
yk(x)eqk(x)

(
qk′(x)− qk(x)

)
.

Using the well-known inequality

ea(b− a) ≤ eb − ea (2.14)
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leads to

(
ρ(x)− ρ(x)

)
· f(x) ≤

M∑
k=1

κkγ
yk(x)

(
eqk′ (x) − eqk(x)

)
=
∑
η∈K

eqη(x)

( ∑
k:η=yk′

κkγ
yk(x)−

∑
k:η=yk

κkγ
yk(x)

)
= 0,

(2.15)

where equality holds if and only if qk′(x) = qk(x) for each reaction k = 1, 2, . . . ,M ; that

is, if and only if ρ(x) − ρ(x) lies in S⊥. In particular, if f(x) = 0, then ρ(x) − ρ(x)

lies in S⊥. It remains to be shown that if ρ(x) − ρ(x) lies in S⊥, then f(x) = 0, as a

quasi-thermodynamic system needs to be quasi-thermostatic as well. Rewrite the species

formation rate function as

f(x) =
∑
η∈K

η

( ∑
k:η=yk′

κkγ
yk(x)−

∑
k:η=yk

κkγ
yk(x)

)

=
∑
η∈K

η

( ∑
k:η=yk′

κkγ
yk(x)eqk(x) −

∑
k:η=yk

κkγ
yk(x)eqk(x)

)
.

If x is such that ρ(x)−ρ(x) ∈ S⊥, then ρ(x)−ρ(x) is orthogonal to every reaction vector,

and thus

f(x) =
∑
η∈K

eqη(x)η

( ∑
k:η=yk′

κkγ
yk(x)−

∑
k:η=yk

κkγ
yk(x)

)
= 0;

that is, the vector x is an equilibrium. This shows that the set of positive equilibria

coincides with the set E , and thus the system is quasi-thermostatic. This, combined with

(2.15) shows that the system is quasi-thermodynamic as well.

2.4 Stability of delayed kinetic models

In this section, we consider kinetic systems with delayed reactions having the form (2.9).

In order to do so, first, we have to extend the notion of positive stoichiometric compat-

ibility classes to the delayed case. We note, that the following definition and invariance

proof was already established in [71] for the case of mass action kinetics and in [73] for

the general case. For each v ∈ RN define the functional cv : C+,τ 7→ R as

cv(ψ) = v ·

[
ψ(0) +

M∑
k=1

(
κk

ˆ 0

−τk
γyk
(
ψ(s)

)
ds

)
yk

]
, ψ ∈ C+,τ .

For each θ ∈ C+,τ the positive stoichiometric compatibility class of (2.9) corresponding

to θ is denoted by Dθ and is defined by

Dθ =
{
ψ ∈ C+,τ

∣∣cv(ψ) = cv(θ) for all v ∈ S⊥}.
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Clearly, ψ ∈ Dθ if and only if ψ ∈ C+,τ and

ψ(0)− θ(0) +
M∑
k=1

(
κk

ˆ 0

−τk

(
γyk
(
ψ(r)

)
− γyk

(
θ(s)

))
ds

)
yk ∈ S. (2.16)

This shows that if each delay τk is zero, then the delayed positive stoichiometric compat-

ibility classes reduce to the positive compatibility classes of (2.5).

The following Proposition establishes the invariance property of Dθ.

Proposition 2.4.1. For every θ ∈ C+,τ the positive stoichiometric compatibility class Dθ

is a closed subset of C+,τ . Moreover, Dθ is positively invariant under (2.9); that is, if

ψ ∈ Dθ, then xψt ∈ Dθ for all t ≥ 0.

Proof. The closedness follows from the continuity of cv. We will show that for each

v ∈ S⊥ the functional cv is constant along the trajectories of (2.9). To see this, let us

assume that x is a solution of (2.9). Then for t ≥ 0 we have that

d

dt
cv(xt) = v ·

(
ẋ(t) +

M∑
k=1

κk

(
γyk
(
x(t)

)
− γyk

(
x(t− τk)

))
yk

)

= v ·

(
M∑
k=1

κkγ
yk
(
x(t− τk)

)
(yk′ − yk)

)
=

M∑
k=1

κkγ
yk
(
x(t− τk)

)
v · (yk′ − yk) = 0,

where the last equality follows from the fact that v ∈ S⊥. Thus, if ψ ∈ Dθ, then for every

v ∈ S⊥ and t ≥ 0 the equalities

cv
(
xψt
)
= cv

(
xψ0
)
= cv(ψ) = cv(θ)

hold, showing that xψt ∈ Dθ as desired.

The delayed kinetic system of form (2.9) is quasi-thermostatic if its nondelayed ver-

sion, obtained by setting each τk = 0, is quasi-thermostatic, since their equilibria coincide.

The following proposition is the generalization of Proposition 2.3.1 for delayed systems.

Proposition 2.4.2. Assume that the kinetic system (2.9) is quasi-thermostatic. Then,

for every θ ∈ C+,τ the corresponding delayed positive stoichiometric compatibility class

Dθ of the system (2.9) contains precisely one positive equilibrium.

Proof. In the nondelayed case (see Proposition 2.3.1) existence is shown via [79, Propo-

sition B.1] without modification. However, in the delayed case we need to adapt certain

steps of the proof based on [76, Theorem 4.4], where the authors prove the statement for

delayed mass action systems.
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Let us for x ∈ E define the positive vector b ∈ RN+ by

bi = θi(0) +

M∑
k=1

κk

ˆ 0

−τk
γyk
(
θ(s)

)
ds

and the continuously differentiable function g : RN 7→ R by

g(x) =

N∑
i=1

(ˆ xi

0
γ−1
i

(
γi(xi)e

s
)
ds+ xi − bixi

)
+

M∑
k=1

κkτk
(
γ(x)ex

)yk .
We note that adding xi to the integral is not necessary for the following analysis, but

adding it ensures that g(x) reduces precisely to the analogous function in the known proof

of this theorem for mass action systems.

The gradient of g is given by

∇g(x) = γ−1
(
γ(x)ex

)
− b+

M∑
k=1

κkτk
(
γ(x)ex

)ykyk
and that the Hessian of g is written as

Hg(x) = diag

(
γ(x)ex

γ′
(
γ−1

(
γ(x)ex

))
)

+

M∑
k=1

κkτk
(
γ(x)ex

)ykyky⊤k ,
where the fraction in the diagonal matrix is defined element-wise. The corresponding

quadratic form is positive-definite as the first term is a diagonal matrix with positive

entries, and thus is positive-definite, and the second term consists of positive factors and

the positive-semidefinite matrix yky⊤k . Then the function g is strictly convex everywhere.

From the property (2.7) of the γi functions it follows that for any nonzero vector

x ∈ RN we have that

lim
a→∞

(ˆ xi

0
γ−1
i

(
γi(xi)e

as
)
ds+ xi − abixi

)
=


∞, xi ̸= 0,

xi xi = 0,

and thus

lim
a→∞

N∑
i=1

(ˆ xi

0
γ−1
i

(
γi(xi)e

as
)
ds+ xi − abixi

)
≤ lim

a→∞
g(ax) = ∞. (2.17)

Let g : S⊥ 7→ R be the restriction of g to S⊥, which is also continuously differentiable

and strictly convex. Define the subset

S⊥ ⊃ G =
{
x ∈ S⊥∣∣g(x) ≤ g(0)

}
.

Clearly G is convex, closed in RN , contains the zero vector and contains no half line with

endpoint 0 because of (2.17). Then G is bounded, and thus compact as well, since in
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a finite-dimensional vector space every unbounded closed convex set containing 0 must

contain a half line with endpoint 0 [81, Theorem 3.5.1]. The continuity of g and the

compactness of G implies that there exists µ ∈ G such that

g(µ) ≤ g(x), ∀x ∈ G.

In fact, g(0) < g(x) for x ∈ S⊥\G, and thus

g(µ) ≤ g(x), ∀x ∈ S⊥.

Then for ξ ∈ S⊥, the equality

0 =
d

dt
g(µ+ tξ)

∣∣∣∣
t=0

=
d

dt
g(µ+ tξ)

∣∣∣∣
t=0

= ∇g(µ) · ξ

holds; that is, the vector ∇g(µ) is in S, and thus

γ−1
(
γ(x)eµ

)
− b+

M∑
k=1

κkτk
(
γ(x)eµ

)ykyk
= γ−1

(
γ(x)eµ

)
− θ(0) +

M∑
k=1

(
κk

ˆ 0

−τk

((
γ(x)eµ

)yk − γyk
(
θ(s)

))
ds

)
yk ∈ S.

Let x̃ be defined by

x̃ = γ−1
(
γ(x)eµ

)
.

Then x̃ ∈ Dθ and taking logarithm shows that

ρ(x̃)− ρ(x) = µ ∈ S⊥;

that is, we have that x̃ ∈ E as well.

To show uniqueness, assume by contradiction that x̃ and x are distinct positive equi-

libria in Dθ. Then by (2.16) it follows that

x̃− x+
M∑
k=1

(
κk

ˆ 0

−τk

(
γyk(x̃)− γyk(x)

)
ds

)
yk ∈ S.

This, combined with the characterization (2.11) shows that

0 =
(
ρ(x̃)− ρ(x)

)
·

[
x̃− x+

M∑
k=1

(
κk

ˆ 0

−τk

(
γyk(x̃)− γyk(x)

)
ds

)
yk

]

=

N∑
i=1

(
log γ(x̃i)− log γ(xi)

)
(x̃i − xi)

+
M∑
k=1

(
κkτk

(
log γyk(x̃)− log γyk(x)

)(
γyk(x̃)− γyk(x)

))
.

Since the functions γi and the logarithm are strictly increasing, the above expression is

zero if and only if x̃ = x.
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As a clear consequence of our nondelayed analysis, a delayed complex balanced sys-

tem is quasi-thermostatic. To discuss quasi-thermodynamicity we define the candidate

Lyapunov-Krasovskii functional, a main contribution of the chapter, as

V (ψ) := V (ψ, x) =
N∑
i=1

ˆ ψi(0)

xi

(
log γi(s)− log γi(xi)

)
ds

+

M∑
k=1

κk

ˆ 0

−τk

(
γyk
(
ψ(s)

)(
log γyk

(
ψ(s)

)
− log γyk(x)− 1

)
+ γyk(x)

)
ds .

(2.18)

A delayed kinetic system of the form (2.9) is called quasi-thermodynamic if there exists

x ∈ RN+ such that the system is quasi-thermostatic with respect to x, and

V̇ (xt, x) ≤ 0

holds along the trajectories xt for t ≥ 0, with equality holding only if f(x) = 0.

The following theorem is a generalization of Proposition 2.3.3 for delayed systems.

Theorem 2.4.3. Assume that the kinetic system (2.9) is quasi-thermodynamic. Then,

every positive equilibrium of the system is Lyapunov stable relative to its positive stoi-

chiometric compatibility class.

Proof. The fact that each positive stoichiometric compatibility class contains precisely

one positive equilibrium follows from quasi-thermostaticity. Using (2.14) shows that

the second term of (2.18) is nonnegative and zero if only if x = x, while in [62] the

author shows the same for the first term. Since the system is quasi-thermodynamic, the

functional (2.18) is a Lyapunov-Krasovskii functional for the system and the proof is

finished.

Note, that in the nondelayed case Proposition 2.3.3 guaranteed local asymptotic sta-

bility and that there are no nontrivial periodic trajectories. In the delayed case the

anologous definition only implies Lyapunov stability. However, in our final theorem that

generalizes Proposition 2.3.5 to the delayed case, we can ensure these properties.

Theorem 2.4.4. Assume that the delayed kinetic system (2.9) is complex balanced. Then

it is quasi-thermodynamic. Moreover, each equilibrium is locally asymptotically stable rel-

ative to its positive stoichiometric compatibility class and there are no nontrivial periodic

trajectory along which all species concentrations are positive.

Proof. Let x be a complex balanced equilibrium. The gradient of the first term of (2.18)

is ρ(x)−ρ(x), and thus the Lyapunov-Krasovskii directional derivative along trajectories
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of (2.9) is given by

V̇ (xt) =

M∑
k=1

κk

(
γyk
(
x(t− τk)

)
qk′
(
x(t)

)
− γyk

(
x(t)

)
qk
(
x(t)

))
+

M∑
k=1

κk

(
γyk
(
x(t)

)
qk
(
x(t)

)
− γyk

(
x(t− τk)

)
qk
(
x(t− τk)

))
+

M∑
k=1

κk

(
γyk
(
x(t− τk)

)
− γyk

(
x(t)

))
=

M∑
k=1

κk

(
γyk
(
x(t− τk)

)(
qk′
(
x(t)

)
− qk

(
x(t− τk)

))
+ γyk

(
x(t− τk)

)
− γyk

(
x(t)

))
.

Rewrite the above as

V̇ (xt) =

M∑
k=1

κkγ
yk(x)

(
eqk(x(t−τk))

(
qk′
(
x(t)

)
− qk

(
x(t− τk)

))
+ eqk(x(t−τk)) − eqk(x(t))

)
and use inequality (2.14) to find that

V̇ (xt) ≤
M∑
k=1

κkγ
yk(x)

(
eqk′ (x(t)) − eqk(x(t))

)
=
∑
η∈K

eqη(x(t))

( ∑
k:η=yk′

κkγ
yk(x)−

∑
k:η=yk

κkγ
yk(x)

)
= 0,

as the system is complex balanced, and V̇ (xt) = 0 if and only if the equality

qk′
(
x(t)

)
= qk

(
x(t− τk)

)
holds for each reaction k = 1, 2, . . . ,M . Standard arguments, see [71, Theorem 3], show

that the largest invariant subset of the set

R =
{
ψ ∈ C+,τ

∣∣∣V̇ (ψ) = 0
}
=
{
ψ ∈ C+,τ

∣∣∣qk′(xψ(t)) = qk
(
xψ(t− τk)

)
, k = 1, 2, . . . ,M

}

consists of constant functions that are positive complex balanced equilibria.

The fact that there are no nontrivial periodic trajectories along which all species

concentrations are positive can be shown similarly as in 2.3.3, thus we omit the calcula-

tion.

2.5 Discussion

In this section some further remarks are discussed about the results shown in Sections 3

and 4.
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2.5.1 Interpretation of delayed entropy

In the nondelayed case, the Lyapunov function (2.12) depends only on the concentration

configuration of the system and does not include any information about the reactions,

such as the reactants, the products or the reaction rate coefficients. Such Lyapunov

functions are called universal, a term used by [82]. In the delayed case, the Lyapunov-

Krasovskii funtional (2.18) is not universal in this sense, since it explicitly contains the

stoichiometric vectors and the rate coefficients. In the entropy (or free energy) interpre-

tation of the Lyapunov function, the history of the trajectories temporarily increase the

entropy. As we have shown, this residual entropy can be described by the second term

of (2.18). While it might be possible to define the delayed entropy with less information

about the reactions, our Lyapunov-Krasovskii functional is inherently tied to the delayed

system. To see this, we can use the chain method to approximate the delayed reactions in

(2.9) with cascades of first order mass action reactions [83, 84]. The Lyapunov function

of the approximating system will then converge uniformly to (2.18) on compact subsets

of [0,∞). For a more detailed explanation, we refer to [85], where the authors derive this

in the mass action case.

2.5.2 Lyapunov-Krasovskii functional in a different notation

In the literature of CRNs, both system descriptions (2.5) and (2.8) are used frequently.

In the former case, we sum the right-hand side w.r.t. the reactions, while in the latter

case we sum w.r.t. the complexes. The delayed system (2.9) can be similarly rewritten

as

ẋ(t) =
L∑
i=1

L∑
j=1

κij
[
γyi
(
x(t− τij)

)
yj − γyi

(
x(t)

)
yi
]
.

Then the Lyapunov-Krasovskii functional takes the form

V (ψ) := V (ψ, x) =

N∑
i=1

ˆ ψi(0)

xi

(
log γi(s)− log γi(xi)

)
ds

+

L∑
i=1

L∑
j=1

κij

ˆ 0

−τij

(
γyi
(
ψ(s)

)(
log γyi

(
ψ(s)

)
− log γyi(x)− 1

)
− γyi(x)

)
ds .

The computation on V̇ (xt) can be repeated with minor notational modifications to obtain

V̇ (xt) ≤
L∑
i=1

L∑
j=1

κijγ
yi(x)

(
eqj(x(t)) − eqi(x(t))

)
.

The right-hand size is equal to
L∑
j=1

eqj(x(t))

(
L∑
i=1

κijγ
yi(x)

)
−

L∑
i=1

eqi(x(t))

(
L∑
j=1

κij

)
γyi(x) =: Q

(
x(t)

)
K̃Γ(x).
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Since x is a complex balanced equilibrium, the vector Γ(x) is in the kernel of K̃; that is,

we have that V̇ (xt) ≤ 0.

2.5.3 Connection with semistability

Our results also show that the positive equilibria of a delayed complex balanced CRN are

semistable, defined as follows. An equilibrium x is called semistable, if it is Lyapunov

stable and there exists δ > 0 such that ψ ∈ Bδ(x) implies that xψ(t) converges to

a Lyapunov stable equilibrium as t → ∞. In [71] the authors showed semistability

for delayed mass action complex balanced CRNs. We note that the existence of an

equilibrium in each positive stoichiometric compatibility class was not known at that

time, but it was since proved in [76] for delayed mass action systems and in Proposition

2.4.2 for the more general case.

2.6 Examples

In the following examples we illustrate our notations and results.

2.6.1 Example 1

First, let us consider the delayed kinetic system from [71] with mass action kinetics. The

system consists of a reversible reaction

2X1
κ1=1−−−−−−−−⇀↽−−−−−−−−

κ2=2,τ2=0.5
X2.

The corresponding kinetic system takes the form

ẋ(t) = κ1

(
x21(t)

0
1

− x21(t)

2
0

)+ κ2

(
x2(t− τ2)

2
0

− x2(t)

0
1

).
The stoichiometric subspace and its orthogonal complement is

S = span

{ 2

−1

} S⊥ = span

{1
2

}.
It is easy to verify that [2 2]⊤ is a positive complex balanced equilibrium, and thus the

positive equilibria are given by

E =

{
x ∈ R2

+

∣∣∣∣∣
log x1 − log 2

log x2 − log 2

 ∈ S⊥

}
.
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For any x ∈ E we consider the set of points

Xx =

{
x ∈ R2

+

∣∣∣∣∣
 x1 − x1

(1 + κ2τ2)(x2 − x2)

 ∈ S

}
.

If we construct constant functions in C+,τ from x and the elements of Xx in the obvious

way, then by (2.16) we have Xx ∈ Dx.

Let us consider the transformations γ1(s) = s2

1+s and γ2(s) = s3

1+s ; that is, the trans-

formed system takes the form

ẋ(t) = κ1

(
x41(t)(

1 + x1(t)
)2
0
1

− x41(t)(
1 + x1(t)

)2
2
0

)

+ κ2

(
x32(t− τ2)

1 + x2(t− τ2)

2
0

− x32(t)

1 + x2(t)

0
1

).

Is it easy to verify that
[√

5
2 + 1

2 1
]⊤

is a positive complex balanced equilibrium, and

thus the positive equilibria are given by

E =

{
x ∈ R2

+

∣∣∣∣∣
log x21

1+x1
− log 1

log
x32

1+x2
− log 1

2

 ∈ S⊥

}
,

and Xx is given by

Xx =

{
x ∈ R2

+

∣∣∣∣∣
 x1 − x1

x2 − x2 + κ2τ2

(
x32

1+x2
− x32

1+x2

)
 ∈ S

}
.

In Figure 2.1, the positive equilibria, several positive stoichiometric compatibility classes

and trajectories of the original mass action system are depicted with red dashed, green

dashed and green continuous lines, respectively. The same objects for the transformed

system are drawn with black dashed, blue dashed and blue continuous lines, respectively.
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Figure 2.1: Phase plot of Example 1

Using the terminology of [73, 76] it is easy to see that the set W = {X1, X2} is the

only minimal semilocking set (called siphon in the theory of Petri nets). The LW space

consists of functions w ∈ C+,τ such that

wi(s) = 0, Xi ∈W,

wi(s) ̸= 0, Xi ̸∈W

holds for s ∈ [−τ, 0]. Then [76, Theorem 5.1] states that the boundary equilibria of the

system is contained in ⋃
θ∈C+,τ

Dθ ∩ LW ,

but the above set consists of only the constant zero function; that is, all nontrivial equi-

libria are positive and globally asymptotically stable w.r.t. their positive stoichiometric

compatibility classes.

2.6.2 Example 2

Our next example is a delayed version of another complex balanced small reaction net-

work, taken from [86]. We consider the set of reversible reactions

3X1

κ1=
1.4
3−−−−⇀↽−−−−

κ2=
2.8
3

3X2 3X1
κ3=0.1−−−−−−−−−−⇀↽−−−−−−−−−−

κ4=0.126,τ4=0.4
2X1 +X2 3X2

κ5=0.1−−−−−−−−−−⇀↽−−−−−−−−−−
κ6=0.063,τ6=0.6

2X1 +X2
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with the transformations γ1(s) = s and γ2(s) = s2

1+s . Then the system takes the form

ẋ(t) = κ1

(
x31(t)

0
3

− x31(t)

3
0

)+ κ2

(
x62(t)(

1 + x2(t)
)2
3
0

− x62(t)(
1 + x2(t)

)2
0
3

)

+ κ3

(
x31(t)

2
1

− x31(t)

3
0

)

+ κ4

(
x21(t− τ4)

x22(t− τ4)

1 + x2(t− τ4)

3
0

− x21(t)
x22(t)

1 + x2(t)

2
1

)

+ κ5

(
x62(t)(

1 + x2(t)
)2
2
1

− x62(t)(
1 + x2(t)

)2
0
3

)

+ κ6

(
x21(t− τ6)

x22(t− τ6)

1 + x2(t− τ6)

0
3

− x21(t)
x22(t)

1 + x2(t)

2
1

).
The stoichiometric subspace and its orthogonal complement are

S = span

{−3

3

} S⊥ = span

{3
3

}.
It is easy to verify via the Cardano formula that

x =

 3
√
2

3

√
1
2 +

√
23
108 + 3

√
1
2 −

√
23
108


is a positive complex balanced equilibrium, and thus the positive equilibria are given by

E =

{
x ∈ R2

+

∣∣∣∣∣
 log x1 − log x1

log
x22

1+x2
− log

x22
1+x2

 ∈ S⊥

}
,

and Xx is given by

Xx =

{
x ∈ R2

+

∣∣∣∣∣
x1 − x1 + 2(κ4τ4 + κ5τ5)

(
x21

x22
1+x2

− x21
x22

1+x2

)
x2 − x2 + (κ4τ4 + κ5τ5)

(
x21

x22
1+x2

− x21
x22

1+x2

)
 ∈ S

}
.

Similarly to the previous example, it can be shown via [76, Theorem 5.1] that all non-

trivial equilibria of the system are positive and globally asymptotically stable w.r.t. their

positive stoichiometric compatibility classes.

In Figure 2.2, the positive equilibria, several positive stoichiometric compatibility

classes and trajectories of system are drawn with black dashed, blue dashed and blue

continuous lines, respectively.
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Figure 2.2: Phase plot of Example 2

2.6.3 Example 3

Our final example focuses on the Lyapunov-Krasovskii functional. Of course it cannot

be visualized in general as it maps an infinite dimensional function space to nonnegative

numbers. However, if we restrict the functional to constant history functions as in the

previous examples, then we can compare it to the nondelayed Lyapunov function. In

order to do so, we consider the following delayed reversible reactions

2X1
κ1=1,τ1=1−−−−−−−⇀↽−−−−−−−

κ2=1
2X3 2X1 +X2

κ3=1−−−−−−−−⇀↽−−−−−−−−
κ4=2,τ4=0.5

3X3,

with transformations γ1(s) = s, γ2(s) = s2

1+s and γ3(s) = s
1+s . Omitting the vector

notation, the corresponding delayed differential equation takes the form

ẋ1(t) = −2κ1x
2
1(t) + 2κ2

(
x3(t)

1 + x3(t)

)2

− 2κ3x
2
1(t)

x22(t)

1 + x2(t)
+ 2κ4

(
x3(t− τ4)

1 + x3(t− τ4)

)3

ẋ2(t) = κ4

(
x3(t− τ4)

1 + x3(t− τ4)

)3

− κ3x
2
1(t)

x22(t)

1 + x2(t)

ẋ3(t) = 2κ1x
2
1(t− τ1)− 2κ2

(
x3(t)

1 + x3(t)

)2

+ 3κ3x
2
1(t)

x22(t)

1 + x2(t)
− 3κ4

(
x3(t)

1 + x3(t)

)3

.

It is easy to see that the nondelayed system is conservative as x1+x2+x3 is a first integral;

that is, the nondelayed positive stoichiometric compatibility classes can be characterized
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as

Sp =
{
x ∈ R3

+

∣∣x1 + x2 + x3 = p1 + p2 + p3
}
,

where p ∈ R3
+ is arbitrary. Then for any fixed p ∈ R3

+ we can visualize the Lyapunov

function (2.12) as a two-dimensional function defined on the region

Dp =
{
x ∈ R2

+

∣∣x1 + x2 ≤ p1 + p2 + p3
}
.

The delayed positive stoichiometric compatibility class of the delayed system is more

complicated and, in particular, it is not a plane; that is, the delayed system is not

conservative in this sense. However, it can be shown similarly to the previous examples

that the system is persistent, and thus every delayed positive stoichiometric compatibility

class contains precisely one positive equilibrium. Assuming a constant history function

constructed from an element of Dp, we can compute the value of the functional at the

initial point of the corresponding trajectory. Figure 2.3 shows the contour plots of the

Lyapunov function and the Lyapunov-Krasovskii functional on Dp with p1+ p2+ p3 = 1.

(a) Lyapunov function (b) Lyapunov-Krasovskii functional

Figure 2.3: Level curves of the Lyapunov function of the nondelayed system and the

Lyapunov-Krasovskii functional of the delayed system for constant history functions

2.7 Conclusions

The stability of kinetic systems with time delays and general kinetics was studied in

this chapter. In preparation for the subsequent analysis, certain stability results of [62]

were slightly generalized using the notion of quasi-thermodynamicity introduced in [27].

Then it was shown for delayed complex balanced reaction networks that each positive

stoichiometric compatibility class contains precisely one positive equilibrium that is lo-

cally asymptotically stable within their positive stoichiometric compatibility classes for
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arbitrary finite time delays. A key result of the chapter allowing the stability proof is the

construction of an appropriate Lyapunov-Krasovskii functional. Thus, the results pro-

posed in [71] have been generalized for a wide class of delayed non-mass action reaction

networks. It was also shown that the global stability of equilibria can be proved as well if

the conditions in [73, 76] are fulfilled. Three illustrative examples were given to visualize

the theoretical results.

The explicit description of time delays can increase our understanding of complex

dynamical phenomena in nature and help to build reliable models. Another natural

extension arises when considering interactions that are distributed in space or over struc-

tured populations. These effects lead to nonlocal models, often described by partial

integro-differential equations, which we study in the next chapter.
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Chapter 3

Nonlocal conservation laws

In this chapter we investigate a class of nonlocal conservation laws in several space di-

mensions, where the continuum average of weighted nonlocal interactions are considered

over a finite horizon. We establish well-posedness for a broad class of flux functions

and initial data via semigroup theory in Banach spaces and, in particular, via the cele-

brated Crandall-Liggett Theorem. We also show that the unique mild solution satisfies

a Kružkov-type nonlocal entropy inequality. Similarly to the local case, we demonstrate

an efficient way of proving various desirable qualitative properties of the unique solution.

3.1 Introduction

We study the semigroup theory of nonlocal conservation laws of the form

∂u

∂t
+

ˆ
Rn

k∑
i=1

ϕi(u, τβi(h)u)− ϕi(τ−βi(h)u, u)

∥βi(h)∥Rn

ωi
(
βi(h)

)
dh = 0, in Rn × R+;

u(x, 0) = u0(x), x ∈ R,

(3.1)

where τ±hu(x, t) = u(x±h, t) denote a spatial shift of the conserved quantity u(x, t) and

the flux functions ϕi : R × R 7→ R are assumed to be increasing with respect to their

first arguments and decreasing with respect to their second arguments, and to have the

property ϕi(0, 0) = 0. The number 1 ≤ k ≤ n denotes the number of subinteractions and

the functions βi : Rn 7→ Rn are assumed to be of the form

βi(h) =
∑
j∈Bi

hjej , h = (h1, h2, . . . , hn),

where the nonempty, pairwise disjoint sets Bi ⊂ {1, 2, . . . , n} are such that
⋃k
i=1Bi =

{1, 2, . . . , n} and ej denotes the jth unit vector in Rn. The kernel functions ωi ∈ L1(Rn)∩

31
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L∞(Rn) are assumed to be nonnegative with
∥∥ωi(βi(.))∥∥L1(Rn)

= 1. We further assume

that the support of the kernel functions are finite and are either

1. symmetric around the origin, in which case we further assume that the kernels are

even, or

2. contained in Rn+ such that the closure contains the origin.

For example, in the context of nonlocal particle flows, the above cases allows us to

differentiate between multidirectional and unidirectional flows.

Our main examples for the choice of k, βi and ωi are as follows.

1. If k = 1 and β1(h) = h, then the conservation law (3.1) takes the form

∂u

∂t
+

ˆ
Rn

ϕ1(u, τhu)− ϕ1(τ−hu, u)

∥h∥Rn

ω(h) dh = 0. (3.2)

This case describes a natural multidirectional generalization of the one-dimensional

unidirectional nonlocal pair-interaction model investigated in [60]. In fact, if n = 1

and supp(ω) ⊂ R+, the law (3.2) coincides with the latter.

2. If k = n and βi(h) = hiei and ωi(h) =
∏n
j=1 ω̃j(hj), where the kernel functions ω̃j

have analogous properties to that of ωi in R with supp(ω̃j) = (−δj , δj) for δj > 0,

then the conservation law (3.1) takes the form

∂u

∂t
+

n∑
i=1

ˆ δi

−δi

ϕi(u, τhieiu)− ϕi(τ−hieiu, u)

|hi|
ω̃i(hi) dhi = 0.

Should the underlying model allow such considerations, this case corresponds to

interactions that can be unfolded into subinteractions along the individual axes.

A clear advantage of this example is the ease of numerical approximation of the

integral as described in [60, Section 3.1]. If n = 1 and supp(ω̃1) = (0, δ1) instead,

then again, we obtain the one-dimensional unidirectional nonlocal pair-interaction

model of [60], as in the previous special case.

We say that the nonlocal flux functions ϕi are consistent with the local fluxes ψi if

ϕi(a, a) = ψi(a) holds for all a ∈ R. For consistent flux functions, if in addition, the

weighting kernels are smooth with their support approaching zero, both special cases

formally lead to the standard local conservation law

∂u

∂t
+

n∑
i=1

∂ψi(u)

∂xi
= 0. (3.3)
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For the formal derivation of (3.1) we utilize the nonlocal vector calculus established

in [87, 88]. Let ν, ν̃,α : Rn × Rn 7→ Rk be vector two-point functions defined by the

coordinate functions

νi(u)(x, y, t) = ϕi

(
u(x, t), u

(
x+ βi(y − x), t

))
,

ν̃i(u)(x, y, t) = ϕi

(
u
(
x+ βi(y − x), t

)
, u(x, t)

)
,

αi(x, y) =
ωi
(
βi(y − x)

)
∥βi(y − x)∥Rn

.

Then, the nonlocal point divergence is defined as

D
(
ν(u), ν̃(u)

)
(x, t) =

ˆ
Rn

(
ν(u)(x, y, t)− ν̃(u)(x, y, t)

)
·α(x, y) dy

and repeated changes of variables in the integral gives

D
(
ν(u), ν̃(u)

)
(x, t) =

ˆ
Rn

k∑
i=1

ϕi(u, τβi(h)u)− ϕi(τβi(h)u, u)

∥βi(h)∥Rn

ωi
(
βi(h)

)
dh

=

ˆ
Rn

k∑
i=1

ϕi(u, τβi(h)u)− ϕi(τ−βi(h)u, u)

∥βi(h)∥Rn

ωi
(
βi(h)

)
dh .

(3.4)

The theory of abstract balance laws thoroughly discussed in [87, Section 7] shows that in

the absence of external sources a class of nonlocal balance laws are given by

∂u

∂t
(x, t) +D

(
ν(u), ν̃(u)

)
(x, t) = 0,

which, combined with (3.4), gives exactly the law (3.1).

It is well known that the solution of (3.1) (including the local case (3.3) as well) may

develop spatial discontinuities (shock waves) over time, even if the initial data is smooth.

Hence the Cauchy problem must be considered in a weak or generalized sense. However,

there might be infinitely many weak solutions of (3.1) for given initial data. This fact

lead to the development of additional constraints, such as the entropy condition, selecting

the unique, physically relevant weak solution, which in this case is the so-called entropy

solution.

The well-posedness of the local conservation law (3.3) is a thoroughly investigated

problem, heavily influenced by the profound work of Kružkov [89]. Kružkov showed

uniqueness via a priori estimates and existence using the vanishing viscosity method for

bounded and measurable initial data and sufficiently smooth flux functions, thus achieving

well-posedness. Existence of entropy solutions can often be proved by the convergence

of an appropriate numerical scheme [90, 91] (the technique was first used to prove the

existence of weak solutions [92, 93]). Another classical framework is nonlinear semigroup
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theory and, in particular, the celebrated Crandall-Liggett Theorem [94], which was first

used to prove well-posedness by Crandall [95]. Many combinations of these approaches

were developed, a notable example being the approximation of semigroups of contractions

[96].

The well-posedness of the one-dimensional nonlocal Cauchy problem with β1(h) = h

was investigated in [60], where the existence of an entropy solution was proved through

the convergence of an appropriate finite volume scheme, and the uniqueness of this so-

lution was proved via Kružkov’s method. While this approach could be extended for

multidimensional non-homogeneous Cauchy problems in some special cases (see our sec-

ond example above), the method is difficult to apply in the generality of (3.1) if k < n.

Instead, we will also work with the semigroup framework, which provides an elegant way

of handling further problems like inhomogeneous conservation laws [97] or error control

of finite volume methods [98]. Another particular advantage of semigroup theory is the

ability to handle L1(Rn) initial data, while with the methods of [60] one can only show

existence and uniqueness for L1(Rn) ∩ L∞(Rn) initial data. The semigroup framework

considers generalized solutions of abstract Cauchy problems, often called mild solutions.

In general, a mild solution can coincide with a weak solution or an entropy solution or,

in some cases, with neither; after proving well-posedness an additional investigation is

necessary to determine this.

The main results of the chapter are contained in Theorems 3.3.8 and 3.3.9 and Corol-

lary 3.3.11. In Theorem 3.3.8, we give appropriate circumstances under which there

exists an operator satisfying the assumptions of the Crandall-Liggett Theorem. In Theo-

rem 3.3.9, we show that the unique mild solution of (3.1) satisfies a nonlocal Kružkov-type

entropy inequality and has many other qualitative properties that are desirable from a

physical point of view. In Corollary 3.3.11 we extend the well-posedness to conservation

laws under Carathéodory forcing.

The outline of the chapter is as follows. In Section 3.2, we introduce notations and the

abstract framework. In Section 3.3, we give the necessary definitions and state our main

results. Section 3.4 contains the proof of the main results. The main steps of the proofs

are based on [95], however, there are significant nontrivial differences in the details. The

difficulty in carrying out this construction is the absence of flux derivatives rendering the

method of integration by parts and thus many simplifying steps inapplicable. Most of

these complications can be solved by a formally similar technique obtained via changes of

variables in the integrals; the technique is often called integration by parts for difference
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quotients, see, for example [99, page 295]. However, a significant step that cannot be

resolved in such manner is the verification of the range condition. Crandall uses a pertur-

bation results to establish this, namely [100, Theorem 3.2], but this approach does not

seem to be applicable in the nonlocal setting. Instead, we use a fix-point based approach

similar to that of [101, Chapter 4] and [102, Proposition IV.3]. Throughout the chapter

the arguments of the functions βi and ωi are omitted unless necessary and C is used as

a generic constant that may take on different values at different occurrences.

3.2 Preliminaries

We give a brief introduction of the abstract setting based on [95, 103, 104].

3.2.1 Mild solutions of the abstract Cauchy problem

Let X be a real Banach space and A be a possibly multivalued operator in X and

J = [0, T ] ⊂ R and f ∈ L1(J,X). Consider the quasi-autonomous Cauchy problem

u′ +Au ∋ f(t), t ∈ J ;

u(0) = u0

(3.5)

for u0 ∈ D(A). We call u ∈ C(J,X) a mild solution of (3.5) if for every ϵ > 0 there

exists a partition 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tN of [0, tN ] and sequences {z1, z2, . . . , zN},

{f1, f2, . . . , fN} in X such that

ti − ti−1 < ϵ, i = 1, . . . , N

T − ϵ < tN ≤ T,

N∑
i=1

ˆ ti

ti−1

∥f(s)− fi∥ ds < ϵ,

zi − zi−1

ti − ti−1
+Azi ∋ fi, i = 1, . . . , N

and ∥z(t)− u(t)∥ ≤ ϵ on [0, tN ], where z : [0, tN ] 7→ X is defined by

z(t) = zi for ti−1 ≤ t < ti, i = 1, 2, . . . , N.

The piecewise constant function z is called an ϵ-approximate solution of (3.5).

Let F : J ×D(A) 7→ 2X\∅. A mild solution of the Cauchy problem

u′ ∈ −Au+ F (t, u), t ∈ J ;

u(0) = u0
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is a function that is a mild solution of the quasi-autonomous problem

u′ +Au ∋ f(t), t ∈ J ;

u(0) = u0

with some f ∈ L1(J,X) such that f(t) ∈ F
(
t, u(t)

)
a.e.

3.2.2 Crandall-Liggett Theorem

Let X be a Banach space and A be a possibly multivalued operator in X. The operator

A is called accretive if, for any λ > 0 and x, y ∈ D(A), the inequality

∥(x+ λu)− (y + λv)∥ ≥ ∥x− y∥

holds, where u ∈ Ax and v ∈ Ay. The operator A is called m-accretive if it is accretive

and the operator I + λA is surjective for λ > 0; that is, we have

R(I + λA) =
⋃

x∈D(A)

⋃
v∈Ax

{x+ λv} = X. (3.6)

Theorem 3.2.1 (Crandall-Liggett Theorem). Let X be a Banach space and A be a

possibly multivalued m-accretive operator in X. Then for ϵ > 0 and u0 ∈ X the problem

1

ϵ

(
uϵ(t)− uϵ(t− ϵ)

)
+Auϵ(t) ∋ 0, t ≥ 0;

uϵ(0) = u0, t < 0

(3.7)

has a unique solution uϵ(t) on [0,∞). If u0 ∈ D(A), then limϵ→0 uϵ(t) converges uniformly

to the unique mild solution of (3.5) in bounded sets and
(
S(t)

)
t≥0

defined by S(t)u0 =

limϵ→0 uϵ(t) is a semigroup of contractions on D(A); that is, we have

(i) S(t) : D(A) 7→ D(A) for t ≥ 0,

(ii) S(t)S(τ) = S(t+ τ) for t, τ ≥ 0,

(iii) ∥S(t)v − S(t)w∥ ≤ ∥v − w∥ for t ≥ 0 and v, w ∈ D(A),

(iv) S(0) = I,

(v) S(t)v is continuous in the pair (t, v).

3.3 Statement of new results

The abstract framework of operator semigroups and, in particular, the fundamental

Crandall-Liggett Theorem utilizes the notion of mild solutions. Later we will show that
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the unique mild solution of the conservation law (3.1) also satisfies a Kružkov-type en-

tropy inequality. For the exact formulation of this inequality let us define the function

η : Rn 7→ R to be an entropy of (3.1) with entropy fluxes qi : Rn × Rn 7→ R given that it

is continuously differentiable and the equality

η′(u)

ˆ
Rn

ϕi(u, τβiu)− ϕi(τ−βiu, u)

∥βi∥Rn

ωi dh =

ˆ
Rn

qi(u, τβiu)− qi(τ−βiu, u)

∥βi∥Rn

ωi dh (3.8)

holds for all i = 1, 2, . . . , k. Then if u(t, x) is a C1 solution of (3.1) then it also satisfies

∂η(u)

∂t
+

ˆ
Rn

k∑
i=1

qi(u, τβiu)− qi(τ−βiu, u)

∥βi∥Rn

ωi dh = 0.

In the case of an η ∈ C2 convex entropy standard vanishing viscosity arguments (using

integration by parts for difference quotients) show that the inequality

ˆ T

0

ˆ
Rn

η(u)
∂f

∂t
dx dt+

ˆ T

0

ˆ
Rn

ˆ
Rn

k∑
i=1

τβif − f

∥βi∥Rn

qi(u, τβi)ωi dh dxdt ≥ 0

holds for any T > 0, nonnegative f ∈ C∞
0

(
Rn × (0, T )

)
. Our goal is to utilize classical

Kružkov-entropies of the form η(u) := η(u, c) = |u− c|, however, in this case, an explicit

formula for qi does not seem to reveal itself. Instead, during the vanishing viscosity

derivation we rely on (3.8) to arrive at the following definition:

Definition 3.3.1. A function u ∈ L1(Rn × (0, T )) ∩ L∞(Rn × (0, T )) is an entropy

solution of (3.1) if the inequality

0 ≤
ˆ T

0

ˆ
Rn

(∣∣u− c
∣∣∂f
∂t

+

ˆ
Rn

k∑
i=1

τβif sign0(τβiu− c)− f sign0(u− c)

∥βi∥Rn

(
ϕi(u, τβiu)− ϕi(c, c)

)
ωi dh

)
dx dt

holds for any T > 0, nonnegative f ∈ C∞
0

(
Rn × (0, T )

)
and c ∈ R.

Remark 3.3.2. Let the functions q̃i be given by1

q̃i(a, b, c) = ϕi(a ∨ c, b ∨ c)− ϕi(a ∧ c, b ∧ c)

= ϕi
(
max {a, c},max {b, c}

)
− ϕi

(
min {a, c},min {b, c}

)
=

sign0(a− c) + sign0(b− c)

2

(
ϕi(a, b)− ϕi(c, c)

)
+

sign0(a− c)− sign0(b− c)

2

(
ϕi(a, c)− ϕi(c, b)

)
,

1As already noted by [105, Definition 2.2], the second line is not identical to the corresponding equation

in [60, p. 2470], which is assumed to be a misprint. Here we gave a more straightforward formula.
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where

sign0(x) =


1 x > 0,

0 x = 0,

−1 x < 0.

For the sake of notational simplicity, let us omit the sum in this remark. The properties

of ϕi after adding and subtracting ϕi(c, c) imply that

sign0(u− c)

ˆ
Rn

ϕi(u, τβiu)− ϕi(τ−βiu, u)

∥βi∥Rn

ωi dh ≥
ˆ
Rn

q̃i(u, τβiu, c)− q̃i(τ−βiu, u, c)

∥βi∥Rn

ωi dh ,

and thus it seems reasonable to define entropy solutions using q̃i as entropy fluxes corre-

sponding to the entropy |u−c|. But, in fact, using the product rule for difference quotients

shows that
ˆ T

0

ˆ
Rn

ˆ
Rn

τβif sign0(τβiu− c)− f sign0(u− c)

∥βi∥Rn

(
ϕi(u, τβiu)− ϕi(c, c)

)
ωi dh dxdt

=

ˆ T

0

ˆ
Rn

ˆ
Rn

τβif − f

∥βi∥Rn

sign0(τβiu− c)
(
ϕi(u, τβiu)− ϕi(c, c)

)
ωi dh dxdt+

ˆ T

0

ˆ
Rn

ˆ
Rn

f
sign0(τβiu− c)− sign0(u− c)

∥βi∥Rn

(
ϕi(u, τβiu)− ϕi(c, c)

)
ωi dh dxdt .

Clearly

sign0(τβiv − c)
[
ϕi(v, τβiv)− ϕi(c, c)

]
≤ ϕi(v ∨ c, τβiv ∨ c)− ϕi(v ∧ c, τβiv ∧ c) = q̃i(v, τβiv, c)

and similarly

− sign0(v − c)
[
ϕi(v, τβiv)− ϕi(c, c)

]
≤ −q̃i(v, τβiv, c)

holds, thus [
sign0(τβiv − c)− sign0(v − c)

][
ϕi(v, τβiv)− ϕi(c, c)

]
≤ 0 (3.9)

and finally

ˆ T

0

ˆ
Rn

ˆ
Rn

τβif sign0(τβiu− c)− f sign0(u− c)

∥βi∥Rn

(
ϕi(u, τβiu)− ϕi(c, c)

)
ωi dh dxdt

≤
ˆ T

0

ˆ
Rn

ˆ
Rn

τβif − f

∥βi∥Rn

q̃i(u, τβiu, c)ωi dh dxdt ;

that is, in some sense, the inequality in Definition 3.3.1 is more precise in selecting the

physically relevant weak solution than the right-hand side of the above inequality. This

precision turns out to be crucial in later steps; the operator defined in Definition 3.3.6

does not seem to be accretive with the functions q̃i which is an essential property to derive

uniqueness of solutions via the Crandall-Liggett theorem.
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Throughout the chapter difference quotients will be denoted by

Dyf =
τyf − f

∥y∥Rn

,

where y ∈ Rn and the partial derivative of the ϕi functions with respect to their first and

second argument will be denoted by ϕ′i,1 and ϕ′i,2, respectively. For open subsets Ω of

Rn let Wk,p(Ω) denote the Sobolev space of functions whose distributional derivatives of

order at most k are in Lp(Ω). The space Wk,p
0 (Ω) ⊂ Wk,p(Ω) denotes the set of functions

vanishing at the boundary of Ω and Wk,p
loc (Ω) denotes the set of locally integrable functions

whose restriction to any pre-compact Q ⋐ Ω lies in Wk,p(Q). We will use the standard

notation Hk(Ω) := Wk,2(Ω).

We rewrite the nonlocal conservation law (3.1) using the operator

Bu =

ˆ
Rn

k∑
i=1

ϕi(u, τβiu)− ϕi(τ−βiu, u)

∥βi∥Rn

ωi dh

as
∂u

∂t
+Bu = 0. (3.10)

The following lemma shows that for continuously differentiable fluxes the operator B

maps W1,p(Rn) to Lp(Rn).

Lemma 3.3.3. Let ϕi ∈ C1(R×R) have bounded partial derivatives. Then v ∈ W1,p(Rn)

implies Bv ∈ Lp(Rn) for all 1 ≤ p <∞. In particular, there is a constant C = C(p) > 0

such that ∥Bv∥Lp(Rn) ≤ C∥∇v∥Lp(Rn) for all v ∈ W1,p(Rn).

Proof. Let |ϕ′i,1| ≤ Ki,1 and |ϕ′i,2| ≤ Ki,2 and 1
p +

1
q = 1. Setting Ki = max {Ki,1,Ki,2}

we find that

∥Bv∥pLp(Rn) =

ˆ
Rn

∣∣∣∣∣
ˆ
Rn

k∑
i=1

ϕi(v, τβiv)− ϕi(τ−βiv, v)

∥βi∥Rn

ωi dh

∣∣∣∣∣
p

dx

≤
ˆ
Rn

(ˆ
Rn

k∑
i=1

Ki
|v − τ−βiv|+ |τβiv − v|

∥βi∥Rn

ωi dh

)p
dx

≤ kp−1
k∑
i=1

Kp
i

ˆ
Rn

(ˆ
Rn

(∣∣Dβiτ−βiv
∣∣+ ∣∣Dβiv

∣∣)ωi dh)p dx (3.11)

≤ kp−1
k∑
i=1

Kp
i ∥ωi∥

p
Lq(Rn)

ˆ
Rn

ˆ
supp(ωi)

(∣∣Dβiτ−βiv
∣∣+ ∣∣Dβiv

∣∣)p dh dx
≤ 2p−1kp−1

k∑
i=1

Kp
i ∥ωi∥

p
Lq(Rn)

ˆ
supp(ωi)

∥∇v∥pLp(Rn) dh = C∥∇v∥pLp(Rn),

where we used the Lipschitz continuity of ϕ in the first inequality, Hölder’s inequality

in the third inequality and finally Fubini’s theorem and [106, Proposition 9.3(iii)] in the

fourth inequality.
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The continuity of B is established by our next lemma.

Lemma 3.3.4. Let the assumptions of Lemma 3.3.3 hold. Then B is continuous from

H1(Rn) to L2(Rn).

Proof. Let u, v ∈ H1(Rn). Similar estimates as in the proof of Lemma 3.3.3 lead to

∥Bu−Bv∥2L2(Rn)

=

ˆ
Rn

(ˆ
Rn

k∑
i=1

Dβi
[
ϕi(τ−βiu, u)− ϕi(τ−βiv, v)

]
ωi dh

)2

dx

≤ C
k∑
i=1

ˆ
supp(ωi)

∥∥∥Dβi
[
ϕi(τ−βiu, u)− ϕi(τ−βiv, v)

]∥∥∥2
L2(Rn)

dh

≤ C

k∑
i=1

ˆ
supp(ωi)

∥∥∇[ϕi(τ−βiu, u)− ϕi(τ−βiv, v)
]∥∥2

L2(Rn)
dh

= C
k∑
i=1

ˆ
supp(ωi)

∥∥∥ϕ′i,1(τ−βiu, u)∇τ−βiu+ ϕ′i,2(τ−βiu, u)∇u

− ϕ′i,1(τ−βiv, v)∇τ−βiv − ϕ′i,2(τ−βiv, v)∇v
∥∥∥2
L2(Rn)

dh .

By introducing mixed terms we find that

∥Bu−Bv∥2L2(Rn)

≤ C
k∑
i=1

ˆ
supp(ωi)

(∥∥[ϕ′i,1(τ−βiu, u)− ϕ′i,1(τ−βiv, v)
]
∇τ−βiu

∥∥
L2(Rn)

+
∥∥[ϕ′i,2(τ−βiu, u)− ϕ′i,2(τ−βiv, v)

]
∇u
∥∥
L2(Rn)

+
∥∥ϕ′i,1(τ−βiv, v)∥∥2L∞(Rn)

∥∇τ−βi(u− v)∥2L2(Rn)

+
∥∥ϕ′i,2(τ−βiv, v)∥∥2L∞(Rn)

∥∇(u− v)∥2L2(Rn)

)
dh .

(3.12)

Let v converge to u in H1(Rn) through a sequence {un} ⊂ H1(Rn) and let {unk
} be a

subsequence of {un}. Since unk
also converges to u as nk → ∞, there exists a subsequence

{unkl
} of {unk

} such that unkl
→ u a.e. as nkl → ∞. Let |ϕ′i,1| ≤ Ki,1 and |ϕ′i,2| ≤ Ki,2

and observe that∣∣∣[ϕ′i,1(τ−βiu, u)− ϕ′i,1(τ−βiunkl
, unkl

)
]
∇τ−βiu

∣∣∣ ≤ 2Ki,1

∣∣∇τ−βiu∣∣,∣∣∣[ϕ′i,2(τ−βiu, u)− ϕ′i,2(τ−βiunkl
, unkl

)
]
∇τ−βiu

∣∣∣ ≤ 2Ki,2

∣∣∇u∣∣.
Using the dominated convergence theorem and the continuity of ϕi we find that the first

two terms in (3.12) converge to zero as nkl → ∞. Similarly, since ϕ′i,1 and ϕ′i,2 are bounded

and unkl
→ u in H1(Rn), the second two terms also converge to zero as nkl → ∞. Since

{unk
} was arbitrary we conclude that each subsequence of the sequence ∥Bu−Bun∥2L2(R)
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has a convergent subsequence with limit zero; that is, the sequence itself converges to

zero and the proof is complete.

Remark 3.3.5. In [105] the authors consider the case (in one dimension) when
´
Rn

ωi(βi)
∥βi∥Rn

<

∞. In this case the above calculations can be modified to show that B : L1(Rn) 7→ L1(Rn)

is Lipschitz continuous. Hence, standard contraction mapping principle shows existence

and uniqueness without entropy conditions. However, in this special case the kernels

ωi assign small weight to close interactions and more weight as the interaction distance

increases. As such, the model’s applicability to physically relevant problems is reduced.

We will considerX = L1(Rn) and proceed by verifying the hypotheses of the Crandall-

Liggett Theorem for an appropriate operator A in L1(Rn) that is, in some sense, the

generalization of the B of (3.10). The operator A will be the closure of the operator A0

defined as follows.

Definition 3.3.6. Let A0 be the operator in L1(Rn) defined by: v ∈ D(A0) and w ∈ A0v

if

(i) v, w ∈ L1(Rn),

(ii) ϕi(v, τβi(h)v) ∈ L1(Rn) for h ∈ supp(ωi) and i = 1, 2, . . . , k,

(iii) the inequalityˆ
Rn

sign0(v − c)wf dx

+

ˆ
Rn

ˆ
Rn

k∑
i=1

Dβi
[
f sign0(v − c)

](
ϕi(v, τβiv)− ϕi(c, c)

)
ωi dh dx ≥ 0

(3.13)

holds for any nonnegative f ∈ C∞
0 (Rn) and c ∈ R.

As we will see later, inequality in Definition 3.3.6(iii) ensures that if u ∈ D(A0) is

a solution of the abstract Cauchy problem, then it satisfies the entropy inequality in

Definition 3.3.1. Lemmata 3.4.1 and 3.4.2 show that under appropriate circumstances A0

is single-valued and coincides with B, further substantiating our definition.

While the accretivity of A0, and thus the accretivity of its closure A, can be established

in a straightforward manner using a tool described in [95, Proposition 2.1] (see Proposition

3.4.6), the verification of the range condition (3.6) is more intricate. In fact, it requires

the treatment of the stationary equation

u+Bu = g. (3.14)

We define the generalized solutions of (3.14) in terms of A.
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Definition 3.3.7. Let g ∈ L1(Rn). Then u ∈ L1(Rn) is a generalized solution of (3.14)

if u ∈ D(A) and g ∈ (I +A)u.

Our first main result is the following theorem.

Theorem 3.3.8. Let ϕi ∈ W1,∞
loc (R× R) and g ∈ L1(Rn). Then A satisfies the assump-

tions of the Crandall-Liggett Theorem on L1(Rn) and the unique generalized solution of

(3.14) is given by u = (I +A)−1g.

Theorem 3.3.8 and the Crandall-Liggett Theorem show that a semigroup of contrac-

tions is determined by the operator A, whose various properties are listed in the next

theorem.

Theorem 3.3.9. Let the assumptions of Theorem 3.3.8 hold and S be the semigroup of

contractions on D(A) obtained from A via the Crandall-Liggett Theorem on L1(Rn). Let

u, v ∈ D(A) ∩ L∞(Rn) and t ≥ 0. Then

(i) (integrability) S(t)v ∈ Lp(Rn) for p ≥ 1, furthermore the estimate ∥S(t)v∥Lp(Rn) ≤

∥v∥
1
p

L1(Rn)
∥v∥

1− 1
p

L∞(Rn) holds,

(ii) (maximum principle) −∥v−∥L∞(Rn) ≤ S(t)v ≤ ∥v+∥L∞(Rn), where v− = max {0,−v}

and v+ = max {0, v}.

(iii) (monotonicity) ∥(S(t)u− S(t)v)+∥L1(Rn) ≤ ∥(u− v)+∥L1(Rn),

(iv) (equicontinuity) if y ∈ Rn, thenˆ
Rn

∣∣S(t)v(x+ y)− S(t)v(x)
∣∣ dx ≤

ˆ
Rn

∣∣v(x+ y)− v(x)
∣∣ dx ,

(v) (conservation of mass)
´
Rn S(t)v(x) dx =

´
Rn v(x) dx,

(vi) S(t)v satisfies the nonlocal entropy inequality in Definition 3.3.1.

Remark 3.3.10. Note that the properties (iii)-(v) still hold if we only assume u, v ∈

D(A).

Corollary 3.3.11. Let g : [0, T ] ×D(A) 7→ L1(Rn) be strongly measurable with respect

to t and locally Lipschitz with respect to u such that

∥g(t, u)∥L1(Rn) ≤ c(t)
(
1 + ∥u∥L1(Rn)

)
holds for some c ∈ L1([0, T ]). Then the Cauchy problem

∂u

∂t
+

ˆ
Rn

k∑
i=1

ϕi(u, τβiu)− ϕi(τ−βiu, u)

∥βi∥Rn

ωi dh = g(t, u), in Rn × (0, T ];

u(x, 0) = u0(x), x ∈ R
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has a unique mild solution for each u0 ∈ D(A) that depends continuously on u0; that is,

the map u0(.) → u(., t) is continuous in the Banach space X = L1(Rn).

Proof. The statement follows directly from [97, Theorem 5.2].

3.4 Proofs of the main results

The following lemma shows that A0 is single-valued for bounded functions.

Lemma 3.4.1. Let A0 be given by Definition 3.3.6 and v ∈ D(A0) ∩ L∞(Rn). Then A0

is single-valued and the equality

ˆ
Rn

A0vf dx = −
ˆ
Rn

ˆ
Rn

k∑
i=1

Dβifϕi(v, τβiv)ωi dh dx

holds for any nonnegative f ∈ C∞
0 (Rn).

Proof. Let w ∈ A0v. Then by (3.13) for any nonnegative f ∈ C∞
0 (Rn) and c ∈ R we have

ˆ
Rn

wf dx+

ˆ
Rn

ˆ
Rn

k∑
i=1

Dβi
[
f sign0(v − c)

](
ϕi(v, τβiv)− ϕi(c, c)

)
ωi dh dx ≥ 0,

thus for c = ∥v∥L∞(Rn) + 1, we have that

ˆ
Rn

wf dx ≤ −
ˆ
Rn

ˆ
Rn

k∑
i=1

Dβifϕi(v, τβiv)ωi dh dx .

Similarly, letting c = −(∥v∥L∞(Rn) + 1) yields

ˆ
Rn

wf dx ≥ −
ˆ
Rn

ˆ
Rn

k∑
i=1

Dβifϕi(v, τβiv)ωi dh dx ,

showing that for any w ∈ A0v, the following equality holds

ˆ
Rn

wf dx = −
ˆ
Rn

ˆ
Rn

k∑
i=1

Dβifϕi(v, τβiv)ωi dh dx .

To show that A0v is single-valued, suppose that w1, w2 ∈ A0v. Then the equality´
Rn w1f dx =

´
Rn w2f dx holds for all nonnegative f ∈ C∞

0 (Rn), thus w1 = w2 a.e.

The following lemma shows that A0 extends B on C1
0(Rn).

Lemma 3.4.2. Let ϕi ∈ C1(R×R) and A0 be given by Definition 3.3.6. Then C1
0(Rn) ⊂

D(A0) and for any v ∈ C1
0(Rn), the equality A0v = Bv holds.



44 CHAPTER 3. NONLOCAL CONSERVATION LAWS

Proof. The fact v ∈ C1
0(Rn) implies that ϕi(v, τβi(h)v) ∈ L1(Rn) holds for all h ∈ supp(ωi)

and i = 1, 2, . . . , k. Let f ∈ C∞
0 (Rn) be nonnegative and c ∈ R. Multiply Bv by

sign0(v − c)f and integrate over Rn to find that
ˆ
Rn

sign0(v − c)fBv dx

= −
ˆ
Rn

ˆ
Rn

k∑
i=1

Dβi [f sign0(v − c)]
(
ϕi(v, τβiv)− ϕi(c, c)

)
ωi dh dx ;

(3.15)

that is, we have v ∈ D(A0) and Bv ∈ A0v. This, combined with Lemma 3.4.1 implies

that A0v = Bv a.e.

We will use an efficient tool of Crandall to prove accretivity, characterized by the

following definition and the two subsequent lemmata.

Definition 3.4.3. [95, Definition 2.1] For u : Rn 7→ R measurable, let

sign(u) :=
{
v : Rn 7→ R

∣∣|v| ≤ 1 a.e. and vu = |u| a.e.
}
.

Note that sign0(u) ∈ sign(u), thus sign(u) is always nonempty.

Lemma 3.4.4. [95, Lemma 2.1] Let u, v ∈ L1(Rn) and α ∈ sign(u). If
´
Rn αv dx ≥ 0,

then ∥u+ λv∥L1(Rn) ≥ ∥u∥L1(Rn) holds for λ > 0.

Lemma 3.4.5. [95, Lemma 2.2] Let {βk} be a sequence in L1(Rn) with limβk = β in

L1(Rn). If αk ∈ sign(βk), then there exists a subsequence {αkl} and function α ∈ sign(β)

such that {αkl} converges to α in the weak-star topology on L∞(Rn).

Proposition 3.4.6. Let A0 be given by Definition 3.3.6. Then A0 is accretive in L1(Rn).

Proof. Let v ∈ D(A0) and w ∈ A0v and choose u ∈ L1(Rn) such that Definition 3.3.6 (ii)

holds. Set c = u(y) and f(x) = g(x, y) in (3.13), where g ∈ C∞
0 (Rn×Rn) is nonnegative.

We introduce the notations Π =
(
Rn
)2 and

Dβi
1 g(x, y) =

g(x+ βi, y)− g(x, y)

∥βi∥Rn

,

Dβi
2 g(x, y) =

g(x, y + βi)− g(x, y)

∥βi∥Rn

.

For the sake of readability we omit most arguments in this proof. Integrating over y

yields
ˆ
Π
sign0(v − u)wg dxdy

+

ˆ
Π

ˆ
Rn

k∑
i=1

Dβi
1

[
g sign0(v − u)

](
ϕi(v, τβiv)− ϕi(u, u)

)
ωi dh dxdy ≥ 0.

(3.16)
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Suppose that u ∈ D(A0) as well and let z ∈ A0u. Set c = v(x) and f(y) = g(x, y) in

(3.13) and integrate over x to find that
ˆ
Π
sign0(u− v)zg dy dx

+

ˆ
Π

ˆ
Rn

k∑
i=1

Dβi
2

[
g sign0(u− v)

](
ϕi(u, τβiu)− ϕi(v, v)

)
ωi dh dy dx ≥ 0.

(3.17)

and adding the inequalities (3.16) and (3.17) yields
ˆ
Π
sign0(v − u)(w − z)g dx dy

+

ˆ
Π

ˆ
Rn

k∑
i=1

(
Dβi

1

[
g sign0(v − u)

](
ϕi(v, τβiv)− ϕi(u, u)

)
+Dβi

2

[
g sign0(u− v)

](
ϕi(u, τβiu)− ϕi(v, v)

))
ωi dh dxdy ≥ 0.

(3.18)

Let δ ∈ C∞
0 (R) be nonnegative and even such that ∥δ∥L1(Rn) = 1 and

λ(x) =
n∏
i=1

δ(xi),

λϵ(x) =
1

ϵn
λ

(
x

ϵ

)
for ϵ > 0. Let f ∈ C∞

0 (Rn) nonnegative and set

g(x, y) = f

(
x+ y

2

)
λϵ

(
x− y

2

)
.

Setting 2ξ = x+ y, 2η = x− y in (3.18) yields
ˆ
Rn

(ˆ
Rn

sign0(v − u)(w − z)f dξ

)
λϵ(η) dη +

ˆ
Π
J ϵf (ξ, η) dξ dη ≥ 0. (3.19)

where

J ϵf (ξ, η) =

ˆ
Rn

k∑
i=1

ωi
∥βi∥Rn

×
[(
τβi

2

fτβi
2

λϵ sign0(τβiv − u)− fλϵ sign0(v − u)
)(
ϕi(v, τβiv)− ϕi(u, u)

)
+
(
τβi

2

fτ−βi
2

λϵ sign0(τβiu− v)− fλϵ sign0(u− v)
)(
ϕi(u, τβiu)− ϕi(v, v)

)]
dh .

Denote the integral in parenthesis in the first term of (3.19) with If (η). We want to let

ϵ→ 0. Since If is bounded and ∥λϵ∥L1(Rn) = 1 we have that

lim inf
ϵ→0

ˆ
Rn

If (η)λϵ(η) dη ≤ lim sup
∥η∥Rn→0

If (η).

A similar argument after a change of variables shows that

lim inf
ϵ→0

ˆ
Π
J ϵf (ξ, η) dξ dη
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≤ lim sup
∥η∥Rn→0

ˆ
Rn

ˆ
Rn

k∑
i=1

ωi
∥βi∥Rn

(
τβifq

(1)
i (v, τβiv, τβiu)− fq

(2)
i (v, τβiv, u)

+ τβifq
(1)
i (u, τβiu, τβiv)− fq

(2)
i (u, τβiu, v)

)
dh dξ ,

where
q
(1)
i (a, b, c) = sign0(a− c)

(
ϕi(a, b)− ϕi(c, c)

)
,

q
(2)
i (a, b, c) = sign0(b− c)

(
ϕi(a, b)− ϕi(c, c)

)
.

Introducing mixed terms yields

lim inf
ϵ→0

ˆ
Π
J ϵf (ξ, η) dξ dη

≤ lim sup
∥η∥Rn→0

ˆ
Rn

ˆ
Rn

k∑
i=1

(
f
((
q
(1)
i − q

(2)
i

)
(v, τβiv, u) +

(
q
(1)
i − q

(2)
i

)
(u, τβiu, v)

)
+ (τβif − f)q

(1)
i (v, τβiv, τβiu) + (τβif − f)q

(1)
i (u, τβiu, τβiv)

)
ωi

∥βi∥Rn

dh dξ .

But then (3.9) shows that the first two terms are nonpositive, thus we conclude that

lim inf
ϵ→0

ˆ
Π
J ϵf (ξ, η) dξ dη ≤ lim sup

∥η∥Rn→0

ˆ
Rn

ˆ
Rn

k∑
i=1

ωi
∥βi∥Rn

×
(
(τβif − f)q

(1)
i (v, τβiv, τβiu) + (τβif − f)q

(1)
i (u, τβiu, τβiv)

)
dh dξ

=: lim sup
∥η∥Rn→0

J̃f (η).

Choose a sequence {ηk} ⊂ Rn such that ∥ηk∥Rn → 0 and limk→∞ If (ηk) = lim sup∥η∥Rn Ĩf (η)

and limk→∞ J̃f (ηk)) = lim sup∥η∥Rn→0 J̃f (η) (note that it might be necessary to choose

two different sequences for If and J̃f ). Using Lemma 3.4.5 we assume (passing to subse-

quences if necessary) that the sequence

αk(ξ) = sign0
(
v(ξ + ηk)− u(ξ − ηk)

)
converges weakly-star in L∞(Rn) to α ∈ sign

(
v(ξ)− u(ξ)

)
. We similarly assume that

the sign0 sequences appearing in J̃f (ηk) converge weakly-star in L∞(Rn) and we denote

the limit as

lim
k→∞

J̃f (ηk) =

ˆ
Rn

ˆ
Rn

k∑
i=1

Dβif
(
γi(v, τβiv, τβiu) + γi(u, τβiu, τβiv)

)
ωi dh dξ .

Then

lim
k→∞

(
If (ηk) + J̃f (ηk)

)
=

ˆ
Rn

α(w − z)f dξ

+

ˆ
Rn

ˆ
Rn

k∑
i=1

Dβif
(
γi(v, τβiv, τβiu) + γi(u, τβiu, τβiv)

)
ωi dh dξ ≥ 0.

(3.20)
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Let κ ∈ C∞
0 (R) be nonnegative such that κ(s) = 1 for |s| ≤ 1. Set fl(ξ) = κ

(
∥ξ∥Rn
l

)
and

let l → ∞. Since the difference quotient

Dβifl(x) =

ˆ 1

0
∇fl(x+ βis) ·

βi
∥βi∥Rn

ds (3.21)

is bounded and is zero for x ∈ Rn such that ∥x± βi∥Rn ≤ l, the second integral in (3.20)

converges to zero; that is, we conclude that
ˆ
Rn

α(w − z) dξ ≥ 0.

Lemma 3.4.4 shows that the inequality

∥v − u+ λ(w − z)∥L1(Rn) ≥ ∥v − u∥L1(Rn)

holds for λ > 0. Since u, v ∈ D(A0) were arbitrary we conclude that A0 is indeed

accretive.

Remark 3.4.7. One can observe that in the above proof we did not use the fact that the

kernels ωi have finite support.

The stationary equation (3.14) will be investigated through the regularized equation

u+ λBu− ϵ∆u = g, (3.22)

where λ, ϵ > 0. In [95, Proposition 2.2] the author shows existence of solutions using a

special version of the perturbation result [100, Theorem 3.2] without further preparations.

A key step of the proof is the fact that for u ∈ L2(Rn), the B̃ local version of the operator

B (see (3.3)) has the property ⟨B̃u, u⟩ = 0. However, this is no longer true in the nonlocal

case, and thus we instead use a fix-point approach based on [101, Chapter 4] and [102,

Proposition IV.3]. In order to do so, we first establish some a priori estimates on the

solutions.

Lemma 3.4.8. Let ϕi ∈ C1(R×R) have bounded partial derivatives and let u ∈ H1(Rn)∩

H2
loc(Rn) satisfy (3.22) for g ∈ L1(Rn) ∩ L∞(Rn). Then we have u ∈ L1(Rn) ∩ L∞(Rn)

and
∥u∥L1(Rn) ≤ ∥g∥L1(Rn),

∥u∥L∞(Rn) ≤ ∥g∥L∞(Rn).

Proof. We treat the case of L1(Rn) first. Define

Φl(s) =


−s if s ≤ −1

l ,

l
2s

2 + 1
2l if |s| ≤ 1

l ,

s if s ≥ 1
l

(3.23)
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and let f ∈ C∞
0 (Rn) be such that 0 ≤ f ≤ 1. Multiplying (3.22) by Φ′

l(u)f and integrating

over Rn givesˆ
Rn

(
uΦ′

l(u)f + λBuΦ′
l(u)f − ϵ∆uΦ′

l(u)f
)
dx =

ˆ
Rn

gΦ′
l(u)f dx ≤ ∥g∥L1(Rn). (3.24)

Since the sequence
{
uΦ′

l(u)f
}

is a nonnegative and pointwise non-decreasing sequence

with uΦ′
l(u)f → |u|f as l → ∞, the monotone convergence theorem and the fact that

0 ≤ Φ′
lf ≤ 1 implies

lim
l→∞

ˆ
Rn

uΦ′
l(u)f dx =

ˆ
Rn

uf dx . (3.25)

Since Φ′
l is monotone, and f is nonnegative we have thatˆ

Rn

∆uΦ′
l(u)f dx = −

ˆ
Rn

Φ′′
l (u)|∇u|2f dx−

ˆ
Rn

Φ′
l(u)∇u∇f dx

= −
ˆ
Rn

Φ′′
l (u)|∇u|2f dx+

ˆ
Rn

Φl(u)∆f dx ≤
ˆ
Rn

Φl(u)∆f dx .

(3.26)

By letting l → ∞ we conclude that

− lim sup
l→∞

ˆ
Rn

∆uΦ′
l(u)f dx ≥ −

ˆ
Rn

u∆f dx .

Finally, the sequence
{
BuΦ′

l(u)f
}

converges pointwise to Bu sign0(u)f as l → ∞ and is

dominated by |Bu|f . The fact that |Bu|f is integrable follows from Sobolev’s embedding

of H2 into W1,1 on the support of f and Lemma 3.3.3. Thus, using the dominated

convergence theorem yields

lim
l→∞

ˆ
Rn

BuΦ′
l(u)f dx =

ˆ
Rn

Bu sign0(u)f dx .

Use the integration by parts formula for difference quotients to find that

lim
l→∞

ˆ
Rn

BuΦ′
l(u)f dx = −

ˆ
Rn

ˆ
Rn

k∑
i=1

Dβi sign0(u)τβifϕi(u, τβiu)ωi dh dx

−
ˆ
Rn

ˆ
Rn

Φ′
l(u)D

βifϕi(u, τβiu)ωi dh dx ,

and apply inequality (3.9) with c = 0 to conclude that

lim
l→∞

ˆ
Rn

BuΦ′
l(u)f dx ≥ −

ˆ
Rn

ˆ
Rn

k∑
i=1

sign0(u)D
βifϕi(u, τβiu)ωi dh dx . (3.27)

Substituting (3.25), (3.26) and (3.27) into (3.24) yields
ˆ
Rn

(uf − ϵu∆f) dx−
ˆ
Rn

ˆ
Rn

k∑
i=1

sign0(u)D
βifϕi(u, τβiu)ωi dh dx ≤ ∥g∥L1(Rn).

Let κ ∈ C∞
0 (R) nonnegative such that κ(s) = 1 for |s| ≤ 1. Set fl(ξ) = κ

(
∥ξ∥Rn
l

)
. Since

the difference quotient Dβifl is bounded and is zero for x ∈ Rn such that ∥x± βi∥Rn ≤ l

(see (3.21)), letting l → ∞ yields

∥u∥L1(Rn) ≤ ∥g∥L1(Rn).
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For the case of L∞(Rn), let M ∈ R be such that M ≥ g+ a.e. Subtract M from

(3.22), multiply by Φ′+
l (u−M) and integrate over Rn to find that

ˆ
Rn

(u−M + λBu− ϵ∆u)Φ′+
l (u−M) dx =

ˆ
Rn

(g −M)Φ′+
l (u−M) dx ≤ 0. (3.28)

A similar argument as in (3.26) gives

lim
l→∞

ˆ
Rn

∆uΦ′+
l (u−M) dx ≤ 0, (3.29)

as before. Again, integration by parts for difference quotients and the inequality (3.9)

with c = M (the reader may want to check that sign0 and sign±0 are interchangeable in

(3.9)) imply that

lim
l→∞

ˆ
Rn

BuΦ′+
l (u−M) dx

= −
ˆ
Rn

ˆ
Rn

k∑
i=1

Dβi sign+0 (u−M)
[
ϕi(u, τβiu)− ϕi(M,M)

]
ωi dh dx ≥ 0.

(3.30)

Substituting (3.29) and (3.30) into (3.28) yields
ˆ
Rn

(u−M)Φ′+
l (u−M) dx ≤ 0,

which implies that u ≤M a.e.

To establish an analogous lower bound, let M be such that M ≤ g− a.e. Add M to

(3.22), multiply by Φ′−
l (u+M) and integrate over Rn to conclude that

ˆ
Rn

(u+M + λBu− ϵ∆u)Φ′−
l (u+M) dx =

ˆ
Rn

(g +M)Φ′
l(u+M)− dx ≤ 0.

Similar estimates as before show that
ˆ
Rn

(u+M)Φ′−
l (u+M) dx ≤ 0,

which implies that −M ≤ u a.e. Setting M = ∥g∥L∞(Rn) concludes the proof.

Remark 3.4.9. The proof also shows that the maximum principle holds for equation

(3.22); that is, any solution u ∈ H1(Rn) ∩ H2
loc(Rn) of (3.22) satisfies the inequalities

−∥g−∥L∞(Rn) ≤ u ≤ ∥g+∥L∞(Rn) a.e.

Hölder’s inequality immediately yields the following result.

Corollary 3.4.10. Let the assumptions of Lemma 3.4.8 hold and let g ∈ L1(Rn) ∩

L∞(Rn). Then u ∈ Lp(Rn) for p ≥ 1 with ∥u∥Lp(Rn) ≤ ∥g∥
1
p

L1(Rn)
∥g∥

1− 1
p

L∞(Rn).

The next result shows the uniqueness of solutions of (3.22) for g ∈ L1(Rn).
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Lemma 3.4.11. Let the assumptions of Lemma 3.4.8 hold and let u, v ∈ H1(Rn) ∩

H2
loc(Rn) satisfy

u+ λBu− ϵ∆u = g1,

v + λBv − ϵ∆v = g2.

If g1, g2 ∈ L1(Rn), then ∥∥(u− v)+
∥∥
L1(Rn)

≤
∥∥(g1 − g2)

+
∥∥
L1(Rn)

.

Proof. The proof follows the proof of Lemma 3.4.8. Let w = u− v. Then w satisfies

w + λ(Bu−Bv)− ϵ∆w = g1 − g2. (3.31)

Let f ∈ C∞
0 (Rn) be such that 0 ≤ f ≤ 1. Define Ψl by setting Ψ′

l = Φ′+
l and Ψl(0) = 0.

Multiply (3.31) by Ψ′
l(w)f and integrate over Rn to find that
ˆ
Rn

(
w + λ(Bu−Bv)− ϵ∆w

)
Ψ′
l(w)f dx

=

ˆ
Rn

(g1 − g2)Ψ
′
l(w)f dx ≤

∥∥(g1 − g2)
+
∥∥
L1(Rn)

(3.32)

holds, since 0 ≤ Ψ′
lf ≤ 1. The facts that Ψl(w) ∈ H1

loc(Rn) and that both Ψ′′
l , f ≥ 0

imply that ˆ
Rn

∆wΨ′
l(w)f dx ≤

ˆ
Rn

Ψl(w)∆f dx ,

and thus

− lim sup
l→∞

ˆ
Rn

∆wΨ′
l(w)f dx ≥ −

ˆ
Rn

w+∆f dx . (3.33)

as before. Integration by parts for difference quotients yieldsˆ
Rn

(Bu−Bv)Ψ′
l(w)f dx

= −
ˆ
Rn

ˆ
Rn

k∑
i=1

DβiΨ′
l(w)τβif

[
ϕi(u, τβiu)− ϕi(v, τβiv)

]
ωi dh dx

−
ˆ
Rn

ˆ
Rn

k∑
i=1

Ψ′
l(w)D

βif
[
ϕi(u, τβiu)− ϕi(v, τβiv)

]
ωi dh dx .

Letting l → ∞ in the first integral and using a similar argument as in (3.9) we find that

− lim
l→∞

ˆ
Rn

ˆ
Rn

k∑
i=1

DβiΨ′
l(w)τβif

[
ϕi(u, τβiu)− ϕi(v, τβiv)

]
ωi dh dx ≥ 0,

and thus, by the dominated convergence theorem,

lim
l→∞

ˆ
Rn

(Bu−Bv)Ψ′
l(w)f dx

≥ −
ˆ
Rn

ˆ
Rn

k∑
i=1

sign+0 (w)D
βif
[
ϕi(u, τβiu)− ϕi(v, τβiv)

]
ωi dh dx .

(3.34)
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Using (3.33) and (3.34) in (3.32) and letting l → ∞ gives

ˆ
Rn

w+f dx− λ

ˆ
Rn

ˆ
Rn

k∑
i=1

sign+0 (w)D
βif
[
ϕi(u, τβiu)− ϕi(v, τβiv)

]
ωi dh dx

− ϵ

ˆ
Rn

w+∆f dx ≤
∥∥(g1 − g2)

+
∥∥
L1(Rn)

.

By the same argument as before, let κ ∈ C∞
0 (R) nonnegative such that κ(s) = 1 for

|s| ≤ 1. Set fl(ξ) = κ
(
∥ξ∥Rn
l

)
. Since the difference quotient Dβifl is bounded and is zero

for x ∈ Rn such that ∥x± βi∥Rn ≤ l (see (3.21)), letting l → ∞ yields
ˆ
Rn

w+ dx =
∥∥(u− v)+

∥∥
L1(Rn)

≤
∥∥(g1 − g2)

+
∥∥
L1(Rn)

.

Corollary 3.4.12. Let the assumptions of Lemma 3.4.8 hold and let u, v ∈ H1(Rn) ∩

H2
loc(Rn) satisfy

u+Bu− ϵ∆u = g1

v +Bv − ϵ∆v = g2.

If g1, g2 ∈ L1(Rn), then

∥u− v∥L1(Rn) ≤ ∥g1 − g2∥L1(Rn).

Proof. Notice that the equality

∥a− b∥L1(Rn) =
∥∥(a− b)+

∥∥
L1(Rn)

+
∥∥(b− a)+

∥∥
L1(Rn)

holds for any a, b ∈ L1(Rn). Lemma 3.4.11 shows that

∥∥(u− v)+
∥∥
L1(Rn)

≤
∥∥(g1 − g2)

+
∥∥
L1(Rn)

,∥∥(v − u)+
∥∥
L1(Rn)

≤
∥∥(g2 − g1)

+
∥∥
L1(Rn)

.

Hence, the inequality ∥u− v∥L1(Rn) ≤ ∥g1 − g2∥L1(Rn) holds as claimed.

The next result shows the existence of a unique generalized solution of (3.22) for

g ∈ L1(Rn) ∩ L∞(Rn) and plays an essential role in our developments. In order to do

so we consider the problem on the ball Br ⊂ Rn for r > 0 with zero Dirichlet boundary

condition. Let ur ∈ H1
0(Br) ∩H2(Br) =: H2

0(Br) satisfy

ur(x) + λBur(x)− ϵ∆ur(x) = g(x), x ∈ Br;

ur(x) = 0, x ∈ ∂Br,
(3.35)
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where ∆ denotes the Dirichlet-Laplacian ∆D on L2(Br) with D(∆D) = H2
0(Br). For the

operator B to remain meaningful we use the E : H1
0(Br) 7→ H1(Rn) extension operator

[99, Chapter 5.4] on ur supplemented with the fact that supp(Eur) = supp(ur) and

∥Eur∥H1(Rn) = ∥ur∥H1
0(Br)

[107]. Then we use the restriction operator R : L2(Rn) 7→

L2(Br) on BEur to obtain the operator RBE : H1
0(Br) 7→ L2(Br). As in (3.35), we will

denote ∆D by ∆ and RBE by B for brevity.

Remark 3.4.13. One can verify from the proof of Lemmata 3.3.3, 3.3.4, 3.4.8 and 3.4.11

and Corollaries 3.4.10 and 3.4.12 that they all hold for the Dirichlet problem too. Minor

steps of the proofs have to be modified, for example, in the proof of Lemma 3.4.8, instead

of multiplying by Φ′
l(u) and integrating over Rn we multiply by Φ′

l(Eu
r) and integrate

over Br. Then we can repeat the same estimates as before. Similar arguments should be

used in the rest of the proofs as well.

Proposition 3.4.14. Let the assumptions of Lemma 3.4.8 hold. Then for each g ∈

L1(Rn) ∩ L∞(Rn) there is a unique solution u ∈ H1(Rn) ∩H2
loc(Rn) of (3.22).

Proof. We consider the Dirichlet problem (3.35) first. Define the operator T : H1
0(Br) 7→

H2
0(Br) by T = −(I − ϵ∆)−1λBu+ (I − ϵ∆)−1g and let

S :=
{
u ∈ H1

0(Br) : u = ηTu, η ∈ [0, 1]
}
.

Note that H2
0(Br) can be compactly embedded into H1

0(Br), which implies that T is

continuous (see also Lemma 3.3.4) and compact and maps the Banach space H1
0(Br) into

itself. Observe that u ∈ S implies in fact u ∈ H2
0(Br), and thus u = ηTu is equivalent to

u+ ηλBu− ϵ∆u = ηg (3.36)

on Br a.e. Multiply by u and integrate over Br to find that

∥u∥2L2(Br)
+ ϵ∥∇u∥2L2(Br)

= η

ˆ
Br

gu dx− ηλ

ˆ
Br

Buu dx

≤ η∥g∥L2(Br)
∥u∥L2(Br)

+ ηλ∥Bu∥L2(Br)
∥u∥L2(Br)

≤ η

2
∥g∥2L2(Br)

+
η

2
∥u∥2L2(Br)

+ ηλδ2∥Bu∥2L2(Br)
+
ηλ

δ2
∥u∥2L2(Br)

≤ 1

2
∥g∥2L2(Br)

+
1

2
∥u∥2L2(Br)

+ λδ2∥Bu∥2L2(Br)
+
λ

δ2
∥u∥2L2(Br)

for any δ > 0. Using (3.11) and Corollary 3.4.10 (note that the right-hand side is ηg in

(3.36) and g in (3.22)) we find that

∥u∥2L2(Br)
≤ η∥g∥L1(Br)

∥g∥L∞(Br)
≤ ∥g∥L1(Br)

∥g∥L∞(Br)
(3.37)
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and that
(ϵ− Cλδ2)∥∇u∥2L2(Br)

≤ 1

2
∥g∥2L2(Br)

+

(
1

2
+
λ

δ2

)
∥u∥2L2(Br)

≤
(
1 +

λ

δ2

)
∥g∥L1(Br)

∥g∥L∞(Br)
.

(3.38)

The inequalities (3.37) and (3.38) show that by choosing δ small enough S is bounded

in H1
0(Br). Then Schaefer’s fixed point theorem shows that T has a fixed point [108,

Corollary 8.1] and, in fact, Lemma 3.4.11 ensures that the fixed point is unique on Br.

Choose a sequence {rm} ⊂ R such that rm → ∞ in an increasing fashion as m →

∞ and let urm ∈ H2
0(Brm) be the corresponding sequence of solutions. Then clearly

{Eurm} ⊂ H2(Rn) and by Lemma 3.4.8 we also have ∥Eurm∥L∞(Brm ) ≤ ∥g∥L∞(Brm ) ≤

∥g∥L∞(Rn). For any r < r′ we have by Corollary 3.4.12 that∥∥∥Eur − Eur
′
∥∥∥
L1(Rn)

≤ ∥g∥
L1
(
Br′\Br

),
and thus the sequence is Cauchy and converges in L1(Rn) to some u ∈ L1(Rn)∩L∞(Rn).

Futhermore, elliptic regularity [99, Section 6.3.1] combined with inequalities (3.37) and

(3.38) imply that {Eurm} is uniformly bounded with

∥Eurm∥H2(Rn) = ∥urm∥H2
0(Brm ) ≤ C

(
∥g∥L2(Brm ) + ∥Burm∥L2(Brm )

)
≤ C

(
∥g∥L2(Brm ) + ∥urm∥H1

0(Brm )

)
≤ C

(
∥g∥L2(Rn) + ∥g∥

1
2

L1(Rn)
∥g∥

1
2

L∞(Rn)

)
.

(3.39)

Let us consider Br0 for some r0 > 0 and let {Eurmk} be any subsequence, which is

then bounded in H2(Br0) and thus by the compact embedding of H2(Br0) into H1(Br0)

it has a subsequence
{
Eu

rmkl

}
that converges in H1(Br0) to u. Since any subsequence

has a convergent sequence with the same limit the original sequence converges in H1(Br0)

to u. By (3.39) ∥u∥H1(Br0 )
≤ C independently of r0 showing that u is in fact in H1(Rn)

and is a weak solution. Thus, by elliptic regularity u ∈ H2
loc(Br0) as well and since r0 > 0

was arbitrary we conclude that u ∈ H1(Rn) ∩H2
loc(Rn) is a strong solution solution and

by Corollary 3.4.12 it is unique.

In our next result we take the limit ϵ→ 0. This will not only allow us to consider flux

functions in W1,∞
loc (R × R) but will show that the various properties established for the

solutions of (3.22) hold for the generalized solutions of (3.14), which in turn will imply

that they hold for the semigroup as well.

Proposition 3.4.15. Let ϕi ∈ W1,∞
loc (R× R) and A0 be given by Definition 3.3.6. Then

L1(Rn) ∩ L∞(Rn) ⊆ R(I + λA0) for λ > 0. Accordingly, let Tλ : L1(Rn) ∩ L∞(Rn) 7→

L1(Rn) be the restriction of (I+λA0)
−1 to L1(Rn)∩L∞(Rn). If g1, g2 ∈ L1(Rn)∩L∞(Rn),

then
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(i) Tλg1 ∈ Lp(Rn) for p ≥ 1 with ∥Tλg1∥Lp(Rn) ≤ ∥g1∥
1
p

L1(Rn)
≤ ∥g1∥

1− 1
p

L∞(Rn),

(ii) −
∥∥g−1 ∥∥L∞(Rn)

≤ Tλg1 ≤
∥∥g+1 ∥∥L∞(Rn)

,

(iii) ∥(Tλg1 − Tλg2)
+∥L1(Rn) ≤ ∥(g1 − g2)

+∥L1(Rn),

(iv) Tλ commutes with translations,

(v)
´
Rn Tλg1 dx =

´
Rn g1 dx.

Proof. Let {ϕmi } ⊂ C1(R×R) be a sequence such that each ϕmi is bounded and have the

property ϕmi (0, 0) = 0 and {ϕmi } converges to ϕi uniformly on compact sets. Define

Bmu =

ˆ
Rn

k∑
i=1

ϕmi (u, τβiu)− ϕmi (τ−βiu, u)

∥βi∥Rn

ωi dh

and the operator Tλ,m : L1(Rn) ∩ L∞(Rn) 7→ L1(Rn) ∩ L∞(Rn) by Tλ,mg = u if u ∈

H1(Rn) ∩H2
loc(Rn) and

u+ λBmu− 1

m
∆u = g. (3.40)

Proposition 3.4.14, Lemmata 3.4.8 and 3.4.11, Remark 3.4.9, Corollaries 3.4.10 and 3.4.12

and the fact that Tλ,m commutes with translations imply that Tλ,m is well-defined and

has the properties (i)-(iv). Let g ∈ L1(Rn)∩L∞(Rn) and um = Tλ,mg. By Lemma 3.4.11

and the translation invariance of Tλ,m we conclude that
ˆ
Rn

∣∣um(x+ y)− um(x)
∣∣dx ≤

ˆ
Rn

∣∣g(x+ y)− g(x)
∣∣dx

for y ∈ Rn. The above estimate and ∥um∥L1(Rn) ≤ ∥g∥L1(Rn), by the means of the Fréchet-

Kolmogorov compactness theorem, imply that {um} is precompact in L1
loc(Rn). Thus,

there is a subsequence
{
umj

}
which converges a.e. in L1

loc(Rn) to a limit u ∈ L1(Rn).

This convergence will be denoted as umj ↠ u. Let f ∈ C∞
0 (Rn) be nonnegative and Φl

be given by (3.23). Multiply (3.40) by Φ′
l(um − c)f and integrate over Rn to find that

ˆ
Rn

(
um + λBmum − 1

m
∆um

)
Φ′
l(um − c)f dx =

ˆ
Rn

gΦ′
l(um − c)f dx .

Integration by parts gives
ˆ
Rn

(
(um − g)Φ′

l(um − c)f + λBmumΦ
′
l(um − c)f

+
1

m

(
Φ′′
l (um − c)|∇um|2f − Φl(um − c)∆f

))
dx = 0.

Note that both Φ′′
l , f ≥ 0 implies that

1

m

ˆ
Rn

Φ′′
l (um − c)|∇um|2f dx ≥ 0
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and ∥um∥L∞(Rn) ≤ ∥g∥L∞(Rn) implies that the integral

ˆ
Rn

Φl(um − c)∆f dx

is bounded. Letting m → ∞ through the subsequence {mj} and using the convergences

umj ↠ u and ϕmi → ϕi uniformly on compact sets yields

ˆ
Rn

(
(u− g)Φ′

l(u− c)f + λBuΦl(u− c)f
)
dx ≤ 0.

Letting l → ∞ and using (3.15) gives

ˆ
Rn

(
sign0(u− c)(u− g)f

− λ

ˆ
Rn

k∑
i=1

Dβi
[
f sign0(u− c)

](
ϕi(u, τβiu)− ϕi(c, c)

)
ωi dh

)
dx ≤ 0.

Since ∥u∥L∞(Rn) ≤ ∥g∥L∞(Rn) and ϕi ∈ W1,∞
loc (R×R) we have ϕi(u, τβiu) ∈ L1(Rn). Thus,

we have g ∈ (I + λA0)u by Definition 3.3.6 and, in fact, by Lemma 3.4.1 the equality

u+ λA0u = g (3.41)

holds. The accretivity of A0 shows that u is unique, hence limm→∞ Tλ,mg = Tλg holds

with convergence in L1
loc(Rn). Properties (i)-(iv) are preserved under L1

loc(Rn) conver-

gence. Choose f ∈ C∞
0 (Rn) nonnegative, multiply (3.41) with f and integrate over Rn to

find that
ˆ
Rn

uf dx+ λ

ˆ
Rn

A0uf dx

=

ˆ
Rn

uf dx− λ

ˆ
Rn

ˆ
Rn

k∑
i=1

Dβifϕi(u, τβiu)ωi dh dx =

ˆ
Rn

gf dx

also holds by Lemma 3.4.1. Let κ ∈ C∞
0 (R) be nonnegative such that κ(s) = 1 for |s| ≤ 1.

Set fl(ξ) = κ
(
∥ξ∥Rn
l

)
and let l → ∞. Using (3.21) we find that the integral

ˆ
Rn

ˆ
Rn

k∑
i=1

Dβiflϕi(u, τβiu)ωi dh dx

converges to zero as l → ∞ and thus property (v) holds as well.

Remark 3.4.16. By Definition 3.3.6 it is clear that D(A) ⊂ L1(Rn) and in some cases,

in fact, the equality D(A) = L1(Rn) holds, see Lemma 3.4.2. However, this remains to

be shown under our general assumption that ϕi ∈ W1,∞
loc (R× R).
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Proof of Theorem 3.3.8. Since A0 is accretive it follows that the closure A is also accre-

tive. Let g ∈ L1(Rn) and {gm} ⊂ L1(Rn) ∩ L∞(Rn) be such that gm → g in L1(Rn).

Since Tλ is a contraction, the sequence {Tλgm} is Cauchy. Let λwm = (I − Tλ)gm, so

wm ∈ A0Tλgm and the sequence {wm} is also Cauchy. If Tλgm → v and wm → w, then

w ∈ Av and g = v + λw ∈ (I + λA)v. This shows that A is m-accretive and the proof is

complete.

Proof of Theorem 3.3.9. The solution uϵ(t) of (3.7) is given by

uϵ(t) = (I + ϵA)−
⌊

t
ϵ

⌋
−1u0.

The uniform convergence limϵ→0 uϵ(t) = S(t)u0 for t in L1(Rn) shows that properties

(i)-(v) hold for S(t), since by Proposition 3.4.15 they hold for Tλ = (I + λA)−1.

For property (vi) let u0 ∈ L1(Rn)∩L∞(Rn) (note that by Lemma 3.4.1 the operator

A0 is single-valued in this case) and uϵ(x, t) satisfy

1

ϵ

(
uϵ(x, t)− uϵ(x, t− ϵ)

)
+A0uϵ(x, t) = 0, (x, t) ∈ Rn × (0, T );

uϵ(x, 0) = u0(x), x ∈ Rn.

The definition of A0 implies that
ˆ
Rn

sign0
(
uϵ(x, t)− c

)
A0uϵ(x, t)f dx

+

ˆ
Rn

ˆ
Rn

k∑
i=1

Dβi
[
f sign0(u− c)

](
ϕi(uϵ, τβiuϵ)− ϕi(c, c)

)
ωi dh dx ≥ 0

holds for any nonnegative f ∈ C∞
0

(
Rn × (0, T )

)
and any c ∈ R. Notice that

A0uϵ(x, t) =
1

ϵ

(
uϵ(x, t− ϵ)− uϵ(x, t)

)
and that

sign0
(
uϵ(x, t)− c

)(
uϵ(x, t− ϵ)− uϵ(x, t)

)
= sign0

(
uϵ(x, t)− c

)(
uϵ(x, t− ϵ)− c

)
+ sign0

(
uϵ(x, t)− c

)(
uϵ(x, t)− c

)
≤
∣∣uϵ(x, t− ϵ)− c

∣∣− ∣∣uϵ(x, t)− c
∣∣.

Using the above and integrating over (0, T ) yields

ˆ T

0

ˆ
Rn

1

ϵ

(∣∣uϵ(x, t− ϵ)− c
∣∣− ∣∣uϵ(x, t)− c

∣∣)f(x, t) dx dt
+

ˆ T

0

ˆ
Rn

ˆ
Rn

k∑
i=1

Dβi
[
f sign0(u− c)

](
ϕi(uϵ, τβiuϵ)− ϕi(c, c)

)
ωi dh dxdt ≥ 0.

(3.42)
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Observe that

1

ϵ

ˆ T

0

ˆ
Rn

(∣∣uϵ(x, t− ϵ)− c
∣∣− ∣∣uϵ(x, t)− c

∣∣)f(x, t) dx dt
=

1

ϵ

(ˆ ϵ

0

ˆ
Rn

∣∣uϵ(x, t− ϵ)− c
∣∣f(x, t) dx dt− ˆ T

T−ϵ

ˆ
Rn

∣∣uϵ(x, t)− c
∣∣f(x, t) dx dt)

+

ˆ T−ϵ

ϵ

ˆ
Rn

∣∣uϵ(x, t)− c
∣∣1
ϵ

(
f(x, t+ ϵ)− f(x, t)

)
dx dt .

Since f ∈ C∞
0

(
Rn × (0, T )

)
the first two integrals after the equal sign vanish for ϵ small

enough. The uniform convergence limϵ→0 uϵ(x, t) = S(t)u0(x) in L1(Rn) implies that the

third integral tends to ˆ T

0

ˆ
Rn

∣∣S(t)u0(x)− c
∣∣∂f
∂t

dx dt ;

that is, by taking the limit ϵ→ 0 in (3.42) the proof is complete.

3.5 Conclusions

In this chapter we inverstigated a class of nonlocal conservation laws and established well-

posedness results via nonlinear semigroup theory. This ensures that the mathematical

model reliably models the underlying physical phenomena. To connect these models back

to the spatially discrete framework of CRNs, the next chapter considers the discretization

of the nonlocal equations developed here. We will show that, under suitable assumptions,

these discretizations give rise to finite-dimensional reaction networks whose dynamics

approximate those of the original nonlocal system.
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Chapter 4

Dynamical analysis of generalized

ribosome flows

In this chapter we consider compartmental systems and their representation as a chemical

reaction network. We show that one-dimensional nonlocal flow models in PDE form with

Lighthill-Whitham-Richards flux can be spatially discretized with a finite volume scheme

to formally obtain a special case of generalized ribosome flows. The CRN representation,

called generalized ribosome flows, have physically meaningful reaction graphs structure,

allowing the utilization of the vast theory of CRNs. We demonstrate this via the stability

analysis of a flow model with circular topology. We then consider generalized ribosome

flow models. The existence and stability of equilibria are investigated for strongly con-

nected systems. Finally, we consider general time-varying rate functions corresponding

to the transitions. Persistence of the dynamics is shown using the CRN representation

of the system. The L1 contractivity of solutions is also proved in the case of periodic

reaction rates having the same period. Further we prove the stability of different com-

partmental structures including strongly connected ones with entropy-like logarithmic

Lyapunov functions through embedding the model into a weakly reversible CRN with

time-varying reaction rates in a reduced state space. Moreover, it is shown that different

Lyapunov functions may be assigned to the same model depending on the non-unique

factorization of the reaction rates. The results are illustrated through several examples

with biological meaning including the classical ribosome flow model on a ring.

59
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4.1 Introduction

The dynamical modeling of the mRNA translation process has been in the focus of re-

search since the second half of the 20th century (see, e.g. [109, 110, 111]). The first

large scale analysis of gene translation through the so-called ribosome flow model (RFM)

was presented in [112], where the applied second order nonnegative and nonlinear model

based on the principle of Totally Asymmetric Exclusion [113] was able to capture the most

important dynamical features of the translation process. Also in [112], the RFM model

was validated through biological data obtained from three different organisms, and it was

clearly shown that its predictive power is superior to several other popular techniques.

In [114] the RFM was equipped with an appropriate input-output pair, and it was shown

that after applying an affine positive output feedback, the system had a unique equilib-

rium point which is globally stable in the bounded operating domain. A circular RFM

structure was analyzed in [35], where the authors proved using the theory of cooperative

systems that the system has a continuum of equilibria, but each equilibrium is globally

asymptotically stable within the equivalence class of trajectories determined by the initial

conditions. The stability of periodic solutions was also shown. In [115] a bounded pool

of free ribosomes was added to the RFM generating a competition among the arbitrary

number of mRNA molecules for ribosomes. This generates a special network structure

for RFM subsystems, for which the uniqueness and stability of equilibria together with

the properties of periodic solutions were proved, too. Different compartment sizes of the

RFM were assumed in [116], and it was shown that this modification does not change

the favorable dynamical properties of the system. In [117], the ribosome flow model with

Langmuir kinetics (RFMLK) is introduced, and a network structure is constructed with

RFMLK subsystems connected through a pool. Among other results, it is shown that the

trajectories of such a network always converge to a unique equilibrium. We also mention

that ODE models with essentially the same structure can be obtained by an appropri-

ate finite volume discretization of local conservation laws governed by hyperbolic partial

differential equations describing the flow of material or vehicles [118].

It is well-known that the (nonlocal) conservation laws described by hyperbolic par-

tial differential equations (PDEs) may develop irregularities even with smooth initial

functions [119]. This implies that solution concepts of these equations have to allow for

discontinuous functions. Another consequence of the loss of regularity is that one is con-

fined to a restricted class of applicable numerical schemes, such as, for example, finite

volume methods [120]. Two of the most commonly used schemes in the field of traffic
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flows are the modified Lax-Friedrichs scheme and the Godunov scheme [121]. While these

schemes possess numerous desired properties, the obtained form of ordinary differential

equations (ODEs) computed via spatial discretization (also called semi-discretization) is

often not optimal for dynamical analysis.

The aim of the chapter is to apply a finite volume method to nonlocal conservation

laws and to show that the semi-discretized system inherits several advantageous properties

from the PDE. Then we generalize the interconnection structure and the reaction rate

functions and finally, we investigate the persistence and stability for strongly connected

systems.

The structure of the chapter is as follows. In Section 4.2 we give a brief overview of

nonlocal flow models, kinetic systems and compartmental systems. In Section 4.3 we in-

troduce the kinetic representation of general compartmental models. Section 4.4 contains

the spatial discretization of the nonlocal flow, including the derivation of the kinetic prop-

erty with the exact topology and interpretation of compartments and reactions. Section

4.5 contains stability results for strongly connected systems. Finally, Section 4.6 con-

tains presistence and stability results for strongly connected systems with time-varying

transition rates.

4.2 Notations and background

4.2.1 Nonlocal flows

In this subsection we introduce the unidirectional nonlocal flow model based on the

nonlocal pair-interaction model of Chapter 3, supplemented with terms representing in-

and out-flows.

Let R+ denote the set of nonnegative real numbers. Nonlocality is formally introduced

as a continuum average of the finite difference approximation weighted with a bounded

and nonnegative nonlocal interaction kernel ω ∈ L1(R) supported on (0, δ) with δ > 0

and ∥ω∥L1(R) = 1, as follows:

∂ρ

∂t
+

ˆ δ

0

F (ρ, τhρ)− F (τ−hρ, ρ)

h
ω(h) dh = r − s;

ρ(x, 0) = ρ0(x),

(4.1)

where ρ : R × (0, T ) 7→ R+ is the conserved quantity at a given point and at a given

time, F : R× R 7→ R is the flux function, τ±hρ(x, t) = ρ(x± h, t) denotes a spatial shift

and r, s : R× (0, t)× R+ 7→ R+ are the source and sink terms, respectively. Throughout
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the chapter, we call (4.1) closed if the functions r and s are identically zero; that is, the

system does not have in- and out-flows. In any other case, the system is called open.

4.2.2 Compartmental models

Throughout the chapter we consider systems containing a set of interconnected compart-

ments and objects (such as ribosomes, particles, molecules, vehicles etc.) moving between

them. We assume that the rate of transfer between compartments depends on the amount

of objects in the source compartment as well as on the amount of free space in the target

compartment. This naturally implies that each compartment has a well-defined finite

capacity that limits the amount of modeled quantities that can be contained in the given

compartment. We also allow explicit time dependence and in some cases dependence on

the amount of objects and free space in other compartments.

For the formal definition, let us consider the set Q = {q1, q2, . . . , qm} of compartments

and the set A ⊂ Q × Q of transitions, where (qi, qj) ∈ A represents the transition from

compartment qi into qj . Then, the directed graphD = (Q,A) is called the compartmental

graph and it describes the structure of the compartmental model. The transitions are

assumed to be immediate, thus loop edges are not allowed in the model since they do not

introduce additional dynamical terms. Similarly, we do not allow parallel edges between

two compartments in the same direction since they can be replaced by a single transition.

In general, any compartment can be connected to to the environment in both directions.

We denote with Fij the flow from the compartment qj to the compartment qi, with Ii

the material inflow from the environment to compartment qi and with F0i the material

outflow from compartment qi to the environment. Loop flows are not allowed, i.e. i ̸= j in

Fij . Then the time-evolution of the system is given by the following system of differential

equations:

q̇i =
∑
j ̸=i

(−Fji + Fij) + Ii − F0i. (4.2)

We impose the following physical assumptions to the system:

1. for any i, j, t ≥ 0, i ̸= j we have that Fij ≥ 0, Ii ≥ 0 and F0i ≥ 0,

2. for any i, t ≥ 0 if qi(t) = 0, then F0i = Fji = 0 for each j.

These properties ensure the invariance of the nonnegative orthant; that is, assuming a

nonnegative initial condition, our solution is guaranteed to be nonnegative. In general,

the above functions can depend on the mass of any compartment and possibly on t as
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well. Then it can be shown that if each Fij and F0i is at least Ck, then we can rewrite

(4.2) as

q̇i = −
(
f0i +

∑
j ̸=i

fji

)
qi +

∑
j ̸=i

fijqj + Ii, (4.3)

where Fij = fijqi and the so-called fractional transfer coefficients fij are at least Ck−1.

We can then naturally rewrite (4.3) in matrix form as

q = fq + I.

If each fractional transfer coefficient fij only depends on qj , then the system is called a

donor controlled system. If each coefficient is constant, then the system is called a linear

donor controlled system.

Linear donor controlled systems can naturally be represented as chemical reaction

networks, or kinetic systems. For a brief introduction, we refer to [23]. For each com-

partment with index i, qi represents the mass (or alternatively, the concentration) of the

one-specie complex Qi, and for each transition from compartment i to j, we assign the

reaction Qi → Qj . Using this construction, we can not only rely on the comprehensive

theory of compartmental models but on that of kinetic systems as well.

We say that a (compartmental) graph is strongly connected if there exists a directed

path between any two vertices in both directions, and we say that a graph is weakly

reversible if it is a collection of isolated strongly connected subgraphs.

For each compartment qi we introduce the sets of donors and receptors, respectively,

as
Di =

{
j ∈ {1, 2, . . . ,m}

∣∣(qj , qi) ∈ A
}
,

Ri =
{
j ∈ {1, 2, . . . ,m}

∣∣(qi, qj) ∈ A
}
;

that is, the set of donors of a given compartment are the compartments where an incom-

ing transition originates from and the set of receptors are the compartments where an

outgoing transition terminates in.

4.3 Kinetic representation of compartmental models

In this section we construct a kinetic representation of the above compartmental system

class. To do so, we assign a CRN that incorporates the compartmental structure. This

allows the introduction of a system of ODEs of the form (2.2) describing the time evolution

of the compartmental model.

Let us consider a compartmental model D = (Q,A). Let the set of species be Σ =

{N1, N2, . . . , Nm} ∪ {S1, S2, . . . , Sm} where Ni and Si represent the number of particles
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and available spaces in compartment qi, respectively. To each transition (qi, qj) ∈ A we

assign a reaction of the form (see, also [30])

Ni + Sj
Kij−−→ Nj + Si,

where Kij is the rate function of the transition. Such a reaction represents that during

the transition from compartment qi to compartment qj the number of items decreases in

qi and increases in qj , while the number of available spaces increases in qi and decreases

in qj . Let ni and si denote the continuous amount of particles and free space in qi,

respectively.

Based on (2.2) the dynamics of the system is given by

ṅi =
∑
j∈Di

Kji(nj , si)−
∑
j∈Ri

Kij(ni, sj),

ṡi = −
∑
j∈Di

Kji(nj , si) +
∑
j∈Ri

Kij(ni, sj),
(4.4)

where n and s denote the vectorized form of the variables ni and si, respectively. It is

easy to check that the model class in Eq. (4.4) contains ribosome flow models described

in [29] or [116], and extends them in two ways: firstly, the reaction rate function K

is not necessarily mass-action type and moreover, is time-varying, and secondly, the

compartmental graph of the system can be arbitrary (i.e., there can be transitions between

any two compartments). Therefore, we call (4.4) a generalized time-varying ribosome flow

model. Thus, our novel results not only extend the theory of ribosome flow models, but

can be applied to other TASEP based transport models [122, 123, 124, 125, 126] and

other flow models, such as the Traffic Reaction Model of [118]. Finally, we note, that

while more complicated network structures may not be biologically relevant in the case of

ribosome flows, but can serve as a great tool for the analysis of other flow based physical

models, e.g. traffic flows.

System (4.4) exhibits conservation in several senses. First of all, we have that

m∑
i=1

(
ṅi + ṡi

)
= 0,

thus the sum of modeled quantities and free spaces in the system is constant along the

trajectories of (4.4); that is, the function H̃ : R2m 7→ R defined for x ∈ R2m as

H̃(x) =

2m∑
i=1

xi, (4.5)

is a first integral, where x1, x2, . . . , xm and xm+1, xm+2, . . . , x2m correspond to the vari-

ables n1, n2, . . . , nm and s1, s2, . . . , sm, respectively. Our next observation is that ṅi+ṡi =
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0 holds for each compartment, thus ci := ni+ si is the constant capacity of compartment

qi. Substituting si = ci − ni we can rewrite (4.4) in a reduced state space as

ṅi =
∑
j∈Di

Kji

(
nj , ci − ni

)
−
∑
j∈Ri

Kij

(
ni, cj − nj

)
(4.6)

or after an analogous substitution, as

ṡi = −
∑
j∈Di

Kji

(
cj − sj , si

)
+
∑
j∈Ri

Kij

(
ci − si, sj

)
. (4.7)

As a consequence of the preceding observations, the function H : Rm 7→ R, defined for

x ∈ Rm as

H(x) =
m∑
i=1

xi (4.8)

is a first integral for (4.6), in which case each xi = ni (and similarly for (4.7) if each

xi = si). This shows that while the state space of the decomposed systems is C :=

[0, c1] × [0, c2] × · · · × [0, cm], for a given initial condition x(0) ∈ C the trajectories are

contained in the (m− 1)-dimensional manifold (hyperplane) defined by

{
x ∈ C

∣∣H(x)−H
(
x(0)

)
= 0
}
.

For a generalized ribosome flow define c =
∑n

i=1 ci and for r ∈ [0, c] let Lr ⊂ C be the

level set of H corresponding to r; that is,

Lr =
{
a ∈ C : H(a) = r

}
. (4.9)

Using the terminology of CRN theory [15], the level sets defined in Eq. (4.9) are also

called stoichiometric compatibility classes.

Clearly the reaction graph of the assigned CRN of a compartmental model is generally

not strongly connected nor weakly reversible even if the compartmental graph is strongly

connected. In fact, the reaction graph is weakly reversible if and only if each transition

in the compartmental system is reversible. Even though the reaction graph, in some

sense, loses the regularities of the compartmental graph, we can explicitly determine its

deficiency from the compartmental topology.

For a compartmental system D = (Q,A) let |D| =
(
Q, Ã

)
denote the undirected

graph where the parallel edges are merged.

Theorem 4.3.1. The deficiency of a CRN assigned to a compartmental model D =

(Q,A) is equal to the number of chordless cycles in the undirected graph |D| =
(
Q, Ã

)
.

Proof. For each transition between qi and qj we assign two complexes, namely Ni+Sj and

Si +Nj , regardless of the transitions’ direction, so reversible reactions do not introduce
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additional complexes, and thus the number of stoichiometrically distinct complexes is

m = 2|Ã|. A complex of the form Ni + Sj is only connected with the complex Si +Nj ,

and thus we have ℓ = |Ã| linkage classes each consisting of exactly two complexes. To

find the dimension of the stoichiometric subspace, denoted by s = dimS, observe that

the reaction vector of a reaction of the form Ni + Sj → Nj + Si is

yi→j = −ei + ej + em+i − emj , (4.10)

where ek ∈ R2m denotes the kth unit vector. Again, since yi→j = −yj→i it suffices to

consider the undirected graph |D|. Assume that yi→j is such that

yi→j =
∑

cl→l′yl→l′ .

Then by (4.10) we have that for each non-zero term of the form c.→l′y.→l′ the right-hand

side also contains at least one non-zero term cl′→.yl′→., including the terms ci→.yi→. and

c.→jy.→j . This shows that the edges corresponding to the reaction vectors of the right-

hand side form possibly multiple cycles in |D|. Without the loss of generality we may

assume that this subgraph does not contain cycles isolated from (qi, qj). We have to

consider the following cases:

1. First, we assume that the right-hand side is a single chordless cycle and contains

the transitions

qi → ql1 → ql2 → · · · → qlr → qj → qi.

Taking the inner product of unit vectors ei, el1 , el2 , . . . , elr , ej and

yi→j = ci→l1yi→l1 +
r−1∑
k=1

clk→lk+1
ylk→lk+1

+ clr→jylr→j

yields the system of linear equations:

−1 = −ci→l1

0 = ci→l1 − cl1→l2

0 = cl1→l2 − cl2→l3

...

0 = clr−1→lr − clr→j

1 = clr→j

which clearly has one solution where each weight is equal to one.
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2. If the right-hand side consists of multiple cycles, then repeatedly using the previous

argument we can replace the arcs not containing (qi, qj) with chords. Note, that

if the reaction vector corresponding to the chord is already on the right-hand side,

then we just have to modify its coefficient. This method decomposes the right-hand

side and will leave us with one chordless cycle containing (qi, qj), leading back to

the previous case with exactly one solution. Repeating the arc substitutions we can

see that each arc becomes a chordless cycle with the reintroduced edges and the

arising systems of linear equations have exactly one solution.

The first case above shows that the dimension of the stiochiometric subspace reduces by

one for each set of reaction vectors that correspond to edges forming a chordless cycle

in |D| and the second case shows that is reduced by that exact amount. If σ denotes

the number of chordless cycles in Q̃, then the deficiency of the reaction network can be

computed as δ = m− ℓ− s = 2|Ã| − |Ã| −
(
|Ã| − σ

)
= σ.

4.4 Discretization of one-dimensional nonlocal flows

In this section we consider nonlocal flows and carry out the spatial segmentation of the

flow model (4.1), with clear compartmental interpretation.

Our main motivation comes from the theory of particle flows, thus ρ will denote

particle density; that is, the number of particles per unit length. There are multiple flux

functions appropriate for modeling such flows. One of the most widely used flux functions

is the so-called Lighthill-Whitham-Richards (LWR) flux, which assumes that the speed

of the flow is proportional to the particle density and available free spaces [127, 128].

Note that this assumption is applicable in many areas, including ribosome flows [112].

The local flux is given by

f(u) =
vmax
ρmax

u(ρmax − u) = wu(ρmax − u),

where vmax and ρmax are the maximal particle speed and density, respectively. The

nonlocal flux is given by

F (u, v) = wu(ρmax − v).

We assume that the in- and out-flows (source and sink terms) of an open system are of

the form

r(x, t, ρ) = 1in(x)w(x)ρin(t)
(
ρmax − ρ(x, t)

)
s(x, t, ρ) = 1out(x)w(x)ρout(t)ρ(x, t),



68 CHAPTER 4. ANALYSIS OF GENERALIZED RIBOSOME FLOWS

where ρin, ρout : R+ 7→ R+ are the rates of the in- and out-flows, respectively. The spatial

positions are described by the indicator functions 1in, 1out defined by

1in(x) =
I∑
i=1

χ[xini ,xin
i′ ]

(x), 1out(x) =
J∑
j=1

χ[
xoutj ,xout

j′

](x),
where the space coordinates defining the above intervals are strictly ordered as follows:

xin1 < xin1′ < · · · < xinI < xinI′ ,

xout1 < xout1′ < · · · < xoutJ < xoutJ ′ .

We will use the finite volume approach to spatially discretize (also called semi-

discretize) the flow model (4.1) by introducing a grid defined by an increasing sequence

of real values
(
xi+ 1

2

)
i∈Z

such that R =
⋃
i∈Z
[
xi− 1

2
, xi+ 1

2

]
. Then the grid is the set as

the set
{
Ki =

(
xi− 1

2
, xi+ 1

2

)∣∣∣i ∈ Z
}

where the length of the cell Ki is hi = xi+ 1
2
− xi− 1

2
.

The derivation of the discretized model is analogous to the local case in [118] with the

additional approximation of the integral in (4.1).

We introduce the variables ρi(t) approximating the average particle density in the ith

cell at time t as

ρi(t) ≈
1

hi

ˆ
Ki

ρ(x, t) dx

and the variables 1in,i and 1out,i as

1in,i =
1

hi

ˆ
Ki

1in(x) dx , 1out,i =
1

hi

ˆ
Ki

1out(x) dx .

Let fi be such that
∑fi

j=1 hi+j ≥ δ and
∑fi−1

j=1 hi+j < δ and bi be such that
∑bi

j=1 hi−j ≥ δ

and
∑bi−1

j=1 hi−j < δ; that is, fi and bi denote the number of cells affected by the ith cell

and the number of cells affecting the ith cell, respectively. Finally, define

Wi,j =
1

jhi+j

ˆ hi+j

0
ω

(
j−1∑
k=1

hi+k + h

)
dh ,

Wi,−j =
1

jhi−j

ˆ hi−j

0
ω

(
j−1∑
k=1

hi−k + h

)
dh .

The approximation for the ith cell at time t is

ˆ δ

0

F (ρ, τhρ)− F (τ−hρ, ρ)

h
ω(h) dh ≈

fi∑
j=1

G(ρi, ρi+j)Wi,j −
bi∑
j=1

G(ρi−j , ρi)Wi,−j ,

where G is the so-called numerical flux. Since ω is of unit norm, we have

fi∑
j=1

jhi+jWi,j = 1,

bi∑
j=1

jhi−jWi,−j = 1.
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The choice of the numerical flux G determines many important qualitative properties

of the numerical scheme. The two most commonly used schemes especially in the field of

traffic flows are the modified Lax-Friedrichs scheme and the Godunov scheme [119]. The

former uses

G(u, v) =
f(u) + f(v)

2
+D(u− v)

where 2D ≥ vmax is the coefficient of the numerical diffusion term, and the latter utilizes

G(u, v) =


mins∈[u,v] f(s) if u ≤ v,

maxs∈[v,u] f(s) otherwise.

When used in time-space discretization of local conservation laws, both schemes are

monotone flux schemes implying advantageous properties like the maximum principle,

also called ℓ∞-stability [120], but the physical interpretation is not straightforward. Fur-

thermore, these fluxes are complicated to handle from a control point of view. Note

that while the theory of monotone flux schemes have been widely studied for local equa-

tions the theory is rather incomplete for nonlocal models. Recent advancements include

the characterization of equidistant monotone flux schemes for closed nonlocal conserva-

tion laws and an appropriate Courant-Friedrichs-Lewy (CFL) condition under which the

scheme is conservative, consistent, enjoys the maximum principle and is total variation

diminishing (TVD) [60].

Our main result is that using the naturally defined nonlocal flux as the numerical

flux G(u, v) = F (u, v) = wu(ρmax − v) in the case of open conservation laws, the (not

necessarily equidistant) discretization scheme will still have many desired qualitative

properties mentioned above and the obtained system of ODEs is of a quite special form,

namely, it is kinetic.

Definition 4.4.1. The spatial numerical segmentation of (4.1) is given by

ρ̇i =

bi∑
j=1

wρi−j(ρmax − ρi)Wi,−j −
fi∑
j=1

wρi(ρmax − ρi+j)Wi,j+

+ 1in,iwρin(ρmax − ρi)− 1out,iwρoutρi, (i, t) ∈ Z× R+;

ρi(0) =
1

hi

ˆ
Ki

ρ0(x) dx , i ∈ Z.

For the sake of generality we may also consider variable maximal density and particle

speed at different spatial points. These will be given by the functions ρmax : R 7→ R+

and vmax : R 7→ R+, respectively. The local flux in this case is

f̃(u, x) =
vmax(x)

ρmax(x)
u
(
ρmax(x)− u

)
= w(x)u

(
ρmax(x)− u

)
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and the nonlocal flux is

F̃ (u, v, x, y) = w(x)u
(
ρmax(y)− v

)
.

We further introduce the variables ρmax,i and vmax,i denoting the average maximal par-

ticle density and speed in cell Ki as

ρmax,i =
1

hi

ˆ
Ki

ρmax(x) dx , vmax,i =
1

hi

ˆ
Ki

vmax(x) dx

and the variables wi =
vmax,i

ρmax,i
. Using the numerical flux

G̃(u, v, i, j) = wiu(ρmax,j − v)

we obtain the following generalization.

ρ̇i(t) =

bi∑
j=1

wi−jρi−j(t)
(
ρmax,i − ρi(t)

)
Wi,−j −

fi∑
j=1

wiρi(t)
(
ρmax,i+j − ρi+j(t)

)
Wi,j

+Ri(t, ρi)− Si(t, ρi), (i, t) ∈ Z× R+;

ρi(0) =
1

hi

ˆ
Ki

ρ0(x) dx , i ∈ Z,

(4.11)

where
Ri(t, ρi) = 1in,iwiρin(t)

(
ρmax,i − ρi(t)

)
,

Si(t, ρi) = 1out,iwiρout(t)ρi(t).

Equation (4.11) is formally kinetic, which ensures some advantageous properties of

the model and most importantly, allows us to use the well-developed theory of chemical

reaction networks [20, 15]. Furthermore, the underlying CRN has physically meaningful

compartments and topology. In fact, let Ni and Si denote particles and available space

slots for particles in the ith cell, respectively. Then the particle flow can be represented

as transformations of complexes (that is, as reactions) as follows:

Ni−j + Si
ki−j,i−−−→ Ni + Si−j j = 1, 2, . . . , bi (4.12)

Ni + Si+j
ki,i+j−−−→ Ni+j + Si j = 1, 2, . . . , fi (4.13)

Si
kin,i−−−→ Ni (4.14)

Ni
kout,i−−−→ Si. (4.15)

Reaction (4.12) shows that during the particles’ transition from the (i− j)th cell to the

ith cell the available spaces increase in the (i−j)th cell and decrease in the ith cell, while

the number of particles decrease in the (i−j)th cell and increase in the ith cell. Reaction

(4.13) expresses the same transition from the ith cell to the (i+j)th cell. Finally, reactions
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(4.14) and (4.15) show the behaviour of in- and out-flows. Note that (4.12) and (4.13)

are redundant when enumerating all reactions. Figure 4.1 shows the exact structure of

the compartments and the topology of the intra- and intercell reactions.

ith cell

Ni + Si−bi
...

Ni + Si−1

Ni + Si+fi
...

Ni + Si+1

Si Ni

· · · Ni−bi + Si · · ·

Ni−1 + Si

Ni+1 + Si

· · ·

Ni+fi + Si

· · ·

kin,i

kout,i

ki,i+fi

ki,i+1

ki−bi,i

ki−1,i

· · · Ki−bi · · · Ki−1 Ki Ki+1 · · · Ki+fi · · ·

ki−bi,i

ki−1,i ki,i+1

ki,i+fi

Figure 4.1: Compartmental model of the generalized (4.11)

Let ni and si denote the continuous number of particles and available spaces in the

ith cell per unit length, respectively. Using Eq. (2.2), the system of ODEs derived from

the reactions are:

ṅi =

bi∑
j=1

ki−j,ini−jsi −
fi∑
j=1

ki,i+jnisi+j + kin,isi − kout,ini,

ṡi = −
bi∑
j=1

ki−j,ini−jsi +

fi∑
j=1

ki,i+jnisi+j − kin,isi + kout,ini.

(4.16)

We can see that ṅi+ ṡi = 0; that is, the sum of particles and available spaces is conserved

in each cell. Let ni + si = ci, and substitute si = ci − ni into (4.16) to obtain

ṅi =

bi∑
j=1

(
ki−j,ini−jci − ki−j,ini−jni

)
+ kin,i(ci − ni)

−
fi∑
j=1

(
ki,i+jnici+j − ki,i+jnini+j

)
− kout,ini,

which is equivalent to (4.11) with ni = ρi, ci = ρmax,i, ki−j,i = wi−jWi,−j , ki,i+j =

wi+jWi,j , kin,i = 1in,iwinρin and kout,i = 1out,iwiρout.

Theorem 4.4.2. The following statements hold for the proposed numerical scheme (4.11):
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(i) It is nonnegative and capacitated; that is, we have 0 ≤ ρi(t) ≤ ρmax,i for all i ∈ Z

and t ≥ 0.

(ii) It is conservative in the sense that

∑
i∈Z

ρi(t) =
∑
i∈Z

ρi(0) +

ˆ t

0

(
Ri(τ, ρi)− Si(τ, ρi)

)
dτ

holds for any t ≥ 0.

Proof. (i) These are immediate consequences of the kinetic property [15].

(ii) Since ∑
i∈Z

ρ̇i(t) =
∑
i∈Z

(
Ri(t, ρi)− Si(t, ρi)

)
the scheme is conservative.

Let us consider a closed system with constant maximal particle density and speed and

with circular or ring-like topology obtained via equidistant spatial discretization. Let the

number of compartments be N . In an equidistant setting bi = fi =: r for i = 1, 2, . . . , N

and Wi,−j =Wi,j =:Wj for i = 1, 2, . . . , N and j = 1, 2, . . . , r. For simplicity of notations

we assume that N > 2r; that is, the nonlocality does not loop. Under such assumptions

ring topology means that ρN+j = ρj and ρ1−j = ρN−j for j = 1, 2, . . . , r. An equilibrium

point with densities ρ∗i satisfies the following constraints

r∑
j=1

wρ∗i−j(ρmax − ρ∗i )Wj =

r∑
j=1

wρ∗i (ρmax − ρ∗i+j)Wj

for i = 1, 2, . . . , N . This shows that we obtain an equilibrium if each cell has equal density

and since the number of particles is constant in the closed system we have

ρ∗i = ρ =
1

N

N∑
i=1

ρi(0).

We will use the entropy-like Lyapunov function candidate well-known from the theory of

chemical reaction networks [15, Section 7.7]

V (ρ) =

N∑
i=1

ρi

[
log

(
ρi
ρ

)
− 1

]
+Nρ =

N∑
i=1

ρi log

(
ρi
ρ

)
.

Note that ρ = 0 is only possible when there are no particles in the system which is clearly

not relevant.
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It is easy to see that V (ρ∗) = 0 and ρ ̸= ρ∗ implies V (ρ) > 0. Furthermore, partial

summation yields

V̇ (ρ) =

N∑
i=1

log

(
ρi
ρ

)
ρ̇i =

N∑
i=1

log

(
ρi
ρ

) r∑
j=1

w
[
ρi−j(ρmax − ρi)− ρi(ρmax − ρi+j)

]
Wj

= wρ
N∑
i=1

r∑
j=1

ρi(ρmax − ρi+j)

ρ

[
log

(
ρi+j
ρ

)
− log

(
ρi
ρ

)]
Wj .

Using the inequality ea(b− a) ≤ eb − ea with a = log
(ρi
ρ

)
and b = log

(ρi+j

ρ

)
and noting

that equality holds if and only if a = b, we find that

V̇ (ρ) ≤ w
N∑
i=1

r∑
j=1

(ρmax − ρi+j)(ρi+j − ρi)Wj = w
N∑
i=1

r∑
j=1

(
−ρ2i+j + ρiρi+j

)
Wj

= −w
2

N∑
i=1

r∑
j=1

(
ρ2i − 2ρiρi+j + ρ2i+j

)
Wj = −w

2

N∑
i=1

r∑
j=1

(ρi − ρi+j)
2Wj ≤ 0.

This shows that V̇ (ρ∗) = 0 and ρ ̸= ρ∗ implies V̇ (ρ) < 0 and we conclude that this

equilibrium point is asymptotically stable.

4.5 Stability of generalized ribosome flows

Consider a generalized ribosome flow with strongly connected compartmental structure,

in reduced state space. The Jacobian of (4.6) is given by

[
J(n)

]
ik

=



−
∑

j∈Di

∂Kji(nj ,ci−ni)
∂ni

−
∑

j∈Ri

∂Kij(ni,cj−nj)
∂ni

if i = k,

∂Kki(nk,ci−ni)
∂nk

if k ∈ Di and k ̸∈ Ri,

∂Kik(ni,ck−nk)
∂nk

if k ̸∈ Di and k ∈ Ri,

∂Kki(nk,ci−ni)
∂nk

+ ∂Kik(ni,ck−nk)
∂nk

if k ∈ Di and k ∈ Ri,

0 otherwise.

The (A2) property of the rate functions imply that each diagonal entry is nonpositive

and each off-diagonal entry is nonnegative. Since the sum of each column is zero, we

conclude that the system is compartmental in the sense of [9]. Systems satisfying the

latter property are also called cooperative.

The following lemmata and proofs will adapt the ideas of [29] and [35] for the studied

more general system class. Moreover, we will also use the persistence result of [129,

Corollary 4.9].
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Lemma 4.5.1. Consider a compartmental system of the form (4.6) with a strongly con-

nected compartmental structure. Then, for any n(0) in the interior of C, denoted by

int(C), the solution satisfies n(t) ∈ int(C) for any t ≥ 0.

In other words, int(C) is an invariant set of such a system.

Proof. To obtain a contradiction, suppose that there exists a (minimal) time τ > 0 such

that n(τ) ∈ ∂C. We need to consider the following two cases.

1. There exists an empty compartment. In this case, due to the strongly connected

structure, there must exist an empty compartment with at least one non-empty

donor compartment as well. To see this, consider a directed path from any non-

empty compartment to any empty compartment. Stepping backwards from the

empty compartment along this path until we reach a non-empty compartment es-

tablishes our assertion.

Let i be an index such that ni(τ) = 0 and nk(τ) > 0 holds for some k ∈ Di. Then

(4.6) takes the form

ṅi(τ) =
∑
j∈Di

Kji(nj , ci) ≥ Kki(nk, ci) > 0

which means that ṅi(t) > 0 on the interval [τ − σ, τ ] for some σ > 0. This leads to

a contradiction with ni(τ) = 0, further implying that there are no empty compart-

ments altogether.

2. There exists a full compartment. In this case, by a similar argument, there must

exist a full compartment with at least one non-full recipient compartment as well;

that is, there exists an index i such that ni(τ) = ci and nk(τ) < ck holds for some

k ∈ Ri. Then (4.6) takes the form

ṅi(τ) = −
∑
j∈Ri

Kij(ci, cj − nj) ≤ −Kik(ci, ck − nk) < 0

which means that ṅi(t) < 0 on the interval [τ−σ, τ ] for some σ > 0. This leads to a

contradiction with ni(τ) = ci, further implying that there are no full compartments

altogether.

Let 0(m), c(m) ∈ Rm be defined by

0(m) =
[
0 0 · · · 0

]⊤
c(m) =

[
c1 c2 · · · cm

]⊤
.
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Lemma 4.5.2. Consider a compartmental system of the form (4.6) with a strongly con-

nected compartmental structure. Then, for any n(0) ∈ ∂C, n(0) ̸= 0(m), n(0) ̸= c(m) the

solution satisfies n(τ) ∈ int(C) for some τ > 0.

Proof. First we define the following boundary-repelling property.

(BR) For each δ > 0 and sufficiently small ∆ > 0, there exists K = K(δ,∆) > 0 such

that for each t ≥ 0

1. the conditions

(a) ni(t) ≤ ∆,

(b) there exists k ∈ Di such that nk(t) ≥ δ

imply ṅi(t) ≥ K, and

2. the conditions

(a) ni(t) ≥ ci −∆

(b) there exists k ∈ Ri such that nk(t) ≤ ck − δ

imply ṅi(t) ≤ −K.

Eq. (4.6) satisfies the above property. To see this, consider any compartment qi.

Without the loss of generality we can assume that Di contains at least one index, let this

be k. In this case

ṅi(t) ≥ Kki(δ, ci −∆)−
∑
j∈Ri

Kij(∆, cj) := K1.

Similarly, we can assume that Ri contains at least one index, let this be l. In this case

ṅi(t) ≤
∑
j∈Di

Kji(cj ,∆)−Kil(ci −∆, cl − δ) := −K2.

The properties of the rate functions imply that for a sufficiently small ∆ we have K1 > 0

and −K2 < 0, thus taking K = min {K1,K2} concludes our assertion.

Next, we will show that for each compartment ni(τ) > 0 holds for some τ > 0.

Without the loss of generality we can assume that there exists an index i such that

ni(t) ≥ ϵ0 on the interval [0, τ ] for some ϵ0 > 0 and τ > 0. Define τm = τ
m and proceed

by induction. For k = 1, 2, . . . ,m we will define an appropriate ϵk > 0 and show that the
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kth generation recipients of the compartment qi have particle concentration of at least ϵk

on the interval [kτm, τ ].

Pick any j ∈ Ri (first generation recipient) and sufficiently small ∆ > 0, define

K = K(ϵ0,∆) and ϵ1 = min {∆,Kτm} and let t0 ∈ [0, τm] such that nj(t0) ≥ ϵ1. Such a

t0 must exist, since assuming nj(t) < ϵ1 ≤ ∆ for each t ∈ [0, τm] would imply via (BR)

that ṅj(t) ≥ K for each t ∈ [0, τm]. This further implies that nj(τm) ≥ nj(0)+Kτm ≥ ϵ1.

This leads to a contradiction with nj(τm) < ϵ1.

Our next claim is that nj(t) ≥ ϵ1 for each t ∈ [t0, τ ] and in particular [τm, τ ]. Con-

versely, suppose that there exists some t1 ∈ (t0, τ ] such that ξ := nj(t1) < ϵ1 and

define σ = min {t ∈ (t0, τ) : nj(t) ≤ ξ}. Since nj(σ) ≤ ξ < ϵ1 ≤ ∆, (BR) shows that

ṅj(σ) ≥ K; that is, ṅj(t) > 0 on the interval [σ − ν, σ] for some ν > 0. But this would

imply that nj(σ − ν) < nj(σ), contradicting the minimality of σ.

Define K = K(ϵ1,∆) and ϵ2 = min {∆,Kτm} and repeat the above steps for the

set Rj for j ∈ Ri (second generation recipients). In subsequent induction steps define

K = K(ϵk,∆) and ϵk+1 = min {∆,Kτm} and repeat the above for the kth generation

recipients of the compartment qi. Since the compartments are strongly connected after

at most m induction steps we conclude that ni(τ) > 0 for each i = 1, 2, . . . ,m.

To show that ni(τ) < ci holds as well, consider the complementary system given in

(4.7). Repeating the above steps for (4.7) shows that si(τ) > 0, further implying that

ni(τ) < ci; that is, indeed n(τ) ∈ int(C).

Remark 4.5.3. The proof also shows that for each τ > 0 there exists ϵ(τ) > 0 with

ϵ(τ) → 0 as τ → 0, such that n(τ) ∈ [ϵ, c1 − ϵ]× [ϵ, c2 − ϵ]× · · · × [ϵ, cm− ϵ]; that is, even

if the initial value is on ∂C the orbit enters int(C) after an arbitrarily short time.

Remark 4.5.4. A similar argument shows that ∂C only contains the two trivial equilibria

corresponding to an empty and a full network.

To see this, let us first assume that n∗ is an equilibrium and for a compartment qi we

have n∗i = 0. Then, by (4.6)

ṅ∗i =
∑
j∈Di

Kji(n
∗
j , ci) = 0

which is only possible if n∗j = 0 for each j ∈ Di. Induction shows that n∗ = 0(m).

Next, let us assume that for a compartment qi we have n∗i = ci. Then, by (4.6)

ṅ∗i = −
∑
j∈Ri

Kij(ci, cj − n∗j ) = 0

which is only possible if n∗j = cj for each j ∈ Ri. Induction shows that n∗ = c(m).
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For a given initial condition a ∈ C, let ϱ(t, a) denote the solution at time t with

ϱ(0, a) = a; that is ϱ(t, a) = n(t) with n(0) = a.

Proposition 4.5.5. Consider a compartmental system of the form (4.6) with a strongly

connected compartmental structure. Then, for any s ∈
[
0, H(c(m))

]
, where H is given in

(4.8), the set Ls contains a unique steady state es satisfying limt→∞ ϱ(t, a) = es for any

a ∈ Ls.

Proof. Since L0 =
{
0(m)

}
and ϱ(t, 0(m)) = 0(m), the statement holds for an empty

network with e0 = 0(m). Similarly, since LH(c(m)) =
{
c(m)

}
and ϱ(t, c(m)) = c(m), the

statement holds for a full network with eH(c(m)) = c(m).

Choose s ∈
(
0, H(c(m))

)
and a ∈ Ls. By the strongly connected compartmental

structure the Jacobian J(n) is irreducible on int(C) but may become reducible on ∂C.

However, Lemmata 4.5.1 and 4.5.2 along with Remak 4.5.3 show that (4.6) has repelling

boundary; that is, ϱ(t, a) ∈ int(C) after an arbitrarily short time even if a ∈ Ls ∩∂C. As

a consequence, (4.6) is a cooperative irreducible system evolving in int(C) admitting a

first integral with positive gradient. The result [130, Theorem 10.] shows that Ls either

has precisely one equilibrium that attracts the whole level set or has zero equilibria and

each ω-limit set of the level set is empty. However, by the boundedness of the sequence

{ϱ(k, a) : k = 1, 2, . . . } ⊂ int(C) the Bolzano-Weierstrass theorem implies that there is

a convergent subsequence; that is, the ω-limit set of a cannot be empty. Furthermore,

[129, Corollary 4.9] implies that ω(a) ∩ ∂C = ∅ and the proof is complete.

In the proofs above we used the notion of cooperative systems directly, however, the

underlying theory involves so-called (strongly) monotone systems, which in our case, is a

direct consequence of cooperativity, as shown by our next result.

For two points x, y ∈ Rm, let

x ≤ y if xi ≤ yi for i = 1, 2, . . . ,m,

x < y if x ≤ y and x ̸= y,

x≪ y if xi < yi for i = 1, 2, . . . ,m.

Proposition 4.5.6. Consider a compartmental system of the form (4.6) with a strongly

connected compartmental structure. Then, for any s ∈
[
0, H(c(m))

]
and a, b ∈ Ls, the

relation a ≤ b implies ϱ(t, a) ≤ ϱ(t, b) and a < b implies ϱ(t, a) ≪ ϱ(t, b) for any t > 0.

Proof. If x or y is equal to 0(m) or c(m), then the statement trivially holds. In any other

case, use the proof of Proposition 4.5.5 to conclude that (4.6) is a cooperative irreducible
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system evolving in a convex and open set, namely, int(C). The statement is a direct

consequence of [130, Theorem 1., Theorem 3.].

Our final result in this topic gives further insight into the qualitative behaviour of

(4.6).

Proposition 4.5.7. Consider a compartmental system of the form (4.6) with a strongly

connected compartmental structure. Then, for any a, b ∈ C initial values and t ≥ 0

∥ϱ(t, a)− ϱ(t, b)∥ℓ1(Rm) ≤ ∥a− b∥ℓ1(Rm).

In other words, using the usual ℓ1(Rm) norm, the distance of two trajectories at

any given time cannot be larger than the distance of the initial values. In particular, if

b = eH(a), then we find that the convergence to eH(a) is monotone.

Proof. By [131, Chapter 2.2] the induced matrix measure by the ℓ1 vector norm is

µ(A) = max
i

{
[A]ii +

∑
j ̸=i

∣∣[A]ji∣∣}.
Since µ

(
J(n)

)
= 0, the result [132, Theorem 1.] implies the assertion of the proposition.

Remark 4.5.8. It is straightforward to extend our persistence and stability results to

systems with a weakly reversible compartmental graph, when the dynamics unfold into

isolated subsystems having strongly connected compartmental graphs. Furthermore, some

of the above results on the qualitative behaviour, for example the monotonicity in Proposi-

tion 4.5.6 and Proposition 4.5.7 can be extended to systems with arbitrary compartmental

topology.

Propositions 4.5.5, 4.5.6 and 4.5.7 imply that the steady states form a linearly ordered

set. For i = 1, 2, . . . ,m let ei : [0, c] 7→ [0, ci] denote the ith coordinate function of the

steady state; that is, let

ei(r) := lim
t→∞

ρ
(
t, n(0)

)
i

where n(0) ∈ Lr is arbitrary and ρ
(
t, n(0)

)
denotes the solution at time t with ρ

(
0, n(0)

)
=

n(0). Clearly each ei is continuous and the monotonicity of the system also shows that

each ei function is strictly increasing; that is, they are differentiable almost everywhere

and their derivative are positive.
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Example 1: (generalized) RFMR

As a small example let us consider a Ribosome Flow Model on a Ring (RFMR) [35] with

three sites. The underlying compartmental model is given by D = (Q,A), where

Q = {q1, q2, q2},

A =
{
(q1, q2), (q2, q3), (q3, q1)

}
.

The topology is shown in Fig 4.2.

•
q1

•
q2

•
q3

Figure 4.2: Compartmental graph of a three-dimensional RFMR

The corresponding CRN has the following species and reactions:

Σ = {N1, N2, N3, S1, S2, S3}

R1 : N1 + S2
K12−−→ S1 +N2

R2 : N2 + S3
K23−−→ S2 +N3

R3 : N3 + S1
K31−−→ S3 +N1.

It is easy to see that, indeed, the reaction graph is not weakly reversible and its deficiency

is one. The dynamics of the model in the full state space is given by (4.4) as

ṅ1 = K31(n3, s1)−K12(n1, s2)

ṡ1 = −K31(n3, s1) +K12(n1, s2)

ṅ2 = K12(n1, s2)−K23(n2, s)3

ṡ2 = −K12(n1, s2) +K23(n2, s3)

ṅ3 = K23(n2, s)3 −K31(n,3 s1)

ṡ3 = −K23(n2, s)3 +K31(n,3 s1)

which can be rewritten in the reduced state space based on (4.6) as

ṅ1 = K31(n3, c1 − n1)−K12(n1, c2 − n2)

ṅ2 = K12(n1, c2 − n2)−K23(n2, c3 − n3)

ṅ3 = K23(n2, c3 − n3)−K31(n3, c1 − n1).
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In a classical RFMR each ci = 1 and each transition-rate Kij follows the mass-action law.

In an RFMR with different site sizes [116] we allow arbitrary site sizes, in which case the

above equation can be written as

ṅ1 = k31n3(c1 − n1)− k12n1(c2 − n2)

ṅ2 = k12n1(c2 − n2)− k23n2(c3 − n3)

ṅ3 = k23n2(c3 − n3)− k31n3(c1 − n1).

Fig 4.3 shows the equilibrium curves of the system with capacities c1 = 5, c2 = 25,

c3 = 50 and k12 = 100, k23 = 40, k31 = 60. We consider the above mass action case along

with

Kij(ni, cj − nj) = kij
n3i

(l + ni)3
· (cj − nj)

3

(l + cj − nj)3

for various l > 0.

Figure 4.3: Loci of equilibria of a generalized RFMR as a function of the total number

of ribosomes for different l saturation parameters

Example 2: not strongly connected model

Let us consider consider a not strongly connected compartmental model given by D =

(Q,A), where

Q = {q1, q2, q2},

A =
{
(q2, q3), (q3, q2), (q3, q1)

}
.

The topology is shown in Fig 4.4.
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•
q1

•
q2

•
q3

Figure 4.4: Compartmental graph of a not strongly connected model

The corresponding CRN has the following species and reactions:

Σ = {N1, N2, N3, S1, S2, S3}

R1 : N2 + S3
K23−−→ S2 +N3

R2 : N3 + S2
K32−−→ S3 +N2

R3 : N3 + S1
K31−−→ S3 +N1.

The dynamics of the system in the reduced state space is given by

ṅ1 = K31

(
n3, c1 − n1

)
ṅ2 = K32

(
n3, c2 − n2

)
−K23

(
n2, c3 − n3

)
ṅ3 = K23

(
n2, c3 − n3

)
−K32

(
n3, c2 − n2

)
−K31

(
n3, c1 − n1

)
.

Since the compartmental graph is not strongly connected the persistence and stability

results of [129] are not applicable. However, empirical results show that the long-time

behaviour of the system still exhibits some regularity, which can be divided into two cases

base on the initial values of the system:

1. If r := H
(
n(0)

)
≤ c1, then

lim
t→∞

n2(t) = lim
t→∞

n3(t) = 0 and lim
t→∞

n1(t) = r.

2. If r := H
(
n(0)

)
> c1, then

lim
t→∞

n1(t) = c1

and n1(t) and n2(t) will converge to the unique equilibrium on the level set

{
(n2, n3) ∈ [0, c2]× [0, c3]

∣∣n2 + n3 = r − c1
}

of the reduced compartmental model D′ = (Q′, A′) given by Q′ = {q2, q3}, A′ ={
(q2, q3), (q3, q2)

}
. Note that since D′ is strongly connected, the results of [129] and

the above investigation can be applied.
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For the simulations we set c1 = c2 = c3 = 100. The rate functions in the different cases

are assumed to have form Kij(ni, cj −nj) = kijni(cj −nj) (corresponding to mass-action

kinetics) or to be rational functions of the form

Kij(ni, cj − nj) = kij
ni

l + ni
· cj − nj
l + cj − nj

for some l > 0 with k23 = 15, k32 = 25, k31 = 35. Fig 4.5 shows the equilibrium curves

for these rate functions with various l values. As described by the above cases we see that

until the sum of the initial value exceed the capacity of the q1 compartment the equilib-

rium lies on the n1 axis. After that the equilibrium lies on the plane
{
n1 = c1

}
⊂ R3

and since D′ is strongly connected we have that the coordinate functions of the equilibria

e2(r) and e3(r), restricted to the set [c1, c], are continuous and strictly increasing.

Figure 4.5: Loci of equilibria of a not strongly connected model as a function of the

amount of modeled quantities for different l saturation parameters

Remark 4.5.9. The authors hypothesize that the long-time behaviour of a compartmen-

tal model with arbitrary compartmental structure can be similarly described. Recall that

a (compartmental) graph D = (Q,A) can be written as a directed acyclic hypergraph of

strongly connected components. The hypergraph will then contain three types of compo-

nents:

1. we call a component trap if it does not have any outgoing edges,

2. we call a component source if it does not have any incoming edges,
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3. we call a component intermediate if it is not a trap and not a source.

Based on the initial value and the exact compartmental structure the following phenomena

can be observed:

• Traps (and only traps) can become full, thus possibly creating new traps.

• Sources (and only sources) can become empty, thus possibly creating new sources.

• After a sufficient number of traps are filled and sources are emptied, the compart-

mental graph D is decomposed into isolated strongly connected components; that is,

the resulting graph is weakly reversible, in which case the results of [129] can be

applied.

While these observations are elementary and show that the system is stable, the equilibria

are clearly non-unique with respect to the total mass of the network and in general it is

not straightforward to predict from the initial value which components will fill and empty.

4.6 Persistence and stability of generalized ribosome flow

models with time-varying transition rates

In this section we consider time-varying systems, where the transition rates can depend

on all compartments, not just the donor and the recipient. That is, based on (4.4), we

consider systems of the general form

ṅi =
∑
j∈Di

Kji(n, s, t)−
∑
j∈Ri

Kij(n, s, t),

ṡi = −
∑
j∈Di

Kji(n, s, t) +
∑
j∈Ri

Kij(n, s, t).
(4.17)

The exact assumptions on the reaction rates will be specified later.

4.6.1 Persistence

First, we will investigate the persistence of time-varying generalized ribosome flows of the

form (4.17) only under mild regularity assumptions described by the following theorem,

which is based on the results of [75] but the statements are rephrased to be more aligned

with our framework. For the definition of notions related to Petri nets (e.g. siphons) and

their exact connection with CRNs we refer to [75, 129].

Theorem 4.6.1. [75] The dynamics of a CRN of the form (2.2) is persistent if
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(i) Each siphon of the CRN contains a subset of species which define a positive linear

conserved quantity for the dynamics.

(ii) There exists a positive linear conserved quantity c⊤x for the dynamics.

(iii) There are nonnegative, continuous functions Kj(x), Kj(x) such that

(a) if xk > x̃k for each k ∈ supp(yj), then Kj(x) > Kj(x̃) (and similarly for Kj)

holds for each j = 1, 2, . . . , R, and

(b) for each j = 1, 2, . . . , R, for all x ∈ RN+ and for all t ≥ 0 we have Kj(x) ≤

Kj(x, t) ≤ Kj(x).

To verify condition (i) we would, in general, need to enumerate all siphons of the CRN,

which is well-known to be an NP-hard problem. However, in our recent paper [129] we

explicitly characterized the siphons of a CRN assigned to a strongly connected compart-

mental models in the time-invariant case. However, one can observe that conditions (i)

and (ii) of 4.6.1 are independent of the choice of transition rates and even independent

from whether the system is time-invariant or not; that is, our results, formulated in the

following theorem, hold for time-varying compartmental systems as well.

Theorem 4.6.2. [129, Corollary 4.6] A siphon in the Petri net of a strongly connected

compartmental graph either contains the vertices Ni and Si corresponding to the same

compartment qi, or it contains all the vertices N1, N2, . . . , Nm or S1, S2, . . . , Sm.

Then the conclusions of Section 4.3 show that conditions (i) and (ii) are satisfied by

virtue of the first integrals (4.8) and (4.5), respectively.

It is not straightforward to determine exactly what types of reaction rates satisfy

condition (iii). For the sake of specificity, we characterize a class of reaction rates of

special interest which can be written in the following form

Kij(n, s, t) = kij(t)
θi(ni)νj(sj)

1 + Ψij(n, s)
(4.18)

where we assume that the transformations θi, νj ∈ C1(R) are nondecreasing, have θi(0) =

νj(0) = 0 and satisfy
´ 1
0 | log θi(r)|dr < ∞ and

´ 1
0 | log νj(r)|dr < ∞ for each i, j =

1, 2, . . . ,m. We also assume that the functions Ψij take the form

Ψij(n, s) =
∑

αr(1),r(2)

m∏
l=1

θ
r
(1)
l
l (nl)ν

r
(2)
l
l (sl)

where r(1), r(2) ∈ Nm and αr(1),r(2) ∈ R+. We further assume that for kij(t) there exist

kij , kij > 0 such that kij ≤ kij(t) ≤ kij for all t ≥ 0. In this case we have

Kij(ni, sj) :=
kijθi(ni)νj(sj)

1 + Ψij(c(m), c(m))
≤ Kij(n, s, t) ≤ kijθi(ni)νj(sj) =: Kij(ni, sj),



4.6. ANALYSIS OF TIME-VARYING GENERALIZED RIBOSOME FLOWS 85

which are clearly monotonous in the sense of Theorem 4.6.1, and thus condition (i) is

satisfied and the system is persistent.

Remark 4.6.3. The above investigation and, in particular, condition (iii) of Theorem

4.6.1 shows that Lemmata 5.1, 5.2 and Remark 5.3 of [129] can be modified to the time-

varying case; that is, for a system of the form (4.17) with strongly connected compart-

mental graph and reaction rates of the form (4.18), for each τ > 0 there exists ϵ(τ) > 0

with ϵ(τ) → 0 as τ → 0 such that ni(t), si(t) ∈ [ϵ, ci − ϵ] holds for each i = 1, 2, . . . ,m

and t ≥ τ .

The denominator of (4.18) contains positive terms which can be interpreted as the

inhibitory effect of other species, and the time-varying coefficient kij(t) introduces the

dependence of the system parameters on various factors such as temperature or the

dynamical behaviour of other species that are not explicitly modeled as state variables.

This class of rate functions contains many well-known examples, demonstrating the range

and flexibility of reaction rates of the above form:

1. Setting each θi(ni) = ni and νj(sj) = sj and Ψij(n, s) = 0 we obtain the case

of classical mass-action kinetics with time-varying rate coefficients: Kij(n, s, t) =

kij(t)nisj .

2. Setting each θi(ni) = ni and νj(sj) = sj and Ψij(n, s) = l2 − 1 + lni + lsj + nisj

for some l > 0 yields

Kij(n, s, t) = kij(t)
nisj

(l + ni)(l + sj)

corresponding to simple saturating kinetics described by the Monod equation.

3. The previous example can also be obtained by setting θi(ni) = ni
l+ni

and νj(sj) =

sj
l+sj

and Ψij(n, s) = 0, showing that (4.18) is not unique. Notice however, that for

fixed θi, νj transformations the function Ψij , and thus the fraction itself, is unique.

4. Setting each θi(ni) =
nL
i

l+nL
i

and νj(sj) =
sLj
l+sLj

for some l > 0 yields the classical Hill

kinetics.

4.6.2 Stability of the solutions for periodic transition rates

In this section we investigate the periodic behaviour of the generalized ribosome flows

based on the ideas of [133]. Let us consider a generalized ribosome flow in the reduced

state space of the form (4.6) with transition rates of the form (4.18) and assume that
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the transition functions are C1 and periodic with the same period (but having possibly

different phases). Write (4.6) as ṅ = F (t, n) and assume that the right-hand side satisfies

the following monotonicity condition: Fi(t, x) ≤ Fi(t, y) for any two distinct points x, y ∈

C such that xi = yi and xj ≤ yj for j ̸= i. This condition is satisfied if, for example,

the transition rates are such that Ψij ≡ 0; that is, if there are no inhibitory phenomena.

Then the system phase locks (or entrains) with the periodic excitations.

Theorem 4.6.4. Consider a system of the form (4.6) satisfying the above monotonicity

assumption, where each Kij(t) is periodic with a common period T . Then for each r ∈

[0, c] there exists a unique periodic function ϕr : R+ :7→ C with period T such that for all

a ∈ Lr we have that

lim
t→∞

∥ρ(t, a)− ϕr(t)∥L1 = 0.

Proof. The properties of the rate functions and the fact that ∇H is positive implies the

result via [134, 135].

Remark 4.6.5. Since, in some sense, time-invariant systems can be seen as periodic,

the stability result [129, Proposition 5.5] is a special case of the above theorem, where ϕr

is reduced to a single point of the manifold Lr.

Example 3: entrainment of generalized RFMR

Let us again consider a generalized version of the RFMR from Fig 4.2. For this example

we set c1 = c2 = c3 = 100 and

K12(n1, c2 − n2, t) = 100
(
3 + 2 cos(t+ 0.5)

) n1(c2 − n2)

(l + n1)(l + c2 − n2)
,

K23(n2, c3 − n3, t) = 100
(
7 + 5 sin(3t− 2.5)

) n2(c3 − n3)

(l + n2)(l + c3 − n3)
,

K31(n3, c1 − n1, t) = 100
(
2 + cos(2t− 1)

) n3(c1 − n1)

(l + n3)(l + c1 − n1)
,

which clearly have the same period T = 2π. Figs 4.6a and 4.6b show the phase portrait

of the system starting from various initial conditions with l = 100, H
(
n(0)

)
= 150 and

the time evolution of the state variables with n(0) = [5 45 100]⊤, respectively.



4.6. ANALYSIS OF TIME-VARYING GENERALIZED RIBOSOME FLOWS 87

(a) Phase portrait of the system (b) Time evolution of state variables

Figure 4.6: Entrainment of a generalized RFMR with periodic transition rates

4.6.3 Lyapunov stability analysis

In this section we show that generalized ribosome flows with reaction rate functions of

the form (4.18) with piecewise locally Lipschitz kij(t) coefficients satisfy a certain notion

of robustness to the changes in the time-varying rate functions that can be traced back

to the input-to-state stability of rate-controlled biochemical networks thoroughly inves-

tigated in [28]. The main difficulty in applying these results lies in the aforementioned

fact that the CRN assigned to a compartmental model is generally not weakly reversible

and its deficiency is generally not zero (see, Theorem 4.3.1) even if the compartmental

topology is strongly connected. In order to circumvent this, we will perform a model

reduction and rewrite (4.6) by factoring out appropriate terms. Let us first recall the

most important notions and results of [28].

Consider the system corresponding to a CRN with R reactions

ẋ = f(x, u) =
R∑
i=1

R∑
j=1

uij(t)
n∏
l=1

θ
yij
i (xi)[yi − yj ], (4.19)

where the nonnegative functions uij are piecewise locally Lipschitz with a finite number

of discontinuities and the stoichiometric coefficient vectors yi, yj are as described in 2.2.

Motivated by control designs for ribosome flow models [136] we introduce such time

dependence not only to handle some uncertainty originating from fluctuating external

factors but to measure the robustness of the system to certain control inputs.

In this section, however, we restrict the conditions on the transformation functions

θi : R+ 7→ [0,∞). Namely, we assume that
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1. θi is real analytic,

2. θi(0) = 0,

3.
´ 1
0 | log θi(r)|dr <∞

4. θi is strictly increasing and onto the set [0, σi) for some σi ∈ [0,∞),

5. limt→log σi

´ t
a ρ

−1
i (r) dr − pt = ∞ for any a < log σi and any constant p > 0, where

ρi = log θi.

Before continuing with the definitions, we consider the case when u(t) is a constant

matrix A. We assume that A has nonnegative entries and is irreducible; that is, the

underlying reaction graph is strongly connected. We denote the set of such A matrices as

A. Then the equilibria of ẋ = f(x,A) can be divided into the sets of boundary equilibria

and positive equilibria:

E0 =
{
x ∈ ∂Rn+

∣∣f(x,A) = 0
}
,

EA,+ =
{
x ∈ Rn+

∣∣f(x,A) = 0
}
.

Then, the result [28, Theorem 2.1] (and also [62, Theorem 2]) shows that if there are

no boundary equilibria in any positive class, then each positive class contains a unique

globally (relative to the positive class) asymptotically stable positive equilibrium. Denote

the unique positive equilibrium in the same class as x0 as x(x0, A) and notice that EA,+ ={
x(x0, A)

∣∣x0 ∈ Rn+
}
. Finally, denote

E =
⋃
A∈A

EA,+.

Definition 4.6.6. We define the following function classes:

1. A function α : R+ 7→ R+ is said to be of class K if it is continuous, strictly

increasing and has α(0) = 0.

2. The subset of unbounded functions of class K are denoted by K∞.

3. A function β : R+×R+ is said to be of class KL if β(., t) is of class K for all t ≥ 0

and β(r, .) is strictly decreasing to zero for all r > 0.

We consider nonnegative time-varying inputs such that at any time instant the reac-

tion graph is strongly connected; that is, the input-value set U is a subset of A. Fur-

thermore, let ∥.∥2 denote the spectral norm induced by the Euclidian norm and for

u : R+ 7→ U define

∥u∥U = ess sup
t∈[0,∞)

∥u(t)∥2.
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Definition 4.6.7. A system ẋ = f(x, u) is uniformly input-to-state stable (ISS) with

input-value set U if for every compact set P ⊂ E and every compact set F ⊂ Rn+ containing

P , there exist functions β = βP of class KL and ϕ = ϕP of class K∞ such that, for every

xo ∈ P ∩ Eu0,+ for some u0 ∈ U we have that

∥x(t)− x0∥ ≤ β
(
∥x0 − x0∥, t

)
+ ϕ

(
∥u− u0∥U

)
holds for each u : R+ 7→ U input and every initial condition x0 ∈ F ∩ Sx0 and for all

t ≥ 0 such that x(s) ∈ F for s ∈ [0, t].

According to the above definition we say that a system is ISS if it is globally asymp-

totically stable in the absence of external inputs and if its trajectories are bounded by

an appropriate function of the input. In some sense this definition is intended to capture

the idea of "bounded input bounded output" stability, since for bounded u input (u−u0

to be more precise) the trajectories will remain in a ball and, in fact, approach the ball

ϕ(∥u− u0∥U) as t increases [137].

We assume that there exists a uniform lower bound on the parameters; that is, we

consider input-value sets of the form

A ⊃ Uϵ =
{
u ∈ A

∣∣uij(t) ≥ ϵ ∀t ≥ 0, or uij(t) = 0 ∀t ≥ 0
}
.

We also recall that the input functions are piecewise locally Lipschitz in time with a finite

number of discontinuities, thus we introduce

W =
{
w : R+ 7→ Uϵ

∣∣w is piecewise locally Lipschitz
}
.

Then the main Theorem of [28] states:

Theorem 4.6.8. Consider the system (4.19) and suppose that is is mass-conservative;

that is, there exists v ∈ Rn+ such that v⊤f(x, u) = 0 for all x ∈ Rn+ and u ∈ A. Then the

system with input maps u ∈ W is uniformly ISS with input-value set Uϵ.

The proof relies on the candidate ISS-Lyapunov function (for the definition of which

and for the exact connection with ISS stability we refer to [28])

V (x, x) =

n∑
i=1

ˆ xi

xi

(
log θi(r)− log θi(xi)

)
dr (4.20)

which, for mass-action systems, yields the classical entropy-like Lyapunov function well-

known from the theory of chemical reaction networks, see (4.27). We note that V (x, x)
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is uniquely determined by the θi functions and does not depend explicitly on the reac-

tion/compartmental structure or the time-varying uij(t) functions; that is, it is universal

in the sense of [138].

Remark 4.6.9. We note that the assumption that the compartmental graph (and thus

the reaction graph of the factored model) is strongly connected is purely technical. For

time-invariant systems it simply ensures that the unique equilibrium on each level set of

the first integral is positive (except for the trivial case of an empty network of course).

In fact, in some cases the initial values of the network can ensure the positivity of the

equilibrium even for not strongly connected systems (see Example 2), in which case the

above Lyapunov function can be applied.

Factorization of the transition rates

Let us consider a generalized ribosome flow (4.17) in the reduced state space, in this case

given by

ṅi =
∑
j∈Di

Kji(n, c− n, t)−
∑
j∈Ri

Kij(n, c− n, t)

=
∑
j∈Di

kji(t)
θj(nj)νi(ci − ni)

1 + Ψji(n, c(m) − n)
−
∑
j∈Ri

kij(t)
θi(ni)νj(cj − nj)

1 + Ψij(n, c(m) − n)
.

(4.21)

Notice that we can naturally factor some terms of the transition rates into the time-

varying coefficient as

kij(t)
θi(ni)νj(cj − nj)

1 + Ψij(n, c(m) − n)
=

kij(t)νj(cj − nj)

1 + Ψij(n, c(m) − c)
θi(ni) =: k̃ij(t)θi(ni).

Then (4.21) can be rewritten as

ṅi =
∑
j∈Di

k̃ji(t)θj(nj)−
∑
j∈Ri

k̃ij(t)θi(ni). (4.22)

This equation can be clearly embedded into the class of strongly connected sys-

tems of the form (4.19), since the reaction graph of (4.22) consists of species Σ =

{N1, N2, . . . , Nm}, has the m × m identity matrix as its stoichiometric matrix and for

each transition (qi, qj) ∈ A we assign a reaction of the form

Ni
K̃ij(t)−−−−→ Nj ,

and thus the system of differential equations can be written as

ṅ = IÃk(t)θ(n) (4.23)
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where the elements of Ãk are given by

[
Ãk(t)

]
ij
=


−
∑

l∈Ri
k̃il(t) if i = j,

k̃ji(t) if j ∈ Di,

0 otherwise.

Note that the fractions νj(cj−nj)

1+Ψij(n,c(m)−n) are differentiable (and thus Lipschitz) and each

kij(t) is piecewise locally Lipschitz, hence each k̃ij(t) is piecewise locally Lipschitz. This

shows that generalized ribosome flows can be embedded into the class of rate-controlled

biochemical networks described in [28] in a way that preserves the compartmental struc-

ture; that is, the reaction graph of (4.23) is topologically isomorph to the compartmental

graph. In particular if the compartmental model is strongly connected, then the reaction

graph of the reduced system (4.23) is strongly connected as well. Furthermore, combining

the persistence of the system with Remark 4.6.3 we find that Ãk ∈ W, and thus Theorem

4.6.8 ensures input-to-state stability.

Quasi-LTV factorization

A classical argument shows that the model reduction above can result in a Linear Time-

Varying (LTV) system [9]. Consider an F (x) ∈ Ck(R) nonnegative function such that

F (0) = 0, where k ≥ 1. Then for the function F (rx) we have

dF (rx)

dr
= xF ′(rx)

and thus

F (x)− F (0) = x

ˆ 1

0
F ′(rx) dr = xf(x)

and since F (0) = 0, we find that F (x) = xf(x). Note, that the calculation also shows

that f ∈ Ck−1(R). Since θi is real analytic we have that θi(ni) = θ̂i(ni)ni for some θ̂i real

analytic function. Then (4.22) can be rewritten as

ṅi =
∑
j∈Di

k̂ji(t)nj −
∑
j∈Ri

k̂ij(t)ni (4.24)

where

k̂ij(t) =
kij(t)θ̂i(ni)νj(cj − nj)

1 + Ψij(n, c(m) − n)
.

Similarly as before, the reaction graph of (4.24) consists of species Σ = {N1, N2, . . . , Nm},

has them×m identity matrix as its stoichiometric matrix and for each transition (qi, qj) ∈

A we assign a reaction of the form

Ni
K̂ij(t)−−−−→ Nj ,
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and thus the system of differential equations can be written as

ṅ = IÂk(t)n

where the elements of Âk are given by

[
Âk(t)

]
ij
=


−
∑

l∈Ri
k̂il(t) if i = j,

k̂ji(t) if j ∈ Di,

0 otherwise.

Again, each k̂ij(t) is piecewise locally Lipschitz, thus for strongly connected compartmen-

tal models Theorem 4.6.8 ensures input-to-state stability via Remark 4.6.3.

Factorization of Monod kinetics

Let us consider a generalized version of the RFMR in Fig 4.2 with rational rate functions

corresponding to Monod kinetics of the form

ṅ1 = k31(t)
n3

l + n3

c1 − n1
l + c1 − n1

− k12(t)
n1

l + n1

c2 − n2
l + c2 − n2

ṅ2 = k12(t)
n1

l + n1

c2 − n2
l + c2 − n2

− k23(t)
n2

l + n2

c3 − n3
l + c3 − n3

ṅ3 = k23(t)
n2

l + n2

c3 − n3
l + c3 − n3

− k31(t)
n3

l + n3

c1 − n1
l + c1 − n1

(4.25)

for some l > 0. As discussed before, the corresponding CRN is not strongly connected.

However, using the functions

k̃31(t) = k31(t)
c1 − n1

l + c1 − n1
k̃12(t) = k12(t)

c2 − n2
l + c2 − n2

k̃23(t) = k23(t)
c3 − n3

l + c3 − n3

we can to rewrite (4.25) as

ṅ1 = k̃31(t)
n3

l + n3
− k̃12(t)

n1
l + n1

ṅ2 = k̃12(t)
n1

l + n1
− k̃23(t)

n2
l + n2

ṅ3 = k̃23(t)
n2

l + n2
− k̃31(t)

n3
l + n3

.

(4.26)

Then the CRN corresponding to (4.26) has the following species and reactions:

Σ = {N1, N2, N3}

R1 : N1
k̃12−−→ N2

R2 : N2
k̃23−−→ N3

R3 : N3
k̃31−−→ N1.
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which is strongly connected and isomorph to the compartmental model in Fig 4.2. We

arrive at the same conclusion if we instead use the functions

k̂31(t) = k31(t)
1

l + n3

c1 − n1
l + c1 − n1

k̂12(t) = k12(t)
1

l + n1

c2 − n2
l + c2 − n2

k̂23(t) = k23(t)
1

l + n2

c3 − n3
l + c3 − n3

to rewrite (4.25) as

ṅ1 = k̂31(t)n3 − k̂12(t)n1

ṅ2 = k̂12(t)n1 − k̂23(t)n2

ṅ3 = k̂23(t)n2 − k̂31(t)n3.

Note that the quasi-LTV factorization might be more complicated in some cases, but the

construction described in Section 4.6.3 guarantees its existence.

Induced family of Lyapunov functions

The above investigation demonstrates that generalized ribosome flows can be embedded

into rate-controlled biochemical networks in at least two different ways, where each em-

bedding induces a different Lyapunov function of the form (4.20). Thus, in general, we

may use at least two different Lyapunov functions governing the same dynamics. To

characterize their exact relation, consider a factored system of the form (4.23) with its

ISS-Lyapunov function V (n, n). The quasi-LTV representation of the system admits an

ISS-Lyapunov function of the form

V LTV (n, n) =

m∑
i=1

ˆ ni

ni

(
log r − log ni

)
dr

=

m∑
i=1

(
ni log

ni
ni

+ ni − ni

)
=:

m∑
i=1

V LTV
i (ni, ni)

(4.27)

so that we can write

V (n, n) =

m∑
i=1

ˆ ni

ni

(
log
(
θ̂i(r)r

)
− log

(
θ̂(ni)ni

))
dr =

m∑
i=1

ˆ ni

ni

(
log θ̂i(r)− log θ̂i(ni)

)
dr

+
m∑
i=1

ˆ ni

ni

(
log r − log ni

)
dr =

m∑
i=1

ˆ ni

ni

(
log θ̂i(r)− log θ̂i(ni)

)
dr + V LTV (n, n).

Remark 4.6.10. Since
∑m

i=1 ni =
∑m

i=1 ni we have that

V LTV (n, n) =
m∑
i=1

ni log
ni
ni
,
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which is exactly the Kullback-Leibler divergence DKL(n||n). It is important to note that

the Kullback-Leibler divergence is not a metric, since DKL(n||n) ̸= DKL(n||n) and it does

not satisfy the triangle inequality. However, it is a nonnegative measure, meaning that it

is nonnegative and zero if and only if n = n and it is often used to measure the "distance"

of probability distributions for example in information theory and machine learning [139].

While in general we are restricted to the above factorizations, in some special cases

we may use a whole family of factorizations and corresponding Lyapunov functions. To

illustrate this, consider an example when each θi(r) = rai

(l+r)bi
for some l > 0 and ai ∈ N,

bi ∈ N0, ai ≥ bi (these properties ensure that the functions θi are nondecreasing). Then,

after the factorization described in Section 4.6.3, the Lyapunov function (4.20) becomes

V (l,a,b)(n, n) =
m∑
i=1

(
(ai − bi)(ni − ni) + aini log

ni
ni

+ bi(l + ni) log
l + ni
l + ni

)
. (4.28)

We emphasize that (4.20) only depends on the θi functions, in this case parametrized

with the l, ai, bi values; that is, it is independent of the network structure and transition

rate coefficients. We can also perform the factorization θi(r) = θ̃i(r)
râi

(l+r)b̂i
with âi ∈ N,

âi < ai, b̂i ∈ N0, âi ≥ b̂i yielding the Lyapunov function V (l,â,b̂) of the same form as in

(4.28). This shows that the parameters a and b can be freely (apart from the constraints

above) chosen in (4.28). We may also observe some interesting behaviour at the extrema

of the parameters b̂ and l, namely, that if we choose each b̂i = 0 then the Lyapunov

function in (4.28) is independent of l; that is, we have that

V (l,â,0)(n, n) =

m∑
i=1

âiV
LTV
i (ni, ni).

Moreover, letting l → ∞ yields the convergence

lim
l→∞

V (l,â,b̂)(n, n) =

m∑
i=1

âiV
LTV
i (ni, ni) (4.29)

where V LTV
i is defined in (4.27).

Example 4: family of Lyapunov functions of a generalized RFMR

Let us again consider a generalized version of the RFMR in the reduced state space from

Fig 4.2. For a given initial condition n0 we can substitute n3 = H(n0) − n1 − n2, and

thus the Lyapunov function restricted to the manifold
{
H(n) = H(n0)

}
can be seen as

a two dimensional function with local coordinates n1 and n2.

We set the capacities as c1 = c2 = c3 = 100 and k12 = 100, k23 = 60, k31 = 20. The

system has transition rates as described above with each ai = bi = 3; that is, we have
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that

K12(n1, c2 − n2) = 100 · n31
(l + n1)3

· (c2 − n2)
3

(l + c2 − n2)3

K23(n2, c3 − n3) = 60 · n32
(l + n2)3

· (c3 − n3)
3

(l + c3 − n3)3

K31(n3, c1 − n1) = 20 · n33
(l + n3)3

· (c1 − n1)
3

(l + c1 − n1)3
.

(a) l = 25,â = [3 3 3],b̂ = [3 3 3] (b) l = 25,â = [1 2 3],b̂ = [0 0 1] (c) l = 25,â = [3 1 1],b̂ = [3 1 1]

(d) l = 25,â = [2 3 2],b̂ = [2 0 2] (e) l = 100,â = [2 3 2],b̂ = [2 0 2] (f) l = 200,â = [2 3 2],b̂ = [2 0 2]

(g) l = 25,â = [2 3 2],b̂ = [2 0 2] (h) l = 100,â = [2 3 2],b̂ = [2 0 2] (i) l = 200,â = [2, 3, 2],b̂ = [2, 0, 2]

Figure 4.7: Comparison of Lyapunov functions for a generalized RFMR

The simulations were performed withH(n0) = 150. Figs 4.7a-4.7c show the Lyapunov

function V (l,â,b̂) for various choices of â and b̂ with l = 25 fixed. The second and third

rows demonstrate the convergence characterized in (4.29); figs 4.7d-4.7f show V (l,â,b̂) for

increasing l values and 4.7g-4.7i show
∑m

i=1 âiV
LTV
i for the same increasing l values.

While the level sets of these Lyapunov functions are similar, their anisotropy and range

is quite different, suggesting, for example, that they might lead to different convergence

speed estimates.
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Example 5: family of Lyapunov functions for a larger network

Let us consider a compartmental system withm = 100 compartments in the reduced state

space. We assume that the transition rate functions are corresponding to Hill kinetics

(modified intentionally to have different powers in the numerator and the denominator)

and are of the form

Kij(ni, cj − nj) = kij
n3i (cj − nj)

3(
l + n2i

)(
l + (cj − nj)2

) (4.30)

with l = 350. We assume that the only nonzero coefficients are

ki(i+1) = 20 ki(i+2) = 18 ki(i+3) = 16 ki(i+4) = 14

ki(i+5) = 12 ki(i+6) = 10 ki(i+7) = 8 ki(i+8) = 6

for i = 1, 2, . . . ,m, where indices are understood as modulo m. Clearly this compart-

mental graph is strongly connected. Finally, we set capacities

c1 = c2 = · · · = c50 = 50 c51 = c52 = · · · = c100 = 100

Then the Lyapunov function (4.20) takes the form

V
(l,3,2)
Hill (n, n) =

m∑
i=1

(
(ni − ni) + 3ni log

ni
ni

+ ni log
n2i + l

n2i + l

+ 2
√
l

(
atan

ni√
l
− atan

ni√
l

))
.

We can also factorize as θi(r) = θ̂i(r)
r2

l+r2
, when (4.20) becomes

V
(l,2,2)
Hill (n, n) =

m∑
i=1

(
2ni log

ni
ni

+ ni log
n2i + l

n2i + l
+ 2

√
l

(
atan

ni√
l
− atan

ni√
l

))
.

Fig 4.8 shows the time evolution of Lyapunov functions V (l,3,2)
Hill , V (l,2,2)

Hill and V LTV and

their time derivatives.

Remark 4.6.11. In the above examples we restricted the factorizations to integer expo-

nents so that we have real analytic transformations. However, the underlying dynamics

is not changed through the factorizations and real analyticity is not directly used in the

investigation of the ISS-Lyapunov function (4.20). Thus, as long as the factored k̂ij(t) is

piecewise locally Lipschitz (which holds after an arbitrarily short time in virtue of Remark

4.6.3), we can generalize (4.28) for other values as well; to be precise, we can use any

0 < âi ≤ ai and 0 ≤ b̂i ≤ âi real numbers.
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Next, focusing on the Hill kinetics in (4.30), we note that while the denominator

of the transformation θi(r) = r3

l+r2
in (4.30) cannot be factorized we can rearrange the

transformation as

θi(r) =
r3

l + r2
=
r3−ai(l + rbi)

l + r2︸ ︷︷ ︸
θ̂i(r)

rai

l + rbi
= θ̂i(r)

rai

l + rbi

where choosing 0 < ai ≤ 3 and 0 ≤ bi ≤ ai ensures that the time-varying coefficient

functions are piecewise locally Lipschitz. In this case the exact value of the integral in

(4.20) involves the generalized hypergeometric function and generally cannot be expressed

in a closed form. However, in some special cases (such as bi = 2 above) we can calculate

the integral explicitly; for example setting ai = 1.5 and bi = 0.5 yields

V
(l,1.5,0.5)
Hill (n, n) =

m∑
i=1

(
(ni − ni) +

3

2
ni log

ni
ni

+
(
ni − l2

)
log

√
ni + l

√
ni + l

+ l
(√
ni −

√
ni
))
.

(a) Time evolution of Lyapunov functions (b) Derivative of Lyapunov functions

Figure 4.8: Time evolution and time derivative of Lyapunov functions obtained from

various factorizations of the transition rates

Example 6: competition for ribosomes in the cell

In this example we introduce a set of generalized ribosome flows connected by a finite

pool of ribosomes to model competition in the cell. We follow [115], where the authors

introduced a model for simultaneous translation and [117], where the authors generalized

the model to include premature drop-off and attachment effects modeled with Langmuir

kinetics. We will focus on the latter case and show that with a slight modification

it can be formalized as a generalized ribosome flow model with a clear and natural

compartmental interpretation. This demonstrates the usefulness and modeling power of

generalized ribosome flows as one can prove various properties of many existing models of
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different conceptual levels. Moreover, our results show that many qualitative properties

of the system carry over to more general settings, e.g. when the translation, drop-off and

attachment rates are modeled with more sophisticated functions or when some (or all)

rates are time-dependent.

For the sake of simplicity we will present this example in the reduced state space. Let

us consider N mRNAs consisting of m1,m2, . . . ,mN number of sites. Let nji denote the

continuous amount of ribosomes in the ith site of the j mRNA stand and let cji denote its

capacity. Let cz denote the capacity of the pool and nz denote the amount of ribosomes

in the pool. For the sake of notational simplicity let nj0 and njmj+1 also denote nz and

similarly for the capacities. Let the translation rate functions from the ith site the to

(i + 1)th site on the jth mRNA be denoted as Kj
i(i+1). Finally, let the detachment and

attachment rates at the ith site of the jth mRNA be denoted respectively as Kj
iz and Kj

zi.

The attachment rate to the first site and the detachment rate from the last site will be

called initiation rate and production rate, respectively. Then the dynamics of the model

is given by:

ṅji = Kj
(i−1)i

(
nji−1, c

j
i − nji , t

)
−Kj

i(i+1)

(
nji , c

j
i+1 − nji+1, t

)
+Kj

zi

(
nz, c

j
i − nji , t

)
−Kj

iz

(
nji , cz − nz, t

)
,

ṅz =

N∑
j=1

(
Kj
mjz(n

j
mj
, cz − nz, t)−Kj

z1(nz, c
j
1 − nj1, t)

)
+

N∑
j=1

mj∑
i=1

(
Kj
iz(n

j
i , cz − nz, t)−Kj

zi(nz, c
j
i − nji , t)

)
.

Thus, indeed, simultaneous translation with a finite pool can be described by a generalized

ribosome flow. Clearly the following function defines a linear first integral

H(n) = nz +
N∑
j=1

mj∑
i=1

nji

and is a crucial factor in the dynamical analysis of the system.

Remark 4.6.12. In [117] the authors consider the following special case:

• the capacity of each site is one; that is, each cji = 1,

• the translation rate are time-invariant and obey the mass-action law; that is, each

Kj
i(i+1)(n

j
i , 1− nji+1, t) = λjin

j
i (1− nji+1) for some λji > 0,

• the initiation and attachment rates are time-invariant and are given by Kj
zi(nz, 1−

nji , t) = βjiGj(z)(1 − nji ) for some βji ≥ 0 and Gj(z) continuously differentiable

strictly increasing function with Gj(0) = 0,
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• the drop-off rates are time-invariant and are given by Kj
iz(n

j
i , cz −nz, t) = αjin

j
i for

some αji ≥ 0.

Since the drop-off rates are donor controlled the pool does not have a predefined capacity

and the amount of ribosomes in the pool are only bounded by H
(
n(0)

)
. Therefore, this

special case does not fit in our compartmental framework, although, as most of our results

are a consequence of the linear first integral combined with the cooperativity of the system

they can be generalized to include donor controlled terms as well. It is assumed that

the authors consider this case to capture the fact that the capacity of the pool might be

several orders higher than the actual number of ribosomes, and thus the dependence on

the available space in the pool may be negligible. However, some physical meaning is lost

with this assumption and it might in fact lead to less precise simulations.

To see this, let us consider a network with N = 10 mRNAs with m = 5 sites. For

the sake of simplicity let λji = βj1 = αj5 = 1 for each i and j, and assume that there

are no premature drop-offs and attachments. We consider initation rates Gj(z) = z,

Gj(z) = tanh(z) and Gj(z) = z2 and set cz = 104. Since the equilibrium is unique on the

level sets of the first integral we set each nji = 0 and we only change nz(0). Fig. 4.9 shows

the ratio of the steady state of the pool in the case of donor controlled and mass-action

production rates as we increase the ratio nz(0)
cz

from 5 · 10−2 to 1.

Figure 4.9: Steady state ratio of the donor controlled and the mass-action production

rate for various initiation rates as a function of the ratio of the total number of ribosomes

and the capacity of the pool

As expected, the steady state ratio is close to one for saturating rate functions and

for nz(0) ≪ cz. However, the ratio can get higher when the total number of ribosomes
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have the same magnitude as the capacity; that is, the inaccuracy of the donor controlled

kinetics increases. While this assumption might be valid for realistic parameters of ribo-

some flows in other TASEP based flow models (especially with non-saturating kinetics)

it might be crucial to model these transitions accurately.

Effect of the total number of ribosomes. In the next simulation we follow [117,

Example 3.2] and we consider a single mRNA strand with m1 = 3 sites. The initiation

rate is set to β11 = 1 while the attachment rates are β12 = 0.1 and β13 = 0. The drop-off

rates and production rate are set as α1
1 = 0, α1

2 = 0.01, α1
3 = 1. We assume that the

translation rates obey the mass-action law with each λ1i = 1. We set the initial values

to n1j = 0 and n0(z) = cz as before. Fig. 4.10 shows the steady state of the system as

we increase cz from 0 to 5 for various rate functions. One can see that in each case the

mRNA saturates as we increase the number of ribosomes and the rest of the ribosomes

are accumulated in the pool. Finally, the same effect as in Fig. 4.9 can be observed;

that is, the donor controlled detachment rates shift the steady state of the pool to higher

values.

(a) RFM, G1(z) = z (b) RFM, G1(z) = tanh(z) (c) RFM, G1(z) =
tanh(z)

4+tanh(z)

(d) GRFM, G1(z) = z (e) GRFM, G1(z) = tanh(z) (f) GRFM, G1(z) =
tanh(z)

4+tanh(z)

Figure 4.10: Steady state of a single mRNA strand in a pool modeled with an RFM

and a GRFM with mass-action translation rate and drop-off rates, and attachment rate

corresponding to different G1(z) functions

We again emphasize the versatility of generalized ribosome flows as the initiation,

translation, production, attachment and detachment rate function can be different on
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each site. For example let us consider a particular mRNA strand with saturating initation

and attachment rates given by K1
zi(nz, n

1
i ) = β1i tanh(nz)(c

1
i − n1i ), with mass-action

translation rates and with production and drop-off rates given by K1
iz(n

1
i , nz) = α1

i ·
n1
i

1+n1
i
· n3z. Fig. 4.11 shows evolution of the steady states as we increase nz(0) = cz as

before. As expected the steady states of the mRNA sites are moved to lower values.

Figure 4.11: Steady state of a single mRNA strand in a pool modeled with a GRFM with

mass-action translation rate, rational fraction drop-off rates, and saturating attachment

rates

4.7 Conclusions

We considered compartmental models and their kinetic representations, called general-

ized ribosome flows, with physically meaningful reaction graph structure. We showed

that one-dimensional nonlocal particle flows with Lighthill-Whitham-Richards flux sup-

plemented with appropriate in- and out-flow terms can be spatially discretized with a

finite volume scheme to obtain special cases of generalized ribosome flows. Then it was

shown that for strongly connected compartmental models, a unique equilibrium point ex-

ists within each stoichiometric compatibility class, and this equilibrium is asymptotically

stable within each compatibility class even if the initial conditions are on the boundary

of the nonnegative orthant (except for the two trivial boundary equlibria).

Finally, we considered time-varying transition rates. We showed that time-varying
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generalized ribosome flows are persistent under mild regularity assumptions on the tran-

sition rates, and a wide set of reaction rates satisfying this assumption was characterized,

containing well-known examples such as mass-action type rates. It was shown that the

studied models can be embedded in at least two ways into the class of rate-controlled

biochemical networks originally described in [28]. This embedding allows us to prove sta-

bility with entropy-like logarithmic Lyapunov functions known from the theory of CRNs.

It was illustrated that the non-unique factorization of the rate functions gives rise to a

whole family of various possible Lyapunov functions. Finally, periodic model behaviour

was also studied, where we showed that trajectories with the same overall initial mass and

periodic transition rates having the same period (but possibly different phase) converge

to a unique periodic solution.

While the nonlocal equations considered here are based on a particular pair-interaction

coupling, alternative forms of nonlocality can lead to qualitatively different discretizations

and network structures. In the next chapter, we investigate a distinct class of nonlocal

models and show how their discretization likewise produces CRNs, though with different

topologies and interaction patterns. This further illustrates the breadth of CRN dynamics

that can arise from spatially or structurally extended systems.



Chapter 5

A kinetic finite volume discretization

of the multidimensional PIDE model

for gene regulatory networks

5.1 Introduction

Gene expression is a fundamental biological process of actually realizing DNA information

in the form of proteins in living organisms. Therefore, the (quantitative) modeling of

gene expression has been in the focus of research during the last decades [140, 141]. Gene

regulatory networks (GRNs) are complex mechanisms through which cells are able to

react to internal and external signals in a controlled way [142]. The set of techniques

successfully applied for the modeling of GRNs is really wide [143, 144, 145]. It was pointed

out already in the 1970s that the stochastic nature of gene expression has to be taken

into consideration during modeling [146]. Experimental results and model analysis clearly

show that both translational and transcriptional bursting contribute to stochasticity in

prokaryote and eukaryote gene expression [147, 148]. It is also known that in many cases,

stochasticity in gene expression is functionally advantageous, and it can even result in

robust phenotypes [149].

The dynamical model studied in this chapter is originated in [150], where an analytical

approach is proposed for describing the stationary distribution of protein concentration

in living cells in the form of partial integro-differential equations (PIDEs). The model is

based on the master equation, and considers protein production in random bursts (see,

also [151, 152]) extended by transcription autoregulation. Feasible stationary distribu-

tions for this PIDE model with a slightly modified transcription rate were derived and

103
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classified in [153]. The so-called generalized Friedman (or multidimensional PIDE) model

was later introduced in [154] which describes the operation of a genetic circuit of n genes

expressed into n different protein types. Since finding analytical solutions for the sta-

tionary distributions of the generalized Friedman model is not straightforward due to its

generality, [154] proposed a numerical procedure for the computation. The approach is

based on a semilagrangian method for the discretization of the PIDE, and the computa-

tional results show that it is suitable to describe the behaviour of a wide class of GRNs

with several different regulatory interactions and protein degradation rates. The gener-

alized Friedman model and the subsequently developed simulation framework SELANSI

[155] has since been widely used for design [156], identification [157] and control [158, 159]

of GRNs. In [160] a truncated version of the master equation corresponding to a special

version of the one-dimensional Friedman model was proposed. As we will show later, this

can be formally seen as a semi-discretization of the PIDE and can be generalized to both

variable degradation rates and multidimensional GRNs.

Many hyperbolic conservation laws are derived in a so-called integral form, which,

in the case of sufficiently smooth solutions and fluxes, can be rewritten in their usual

differential form [119]. However, many practical problems involve discontinuous solutions,

where shocks can develop quickly even from smooth initial data. Thus, numerical methods

derived from the differential form, such as finite differences, are expected to lose accuracy

near discontinuities. This problem can for example be mitigated by an appropriate Finite

Volume Method (FVM) based on the integral form of the PDE. Instead of computing

possibly unreliable pointwise approximations we define grid cells and approximate the cell

averages of the solution. This approach introduces a clear compartmental interpretation

of semi-discretized PDEs and can naturally capture the underlying conservation law, too.

[120].

Motivated by the above results, the aim of this chapter is to propose an efficient

novel computational approach based on compartmental discretization for the numerical

solution of the multidimensional PIDE model introduced in [154], and to use to for solving

control problems. Section 5.2 gives a brief overview of the PIDE model. In Section 5.3 we

introduce the kinetic discretization. Section 5.4 contains the qualitative analysis of the

kinetic discreziation. In Section 5.5 we perform numerical experiments. Finally, Section

5.6 contains the control of a genetic toggle switch.
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5.2 Multidimensional gene regulatory networks

In this section we give a brief introduction of multidimensional GRNs based on [150,

154]. We consider a gene regulatory network consisting of n different genes, denoted

by G = {DNA1, DNA2, . . . , DNAn}, that express n proteins X = {X1, X2, . . . , Xn}

via the corresponding messenger RNAs M = {mRNA1,mRNA2, . . . ,mRNAn}. We

follow the central dogma of molecular biology, which asserts that the gene instructions

are transcribed into messenger RNAs, that are translated into proteins. The continuous

number of mRNA molecules and proteins are denoted by m,x ∈ Rn, respectively.

The promoters corresponding to each gene are assumed to switch between active

and inactive states, denoted by DNAi,on and DNAi,off, respectively. The transition is

controlled by the binding of proteins. Note that in general, the feedback mechanism may

require the binding of multiple types of proteins besides the one expressed by the given

gene. For the sake of generality, we assume that any protein can repress or activate any

gene in the network. This mechanism is typically modelled by multivariate Hill functions.

We define the matrix H ∈ Zn×n, where Hij represents the Hill coefficient of the cross-

regulation. If Hij is positive (respectively, negative), then Xj inhibits (respectively,

promotes) the expression of Xi.

The transcription of DNAi into mRNAi is assumed to be a first order processes

occurring with rate kim per unit time and with transcriptional leakage ϵi ∈ (0, 1). Then

the transcription can be written as

RiT (x) = kimci(x),

where ci : Rn+ → [ϵi, 1] depend on the feedback regulation mechanism. See, section 5.5 for

some examples off ci Hill functions. Finally, the translation rate of protein Xi is defined

as

RiX(mi) = kixmi.

The messenger RNA and protein degradation is assumed to take the form

Gim(mi) = −γimmi GiX(x) = −γix(x)xi,

where γim > 0 and γix : Rn+ 7→ R+. Following [154] it is assumed that γim
γix(x)

≫ 1 in order

to ensure the validity of the subsequent model.

We use the standard exponential distribution to model protein bursting; that is, the

conditional probability of the protein level jumping from yi > 0 to xi > yi is

ωi(xi − yi) =
1

bi
exp

[
−xi − yi

bi

]
,
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where bi =
kix
γim

.

With the above assumptions the probability density function (PDF) of the protein

level, p(t,x), can be modelled with the following PIDE:

∂p(t,x)

∂t
=

n∑
i=1

∂

∂xi

[
γix(x)xip(t,x)

]
+

n∑
i=1

kim

ˆ xi

0
βi(xi − yi)ci(yi)p(t,yi) dyi , (5.1)

where yi = x+ (yi − xi)ei and the βi functions have the following form:

βi(x) = ωi(x)− δ(x).

In [161] the authors show the well-posedness of (5.1), under assumptions satisfied by our

setup, in the generalized (mild) sense; that is, for p0 ∈ L1(Rn) there exists a unique mild

solution p ∈ C
(
R+;L1(Rn)

)
with the following properties:

(i) nonnegativity: if p0 is nonnegative, then so is the solution p(t, .) for all t ≥ 0,

(ii) mass conservation: ˆ
Rn
+

p(t,x) dx =

ˆ
Rn
+

p0(x) dx .

In fact, if p0 ∈ C1,b(Rn+) for some appropriate b > 0 (e.g., in one dimension b = b1),

then there exists a unique classical solution p ∈ C1
(
R+;L1(Rn+)

)
. Note, that in the

probabilistic setting in applications we usually assume that p0 is nonnegative and its

integral is one.

5.3 Kinetic finite volume discretization

In this section we formulate a finite volume discretization of (5.1), the result of which is

a mass conservative kinetic system. We also note that since (5.1) is linear (that is, if p

and q are solutions, then so is p+ q), the result of the semi-discretization is anticipated

to also be linear.

5.3.1 One-dimensional case

Let us first consider the one-dimensional Friedman model describing the temporal evolu-

tion of protein distribution given by

∂p(t, x)

∂t
=

∂

∂x

[
γ1x(x)xp(t, x)

]
+ k1m

ˆ x

0
β1(x− y)c1(y)p(t, y) dy , (5.2)

with initial condition p(0, x) = p0(x) that has integral one. The mass conservation of

(5.2) is well-known but the subsequent informal investigation provides further insight
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that can be transferred to the design of the numerical scheme. Integrating over R+ shows

that
ˆ ∞

0

∂p(t, x)

∂t
dx =

∂

∂t

ˆ ∞

0
p(t, x) dx =

ˆ ∞

0

∂

∂x

[
γ1x(x)xp(t, x)

]
dx

+ k1m

ˆ ∞

0

ˆ x

0
β1(x− y)c1(y)p(t, y) dy dx = lim

x→∞
γ1x(x)xp(t, x)︸ ︷︷ ︸

=0

−γ1x · 0 · p(t, 0)

+ k1m

ˆ ∞

0

ˆ ∞

y
β1(x− y)c1(y)p(t, y) dx dy

= k1m

ˆ ∞

0
c1(y)p(t, y)

ˆ ∞

y
β1(x− y) dx︸ ︷︷ ︸

=0

dy = 0,

(5.3)

so that the equality ˆ ∞

0
p(t, x) dx =

ˆ ∞

0
p0(x) dx = 1

holds for any t ≥ 0.

In a finite volume setting the coefficients are calculated as averages (that is, integrals)

over appropriate subdomains. Hence, as an intuition we should note that the mass

conservation property of the novel scheme should be the result of a calculation very

similar to (5.3).

Our main goal is to perform a spatial discretization (with resolution h) to obtain an

infinite dimensional dynamical system describing the temporal evolution of the functions{
pi(t)

}
i∈Z with the usual properties of a PDF; that is, we should have that:

1. 0 ≤ pi(t) for all i ∈ Z and t ≥ 0,

2.
∑∞

i=1 hpi(t) = 1 for all t ≥ 0.

In order to do so, consider the set of intervals

Ki =
[
xi− 1

2
, xi+ 1

2

]
=
[
(i− 1)h, ih

]
, i = 1, 2, . . .

for some h > 0 and introduce the set of variables pi(t), where

pi(t) ≈
1

|Ki|

ˆ
Ki

p(t, y) dy =
1

h

ˆ
Ki

p(t, y) dy ;

that is, the value pi(t) is assumed to approximate the average in the cell Ki and we set

the initial values accordingly. Further introduce the cell averages of the functions γ1x and

c1 given as

γ1i =
1

|Ki|

ˆ
Ki

γ1x(y) dy , c1i =
1

|Ki|

ˆ
Ki

c1(y) dy .
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Let xi be the midpoint of Ki for i = 1, 2, . . . and define

b1i,i =
1

h/2

ˆ
[(i−1)h,(i−1/2)h]

β1(xi − y) dy =
1

h/2

ˆ
[xi−h/2,xi]

β1(xi − y) dy ,

b1i,j =
1

|Kj |

ˆ
Kj

β1(xi − y) dy , j = 1, 2, . . . , i− 1.

As the derivative on the right-hand side of (5.2) describes protein degradation (that is, a

vector field pointing towards the origin) we will approximate it with a difference quotient

of the form

∂

∂x

[
γ1x(x)xp(t, x)

]∣∣∣∣∣
Ki

≈ 1

h

(
γ1i+1xi+ 1

2
pi+1(t)− γ1i xi− 1

2
pi(t)

)
.

Then approximating the integral in (5.2) with a sum yields the system

ṗi(t) =
1

h

(
γ1i+1xi+ 1

2
pi+1(t)− γ1i xi− 1

2
pi(t)

)
+ k1m

i∑
j=1

h1i,jb
1
i,jc

1
jpj(t);

pi(0) =
1

|Ki|

ˆ
Ki

p0(y) dy ,

(5.4)

where

h1i,j =


h/2, i = j,

h, i ̸= j.

Observe, that the resulting infinite dimensional system (5.4) is clearly a linear donor

controlled compartmental system of the form

ṗ(t) = Γp(t),

where the infinite matrix defined element-wise as

Γij =



k1mh
1
i,jb

1
i,jc

1
j , j < i,

− 1
hγ

1
i xi− 1

2
+ k1mh

1
i,ib

1
i,ic

1
i , j = i,

1
hγ

1
i+1xi+ 1

2
, j = i+ 1,

0, j > i+ 1

is an infinite Kirchhoff matrix; that is, it has nonnegative off-diagonal elements (i.e. it is

a Metzler matrix) with zero column-sums.

Remark 5.3.1. In the following calculation we assume that liml→∞ γ1l+1xl+ 1
2
pl+1(t) = 0,

and we will do so in the multidimensional case as well. This is a natural assumption based

on the well-posedness results of [161] and it is satisfied if for example γ1x is bounded and

p has finite expectation. This, however, is not trivial in the infinite case, since Γ is
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unbounded with respect to (w.r.t.) the usual matrix norms. The authors are investigating

the behaviour of the infinite system, however, the derivation can be transferred to the

truncated system (described in the forthcoming section 5.3.3), which is of more practical

interest.

Formally, we have that

∞∑
i=1

ṗi(t) =

∞∑
i=1

1

h

(
γ1i+1xi+ 1

2
pi+1(t)− γ1i xi− 1

2
pi(t)

)
+ k1m

∞∑
i=1

i∑
j=1

h1i,jb
1
i,jc

1
jpj(t)

= lim
l→∞

1

h
γ1l+1xl+ 1

2
pl+1(t)−

1

h
γ11 · 0 · p1(t) + k1m

∞∑
j=1

∞∑
i=j

h1i,jb
1
i,jc

1
jpj(t)

= k1m

∞∑
j=1

c1jpj(t)

∞∑
i=j

h1i,jb
1
i,j

= k1m

∞∑
j=1

c1jpj(t)

(ˆ
[xj−h/2,xj ]

β1(xj − y) dy +

∞∑
i=j+1

ˆ
Kj

β1(xi − y) dy

)

= k1m

∞∑
j=1

c1jpj(t)

(ˆ h/2

0

β1(y) dy +

∞∑
i=j+1

ˆ
[(i−j−1/2)h,(i−j+1/2)h]

β1(y) dy

)

= k1m

∞∑
j=1

c1jpj(t)

ˆ ∞

0

β1(y) dy︸ ︷︷ ︸
=0

= 0,

so that the equality
∞∑
i=1

hpi(t) =

∞∑
i=1

hpi(0) = 1

holds for any t ≥ 0. The above facts combined also show that pi(t) ≤ 1
h for any t ≥ 0.

5.3.2 Multidimensional case

Let us consider the multidimensional model (5.1) with n > 1. Define the positive step

sizes h1, h2, . . . , hn and sets

Kα =
n

×
i=1

[
(αi − 1)hi, αihi

]
,

where α ∈ Nn is a multi-index. Let us note that each cell has the same size and define

h = |Kα| =
∏n
i=1 hi. Similarly to the one-dimensional case, for each cell Kα we introduce

the function pα(t) assumed to approximate the cell average as

pα(t) ≈
1

h

ˆ
Kα

p(t,y) dy .

For i = 1, 2, . . . , n we also compute the variables

γiα =
1

h

ˆ
Kα

γix(y) dy ,

ciα =
1

h

ˆ
Kα

ci(y) dy .
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Let xα = [x1α x
2
α . . . xnα]

T be the midpoint (w.r.t. each dimension) of Kα and x
i± 1

2
α =

xiα ± hi
2 ; that is, the variables xi±

1
2

α correspond to the coordinates of the boundaries of

Kα. For i = 1, 2, . . . , n define

biα,αi
=

1

hi/2

ˆ
[(i−1)hi,(i−1/2)hi]

βi(x
i
α − y) dy =

1

hi/2

ˆ
[xiα−hi/2,xiα]

βi(x
i
α − y) dy ,

biα,j =
1

hi

ˆ
[(j−1)hi,jhi]

βi(x
i
α − y) dy , j = 1, 2, . . . , αi − 1.

Similarly to the one-dimensional case the derivatives are approximated with difference

quotients of the form

∂

∂xi

[
γix(x)xip(t,x)

]∣∣∣∣∣
Kα

≈ 1

hi

(
γiα+eix

i+ 1
2

α pα+ei(t)− γiαx
i− 1

2
α pα(t)

)
.

Approximating the integrals in (5.1) with sums as before, yields the system

ṗα(t) =

n∑
i=1

1

hi

(
γiα+eix

i+ 1
2

α pα+ei(t)− γiαx
i− 1

2
α pα(t)

)
+

n∑
i=1

kim

αi∑
j=1

hiα,jb
i
α,jc

i
αi,j

pαi,j (t);

pα(0) =
1

h

ˆ
Kα

p0(y) dy ,

(5.5)

where αi,j = α+ (j − αi)ei and

hiα,j =


hi/2, j = αi,

hi, j ̸= αi.

Again, the system is clearly kinetic and the mass conservation follows from a calculation

very similar to the one-dimensional case:

∑
α

ṗα(t) =
∑
α

n∑
i=1

1

hi

(
γiα+eix

i+ 1
2

α pα+ei(t)− γiαx
i− 1

2
α pα(t)

)
+
∑
α

n∑
i=1

kim

αi∑
j=1

hiα,jb
i
α,jc

i
αi,j

pαi,j (t)

=
∑
α

n∑
i=1

kim

∞∑
j=αi

hiαi,j ,j
biαi,j ,j

ciαpα(t) =
n∑
i=1

kim
∑
α

ciαpα(t)
∞∑
j=αi

hiαi,j ,j
biαi,j ,j︸ ︷︷ ︸

=0

= 0.

This shows for any t ≥ 0 that

∑
α

hpα(t) =
∑
α

hpα(0) = 1,

further implying that pα(t) ≤ 1
h for each α.
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5.3.3 Discretization on a truncated domain

In practical applications we may assume that there can only be a finite number of proteins

of each kind. This consideration is naturally backed by the fact that the solution of (5.1)

is integrable so that lim∥x∥Rn→∞ p(t,x) = 0 for any t ≥ 0. Thus, we discretize over the

finite domain Ω =×n
i=1(0, Li) for appropriately large Li > 0 values. According to these

considerations we also assume that
´
Ω p0(x) dx = 1.

We divide the (0, Li) intervals into Ni equal subintervals and proceed to calculate the

variables pα(0) and the coefficients γiα and cij as before. We similarly compute biα,j for

j = 1, 2, . . . , αi − 1, but modify biα,αi
to capture the fact that the number of ith kind of

protein is maximalized in Li.

Note, that the resulting system can still be given by (5.5) with the difference that

the set of variables {pα} is finite. While the bursts and degradations inherently define

some “spatial” structure between the pα variables (discussed in detail later), it might be

more useful to think of the truncated semi-discretized model as a flattened N -dimensional

system of the form

ṗ(t) = Γ̃(N)p(t) with N :=
n∏
i=1

Ni. (5.6)

5.4 Qualitative analysis

In this section we show that the result of the truncated kinetic finite volume discretiza-

tion is not only a mass conservative nonnegative system but it has several advantageous

qualitative properties.

5.4.1 Structural descriptions

While we could rely on the linearity of (5.6) to investigate its dynamical behaviour, the

large number of variables and the complexity of the coefficient matrix Γ̃(N) renders this

approach futile. Instead, let us focus on the inner structure of the system through its

compartmental and CRN representations. These observations will immediately imply

most qualitative properties of interest.

Compartmental representation

Consider the N -dimensional truncated system of the form (5.5). Based on the burst and

degradation structure the system has a compartmental topology as follows:

• Each compartmentKα has an incoming edge fromKα+ei due to protein degradation
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if αi < Ni for i = 1, 2, . . . , n.

• Each compartment Kα has an incoming edge from Kαi,j for i = 1, 2, . . . , n and

j = 1, 2, . . . , αi − 1 due to protein production in bursts.

Clearly, the compartmental topology is strongly connected, which property is essential

for our further analysis. Based on this structure (and the flattening method) one can

easily determine the elements of the matrix Γ̃(N) ∈ RN×N of (5.6).

To gain further insight into the compartmental topology, let us focus on some low-

dimensional (in terms of the PIDE) examples. Figure 5.1 shows the structure of com-

partments for a two-dimensional PIDE. Degradations and bursts are denoted with red

and blue arrows, respectively. Let G(N1,N2) denote the graph in Figure 5.1; that is, a

compartmental graph of appropriate size corresponding to (5.6). Notice, that the graph

G(N1,N2) can be decomposed to the interconnected G
(N1)
1 , G

(N1)
2 , . . . , G

(N1)
N2

graphs that

are isomorphic to the compartmental graph of a one-dimensional model of size N1. This

shows that G(N1,N2) is isomorphic to the Cartesian product G(N1) × G(N2). In fact, the

G(N1,N2,...,Nn) compartmental graph of an n-dimensional model (5.6) is isomorphic to

×n
i=1G

(Ni).

G
(N1)
1

G
(N1)
2

G
(N1)
N2

K1,1 K2,1 . . . KN1,1

K1,2 . . .

...
...

K1,N2
. . .

Figure 5.1: Compartmental topology of a two-dimensional model. Each subsystem is

isomorphic to that of a one-dimensional model.

CRN representation

For each continuous variable pα we introduce the specie Pα and assign the complex Pα

to the compartment Kα. Then the complex composition matrix containing the stoichio-

metric coefficients of the complexes as its columns is the identity matrix I ∈ RN×N ,
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and the reaction structure is identical to the above compartmental topology; that is, the

reaction graph is identical (isomorphic) to the compartmental graph and, in particular,

is strongly connected. This readily shows that the deficiency of the reaction graph, as

defined in CRN theory [162], is zero as there are N distinct complexes, one linkage class

and a spanning tree in the reaction graph of size N − 1. Since the system is linear, the

reaction vectors corresponding to the edges of the spanning tree spans the stoichiometric

subspace. Hence the deficiency is indeed δ = N − 1− (N − 1) = 0.

5.4.2 Long time behaviour

Asymptotic stability

By standard results on compartmental systems, since the truncated system (5.6) is

strongly connected, there is a unique positive equilibrium (that is, a stationary PDF)

p ∈ RN+ that attracts every admissible initial value [163, Theorem 6].

Remark 5.4.1. As a conclusion of the above assertions a mass-action CRN can be

assigned to the truncated conservative system (5.6) whose reaction graph is strongly con-

nected and has deficiency zero. thus, the same assertion follows from CRN theory and,

in particular, from the deficiency zero theorem [162, 164].

Furthermore, we also know that the system is Lyapunov stable with the standard

entropy-like logarithmic Lyapunov function

V (p, p) =
∑
α

(
pα log

pα
pα

+ pα − pα

)
. (5.7)

Finally, a well-known result [165] shows that for two solutions p(t) and q(t) of (5.6), the

following inequality holds:

∥p(t1)− q(t1)∥L1 ≤ ∥p(t2)− q(t2)∥L1 t1 ≥ t2 ≥ 0.

In particular, if we set q = p this shows that the convergence to the unique equilibrium

is monotone in the L1 norm.

5.4.3 Computing the equilibrium

We can easily approximate p by simulating the system on an appropriately large time

interval. However, such a simulation can be computationally expensive and it is not

trivial to determine the necessary time interval. Furthermore, in many applications we

may not be interested in the time evolution of the system, only in the equilibrium p.
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Instead, relying on the linear nature of the system (5.6) we may explicitly compute the

equilibrium with the following approach.

We can incorporate the conservation into the equilibrium condition as

Γ̂(N)p =
[
1 0 0 · · · 0

]⊤
=: e1 (5.8)

where Γ̂(N) is obtained from Γ̃(N) by replacing the first row with h1TN ∈ RN . Since Γ̃(N)

has a one-dimensional left kernel (by virtue of the rank-nullity theorem and the fact that

zero is a simple eigenvalue, see [166]) spanned by 1N , any N − 1 rows are independent.

To see this, assume by contradiction that not any N − 1 rows are independent. Then

there exists a nonzero vector in the left kernel of Γ̃(N) that has a zero coordinate, but

then the left kernel cannot be spanned by 1N . Clearly 1N is not in the left kernel of Γ̂(N)

and ImΓ̃(N) ⊊ ImΓ̂(n), and thus rank Γ̂(N) = N , hence we can find the equilibrium p by

simply solving the linear system of equations (5.8).

5.5 Numerical experiments

In this section, we present biologically relevant examples from the literature and compare

the performance of our method to that of SELANSI [155]. For more information about the

examples the reader is referred to [154]. The numerical simulations have been performed

on a computer with Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz and 16 GB of RAM in

MATLAB R2022b. The solution (5.8) is solved with built-in iterative solvers. The final

time and time step of the SELANSI simulations are noted for each example.

Example 1: single gene self-regulation with positive feedback

The first example is a GRN consisting of a single gene. The regulation is described by

the Hill function

c1(x1) =
KH11

1 + ϵ1x
H11
1

KH11
1 + xH11

1

.

We consider a negative Hill coefficient, corresponding to a positive self-regulation. In this

case, as described in [153] (see also [150]) the stationary solution of (5.2) can be explicitly

calculated as follows:

p(x) = Cρ
k1m(1−ϵ1)

H11 (x)x−(1−k1mϵ1)e
− x

b1 ,

where ρ(x) = xH11

K
H11
1 +x

H11
1

and C > 0 is a constant ensuring that p(x) integrates to one.

The computational times of both methods are depicted in Table 5.1, from where we

can observe that the FVM has also better computational efficiency compared to that of

SELANSI.
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Mesh FVM SELANSI

2.5× 104 × 800 0.0335 s 1.8208 s

2.5× 104 × 1200 0.0899 s 2.1993 s

2.5× 104 × 1600 0.1460 s 2.5510 s

2.5× 104 × 2000 0.3561 s 2.8866 s

2.5× 104 × 5000 3.8066 s 7.9131 s

Table 5.1: Average runtime of 100 simula-

tions of a one-dimensional GRN with var-

ious mesh sizes.

Table 5.2 shows the relative error (in the L2 norm) of the different methods compared

to the analytical solution, computed as follows:

E(p, pref ) =
∥p− pref∥L2

∥pref∥L2

=

√∑N
i=1

(
p(xi)− pref (xi)

)2√∑N
i=1 p

2
ref (xi)

.

Mesh
FVM (×10−3) SELANSI (×10−3)

L1 = 300 L1 = 350 L1 = 400 L1 = 300 L1 = 350 L1 = 400

2.5× 104 × 800 7.4358 8.6799 9.9106 29.6010 5.4881 9.2314

2.5× 104 × 1200 4.9886 5.8169 6.6366 28.6252 4.3113 8.3388

2.5× 104 × 1600 3.7665 4.3870 5.0013 29.5308 3.4255 8.0746

2.5× 104 × 2000 3.0335 3.5298 4.0209 29.9408 2.8899 7.2511

2.5× 104 × 5000 1.4271 1.4761 1.6675 31.0859 2.5960 6.0042

Table 5.2: Relative error of the simulation of a one-dimensional GRN on various domains.

Figure 5.2 shows the simulation results for different L1 values.
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(a) L1 = 350

(b) L1 = 300 (c) L1 = 400

Figure 5.2: Self-regulated single gene network with parameters H11 = −4, K1 = 45,

ϵ1 = 0.15, k1m = 3.2 × 10−3, b1 = 16 and γ1x(x) = 4 × 10−4. The simulations are

performed with N1 = 2000, τ = tγ1x = 50 and ∆t = 0.002.

We can see that on an appropriately large domain both methods perform well, how-

ever, SELANSI seems to be more sensitive to the choice of the domain. This is assumed

to be because SELANSI renormalizes the solution in each iteration and it imposes zero

boundary condition at both boundaries, since the solution is expected to decay as x in-

creases. However, this method perturbs the solution if the domain is not set properly,

which might be the case for unknown gene regulatory network structures or parame-

ter sets. Compared to this, the kinetic discretization does not impose such boundary

conditions, does not require renormalizations and, in fact, as noted in section 5.4, the

equilibrium is strictly positive, and thus adapts better to different domains.
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Example 2: mutual activation of two genes

In this example we consider Hill functions in the form of

c1(x) =
KH12

12 + ϵ1x
H12
2

KH12
12 + xH12

2

,

c2(x) =
KH21

21 + ϵ2x
H21
1

KH21
21 + xH21

1

,

where H12 < 0 and H21 < 0, corresponding to positive cross-regulation or activation.

Figure 5.3 shows the stationary joint PDE.

(a) Kinetic FVM with L1 = L2 = 400. (b) SELANSI with L1 = L2 = 400.

Figure 5.3: Mutual activation with parameters H12 = H21 = −4, K12 = K21 = 70,

ϵ1 = ϵ2 = 0.2, k1m = k2m = 3.4 × 10−3, b1 = b2 = 18, γ1x(x) = γ2x(x) = 4 × 10−4,

N1 = N2 = 400, τ = tγ1x=50 and ∆t = 0.005.

Note, that the GRN is symmetric w.r.t. the proteins, thus we only plot one set of

marginal PDFs. We can observe the sensitivity of SELANSI to the domain, while the

finite volume discretization is quite robust to it. In this example we can see that the

solution computed by SELANSI deteriorates not just for too small, but even for too

large domains. Since for multidimensional GRNs the analytic solution of (5.1) cannot

be computed in a straightforward manner, we cannot compute the empirical error as in

the case of the one-dimensional example. Instead, we only compare the running times of

the two methods, the results of which are collected in Table 5.3. Figure 5.4 shows the

stationary marginal stationary PDF on multiple domains.
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(a) Marginal PDF with L1 = L2 = 350.

(b) Marginal PDF with L1 = L2 = 300. (c) Marginal PDF with L1 = L2 = 400.

Figure 5.4: Mutual activation with parameters H12 = H21 = −4, K12 = K21 = 70,

ϵ1 = ϵ2 = 0.2, k1m = k2m = 3.4 × 10−3, b1 = b2 = 18, γ1x(x) = γ2x(x) = 4 × 10−4,

N1 = N2 = 400, τ = tγ1x=50 and ∆t = 0.005.

Example 3: mutual repression of two genes

In this example we consider Hill functions in the form of

c1(x) =
KH12

12 + ϵ1x
H12
2

KH12
12 + xH12

2

, c2(x) =
KH21

21 + ϵ2x
H21
1

KH21
21 + xH21

1

,

where H12 > 0 and H21 > 0, corresponding to negative cross-regulation or repression.

Figure 5.5 shows the stationary joint PDF and the marginal stationary PDF on multiple

domains. Again, the GRN is symmetric w.r.t. the proteins and the same dependence on
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the domain can be observed in the case of SELANSI. The running time of both methods

with various mesh sizes are presented in Table 5.3.

(a) Kinetic FVM with L1 = L2 = 400. (b) SELANSI with L1 = L2 = 400.

(c) Marginal PDF L1 = L2 = 250. (d) Marginal PDF with L1 = L2 = 400.

Figure 5.5: Mutual repression with parameters H12 = H21 = 4, K12 = K21 = 45,

ϵ1 = ϵ2 = 0.15, k1m = k2m = 3.2 × 10−3, b1 = b2 = 16, γ1x(x) = γ2x(x) = 4 × 10−4,

N1 = N2 = 400, τ = tγ1x = 50 and ∆t = 0.005.

Example 4: self and mutual regulation

In this example we consider two genes, one of which is activated by both, the other is

repressed by both. The corresponding Hill functions can be given as follows:

c1(x) =
ϵ11x

H11
1 xH12

2 + ϵ12K
H11
11 xH12

2 + ϵ13x
H11
1 KH12

12 +KH11
11 KH12

12

xH11
1 xH12

2 +KH11
11 xH12

2 + xH11
1 KH12

12 +KH11
11 KH12

12

,

c2(x) =
ϵ21x

H21
1 xH22

2 + ϵ23K
H21
21 xH22

2 + ϵ12x
H21
2 KH22

22 +KH21
21 KH22

22

xH21
1 xH22

2 +KH21
21 xH22

2 + xH21
2 KH22

22 +KH21
21 KH22

22

,

where H11 < 0, H21 < 0, H12 > 0 and H22 > 0. We note that the above functions are

generalized Hill functions, and thus have to be defined in a separate file for the SELANSI

simulation. Figure 5.6 shows the stationary joint PDF.
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(a) Kinetic FVM with L1 = 150, L2 = 200. (b) SELANSI with L1 = 150, L2 = 200.

Figure 5.6: Self and mutual regulation with parameters H11 = −4, H21 = −6, H12 =

H22 = 2, K11 = K12 = 45, K21 = K22 = 70, ϵ11 = ϵ21 = 0.002, ϵ12 = 0.02, ϵ22 = 0.1,

ϵ13 = ϵ23 = 0.2, k1m = 4×10−3, k2m = 8×10−3, b1 = 10, b2 = 20, γ1x(x) = γ2x(x) = 4×10−4,

N1 = N2 = 400, τ = tγ1x = 50.

(a) Marginal PDF with L1 = 150, L2 = 200. (b) Marginal PDF with L1 = 150, L2 = 200.

(c) Marginal PDF with L1 = 100, L2 = 150. (d) Marginal PDF with L1 = 100, L2 = 150.

Figure 5.7: Self and mutual regulation with parameters H11 = −4, H21 = −6, H12 =

H22 = 2, K11 = K12 = 45, K21 = K22 = 70, ϵ11 = ϵ21 = 0.002, ϵ12 = 0.02, ϵ22 = 0.1,

ϵ13 = ϵ23 = 0.2, k1m = 4×10−3, k2m = 8×10−3, b1 = 10, b2 = 20, γ1x(x) = γ2x(x) = 4×10−4,

N1 = N2 = 400, τ = tγ1x = 50.
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Figure 5.7 shows the marginal stationary PDF on multiple domains. This example is

not symmetric w.r.t. the different kind of proteins, thus we plot both marginal density

functions. The running time of both methods with various mesh sizes are presented in

Table 5.3.

Example 5: bacterial competence

In Bacillus subtilis, competence is a probabilistic and transiently differentiated state. In

this physiological state bacteria has the capability of DNA uptake from their environment.

The phenomena is modelled with a two-dimensional gene regulatory network, consisting of

the master regulator self-activated ComK which represses the transcription factor ComS

[167]. Protein degradation is mediated by the MecA complex. After ComK (ComS) binds

to the complex an intermediate complex MecA-ComK (MecA-ComS) complex is formed,

in which the ComK (ComS) protein is degraded by the ClpP-ClpC proteases [168]. In-

stead of explicitly modelling the effects of the MecA complex, the authors consider a

variable degradation rate. Using this reduced order stochastic differential equation de-

veloped in [168] a discrete stochastic CME model is presented in [169], simulated using a

Monte-Carlo based Stochastic Simulation Algorithm. A corresponding PIDE is presented

in [154] with parameters adapted from the CME model of [169] as follows: αk = 0.0028,

βk = 0.049, βs = 0.057, Kk = 100, Ks = 110, δk = δs = 0.0014, Γk = 500, Γs = 50,

b1 = 2, b2 = 5, k1m = αk+βk
b1

, k2m = βs
b2

, ϵ1 = αk
αk+βk

, ϵ2 = 0, H11 = −2, H21 = 5. The

coefficient functions are set as:

c1(x) =
KH11
k + ϵ1x

H11
1

KH11
k + xH11

1

, γ1x(x) =
δkΓkΓs

ΓkΓs + Γsx1 + Γkx2
,

c2(x) =
KH21
s + ϵ2x

H21
1

KH21
s + xH21

1

, γ2x(x) =
δsΓkΓs

ΓkΓs + Γsx1 + Γkx2
.

We note that the currently publicly available SELANSI version cannot handle variable

degradation rates, thus we could not reproduce the plots of [154]. Figure 5.8 shows the

stationary PDFs and its contour plot, both of which are in accordance with the plots of

[154]. The running times of the finite volume method for various mesh sizes are shown

in Table 5.3.
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Figure 5.8: Kinetic FVM of Example 5 with N1 = N2 = 400.

GRN
FVM SELANSI

1002 2002 3002 4002 1002 2002 3002 4002

Ex. 2 0.2223 s 1.6485 s 5.2159 s 11.5707 s 9.0423 s 21.5449 s 40.6726 s 71.1792 s

Ex. 3 0.2128 s 1.3679 s 4.5709 s 10.3817 s 9.0443 s 21.3982 s 40.7456 s 72.3397 s

Ex. 4 0.3241 s 1.8639 s 5.7925 s 12.3953 s 9.1355 s 22.0259 s 41.9351 s 73.4001 s

Ex. 5 0.7064 s 4.9921 s 17.0973 s 45.0809 s − − − −

Table 5.3: Average runtime of 100 simulations of several two-dimensional GRNs with

various mesh sizes.

5.5.1 Memory requirement of the kinetic FVM

A notable technical challenge in our method is the efficient assembly and storage of the

coefficient matrix Γ(N). For n ≥ 2 one should store Γ(N) in a sparse representation, but

even then the memory requirement can grow quickly. However, we can explicitly calculate

the number of nonzero elements of the matrix to aid the design of the simulation. To

be precise, the number of nonzero elements of the coefficient matrix corresponding to an

n-dimensional PIDE discretized on a grid of size
∏n
i=1Ni is as follows:

n∑
i=1

(
Ni∑
k=1

(Ni − k)

)
n∏
j=1
j ̸=i

Nj

︸ ︷︷ ︸
bursting of protein Xi

+
n∑
i=1

(Ni − 1)
n∏
j=1
j ̸=i

Nj

︸ ︷︷ ︸
degradation of Xi

+
n∏
i=1

Ni︸ ︷︷ ︸
diagonal

=

n∑
i=1

1

2

(
N2
i −Ni

)
n∏
j=1
j ̸=i

Nj + n

n∏
i=1

Ni −
n∑
i=1

n∏
j=1
j ̸=i

Nj +

n∏
i=1

Ni

= −1

2
n

n∏
i=1

Ni +
1

2

(
n∑
i=1

Ni

)(
n∏
i=1

Ni

)
+ (n+ 1)

n∏
i=1

Ni −

(
n∑
i=1

1

Ni

)(
n∏
i=1

Ni

)
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=
1

2

(
n+ 2 +

n∑
i=1

Ni −
n∑
i=1

2

Ni

)(
n∏
i=1

Ni

)
.

Figure 5.9 shows the number of nonzero elements on an equidistant grid for a matrix

corresponding to a mesh of size N = 1010 (that is, the matrix has 1020 total elements)

as a function of n. The logarithmic scaling suggests that as the dimension of the PIDE

is increased, we can increase the number of finite volume cells on the grid even without

exceeding the memory limits.

Figure 5.9: Memory requirement of an n-dimensional GRN with N = 1010 total number

of cells.

5.6 Control of a genetic toggle switch

In this section we introduce a version of the kinetic FVM, modified to be suitable for

control design. We wish to employ an exogenous control on the population level through

appropriate inducers affecting protein bursts; that is, we assume that ci(x) = ci(x, I)

in (5.1), where I denotes the concentration vector of the inducers. In order to adhere

certain biological constraints we assume that the range of ci remains in ∈ (0, 1). For the

sake of simplicity we assume that I ∈ Rn and note that we set Ii ≡ 0 if we do not control

the production of protein Pi.

We slightly modify the kinetic FVM in the case of the functions ci and instead of

computing their average over the cells, we use their midpoint values; that is, we set

ciα(I) = ci(xα, I). Let us collect the degradation coefficients γiα, burst coefficients biα,j

and controlled coefficients ciα(I) into the matrices G,B and C(I), respectively. Then

(5.6) can be rewritten as

ṗ(t) = Gp(t) +
(
B ⊙ C(I)

)
p(t),



124 CHAPTER 5. PIDE MODEL FOR GENE REGULATORY NETWORKS

where ⊙ denotes the Hadamard (or elementwise) product.

We note that the Lyapunov function given in (5.7) simplifies to the well-known

Kullback-Leibler divergence in a mass-conservative setting, given as follows

V (p, p∗) =
N∑
j=1

(
pj log

pj
p∗j

+ p∗j − pj

)
=

N∑
j=1

pj log
pj
p∗j

= DKL(p∥p∗).

While the Kullback-Leibler divergence is not a metric as it is not symmetric and fails to

satisfy the triangle inequality, it is a nonnegative measure and it is often used to estimate

the difference of discrete probability distributions [139].

As described before, the mesh size directly determines the number of variables of the

system (5.6). We consider an explicit Euler scheme on (5.5) and denote the approximation

of pα(tk) as pkα. Clearly we have that
∑

α p
k+1
α =

∑
α p

k
α for each k ≥ 0 since (5.5) is

governed by a linear conservation law. An elementary computation shows that if the step

sizes satisfy the following Courant-Friedrichs-Lewy (CFL) condition, then pkα ≥ 0 holds

for any k ≥ 0 and α:

∆t
n∑
i=1

max
x∈Ω
I∈Rn

(
1

hi
γix(x)xi + kim exp

(
− hi
2bi

)
ci(x, I)

)
≤ 1.

We note that the ci functions are usually Hill-type saturating functions with the property

ci(x, I) ≤ 1 and that exp
(
− hi

2bi

)
≤ 1, thus the second term is bounded by kim. This shows

that the degradation terms are often more dominant, hence in applications of biological

relevance the CFL condition can be estimated as

∆t
n∑
i=1

1

hi
max
x∈Ω

γix(x)xi ≤ 1.

Of course we can normally set larger ∆t values when applying a more sophisticated time

discretization method. However, this demonstrates a further benefit of the FVM-based

population level control, since our investigation shows that usually one can resort to

very coarse grids leading to smaller systems and larger admissible temporal steps. The

computed control trajectory (or the steady-state constant control) can then be applied

to a system with a finer mesh.

A crucial question is what kinds of probability distributions can be reached from an

initial one. The considered control structure is strictly positive and bounded from below

and above, thus it is anticipated that we cannot reach arbitrarily low and high expected

values. However, relying on the above observations we can estimate the reachability set

of the system numerically by computing the considered statistical measures of the unique

equilibrium for a simple scan of control configurations. The continuous dependence on
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parameters (see, [170, Chapter V]) shows that the reachability set should be a connected

set in Rn, thus we could even interpolate control values based on an appropriately fine

scan.

A natural design principle of PID controllers can be to use as few control terms as

possible. In many applications a well tuned proportional controller may suffice. This is

not the case for semi-discretized gene regulatory networks as the above discussions show

that in general we need nonzero steady-state control; that is, the steady-state error of the

controlled system will be proportional to the required control value. While integral control

has proven to be reliable for biomolecular networks [171], we found that its performance

can be inferior to proportional-integral control. In certain cases introducing a derivative

term could further increase the convergence speed or reduce overshoots and oscillations,

but it does not seem to be necessary.

We consider the classical toggle switch configuration consisting of two repressible

promoters in a mutually inhibitory network. We introduce two corresponding inducers,

each affecting one of the promoters. Our goal is to shift the expected values of the

stationary probability density to some prescribed values. Figure 5.10 shows the structure

of the controlled gene regulatory network.

G1 G2

P1

P2

I1

I2

express inhibit

expressinhibit

Figure 5.10: Structure of the gene toggle switch.

Following [172] we introduce the parameters θIi , θXi and µIi associated with the in-

ducers’ effects in the protein regulation. The burst coefficients are given by the following

Hill-type functions

c1(x, I) = c1(x2, I1) =
K12(I1)

H + ϵ1x
H
2

K12(I1)H + xH2
,

c2(x, I) = c2(x1, I2) =
K21(I2)

H + ϵ2x
H
1

K21(I2)H + xH1
,
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with

K12(I1) = θX2

(
1 +

(
I1
θI1

)µI1)
,

K21(I2) = θX1

(
1 +

(
I2
θI2

)µI2)
.

We consider H = 4 and Table 5.4 shows the rest of the parameters of the system.

γix kim bi ϵi θXi θIi µIi

1 12 6 0.1 31.94 11.65 2

1 7 78
7 0.1 30 9.06× 10−2 2

Table 5.4: PIDE parameters of the gene

toggle switch.

First, we compute the equilibrium of the open-loop system (that is, when I1 = I2 = 0)

and then apply a PI controller to shape the protein density function. We consider a simple

population level controller based on the expected values of the number of proteins. The

desired and actual expected values are denoted as m∗
1, m∗

2 and m1(t), m2(t), respectively.

We note, that we may use other statistical measures, for example the modes of the

marginal probability density functions as in [159]. Defining the errors e1(t) = m∗
1−m1(t)

and e2(t) = m∗
2 −m2(t) the dynamics of the PI controller is of the form

I1(t) = I01 +K1
P e1(t) +K1

I

ˆ t

0
e1(s) ds ,

I2(t) = I02 +K2
P e2(t) +K2

I

ˆ t

0
e2(s) ds ,

where we assume based on biological constraints that I1 ∈ [0, 50] and I2 ∈ [0, 1]. The

initial values are set as I01 = 20, I12 = 0.25 and the feedback gains, based on [172, 159],

as K1
P = 60, K1

I = 20, K2
P = 2.5 and K2

I = 6.94 · 10−1. We note that for a new model

these values could be obtained through the linearization of a coarse discretization. Figure

5.11a shows the open-loop equilibrium, while Figures 5.11b and 5.11c show the closed-loop

equilibrium for m∗
1 = 41 and m∗

2 = 55 on a 300 × 300 and a 50 × 50 mesh, respectively.

Table 5.5 shows the performance of the FVM with an explicit Euler discretization on

different mesh-sizes with the same CFL ratio.

50× 50 100× 100 200× 200 300× 300

0.2087 s 2.4426 s 20.7634 s 90.4794 s

Table 5.5: Average runtime of 100 simula-

tions
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(a) Open-loop system on 300×

300 mesh.

(b) Closed-loop system on

300× 300 mesh.

(c) Closed-loop system on 50×

50 mesh.

Figure 5.11: PI control of the genetic toggle switch on various mesh sizes with prescribed

expected values m∗
1 = 41 and m∗

2 = 55.

(a) Time-evolution of the Kullback-Leibler di-

vergence of the PI control and the constant con-

trol.

(b) Empirical reachability set computed on a

mesh of size 50× 50 for 200 equidistant control

values I1 ∈ [0, 50] and I2 ∈ [0, 1].

Figure 5.12: Self-regulated single gene network with parameters H11 = −4, K1 = 45,

ϵ1 = 0.15, k1m = 3.2 × 10−3, b1 = 16 and γ1x(x) = 4 × 10−4. The simulations are

performed with N1 = 2000, τ = tγ1x = 50 and ∆t = 0.002.

Figure 5.12a shows the performance of the PI control and the constant control mea-

sured as the time-evolution of the Kullback-Leibler divergence of the state and the equi-

librium. While in this case the PI control outperforms the constant control, it is clear that

the monotonicity cannot be guaranteed, while in a constant control setting DKL(.∥p∗) is

known to be a Lyapunov function, thus it is strictly decreasing. We emphasize that the

control is based on the error of the expected values, not on the Kullback-Leibler diver-

gence. Figure 5.12b shows the estimated reachability set of the system discretized on a

50×50 mesh. For 200 evenly spaced control values I1 ∈ [0, 50] and I2 ∈ [0, 1] we compute
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and plot the expected values of the protein molecules. Each point has color represented

with an RGB triplet, where the green channel is constant and the red and blue channels

correspond to I1 and I2, respectively. The black polygon in the background is the filled

boundary polygon of the computed points.

5.7 Conclusions

A novel discretization scheme was proposed in this chapter for the simulation and anal-

ysis of multidimensional PIDE models used in the stochastic dynamical description of

gene regulatory networks. It was shown that using an appropriate finite volume scheme,

a fully conservative linear compartmental dynamics is obtained in ODE form. The in-

terconnection structure of the discretized system was studied in detail, and it was shown

that the associated directed graph is always strongly connected. Therefore, the theory

of kinetic and compartmental systems can be used to conclude that the equilibrium of

the discretized dynamics representing the stationary distribution of molecules is unique

and globally stable for any biologically meaningful parameter values in the PIDE model.

Moreover, the stationary distribution can be obtained by solving a set of linear equa-

tions without performing the time-domain simulation. The memory requirement of the

method can be precisely pre-computed based on which the applicable resolution can be

determined. Five illustrative examples were presented to show the operation and per-

formance of the method. Whenever possible, the obtained solutions and running times

were compared with those given by the SELANSI toolbox, and these comparisons clearly

justified the advantageous properties of the proposed approach both in terms of precision

and performance. The compartmental description can be a basis of further dynamical

analysis or controller design for stochastic gene regulatory network models.

The networks obtained by discretization of nonlocal models thus far can be interpreted

as compartmental models, where each node represents a distinct spatial or functional unit.

In the final chapter, we extend this perspective further by introducing quantum graphs,

a framework in which compartments are connected by partial differential equations that

model continuous transitions along edges.



Chapter 6

Domain decomposition for elliptic

problems on metric graphs

In this chapter we develop a Neumann-Neumann type domain decomposition method

for elliptic problems on metric graphs. We describe the iteration in the continuous and

discrete setting and rewrite the latter as a preconditioner for the Schur complement

system. Then we formulate the discrete iteration as an abstract additive Schwarz iteration

and prove that it converges to the finite element solution with a rate that is independent

of the finite element mesh size. We also show that the condition number of the Schur

complement is uniformly bounded with respect to the finite element mesh size. We

provide an implementation and test it on various examples of interest and compare it to

other preconditioners.

6.1 Introduction

We consider a quantum graph; that is, a metric graph G equipped with an elliptic differ-

ential operator on each edge and certain standard vertex conditions. The graph consists

of a finite set V of vertices and a finite set E of edges connecting pairs of vertices. We

assume that the graph is simple and does not contain parallel edges or loops. Let n = |V|

denote the number of vertices and m = |E| the number of edges. We assume that the

graph is directed; that is, each edge has a specified (but otherwise arbitrary) orientation,

and thus an origin and a terminal vertex. Each edge e ∈ E is assigned a length ℓe ∈ (0,∞)

and a local coordinate x ∈ [0, ℓe].

A function u on a metric graph G can be defined as a vector of functions and we write

u = (ue)e∈E, and consider it to be an element of a product function space, to be specified

129
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later. Let ue(v) denote the value of u at v ∈ V along the edge e ∈ E.

To define the vertex conditions, let us denote by Ev the set of edges incident to the

vertex v ∈ V, and by dv = |Ev| the degree of v ∈ V. We denote by int(G) the set of vertices

with degree dv > 1 and by ∂G the set V\int(G). We seek solutions that are continuous

on G and satisfy the Neumann-Kirchhoff (often called standard) condition, given as∑
e∈Ev

u′e(v) = 0, v ∈ V,

where the derivatives are assumed to be taken in the directions away from the vertex.

When there are (variable) diffusion coefficients or conductances present, represented by

the function c = (ce)e∈E defined on the graph, the Neumann-Kirchhoff condition is defined

as ∑
e∈Ev

ce(v)u
′
e(v) = 0, v ∈ V.

If dv = 1, then this reduces to the classical zero Neumann boundary condition.

In order to write the vertex conditions more compactly, let us define the vector of

function values at v ∈ V as

U(v) =
(
ue(v)

)
e∈Ev

∈ Rdv

and the bi-diagonal matrix

Iv =


1 −1

. . . . . .

1 −1

 ∈ R(dv−1)×dv .

Then IvU(v) = 0 ∈ Rdv−1 implies that the function values along the edges in Ev coincide

at v ∈ V. Similarly, we define

U ′(v) =
(
u′e(v)

)
e∈Ev

∈ Rdv ,

the vector of function derivative at v ∈ V and the row vector

C(v)⊤ =
(
ce1(v) ce2(v) . . . cedv (v)

)
∈ R1×dv .

Then C(v)⊤U ′(v) = 0 implies that the function u satisfies the Neumann-Kirchhoff con-

ditions at v ∈ V.

Then a quantum graph can be formally written as
−(ceu

′
e)

′(x) + pe(x)ue(x) = fe(x), x ∈ (0, ℓe), e ∈ E, (a)

0 = IvU(v), v ∈ int(G), (b)

0 = C(v)⊤U ′(v), v ∈ V, (c)

(6.1)
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where the function p = (pe)e∈E represents a potential. The exact assumptions on the

functions u, c, p and f = (fe)e∈E are to be defined later in 6.2.1.

We wish to approximate the solution of (6.1) in the finite element framework. In

[173] a special finite element is assigned to the vertices that have a star shaped support

on the neighbouring edges ensuring the continuity of solutions, and use standard finite

elements on the edges. Then the authors prove usual error estimates and an upper

bound for the Neumann-Kirchhoff residual of the discrete solution. However, the size of

the corresponding stiffness matrix can grow quickly and it loses its banded (tridiagonal)

nature compared to one-dimensional problems.

To overcome such issues, we investigate a Neumann-Neumann type nonoverlapping

domain decomposition method. The mathematical background of overlapping domain de-

composition methods originate from [174], which was further developed in [175, 176, 177].

Later nonoverlapping methods gained attention due to their natural parallelism and ef-

ficiency in numerical applications along with the growth of high performance comput-

ing [178, 179, 180]. Many variants have been developed since, such as Lagrange multi-

plier based Finite Element Tearing and Interconnecting (FETI) methods [181, 182], least

squares-control methods [183, 184], and multilevel or multigrid methods [185, 186, 187].

In particular, Neumann-Neumann methods can be traced back to [188, 189, 190, 191].

For introductory surveys we refer to [192, 193], see also [194, Chapter 7], while more

thorough theoretical background and historical overview can be found in [195, 196, 197].

While certain domain decomposition methods have been successfully designed and ap-

plied for optimal control on networks [198, 199, 200, 201] and its theory was established

in [202], to the authors knowledge, the performance and the convergence of Neumann-

Neumann type iterative substructuring methods was never addressed. First, we rewrite

the method as a preconditioner for the Schur complement system, then rigorously show

via the abstract additive Schwarz framework that the iteration converges to the finite

element solution with a geometric rate that is independent of the finite element mesh

size, see Theorem 6.3.6. While preparing for this proof we show in Corollary 6.3.4 that

the condition number of the underlying Schur complement is uniformly bounded with

respect to the finite element mesh size. The chapter is organized as follows. Section 6.2

contains a brief overview of the abstract problem, the corresponding weak formulation

and its FEM solution, and the abstract additive Schwarz framework. In Section 6.3 we

introduce the Neumann-Neumann method and prove its convergence to the FEM solution

through the Schwarz framework. We also formulate the method as a preconditioner to
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the Schur complement system. We note because of the quasi-one-dimensional nature of

the problem we can use powerful tools like Sobolev’s embedding, and thus our proofs are

much simpler and more transparent then that of classical domain decomposition methods

in two or more dimensions. Finally, in Section 6.4, we demonstrate the strength of our

approach through various examples and compare it to other preconditioners.

6.2 Preliminaries

Let L2(a, b) be the Hilbert space of real-valued square-integrable functions equipped with

the norm

∥f∥2L2(a,b) =

ˆ b

a

∣∣f(x)∣∣2 dx , f ∈ L2(a, b),

and L∞(a, b) be the Banach space of real-valued essentially bounded functions equipped

with the norm

∥f∥L∞(a,b) = ess sup
x∈(a,b)

∣∣f(x)∣∣, f ∈ L∞(a, b).

Let Hk(a, b) be the Sobolev space of real-valued square-integrable functions whose gen-

eralized derivatives up to the kth order are also square-integrable, equipped with the

norm

∥f∥2Hk(a,b) =
k∑
j=0

∥∥∥f (j)∥∥∥2
L2(a,b)

, f ∈ Hk(a, b).

Finally, let C[a, b] be the Banach space of real-valued continuous functions equipped with

the supremum norm. Using these, we define the Banach spaces

L2(G) =
⊕
e∈E

L2(0, ℓe), L∞(G) =
⊕
e∈E

L∞(0, ℓe), Hk(G) =
⊕
e∈E

Hk(0, ℓe).

endowed with the natural norms

∥u∥2L2(G) :=
∑
e∈E

∥ue∥2L2(0,ℓe)
, u = (ue)e∈E ∈ L2(G),

∥u∥2L∞(G) := max
e∈E

∥ue∥L∞(0,ℓe)
, u = (ue)e∈E ∈ L∞(G),

∥u∥2Hk(G) :=
∑
e∈E

∥ue∥2Hk(0,ℓe)
, u = (ue)e∈E ∈ Hk(G).

We note that the spaces L2(G) and Hk(G) are Hilbert spaces with the natural inner

products. Finally, we define the space of continuous functions defined on G as

C(G) :=
{
u = (ue)e∈E

∣∣∣IvU(v) = 0, ∀e ∈ E : ue ∈ C[0, ℓe]
}
.
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6.2.1 The abstract problem

On L2(G) we define the elliptic operator

Amax := diag

(
− d

dx

(
ce

d

dx

)
+ pe

)
e∈E

, D(Amax) = H2(G).

We further define the boundary operator B : D(Amax) 7→ Y by

Bu =

[ (
IvU(v)

)
v∈V(

C(v)⊤U ′(v)
)
v∈V

]
, D(B) = D(Amax),

where the boundary space Y is isomorphic to R2n endowed with the standard inner

product. Finally, we define

A := Amax, D(A) :=
{
u ∈ D(Amax) : Bu = 0Y

}
.

Throughout the chapter we assume that c =
(
ce
)
e∈E : G 7→ R is a positive Lipschitz

function, that the function p =
(
pe
)
e∈E ∈ L∞(G) satisfies ess infx∈G p(x) ≥ p0 for some

p0 > 0, and that f =
(
fe
)
e∈E ∈ L2(G). Using this, we can reformulate (6.1) as follows:

find u ∈ D(A) such that

Au = f. (6.2)

While (6.2) is well-posed w.r.t. a classical solution [203, Proposition 3.1], for our purposes

it is convenient to introduce a weak formulation of (6.1).

6.2.2 Weak formulation and FEM

The corresponding bilinear form a is defined as

a(u, v) =
∑
e∈E

(ˆ
e
ce(x)u

′
e(x)v

′
e(x) dx+

ˆ
e
pe(x)ue(x)ve(x) dx

)
,

D(a) = H1(G) ∩ C(G),

see [204, Lemma 3.3] and [205, Lemma 3.4]. We highlight that the Neumann-Kirchhoff

condition do not appear in this bilinear form or in its domain. Thus, we seek a solution

u ∈ D(a) such that

a(u, v) = f(v), v ∈ D(a), (6.3)

where f(v) := ⟨f, v⟩L2(G). It is well-known that under our assumptions the symmetric

bilinear form a(·, ·) is bounded and coercive, and thus (6.3) is well-posed in light of

the Riesz representation theorem. Moreover, the unique solution of (6.3) is the unique

solution of (6.2).
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Following [173] for the sake of notational simplicity we consider an equidistant dis-

cretization on the edges. This approach and our subsequent analysis can be trivially

generalized to the nonequidistant case. We divide each edge e = (vea, v
e
b) into ne ≥ 2

intervals of length he ∈ (0, 1). For the resulting
{
xej

}
j=1,2,...,ne−1

nodes we introduce the

standard basis
{
ψe
j

}
j=1,2,...,ne−1

of hat functions

ψe
j(x) =


1− |xej−x|

he
, if x ∈

[
xej−1, x

e
j+1

]
,

0, otherwise,

where xe0 = vea and xene
= veb. These functions are a basis of the finite-dimensional space

V e
h ⊂ H1

0 (0, ℓe) ∩ C[0, ℓe] of piecewise linear functions.

To each v we assign a special hat function ϕv supported on the neighbouring set Wv

of the vertex defined as

Wv =

( ⋃
e∈E:vea=v

[
v, xe1

])
∪

( ⋃
e∈E:veb=v

[
xene−1, v

])
.

Then ϕv is defined as

ϕv(x
e) =


1− |xev−xe|

he
, if xe ∈Wv,

0, otherwise,

where xev is either 0 or ℓe depending on the orientation of the edge.

We define the space

Vh(G) =

(⊕
e∈E

V e
h

)
⊕ span{ϕv}v∈V

of piecewise linear functions. Note, that Vh(G) ⊂ H1(G) ∩ C(G) by construction. Any

function wh ∈ Vh(G) is a linear combination of the basis functions:

wh(x) =
∑
e∈E

ne−1∑
j=1

αe
jϕ

e
j(x) +

∑
v∈V

βvϕv(x).

Thus the solution of (6.3) can be approximated by finding uh ∈ Vh(G) such that

a(uh, vh) = f(vh), vh ∈ Vh(G). (6.4)

Equivalently, we can test only on the basis functions. Since the neighbouring set of
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distinct vertices are disjoint we have that

a(wh, ψ
e
k) =

∑
e∈E

ne−1∑
j=1

αe
j

ˆ
e

(
ceψ

e
j
′ψe
k
′ + peψ

e
jψ

e
k

)
dx

+
∑
v∈V

βv

ˆ
e

(
ceϕv

′ψe
k
′ + peϕvψ

e
k

)
dx = f(ψe

k), k = 1, 2, . . . , ne−1, e ∈ E,

a(wh, ϕv) =
∑
e∈E

ne−1∑
j=1

αe
j

ˆ
e

(
ceψ

e
j
′ϕv

′ + peψ
e
jϕv
)
dx

+
∑
v∈V

βv

ˆ
e

(
ceϕv

′ϕv
′ + peϕvϕv

)
dx = f(ψe

k), v ∈ V.

(6.5)

Let us denote by

u =

[
uE

uV

]
, uE =


ue1

ue2

...
uem

 , ue =


ue1
ue2
...

uene−1

 , uV =


uv1
uv2
...
uvn


the vector of values that define the finite element function

uh(x) =
∑
e∈E

ne−1∑
j=1

uejϕ
e
j(x) +

∑
v∈V

uvϕv(x),

and by

f =

[
fE

fV

]
, fE =


f e1

f e2

...
f em

 , f e =


f e1
f e2
...

f ene−1

 , fV =


fv1
fv2
...
fvn


the vector of values

f ek =

ˆ
e
fψe

k dx , fv =

ˆ
Wv

fϕv dx .

Then (6.5) can be rewritten as

Au = f , (6.6)

where the stiffness matrix A has a block structure as follows:

A =

[
AE AEV

AVE AV

]
+

[
BE BEV

BVE BV

]
.

Here

1. the matrix AE = diag(Ae)e∈E is block diagonal and the entries of the tridiagonal

matrix Ae are given by

[Ae]jk =

ˆ
e
ceψ

e
j
′ψe
k
′ dx , j, k = 1, 2, . . . , ne − 1
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2. the entries of the blocks of A⊤
EV = AVE = (Ae)e∈E are given by

[Ae]vk =

ˆ
Wv

ceϕv
′ψe
k
′ dx , k = 1, 2, . . . , ne − 1, v ∈ V,

3. the entries of the diagonal matrix AV = diag(Av)v∈V are given by

Av =

ˆ
Wv

ceϕv
′ϕv

′ dx ,

4. the matrix BE = diag(Be)e∈E is block diagonal and the entries of the tridiagonal

matrix Be are given by

[Be]jk =

ˆ
e
peψ

e
jψ

e
k dx , j, k = 1, 2, . . . , ne − 1

5. the entries of the blocks of B⊤
EV = BVE = (Be)e∈E are given by

[Be]vk =

ˆ
Wv

peϕvψ
e
k dx , k = 1, 2, . . . , ne − 1, v ∈ V,

6. the entries of the diagonal matrix BV = diag(Bv)v∈V are given by

Bv =

ˆ
Wv

peϕvϕv dx .

Similarly to standard error estimates in the FEM framework the H1(G) error of the finite

element solution uh and the weak solution u is O(ĥ), where ĥ := maxe∈E he and the

L2(G) error is O(ĥ2), see [173, Theorem 3.2] for the special case when c ≡ 1 and [203,

Propositions 6.1-6.2] for the general case.

6.2.3 Abstract additive Schwarz framework

In this section we recall the abstract Schwarz framework based on [206, 197]. Let V be a

finite dimensional space with the inner product b(u, v) and consider the abstract problem

b(u, v) = f(v), v ∈ V. (6.7)

Let

V = V1 + V2 + · · ·+ VN

be a not necessarily direct sum of spaces with corresponding symmetric, positive definite

bilinear forms bi(·, ·) defined on Vi × Vi. Define the projection-like operators Ti : V 7→ Vi

by

bi(Tiu, vi) = b(u, vi), vi ∈ Vi
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and let

T = T1 + T2 + · · ·+ TN .

Note that if bi(u, v) = b(u, v) then the operator Ti is equal to the b(·, ·)-orthogonal

projection Pi. However, the generality of this framework allows the use of inexact local

solvers.

The operator T is used to equivalently reformulate (6.7) as

Tu = g =

N∑
i=1

gi =

N∑
i=1

Tiu, (6.8)

where gi is obtained by solving

bi(gi, vi) = b(u, vi) = f(v), vi ∈ Vi.

The following theorem is the cornerstone of the abstract additive Schwarz framework

[206, Theorem 1].

Theorem 6.2.1. Assume that

(i) there exists a constant C0 > 0 such that there exists a decomposition u =
∑N

i=1 ui

for all v ∈ V , where ui ∈ Vi, such that
N∑
i=1

bi(ui, ui) ≤ C2
0b(u, u),

(ii) there exists a constant ω > 0 such that the inequality

b(ui, ui) ≤ ωbi(ui, ui), ui ∈ Vi

holds for i = 1, 2, . . . , N ,

(iii) there exist constants ϵij ≥ 0 such that

b(ui, uj) ≤ ϵijb
1
2 (ui, ui)b

1
2 (uj , uj), ui ∈ Vi, uj ∈ Vj ,

for i, j = 1, 2, . . . , N .

Then T is invertible and

C−2
0 b(u, u) ≤ b(Tu, u) ≤ ρ(E)ωb(u, u), u ∈ V,

where ρ(E) is the spectral radius of the matrix E = {ϵij}Ni,j=1.

Theorem 6.2.1 ensures the existence of a unique solution of (6.8) and provides the

bound κ(T ) ≤ C−2
0 ρ(E)ω for the condition number of T w.r.t. the inner product b(·, ·),

through its Rayleigh quotient. Thus, an upper bound can be computed for the geometric

convergence rate of a conjugate gradient or minimal residual method applied to (6.8).
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6.3 Neumann-Neumann method

In [173] the authors proposed a nonoverlapping decomposition, where each subdomain

consisted of a single edge. We generalize this approach by decomposing G into arbitrary

disjoint (w.r.t. its edges) subgraphs
{
Gi = (Vi,Ei)

}
i=1,2,...,N

with ni = |Vi| and mi = |Ei|.

We note that each subgraph is itself a metric graph and that a subgraph may consist of

only one edge. The set of vertices that are shared on the boundary of multiple subgraphs

will be denoted with Γ and called the interface. The corresponding function values are

denoted as uΓ =
(
u(v)

)
v∈Γ.

6.3.1 Continuous version

The idea of Neumann-Neumann methods is to keep track of the interface values and itera-

tively update these values based on the deviation from the Neumann-Kirchhoff condition.

Formally, we start the algorithm from a zero (or any inexpensive) initial guess u0Γ. For

n ≥ 0 the new iterate is computed as follows: first we solve the Dirichlet problems

(Di)



fe(x) = −(ceu
k+ 1

2
e

′
)′(x) + pe(x)u

k+ 1
2

e (x), x ∈ (0, ℓe), e ∈ Ei, (a)

0 = IvU
k+ 1

2
i (v), v ∈ Vi\Γ, (b)

ukΓ(v) = U
k+ 1

2
i (v), v ∈ Vi ∩ Γ, (c)

0 = Ci(v)
⊤U

k+ 1
2

i

′
(v), v ∈ Vi\Γ. (d)

Here the function Ci is the restriction of C to Gi. Note, that we impose natural boundary

conditions on the set of vertices ∂Gi ∩ ∂G, but we will still refer to these problems as

Dirichlet problems. Then we compute the solutions of the residual Neumann problems

(Ni)



0 = −(cew
k+1
e

′
)′(x) + pe(x)w

k+1
e (x), x ∈ (0, ℓe), e ∈ Ei, (a)

0 = IvW
k+ 1

2
i (v), v ∈ Vi\Γ, (b)

0 = Ci(v)
⊤W k+1

i

′
(v), v ∈ Vi\Γ, (c)∑

i:v∈Vi

Ci(v)
⊤U

k+ 1
2

i

′
(v) = Ci(v)

⊤W k+1
i

′
(v), v ∈ Vi ∩ Γ. (d)

Finally, we update the interface values as

uk+1
Γ (v) = ukΓ(v)− θ

∑
e∈Ev

wk+1
e (v), v ∈ Γ,

with an appropriate θ ∈ (0, θmax), for some θmax > 0 [197, Chapter C.3].
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6.3.2 Discrete version

In this section we briefly overview some technical tools essential for our subsequent results

based on [195, 197]. While in our analysis we will mostly rely on variational notations

we will introduce some of the tools in matrix form. For the sake of notational simplicity

the following introduction is carried out for a decomposition into two subgraphs.

Let us consider the linear equation Au = f arising from the finite element approxi-

mation of an elliptic problem on the quantum graph G = (V,E), where A is a symmetric,

positive definite matrix. We assume that G is partitioned into two nonoverlapping sub-

graphs
{
Gi = (Vi,Ei)

}
i=1,2

; that is, we have that

E = E1 ∪ E2, E1 ∩ E2 = ∅, Γ = V1 ∩ V2.

We recall that in traditional domain decomposition methods we would require that the

solution be continuous along the interface and that the normal derivatives w.r.t. the

domains sum to zero; that is, they are virtually identical to the continuity and Neumann-

Kirchhoff conditions at the vertices. We highlight, that while the latter condition is quite

natural and has a clear interpretation for quantum graphs, it is not straightforward to

define its functional meaning for problems on domains.

Subassembly and Schur complement systems

Let us partition the degrees of freedom into those internal to G1 and to G2, and those on

Γ and introduce

A =

A
(1)
II 0 A

(1)
IΓ

0 A
(2)
II A

(2)
IΓ

A
(1)
ΓI A

(2)
ΓI AΓΓ

 , u =

u
(1)
I

u
(2)
I

uΓ

 , f =

f
(1)
I

f
(2)
I

fΓ

 .
A crucial observation is that the stiffness matrix A and load vector f can be subassembled

from the corresponding components of the (two) subgraphs. If for i = 1, 2 we denote by

f (i) =

[
f
(i)
I

f
(i)
Γ

]
, A(i) =

[
A

(i)
II A

(i)
IΓ

A
(i)
ΓI A

(i)
ΓΓ

]

the right hand sides and local stiffness matrices of the corresponding elliptic problems

with Neumann conditions, then we have that

AΓΓ = A
(1)
ΓΓ +A

(2)
ΓΓ, fΓ = f

(1)
Γ + f

(2)
Γ .
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We can find an approximation of the coupled problem as
A

(i)
II u

(i)
I +A

(i)
IΓu

(i)
Γ = f

(i)
I , i = 1, 2

u
(1)
Γ = u

(2)
Γ =: uΓ

A
(1)
ΓI u

(1)
I +A

(1)
ΓΓu

(1)
Γ − f

(1)
Γ = −

(
A

(2)
ΓI u

(2)
I +A

(2)
ΓΓu

(2)
Γ − f

(2)
Γ

)
=: λΓ,

(6.9)

which is equivalent to (6.6). Clearly if we know the boundary values uΓ or the approximate

normal derivative λΓ the approximate solution inside the domains can be computed by

separately solving two Dirichlet or two Neumann problems, respectively. Two well-known

corresponding families of domain decomposition algorithms are the Neumann-Neumann

and FETI methods. In this article we focus on the former.

To prepare our formal analysis the first standard step of iterative substructuring

methods is to eliminate the unknowns u(i)I with a block factorization

A =


I 0 0

0 I 0

A
(1)
ΓIA

(1)
II

−1
A

(2)
ΓIA

(2)
II

−1
I


A

(1)
II 0 A

(1)
IΓ

0 A
(2)
II A

(2)
IΓ

0 0 S

 ,
where I is the identity matrix and S = AΓΓ − A

(1)
ΓIA

(1)
II

−1
A

(1)
IΓ − A

(2)
ΓIA

(2)
II

−1
A

(2)
IΓ is the

Schur complement relative to the unknowns on Γ. The corresponding linear system is

given by A
(1)
II 0 A

(1)
IΓ

0 A
(2)
II A

(2)
IΓ

0 0 S

u =

f
(1)
I

f
(2)
I

gΓ

 ,
where gΓ = fΓ − A

(1)
ΓIA

(1)
II

−1
f
(1)
I − A

(2)
ΓIA

(2)
II

−1
f
(2)
I . This can be further reduced to the

Schur complement system

SuΓ = gΓ. (6.10)

The Schur complement S is a sparse matrix that has the same sparsity pattern as the

graph Laplacian of the underlying graph G [173, 207]. The fact that AΓΓ and fΓ can be

subassembled from local contributions shows that the same holds for S and gΓ. Indeed,

if for i = 1, 2 we define the local Schur complements by

S(i) := A
(i)
ΓΓ −A

(i)
ΓIA

(i)
II

−1
A

(i)
IΓ

and

g
(i)
Γ = f

(i)
Γ −A

(i)
ΓIA

(i)
II

−1
f
(i)
I ,

we have that S = S(1)+S(2) and gΓ = g
(1)
Γ + g

(2)
Γ . We recall the elementary fact that the

Schur complement of an invertible block w.r.t. a positive definite matrix is also positive

definite.
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Let us define the discrete version of the Neumann-Neumann iteration. Starting from

a cheap initial guess u0Γ, in an iteration first we solve the Dirichlet problems

(Di) A
(i)
II u

(i),k+ 1
2

I +A
(i)
IΓu

k
Γ = f

(i)
I , i = 1, 2,

then using the approximation rΓ for the flux residual (see the third row of (6.9)) we solve

the Neumann problems

(Ni)

[
A

(i)
II A

(i)
IΓ

A
(i)
ΓI A

(i)
ΓΓ

][
w

(i),k+1
I

w
(i),k+1
Γ

]
=

[
0

rΓ

]
, i = 1, 2.

Finally, we update the interface values as

uk+1
Γ = ukΓ − θ

(
w

(1),k+1
Γ + w

(2),k+1
Γ

)
.

Eliminating the variables interior to the subdomains of both Dirichlet and Neumann

problems shows that

uk+1
Γ − ukΓ = θ

(
S(1)−1

+ S(2)−1
)(
gΓ − SukΓ);

that is, the Neumann-Neumann algorithm is a preconditioned Richardson iteration for

(6.10) using S(1)−1
+S(2)−2 as a preconditioner. Often an improved convergence rate can

be reached if a further diagonal scaling is used based on the degrees of the vertices on Γ

leading to a preconditioner of the form

D−1
Γ

(
S(1)−1

+ S(2)−1
)
D−1

Γ ,

where the diagonal elements of DΓ are dv for v ∈ Γ. We note that we formulate this

Richardson iteration mainly for historical reasons and to avoid the inconvenience of ex-

pressing the update of uΓ in the case of a more sophisticated iteration. However, in

practice, one should instead use a preconditioned conjugate gradient (PCG) or minimal

residual method. Furthermore, the S(i) matrices and especially their inverses should usu-

ally not be formed, unless the solver is to be reused multiples times, since we only need

to know their effect when applied to a vector. Indeed, instead of multiplying with S(i)

(and in particular with the inverse of A(i)
II ) we solve a Dirichlet problem and instead of

multiplying with S(i)−1 we solve a Neumann problem. The complexity of each iteration

is O(mnE), where nE = maxe∈E ne.

Other well-known iterative substructuring methods can similarly be characterized by

finding a preconditioner for (6.10). For example, the Dirichlet-Neumann (or Neumann-

Dirichlet) corresponds to multiplying the equation with S(2)−1 (or S(1)−1). Then the
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preconditioned operator S(2)−1
S = I + S(2)−1

S(1) corresponds to solving a Dirichlet

problem on one subgraph and then solving a Neumann problem on the other.

If we partition G into many subgraphs a region is called floating if ∂Gi ∩ ∂G = ∅.

On floating subgraphs Neumann problems of certain elliptic equations, for example if

there is no potential, are not uniquely solvable. A possible solution is to use balancing

Neumann-Neumann methods, in which we choose a unique solution according to some

compatibility condition. In this case the subsequent proof have to be slightly modified,

see [197] for more details.

Finally, the use of domain decomposition was proposed in [173], where the Schur

complement system was solved with conjugate gradient method equipped with diagonal

or polynomial preconditioner. These preconditioners are obtained by truncating the

Neumann series expansion of

S−1 =
(
I −D−1

S (DS − S)
)−1

D−1
S =

∞∑
k=0

(
D−1
S (DS − S)

)k
D−1
S

to zeroth and first order, respectively, where DS is a diagonal matrix containing the

diagonal elements of S. While the assembly of S can be avoided, the diagonal DS needs

to be extracted, for example via probing techniques or approximated with randomized

methods [208, 209]. This means that preparing a diagonal or polynomial preconditioner

can be more expensive than the Neumann-Neumann preconditioner, but the complexity

of a single iteration is the same for all of them. Alternatively, diagonal preconditioning

can be performed with D−1
Γ instead of D−1

S . This diminishes the cost of preparing the

preconditioner but yields similar results, as in certain cases the Schur complement is

equal to the graph Laplacian of G, see [173, Theorem 4.3].

While usually the condition number of the stiffness matrix A is O
(
ĥ−2

)
and that of the

Schur complement S is O
(
ĥ−1

)
, the authors in [173] observed that for scale-free graphs

the condition number of S seems to be independent of ĥ and proportional to the maximum

degree. Furthermore, the dependence on the degree could be rectified with diagonal or

polynomial preconditioning. However, these are purely algebraic preconditioners without

the formalism of subdomains and without rigorous analysis.

Discrete harmonic functions

The space of discrete harmonic functions is an important subspace of finite element

functions and are directly related to the Schur complements and to the interface values

uΓ.
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Let us define for u, v ∈ Vh(G) the bilinear forms corresponding to the global stiffness

matrix A and local stiffness matrices Ai as

a(u, v) = u⊤Av =

N∑
i=1

a(i)(u, v) =

N∑
i=1

u
(i)⊤

I A(i)v
(i)
I .

A function u(i) defined on Gi is said to be discrete harmonic on Gi if

A
(i)
II u

(i)
I +A

(i)
IΓu

(i)
Γ = 0. (6.11)

Clearly such a function is completely defined by its values on Vi∩Γ and it is orthogonal, in

the ai(·, ·)-inner product, to the space Vh(G)∩H1
0 (Gi,Vi∩Γ), where H1

0 (G,VD) ⊂ H1(G)

is the Sobolev space of functions that vanish on VD ⊂ V. We denote the discrete harmonic

extension as u(i) =: Hi

(
u
(i)
Γ

)
.

We denote the space of global, piecewise discrete harmonic functions by Vh(Γ) ⊂

Vh(G), which consists of functions that are discrete harmonic on each subgraph. Based

on subassembly arguments a function u is in Vh(Γ) if and only if AIIuI + AIΓuΓ = 0

and such a function is completely determined by its values on the interface Γ. The space

Vh(Γ) is orthogonal, in the a(·, ·)-inner product, to each space Vh ∩H1
0 (Gi,Vi ∩ Γ). We

denote the piecewise discrete harmonic extension as u =: H(uΓ).

In the subsequent analysis we will also rely on the bilinear form defined by the Schur

complement given by

s(u, v) = u⊤ΓSvΓ.

We recall that s(·, ·) is symmetric and coercive.

The preceding argument shows that Neumann-Neumann methods can be regarded as

computing the global, piecewise discrete harmonic part of the solution of (6.4) by defining

an appropriate preconditioner for the Schur complement S. Before we investigate the

convergence we must show the equivalence of the interface space, the Schur complement

energy and the space of piecewise discrete harmonic functions in H1. The following

Lemma shows the energy equivalence of the Schur complement systems and piecewise

discrete harmonic functions.

Lemma 6.3.1. Let u(i)Γ be the restriction of a finite element function to Vi ∩ Γ. The

discrete harmonic extension u(i) = Hi

(
u
(i)
Γ

)
satisfies

si
(
u(i), u(i)

)
= ai

(
u(i), u(i)

)
= min

v(i)|Vi∩Γ=u
(i)
Γ

ai
(
v(i), v(i)

)
.

Similarly, if uΓ is the restriction of a finite element function to Γ, the piecewise discrete

harmonic extension u = H(uΓ) satisfies

s(u, u) = a(u, u) = min
v|Γ=uΓ

a(v, v). (6.12)
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Proof. The statement follows directly from the definition of (piecewise) discrete harmonic

functions in (6.11).

We define di =
∣∣Vi ∩ Γ

∣∣ to be the number of vertices of Gi on the interface and the

norm ∥·∥Vi∩Γ = ∥·∥Rdi . Let Ai,max : H2(Gi) 7→ L2(Gi) be the operator corresponding to

Gi inherited from G with D(Ai,max) = H2(Gi) and define B̃i : D(Ai,max) 7→ Ỹi by

B̃iu =

[ (
IvU(v)

)
v∈Vi(

C(v)⊤U ′(v)
)
v∈Vi\Γ

]
, D(B̃i) = D(Ai,max),

where Ỹi ≂ R2ni−di . Finally, we define the continuous operator Ãi : H
2(Gi) 7→ L2(Gi) as

Ãi := Ai,max, D(Ãi) :=
{
u ∈ D(Ai,max) : B̃iu = 0Ỹi

}
.

That is, a function u ∈ D(Ãi) is continuous and satisfies the Neumann-Kirchhoff condi-

tion at the vertices but not necessarily on the interface Γ. A function u ∈ D(Ãi) is said

to be harmonic on Gi if u ∈ Ker(Ãi). A function u ∈ H2(G)∩C(G) is said to be piecewise

harmonic if u
∣∣
Gi

∈ D(Ãi) ∩ Ker(Ãi). Similarly to the discrete case, such a function is

expected to be completely determined by the values at Vi ∩ Γ. The following lemma

establishes the existence of the harmonic extension and the equivalence of the interface

space and the space of piecewise harmonic functions in H2(Gi).

Lemma 6.3.2. For given boundary data uΓ there exists a unique harmonic extension

into Gi, and consequently a unique piecewise harmonic extension u into G. Moreover,

there exist positive constants c and C such that

c∥uΓ∥2Vi∩Γ ≤ ∥u∥2H2(Gi)
≤ C∥uΓ∥2Vi∩Γ.

Proof. Let us define the L : H2(Gi) 7→ Rdi trace operator. Then for any v ∈ H2(Gi) we

have that

∥Lv∥Vi∩Γ ≤ ∥v∥L∞(Gi)
≤ c∥v∥H1(Gi)

≤ c∥v∥H2(Gi)
. (6.13)

Clearly A0 := Ãi

∣∣
Ker(L)

is the generator of a strongly continuous semigroup [205], see also

[210, Section 6.5.1]. We have that 0 is in the resolvent set of A0 since A0 is invertible,

and thus [211, Lemma 1.2] shows that L
∣∣
Ker(Ãi)

is an isomorphism of Ker(Ãi) onto Rdi ;

that is, the following inequality holds

∥u∥H2(Gi)
≤ C∥Lu∥Vi∩Γ,

and the proof is finished.
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Finally, the following lemma shows that a similar statement holds for discrete har-

monic functions.

Lemma 6.3.3. Let u be a piecewise discrete harmonic function on G. Then there exist

positive constants c and C independent of ĥ such that

c∥uΓ∥2Vi∩Γ ≤ ∥u∥2H1(Gi)
≤ C∥uΓ∥2Vi∩Γ.

Consequently, for some positive constants c̃ and C̃ independent of ĥ, we have that

c̃
N∑
i=1

∥uΓ∥2Vi∩Γ ≤ s
(
u, u

)
≤ C̃

N∑
i=1

∥uΓ∥2Vi∩Γ. (6.14)

Proof. Let u be piecewise discrete harmonic on G with boundary data uΓ. The first

inequality follows from (6.13). For the second inequality, let us consider the harmonic

extension v ∈ H2(Gi) of uΓ into Gi, which uniquely exists in light of Lemma 6.3.2.

Furthermore, the function v is continuous and the standard linear interpolation operator

Ih can be used resulting in the finite element function Ihv ∈ H1(Gi). Then by (6.12) we

have that

∥u∥H1(Gi)
≤ Cai(u, u) ≤ Cai(Ihv, Ihv) ≤ C∥Ihv∥H1(Gi)

,

since the H1(Gi) norm is equivalent with the ai(·, ·)-norm. Furthermore,

∥Ihv∥H1(Gi)
≤ ∥Ihv − v∥H1(Gi)

+ ∥v∥H1(Gi)
≤ (Cĥ+ 1)∥v∥H2(Gi)

≤ C∥uΓ∥Vi∩Γ.

The third inequality is shown in the proof of [173, Theorem 3.2] and in the last inequality

we used Lemma 6.3.2.

Let us define d = |Γ|, the norm ∥·∥Γ = ∥·∥Rd and dmax = maxv∈Γ
∣∣{j : v ∈ Vj

}∣∣. Then

(6.14) implies that

c∥uΓ∥2Rd ≤ s(u, u) ≤ Cdmax∥uΓ∥2Rd .

The following statement is an immediate consequence.

Corollary 6.3.4. The condition number of the Schur complement S is uniformly bounded

in ĥ and satisfies the explicit bound κ(S) ≤ Cdmax, for some C > 0 that is independent

of ĥ.

We note that this phenomenon was already observed, although not rigorously inves-

tigated, for scale-free graphs in [173].
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6.3.3 Schwarz iteration

With the above auxiliary results we can reformulate the Neumann-Neumann method as

an abstract additive Schwarz iteration. We choose V = Vh(Γ) and Vi = Vi(Γ), where

Vi(Γ) ⊂ Vh(Γ) denotes the subspace of discrete harmonic functions that vanish on Γ\Vi.

For the bilinear forms we set b(u, v) = s(u, v) on V × V and

bi(u, v) = si
(
Ih(νiu), Ih(νiv)

)
= ai

(
Hi(νiu),Hi(νiv)

)
on Vi × Vi. The counting functions νi are defined on Γ ∪ ∂G by

νi(v) =


∣∣{j : v ∈ Vj

}∣∣, v ∈ (Γ ∩ Vi) ∪ ∂Gi,

0, v ∈ Γ\Vi.

The pseudoinverses ν†i of the νi functions, given as

ν†i (v) =


ν−1
i (v), v ∈ (Γ ∩ Vi) ∪ ∂Gi,

0, v ∈ Γ\Vi,

define a partition of unity on Γ ∪ ∂G; that is,

N∑
i=1

ν†i (v) ≡ 1, v ∈ Γ ∪ ∂G.

Finally, the operators Ti : V 7→ Vi are defined by

bi(Tiu, v) = b(u, v), v ∈ Vi,

and the operator T by

T = T1 + T2 + · · ·+ TN . (6.15)

Proposition 6.3.5. The operator T defined by (6.15) is invertible and for all u ∈ V the

following inequality holds

γ0s(u, u) ≤ s(Tu, u) ≤ γ1ρ(E)s(u, u),

where γ0 and γ1 are constants independent of ĥ, where E = {ϵij}Ni,j=1 is defined element-

wise by

ϵij =


1, Vi ∩ Vj ̸= ∅,

0, otherwise.

Proof. We have to establish the three estimates of Theorem 6.2.1.
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Assumption (i): For u ∈ V we choose ui = Ih
(
ν†i u
)
, i = 1, 2, . . . , N . Clearly ui ∈ Vi

and u =
∑N

i=1 ui holds, and

bi(ui, ui) = ai(Hiu,Hiu) = ai(u, u).

By subassembly, this shows that

N∑
i=1

bi(ui, ui) = a(u, u) = s(u, u) = b(u, u).

Assumption (ii): For ui ∈ Vi we have that

s(ui, ui) = si(ui, ui) +
∑

j:Vj∩Vi ̸=∅

sj(ui, ui).

Using Lemma 6.3.3 shows that si(ui, ui) ≤ C∥ui∥Vi∩Γ and that

sj(ui, ui) ≤ C∥ui∥2Vj∩Γ ≤ C∥ui∥2Vi∩Γ,

since ui ∈ Vi, and thus ui(x) = 0 for x ∈ (Vj ∩Γ)\Vi. Using Sobolev’s embedding we can

further bound ∥ui∥2Vi∩Γ as

∥ui∥2Vi∩Γ ≤ C∥ui∥2L∞(Gi)
≤ C∥ui∥2H1(Gi)

≤ Cai(ui, ui)

= Csi(ui, ui) ≤ Csi
(
Ih(νiui), Ih(νiui)

)
= Cbi(ui, ui).

Combining the above yields b(ui, ui) ≤ Cbi(ui, ui) for ui ∈ Vi as required.

Assumption (iii): It is easy to see that

ϵij =


1, Vi ∩ Vj ̸= ∅,

0, otherwise,

as Vi ∩ Vj ̸= ∅ if and only if Vi ∩ Vj ̸= ∅.

This shows that the condition number of the preconditioned system is independent

of ĥ. We note that ρ(E) ≤ dmax via Gershgorin’s theorem. Finally, we state our main

theorem.

Theorem 6.3.6. The Neumann-Neumann algorithm converges to the solution of (6.6)

with a geometric rate that is independent of ĥ.

Proof. The statement follows from Proposition 6.3.5 and Lemma 6.3.3.

Remark 6.3.7. We note that in a multidimensional setting one usually assumes that the

substructures and the elements are shape regular, meaning that the number of neighbours
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of any subdomain, and thus ρ(E), is bounded by a constant. Furthermore, the verifi-

cation of assumption (i) and (ii) is more challenging, and accordingly the estimates on
s(Tu,u)
s(u,u) are more complicated. In particular, usually polylogarithmic bounds of the form

h̃−2
(
1 + log h̃

ĥ

)2
appear, where h̃ denotes the size of a typical subdomain, see [206, 197].

The main technical difficulty is the fact that the boundary spaces of the domains are

equipped with the H
1
2 Sobolev-Slobodeckij seminorm, which cannot be so straightforwardly

estimated as in our case.

6.4 Numerical experiments

In this section we introduce and discuss some numerical experiments. The C++ imple-

mentation mainly relies on Eigen 3.4.0 and is compiled with GCC 13.2.1. The graphs

are generated with NetworkX 3.1 in Python 3.11.6. The experiments have been per-

formed on a computer with Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz and 16 GB of

RAM. The Schur complement problems are solved respectively without preconditioning,

with degree preconditioning, with diagonal preconditioning, with first-degree polynomial

preconditioning and finally, with Neumann-Neumann preconditioning. While our con-

vergence theory holds for arbitrary (nonoverlapping) decomposition, in all experiments,

we completely decompose the quantum graph so that each subgraph consists of a single

edge. Despite this, to anticipate more general decompositions, we solve the subproblems

with Cholesky decomposition without assembling the S(i) matrices or their inverses. The

DS diagonal is extracted in a naive way by solving n equations where the right-hand

sides are set to unit vectors of Rn. We set the length of each edge to 1. Furthermore,

the ce conductances are set to sigmoid functions, the pe potentials are set to double-well

functions and the fe forcing is set as a short shock at the start of the edges; that is, we

have

ce(x) =
1

1 + exp
(
−25(x− 0.5)

) + 1,

pe(x) =
0.05

0.22
(
|x− 0.5| − 0.2

)2
+ 0.05,

fe(x) = exp
(
−1000x2

)
.

The initial guess is set to the zero vector and the iteration is stopped after the relative

residual norm reduces below the square root of the machine precision ε ≈ 2.2204 · 10−16.

While Corollary 6.3.4 shows that condition number of the Schur complement is inde-

pendent of ĥ, it might still increase as the number of vertices, and thus the maximum
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degree grows, as indicated by the results below. Interestingly, this dependence is al-

ready somewhat mitigated with a diagonal preconditioner and seemingly eliminated with

a polynomial or Neumann-Neumann preconditioner. Instead, the condition number of

these preconditioners seem to only scale with the average degree. In fact, without We

found that for small graphs with |V| ≪ 1000 solving the Schur complement system with-

out preconditioning is the fastest independently of ĥ, but for larger graphs preconditioning

is more and more crucial as log2
(
ĥ−1

)
increases.

6.4.1 Dorogovtsev-Goltsev-Mendes graphs

The first set of test graphs are a family of scale-free planar graphs introduced in [212],

defined iteratively as follows. The graph DGM(0) is the path graph with two vertices. The

graph DGM(k + 1) is generated from DGM(k) by adding a new vertex for each edge and

connecting it with the endpoint of the edge. The graph DGM(k) has |V| = 3
2

(
3k + 1

)
and

|E| = 3k. Figure 6.1 shows the first few graphs of this iteration. First we set log2
(
ĥ−1

)
= 6

and apply PCG to the Schur complement system of DGM graphs of increasing size. Table

6.1 shows the number of necessary iterations without preconditioning and with degree,

diagonal, polynomial and Neumann-Neumann preconditioning. Table 6.2 shows the same

for DGM(7) with increasing log2
(
ĥ−1

)
.

Figure 6.1: The graphs DGM(1), DGM(2) and DGM(3).
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Graph No prec. Degree Diagonal Polynomial Neumann-Neumann
DGM(5) 26 14 13 9 10
DGM(6) 35 14 13 11 11
DGM(7) 53 15 15 12 12
DGM(8) 73 19 16 13 14
DGM(9) 90 20 19 13 14

Table 6.1: Number of PCG iterations for the Schur complement systems of

Dorogovtsev-Goltsev-Mendes graphs of increasing size with log2
(
ĥ−1

)
= 6.

log2
(
ĥ−1

)
No prec. Degree Diagonal Polynomial Neumann-Neumann

4 53 15 15 12 12
6 53 15 15 12 12
8 53 15 15 12 12
10 53 15 15 12 12
12 59 15 15 12 12

Table 6.2: Number of PCG iterations for the Schur complement system of

DGM(7) with increasingly finer meshes.

6.4.2 Barabási-Albert model

Next, we test our method on scale-free graphs with |E| ≈ 2|V| generated using the

Barabási-Albert model [213]. Unlike the DGM graphs, which are generated determin-

istically, the Barabási-Albert model has randomness involved, and thus the following

results have to be understood in a probabilistic sense.

Again, we set log2
(
ĥ−1

)
= 6 and apply PCG to the Schur complement system of

scale-free graphs of increasing size. Table 6.3 shows the number of necessary iterations

without preconditioning and with degree, diagonal, polynomial and Neumann-Neumann

preconditioning. Table 6.4 shows the same for SF(1000) with increasing log2
(
ĥ−1

)
.

Graph No prec. Degree Diagonal Polynomial Neumann-Neumann
SF(100) 39 25 25 13 13
SF(500) 63 28 28 15 15
SF(1000) 74 29 29 15 15
SF(2000) 90 28 28 15 15
SF(5000) 106 28 28 14 14

Table 6.3: Number of PCG iterations for the Schur complement systems of

scale-free graphs of increasing size with log2
(
ĥ−1

)
= 6.
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log2
(
ĥ−1

)
No prec. Degree Diagonal Polynomial Neumann-Neumann

4 73 29 29 15 15
6 74 29 29 15 15
8 74 29 29 15 15
10 75 29 29 15 15
12 74 29 29 15 15

Table 6.4: Number of PCG iterations for the Schur complement system of

SF(100) with increasingly finer meshes.

6.5 Conclusions

A Neumann-Neumann type domain decomposition method was developed for elliptic

problems on metric graphs. We have defined the iteration in the continuous and discrete

setting and rewritten the latter as a preconditioner for the Schur complement system. The

discrete iteration was then formulated as an abstract additive Schwarz iteration and we

proved that it converges to the finite element solution with a rate that is independent of

the finite element mesh size. Moreover, we have shown that the condition number of the

Schur complement is also independent of the finite element mesh size and depends on the

maximum degree. We implemented the algorithm along with a diagonal and polynomial

preconditioners and tested them on various examples. The numerical results confirm our

theoretical results regarding the condition number of the Schur complement and that

of the Neumann-Neumann preconditioner. Moreover, the numerical results suggest that

the condition number of the Schur complement scales with the maximum degree, while

the polynomial and Neumann-Neumann preconditioners seem to scale with the average

degree.
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Chapter 7

Conclusions

7.1 New scientific results

Thesis I.

I have shown that a class of multidimensional nonlocal conservation laws

are well-posed for a broad class of flux functions and initial data, using the

theory of nonlinear operator semigroups. I have also shown that the unique

mild solution satisfies a Kruẑkov-type nonlocal entropy inequality, along with

several desirable qualitative properties.

The results are described in detail in Chapter 3.

Related publication: [221].

Thesis II.

I have proven new results regarding two important classes of kinetic dynamical

systems.

Thesis II.a

I have introduced generalized ribosome flows (GRFs) by generalizing the

graph structure and the transition rate functions of existing ribosome flow

models in the literature. I have shown that GRFs can be interpreted as

finite volume approximations of nonlocal conservation laws. I have proven

that GRFs with a strongly connected compartmental structure are asymptot-

ically stable relative to the level sets of the linear conserved quantity. I have

proven that strongly connected GRFs with time-varying transition rates are

persistent and input-to-state stable.

153



154 CHAPTER 7. CONCLUSIONS

The results are described in detail in Chapter 4.

Related publications: [216, 129, 218, 219, 220].

Thesis II.b

I have shown that delayed complex balanced reaction networks with non-mass

action kinetics are quasi-thermostatic; that is, each positive stoichiometric

compatibility class contains a unique equilibrium points. I have shown that

delayed complex balanced reaction networks with non-mass action kinetics

are quasi-thermodynamic; that is, each positive equilibrium is asymptotically

stable relative to its compatibility class.

The results are described in detail in Chapter 2.

Related publication: [226].

Thesis III.

I have proposed an efficient finite volume discretization of the multidimen-

sional PIDE model of gene regulatory networks that result in a kinetic system.

I have shown that the semidiscretized model has a unique steady-state, which

is globally asymptotically stable. I have used the semidiscretized model to de-

sign novel population level exogenous controllers that can drive the expected

value of the system to desired values.

The results are described in detail in Chapter 5.

Related publications: [222, 225, 228].

Thesis IV.

I have developed a Neumann-Neumann type nonoverlapping domain decom-

position method for elliptic problems on metric graphs. I have proven that the

iteration converges to the finite element solution with a geometric rate that

is independent of the mesh size, via the theory of abstract additive Schwarz

methods.

The results are described in detail in Chapter 6.

Related publication: [224].

7.2 Future plans

The above results can serve as the bases for several further research directions, including:
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• The results of Chapter 2 can be used to investigate the stability of complex balanced

systems with distributed delays. A major shortcoming of the model class is that

a given species has a fixed reaction rate function associated with it. Thus, it is

not possible, for example, that a species is involved in a reaction with mass-action

kinetics and involved in an other reaction with Hill kinetics. To our knowledge, this

is not handled in the literature yet, thus it would be an important extension.

• The results of Chapter 4 can be used to investigate ribosome flow models with not

strongly connected compartmental structure, or with discrete delays or distributed

delays. Flows open to the environment can also be investigated and used to solve

control problems motivated by real-world examples.

• The results of Chapter 5 can be used to implement the finite volume discretization

for gene regulatory networks with more than two proteins. The discretization can

also be used for model reduction and further control.

• The results of Chapter 6 can be used to implement the Neumann-Neumann iteration

for decomposition where the domains are not edges. The theoretical results can be

used to prove the convergence of overlapping decompositions. These iterations can

be used to solve further problems, for example, the efficient generation of Gaussian

Whittle-Matérn fields on metric graphs. The key problem there is white noise

realization, since that requires the assembly of the mass matrix and its Cholesky

decomposition. This could be mitigated with the lumped mass method, where

a diagonal approximation of the mass matrix is used, in which case white noise

generation can be performed domain-wise.
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