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1. Bevezetés

1.1. Nemnegativ és kinetikus rendszerek

A nemnegativ rendszerek a dinamikus rendszerek egy fontos részosz-
talyat alkotjak, melyeket az a tulajdonsag jellemez, hogy nemnegativ
kezdeti érték esetén a megoldas is nemnegativ marad. Ezen rendsze-
rek elméleti vizsgalatat tobbek kozott kémiai, biologiai, populécidédina-
mikai és jarvanyterjedési modellek motivaljak, ahol az allapotvaltozok
természetes modon nemnegativ értékiiek az eredeti fizikai koordinata-
rendszerben [17].

A kompartmentalis modellek kiilonb6zs egyedek (példaul moleku-
lak, részecskék, jarmivek, emberek vagy informécio) eloszlasat és ids-
beli terjedését irjak le diszkrét taroloegységek (kompartmentek) kozott
[17]. Ezek a kompartmentek leirhatnak fizikailag elkiilonitett alrend-
szereket, példaul osszekapcsolt tartélyokat, vagy absztrakt allapotokat,
mint példaul egy betegség kiilonb6zd stadiumai egy jarvanyterjedési
modellben. Ennek megfelelen a kompartmentalis rendszerek alkalma-
zési teriilete rendkiviil széles, beleértve a (bio)kémiat, farmakokineti-
kat, okologiat, jarvanytant és kozlekedési modellezést is. Mivel a kom-
partmentalis modellek allapotvaltozoi anyagmennyiségeket, kiilonféle
objektumok szamét, vagy koncentraciokat irnak le, ezek a rendszerek
természetiiknél fogva a nemnegativ rendszerek osztalyaba tartoznak.

A kompartmentalis modellek alapvets tulajdonsagait széleskortien
tanulmanyozték, kiilondsen a megfigyelhet&ség, iranyithatosag, reali-
zalhatosag és identifikilhatosag szempontjabol [18]. A lineéris kom-
partmentalis rendszerek és analitikus megoldasaik vizsgélata kinetikus
kontextusban is megtortént, mig az altalanos, nemlinearis kompartmen-
talis modellek kvalitativ tulajdonsagait, példaul az egyensulyi struktu-
rakat és stabilitast, tobbek kozott [19] targyalja. A kompartmentalis
modellek leiré képessége lehetévé teszi Osszetett dinamikai jelenségek
modellezését is [18]. A hozzajuk téarsithat6 iranyitott grafstrukturak
(kompartmentalis grafok) betekintést nytjtanak a rendszerek dinami-
kajaba [19].

A kompartmentalis modellekhez szorosan kapcsolodik a kémiai re-
akciohalozatok (CRN-ek) vagy kinetikus rendszerek osztalya. A CRN-
ek olyan dinamikus modellek, amelyekben absztrakt kémiai komplexek
kozotti atalakulasokat (reakciokat) definidlunk [20]. Eredetileg a fizi-
kai kémidban alkalmaztak &ket, azonban a CRN-ek sokkal szélesebb
korti, nem kémiai jellegii folyamatok leirdasara is alkalmasak. A reak-



ciohalozatok alkalmazasi teriilete tehét messze talmutat a (bio)kémiai
alkalmazésokon: altalanos nemlinearis dinamikai rendszerek lefrasara
is szolgalnak, amelyek képesek tobbek kozott tobb egyensilyi allapot,
nemlinearis oszcillaciok, hatarciklusok vagy akar kaotikus viselkedés
elgallitasara is [21]. Sz&mos kompartmentalis modell, példaul popu-
laciédinamikai vagy epidemiolégiai rendszerek, természetes modon at-
irhato kinetikus forméba, és sok nem-kémiai modell is algoritmikusan
atalakithato reakciohalozattéa [22].

A kémiai reakciohéalozatok elmélete mély eredményeket ért el a halo-
zat szerkezete és kvalitativ dinamikéja kdzotti kapcsolatra vonatkozoan
[20]. Ezen elmélet egyik kozponti problémaja a perzisztencia vizsgéla-
ta, amely kulcsfontossagi a komplex kiegyensilyozott halozatok glo-
balis aszimptotikus stabilitdsanak bizonyitasaban. Ezekben a rendsze-
rekben az egyensilyi &llapotban minden komplexbe bemend reakciok
Osszesitett sebessége megegyezik a kimend reakciokéval [23]. A tomeg-
hatés kinetikdju CRN-ek stabilitdasvizsgalatat leggyakrabban entropi-
aszer( logaritmikus Ljapunov-fiiggvényekkel végzik [24]. A kémiai re-
akcidhalozatok elméletének egy jelentGs sejtése, a ,Globalis Attraktor
Sejtés” szerint a komplex kiegyenstulyozott kinetikus rendszerek a nem-
negativ ortansban globalisan stabilak [25]. A sejtést bebizonyitottak
egy erés komponensbdl 4llo reakciograffal rendelkezé reakciohéalézatok-
ra [23]. Tovabbi stabilitasi eredmények is sziilettek nulla-deficienciaju
halézatokra, amelyek tulmutatnak a tomeghatas kinetikan, lehetévé té-
ve 1d6fiiggs reakciosebességi egyiitthatok és altalanositott Ljapunov-
fiiggvények hasznalatat [26]. A riboszomaaramlasi modellek stabili-
tasvizsgalata CRN-reprezentaciokon keresztiil szintén fontos kutatési
iranyként mertilt fel [27, 28].

1.2. Megmaradasi torvények

A lokalis megmaradési és egyensilyi torvényeket széles korben alkal-
mazzak az aerodinamikaban, Euler-féle gazdinamikaban [29], forgalmi
modellezésben [30] és riboszomaéramlasi rendszerek vizsgalataban [28].
Az utobbi idében e modellekbe egyre gyakrabban épitik be a nemlo-
kalitast annak érdekében, hogy a valosdghoz kézelebb all6 dinamikat
irjanak le. Egy elterjedt megkozelités szerint a nemlokalis sebességet
térbeli konvoluciéval definialjak, amelyet példaul ellatasi lanc modellek-
ben [31] és forgalomaramlasi rendszerekben [32] alkalmaztak. Ugyanak-
kor bizonyos nemlokalis modellek nem 6rzik meg a monotonitast, vagy
megsértik a maximumelvet. E problémak kezelése érdekében alternativ



magfiiggvény alapi megoldasokat is javasoltak [33, 34]. A nemlokalis
térbeli modellek kozé tartozik példaul a peridinamika is, amelyhez szé-
mos 1j elméleti és alkalmazott eredmény kapcsolodik [35]. A parinter-
akciés nemlokalis modellek egyik f6 elénye, hogy megfelelg hataratme-
net (a nemlokalis horizont eltiinése) esetén visszavezethetdk a klasszikus
lokalis modellekre [36] - ez a tulajdonsag mas nemlokalis modelleknél
nem feltétleniil teljesiil. Ezen el6nytknek koszonhetSen a nemlokalis
modelleket széles korben alkalmazzak a peridinamika elméletében [37],
valamint a nemlokalis Allen—Cahn-egyenlet megfogalmazasaban is [38].

1.3. Kvantumgrafok

Az elmilt évtizedekben a metrikus grafokon értelmezett differencialope-
ratorok - az tigynevezett kvantumgrafok - szdmos alkalmazési teriileten
jelentek meg, kiilondsen olyan kvézi-egydimenzios jelenségek modellezé-
sénél, mint példaul a szemcsés anyagok szupravezetése (39|, klasszikus
hullamterjedés hullamvezets halozatokban [40], idegsejtek membranpo-
tencialja [41], sejtdifferencialodas [42] vagy optimalis irdanyitasi prob-
lemak [43]. Ezek az alkalmazasok modellezési szempontbél gyakran
kompartmentélis modelleknek tekinthetSk, ahol a kiilonb6z6 egységek
kozotti Atmeneteket explicit modon parcialis differencialegyenletekkel
irjuk le.

2. A dolgozat célkittizései

A fenti bevezetés alapjan doktori kutatasom célkittizései az alabbiakban
foglalhatok Gssze.

2.1. Nemlokalis megmaradasi torvények

A kovetkezkben aldbbi alakt nemlokalis torvények félcsoportelméleté-
vel foglalkozunk:

118: ()l e
u(z,0) = uo(m), z € R,

/ Z 9il o) ~ ¢"(T*Bi<h)“’”)wi(ﬁi(h)) dh =0, in R" x Ry

1)
ahol Trpu(z,t) = u(z + h,t) a megmaradé u(z,t) mennyiség térbeli
eltolasat jeloli. A ¢; : R x R — R fluxusfiiggvények az elsé valto-
76 szerint novekvik, a masodik szerint csokkendk, tovabba teljesitik a



©i(0,0) = 0 egyenl6séget. Az 1 < k < n a részinterakciok szamat jelol,
mig a §; : R™ — R" leképezések az alabbi alakuak:

Bi(h) =Y hje;, h = (h1,ha,... hy), (2)
JEB;
ahol a B; C {1,2,...,n} nemiires és paronként diszjunk halmazok olya-

nok, hogy Ule B, = {1,2,...,n}, illetve e; a j-edik béazisvektor R"-
ben.

Az w; € LYR™) N L2(R™) magfiiggvények nemnegativak és telje-
sitik az ||(,uz (B:()) Hﬁl(w) = 1 egyenldséget. Tovabba feltessziik, hogy a
magfiiggvények kompakt tartojuak és teljesiil az alabbi feltétel valame-
lyike:

1. a tart6 szimmetrikus az origora és a megfiiggvény paros, vagy
2. atarto R} részhalmaza gy, hogy a lezértja tartalmazza az origot.

Céliink a fenti tobbdimenziés nemlokalis modell jol definialt volté-
nak bizonyitasa félcsoportelmélet segitségével. Mig egydimenzios eset-
ben ez méas modszerrel mar bizonyitott [44], a félcsoport létezése és a
tobbdimenzios altalanositas jelentds elérelépést jelent. Az eredménye-
ket részletesen a disszertéacio 3. fejezete ismerteti.

2.2. Altalanositott riboszomaaramlasi modellek di-
namikai analizise

Vegyiink az el6z6ekben targyalt nemlokalis megmaradasi torvény egy-
dimenzios valtozatat (1). A nemlokalitass formalisan egy véges diffe-
rencia becslés silyozott kontinuumatlagaval vezetjiik be. A korlatos és
nemnegativ w € L1(R) stlyfiiggvény tartoja (0,0), ahol § > 0, illetve
normaja [|lw|| g1 ) = 1. A modell az aldbbi alakban irhaté fel

5
F — F(7_
8p +/ (p77-hp) (T hpvp)w(h) dh = r— s

p(x,0) = po(x),

(3)

ahol p : Rx (0,T) — R, a megmaradé mennyiség adott térbeli pontban
és idgpillanatban, F' : R x R — R a fluxusfliggvény, tipp(x,t) = p(x £
h,t) térbeli eltolast jeldl és r,s : R x (0,¢) x Ry ~ R, rendre be- és
kimeneteket jelolnek.



A modell megfelels véges térfogat modszerrel torténd térbeli diszk-
retizalasa utan egy formalisan kinetikus rendszert kapunk. Jeldlje N;
és S; rendre az i-edik cellaban 1év6 részecskék és szabad helyek szamat.
Legyen f; és b; rendre az i-edik cella altal befolyasolt, illetve az i-edik
cellat befolyasolo cellak szamat. A részecskedramlas ekkor az alabbi
reakciokkal irhato le:

Nioj+ 8 2225 Ny + S, i=1,2,...,b; (4)
Ni+ Sipj 2295 Ny + S J=1,2,...f (5)
s, Biniy N, (6)
N, Feuiy g (7)

Az (4) reakci6 azt mutatja, hogy egy részecske (i — j)-edik cellabol az
i-edik cellaba dramlasakor a szabad helyek szdma csokken az i-edik cel-
laban és ng az (i — j)-edikben, mig a részecskék szama forditva valtozik.
Az (5) reakcié ugyanezt a folyamatot irja le az i-edik cellabol az (i+ j)-
edikbe. Végiil az (6) és (7) reakciok a be- és kimenetek viselkedését irja
le. Megjegyezziik, hogy az (4) és (5) redundansak, ha az Gsszes reakciot
egyszerre tekintjiik.

Ha f; = b; = 1 és a fluxusfiiggvény F(u,v) = u(l — v) alakd, azaz
tomeghatas-kinetikanak felel meg, akkor a fenti rendszer formalisan ek-
vivalens a szakirodalomban ismert riboszomaaramlasi modellel [27]. E
modellt harom szempontbdl altalanositjuk. Elgszor, altalanos grafszer-
kezetet engediink meg, bar az eredményeink tobbsége erésen 6sszeliggs
grafokra vonatkozik. Maéasodszor, a korabbiaknal sokkal altalanosabb
osztalyu atmeneti sebességeket engediink meg, feltéve, hogy ezek ki-
elégitik a fizikai megszoritasokbol kévetkezs feltételeket. Végiil id6ben
valtozo6 reakcidsebességi egyiitthatokat is vizsgadlunk. A perzisztencia-
és stabilitasi eredményeket részletesen a disszertacio 4. fejezete ismer-
teti.

2.3. Késleltetett komplex kiegyensilyozott reakcio-
halézatok stabilitasanak vizsgalata

Egy kinetikus model N darab X = {X;, Xs,..., Xn}-el jelolt egye-
det tartalmaz a hozzajuk tartozé vektorral X = [X; Xy ... Xn]|T
egyetemben. Az egyedek elemi reakcidlépéseken keresztiil atalakulnak:

Cr 55 Cw, k=1,2,..., M, (8)



ahol C}, = y,IX és Cp = y;—,X komplexeket jeldlnek, melyek sztochio-
metrikus egyiitthato vektora yi,yp € Zﬁ, k=1,2,...,M. Az (8)
atalakulés azt mondja, hogy egy elemi reakciélépés soran a C reagens
komplexbdl Cyr komplex keletkezik.

Legyen x(t) € Rf az X-hez tartozo allapotvektor ¢ > 0 idépillanat-
ban (kémiai kontextusban x az egyedek koncetracioit jeloli). Ekkor a
rendszer dinamikaja:

M
i= 3" K@)y —ml. 2(0) € RY, (9)
k=1

ahol Ky, : Rf — Ry a k-adik reakcio réta (sebesség) fiiggvénye, mely
meghatéarozza a reakci6 sebességét [20]. A reakcidsebességi egyiittha-
tokra szokasos feltételeket tesziink fel a lokalis megoldas 1étezésének és
egyértelmiiségének, illetve a nemnegativ ortans invariancidja édekében.

A reakciohalozatok elméletében kiemelt szerepet jatszik a tomgethatas-
kinetika, ahol a reakciosebességi egyiitthatok az alabbi alakd monom-
fliggvények:

IC;C(:I:):,K;kl_[ac[-y’“]i7 k=1,2,....,.M (10)

ahola k; > 0,i=1,2,..., M, szamok a reakcidsebességi egyiitthatok.
Tehét ebben az esetben a rendszer dinamikaja

i(t) = Z rrx? () (ywr — yr)- (11)
k=1

Az ilyen rendszerek stabilitasa jol vizsgalhato az alabbi entropiasze-
ri logaritmikus Ljapunov-fiiggvényekkel

N
V(z,T) = Z (mz log % +T; — «Ti)a (12)

i=1 v

ahol T a pozitiv egyenstlyi pont.

Célunk a létezd stabilitasi eredmények altaldnositdsa nem tomeg-
hatéas kinetikdkra, példaul Michaelis-Menten vagy Hill-tipust esetekre,
valamint diszkrét idgbeli késleltetéseket tartalmazo rendszerekre. A



késleltetések bevezetésének motivacidja példaul expliciten nem model-
lezett alhalozatok vagy reakcio-kaszkadok helyettesitése. Ennek érde-
kében alabbi formaju rendszereket vizsgalunk:

M

i) = > ke (v (2t = 7))y — 7" (2O)gi ), (13)

k=1

ahol 7, > 0 a diszkrét késleltetéseket jeloli és a vy : @_]: — @f fligg-
vényeket elemenként definialjuk a v; € C*(R) novekvd fiiggvények se-
gitségével. Ez a rendszerosztaly szamos fontos esetet tartalmaz, illetve
reakcidsebességi egyiitthatok szorzatalakja lehet6vé teszi a kiillonbozé
logaritmus azonossagok alkalmazéisat a szdmolasok soran.

A sejtésiink az volt, hogy ezek a rendszerek aszimptotikusan sta-
bilak a pozitiv sztéchiometriai osztalyokon beliil, hasonléan a tomeg-
hatara esethez. Az eredményeket részletesen a disszertacié 2. fejezete
ismerteti.

2.4. Génregulacios halézatok PIDE modellje

Egy n kiillonb6z6 génbdl allo génregulacios halozatot tekintiink, mely-
nek jelolése G = {DNA;,DNA,,...,DNA,}, illetve mely n darab
X = {X1,Xo,..., X, }-el jelolt fehérjét fejez ki. Az hozzajuk tartozo
mRNS-k jele M = {mRNA;,mRNA,,...., mRNA,}. A molekularis
biologia azon dogméjat kovetjiik, miszerint a gén utasitésait transzk-
ripcié utan az mRNS-ek tartalmazzék, melyekbdl transzlacio soran ke-
letkeznek a fehérjék. Az mRNS és fehérje molekulék folytonos szamat
rendre m,x € R™ jeloli. Az adott DN A;-hez tartozd promoterrdl fel-
tessziik, hogy aktiv és inaktiv allapotok koézott valtakozik, melyek jele
rendre DN A; on és DN A; of. Az atvaltast kiilonbo6z6 fehérjék kotsdé-
se szabalyozza. Az altalanossag kedvéért barmely fehérje serkentheti és
gatolhatja barmely gént. Ezt a mechanizmust altaldban tobbvaltozos
Hill-fiiggvényekkel irjuk le.

A fenti feltételek mentén a fehérjék szamanak p(t, x) strtségfiiggve-
nyének idgbeli valtozasat az alabbi parciélis integro-differencial egyen-
lettel (PIDE) irhatjuk le:

M Z o [Vi(z)zip(t, )]
(14)
+ Zkl / Bi(xi — yi)ci(ya)p(t, ys) dy;



ahol y; = & + (y; — zi)ei, a ¢; fliggvények altalanos Hill-fliggvények és
a (; fliggvények az alabbi alakban irhatok:

i(a) = i exp |- 2| - 000 (15)

A modell megfelels véges térfogat modszerrel torténd térbeli diszk-
retizalasa utan egy formaélisan kinetikus rendszert kapunk, melynek re-
akcidhélozata erGsen Osszekotott. Bar a f6 motivacionk a hatékony
szimulaci6 volt, a diszkretizalt modell kvalitativ analizisre is hasznos-
nak bizonyult. Az eredményeket részletesen a disszertacié 5. fejezete
ismerteti.

2.5. Tartomany dekompoziciés modszerek elliptikus
problémaéakra metrikus grafokon

Egy kvantumgraf olyan G metrikus graf, melynek éleit elliptikus dif-
ferencidloperatorral latjuk el, illetve a csticsokban bizonyos peremfel-
tételeket irunk els. A graf egy véges V csiicshalmazbol és egy véges
E élhalmazbol all. Feltételezziik, hogy a graf egyszert, azaz nem tar-
talmaz parhuzamos éleket vagy hurkokat. Jelolje n = |V| és m = |E]
rendre a csucsok és élek szaméat. A grafot iranyitottnak tekintjiik, azaz
minden élhez tartozik egy tetsz6leges és rogzitett irdny, igy meghatéro-
zato egy kezds és végestics is. Minden e € E élhez egy véges e € (0, 00)
hosszt és x € [0, £e] lokalis koordinatat rendeliink.

Egy G metrikus grafon értelmezett u fiiggvényt az éleken definialt
fiiggvények vektoraként definidlunk u = (ue)eck, €s egy megfelels szor-
zattér elemének tekintjiik. Jelolje ue(v) az u fiiggvény értékét a v € V
csticsban az e € E él mentén.

A csomoponti feltételek definidlasdhoz legyen E, a v € V csicesal
szomszédos élek halmaza, illetve d, = |E,| a v € V cstics fokszama.
Jelolje int(G) azon csucsok halmazat, melyekre d, > 1 és G a V\int(G)
halmazt. Olyan megoldasokat keresiink, melyek folytonosak G mentén
és kielégitik az alabbi Neumann-Kirchhoff feltételt:

Z ul(v) =0, vewv, (16)

ecE,

ahol a deriviltakat az élek csicsbol kifelé mutatod irdnyaban vessziik.
Valtozo a diffuzios egyiitthato vagy a vezetGképesség esetén, melynek
jele ¢ = (ce)eck, & Neumann-Kirchhoff feltétel az alabbi modon adhato



meg:

Z ce(V)ug(v) =0, veV. (17)
ecE,
Ha d, = 1, akkor ez a klasszikus Neumann-féle zérus peremfeltételt
adja.
A feltételek kompaktabb megadésahoz vezessiik be a kovetkezdket.
Legyen

Ulv) = (UE(V))eeEV € RN (18)
a v € V csucsbeli értékeket tartalmazo vektor és
1 -1
I, = € R —1)xdy, (19)
1 -1

Ekkor I,U(v) = 0 € R&~1 azt fejezi ki, hogy az adott csticsban minden
él mentén megegyeznek a fliggvényértékek. Hasonldéan definialjuk az

U'(v) = (u,(v)) cq, € R™, (20)

csicsbeli iranymenti derivaltak vektorat és a difftzids egytitthatok csacs-
értékét tartalmazo

o) = (cel (V) Ces(V) - Cop. (v)) e R (21)

sorvektort. Ekkor C(v)TU’(v) = 0 azt fejezi ki, hogy u kielégiti a
Neumann-Kirchhoff feltételt az adott csicsban.
Ekkor a kvantumgraf formélisan felirhaté a kovetkez6 rendszerrel:

—(Ceue)'(x) + pe(w)ue(z) = fe(w), z € (0,le), e€E, (a)
0=LU(v), v € int(G), (b)
0=C(v) U (v), vev, (o

(22)

ahol a p = (pe)eck fligvény potencialt reprezental.

Célunk az (22) megoldasanak véges elemes kozelitése. Az [45] cikk-
ben olyan specialis véges elemet vezettek be a csicsokban, mely csillag
alaku tartoval rendelkezik a csicshoz kapcsolodo élek mentén, bizto-
sitva ezzel a megoldas folytonossagat. Azonban a kapcsolodd métrixok
mérete gyorsan novekedhet, illetve elvesziti az egydimenziés problémak-
ra jellemzs savos szerkezetét. Céliink egy atfedésmentes tartomany de-
kompoziciés modszerk tervezése ezen héatranyok enyhitésére. Az ered-
ményeket részletesen a disszertacio 6. fejezete ismerteti.



3. Uj tudoméanyos eredmények

I. Tézis

Nemlinearis operator félcsoportok elméletével igazoltam, hogy
t6bbdimenziés nemlokalis megmaradasi torvények egy oszta-
lya jol definialt egy széles fluxusfiiggvény- és kezdetiérték-
osztaly esetén. Tovabba megmutattam, hogy az egyértelmi
enyhe megoldas kielégit egy nemlokalis Kruzkov-tipustu ent-
ropia egyenlétlenséget, illetve tobb el6nyos kvalitativ tulaj-
donsaggal rendelkezik.

Az eredményeket részletesen a 3. fejezet ismerteti.

Kapcsolodo publikacio: [7].

II. Tézis

Uj eredményeket bizonyitottam két fontos kinetikus rendszer-
osztalyra vonatkozodan.

II.a Tézis

Bevezettem az altalanositott riboszémaaramlasi modellek fo-
galmat, a meglévé irodalmi modellek grafszerkezetének és at-
meneti ratainak altalanositasaval. Megmutattam, hogy ezek
a modellek nemlokalis megmaradasi torvények véges térfoga-
tos kozelitéseiként is értelmezhetsk. Igazoltam, hogy erdsen
0sszekotott stuktiraval rendelkezd ribszorémaaramlasi model-
lek aszimptotikusan stabilak a linearis megmaradasi torvény
szintfeliileteire nézve. Tovabba bebizonyitottam, hogy idé-
ben valtozo reakcidsebességi egyiitthatokkal rendelkezd erésen
Osszefiigg6 modellek perzisztensek és bemenet-allapot stabi-
lak.

Az eredményeket részletesen a 4. fejezet ismerteti.

Kapcsolodoé publikaciok: [3, 4, 5, 6][13].

II.b Tézis

Igazoltam, hogy késleltetett, komplex kiegyenstlyozott, nem
tomeghatas-kinetikaji reakcidhalézatok kvazi-termostatikusak,
azaz minden pozitiv sztéchiometriai osztaly pontosan egy po-
zitiv egyensilyi pontot tartalmaz. Tovabba megmutattam,
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hogy ezek a rendszerek kvazi-termodinamikusak is, azaz min-
den pozitiv egyensilyi pont aszimptotikusan stabil a sajat
szt6chiometriai osztalyara nézve.

Az eredményeket részletesen a 2. fejezet ismerteti.

Kapcsolodo publikacio: [11].

ITI. Tézis

Hatékony véges térfogat moédszert terveztem egy t6bbdimen-
zi6s génregulacios halézatokat leir6 PIDE-modell diszkretiza-
lasara, mely formalisan kinetikus rendszert eredményez. Iga-
zoltam, hogy a térben diszkretizalt modellnek létezik pon-
tosan egy, globalisan aszimptotikusan stabil egyensulyi alla-
pota. Ezen modellt felhasznalva kiils6 valtozok idsfiiggveé-
nyeit kiszamitd szabalyozasi modszereket terveztem popula-
ci6szintd iranyitasokhoz, melyek képesek a modell altal leirt
molekulaszam-eloszlas varhato értékét elSirt célallapotba ve-
zetni.

Az eredményeket részletesen az 5. fejezet ismerteti.

Kapcsolodo publikaciok: [8][14, 16].

IV. Tézis

Kidolgoztam egy atfedésmentes Neumann-Neumann tipusi
tartomany dekompociziés modszert metrikus grafokon értel-
mezz elliptikus probléméakra. Absztrakt Schwarz-iteraciok se-
gitségével igazoltam, hogy a mdodszer linearis konvergenciase-
bességgel tart a véges elemes megoldashoz a felosztas finom-
sagatol fiiggetleniil.

Az eredményeket részletesen a 6. fejezet ismerteti.

Kapcsolodo publikacio: [10].

4. JovOBbeni tervek

A fenti eredmények tobb lehetséges tovabbi kutatasi irany alapjaul szol-
galhatnak, tobbek kozott:

o A 2. fejezet eredményei felhasznalhatok a komplex kiegyensu-
lyozott rendszerek stabilitasénak vizsgalatara eloszlott késlelte-
tések esetén. A vizsgilt modellosztéily egy jelentds korlatozasa,
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hogy egy adott anyagfajtahoz csak egy tipusu reakcié rata tar-
tozik. Ez példaul kizarja annak lehetdségét, hogy egy anyag egy
reakcioban tomeghatas, mig egy masikban Hill-kinetikat kdves-
sen. Tudomasunk szerint ilyen eredmények még nem talalhatok
az irodalomban, igy fontos kiterjesztés lenne.

A 4. fejezet eredményei kiterjeszthet6k nem erdsen Osszefiiggs
riboszomaédramlasi modellekre, valamint diszkrét vagy eloszlott
késleltetéseket is tartalmazo modellekre. A kornyezetre nézve nyi-
tott rendszerek is vizsgalhatok, kiilonféle valos alkalmazasok altal
motivalt szabélyozasi problémak megoldasa céljabol.

Az 5. fejezet eredményei alapjan megvalosithato a génreguléacios
hélézatok véges térfogatos diszkretizacioja ketténél tobb fehérjére
is. A diszkretizéacio lehetéséget ad modell redukciora és tovabbi
szabalyozasi eljarasok fejlesztésére.

A 6. fejezetben szerepld Neumann—Neumann iterécié implemen-
talhaté nem élalapu tartoméany dekompoziciéra is. Az elméleti
eredmények kiterjeszthetsk atfedd felosztasok konvergencidjanak
igazolasara. A modszer alkalmazhato példaul metrikus grafokon
értelmezett Whittle-Matérn tipusi véletlen mezsk hatékony ge-
neralasara. A 6 kihivas ezekben a modellekben a fehér zaj genera-
lasa, amelyhez sziikséges a tomegmatrix kiszamitasa és Cholesky-
felbontésa. Ez a probléma enyithets a tomegmatrix diagonélis
kozelitését alkalmazva, igy a fehér zaj tartomanyonként triviali-
san generalhato.
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