
Nemnegatív dinamika nemlokális
modellekben, reakcióhálózatokban és térbeli

kiterjesztésekben

PhD disszertáció tézisei

Szerző:
Vághy Mihály András

Témavezető:
Dr. Kovács Mihály, DSc

Társ-témavezető:
Dr. Szederkényi Gábor, DSc

Pázmány Péter Katolikus Egyetem
Információs Technológiai és Bionikai Kar

Roska Tamás Műszaki és Természettudományi Doktori
Iskola

2025





1. Bevezetés

1.1. Nemnegatív és kinetikus rendszerek

A nemnegatív rendszerek a dinamikus rendszerek egy fontos részosz-
tályát alkotják, melyeket az a tulajdonság jellemez, hogy nemnegatív
kezdeti érték esetén a megoldás is nemnegatív marad. Ezen rendsze-
rek elméleti vizsgálatát többek között kémiai, biológiai, populációdina-
mikai és járványterjedési modellek motiválják, ahol az állapotváltozók
természetes módon nemnegatív értékűek az eredeti fizikai koordináta-
rendszerben [17].

A kompartmentális modellek különböző egyedek (például moleku-
lák, részecskék, járművek, emberek vagy információ) eloszlását és idő-
beli terjedését írják le diszkrét tárolóegységek (kompartmentek) között
[17]. Ezek a kompartmentek leírhatnak fizikailag elkülönített alrend-
szereket, például összekapcsolt tartályokat, vagy absztrakt állapotokat,
mint például egy betegség különböző stádiumai egy járványterjedési
modellben. Ennek megfelelően a kompartmentális rendszerek alkalma-
zási területe rendkívül széles, beleértve a (bio)kémiát, farmakokineti-
kát, ökológiát, járványtant és közlekedési modellezést is. Mivel a kom-
partmentális modellek állapotváltozói anyagmennyiségeket, különféle
objektumok számát, vagy koncentrációkat írnak le, ezek a rendszerek
természetüknél fogva a nemnegatív rendszerek osztályába tartoznak.

A kompartmentális modellek alapvető tulajdonságait széleskörűen
tanulmányozták, különösen a megfigyelhetőség, irányíthatóság, reali-
zálhatóság és identifikálhatóság szempontjából [18]. A lineáris kom-
partmentális rendszerek és analitikus megoldásaik vizsgálata kinetikus
kontextusban is megtörtént, míg az általános, nemlineáris kompartmen-
tális modellek kvalitatív tulajdonságait, például az egyensúlyi struktú-
rákat és stabilitást, többek között [19] tárgyalja. A kompartmentális
modellek leíró képessége lehetővé teszi összetett dinamikai jelenségek
modellezését is [18]. A hozzájuk társítható irányított gráfstruktúrák
(kompartmentális gráfok) betekintést nyújtanak a rendszerek dinami-
kájába [19].

A kompartmentális modellekhez szorosan kapcsolódik a kémiai re-
akcióhálózatok (CRN-ek) vagy kinetikus rendszerek osztálya. A CRN-
ek olyan dinamikus modellek, amelyekben absztrakt kémiai komplexek
közötti átalakulásokat (reakciókat) definiálunk [20]. Eredetileg a fizi-
kai kémiában alkalmazták őket, azonban a CRN-ek sokkal szélesebb
körű, nem kémiai jellegű folyamatok leírására is alkalmasak. A reak-
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cióhálózatok alkalmazási területe tehát messze túlmutat a (bio)kémiai
alkalmazásokon: általános nemlineáris dinamikai rendszerek leírására
is szolgálnak, amelyek képesek többek között több egyensúlyi állapot,
nemlineáris oszcillációk, határciklusok vagy akár kaotikus viselkedés
előállítására is [21]. Számos kompartmentális modell, például popu-
lációdinamikai vagy epidemiológiai rendszerek, természetes módon át-
írható kinetikus formába, és sok nem-kémiai modell is algoritmikusan
átalakítható reakcióhálózattá [22].

A kémiai reakcióhálózatok elmélete mély eredményeket ért el a háló-
zat szerkezete és kvalitatív dinamikája közötti kapcsolatra vonatkozóan
[20]. Ezen elmélet egyik központi problémája a perzisztencia vizsgála-
ta, amely kulcsfontosságú a komplex kiegyensúlyozott hálózatok glo-
bális aszimptotikus stabilitásának bizonyításában. Ezekben a rendsze-
rekben az egyensúlyi állapotban minden komplexbe bemenő reakciók
összesített sebessége megegyezik a kimenő reakciókéval [23]. A tömeg-
hatás kinetikájú CRN-ek stabilitásvizsgálatát leggyakrabban entrópi-
aszerű logaritmikus Ljapunov-függvényekkel végzik [24]. A kémiai re-
akcióhálózatok elméletének egy jelentős sejtése, a „Globális Attraktor
Sejtés” szerint a komplex kiegyensúlyozott kinetikus rendszerek a nem-
negatív ortánsban globálisan stabilak [25]. A sejtést bebizonyították
egy erős komponensből álló reakciógráffal rendelkező reakcióhálózatok-
ra [23]. További stabilitási eredmények is születtek nulla-deficienciájú
hálózatokra, amelyek túlmutatnak a tömeghatás kinetikán, lehetővé té-
ve időfüggő reakciósebességi együtthatók és általánosított Ljapunov-
függvények használatát [26]. A riboszómaáramlási modellek stabili-
tásvizsgálata CRN-reprezentációkon keresztül szintén fontos kutatási
irányként merült fel [27, 28].

1.2. Megmaradási törvények

A lokális megmaradási és egyensúlyi törvényeket széles körben alkal-
mazzák az aerodinamikában, Euler-féle gázdinamikában [29], forgalmi
modellezésben [30] és riboszómaáramlási rendszerek vizsgálatában [28].
Az utóbbi időben e modellekbe egyre gyakrabban építik be a nemlo-
kalitást annak érdekében, hogy a valósághoz közelebb álló dinamikát
írjanak le. Egy elterjedt megközelítés szerint a nemlokális sebességet
térbeli konvolúcióval definiálják, amelyet például ellátási lánc modellek-
ben [31] és forgalomáramlási rendszerekben [32] alkalmaztak. Ugyanak-
kor bizonyos nemlokális modellek nem őrzik meg a monotonitást, vagy
megsértik a maximumelvet. E problémák kezelése érdekében alternatív
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magfüggvény alapú megoldásokat is javasoltak [33, 34]. A nemlokális
térbeli modellek közé tartozik például a peridinamika is, amelyhez szá-
mos új elméleti és alkalmazott eredmény kapcsolódik [35]. A párinter-
akciós nemlokális modellek egyik fő előnye, hogy megfelelő határátme-
net (a nemlokális horizont eltűnése) esetén visszavezethetők a klasszikus
lokális modellekre [36] - ez a tulajdonság más nemlokális modelleknél
nem feltétlenül teljesül. Ezen előnyöknek köszönhetően a nemlokális
modelleket széles körben alkalmazzák a peridinamika elméletében [37],
valamint a nemlokális Allen–Cahn-egyenlet megfogalmazásában is [38].

1.3. Kvantumgráfok
Az elmúlt évtizedekben a metrikus gráfokon értelmezett differenciálope-
rátorok - az úgynevezett kvantumgráfok - számos alkalmazási területen
jelentek meg, különösen olyan kvázi-egydimenziós jelenségek modellezé-
sénél, mint például a szemcsés anyagok szupravezetése [39], klasszikus
hullámterjedés hullámvezető hálózatokban [40], idegsejtek membránpo-
tenciálja [41], sejtdifferenciálódás [42] vagy optimális irányítási prob-
lémák [43]. Ezek az alkalmazások modellezési szempontból gyakran
kompartmentális modelleknek tekinthetők, ahol a különböző egységek
közötti átmeneteket explicit módon parciális differenciálegyenletekkel
írjuk le.

2. A dolgozat célkitűzései
A fenti bevezetés alapján doktori kutatásom célkitűzései az alábbiakban
foglalhatók össze.

2.1. Nemlokális megmaradási törvények
A következőkben alábbi alakú nemlokális törvények félcsoportelméleté-
vel foglalkozunk:

∂u

∂t
+

ˆ
Rn

k∑
i=1

ϕi(u, τβi(h)u)− ϕi(τ−βi(h)u, u)

∥βi(h)∥Rn

ωi

(
βi(h)

)
dh = 0, in Rn × R+;

u(x, 0) = u0(x), x ∈ R,
(1)

ahol τ±hu(x, t) = u(x ± h, t) a megmaradó u(x, t) mennyiség térbeli
eltolását jelöli. A ϕi : R × R 7→ R fluxusfüggvények az első válto-
zó szerint növekvők, a második szerint csökkenők, továbbá teljesítik a
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ϕi(0, 0) = 0 egyenlőséget. Az 1 ≤ k ≤ n a részinterakciók számát jelöl,
míg a βi : Rn 7→ Rn leképezések az alábbi alakúak:

βi(h) =
∑
j∈Bi

hjej , h = (h1, h2, . . . , hn), (2)

ahol a Bi ⊂ {1, 2, . . . , n} nemüres és páronként diszjunk halmazok olya-
nok, hogy

⋃k
i=1 Bi = {1, 2, . . . , n}, illetve ej a j-edik bázisvektor Rn-

ben.
Az ωi ∈ L1(Rn) ∩ L∞(Rn) magfüggvények nemnegatívak és telje-

sítik az
∥∥ωi

(
βi(.)

)∥∥
L1(Rn)

= 1 egyenlőséget.Továbbá feltesszük, hogy a
magfüggvények kompakt tartójúak és teljesül az alábbi feltétel valame-
lyike:

1. a tartó szimmetrikus az origóra és a megfüggvény páros, vagy

2. a tartó Rn
+ részhalmaza úgy, hogy a lezártja tartalmazza az origót.

Célünk a fenti többdimenziós nemlokális modell jól definiált voltá-
nak bizonyítása félcsoportelmélet segítségével. Míg egydimenziós eset-
ben ez más módszerrel már bizonyított [44], a félcsoport létezése és a
többdimenziós általánosítás jelentős előrelépést jelent. Az eredménye-
ket részletesen a disszertáció 3. fejezete ismerteti.

2.2. Általánosított riboszómaáramlási modellek di-
namikai analízise

Vegyünk az előzőekben tárgyalt nemlokális megmaradási törvény egy-
dimenziós változatát (1). A nemlokalitáss formálisan egy véges diffe-
rencia becslés súlyozott kontinuumátlagával vezetjük be. A korlátos és
nemnegatív ω ∈ L1(R) súlyfüggvény tartója (0, δ), ahol δ > 0, illetve
normája ∥ω∥L1(R) = 1. A modell az alábbi alakban írható fel

∂ρ

∂t
+

ˆ δ

0

F (ρ, τhρ)− F (τ−hρ, ρ)

h
ω(h) dh = r − s;

ρ(x, 0) = ρ0(x),

(3)

ahol ρ : R×(0, T ) 7→ R+ a megmaradó mennyiség adott térbeli pontban
és időpillanatban, F : R×R 7→ R a fluxusfüggvény, τ±hρ(x, t) = ρ(x±
h, t) térbeli eltolást jelöl és r, s : R × (0, t) × R+ 7→ R+ rendre be- és
kimeneteket jelölnek.
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A modell megfelelő véges térfogat módszerrel történő térbeli diszk-
retizálása után egy formálisan kinetikus rendszert kapunk. Jelölje Ni

és Si rendre az i-edik cellában lévő részecskék és szabad helyek számát.
Legyen fi és bi rendre az i-edik cella által befolyásolt, illetve az i-edik
cellát befolyásoló cellák számát. A részecskeáramlás ekkor az alábbi
reakciókkal írható le:

Ni−j + Si
ki−j,i−−−−→ Ni + Si−j j = 1, 2, . . . , bi (4)

Ni + Si+j
ki,i+j−−−−→ Ni+j + Si j = 1, 2, . . . , fi (5)

Si
kin,i−−−→ Ni (6)

Ni
kout,i−−−→ Si. (7)

Az (4) reakció azt mutatja, hogy egy részecske (i− j)-edik cellából az
i-edik cellába áramlásakor a szabad helyek száma csökken az i-edik cel-
lában és nő az (i−j)-edikben, míg a részecskék száma fordítva változik.
Az (5) reakció ugyanezt a folyamatot írja le az i-edik cellából az (i+j)-
edikbe. Végül az (6) és (7) reakciók a be- és kimenetek viselkedését írja
le. Megjegyezzük, hogy az (4) és (5) redundánsak, ha az összes reakciót
egyszerre tekintjük.

Ha fi = bi = 1 és a fluxusfüggvény F (u, v) = u(1 − v) alakú, azaz
tömeghatás-kinetikának felel meg, akkor a fenti rendszer formálisan ek-
vivalens a szakirodalomban ismert riboszómaáramlási modellel [27]. E
modellt három szempontból általánosítjuk. Először, általános gráfszer-
kezetet engedünk meg, bár az eredményeink többsége erősen összeüggő
gráfokra vonatkozik. Másodszor, a korábbiaknál sokkal általánosabb
osztályú átmeneti sebességeket engedünk meg, feltéve, hogy ezek ki-
elégítik a fizikai megszorításokból következő feltételeket. Végül időben
változó reakciósebességi együtthatókat is vizsgálunk. A perzisztencia-
és stabilitási eredményeket részletesen a disszertáció 4. fejezete ismer-
teti.

2.3. Késleltetett komplex kiegyensúlyozott reakció-
hálózatok stabilitásának vizsgálata

Egy kinetikus model N darab X = {X1, X2, . . . , XN}-el jelölt egye-
det tartalmaz a hozzájuk tartozó vektorral X = [X1 X2 . . . XN ]⊤

egyetemben. Az egyedek elemi reakciólépéseken keresztül átalakulnak:

Ck
Kk−−→ Ck′ , k = 1, 2, . . . ,M, (8)
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ahol Ck = y⊤k X és Ck′ = y⊤k′X komplexeket jelölnek, melyek sztöchio-
metrikus együttható vektora yk, yk′ ∈ ZN

+ , k = 1, 2, . . . ,M . Az (8)
átalakulás azt mondja, hogy egy elemi reakciólépés során a Ck reagens
komplexből Ck′ komplex keletkezik.

Legyen x(t) ∈ RN

+ az X-hez tartozó állapotvektor t ≥ 0 időpillanat-
ban (kémiai kontextusban x az egyedek koncetrációit jelöli). Ekkor a
rendszer dinamikája:

ẋ =

M∑
k=1

Kk(x)[yk′ − yk], x(0) ∈ RN

+ , (9)

ahol Kk : RN

+ −→ R+ a k-adik reakció ráta (sebesség) függvénye, mely
meghatározza a reakció sebességét [20]. A reakciósebességi együttha-
tókra szokásos feltételeket teszünk fel a lokális megoldás létezésének és
egyértelműségének, illetve a nemnegatív ortáns invarianciája édekében.

A reakcióhálózatok elméletében kiemelt szerepet játszik a tömgethatás-
kinetika, ahol a reakciósebességi együtthatók az alábbi alakú monom-
függvények:

Kk(x) = κk

N∏
i=1

x
[yk]i
i , k = 1, 2, . . . ,M (10)

ahol a ki > 0, i = 1, 2, . . . ,M , számok a reakciósebességi együtthatók.
Tehát ebben az esetben a rendszer dinamikája

ẋ(t) =

M∑
k=1

κkx
yk(t)

(
yk′ − yk

)
. (11)

Az ilyen rendszerek stabilitása jól vizsgálható az alábbi entrópiasze-
rű logaritmikus Ljapunov-függvényekkel

V (x, x) =

N∑
i=1

(
xi log

xi

xi
+ xi − xi

)
, (12)

ahol x a pozitív egyensúlyi pont.
Célunk a létező stabilitási eredmények általánosítása nem tömeg-

hatás kinetikákra, például Michaelis-Menten vagy Hill-típusú esetekre,
valamint diszkrét időbeli késleltetéseket tartalmazó rendszerekre. A
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késleltetések bevezetésének motivációja például expliciten nem model-
lezett alhálózatok vagy reakció-kaszkádok helyettesítése. Ennek érde-
kében alábbi formájú rendszereket vizsgálunk:

ẋ(t) =

M∑
k=1

κk

(
γyk

(
x(t− τk)

)
yk′ − γyk

(
x(t)

)
yk

)
, (13)

ahol τk ≥ 0 a diszkrét késleltetéseket jelöli és a γ : RN

+ 7→ RN

+ függ-
vényeket elemenként definiáljuk a γi ∈ C1(R) növekvő függvények se-
gítségével. Ez a rendszerosztály számos fontos esetet tartalmaz, illetve
reakciósebességi együtthatók szorzatalakja lehetővé teszi a különböző
logaritmus azonosságok alkalmazását a számolások során.

A sejtésünk az volt, hogy ezek a rendszerek aszimptotikusan sta-
bilak a pozitív sztöchiometriai osztályokon belül, hasonlóan a tömeg-
határú esethez. Az eredményeket részletesen a disszertáció 2. fejezete
ismerteti.

2.4. Génregulációs hálózatok PIDE modellje
Egy n különböző génből álló génregulációs hálózatot tekintünk, mely-
nek jelölése G = {DNA1, DNA2, . . . , DNAn}, illetve mely n darab
X = {X1, X2, . . . , Xn}-el jelölt fehérjét fejez ki. Az hozzájuk tartozó
mRNS-k jele M = {mRNA1,mRNA2, . . . ,mRNAn}. A molekuláris
biológia azon dogmáját követjük, miszerint a gén utasításait transzk-
ripció után az mRNS-ek tartalmazzák, melyekből transzláció során ke-
letkeznek a fehérjék. Az mRNS és fehérje molekulák folytonos számát
rendre m,x ∈ Rn jelöli. Az adott DNAi-hez tartozó promoterről fel-
tesszük, hogy aktív és inaktív állapotok között váltakozik, melyek jele
rendre DNAi,on és DNAi,off. Az átváltást különböző fehérjék kötődé-
se szabályozza. Az általánosság kedvéért bármely fehérje serkentheti és
gátolhatja bármely gént. Ezt a mechanizmust általában többváltozós
Hill-függvényekkel írjuk le.

A fenti feltételek mentén a fehérjék számának p(t,x) sűrűségfüggvé-
nyének időbeli változását az alábbi parciális integro-differenciál egyen-
lettel (PIDE) írhatjuk le:

∂p(t,x)

∂t
=

n∑
i=1

∂

∂xi

[
γi
x(x)xip(t,x)

]
+

n∑
i=1

kim

ˆ xi

0

βi(xi − yi)ci(yi)p(t,yi) dyi ,

(14)
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ahol yi = x+ (yi − xi)ei, a ci függvények általános Hill-függvények és
a βi függvények az alábbi alakban írhatók:

βi(x) =
1

bi
exp

[
−xi

bi

]
− δ(x). (15)

A modell megfelelő véges térfogat módszerrel történő térbeli diszk-
retizálása után egy formálisan kinetikus rendszert kapunk, melynek re-
akcióhálózata erősen összekötött. Bár a fő motivációnk a hatékony
szimuláció volt, a diszkretizált modell kvalitatív analízisre is hasznos-
nak bizonyult. Az eredményeket részletesen a disszertáció 5. fejezete
ismerteti.

2.5. Tartomány dekompozíciós módszerek elliptikus
problémákra metrikus gráfokon

Egy kvantumgráf olyan G metrikus gráf, melynek éleit elliptikus dif-
ferenciáloperátorral látjuk el, illetve a csúcsokban bizonyos peremfel-
tételeket írunk elő. A gráf egy véges V csúcshalmazból és egy véges
E élhalmazból áll. Feltételezzük, hogy a gráf egyszerű, azaz nem tar-
talmaz párhuzamos éleket vagy hurkokat. Jelölje n = |V| és m = |E|
rendre a csúcsok és élek számát. A gráfot irányítottnak tekintjük, azaz
minden élhez tartozik egy tetszőleges és rögzített irány, így meghatáro-
zató egy kezdő és végcsúcs is. Minden e ∈ E élhez egy véges ℓe ∈ (0,∞)
hosszt és x ∈ [0, ℓe] lokális koordinátát rendelünk.

Egy G metrikus gráfon értelmezett u függvényt az éleken definiált
függvények vektoraként definiálunk u = (ue)e∈E, és egy megfelelő szor-
zattér elemének tekintjük. Jelölje ue(v) az u függvény értékét a v ∈ V
csúcsban az e ∈ E él mentén.

A csomóponti feltételek definiálásához legyen Ev a v ∈ V csúccsal
szomszédos élek halmaza, illetve dv = |Ev| a v ∈ V csúcs fokszáma.
Jelölje int(G) azon csúcsok halmazát, melyekre dv > 1 és ∂G a V\int(G)
halmazt. Olyan megoldásokat keresünk, melyek folytonosak G mentén
és kielégítik az alábbi Neumann-Kirchhoff feltételt:∑

e∈Ev

u′
e(v) = 0, v ∈ V, (16)

ahol a deriváltakat az élek csúcsból kifelé mutató irányában vesszük.
Változó a diffúziós együttható vagy a vezetőképesség esetén, melynek
jele c = (ce)e∈E, a Neumann-Kirchhoff feltétel az alábbi módon adható

8



meg: ∑
e∈Ev

ce(v)u
′
e(v) = 0, v ∈ V. (17)

Ha dv = 1, akkor ez a klasszikus Neumann-féle zérus peremfeltételt
adja.

A feltételek kompaktabb megadásához vezessük be a következőket.
Legyen

U(v) =
(
ue(v)

)
e∈Ev

∈ Rdv (18)

a v ∈ V csúcsbeli értékeket tartalmazó vektor és

Iv =

1 −1
. . . . . .

1 −1

 ∈ R(dv−1)×dv . (19)

Ekkor IvU(v) = 0 ∈ Rdv−1 azt fejezi ki, hogy az adott csúcsban minden
él mentén megegyeznek a függvényértékek. Hasonlóan definiáljuk az

U ′(v) =
(
u′
e(v)

)
e∈Ev

∈ Rdv , (20)

csúcsbeli iránymenti deriváltak vektorát és a diffúziós együtthatók csúcs-
értékét tartalmazó

C(v)⊤ =
(
ce1(v) ce2(v) . . . cedv (v)

)
∈ R1×dv (21)

sorvektort. Ekkor C(v)⊤U ′(v) = 0 azt fejezi ki, hogy u kielégíti a
Neumann-Kirchhoff feltételt az adott csúcsban.

Ekkor a kvantumgráf formálisan felírható a következő rendszerrel:
−(ceu

′
e)

′(x) + pe(x)ue(x) = fe(x), x ∈ (0, ℓe), e ∈ E, (a)

0 = IvU(v), v ∈ int(G), (b)

0 = C(v)⊤U ′(v), v ∈ V, (c)
(22)

ahol a p = (pe)e∈E fügvény potenciált reprezentál.
Célunk az (22) megoldásának véges elemes közelítése. Az [45] cikk-

ben olyan speciális véges elemet vezettek be a csúcsokban, mely csillag
alakú tartóval rendelkezik a csúcshoz kapcsolódó élek mentén, bizto-
sítva ezzel a megoldás folytonosságát. Azonban a kapcsolódó mátrixok
mérete gyorsan növekedhet, illetve elveszíti az egydimenziós problémák-
ra jellemző sávos szerkezetét. Célünk egy átfedésmentes tartomány de-
kompozíciós módszerk tervezése ezen hátrányok enyhítésére. Az ered-
ményeket részletesen a disszertáció 6. fejezete ismerteti.
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3. Új tudományos eredmények

I. Tézis

Nemlineáris operátor félcsoportok elméletével igazoltam, hogy
többdimenziós nemlokális megmaradási törvények egy osztá-
lya jól definiált egy széles fluxusfüggvény- és kezdetiérték-
osztály esetén. Továbbá megmutattam, hogy az egyértelmű
enyhe megoldás kielégít egy nemlokális Kruẑkov-típusú ent-
rópia egyenlőtlenséget, illetve több előnyös kvalitatív tulaj-
donsággal rendelkezik.
Az eredményeket részletesen a 3. fejezet ismerteti.
Kapcsolódó publikáció: [7].

II. Tézis

Új eredményeket bizonyítottam két fontos kinetikus rendszer-
osztályra vonatkozóan.

II.a Tézis

Bevezettem az általánosított riboszómaáramlási modellek fo-
galmát, a meglévő irodalmi modellek gráfszerkezetének és át-
meneti rátáinak általánosításával. Megmutattam, hogy ezek
a modellek nemlokális megmaradási törvények véges térfoga-
tos közelítéseiként is értelmezhetők. Igazoltam, hogy erősen
összekötött stuktúrával rendelkező ribszorómaáramlási model-
lek aszimptotikusan stabilak a lineáris megmaradási törvény
szintfelületeire nézve. Továbbá bebizonyítottam, hogy idő-
ben változó reakciósebességi együtthatókkal rendelkező erősen
összefüggő modellek perzisztensek és bemenet-állapot stabi-
lak.
Az eredményeket részletesen a 4. fejezet ismerteti.
Kapcsolódó publikációk: [3, 4, 5, 6][13].

II.b Tézis

Igazoltam, hogy késleltetett, komplex kiegyensúlyozott, nem
tömeghatás-kinetikájú reakcióhálózatok kvázi-termostatikusak,
azaz minden pozitív sztöchiometriai osztály pontosan egy po-
zitív egyensúlyi pontot tartalmaz. Továbbá megmutattam,
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hogy ezek a rendszerek kvázi-termodinamikusak is, azaz min-
den pozitív egyensúlyi pont aszimptotikusan stabil a saját
sztöchiometriai osztályára nézve.
Az eredményeket részletesen a 2. fejezet ismerteti.
Kapcsolódó publikáció: [11].

III. Tézis

Hatékony véges térfogat módszert terveztem egy többdimen-
ziós génregulációs hálózatokat leíró PIDE-modell diszkretizá-
lására, mely formálisan kinetikus rendszert eredményez. Iga-
zoltam, hogy a térben diszkretizált modellnek létezik pon-
tosan egy, globálisan aszimptotikusan stabil egyensúlyi álla-
pota. Ezen modellt felhasználva külső változók időfüggvé-
nyeit kiszámító szabályozási módszereket terveztem populá-
ciószintű irányításokhoz, melyek képesek a modell által leírt
molekulaszám-eloszlás várható értékét előírt célállapotba ve-
zetni.
Az eredményeket részletesen az 5. fejezet ismerteti.
Kapcsolódó publikációk: [8][14, 16].

IV. Tézis

Kidolgoztam egy átfedésmentes Neumann-Neumann típusú
tartomány dekompocíziós módszert metrikus gráfokon értel-
mezz elliptikus problémákra. Absztrakt Schwarz-iterációk se-
gítségével igazoltam, hogy a módszer lineáris konvergenciase-
bességgel tart a véges elemes megoldáshoz a felosztás finom-
ságától függetlenül.
Az eredményeket részletesen a 6. fejezet ismerteti.
Kapcsolódó publikáció: [10].

4. Jövőbeni tervek

A fenti eredmények több lehetséges további kutatási irány alapjául szol-
gálhatnak, többek között:

• A 2. fejezet eredményei felhasználhatók a komplex kiegyensú-
lyozott rendszerek stabilitásának vizsgálatára eloszlott késlelte-
tések esetén. A vizsgált modellosztály egy jelentős korlátozása,
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hogy egy adott anyagfajtához csak egy típusú reakció ráta tar-
tozik. Ez például kizárja annak lehetőségét, hogy egy anyag egy
reakcióban tömeghatás, míg egy másikban Hill-kinetikát köves-
sen. Tudomásunk szerint ilyen eredmények még nem találhatók
az irodalomban, így fontos kiterjesztés lenne.

• A 4. fejezet eredményei kiterjeszthetők nem erősen összefüggő
riboszómaáramlási modellekre, valamint diszkrét vagy eloszlott
késleltetéseket is tartalmazó modellekre. A környezetre nézve nyi-
tott rendszerek is vizsgálhatók, különféle valós alkalmazások által
motivált szabályozási problémák megoldása céljából.

• Az 5. fejezet eredményei alapján megvalósítható a génregulációs
hálózatok véges térfogatos diszkretizációja kettőnél több fehérjére
is. A diszkretizáció lehetőséget ad modell redukcióra és további
szabályozási eljárások fejlesztésére.

• A 6. fejezetben szereplő Neumann–Neumann iteráció implemen-
tálható nem élalapú tartomány dekompozícióra is. Az elméleti
eredmények kiterjeszthetők átfedő felosztások konvergenciájának
igazolására. A módszer alkalmazható például metrikus gráfokon
értelmezett Whittle–Matérn típusú véletlen mezők hatékony ge-
nerálására. A fő kihívás ezekben a modellekben a fehér zaj generá-
lása, amelyhez szükséges a tömegmátrix kiszámítása és Cholesky-
felbontása. Ez a probléma enyíthető a tömegmátrix diagonális
közelítését alkalmazva, így a fehér zaj tartományonként triviáli-
san generálható.
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