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1 Introduction

1.1 Nonnegative and kinetic systems

Nonnegative systems form an important subclass within dynamical sys-
tems, characterized by the property that the solution stays nonnegative
for nonnegative initial values. Their theoretical development is moti-
vated by applications in chemistry, biology, population and disease dy-
namics, where state variables in their original physical coordinates are
naturally nonnegative [17].

Compartmental models describe the distribution and transport of
entities (for example molecules, particles, vehicles, people, or infor-
mation) among distinct storage compartments over time [17]. These
compartments may represent physically separate subsystems, such as
interconnected containers, or conceptual states, such as different stages
of a disease in epidemiological models. Accordingly, the applicabil-
ity of compartmental systems is rather wide including (bio)chemistry,
pharmacokinetics, ecological, epidemiological and transportation mod-
eling. Since the state variables in compartmental systems correspond
to amounts, concentrations, or numbers of molecules, these models in-
herently belong to the nonnegative system class.

The fundamental properties of compartmental models have been
extensively studied, particularly regarding observability, controllability,
realizability, and identifiability [18]. Linear compartmental ODEs and
their analytic solutions have been analyzed in kinetic contexts, while
qualitative properties of general nonlinear compartmental models, in-
cluding equilibrium structures and stability, are discussed in [19]. The
strong descriptive power of compartmental models allows them to rep-
resent numerous complex dynamical phenomena [18]. Their associated
directed graph structures (compartmental graphs) provide insights into
dynamical properties [19].

An important related family of models is the class of chemical reac-
tion networks (CRNs) or kinetic systems. CRNs are dynamical models
formally represented by transformations (reactions) between abstract
chemical complexes [20]. While originating in physical chemistry, CRNs
have been mathematically generalized, broadening their applicability
to non-chemical processes. The scope of reaction networks reaches far
beyond the (bio)chemical application field, since they can be consid-
ered as general descriptors of nonlinear dynamics capable of producing
complex dynamical phenomena such as multiple equilibria, nonlinear
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oscillations, limit cycles, and even chaos [21]. Many compartmental
models, such as those used in population dynamics or epidemiology,
can naturally be represented in kinetic form, and other non-chemically
motivated models can often be algorithmically transformed into reac-
tion networks [22].

Chemical reaction network theory (CRNT) provides deep results
on the relationship between network structure and qualitative dynam-
ics [20]. A central problem in CRNT is persistence analysis, which
is crucial for proving the global asymptotic stability of complex bal-
anced networks in which, at equilibrium, the total rate of reactions
entering each complex equals the total rate leaving it [23]. Stability in
mass-action CRNs is typically analyzed using entropy-like logarithmic
Lyapunov functions [24]. A major conjecture in CRNT, the "Global At-
tractor Conjecture," asserts that complex balanced kinetic systems are
globally stable within the nonnegative orthant [25]. This was proven
for networks with a single connected reaction graph component [23].
Related stability results for zero-deficiency networks extend beyond
mass-action kinetics, allowing time-varying rate coefficients and gener-
alized Lyapunov functions [26]. The stability analysis of ribosome flow
models (RFMs) via CRN representation has also been identified as an
important research direction [27, 28].

1.2 Conservation laws

Local conservation and balance laws have been widely applied in aero-
dynamics, Eulerian gas dynamics [29], traffic modeling [30], and ribo-
some flows [28]. Recently, nonlocality has been incorporated into these
models to capture more realistic dynamics. A common approach is to
define a nonlocal velocity using a spatial convolution, which has been
applied to supply chain modeling [31] and traffic flows [32]. However,
some nonlocal models fail to preserve monotonicity or violate the max-
imum principle. Alternative formulations using integral kernels have
been explored to address these issues [33, 34]. Peridynamics and other
spatial nonlocal models have also been developed [35]. A key advantage
of nonlocal pair-interaction models is their reduction to local counter-
parts as the nonlocal horizon vanishes [36], which is not always true
for other nonlocal models. Due to these advantages, nonlocal models
are widely applied in peridynamics [37] and in the formulation of the
nonlocal Allen-Cahn equation [38].
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1.3 Quantum graphs

In recent decades differential operators on metric graphs, often called
quantum graphs, have found a myriad of applications when describing
quasi-one-dimensional phenomena in a broad range of fields, such as
superconductivity in granular materials [39], classical wave propagation
in wave guide networks [40], membrane potential of neurons [41], cell
differentiation [42], and optimal control [43]. These applications can be
seen, from a modelling point of view, as compartmental models, where
the transitions are explicitly described by partial differential equations.

2 Aims and scope of the dissertation

Based on the above introduction, the aims of my doctoral research are
as follows.

2.1 Nonlocal conservation laws
We study the semigroup theory of nonlocal conservation laws of the
form

∂u

∂t
+

ˆ
Rn

k∑
i=1

ϕi(u, τβi(h)u)− ϕi(τ−βi(h)u, u)

∥βi(h)∥Rn

ωi

(
βi(h)

)
dh = 0, in Rn × R+;

u(x, 0) = u0(x), x ∈ R,
(1)

where τ±hu(x, t) = u(x ± h, t) denote a spatial shift of the conserved
quantity u(x, t) and the flux functions ϕi : R× R 7→ R are assumed to
be increasing with respect to their first arguments and decreasing with
respect to their second arguments, and to have the property ϕi(0, 0) =
0. The number 1 ≤ k ≤ n denotes the number of subinteractions and
the functions βi : Rn 7→ Rn are assumed to be of the form

βi(h) =
∑
j∈Bi

hjej , h = (h1, h2, . . . , hn), (2)

where the nonempty, pairwise disjoint sets Bi ⊂ {1, 2, . . . , n} are such
that

⋃k
i=1 Bi = {1, 2, . . . , n} and ej denotes the jth unit vector in

Rn. The kernel functions ωi ∈ L1(Rn) ∩ L∞(Rn) are assumed to be
nonnegative with

∥∥ωi

(
βi(.)

)∥∥
L1(Rn)

= 1. We further assume that the
support of the kernel functions are finite and are either
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1. symmetric around the origin, in which case we further assume
that the kernels are even, or

2. contained in Rn
+ such that the closure contains the origin.

Our goal was to prove the well-posedness of the multidimensional
nonlocal pair-interaction via semigroup theory. While well-posedness in
one-dimension was proved in [44] with a different method, the existence
of an underlying operator semigroup is an important advancement, as
well as the generalization to multiple dimensions. The results are pre-
sented in Chapter 3 of the dissertation.

2.2 Dynamical analysis of generalized ribosome flows
Let us consider a one-dimensional version of the nonlocal flow (1). Non-
locality is formally introduced as a continuum average of the finite dif-
ference approximation weighted with a bounded and nonnegative non-
local interaction kernel ω ∈ L1(R) supported on (0, δ) with δ > 0 and
∥ω∥L1(R) = 1, as follows:

∂ρ

∂t
+

ˆ δ

0

F (ρ, τhρ)− F (τ−hρ, ρ)

h
ω(h) dh = r − s;

ρ(x, 0) = ρ0(x),

(3)

where ρ : R × (0, T ) 7→ R+ is the conserved quantity at a given point
and at a given time, F : R × R 7→ R is the flux function, τ±hρ(x, t) =
ρ(x ± h, t) denotes a spatial shift and r, s : R × (0, t) × R+ 7→ R+ are
the source and sink terms, respectively.

After an appropriate spatial discretization with a finite volume
method we obtain a formally kinetic system. Let Ni and Si denote
particles and available space slots for particles in the ith cell, respec-
tively. Furthermore, let fi and bi denote the number of cells affected
by the ith cell and the number of cells affecting the ith cell. Then the
particle flow can be represented as transformations of complexes (that
is, as reactions) as follows:

Ni−j + Si
ki−j,i−−−−→ Ni + Si−j j = 1, 2, . . . , bi (4)

Ni + Si+j
ki,i+j−−−−→ Ni+j + Si j = 1, 2, . . . , fi (5)

Si
kin,i−−−→ Ni (6)

Ni
kout,i−−−→ Si. (7)
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Reaction (4) shows that during the particles’ transition from the (i −
j)th cell to the ith cell the available spaces increase in the (i− j)th cell
and decrease in the ith cell, while the number of particles decrease in
the (i−j)th cell and increase in the ith cell. Reaction (5) expresses the
same transition from the ith cell to the (i+ j)th cell. Finally, reactions
(6) and (7) show the behaviour of in- and out-flows. Note that (4) and
(5) are redundant when enumerating all reactions.

If fi = bi = 1 and we consider the flux function F (u, v) = u(1− v)
corresponding to mass action kinetics, then the above system is for-
mally equivalent to ribosome flow models [27]. We further generalize
the above system in three ways. First, we allow arbitrary interconnec-
tion structure, altough most of our results hold for strongly connected
structures. Second, we allow a wide range of transition rate functions
and we only impose assumptions in accordance with the physical con-
straints of the flux function of (3). Finally, we also consider time-
varying transition rates. The persistence and stability results are pre-
sented in Chapter 4 of the dissertation.

2.3 Stability analysis of delayed complex balanced
CRNs

A kinetic model contains N species denoted by X = {X1, X2, . . . , XN},
and the corresponding species vector is given as X = [X1 X2 . . . XN ]⊤.
Species are transformed into each other through elementary reaction
steps of the form

Ck
Kk−−→ Ck′ , k = 1, 2, . . . ,M, (8)

where Ck = y⊤k X and Ck′ = y⊤k′X are the complexes with the stoi-
chiometric coefficient vectors yk, yk′ ∈ ZN

+ for k = 1, 2, . . . ,M . The
transformation shown in Eq. (8) means that during an elementary re-
action step between the Ck reactant complex and Ck′ product complex
[yk]i molecules of species Xi are consumed, and [yk′ ]i molecules of Xi

are produced for i = 1, 2, . . . , N . The reaction (8) is called an input
(output) reaction of species Xi if [yk′ ]i > 0 ([yk]i > 0).

Let x(t) ∈ RN

+ denote the state vector corresponding to X for any
t ≥ 0 (in a chemical context, the state x is the vector of concentrations
of the species in X). Then the ODEs describing the evolution of x in

5



the kinetic system containing the reactions (8) are given by

ẋ =

M∑
k=1

Kk(x)[yk′ − yk], x(0) ∈ RN

+ , (9)

where Kk : RN

+ −→ R+ is the rate function corresponding to reaction
step k, determining the velocity of the transformation [20]. We impose
standard assumptions on the rate functions to ensure the local existence
and uniqueness of solutions as well as the invariance of the nonnegative
orthant for the dynamics in Eq. (9).

An important special case in the theory of CRNs is mass action
kinetics when the rate function is given in the following monomial form

Kk(x) = κk

N∏
i=1

x
[yk]i
i , k = 1, 2, . . . ,M (10)

where ki > 0 for i = 1, 2, . . . ,M are the reaction rate coefficients; that
is, the dynamics of mass action kinetic systems can be given as

ẋ(t) =

M∑
k=1

κkx
yk(t)

(
yk′ − yk

)
. (11)

Stability of systems of the form (11) can be investigated through
the entropy-like logarithmic Lyapunov function

V (x, x) =

N∑
i=1

(
xi log

xi

xi
+ xi − xi

)
, (12)

where x is a positive equilibrium.
We aim to generalize certain stability results to include non-mass

action cases like the Michaelis-Menten kinetics or general Hill-type ki-
netics, and discrete time delays, while still relying on a similar Lya-
punov function(al). The main motivation behind introducing delays is,
for example, to substitute not explicitly modeled subsystems or reac-
tion cascades. In order to do so, we consider kinetic systems of the
form

ẋ(t) =

M∑
k=1

κk

(
γyk

(
x(t− τk)

)
yk′ − γyk

(
x(t)

)
yk

)
, (13)

where τk ≥ 0 are discrete constant time delays and the function γ :

RN

+ 7→ RN

+ is defined element-wise by the increasing functions γi ∈
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C1(R). This class of systems include a wide variety of interesing and
relevant kinetics, while the product structure of γyk(x) allows us to
rely on logarithmic identities in the calculations. In particular, the
Michaelis-Menten kinetics can be given by γi(s) =

s
ci+s for ci > 0, and

more general Hill kinetics can be given by γi(s) =
sni

ci+sni
for ci > 0 and

ni > 0.
Our hypothesis is that asymptotic stability w.r.t. the positive sto-

ichiometric compatibility classes can be derived, as in the mass action
case. The results are presented in Chapter 2 of the dissertation.

2.4 PIDE model for gene regulatory networks
We consider a gene regulatory network consisting of n different genes,
denoted by G = {DNA1, DNA2, . . . , DNAn}, that express n pro-
teins X = {X1, X2, . . . , Xn} via the corresponding messenger RNAs
M = {mRNA1,mRNA2, . . . ,mRNAn}. We follow the central dogma
of molecular biology, which asserts that the gene instructions are tran-
scribed into messenger RNAs, that are translated into proteins. The
continuous number of mRNA molecules and proteins are denoted by
m,x ∈ Rn, respectively. The promoters corresponding to each gene
are assumed to switch between active and inactive states, denoted by
DNAi,on and DNAi,off, respectively. The transition is controlled by
the binding of proteins. Note that in general, the feedback mechanism
may require the binding of multiple types of proteins besides the one
expressed by the given gene. For the sake of generality, we assume
that any protein can repress or activate any gene in the network. This
mechanism is typically modelled by multivariate Hill functions.

With the above assumptions the probability density function (PDF)
of the protein level, p(t,x), can be modelled with the following PIDE:

∂p(t,x)

∂t
=

n∑
i=1

∂

∂xi

[
γi
x(x)xip(t,x)

]
+

n∑
i=1

kim

ˆ xi

0

βi(xi − yi)ci(yi)p(t,yi) dyi ,

(14)

where yi = x + (yi − xi)ei, the ci functions are general Hill functions
and the βi functions have the following form:

βi(x) =
1

bi
exp

[
−xi

bi

]
− δ(x). (15)
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Here the terms corresponds to protein degradation and protein burst-
ing, respectively.

After an appropriate spatial discretization with a finite volume
method we obtain a formally kinetic system with a strongly connected
structure. While the main motivation was an efficient simulation tech-
nique, the discretization turns out to be benefitial for qualitative anal-
ysis too. The results are presented in Chapter 5 of the dissertation.

2.5 Domain decomposition methods for elliptic prob-
lems on metric graphs

We consider a quantum graph; that is, a metric graph G equipped
with an elliptic differential operator on each edge and certain standard
vertex conditions. The graph consists of a finite set V of vertices and
a finite set E of edges connecting pairs of vertices. We assume that
the graph is simple and does not contain parallel edges or loops. Let
n = |V| denote the number of vertices and m = |E| the number of
edges. We assume that the graph is directed; that is, each edge has a
specified (but otherwise arbitrary) orientation, and thus an origin and
a terminal vertex. Each edge e ∈ E is assigned a length ℓe ∈ (0,∞) and
a local coordinate x ∈ [0, ℓe].

A function u on a metric graph G can be defined as a vector of
functions and we write u = (ue)e∈E, and consider it to be an element
of a product function space, to be specified later. Let ue(v) denote the
value of u at v ∈ V along the edge e ∈ E.

To define the vertex conditions, let us denote by Ev the set of edges
incident to the vertex v ∈ V, and by dv = |Ev| the degree of v ∈ V. We
denote by int(G) the set of vertices with degree dv > 1 and by ∂G the
set V\int(G). We seek solutions that are continuous on G and satisfy
the Neumann-Kirchhoff (often called standard) condition, given as∑

e∈Ev

u′
e(v) = 0, v ∈ V, (16)

where the derivatives are assumed to be taken in the directions away
from the vertex. When there are (variable) diffusion coefficients or
conductances present, represented by the function c = (ce)e∈E defined
on the graph, the Neumann-Kirchhoff condition is defined as∑

e∈Ev

ce(v)u
′
e(v) = 0, v ∈ V. (17)
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If dv = 1, then this reduces to the classical zero Neumann boundary
condition.

In order to write the vertex conditions more compactly, let us define
the vector of function values at v ∈ V as

U(v) =
(
ue(v)

)
e∈Ev

∈ Rdv (18)

and the bi-diagonal matrix

Iv =

1 −1
. . . . . .

1 −1

 ∈ R(dv−1)×dv . (19)

Then IvU(v) = 0 ∈ Rdv−1 implies that the function values along the
edges in Ev coincide at v ∈ V. Similarly, we define

U ′(v) =
(
u′
e(v)

)
e∈Ev

∈ Rdv , (20)

the vector of function derivative at v ∈ V and the row vector

C(v)⊤ =
(
ce1(v) ce2(v) . . . cedv (v)

)
∈ R1×dv . (21)

Then C(v)⊤U ′(v) = 0 implies that the function u satisfies the Neumann-
Kirchhoff conditions at v ∈ V.

Then a quantum graph can be formally written as
−(ceu

′
e)

′(x) + pe(x)ue(x) = fe(x), x ∈ (0, ℓe), e ∈ E, (a)

0 = IvU(v), v ∈ int(G), (b)

0 = C(v)⊤U ′(v), v ∈ V, (c)
(22)

where the function p = (pe)e∈E represents a potential.
We wish to approximate the solution of (22) in a finite element

framework. In [45] a special finite element is assigned to the vertices
that have a star shaped support on the neighbouring edges ensuring the
continuity of solutions, and use standard finite elements on the edges.
Then the authors prove usual error estimates and an upper bound for
the Neumann-Kirchhoff residual of the discrete solution. However, the
size of the corresponding stiffness matrix can grow quickly and it loses
its banded (tridiagonal) nature compared to one-dimensional problems.
Our goal is to design a nonoverlapping domain decomposition method
to mitigate these problems. The results are presented in Chapter 6 of
the dissertation.
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3 New scientific results

Thesis I.

I have shown that a class of multidimensional nonlocal conser-
vation laws are well-posed for a broad class of flux functions
and initial data, using the theory of nonlinear operator semi-
groups. I have also shown that the unique mild solution sat-
isfies a Kruẑkov-type nonlocal entropy inequality, along with
several desirable qualitative properties.
The results are described in detail in Chapter 3.
Related publication: [7].

Thesis II.

I have proven new results regarding two important classes of
kinetic dynamical systems.

Thesis II.a

I have introduced generalized ribosome flows (GRFs) by gen-
eralizing the graph structure and the transition rate functions
of existing ribosome flow models in the literature. I have
shown that GRFs can be interpreted as finite volume approx-
imations of nonlocal conservation laws. I have proven that
GRFs with a strongly connected compartmental structure are
asymptotically stable relative to the level sets of the linear
conserved quantity. I have proven that strongly connected
GRFs with time-varying transition rates are persistent and
input-to-state stable.
The results are described in detail in Chapter 4.
Related publications: [3, 4, 5, 6][13].

Thesis II.b

I have shown that delayed complex balanced reaction net-
works with non-mass action kinetics are quasi-thermostatic;
that is, each positive stoichiometric compatibility class con-
tains a unique equilibrium point. I have shown that delayed
complex balanced reaction networks with non-mass action ki-
netics are quasi-thermodynamic; that is, each positive equi-
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librium is asymptotically stable relative to its compatibility
class.
The results are described in detail in Chapter 2.
Related publication: [11].

Thesis III.

I have proposed an efficient finite volume discretization of the
multidimensional PIDE model of gene regulatory networks
that result in a kinetic system. I have shown that the semidis-
cretized model has a unique steady-state, which is globally
asymptotically stable. I have used the semidiscretized model
to design novel population level exogenous controllers that
can drive the expected value of the system to desired values.
The results are described in detail in Chapter 5.
Related publications: [8][14, 16].

Thesis IV.

I have developed a Neumann-Neumann type nonoverlapping
domain decomposition method for elliptic problems on metric
graphs. I have proven that the iteration converges to the finite
element solution with a geometric rate that is independent of
the mesh size, via the theory of abstract additive Schwarz
methods.
The results are described in detail in Chapter 6.
Related publication: [10].

4 Future plans

The above results can serve as the base for several further research
directions, including:

• The results of Chapter 2 can be used to investigate the stability
of complex balanced systems with distributed delays. A major
shortcoming of the model class is that a given species has a fixed
reaction rate function associated with it. Thus, it is not possible,
for example, that a species is involved in a reaction with mass-
action kinetics and involved in an other reaction with Hill kinetics.
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To our knowledge, this is not handled in the literature yet, thus
it would be an important extension.

• The results of Chapter 4 can be used to investigate ribosome flow
models with not strongly connected compartmental structure, or
with discrete delays or distributed delays. Flows open to the
environment can also be investigated and used to solve control
problems motivated by real-world examples.

• The results of Chapter 5 can be used to implement the finite vol-
ume discretization for gene regulatory networks with more than
two proteins. The discretization can also be used for model re-
duction and further control.

• The results of Chapter 6 can be used to implement the Neumann-
Neumann iteration for decomposition where the domains are not
edges. The theoretical results can be used to prove the conver-
gence of overlapping decompositions. These iterations can be
used to solve further problems, for example, the efficient gener-
ation of Gaussian Whittle-Matérn fields on metric graphs. The
key problem there is white noise realization, since that requires
the assembly of the mass matrix and its Cholesky decomposition.
This could be mitigated with the lumped mass method, where a
diagonal approximation of the mass matrix is used, in which case
white noise generation can be performed domain-wise.
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