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1. Introduction

Touch is a fundamental and intriguing sensory modality that is also
the least known from many points of view. It is fundamental because
tactile information is truly indispensable for our everyday life.
Intriguing because it is the only modality that maps the environment
through its “tangible” physical reality on the whole body, without
having the sensory receptors located in a specific organ. Most of the
other modalities sense the world remotely, through secondary
physical substances emitted by the observed distant objects. Vision
requires scattered light, hearing makes use of the reflected or
generated auditory waves, olfaction calls for molecules traveling in
the air. In contrast, tactile sensation through concrete physical
contact informs us unquestionably about the surroundings. If we see
a mirage but we cannot touch it, we know that it is not there.
Conversely, if we bump into a glass door, we will notice it for sure,
even if we could not perceive it visually. In other words, in case of
controversial information coming from more modalities at once,

tactile sensation will be the dominant one in many cases.

In general, tactile modality is a truly important sensory system of
ours that once being investigated or modeled scientifically, reveals
deep beauty and brings on fascination. My Ph.D. work also concerns
the sense of touch, but in place of the biological systems it builds on

artificial tactile sensors.



THE DESIGN OF TACTILE SENSORS AND THEIR ELASTIC COVER -3

The heart of my research is a tactile-sensor array developed at the
Institute for Technical Physics and Materials Science of the
Hungarian Academy of Sciences (MTA MFA). This tiny MEMS
(Micro-Electro-Mechanical-Systems) device encloses sensory and
signal-processing elements. It is novel in the manner that compared
to the commercially-available pressure-sensor arrays, it can measure,
process and pass on not one, but three components of the surface
load, namely, not only the one perpendicular to the surface but the
two shear components as well. During my work I participated in the
development, experimentation and system-level integration of these
devices, but in my research I mainty focused on the examination and

design of the skin-like elastic cover of the sensors.

The elastic cover is an indispensable key component of the tactile
sensors. Besides providing a certain amount of physical protection, it
also plays a fundamental role in the overall procedure of sensation,
as a mechanical information-coding layer between the sensors and
the environment (let us just think about the increased tactile
sensitivity around an abrasion, or our thickening sole during the
summer holidays). The elastic layer transfers the surface forces
the sensors in the form of distributed mechanical
stress/strain/deformation, no matter which system—
mechanoreceptors in the deep skin or artificial tactile sensors—

receive them. Consequently, the elastic cover can be treated as the
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first spatial-temporal, dynamic information-coding layer of the

sensory structure.

My first task was to model and understand this non-trivial, spatial-
temporal coding mechanism. In the second run I used an inverse
approach—I investigated how I could determine the surface load
distribution from the measured, coded signals by making use of the
coding mechanism or, alternatively, by intentionally designing the
geometry and physical parameters of the elastic layer using

neuromorphic features in the sensor design.

2. Methods of investigation

Before working with artificial tactile sensors, it is worth to get
acquainted with one of Nature’s many masterpieces, the Auman (or
any other living organism’s) ractile system. All components of an
artificial tactile sensor can be associated with parts of the biological
analogue; therefore, for a neuromorphic design we can obtain many
great ideas from the big old evolution that started its development
millions of years ago. It is simply unwise to start working with
tactile sensors without gaining knowledge about the neurobiology of
touch, the function of the mechanoreceptors or the anatomical

structure or mechanical behavior of the skin.

The sensing paradigm of the MEMS devices used in my work is the
piezoresistive effect. When a piezoresistive material is exposed to

mechanical load, it changes its resistivity proportionally to the strain



THE DESIGN OF TACTILE SENSORS AND THEIR ELASTIC COVER -5

in the material. Our sensors include deformable micro-bridges that
contain embedded piezoresistors. Therefore, for the design and
evaluation of the sensors we certainly need some knowledge about
the MEMS technology in general and the piezoresistive effect in

particular.

Continuum-mechanics is the key word for the mathematical
description of the elastic cover of the sensors. In the first run, the
elastic matter can be treated as a homogeneous, isotropic, infinite
half-space that obeys Hooke’s law. The input forces act on the only
open surface of the half-space, and create a complex stress profile
inside the material. Since the stress is mostly concentrated around
the indentation and decays rapidly with distance, we can fairly
approximate the behavior of the real, finite rubber with the infinite
half-space at a depth corresponding to the real rubber thickness. The
first task is now to solve the equilibrium equations of the rubber for a
given surface-indentation profile, and find the
stress/strain/deformation distribution at that specific depth. The
inverse problem is about the regeneration of the surface indentation
profile from discrete number of strain measurements under the

rubber.

The first solutions to the direct problem of the elastic half-space
were found a long time ago, around the end of the nineteenth
century; yel, the elastic theory had nothing to do with tactile sensors

then. It was only in the mid-eighties of the last century when the
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model became the primary mathematical description of the skin and
the artificial cover of pressure sensors, however, with three degree-

of-freedom sensors in view, the theory still calls for enhancement.

One of my results is that as an analogue to the finger ridges, I
changed the surface of the flat cover to a certain, defined shape.
Consequently, the half-space model could not be used any more in
the original form. Therefore, as an extension of the elastic half-
space, I made a finite-element model in contribution with Baldzs
Fodor to be able to describe the cover with the new geometry as

well.

The sensors of the MTA MFA were tested and developed with a
special experimental setup. In the measurement system the sensors
are fixed to a table that can be tilted and moved subtly with a high-
precision stepper motor. The sensors can be loaded with forces of
different angle and amplitude, acting on a single point or a bigger
area. The signals go through an amplification stage developed at our
lab and are finally transferred to a computer equipped with special

evaluation software.
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3. New scientific results

Thesis I: Qualification of tactile sensors and their elastic cover

To work with tactile sensors efficiently and reliably, we need to be
familiar with their performance. First, we need to compare their
theoretical response with the measured one, without a cover. Second,
we need to characterize our sensors again in the presence of the
simplest, flat elastic covers. Finally, we have to support the
applicability of the elastic model describing the behavior of the
cover, with measurements both in the direct and the inverse

approaches.

L1 I worked out the exact physical model of the MEMS
suspended-bridge type, piezoresistive, three-axial tactile
device of the MFA, and verified this model and the
preliminary finite-element simulations with characterizing
experiments on a new, complex measurement setup.

Using the literature, I adjusted the theoretical description of the

sensors to describe precisely the bulk micromachined tactile

device of the MFA. The linear characteristics of the model and the
sensitivity of the sensors predicted by the preliminary finite-
element simulations are in accordance with the real measurements

performed on the complex experimental setup.

1.2. Establishing  high  spatial-resolution, three-axial

measurements, I verified that the infinite elastic half-space
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model describes the behavior of the finite, flat elastic
cover well. Relying upon my experimental results, I
confirmed that the signals of the covered sensors are
proportional to three components of the local strain tensor
of the cover.
Using a flat elastic cover, the receptive field of a sensor turns into
a spatially-continuous, extended region, where the sensitivity of
the device is highly inhomogenecous, as described by the
material’s model. I measured this three-component receptive field
distribution with a spatial resolution of 3 pm over the total
sensitive area of one single sensory element. I compared the
measured distribution with the one predicted by the half-space
model and confirmed that the measured signals are propottional to
the strain-tensor components, even though it was assumed before

that they represent the stress tensor.

L3. I solved the inverse problem of the elastic half-space for
an arbitrary point load, and using the results, I
established tactile hyper-accuracy on sensors with a flat
cover.

Using the known coding mechanism of the flat elastic cover, I

found a solution to determine the exact location, direction and

amplitude of an arbitrary point toad over the cover surface. I

utilized my theoretical results on the sensors and in the meantime

verified them with measurements: using the three signals of one

single element of a tactile array, I calculated the location of a
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normal point load on a receptive field size of 300x300 pm with 3
pum (1%) accuracy. I also determined the amplitude of the load
reliably. I integrated the solution into the software environment

resulting in a real-time algorithm.

Thesis I1: Neuromorphic elements in the tactile-sensor design

The surface of the high-resolution tactile systems of nature is not flat
in most of the cases. Instead, it is usually equipped with fingerprints,
different kinds of grooves or hair. Thoroughly investigating the role
of these characteristics in biological systems, I could introduce new
aspects into the artificial sensor design. Using the fingerprints as a
model, I changed the geometry of the previously used flat surface to
alter several properties, the sensitivity and the general coding
mechanism of the cover on purpose. The most important new results

are the following:

IL.1. Introducing hair- and fingerprint-like elements into the
sensor design, I changed the sensors overall
characteristics, increased their  sensitivity and
experimentally verified the role we believe these elements
have in biological systems.

Since the complex coding mechanism of the flat elastic cover

makes signal processing quite problematic, I designed non-flat

covers with specific neuromorphic shape and structure. In
addition to successfully improving the characteristics of the
sensors and increasing their shear-sensitivity, I also validated the

hypotheses that fingerprints are crucial signal-coding and
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amplifying structures, while hairs are fundamental in shear-load

sensing.

IL2. Using finite-element simulation results, I proved that by
consciously designing the geometry of the cover, its coding
mechanism can be simplified efficiently. Applying elastic
hemispheres on the cover surface, I provided a method for
localizing the input load and for measuring the three force
components directly and independently under the cover.

I verified my theoretical results on the three-axial sensors through

a texture-classification example. Using the hemispheres, on the

one hand, I maintained the physical protection of the cover; on the

other hand, I localized the originally continuous input and thus
avoided the inverse-calculation problems originally coming from

the complex coding mechanism of the material.

IL.3. Using elastic hemispheres on an arbitrary pressure-
sensor array, I developed a design plan for a special cover,
which enables the extraction of independent shear-load
components from the originally one-axial sensors.

The elastic hemispheres can be applied successfully on simple one-
axial pressure-sensor arrays as well. In this case one hemisphere
covers four one-axial elements of the sensor array. Combining these
four signals 1 gained shear-load information effectively—based on
the finite-element simulation results again. The method can be used

generally on an arbitrary pressure-sensor array, with any size or

10
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element number. I verified my theoretical assumptions with

measurements on a 9x9 element capacitive array.

4. Application of the results

The applicability of my results obviously goes along with that of
tactile sensors. Their most “handy” function is in an arbitrary grip
task on robotic arms. In addition to the industrial use and scientific
research aims, nowadays a more and more active market is opening
in the medical research field. We can utilize our sensors on
endoscopes where manual touch is unattainable. Combining the
sensors with a proper haptic display we can construct a system that
helps in virtual tele-operation projects. In the long run the sensors
could be used as a substitute for the mechanoreceptors on the arm

prostheses of amputees.
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