Részecske- és sejttranszport modellezése mikrofluidikai rendszerekben

Leelőssyné Tóth Eszter

PhD disszertáció tézisfüzet

Témavezetők:

dr. Iván Kristóf

dr. Fürjes Péter

PÁZMÁNY PÉTER KATOLIKUS EGYETEM

INFORMÁCIÓS TECHNOLÓGIAI ÉS BIONIKAI KAR

Budapest, 2019

1. Bevezetés és célkitűzés

bioszenzorika ugrásszerű fejlődésének köszönhetően olyan újfajta Α diagnosztikai módszerek váltak elérhetővé az orvosok és pacienseik számára, melyek rutinszerű elvégzésére eddig nem csak áruk, de az időigényük miatt sem volt lehetőség. A betegágy mellett elvégezhető gyorstesztek sikeres elterjedésében nagy szerepe van a mikrofluidika területén végzett kutatásoknak, melyek lehetővé tették akár néhány csepp vér hatékony, szennyezésmentes mozgatását és a tesztre való előkészítését az analitikai rendszerekben. Ezekben a rendszerekben a folyadéktranszportot mikronos karakterisztikus mérettel rendelkező csatornák biztosítják. A csatorna méretének csökkentésével a felület-térfogat arány megnövekszik, és mikroskálán a felületi és térfogati erők aránya megváltozik. Emiatt olyan rutinfeladatok válnak kihívássá, mint például két folyadék megfelelő összekeverése, vagy válnak lehetővé, mint a részecskék szeparációja. A mikrofluidikai kutatások hosszú távú célja tehát a mikrocsatornákban kialakuló áramlási jelenségek megértése, leírása, majd lehetőség szerinti tervezése.

A mikrofluidikai és a laboratórium egy chipen (Lab-on-a-Chip - LoC) rendszerek tervezésének mára szerves része lett a numerikus modellezéssel segített paraméteroptimalizálás. Kutatómunkám célja az volt, hogy a mikroáramlási rendszerek multimodális modellezésével megismerhessem, beazonosíthassam a mikrocsatornák komplex geometriája, illetve külső hatások által befolyásolt összetett áramlási folyamatokat, különös tekintettel a kiterjedéssel rendelkező objektumok viselkedésére a mikrofluidikai rendszerekben. A mikrocsatornák tervezésénél minden esetben fontos szempont azok nagyobb, komplex rendszerbe való integrálhatósága, hiszen a mintaelőkészítés fontos részét képezi a mikrofluidikai rendszereknek funkcióinak. A részecskéket is tartalmazó biológiai mintáknál ez olyan összetett feladat, melyet a legtöbb esetben a vizsgálat előtt, nagy méretű készülékeken kell elvégezni. Dolgozatomban különböző alapfunkciókat integráló mikrofluidikai rendszerek viselkedését elemeztem. *Mikrokeverők és mikroszeparátorok* működését vizsgáltam alakos elemek jelenlétében és javaslatot tettem azok optimális geometriájára és működtetési paramétereire.

A halszálka *mikrokeverő* egy fotonikai elven működő bioszenzor mikrofluidikai mintaelőkészítő egységének részét képezi. Tervezésénél arra a kérdésre kerestem a választ, hogy a folyadéktranszport egy adott úthosszán milyen a másodlagos mikrocsatornák megfelelő elrendezése a minél jobb keveredés elérése érdekében.

A mikroszeparátorok esetében kétféle elválasztási feladat megoldása volt a cél: a részecskék áramlástól való elválasztása, valamint a részecskék méret szerinti elválasztása. A *Zweifach-Fung bifurkáción alapuló plazmaelválasztást* alkalmaztam kaszkád rendszerben hatékonyan egy csatornafal menti sejtmentes réteg kialakításával és a kivezetések után történő újbóli létrehozásával. Az elválasztott vérplazma később egy nanopórusokon keresztüli transzportmodulációt kihasználó diagnosztikai eszköz bemenete lehet.

Az MTA-ELTE Immunológiai Kutatócsoportjával való együttműködés keretei között olyan eszközt terveztünk, mely külső mintaelőkészítés nélkül alkalmas emberi vérminta AB0 vércsoportjának meghatározására. A plazmaszeparáció a diagnosztikai ötlet fontos része, melynek kialakulása adja a teszt eredményét. A tervezés során olyan mikrocsatorna modellt hoztam létre, amely alkalmas a

csatornában letapadt *vörösvértestek áramlásmódosító hatásának* pontos leírására.

A részecskék áramlástól való elválasztásának egyik módja lehet a *mágneses csapdázás* is. Munkám során olyan *multidomén modellt* hoztam létre, mely képes a chip alatt elhelyezett permanens mágnes terét és a mikrocsatornában létrehozott áramlást egyszerre kezelni a paramágeneses részecskék trajektóriájának kiszámításánál. A mikrocsatorna egy aptamer szelekciós rendszer alegysége lesz, mely a mágneses részecskékhez kötődött molekulákat választja el a többi molekulától. Különböző térfogatáramok mellett vizsgáltam a csapdázott részecskék arányát, hogy meghatározzam azt a működési tartományt, ami mellett az egység el tudja látni a feladatát.

A részecskék méret szerinti elválasztásának feladata egy légszennyezettséget vizsgáló eszköz fejlesztésénél merült fel. A mikrofluidikai mintaelőkészítő alegység feladata pollenek *méret szerinti elválasztása passzív hidrodinamikai módszerrel*. A tervezés során kétféle hidrodinamikai részecskeszeparációs módszer (Pinched Flow Fractination, Multiorifice Flow Fractionation) együttes alkalmazása mellett értékeltem a részecskék méret szerinti elválasztásának hatékonyságát.

2. Módszerek

A mikrocsatornák modellezése a *COMSOL végeselemes numerikus modellezőszoftverrel* történt.

A *mikrokeverők modellezése* során stacionárius lamináris áramlás, valamint híg anyagok transzportjának stacionárius diffúziós modelljét számítottam ki. A numerikus diffúzió jelensége miatt a számítási hálón konvergenciavizsgálatot végeztem a mikrokeverő egy keverési egységének visszacsatolt periodikus modelljét létrehozva. Az időfüggő trajektória alapú modellt szintén a stacionárius lamináris áramlási mező eredményét átvéve futtattam le. A modelleredményeket a programból exportálva elkészítettem a csatornához tartozó fázisportrét, kiszámítottam a Ljapunov-exponenseket, valamint a keverés jósági tényezőjét. A mikrocsatornákat kétrétegű PDMS technológiával valósítottuk meg. A diffúzió alapú keveredés kvalitatív és kvantitatív elemzéséhez festéket, valamint fluoreszcensen jelölt humán szérum albumint (HSA) használtam fluoreszcens mikroszkópiával vizsgálva. A részecskealapú keveredés vizsgálatához vörösvértestek méreteloszlásához hasonló а élesztőgombákat használtam sötétlátóteres mikroszkópiával. A felvételek intenzitáselemzését ImageJ szoftverrel végeztem el.

A hidrodinamikai alapon működő passzív szeparátorok modellezésénél szintén stacionárius áramlási mezőre helyeztem rá az időfüggő trajektóriamodellt. A *Zweifach-Fung bifurkáción alapuló plazmaszeparációs eszköz* modellezése után kiszámítottam a csatorna fala mentén található sejtmentes réteg vastagságát. A kísérletek során élesztőgombák oldatát juttattam a mikrocsatornába, majd sötétlátóteres mikroszkóppal készítettem felvételeket. A felvételek

intenzitáselemzését és a sejtmentes réteg vastagságának meghatározását az ImageJ szoftverrel végeztem el.

A *részecskéket méretük szerint elválasztó eszköz* modellezése a plazmaszeparációs eszközhöz hasonló módon történt. Ennél a modellnél azonban két különböző átmérőjű részecskepopuláció homogén keverékét definiáltam a bemeneten. A modelleredmények feldolgozása során a két populáció kimeneten vett eloszlásgörbéjét számítottam ki, valamint az általuk átfedő terület méretét. A kísérlet során a kétféle átmérőjű részecske kétféle fluoreszcens festék jelölte, melyekről két különböző szűrővel készítettem felvételeket. A felvételeken felvettem az intenzitásgörbéket, majd többcsatornás képpé illesztettem azokat össze.

A *letapadt vörösvértestek áramlásmódosító hatásának vizsgálatához* a csatorna alján elhelyezett akadályok véletlenszerű, átfedésmentes geometriáját Matlabban generáltam, majd a modellek futtatása a numerikus modellező szoftverben az előbbiekben leírt módon történt. Eredményeik feldolgozásánál a részecskék kumulált y-z irányú elmozdulását számítottam ki.

Az *aktív mágneses részecskeszeparációs* eszköznél a modellezés első lépéseként a mikrocsatorna alatt elhelyezett neodímium állandó mágnes stacionárius mágneses terét modelleztem, majd ennek eredményét átvéve futtattam le a stacionárius lamináris áramlási és az időfüggő trajektória modelleket. Az eredmények feldolgozása során a részecskék permalloy rácson kialakuló eloszlási térképét készítettem el. A mérés során hagyományos mikroszkóppal készítettem felvételeket a mágnesezhető részecskékről, majd a képfeldolgozó szoftverben számítottam ki a rácspontokon a helyfüggő eloszlásértékeket.

3. Új tudományos eredmények

- I. Részecsketrajektória alapú csatolt végeselem modellt dolgoztam ki kaotikus mikrokeverők működésének hatékony leírására, mely alkalmas teljesítőképességük kvantifikálására és ezáltal eltérő geometriák összehasonlítására. A modell eredményeit kísérleti eredményekkel validáltam.
- I.a. Összehasonlítottam a koncentráció- és a trajektóriaalapú modellek teljesítőképességét és erőforrásigényét. Megmutattam, hogy a trajektóriaalapú modell alkalmazásával a numerikus diffúzió hibája elkerülhető. ezáltal alacsonyabb hálófelbontás mellett. kisebb erőforrásigénnyel kvalitatívan megfelelő pontosságú szimulációs eredmény kapható közel egy nagyságrendnyi futásidőcsökkenés mellett. [F4, K9]

A numerikus diffúzió jelensége megnöveli a mikrokeverők modellezésének számítási igényeit. Nem megfelelő hálófelbontás esetén a modell hamis diffúzióval túlbecsüli a keveredés mértékét. Trajektória alapú modellezésnél a numerikus diffúzió kiküszöbölhető, így kevésbé finom számítási hálófelbontás mellett is jó közelítő eredményt kaphatunk a keveredési jelenségek szimulációjakor (3.1. ábra). A számítási háló diffúziós modellezéséhez szükséges konvergenciavizsgálat során a mikrokeverő egy alegységére periodikusan visszacsatolt modellt készítettem, mely lehetővé tette a kb. 7 500 000 elemszámú hálón végzett számítást a rendelkezésre álló szerveren. A diffúziós modellnél elfogadott (0,5% hiba mellett) számítási hálón a futásidő 1 óra 3 perc 16 másodperc volt, míg a trajektória alapú modellnél csupán 6 perc 51 másodperc. A futásidő tehát közel egy nagyságrenddel csökkent a részecske alapú modellezés esetében. Míg a diffúziós modellben a molekulák

populációként nem megkülönböztethető módon jelennek meg, addig a trajektóriamodell lehetővé teszi az egyes részecskék helyzetének időfüggő követését.

3.1. ábra – A koncentrációmező és részecskeeloszlás a kimeneten a legrosszabb (A, C) és a legjobb (B, D) felbontású számítási háló mellett. A koncentráció alapú modellben a hálófelbontás csökkentésével jelentős az információvesztés, a részecskemodellnél kicsi az eltérés (13% a legjobb és a legrosszabb felbontású háló esetében).

I.b. Elemeztem az aszimmetrikus halszálka típusú kaotikus mikrokeverő geometriájának a részecskekeveredési hatékonyságra gyakorolt hatását. Megmutattam, hogy a halszálkák vastagságának és ciklusonkénti darabszámának növelésével kevesebb keverési ciklus mellett is duplájára növelhető a keverés hatékonysága az általam vizsgált paramétertérben. [F1-F4, K1-K9]

A korábbi vizsgálatok nem taglalták, hogy rögzített csatornahossz mellett mekkora a kedvező halszálka szélesség, illetve a cikluson belüli darabszám: a több transzverzális csatorna kialakítása, vagy több keverési ciklus vezet-e jobb

keveredéshez. E paraméterek vizsgálatára hatféle geometriát hoztam létre háromféle halszálka szélességgel, valamint a halszálkák ciklusonkénti darabszámának és a ciklusok számának változtatásával. A keveredés hatékonyságát kétféle paraméterrel is jellemeztem: a csatorna két ellentétes térfelén adott pillanatban található részecskék arányszámával (3.1. táblázat), illetve a Ljapunov-kitevővel. A keveredésről kvalitatív képet a Poincarémetszetek befoglaló körvonalának definiálásával és azok területének összehasonlításával kaptam (3.2. ábra). A vizsgált geometriákban a halszálka csatornák szélességét változtattam 30-35-40 µm között, és ennek megfelelően választottam meg a cikluson belüli számukat és a ciklusok számát is 4/6, 6/4, 4/5, 5/4, 4/5, 5/4. A legjobb keveredést a 40/5/4-es elrendezés nyújtotta 0,4526os hatékonysági index mellett (az optimális keveredésnél ez az index 0,5 lenne – minkét térfélben ugyanannyi részecske lenne található), melynél a halszálkák szélessége 40 µm, egy keverési alegység 5 db halszálkát tartalmaz, és a keverő 4 keverési egységből áll. Az eredmények alapján megállapítottam, hogy a halszálkák szélességének és a keverési egységenkénti darabszámának növelésével a keveredés javítható kevesebb keverési ciklus mellett is. A legrosszabb és a legjobb hatékonyságú geometriák között az eltérés kétszeres volt.

3.1.	táblázat –	Keverés	hatékonysága	a különböző	halszálka	elrendezéseknél.

Név	30/4/6	30/6/4	35/4/5	35/5/4	40/4/5	40/5/4
Hatékonyság	0,1984	0,2105	0,2998	0,3655	0,4513	0,4526

3.2. ábra – A különböző paraméterrel rendelkező keverők hatékonyságának összevetése. A részecskék által elfoglalt területeket megjelölve láthatóvá válik, ahogy a bal oldalon elfoglalt terület zsugorodik, a jobb oldalon elfoglalt terület pedig nő, a keverés hatékonyságának növekedésével. [F4]

I.c. A szimulációs eredményeket mind molekula- mind részecskekeveredési kísérletekkel validáltam PDMS-ben kétrétegű lágylitográfiával megvalósított mikrofluidikai rendszerekben. Megállapítottam, hogy az általam definiált modell korlátozott erőforrásigény mellett is alkalmas mikrofluidikai rendszerek kvalitatív jellemzésére. [F1-F4, K1-K9]

A halszálka-keverő kísérleti elemzése során megvizsgáltam a diffúzió- és a trajektória alapú keveredést is. A diffúzió alapú keveredés vizsgálatánál festési módszerrel kvalitatív, fluoreszcens mikroszkópiával pedig kvantitatív mérési eredményekhez jutottam. A jelölt molekulával készített felvételen a csatorna kimenetén felvett intenzitásgörbét hasonlítottam össze a modell kimeneti koncentráció-eloszlásával (3.3. ábra). Az eredmények jó egyezést mutattak. A trajektória alapú modell esetében az élesztőgombák sötétlátóteres mikroszkóppal készült felvételén vett kimeneti intenzitásgörbét vetettem össze a modellezett kimeneti részecskeeloszlással (3.4. ábra). A mérési eredmény itt

kis mértékben eltért a modellezett eloszlástól, melyet azzal magyarázhatunk, hogy az intenzitás nem lineáris függvénye az adott képsíkban található gombák számának. A görbén a lokális csökkenés helye megegyezik a modellezett eloszláscsúcs helyével.

3.3. ábra – A modell (A) és a mérés (B) eredményeinek kvalitatív és kvantitatív összehasonlítása. A relatív pixel intenzitásokat felvéve és összevetve (C) látszik a jó egyezés. [F4]

3.4. ábra – A részecskemodell validálása élesztőgombák sötétlátóteres vizsgálatával (A). A képen megfigyelhető a kevert és a keveretlen régiók váltakozása. Az intenzitáselemzésnél (B) a részecskeszegény régió jó egyezést mutat az élesztőgombaszegény régióval, a mérésnél a csúcs azonban elmarad. [F4]

- II. Az általam felépített trajektóriaalapú modell alkalmazásával vizsgáltam a részecsketranszport paraméterfüggését komplex mikrofluidikai szeparációs rendszerekben. A szimulációs eredmények alapján megvalósított mikrorendszerek viselkedésének kísérleti vizsgálata után javaslatot tettem a tervezett elválasztási funkciókhoz optimalizált eszközök strukturális felépítésére.
- II.a. Zweifach-Fung bifurkáción alapuló vérplazma-szeparációs elvet alkalmazó elrendezés esetén kaszkád mikrofluidikai vizsgáltam ismétlődő áramlástranszformációs alrendszerek integrálásának hatását я plazmaelválasztásra. Modellszámításokkal és kísérleti módszerekkel bizonyítottam, hogy az általam javasolt geometria alkalmas sejtmentes létrehozására és annak periodikus megújítására réteg kaszkád rendszerben. [F5, K10, K11]

Hatféle geometria hidrodinamikai vizsgálatát végeztem el, melynek során tanulmányoztam a különféle kiszélesedésekben megjelenő örvényeket, illetve meghatároztam kimeneti csatornáik plazmahozamát (3.2. táblázat). Trajektória modellel vizsgáltam a sejtmentes réteg létrejöttét különböző térfogatáramok Megállapítottam, а kiszélesedéseket tartalmazó mellett hogy mikrocsatornáknak 0,5-2 µl/s térfogatáram-tartományban működési optimuma van (3.5. ábra). A mérések során igazoltam, hogy a különböző térfogatáramtartományokban különböző módon alakulnak ki örvények a kamrákban. A hat geometriában a mérés során minden esetben kialakult a sejtmentes réteg, annak vastagságát azonban a 2. és a 4. geometria esetében a modell alulbecsülte. A kísérletek során sikerült igazolni a működési optimumot is a megadott térfogatáram-tartományban (3.6. ábra).

Geometria	1. geometria	2. geometria	3. geometria	4. geometria	5. geometria	6. geometria
Hozam	0,4 %	1 %	1,1 %	1,1 %	1,4 %	2,3 %

 3.2. táblázat – A különböző geometriák hatása az elválasztás hozamára a modellezés alapján.

3.5. ábra – Sejtmentes réteg vastagsága a térfogatáram függvényében. A szeparátorok 0,5-4 µl/s térfogatáram tartományban működnek optimálisan.

3.6. ábra – Sejtmentes réteg kialakulása a mikrofluidikai csatornában különböző térfogatáramok mellett. [F5]

II.b. Létrehoztam egy aktív időfüggő háromdimenziós magnetoforetikus elválasztási elvű modellt, amelyben a részecsketranszport aktív mágneses elven vezérelhető. A modell tartalmazza a mágnesezhető anyagok tulajdonságait és több mérettartományt és fizikai elvet kezel hierarchikusan. Kísérleti elrendezésben demonstráltam a szeparációs elv működését. [F6, K12, K13]

A magnetoforetikus elven történő elválasztás esetén célom a mágneses részecskék csapdázása volt a mikrocsatornában. A chip alatt elhelyezett neodímium mágnes által létrehozott mágneses teret a mikrocsatorna alján kialakított mágnesezhető permalloy réteg lokálisan erősíti úgy, hogy a részecskék csapdázása megadott helyen történjen meg. A modellezés során a mágneses modellre épült az áramlási modell, annak az eredményére pedig a trajektória modell. A modellezés során megvizsgáltam a permalloy négyzetrács hatását a mágneses részecskék csatornabeli eloszlására a térfogatáram függvényében. Megállapítottam, hogy 4 µl/s térfogatáram alatti tartományban a részecskék csapdázása teljes, valamint 4-20 µl/s térfogatáram-tartományban a részecskék csapdázása 51-91%-os (3.3. táblázat). A modellezés során tehát meghatároztam azt a működési tartományt, melynél a részecskék csapdázása úgy lehetséges, hogy közben felettük folyadék áramlik. A kísérlet során a mágneses részecskék csapdázása sikeres volt (3.7. ábra). Magasabb térfogatáram mellett a részecskék a négyzetrács hosszanti élei mentén rendezve hagyták el a vizsgált területet, ahogy azt a modell mutatta.

Térfogatáram (µl/s)	4	6	8	10	12	14	16	18	20
Rácson csapdázott részecskék aránya	96%	83%	75%	68%	62%	59%	55%	52%	49%
Csatornában csapdázott részecskék aránya	100%	91%	80%	71%	65%	62%	58%	56%	51%

3.3. táblázat – Csapdázott részecskék aránya különböző térfogatáramok esetén

3.7. ábra – Részecskék teljes mágneses csapdázása a numerikus modellben 3,5 µl/s térfogatáram mellett (A). A csapdázás az első élnél a legerősebb, a nagyobb sebességgel rendelkező részecskék eloszlanak a csatorna teljes hosszában. A részecskék elfogása és elengedése mikroszkópos felvételen (B), a részecskék itt is a belépő élt részesítik előnyben. A folyadék balról jobbra áramlik mindkét esetben.

- III. Demonstráltam a trajektóriamodell alkalmazhatóságát LOC rendszerek tervezéséhez.
- III.a. Trajektóriamodell segítségével modelleztem immobilizált vörösvértestek hatását az áramlási térre, illetve az áramlással együtt haladó sejtekre. Megmutattam, hogy a modell alkalmas a letapadt sejtek áramlásmódosító és sejtekre vonatkozó retenciós hatásának pontos leírására, ezáltal segítve a diagnosztikai eszköz működésének megértését és tervezhetőségét. Javaslatot tettem az optimális csatornamagasságra, ami a vörösvértestek legkisebb méretének közel kétszeresére adódik. [F7]

A letapadt vörösvértesteket tartalmazó mikrocsatorna modellezése során a vizsgált csatornageometriák létrehozására Matlab szkriptet készítettem, mely a COMSOL-nak adott utasításokkal generálja a csatorna alján véletlenszerűen elhelyezkedő vörösvértesteket reprezentáló akadályokat. Az akadályok áramlásmódosító, és ezáltal a sejtek mozgására gyakorolt hatását a mozgó sejtek kumulált y-z irányú elmozdulásával jellemeztem. Összevetettem 7 um magas csatorna esetén 2-6 µm magasság között indított részecskék kumulált elmozdulását, mely alapján az 5 µm magas mikrocsatorna használata, valamint a 2 µm magas indítási magasság mellett döntöttem. Ezen paraméterek használata mellett megvizsgáltam az akadályok áramlásmódosító hatását, mely az 5 µm magas mikrocsatornában 2 µm magas akadályok mellett 4 µm magasságban készített áramlási metszeten látható (3.8. ábra). Kiszámítottam a kumulált elmozdulást 0%, 10%, 20%, 30% valamint 40% csatornalefedettség esetén, mely alapján megállapítottam, hogy 30%-nál nagyobb lefedettség esetén a részecskék kumulált elmozdulása visszaesik (3.4. táblázat), mivel a felületi borítottság miatt az oldalirányú elmozdulások elmaradnak. A modell eredményeit kísérleti eredményekkel vetettem össze, ahol a részecskék oldalirányú elmozdulásának csatornalefedettségtől való szignifikáns függését tapasztalták (3.9. ábra). A modell eredményei jó egyezést mutattak a kísérleti eredményekkel. A kísérletek alapján a letapadt vörösvértestek áramlásmódosító hatása képes volt a teljes vér vörösvértestjeit visszatartani, és plazmaszeparációt indukálni a mikrofluidikai rendszerben.

3.8. ábra – Sebességmező x-y metszetei az 5 μm magas csatornában 1 μm-nél (A), 2 μm-nél (B), 3 μm-nél (C) és 4 μm-nél (D) a csatorna aljától mérve. A 2 μm magas akadályok áramlásmódosító hatása 2 μm-rel az akadályok felett is jelentős.

3.4. táblázat - Kumulált y-z-irányú elmozdulások különböző lefedettségek esetén

Lefedettség	0%	10%	20%	30%	40%
Kumulált elmozdulás	2,93 µm	15,94 μm	24,33 μm	41,52 μm	20,28 µm

III.b. Szimulációs és kísérleti eszközökkel vizsgáltam részecskék transzportjának térfogatáramtól és részecskemérettől való függését szekvenciális mikrofluidikai rendszerben. Megmutattam az áramlásszűkületek hatására kialakuló nyírófeszültség trajektóriamódosító hatását, mely megalapozza a részecskék méretfüggő szeparációját. Az elválasztás hatékonysága növelhető a kiszélesedések és a szűkületek számának növelésével. [F8, K14-K16]

A méret szerinti szeparációt megvalósító mikrocsatorna modellezésénél megvizsgáltam a nyomáseloszlást, valamint a nyírósebességet a kamrákat és szűkületeket tartalmazó geometriában. A nyomásesés jelentős része a valamint szűkületekre jut. а folyadékrétegek között fellépő sebességkülönbségből adódó nyírás is itt a legjelentősebb. A trajektória modellel megmutattam, ahogy egy részecske a magas nyírású területen tér át egy csatorna középvonala felé eső áramvonalra arról az áramvonalról, amelyen eredetileg haladt (3.10. ábra). A két különböző részecskeméret együtt történő modellezésénél megmutattam, hogy a szűkületekben a részecskék méretük szerint különválnak (3.11. ábra). A szeparáció kvantitatív vizsgálatára a két részecskeeloszlás-görbe által átfedő területet vezettem be mérőszámként és megvizsgáltam a bemeneti térfogatáram-arányok hatását az elválasztás hatékonyságára. Az átfedés mértéke meredeken csökkent a térfogatáram-arány növekedésével (3.12. ábra). Két térfogatáram-aránypár, 0,1 µl/s és 5 µl/s valamint 1 µl/s és 5 µl/s mellett vizsgáltam a két részecske méretkülönbségének hatását az elválasztásra. A szeparáció hatékonysága mindkét esetben nőtt a második részecske méretének növekedésével, a növekedés azonban meredekebb volt a nagyobb térfogatáram-különbség esetében. Megmutattam, hogy az elválasztás hatékonysága bizonyos mértékig javítható a szűkületek számának növelésével (4-5 szűkület alkalmazása), ez a változás azonban csak olyan paraméterek mellett jelentős, ahol egy szűkületet tartalmazó csatorna vizsgálata során is kimutatható a jelenség, tehát az átfedés 90% alatti volt. A kísérletek során készített többcsatornás felvételekkel, valamint azok intenzitáselemzésével megmutattam, hogy csatornában a 10 μ m és 16 μ m átmérőjű részecskék szeparációja végbemegy (3.13. ábra), 5 μ l/s és 10 μ l/s bemeneti térfogatáramok mellett az átfedés mértéke csupán 27%-os. A mérések során igazoltam az elválasztás térfogatáram-arány függését.

3.10. ábra – Részecske trajektória elválása a folyadék áramvonalaktól. A részecske trajektóriáját piros, az áramvonalakat fekete és kék vonalak jelölik. A színskála a nyírófeszültséget mutatja. Látható, hogy a részecske a magas nyírású csatornarészen tért le az addig követett áramvonalról. Az áramlás jobbról balra halad.

3.11. ábra – Poincaré metszetek a csatorna mentén. A metszetek helyét az A ábrán található vonalak jelölik. A bemenethez közel (B) a részecskék összekeverve helyezkednek el, a pufferoldat a részecskéket a csatorna oldalához szorítja (C), majd a kiszélesedéshez érve a részecskék jobban széthúzódnak (D). A szűkületekben a két részecskeméret (10 μm – zöld, 16 μm – piros) egyre jobban elválik egymástól. A kimenetnél (I) a két részecskehalmaz jól elkülönül. A részecskék kimeneti metszetéből számolt eloszlási görbék (J). A két populáció közötti átfedés minimális.

3.12. ábra – Bemeneti térfogatáram-arányok hatása az elválasztás hatékonyságára. Az arány növelésével javul az elválasztás hatékonysága. Minél kisebb a minta bemenetének térfogatárama, annál meredekebben javul az elválasztás hatékonysága.

3.13. ábra – Méréssel rögzített, két csatornából illesztett képek a bemeneti (A) és a kimeneti (B) mérőablakoknál. A 10 μm átmérőjű részecskéket zöld, a 16 μm átmérőjű részecskéket piros színnel jelöltük. A bemeneten még összekevert részecskék a kimenetre elválnak egymástól.

4. Az eredmények alkalmazási területei

Napjaink mikrofluidikai rendszerei a mintaelőkészítést – főleg részecskéket vagy sejtes elemeket tartalmazó minta esetén – az eszközhöz tervezett, finomhangolt részegységekkel valósítják meg. Az általam vizsgált keverést és a szeparációt különféle módszerekkel megvalósító mikrocsatornák is ilyen rendszerekhez készültek, legtöbb esetben kutatócsoportok közötti együttműködés vagy Európai Uniós projektek keretei között kerültek megvalósításra.

A halszálka mikrokeverő a P3SENS: Polymer Photonic multiparametric biochemical SENSor for Point of care diagnostics Európai Unió által támogatott projektben alkalmazott mikrofluidikai mintaelőkészítő kazetta része. Ez az egység felel a minta (puffer, szérum vagy teljes vér) előkészítéséért és a fotonikus bioszenzor érzékelési területére történő transzportjáért. A transzport során a keverő biztosította a minta és a reagensek keveredését azonos transzportutak mellett. A numerikus modellezés segítségével a csatornageometriát, nyomásesést és az úthosszakat úgy határoztuk meg, hogy az optimális geometriát definiáljuk a megfelelő keveredési folyamat biztosítására.

A Zweifach-Fung bifurkáción alapuló kaszkád mikrofluidikai szeparációs modul a CAJAL4EU: Nanoszenzorok az orvosdiagnosztikában projektben egy nanopóruson keresztüli transzport-moduláción alapú diagnosztikai eszköz egyik lehetséges plazma-elválasztó, mintaelőkészítő alegységeként szerepelt. Az orvosdiagnosztikai platform 8 ország 25 partnerének szoros együttműködésének eredménye. A projekt egyik célja a detektálható biomarkerek spektrumának szélesítése is, mely specifikus aptamer receptorok keresését is magába foglalja. A magnetoforetikus elven működő szeparációs eszköz kapcsán a SELEX

aptamer szelekciós módszer mikrofluidikai megvalósításában való alkalmazhatóságát vizsgáltam meg. A módszer egyik fontos lépése a mágneses gyöngyhöz bekötődött aptamer jelöltek elválasztása a többi aptamertől a pufferoldat folyamatos áramoltatása mellett. A számítási és kísérleti eredmények alapján a tervezett mikrocsatorna jó jelölt ennek a lépésnek a megvalósítására.

A részecskék méret szerinti szeparációját megvalósító passzív mikrofluidikai eszköz a *PAMIAQ: Új típusú integrált, széles körben használható légszennyezőanyag érzékelőtechnológia fejlesztése* című EUREKA projekt eredménye. A különböző légszennyezőanyagok között a pollenek vizsgálatát is tervezik az eszközzel. A projekt részfeladataként készült el a mikrofluidikai mintaszállító rendszer első verziója, melyet mesterséges részecskék szuszpenziójával elemeztünk, és bebizonyítottuk annak méret szerinti elválasztásra való alkalmasságát.

Α letapadt vörösvértesteket tartalmazó mikrocsatorna vizsgálatának eredményei az MTA-ELTE Immunológiai Kutatócsoporttal való együttműködés keretében elkészült vércsoport meghatározásra alkalmas autonóm mikrofluidikai eszközben hasznosultak. Az eszköz a rácseppentett vért két csatornába szívja be, melyek anti-A-val és anti-B-vel kezeltek. Az A vagy B vércsoportú vörösvértestek kitapadnak a megfelelő oldalon, akadályt képezve a többi vörösvértest számára a csatornában. Így a kialakuló áramlási sebességváltozás, illetve a plazmaszeparáció szabad szemmel is megfigyelhető. A vércsoport esetén az anti-A-t tartalmazó csatornában történik szeparáció, B vércsoport esetén az anti-B-t tartalmazó ágban. AB esetén mindkettőben, 0 vércsoportnál pedig egyikben sem. Az eszköz chipen kívüli mintaelőkészítést és külső folyadékáramoltatást nem igényel.

5. A jelölt publikációi

5.1. A tézisek alapjául szolgáló publikációk

5.1.1. Folyóiratcikkek

- [F1] Z. Fekete, E. G. Holczer, <u>E. Tóth</u>, K. Iván, and P. Fürjes, "Stochastic mixing in microfluidics integrable in bioanalytical systems," *PROCEDIA ENGINEERING*, köt. 25, o. 1229–1232, 2011.
- [F2] P. Fürjes, Z. Fekete, E. G. Holczer, <u>E. Tóth</u>, K. Iván, and I. Bársony, "Particle Mixing by Chaotic Advection in Polymer Based Microfluidic Systems," *PROCEDIA ENGINEERING*, köt. 47, o. 454–457, 2012.
- [F3] P.Fürjes, E. G. Holczer, <u>E. Tóth</u>, K. Iván, Z. Fekete, D. Bernier, F. Dortu és D. Giannone, "PDMS microfluidics developed for polymer based photonic biosensors", *MICROSYSTEM TECHNOLOGIES*, ápr. 2014.
- [F4] <u>E. L. Tóth</u>, E. G. Holczer, K. Iván, és P. Fürjes, "Optimized Simulation and Validation of Particle Advection in Asymmetric Staggered Herringbone Type Micromixers", *MICROMACHINES*, köt. 6, sz. 1, o. 136–150, dec. 2014.
- [F5] <u>E. L. Tóth</u>, E. Holczer, K. Iván, és P. Fürjes, "Effect of Geometric Singularities on Plasma Separation Performance in Cascade Zweifach-Fung Bifurcations", *PROCEDIA ENGINEERING*, köt. 120, o. 1083– 1086, 2015.
- [F6] <u>E. L. Tóth</u>, E. Holczer, P. Földesy, K. Iván, és P. Fürjes, "Simulation and experimental validation of particle trapping in microfluidic magnetic separation (MMS) system", *PROCEDIA ENGINEERING*, köt. 168, o. 1458–1461, 2016.

- [F7] É. Sautner, K. Papp, E. Holczer, <u>E. L. Tóth</u>, R. Ungai-Salánki, B. Szabó, P. Fürjes, J. Prechl "Detection of red blood cell surface antigens by probe-triggered cell collision and flow retardation in an autonomous microfluidic system", *SCIENTIFIC REPORTS*, köt. 7, sz. 1, o. 1008, 2017.
- [F8] <u>E. L. Tóth</u>, E. Holczer, P. Földesy, K. Iván, és P. Fürjes, "Microfluidic Particle Sorting System for Environmental Pollution Monitoring Applications", *PROCEDIA ENGINEERING*, köt. 168, o. 1462–1465, 2016.

5.1.2. Konferencia publikációk

- [K1] Z. Fekete, E. G. Holczer, <u>E. Tóth</u>, K. Iván, P. Fürjes, Design and Realisation Microfluidic Stochastic Mixers Integrable in Bioanalytical Systems, *MME 2011*, Tonsberg, Norway, 2011
- [K2] Z. Fekete, E. Holczer, <u>E. Tóth</u>, K. Iván, P. Fürjes, Stochastic Mixing in microfluidics Integrable in bioanalytical Systems, *Eurosensors 2011*, Athens, Greece,
- [K3] P. Fürjes, Z. Fekete, E. G. Holczer, <u>E. Tóth</u>, K. Iván, I. Bársony: Particle mixing by chaotic advection in polymer based microfluidic systems, *Eurosensors 2012*, Krakow, Poland, 2012
- [K4] P. Fürjes, E. Holczer, Z. Fekete, <u>E. Tóth</u>, F. Dortu, D. Giannone, Development of a polimer based microfluidics for polimer based photonic biosensors, *Microfluidics 2012*, Heidelberg, Germany, 2012
- [K5] P. Fürjes, Z. Fekete, E. Holczer, <u>E. Tóth</u>, K. Iván, I. Bársony, Chaotic mixing of particles in microfluidic systems, *Microfluidics 2012*, Heidelberg, Germany, 2012

- [K6] P. Fürjes, E. Holczer, <u>E. Tóth</u>, Z. Fekete, Polymer Based Microfluidics for Biomedical Applications, *MITT2013 Conference*, Budapest, Hungary, 2013
- [K7] <u>E. Tóth</u>, K. Iván, P. Fürjes, Design and comparison of micromixers using COMSOL simulations, *From Medicine to Bionics*, 1st European *Ph.D. Conference*, Budapest, Hungary, 2013
- [K8] <u>E. Tóth</u>, K. Iván, P. Fürjes, Z. Fekete, E. Holczer, Design, Realisation and Validation of Microfluidic Stochastic Mixers Integrable in bioanalytical Systems Using CFD Modeling, *BioCAS 2013*, Rotterdam, Netherlands, 2013
- [K9] <u>E. Tóth</u>, K. Iván, P. Fürjes, Optimization of the herringbone type micromixer using numerical modeling and validation by measurements, *Comsol Conference 2014*, Cambridge, United Kingdom, 2014 – Best Poster Award
- [K10] <u>E. Tóth</u>, K. Iván, P. Fürjes, Separation performance of cascade Zweifach-Fung bifurcations enhanced by inertial subsystems, *Microfluidics 2014*, Heidelberg, Germany, 2014
- [K11] <u>E. L. Tóth</u>, E. Holczer, K. Iván, P. Fürjes, Effect of geometric singularities on plasma separation performance in cascade Zweifach-Fung bifurcations, *Eurosensors 2015*, Freiburg, Germany, 2015
- [K12] <u>E. L. Tóth</u>, A. Füredi, E., K. Iván, P. Fürjes, Multiphysics modelling of magnetic bead trajectories in microfluidic magnetic separation systems, *NanoBioTech 2015*, Montreux, Switzerland, 2015
- [K13] <u>E. L. Tóth</u>, A. Füredi, K. Iván, P. Fürjes, Simulation and experimental validation of particle trapping in microfluidic magnetic separation (MMS) system, *Eurosensors 2016*, Budapest, Hungary, 2016

- [K14] <u>E. Tóth</u>, P. Fürjes, Trajectory model of particle transport in passive microfluidic systems, *Mátrafüred 2013*, Visegrád, Hungary, 2014
- [K15] <u>E. L. Tóth</u>, E. Holczer, P. Földesy, K. Iván, P. Fürjes, Lateral migration based particle sorting in microfluidic systems, *From Medicine to Bionics, 3rd European Ph.D. Conference*, Budapest, Hungary, 2016
- [K16] <u>E. L. Tóth</u>, E. Holczer, P. Földesy, K. Iván, P. Fürjes, Microfluidic particle sorting system for environmental pollution monitoring applications, *Eurosensors 2016*, Budapest, Hungary, 2016

5.2. Egyéb publikációk

5.2.1. Folyóiratcikk

A. Nagy, <u>E. L. Tóth</u>, K. Iván, and A. Gáspár, "Design and modeling of microfluidic systems for multiple chromatographic separations," *Microchemical Journal*, köt. 123, o. 125–130, Nov. 2015.

5.2.2. Konferencia publikációk

A. Nagy, <u>E. Tóth</u>, K. Iván, A. Gáspár, Simulation of microfluidic systems with COMSOL Multiphysics, *14th International Symposium and Summer School on Bioanalysis, CEEPUS*, Bratislava, Slovakia, 2014

A. Nagy, <u>E. Tóth</u>, K. Iván, A. Gáspár, Simulation of microfluidic systems by using COMSOL Multiphysics software, **30th International Symposium on** *Chromatograhy*, Salzburg, Austria, 2014

A. B. Tóth, E. Holczer, <u>E. L. Tóth</u>, K. Iván, P. Fürjes, Modelling and Characterisation of Droplet Generation and Trapping in Cell Analytical Two-Phase Microfluidic System, *Eurosensors 2017*, Paris, France, 2017