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Abstract

Kinetic systems form a special class among nonnegative dynamical systems that are

suitable to describe all kinds of dynamical behaviour. Kinetic systems can be applied

for modelling various kinds of systems, such as biochemical reaction networks, electronic

networks, transportation problems or the spreading of epidemics. The aim of this thesis

is to study the structural properties of mass action kinetic systems and introduce novel

algorithms for the computation of their realizations. During the computations the linear

programming optimization framework is applied. It is proven that the dense linearly

conjugate realization of a kinetic system with a fixed set of complexes and also fulfilling

a finite set of additional linear constraints has the superstructure property. This plays

an essential part in the presented methods. A polynomial-time algorithm is given for

computing the dense linearly conjugate realization of a kinetic system that is significantly

more efficient than the previously known methods. An already existing algorithm for

determining a weakly reversible dynamically equivalent realization of a kinetic system

is extended to the case of linearly conjugate realizations. Two methods are presented

for computing all possible reaction graph structures representing linearly conjugate –

and as special case dynamically equivalent – realizations of a kinetic system. Both

methods are suitable for parallel implementation. A generalized form of kinetic systems

is introduced that allows uncertain parameters and additional linear constraints as well.

The methods for computing a dense realization, the set of core reactions and all possible

reaction graph structures are extended to this model as well. The correctness of each

presented algorithm is proven, and their working is demonstrated on several examples.
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Notations and Symbols

R the set of real numbers

R+ the set of nonnegative real numbers

N the set of natural numbers, including 0

Rn the n-dimensional Euclidean space

Rn+ the nonnegative orthant in Rn

|H| the number of elements in the set H

Hn×m the set of matrices having entries from a set H with n rows and m columns

[M ]ij the entry of a matrix M with row index i and column index j

[M ].j the column j of a matrix M

vec(M) the concatenation of the columns of the matrix M

vec(M) = [[M ]>.1, . . . , [M ]>.m]>

eni the ith unit vector in Rn, where

the coordinate i is equal to 1 and all other coordinates are zero

0n the zero vector in Rn

1n the vector in Rn with all coordinates equal to 1

0n×m the zero matrix in Rn×m

In the unit matrix in Rn×n

0q the binary sequence of length q with all coordinates equal to zero

1q the binary sequence of length q with all coordinates equal to 1

sgn(x) the sign function

S the set of species of a CRN

C the set of complexes of a CRN

R the set of reactions of a CRN

Ci → Cj the reaction from complex Ci to complex Cj
(Ci, Cj) the reference of reaction Ci → Cj in formulas

kij reaction rate coefficient of the reaction Ci → Cj
M the coefficient matrix of a polynomial system

Y the complex composition matrix of a CRN

Ak the Kirchhoff matrix of a CRN

ψY (x) the monomial function of the CRN (Y,Ak) (independent from Ak)

T positive definite diagonal transformation matrix

ΦT the transformation matrix of the monomial function ϕ

[ΦT ]ii = ϕi(T · 1p)
ΨT the transformation matrix of the monomial function ψY of the CRN (Y,Ak)

[ΨT ]ii = ψYi (T · 1m)

vi
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Notations vii

Ab the transformed Kirchhoff matrix of a linearly conjugate realization

Ab = Ak ·Ψ−1T
[M,Y ] the kinetic system defined by the coefficient matrix M and the

complex composition matrix Y

[P, L, Y ] the uncertain kinetic system defined by the polyhedron P
of uncertain parameters, the set L of additional linear constraints

and the complex composition matrix Y

(Y,Ak) the CRN characterized by the matrices Y and Ak
(T−1, Ab) the linearly conjugate realization defined by the matrices T−1 and Ab
Q the polyhedron representing the solutions of an optimization model

Q the closure of the polyhedron Q
Ec[M,Y ] the set of core edges of the kinetic system [M,Y ]

G(Y,Ak) the reaction graph of the CRN (Y,Ak)

V (G) the set of vertices of the graph G

E(G) the set of edges of the graph G

Km complete directed graph on m vertices

R a realization and its representation as a binary sequence

D the dense realization and its representation as a binary sequence

GR the reaction graph structure of the realization R

e(R) the number of edges of the graph GR
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Chapter 1

Introduction

The development and/or the maintenance of any kind of device or system requires some

kind of knowledge about its possible states. To reveal the connections among properties

of different events and to try to predict certain characteristics of the future quantitative

mathematical models are successfully applied. These models usually describe only se-

lected properties of the real process, but from an application point of view in most cases

it is enough.

The operation of more complicated systems such as living organisms can often be de-

scribed by complex phenomena, and for the modelling of quantities changing in space

and/or in time dynamical systems are the most commonly applied tools. Therefore,

this type of modelling has become an intensively studied and frequently applied tool in

systems biology.

In many real life problems for example in economic systems, population dynamics or

biochemical systems the variables are physically constrained to have only nonnegative

values, and therefore the theory of nonnegative systems [1] needs to be applied for their

characterization. A dynamical system is called nonnegative if its trajectories remain in

the nonnegative orthant whenever the initial value is nonnegative. (If strict positivity is

required then it is called a positive system.) A wide subclass of dynamical systems can

be transformed into nonnegative form by shifting the coordinates into the nonnegative

orthant and then in a further transformed version of the model the trajectories can be

kept in a given region, see [2].

A more special class of nonnegative dynamical systems is formed by the quasi polyno-

mial (QP) systems, which was first introduced in [3]. The author has also shown that

most smooth dynamical models can algorithmically be transformed into QP form, which

property makes such systems suitable for the modelling of dynamical systems belonging

to a much wider class.

If the right hand side of the ordinary differential equations of the system can be given

in the form of a multivariate polynomial as well, then it is called a polynomial system.

The aim of this thesis is the structural and computational analysis of a certain type of

nonnegative polynomial systems called kinetic systems, that can describe the dynamics

1
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Chapter 1. Introduction 2

of chemical reaction network (CRN) models obeying the mass action law. Despite the

fact that kinetic systems are rather special polynomial systems, these models are versatile

tools in modelling. Furthermore, by using suitable model transformations the majority

of nonnegative dynamical systems can be transformed into kinetic form [3, 4].

The different types of dynamical systems and possible transformations between them

are shown on the diagram in Figure 1.1. It has to be mentioned however, that the

examination of model types different from kinetic systems and of the transformations

between these models is not included in this thesis.

quasi−polynomial systems

nonnegative polynomial systems

nonnegative systems

kinetic systems

time rescaling

Lotka−Volterra systems

monomial dynamics

translation and QP embeddingdynamical systems

Figure 1.1: Classes and transformations of dynamic systems.

Chemical reaction networks obeying the mass action law can be originated from the

dynamical modelling of chemical and biochemical processes, but they can be applied to

describe various kinds of dynamical phenomena. Their applications appear in several

different fields of science and engineering, such as the modelling of electrical networks,

transportation problems or the spreading of epidemics, therefore these models are so-

called universal descriptors [5, 2].

The class of kinetic systems is defined by chemical reaction network models, but for the

verification of the kinetic property it is not necessary to compute a suitable CRN, it is

enough to examine just the sign pattern of the monomial coefficients, see [6].

It is known that in general there are many realizations and different reaction graph

structures corresponding to a given kinetic dynamics. This phenomenon is called macro-

equivalence or dynamical equivalence [7, 8]. There is also a generalization of dynamical

equivalence called linear conjugacy, where a positive definite diagonal linear transfor-

mation is applied to the state variables working as if the units of measurement were

individually scaled [9]. It is easy to see that linear conjugacy preserves the kinetic

property of the system and also the main qualitative dynamical properties like stability,

multiplicities or the boundedness of solutions. However, due to the larger degree of
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Chapter 1. Introduction 3

freedom introduced by the transformation parameters, in general, it allows a larger set

of possible structures compared to dynamical equivalence.

There is a widely applied structure oriented representation of CRNs that is a weighted

directed graph called the Feinberg-Horn-Jackson graph. It depicts the reactions which

are present in the network, and some other parameters of the network as well that

are easier to describe with graph properties. Furthermore, in some cases there is a

relation between the dynamics of the network and the reaction graph structure, without

considering the actual reaction rates. This has become an important research area in

chemical reaction network theory since the 1970s, see [7, 10]. In this topic there are

several practice oriented results [11] as well as beautiful mathematical designs [12].

To determine a possible reaction network structure of a given kinetic system a symbolic

method was proposed in [6]. Since this method returns only one particular dynami-

cally equivalent realization called the canonical realization, a different approach must

be applied to determine others.

Chemical reaction networks have a simple algebraic characterization, which makes it

particularly appealing to develop computational methods for their dynamical and struc-

tural analysis [13, 1] or even control [14]. Realizations of a given kinetic dynamics can

be defined by linear constraints, that suggests the application of linear optimization

methods. Since this is in general a very simple model, several computational methods

have already been developed to find linearly conjugate or, as a special case, dynamically

equivalent realizations of kinetic systems [15, 16] and also having preferred properties

such as density/sparsity [17, 18], maximal or minimal realizations [19], complex or de-

tailed balance [20, 21], weak reversibility [22], [51] or minimum deficiency [23, 24].

The general form of these problems can be written as a linear programming (LP) model

using only continuous decision variables. For solving an LP problem there are several

polynomial time algorithms, the first provably correct solution is the Simplex Algorithm

that was developed by Dantzig in 1947 [25, 26]. This algorithm works in most of the

practical applications very efficiently, however in 1972 Klee and Minty gave an example,

the so-called Klee-Minty cube, for proving that the simplex algorithm in the worst case

might require exponential time [27].

In practical applications an algorithm is considered to be efficient if it runs in polynomial

time, i.e. the number of required computation steps can be given as a polynomial

function of the size of the input. These algorithms run in real time even in the case of

larger inputs, while the required time of exponential methods increases very fast with

the size of the input.

After the introduction of the simplex method several different algorithms have also been

developed for the efficient solution of linear optimization problems, such as the criss-

cross method or the ellipsoid method [28]. Despite that, in most application still the

simplex method is used. It has to be mentioned though, that the efficiency of the chosen

method can highly depend on the implementation.

In the cases of some special realizations the computation requires the application of

integer and continuous variables at the same time, which transforms the model into a
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Chapter 1. Introduction 4

mixed integer linear programming (MILP) problem. This problem is known to be NP-

complete, which means in practical applications that there is no efficient method for

solving it. There are several approximative methods that include the solving of the the

LP-relaxed version of the problem, but also exact methods such as the cutting plane

method developed by Gomory [29] and its improved version, the Branch and Bound

method proposed by Land and Doig in 1960 [30]. Despite the many possible solutions

it is still desired to avoid the application of integer variables, since there are much

more efficient methods for solving linear optimization problems defined on continuous

variables.

In the case of several problems it makes a great difference if one applies an unusual

approach. For example the problem of computing dense realizations can be formed

at first sight as a MILP problem. For a long time in the literature there have been

only non-polynomial time solutions or ones that work in polynomial-time but for special

cases only. However, by the application of convex geometry it was possible to give a

simple and efficient polynomial-time solution of this problem. The method works for any

given kinetic system, even if a dense realization with some special property needs to be

determined. This approach was applied also in the proof of the superstructure property

of dense realizations, and the developed computational method was used as a subroutine

in other algorithms presented in this thesis as well. The results are introduced in detail

in [51] and in Chapter 3 of this thesis.

Weakly reversible realizations form an intensively studied class of CRN realizations

where there is a connection between structure and dynamics. In the language of graph

theory weak reversibility means that the components of the directed reaction graph are

strongly connected. One of the most important results in this area is the Deficiency Zero

Theorem [31, 10]. It says that a weakly reversible CRN having zero deficiency for any

choice of positive reaction rate coefficients has exactly one locally asymptotically stable

equilibrium point in every positive stoichiometric compatibility class. According to the

Global Attractor Conjecture this stability is actually global (with respect to the positive

orthant) not just for deficiency zero weakly reversible CRNs, but for a wider class of

systems called complex balanced networks, see, e.g. [32, 33]. The Global Attractor

Conjecture has been proven for one linkage class networks in [34], and recently a general

proof was also proposed in [12].

Due to the importance of the weak reversibility property of CRN realizations there

have been several attempts to design efficient computation methods for determining

such realizations, using both algebraic [35, 36] and graph theory based solutions [22],

MILP and LP programming methods. Based on the superstructure property it was

possible to generalize the polynomial-time algorithm presented in [22] for computing

linearly conjugate weakly reversible realizations of a given kinetic dynamics that applies

the minimal necessary number of variables, and also to prove the correctness of this

method. The results related to this topic are presented in [51] and in Chapter 4 of this

thesis.

After treating the above mentioned important special cases a question arises naturally:

Is it possible to give a computationally efficient algorithm for determining all possible
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Chapter 1. Introduction 5

reaction graph structures representing linearly conjugate CRN realizations of a given

kinetic system?

Based on the idea of Prof. Zsolt Tuza it was possible to propose an algorithm for the

complete generation of reaction graph structures representing linearly conjugate realiza-

tions of a given kinetic system. It is the first provably correct solution of the problem.

Due to the possible large number of solutions one cannot expect to find a polynomial-

time algorithm for the overall problem. But it can be shown that between the returning

of two consecutive reaction graph structures the time elapsed is always polynomial. This

method was published in [52]. The algorithm is suitable for parallel implementation as

well, which might highly increase its efficiency. The improved computation method was

proposed in [55], and all the results considering this algorithm are presented in detail in

Section 5.1 of this thesis.

Later an other algorithm was developed as well for the characterization of the possible

reaction graph structures. The great advantage of this method is that during the com-

putation every existing reaction graph structure is returned exactly once, and compared

to the other algorithm it works more efficiently. The results are demonstrated in [53]

and in Section 5.2 of this thesis.

In some cases the dynamics of the system might not be precisely known, for example if the

coefficients of the kinetic system are given as the results of some noisy measurements.

For modelling such dynamics a generalization of kinetic systems has been introduced

that is suitable for handling uncertain parameters and also additional linear constraints,

whenever the possible values of the unknown parameters can be represented as points of

a convex polyhedron. Due to the similar model structure it can be proven that the dense

realization of the generalized uncertain model with possible additional linear constraints

also has the superstructure property, and all the algorithms introduced previously for

computing certain realizations of non-uncertain kinetic systems can be applied with

appropriate modifications to the case of this type of systems. Furthermore, the method

demonstrated in [53] for computing the set of possible reaction graph structures of an

uncertain kinetic system can be modified to apply parallel computations. The results

related to uncertain models are demonstrated in [56], [54] and in Section 6 of this thesis.
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Chapter 2

Notations and computational

background

In this chapter the notations of kinetic systems as special type of nonnegative poly-

nomial systems and their realizations as chemical reaction networks are summarized.

The realizations can be determined by the application of a linear programming based

computational model, which is also demonstrated here in Section 2.4.

2.1 Nonnegative polynomial systems

Polynomial systems are dynamical systems where the dynamic equations can be written

in the form of a (multivariate) polynomial.

Definition 2.1. Let x : R → Rn be a function, M ∈ Rn×p a coefficient matrix and

ϕ : Rn → Rp a monomial-type vector-mapping with coordinate functions of the form

ϕj(x) =
∑
x
βij
i , where βij ∈ N for all i ∈ {1, . . . , n} and j ∈ {1, . . . , p}. Then the

following system is called a polynomial system:

ẋ = M · ϕ(x) (2.1)

A polynomial system is nonnegative if in the case of any nonnegative initial value

the trajectories remain in the nonnegative orthant. To this property a necessary and

sufficient condition can be given, see [37]. If the polynomial system is given in the form

ẋ = f(x), then it is nonnegative if and only if the function f is essentially nonnegative.

A function f : [0,∞)n → Rn is called essentially nonnegative if for its coordinate

functions fi : [0,∞)n → R with every index i ∈ {1, . . . , n} the inequality fi(x) ≥ 0 holds,

whenever x is in the nonnegative orthant and the coordinate xi is zero.

By definition a nonnegative polynomial system is called kinetic if there is a chemical

reaction network (CRN) with the given dynamical behaviour.

6
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Chapter 2. Basic Notions 7

2.2 Algebraic and dynamical characterization of chemical

reaction networks

Definition 2.2. A chemical reaction network can be characterized by three sets, see

e.g. [31, 10].

species: S = {Xi | i ∈ {1, . . . , n}}

complexes: C = {Cj =
n∑
i=1

αji ·Xi | αji ∈ N, j ∈ {1, . . . ,m}, i ∈ {1, . . . , n}}

reactions: R ⊆ {(Ci, Cj) | Ci, Cj ∈ C}

The reaction Ci → Cj for i, j ∈ {1, . . .m}, i 6= j is represented by the ordered pair

(Ci, Cj), and the rate of the reaction is determined by the corresponding reaction rate

coefficient kij ∈ R+. This reaction is present in the reaction network if and only if

kij > 0 (i.e. kij 6= 0) holds.

The numerical properties of chemical reaction networks can be characterized by special

matrices. The linear combinations defining the structures of the complexes are included

by the complex composition matrix Y ∈ Nn×m, where

[Y ]ij = αji i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} (2.2)

The structure of the reaction network is described through the reaction rates by the

Kirchhoff matrix Ak ∈ Rm×m of the CRN. It is a Metzler-matrix, i.e. all its off-

diagonal entries are nonnegative. Furthermore, the sums of the entries in each column

are zero, therefore the Kirchhoff matrix is also called a column-conservation matrix. The

entries of the matrix are defined by the following equation:

[Ak]ij =


kji if i 6= j

−
m∑

l=1,l 6=i
kil if i = j

(2.3)

Let the function x : R → Rn+ describe the concentrations of the species depending

on time. Assuming mass-action kinetics the dynamics of the concentrations can be

characterized by dynamical equations of the form of a polynomial system:

ẋ = Y ·Ak · ψY (x) (2.4)

where ψY : Rn → Rm is the monomial function of the CRN. The monomials, i.e. the

coordinate functions correspond to the complexes and they are defined as

ψYj (x) =

n∏
i=1

x
Yij
i j ∈ {1, . . . ,m} (2.5)

It can be seen that the structural and dynamical properties of a CRN are uniquely

determined by the matrices Y and Ak, consequently a reaction network can be referred

to as the matrix pair (Y,Ak).

Now, the accurate definition of kinetic systems can be given.
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2.2.1 Kinetic systems

Definition 2.3. A polynomial system ẋ = M · ϕ(x) (2.1) with a function x : R → Rn,

a coefficient matrix M ∈ Rn×p and a monomial function ϕ : Rn → Rp is called kinetic

if there exists a chemical reaction network (Y,Ak) so that the following equation holds.

M · ϕ(x) = Y ·Ak · ψY (x) (2.6)

A necessary and sufficient condition of the kinetic property can be given as follows by

prescribing the sign pattern of the matrix M , see [6].

Proposition 2.4. Let a polynomial system ẋ = M ·ϕ(x) be characterized by a coefficient

matrix M ∈ Rn×p and a monomial function ϕ : Rn → Rp with coordinate functions of

the form ϕj(x) =
n∑
i=1

x
βij
i , where βij ∈ N for all i ∈ {1, . . . , n} and j ∈ {1, . . . , p}. This

polynomial system is kinetic if and only if the following holds:[
[M ]ij < 0 =⇒ βij > 0

]
i ∈ {1, . . . , n}, j ∈ {1, . . . , p} (2.7)

If the polynomial system (2.1) is kinetic and the CRN (Y,Ak) fulfils Equation (2.6),

then this CRN is called a dynamically equivalent realization of the kinetic system

(2.1). In general, a kinetic system has several dynamically equivalent realizations, there

might be chemical reaction networks with different reactions or even different sets of

complexes that are governed by the same dynamics, see e.g. [7, 8, 17].

2.2.2 The canonical realization

In most of the cases the dynamics of the kinetic system cannot be realized on the set

of complexes determined by the monomial function ϕ in Equation (2.1). A possible set

can be determined using the method presented in [6], that also provides a dynamically

equivalent realization of the kinetic system called the canonical realization. During

the computation the reactions are defined one by one from the dynamical equations.

The monomial
n∏
i=1

x
βij
i with coefficient c in the equation of ẋl characterizes the reaction:

n∑
i=1

βij ·Xi
c−→

(
n∑
i=1

βij ·Xi

)
+ sgn(c) ·Xl, (2.8)

where sgn is the sign function. The set of complexes in the canonical realization can be

complemented as well by more complexes, and realizations of the kinetic system with a

different set of complexes can also be determined, as it will be shown in Section 2.4
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2.2.3 Linearly conjugate realizations of kinetic systems

The notion of dynamical equivalence can be extended to the case when the state space

is subject to a positive definite diagonal linear transformation. It works as if the species

concentrations were individually scaled.

Such a transformation preserves the kinetic property of the system, as it was proven in

[38] and [9]. If a polynomial system is kinetic then by using any transformation of the

form (2.9) the transformed model will also be kinetic.

The transformation is defined by a positive definite diagonal matrix T ∈ Rn×n so that

the state variable x is transformed to the form x̄ = T−1 · x (i.e. x = T · x̄). The time

derivative of the transformed variable can be written as follows:

˙̄x = T−1 · ẋ = T−1 ·M · ϕ(x) = T−1 ·M · ϕ(T · x̄) = T−1 ·M · ΦT · ϕ(x̄), (2.9)

where ΦT ∈ Rp×p is a positive definite diagonal matrix, the diagonal entries are [ΦT ]ii =

ϕi(T · 1p) for i ∈ {1, . . . , p} and 1p ∈ Rp is a column vector with all coordinates equal

to 1.

The realizations of the generalized model can be defined as follows:

Definition 2.5. The reaction network (Y,Ak) is a linearly conjugate realization of

the kinetic system (2.1) if there exists a positive definite diagonal matrix T ∈ Rn×n so

that

Y ·Ak · ψY (x) = T−1 ·M · ΦT · ϕ(x) (2.10)

It is easy to see that dynamically equivalent realizations are also linearly conjugate

realizations of the kinetic system with the transformation matrix T and ΦT being equal

to the unit matrix In.

2.3 Graph representation

Chemical reaction networks can also be represented as an edge-weighted directed graph,

which is a more insightful description of the structural properties.

Definition 2.6. The directed graph G(V,E) with weight function w : E(G) → R+ is

called Feinberg- Horn-Jackson graph or reaction graph of the CRN defined by the

sets S, C,R and reaction rate coefficients kij for all i, j ∈ {1, . . . ,m}, i 6= j if

the vertices correspond to the complexes – V (G) = C
the directed edges represent the reactions – E(G) = R
and the weights are the reaction rate coefficients – w((Ci, Cj)) = kij

Let the vertices vi, vj ∈ V (G) represent the complexes Ci and Cj , respectively. Then

there is a directed edge in the reaction graph from vertex vi to vj if and only if the reaction

Ci → Cj takes place in the CRN, and the weight of this edge is the corresponding reaction

DOI:10.15774/PPKE.ITK.2018.004 
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rate coefficient kij . From the definition of reactions it follows that in the reaction graph

there are no loops or multiple edges with identical directions.

If the reaction network is given as the pair (Y,Ak) the reaction graph representing it is

referred to as G(Y,Ak).

In some cases the reaction rates are not relevant, therefore there is no need to indicate

them in the reaction graph. The reaction graph without considering the edge weights is

called a reaction graph structure. It is possible that a kinetic system has multiple

realizations with identical reaction graph structures, such realizations are called struc-

turally identical. If there are two structurally identical realizations of a kinetic system

then there are infinitely many. But if two realizations correspond to different reaction

graph structures, then these are called structurally different.

2.4 Linear programming based computational model

Dynamically equivalent and linearly conjugate realizations of kinetic system models can

be computed by applying linear optimizations methods. Dynamical equivalence is a

special case of linear conjugacy, therefore the computational model presented here is

only for the general case.

2.4.1 The general form of LP models

The general form of a linear optimization problem is

max c> · x
A · x ≤ b
x ≥ 0

where x ∈ Rn represents the decision variables, b ∈ Rm, c ∈ Rn are parameter vectors

and A ∈ Rm×n is a coefficient matrix, which is also known.

By definition all the constraints must be nonstrict inequalities since the set of possible

solutions should be a closed polyhedron. However, equations of the form a · x = bi can

be included in the model using an equivalent set of two inequalities:

a · x = bi ⇐⇒ a · x ≤ bi, −a · x ≤ −bi

The first provably correct solution is the Simplex Algorithm developed by Dantzig in

1947 [25, 26]. This algorithm works in most of the practical applications in polynomial

time, but there are also exceptions. Later several different algorithms were also designed

for the efficient computation of LP problems, such as the criss-cross method or the

ellipsoid method [28].

It is possible to include integer variables in the optimization model as well. It is possible

that all the variables are integers, or both integer and continuous variables are present
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in the model, then the model is called an integer linear programming (ILP) problem,

or a mixed integer linear programming (MILP) problem, respectively. Both models

are known to be NP-hard, consequently there exist no polynomial solution to these

problems. There are several approximative and also exact methods, such as the cutting

plane method developed by Gomory [29] and the Branch and Bound method proposed

by Land and Doig [30]. However, it is not possible to solve MILP problems as efficiently

as LP problems defined with only continuous variables.

2.4.2 LP model description of linearly conjugate realizations

By definition a linearly conjugate realization of the kinetic system ẋ = M · ϕ(x) must

fulfil Equation (2.10). For each equation of the system the two sides are multivariate

polynomials that are identical if and only if the sets of monomials are the same and the

coefficients corresponding to identical monomials are pairwise the same. Consequently,

the monomial functions ψY and ϕ must be equal. Since the kinetic dynamical equations

are assumed to be given, the complexes corresponding to the monomials of ϕ that

have non-zero coefficients in any of the equations must be in the set of complexes of

the kinetic systems. The method presented in Section 2.2.2 and originally in [6] can

provide a possible set of complexes. It can be applied without modification or it can

be complemented with other complexes as well. However, before the computation it is

necessary to fix the set of complexes on which the realizations that we are looking for

are defined.

Let the fixed set of complexes be the one that is characterized by the matrix Y ∈ Rn×m,

and the new monomial function be ψY : Rn → Rm. Each coordinate function of ψY

corresponds to a complex in the new set, which is an extension of the set of complexes

defined by the monomials of the function ϕ (none of the original elements are removed).

In order to describe the dynamic equations of the original kinetic system using the

monomial function ψY as

ẋ = M · ψY (x), (2.11)

the coefficient matrix needs to be modified. In the matrix M ∈ Rn×m this modification

will result in zero columns corresponding to the new monomials. For simplicity the

modified coefficient matrix is also denoted by M .

Using these notations Equation (2.10) changes as:

Y ·Ak · ψY (x) = T−1 ·M ·ΨT · ψY (x), (2.12)

where the matrix ΨT ∈ Rm×m is a positive definite diagonal matrix with diagonal entries

[ΨT ]ii = ψYi (T · 1m) for all i ∈ {1, . . . ,m}. (ΨT is defined by the function ψY similarly

as ΦT is defined by ϕ.)

The polynomials on the two sides are equal if and only if the corresponding coefficients

are pairwise identical. By using this fact and the notation Ab = Ak · ΨT
−1 Equation

(2.10) can be written as:

Y ·Ab = T−1 ·M (2.13)
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The matrix Ab ∈ Rm×m is obtained by scaling the columns of Ak by positive scalars,

consequently it is also a Kirchhoff matrix and it represents the same reaction graph

structure as the matrix Ak. The simplified form of the linear conjugacy equation (2.13)

can be applied only if the set of complexes is fixed, therefore in this work the kinetic

systems are considered on a fixed set of complexes. Then the kinetic system ẋ = M ·ψY

can be referred to as the matrix pair [M,Y ]. From Equation (2.13) the matrices T−1

and Ab can be obtained, therefore in this work the linearly conjugate realizations are

referred to as the corresponding matrix pair (T−1, Ab). These parameters uniquely

characterize the CRN (since the matrix Y is unchanged) by the matrix T−1 its inverse

T and the matrix ΨT are uniquely defined, and from these the Kirchhoff matrix Ak can

be computed as Ak = Ab ·ΨT .

The aim of the computation is to determine a linearly conjugate realization (T−1, Ab)

of the kinetic system [M,Y ], consequently the known parameters of the model are the

matrices M and Y . The variables are the off-diagonal entries of the matrix Ab ∈ Rm×m.

The diagonal ones are determined by the off-diagonals, therefore it is not necessary to

consider them as variables. Since T is diagonal, T−1 ∈ Rn×n is also a diagonal matrix,

therefore only its diagonal entries are decision variables. It follows that the number of

variables in the optimization model is m2−m+n. The constraints of the model are the

following:

Y ·Ab − T−1 ·M = 0n×m (2.14)
m∑
j=1
j 6=i

[Ab]ji = −[Ab]ii i ∈ {1, . . . ,m} (2.15)

[Ab]ij ≥ 0 i, j ∈ {1, . . . ,m}, i 6= j (2.16)

[T−1]ll > 0 l ∈ {1, . . . , n} (2.17)

To ensure linear conjugacy Equation (2.14) must be fulfilled. It is equivalent to Equation

(2.10), since 0n×m ∈ Rn×m is a zero matrix. The Equations (2.15), (2.16) and (2.17)

are necessary to ensure that the matrices Ab and T−1 meet their definitions.

Further linear constraints can be added to the model if a realization with special prop-

erties is required to be determined. For example the exclusion of some set H ⊂ R of

reactions can be written as

[Ab]ji = 0 (Ci, Cj) ∈ H (2.18)

The objective function of the optimization can be defined in several ways according to

the additional requirements, as it will be seen later.

2.5 Illustration of the basic notions

In this section examples are presented to demonstrate the notations and properties of

kinetic systems and chemical reaction networks introduced in Chapter 2.
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2.5.1 Example 1 – Basic properties of reaction networks

Let us consider a simple chemical reaction network with two reactions. It is a realization

of the kinetic system presented in [19].

3X2
1−→ 3X1

3X1
2−→ 2X1 +X2

The characterizing sets of this model are the following:

the set of species: S = {X1, X2}
the set of complexes: C = {C1 = 3X2, C2 = 3X1, C3 = 2X1 +X2}
the set of reactions: R = {(C1, C2), (C2, C3)}
the reaction rate coefficients: k12 = 1, k23 = 2

The complex composition matrix Y , the monomial function ψY (x) and the Kirchhoff

matrix Ak of the CRN are defined as follows:

Y =

[
0 3 2

3 0 1

]
ψY (x) =

 x32
x31
x21x2

 Ak =

−1 0 0

1 −2 0

0 2 0


The equations describing the dynamical behaviour of the system can be written in the

form of Equation (2.4), that prescribes the kinetic system as in Equation (2.11). The

dynamical system and its coefficient matrix M are:

ẋ1 = 3x32 − 2x31
ẋ2 = −3x32 + 2x31

M =

[
3 −2 0

−3 2 0

]

By definition it is a kinetic system that is referred to as [M,Y ] and the reaction network

(Y,Ak) is a dynamically equivalent realization of it. The reaction graph G(Y,Ak) and

the reaction graph structure representing the realization (Y,Ak) can be seen in Figures

2.1 and 2.2, respectively.

3C

C2

C1

1 2

Figure 2.1: The reaction graph
G(Y,Ak)

3C

C2

C1

Figure 2.2: The reaction graph
structure of the CRN (Y,Ak)
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It will be shown later in Section 5.3.1 that the kinetic system [M,Y ] has several dy-

namically equivalent realizations, one of them is the CRN (Y,A′k). The reaction graphs

of the realizations (Y,Ak) and (Y,A′k) are very similar to each other, although these

realizations are structurally different. Besides the isomorphism of the graphs the labels

of the corresponding edges must be the same as well, and this latter property is not

fulfilled by the graphs G(Y,Ak) and G(Y,A′k).

_2
3

_3
2 3C

C2

C1

Figure 2.3: The reaction graph
G(Y,A′k)

A′k =

−3
2

2
3 0

0 −2
3 0

3
2 0 0



2.5.2 Example 2 – Canonical realization of a kinetic system

The following kinetic system was introduced previously as Example 3 in [35].

ẋ1 = x1x
2
2 − 2x21 + x1x

2
3

ẋ2 = −x21x22 + x1x
2
3 (2.19)

ẋ3 = x21 − 3x1x
2
3

This polynomial system can be originated from the matrix equation ẋ = M1 · ϕ(x),

where

M1 =

1 0 −2 1

0 −1 0 1

0 0 1 −3

 ϕ(x) =
[
x1x

2
2 x21x

2
2 x21 x1x

2
3

]>

It can be seen that this polynomial system fulfils the condition of Proposition 2.4, there-

fore it is a kinetic system. But there is no realization on the set C1 = {X1 + 2X2, 2X1 +

2X2, 2X1, X1 + 2X3} of complexes characterized by the monomial function ϕ. It can

be checked for example by trying to find a dense realization using Algorithm 1. There

exists at least one realization with a given set of complexes if and only it there is a dense

realization on the same set of complexes. From the properties of polynomials it follows

that these complexes must be included in the set of complexes of any realization, but in

this case other elements are also necessary.

By the application of the method presented in [6] one can obtain a dynamically equivalent

realization, and at the same time a suitable set of complexes. During this method every

monomial in every dynamical equation of the polynomial system determines a reaction.

For example, in the case of the equation ẋ2 = −x21x22 + x1x
2
3 the obtained reactions are:
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−x21x22: 2X1 + 2X2
1−→ 2X1 +X2

+x1x
2
3: X1 + 2X3

1−→ X1 +X2 + 2X3

The elements of the defined set C2 of complexes are the following:

C1 = X1 + 2X2 C2 = 2X1 + 2X2 C3 = 2X1 +X2 C4 = 2X1

C5 = X1 C6 = 2X1 +X3 C7 = X1 + 2X3 C8 = 2X1 + 2X3

C9 = X1 +X2 + 2X3 C10 = X1 +X3

The set C2 characterizes the complex composition matrix Y and the monomial function

ψY of the canonical realization:

Y =

1 2 2 2 1 2 1 2 1 1

2 2 1 0 0 0 0 0 1 0

0 0 0 0 0 1 2 2 2 1



ψY (x) =
[
x1x

2
2 x21x

2
2 x21x2 x21 x1 x21x3 x1x

2
3 x21x

2
3 x1x2x

2
3 x1x3

]>
The computed reactions define the Kirchhoff matrix and the reaction graph as well.

Ak =



−1 0 0 0 0 0 0 0 0 0

1 −1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 −3 0 0 0 0 0 0

0 0 0 2 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 −5 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 3 0 0 0



C

C C

C

C

CC

C C

1 2

3

4

5

67

8

9

C10

1

1

1

3

2

1

1

Figure 2.4: The reaction graph of
the canonical realization

In order to obtain the form of Equation (2.12) the equation ẋ = M1 · ϕ(x) defining

the dynamics of the kinetic system needs to be rewritten as ẋ = M2 · ψY (x). The

additional monomials appear in these equations with zero coefficients, therefore the

defined dynamics is unchanged. With these notations the equation M2 · ψY (x) = Y ·
Ak · ψY (x) holds, that is the special case of Equation (2.12) for dynamically equivalent

realizations, where the matrices T−1 and ΨT are identity matrices. The coefficient

matrix M2 is as follows:
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M2 =

1 0 0 −2 0 0 1 0 0 0

0 −1 0 0 0 0 1 0 0 0

0 0 0 1 0 0 −3 0 0 0



2.5.3 Example 3 – Linear conjugacy of kinetic systems

The kinetic system examined in this section was introduced in [24] as Example 2.

ẋ1 = 1− x1 − x21 + x2x3

ẋ2 = 2x1 − 2x2x3 − 2x22 + 2x23 (2.20)

ẋ3 = x1 − x2x3 + x22 − x23

The linear optimization based method for computing realizations presented in Section

2.4 can be applied only if the set of complexes is fixed. Therefore, the set is fixed to

contain only the complexes defined by the monomials, and this kinetic system is denoted

as [M,Y ], where

M =

1 −1 −1 1 0 0

0 2 0 −2 −2 2

0 1 0 −1 1 −1

 Y =

0 1 2 0 0 0

0 0 0 1 2 0

0 0 0 1 0 2


Despite the fact that the polynomial system (2.20) fulfils the conditions of Proposi-

tion 2.4, the computation returns that there is no dynamically equivalent realization of

[M,Y ]. Indeed, the kinetic property means only that there is a realization with some

set of complexes, that is not necessarily the actually considered one. Furthermore, in

the case of any kinetic system the canonical realization can be generated and it is a

dynamically equivalent realization of the model.

Interestingly, the computation of linearly conjugate realizations returns that there exists

such a realization with the given set of complexes.

T =

1
2 0 0

0 1 0

0 0 1
2

 ΨT =



1 0 0 0 0 0

0 1
2 0 0 0 0

0 0 1
4 0 0 0

0 0 0 1
2 0 0

0 0 0 0 1 0

0 0 0 0 0 1
4



The state transformation is defined by the matrix T and it also characterizes the diagonal

matrix ΨT . By definition the CRN (Y,Ak) has to fulfil the equation Y ·Ak = T−1 ·M ·ΨT .
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1

4

1

4

C3

C1

C

C2

C6

C5

4

1 11 1

Figure 2.5: The reaction graph
G(Y,Ak)

.

Ak =



−1 0 1
4 0 0 0

0 −1 0 1 0 0

1 0 −1
4 0 0 0

0 1 0 −1 0 0

0 0 0 0 −1 1
4

0 0 0 0 1 −1
4



In order to have a linear matrix equation in the optimization model, the equation is

transformed to the form Y · Ak · Ψ−1T = T−1 · M and the notation Ab = Ak · Ψ−1T
is applied. For this reason linearly equivalent realizations of a kinetic system [M,Y ]

with a fixed set of complexes are referred to as the pair (T−1, Ab). In this case the

characterizing matrices are

T−1 =

2 0 0

0 1 0

0 0 2

 Ab = Ak ·Ψ−1T =



−1 0 1
16 0 0 0

0 −1
2 0 1

2 0 0

1 0 −1
16 0 0 0

0 1
2 0 1

2 0 0

0 0 0 0 −1 1
16

0 0 0 0 1 − 1
16


It can be seen that Ab is also a Kirchhoff matrix and it defines the same set of reactions

as the matrix Ak.
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Chapter 3

Dense realizations

There are realizations that have great importance regarding the results presented in this

dissertation.

Definition 3.1. A realization of a CRN is called a dense realization if it has the

maximum number of reactions.

Dense realizations can be defined in the sets of dynamically equivalent, linearly conjugate

or any other kind of realizations of a kinetic system assuming a fixed set of complexes.

The operation of the methods presented in this dissertation depends on a special property

of dense realizations. It is drawn up in Proposition 3.3, and was proven in [51].

3.1 Superstructure property

Definition 3.2. Let G be a set of directed graphs defined on a fixed set of labelled vertices.

A directed graph is called a superstructure considering the set G if it contains every

graph in the set as a subgraph and it is minimal under inclusion.

It follows from the definition that for every set G there exists a superstructure and it is

unique, as it is the graph whose set of edges is the union of the edges of all graphs in G.

It has been proven in [15] that for any kinetic system the dense linearly conjugate

realization defines a superstructure among all linearly conjugate realizations of a kinetic

system with a fixed set of complexes. This property holds also for dynamically equivalent

realizations. However, during the computations presented in this work a little more is

required, and it is proven in Proposition 3.3.

Proposition 3.3. Among all the realizations linearly conjugate to a given kinetic system

[M,Y ] on a fixed set of complexes and fulfilling a finite set of additional linear constraints

the dense realization with the prescribed properties determines a superstructure.

18

DOI:10.15774/PPKE.ITK.2018.004 
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Proof. In the proof the geometric properties of the set of possible realizations are uti-

lized. As it was demonstrated in Section 2.4 the variables of the optimization model

defining the linearly conjugate realizations of a kinetic system with a fixed set of com-

plexes are the off-diagonal entries of the matrix Ab ∈ Rm×m and the diagonal entries of

the matrix T−1 ∈ Rn×n. If an ordering is defined on the set of variables the realizations

can be represented as points in the Euclidean space Rm2−m+n. Let the first m2 − m
coordinates correspond to the off-diagonal entries of matrix Ak ordered column-wise,

and the diagonal entries of matrix T−1 be equal to the remaining n coordinates. In

this approach the linear constraints of the forms of inequalities and equations are equiv-

alent to halfspaces and hyperplanes, respectively. The set of possible solutions is the

intersection of these halfspaces and hyperplanes, consequently it is a convex polyhedron

Q ⊆ Rm2−m+n and every point of it corresponds to a realization.

Let us assume that the point D = (d1, . . . , dm2−m, . . . , dm2−m+n) ∈ Q represents the

dense linearly conjugate realization (T−1, Ab) of the kinetic system [M,Y ] with the set

of prescribed linear constraints.

By the definition of density the point D must have the maximum number of positive

values among the coordinates d1, . . . , dm2−m, and since D represents a real linearly

conjugate realization, the coordinates dm2−m+1, . . . , dm2−m+n are also positive.

Let us assume that the point R = (r1, . . . , rm2−m, . . . , rm2−m+n) ∈ Q represents another

linearly conjugate realization that has more positive coordinates than D. It means that

there is an index i ∈ {1, . . .m2 −m} for which di = 0 and ri > 0 hold.

Since the polyhedron Q is convex, the interval (D,R) is also in Q, and every interior

point S of this interval corresponds to a linearly conjugate realization of the kinetic

system [M,Y ] and fulfils the added constraints as well.

(D,R) = {S ∈ Rm
2−m+n | S = c ·D + (1− c) ·R, c ∈ (0, 1)} (3.1)

From the properties of positive linear combination it follows that all the coordinates

that are positive (not zero) in D or R must be positive in the point S as well. Therefore

S has more positive coordinates than D, which is a contradiction.

Consequently, there cannot exist such a point R ∈ Q, and all points in the polyhedron Q
can have positive values in only those coordinates where the point D has. The realization

characterized by D defines a superstructure among the linearly conjugate realizations of

the kinetic system [M,Y ] that fulfil the additional linear constraints, and the reaction

graphs of these realizations are subgraphs of the reaction graph representing D.

Corollary 3.4. The superstructure property holds for dynamically equivalent realizations

considering a set of additional constraints as well. It is because dynamically equivalent

realizations are linearly conjugate realizations fulfilling the linear constraints

[T−1]ii = 1 i ∈ {1, . . . , n} (3.2)

Therefore the set of possible realizations of this model can also be represented as a convex

polyhedron and the proof of Proposition 3.3 can be applied.
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3.2 Efficient algorithm for computing dense realizations

In the algorithms demonstrated in this thesis the computation of dense realizations

fulfilling an additional set of non-strict linear inequalities is applied as a subroutine.

It is invoked many times therefore it is essential to choose an efficient and accurate

computation method.

In the literature there exist several alternative solutions for the computation of dense

realizations. The method presented in [15] applies binary variables assigned to the

reactions to track their presence, and by maximizing the sum of these binary variables

can the dense realization be obtained. However, the application of binary variables

requires the solution of a MILP problem that is known to be NP- hard. In [16] the

binary variables are relaxed to the interval [0, 1] and the problem is reformulated into

the framework of linear programming, but it can be applied only in the case of dynamical

equivalence. In [39] an iterative method was proposed that includes m(m− 1) + 1 linear

programming steps, i.e. it is a polynomial time method but the number of required LP

optimization steps is still quite large.

In this chapter an other method is proposed for computing the dense linearly conjugate

realization of a kinetic system that fulfils a finite set of additional linear constraints as

well. This method is also LP based and iterative, but the number of required optimiza-

tion steps is in general significantly less than m2 −m.

The source of the difficulties considering the computation of a dense linearly conjugate

realization is that it cannot directly be written as a linear optimization problem. It is

required that there is the maximal number of variables having positive values. As it was

mentioned earlier, this task can be solved by adding integer variables, but in this case

the aim is to apply only continuous variables. In addition to that in the model there are

strict inequalities, since the matrix T−1 must be positive definite, but such inequalities

are not allowed in an LP model.

The idea presented here solves both problems. The optimization problem is modified so

that instead of strict inequalities non-strict ones are considered, and no integer variables

are applied. This changes the set of possible solutions to be the closure of the polyhedron

Q, that is denoted by Q. The constraints of the LP optimization steps are very similar

to Equations (2.14)-(2.17) characterizing linear conjugacy, the only difference is in the

last equation.

Y ·Ab − T−1 ·M = 0n×m (3.3)
m∑
j=1
j 6=i

[Ab]ji = −[Ab]ii i ∈ {1, . . . ,m} (3.4)

[Ab]ij ≥ 0 i, j ∈ {1, . . . ,m}, i 6= j (3.5)

[T−1]ll ≥ 0 l ∈ {1, . . . , n} (3.6)
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To formulate the additional linear constraints it is easier to use the notation of a point

R = (r1, . . . , rm2−m+n) as a linearly conjugate realization. Then the set of he additional

constraints can be written as

m2−m+n∑
i=1

δij · ri ≤ Dj δij , Dj ∈ R, j ∈ {1, . . . , |L|} (3.7)

From now on the LP model defined by the Equations (3.3)-(3.7) is called the modified

model. In the algorithm to each variable a solution of the modified model is assigned

where this variable is positive, if it is possible. A solution can belong to several variables,

therefore in general only a small number of optimization steps are required. Then the

dense realization is determined as a convex combination of the points representing the

assigned solutions of the modified model.

In the algorithm the following procedure is applied repeatedly:

FindPositive([M,Y ], L,H) returns a pair (R,B), where R is a point in Q that fulfils

the constraints of the modified model characterized by the kinetic system [M,Y ] and the

finite set L of non-strict linear inequalities, so that taking the set H ⊆ {1, . . . ,m2−m+n}
of indices into account the value of the objective function

∑
j∈H

rj is maximal. While

B ⊆ {1, . . . ,m2−m+n} is a set of indices for which k ∈ B if and only if rk > 0. If there

exist no solution of the optimization problem, then the pair (0m
2−m+n, ∅) is returned.

The computation can be performed in polynomial time since it requires the solution of

an LP optimization problem and the examination of positivity considering every element

in a set of size m2 −m+ n.

Algorithm 1 Computes a dense linearly conjugate realization
Inputs: [M,Y ], L
Output: Result

1: H := {1, 2, . . . ,m2 −m+ n}
2: B := H
3: Result := 0 ∈ Rm2−m+n

4: loops := 0
5: while B 6= ∅ do
6: (R,B) := FindPositive([M,Y ], L,H)
7: Result := Result+R
8: H := H \B
9: loops := loops+ 1

10: end while
11: Result := Result/loops
12: if ∃i ∈ {m2 −m+ 1, . . . ,m2 −m+ n} ∩H or Q = 0m

2−m+n then
13: There is no linearly conjugate realization of the kinetic system [M,Y ]
14: fulfilling the set L of constraints.
15: else
16: Result determines a dense linearly conjugate realization of the kinetic
17: system [M,Y ] fulfilling the set L of constraints.
18: end if
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Proposition 3.5. Algorithm 1 returns a dense linearly conjugate realization of the ki-

netic system [M,Y ] on a given set of complexes and fulfilling a finite set L of additional

constraints that are of the form of non-strict linear inequalities, if it exists. The compu-

tation runs in polynomial time.

Proof. In the first step of the while loop the sum of all variables is maximized, then

in the next step the variables that had positive value before are not considered in the

objective function. This step is repeated until no point in Q has positive value in the

coordinates that remain in the set H. This property is equivalent to that the objective

function of the optimization is zero. The computation stops after finitely many steps

since the size of the set H is finite and it gets smaller in every step. The computed

points of Q are referred to as R1, R2, . . . , Rk.

If for an index j ∈ {1, 2, . . . ,m2 −m} there is a point P ∈ Q so that pj > 0 holds, then

there must be a point Ri ∈ Q retuned by the procedure FindPositive([M,Y ], L,H) for

which rij > 0. Otherwise in the last step of the while loop the objective function would

not be zero.

For all the indices i ∈ {m2 − m + 1, . . . ,m2 − m + n} corresponding to the diagonal

entries of the matrix T−1 there must be a point of Q where it has a positive value.

Otherwise T cannot be a positive definite matrix, consequently there is no linearly

conjugate realization of the kinetic system.

The variable Result is computed as the arithmetic mean of the points R1, R2, . . . , Rk ∈ Q
– but any convex combination with positive coefficients is also suitable – therefore it is

also in Q.

For all j ∈ {1, . . . ,m2 − m} the value of Resultj is positive if and only if there is an

index i ∈ {1, . . . k} so that Rij > 0 holds. It follows from the computation that the

point Result is positive in all coordinates, where it is possible, consequently the variable

Result has the maximum number of positive coordinates.

It still needs to be proven that the point Result represents a valid linearly conjugate

realization, i.e. it is not a point of Q \ Q. It would be invalid only if it was a point

of a facet corresponding to a strict inequality. Such inequalities are defined only in the

case of the positive diagonal entries of the matrix T−1. According to the algorithm the

coordinates of Result corresponding to these variables are positive, therefore Result ∈ Q
holds.

The number of optimization steps performed during the computation is at most m2 −
m + n, since the set determining the objective function is decreasing in every step.

The optimization is in the form of an LP problem that can be solved in polynomial

time, besides that just some minor computation is applied, thus the algorithm runs in

polynomial time.

Remark 3.6. During the actual computations a reaction Ci → Cj is considered to be

present in the reaction network if and only if [Ak]ji > ε, where ε is a sufficiently small

positive threshold value for distinguishing between practically zero and non-zero reaction
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rate coefficients. In the applied implementation the value of ε was 10−6.

It is important to remark as well that all variables of the computed realization have a

value greater than ε, since the convex combination of numbers that are all larger than

a fixed lower bound is also larger than this number.

Corollary 3.7. If during the computation according to Algorithm 1 there are several

solutions of the modified model assigned to variables then the number of dense realizations

is continuum, since the coefficients of the convex combination can be chosen arbitrarily

from the interval (0, 1). Naturally, these realizations are structurally identical to each

other, but might be different in parameters.

3.2.1 Boundedness of variables

If the computation is performed by a computer program it is necessary to apply bounded

optimization variables, and this property in general might restrict the set of possible

solutions. However, in the case of linearly conjugate realizations the boundedness of

variables can be ensured so that the set of possible reaction graph structures remains

the same as in the original problem, and no solution is lost.

Since all variables are nonnegative by definition it is enough to show that upper bounds

can be added, as it is stated in Proposition 3.8 and was originally presented in [51].

Proposition 3.8. For any linearly conjugate realization (T−1, Ab) of a kinetic system

[M,Y ] there is another linearly conjugate realization (T̂−1, Âb) with all variables smaller

than the given upper bound(s) so that the two realizations are structurally identical.

This property holds even if just those realizations are considered that fulfil a finite set

of additional homogeneous linear constraints. The general form of a homogeneous linear

constraint on the variables v1, . . . , vp is

p∑
i=1

ci · vi ≤ 0 c1, . . . cp ∈ R (3.8)

Proof. If (T−1, Ab) is a linearly conjugate realization of the kinetic system, then Equation

(2.14) must hold. By multiplying this equation by a positive constant c ∈ R+ \ {0}

c · T−1 ·M − c · Y ·Ab = 0n×m (3.9)

the equation becomes the condition corresponding to the linearly conjugate realization

(c · T−1, c ·Ak) of the same kinetic system.

(c · T−1) ·M − Y · (c ·Ab) = 0n×m (3.10)

The multiplication of the matrices by a constant does not change their essential prop-

erties. The matrix c · T−1 = T̂−1 is a positive definite diagonal matrix and c · Ab = Âb
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is a column conservation matrix. Furthermore, [Âb]ij is zero if and only if [Ab]ij is zero

for all i, j ∈ {1, . . . ,m}. Consequently the linearly conjugate realizations (T̂−1, Âb) and

(T−1, Ab) of the kinetic system are structurally identical.

The value of the positive constant c can be determined so that all variables are below

the given upper bound(s). The matrix equation can be considered as nm homogeneous

linear equations. For a single equation it is easy to determine a possible constant c, and

all the smaller positive values are also suitable.

c1 > c2 > 0 =⇒ [c1 ·Ab]ij > [c2 ·Ab]ij , [c1 · T−1]ll > [c2 · T−1]ll ∀i, j, l (3.11)

Therefore the minimum of the finitely many constants computed for the individual

equations is a suitable value for the constant c.

Corollary 3.9. Proposition 3.8 holds even if just those realizations are considered that

fulfil a finite set of additional homogeneous linear constraints. The general form of a

homogeneous linear constraint on the variables v1, . . . , vp is
p∑
i=1

γi · vi ≤ 0 where the

coefficients γ1, . . . γp are real numbers, and such constraints hold even if the variables

are scaled by a positive scalar c.

p∑
i=1

γi · vi ≤ 0 ⇐⇒
p∑
i=1

γi · (c · vi) = c ·
p∑
i=1

γi · vi ≤ 0 (3.12)

Corollary 3.10. From Corollary 3.9 it follows that it is possible to apply bounded vari-

ables during the computing of linearly conjugate realizations that fulfil the constraints

[T ]11 − [T ]ii = 0 for all i ∈ {2, . . . , n}. Every dynamically equivalent realization fulfils

these constraints, and for every linearly conjugate realization that fulfils the constraints

there is a dynamically equivalent realization so that the two realizations are structurally

identical. If a linearly conjugate realization is referred to as the matrix pair (T−1, Ab)

where T−1 = 1
d · I

n, then by rearranging the equation T−1 ·M = Y · Ab characterizing

linear conjugacy it becomes

M = T · Y ·Ab = d · In · Y ·Ab = Y · (d ·Ab) (3.13)

that is the equation defining the dynamical equivalence of the realization (Y, d ·Ab). The

matrix d·Ab is obtained by scaling the Kirchhoff matrix Ab, therefore it is also a Kirchhoff

matrix. Consequently, it is possible to apply bounded variables at the computation of

dynamically equivalent realizations of a kinetic system with a fixed set of complexes.
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3.3 Examples

In this section the dense dynamically equivalent and linearly conjugate realizations of

kinetic systems are examined, in some cases with additional linear constraints.

3.3.1 Example 4

The kinetic system examined in this section [M,Y ] was first presented in [40] as example

A1.

Y =

[
0 1 0 2 2 3

0 0 1 0 1 0

]
M =

[
0 −k2 k3 −2k4 k5 0

k1 0 −k3 k4 −k5 0

]

The parameters of the coefficient matrix are k1 = 1, k2 = 1, k3 = 0.05, k4 = 0.1 and

k5 = 0.1. With these parameter values the system shows oscillatory behaviour.

In the case of the previously known iterative polynomial-time method presented in [39]

the number of applied optimization steps would have been m2−m+1 = 62−6+1 = 31.

The following realizations were computed using the Algorithm 1, and in each case the

number of required optimization steps was significantly smaller.

(Tld−1, Aldb ) is a dense linearly conjugate realization of the kinetic system [M,Y ], during

its computation 4 optimization steps were applied.

Ald
b =



−80 1.167e7 3.083 3.333e6 0.333 0

0 −2e7 0.5 5e6 0.5 0

80 0 −4.25 4 0.5 0

0 5e6 0.25 −2e7 1 0

0 0 0.25 4 −8.5 0

0 3.333e6 0.167 1.167e7 6.167 0


T−1ld =

[
40 0

0 80

]

C6 C2

C3C5

C1

C4

Figure 3.1: The reaction graph structures of the dense linearly conjugate realization
(T−1ld , Ald

b ).
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The dense dynamically equivalent realization can be considered as a constrained linearly

conjugate realization of the same kinetic system [M,Y ]. It is the CRN (Y,Addk ), or

written in the form of a linearly conjugate realization (I2, Addk ). The number of required

iterations was only 4.

Add
k =



−1 5000.5 0.027083 0.025 0 0

0 −8750.125 0.0125 2500 0 0

1 0 −0.05625 0.075 0 0

0 2499.75 0.00625 −5000.125 0 0

0 0 0.00625 0.025 −0.1 0

0 1249.875 0.004167 2500 0.1 0



C6

C5

C1

C2

C3

C4

Figure 3.2: The reaction graph structure of the CRN (Y,Add
k ).

By computing constrained dense realizations other structure-related questions can be

answered as well, such as: Is it possible that the complexes C5 and C6 are not connected

to the other complexes in a dynamically equivalent realization? To get the answer it is

enough to compute the dense dynamically equivalent realization fulfilling the constraints

that exclude all the reaction between the sets {C1, C2, C3, C4} and {C5, C6}. If the

unconstrained dense dynamically equivalent realization is known, then based on the

superstructure property it is enough to define constraints for those reactions that are

present in this realization.

The necessary constraints are [Ak]53 = 0, [Ak]54 = 0 considering the complex C5, and

[Ak]62 = 0, [Ak]63 = 0, [Ak]64 = 0 for C6. Then the obtained constrained dense dynam-

ically equivalent realization is (Y,Acddk ). The number of required iterations optimization

steps was 3.

Acdd
k =



−1 3334 0.0166667 0 0 0

0 −6667 0.0166667 0 0 0

1 0 −0.05 0.1 0 0

0 3333 0.0166667 −0.1 0 0

0 0 0 0 −0.1 0

0 0 0 0 0.1 0


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C6

C5

C1

C2

C3

C4

Figure 3.3: The reaction graph structure of the constrained dense dynamically equiv-
alent realization (Y,Acdd

k ).

3.3.2 Example 5

The kinetic system examined in this section was published in [41]. It can be originated

from the reaction network that is modelling the glyoxylate bypass.

The species of the network are:
I active IDH (isocitrate dehydrogenase)

Ip phosphorilated IDH

E bifunctional enzyme IDHKP (IDH Kinase/Phosphatase)

EI binding of the enzyme E and I

EIp binding of the enzyme E and Ip
EIpI binding of the enzyme E and both Ip and I

In the model 9 complexes are formed from these species, let us assume that this set is

fixed. The structure of the complexes defines the following complex composition matrix.

C1 = EI C2 = EIp
C3 = EIpI C4 = I + E

C5 = Ip + E C6 = EI + I

C7 = EIp + Ip C8 = EI + Ip
C9 = I + EIp

Y =



0 0 0 1 0 1 0 0 1

0 0 0 0 1 0 1 1 0

0 0 0 1 1 0 0 0 0

1 0 0 0 0 1 0 1 0

0 1 0 0 0 0 1 0 1

0 0 1 0 0 0 0 0 0



The reaction graph structure of the kinetic system can be seen in Figure 3.4, and the

reaction rate coefficients are as follows:

k41 = 1.6 k14 = 0.3 k15 = 1.06 k52 = 4.62 k25 = 0.94 k24 = 0.12

k93 = 33 k39 = 0.77 k37 = 0.9 k83 = 0.6 k38 = 3 k36 = 0.48297
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C4 C1

C2 C5

C6

C3

C7C8

C9

Figure 3.4: The reaction graph structure of the original reaction network.

This uniquely determines the kinetic system [M,Y ] where the coefficient matrix is

M =



0.3 0.12 1.25297 −1.6 0 0 0 0 −33

1.06 0.94 3.9 0 −4.62 0 0 −0.6 0

1.36 1.06 0 −1.6 −4.62 0 0 0 0

−1.36 0 3.48297 1.6 0 0 0 −0.6 0

0 −1.06 1.67 0 4.62 0 0 0 −33

0 0 −5.15297 0 0 0 0 0.6 33


The dense realization (Y,Ak) of this kinetic system can be determined using only one

optimization step in the algorithm, and it is structurally identical to the original reaction

network depicted in Figure 3.4. Its Kirchhoff matrix Ak is as follows:

Ak =



−1.36 0 0 1.6 0 0 0 0 0

0 −1.06 0 0 4.62 0 0 0 0

0 0 −5.15297 0 0 0 0 0.6 33

0.3 0.12 0 −1.6 0 0 0 0 0

1.06 0.94 0 0 −4.62 0 0 0 0

0 0 0.48297 0 0 0 0 0 0

0 0 0.9 0 0 0 0 0 0

0 0 3 0 0 0 0 −0.6 0

0 0 0.77 0 0 0 0 0 −33


It follows that in the case of the given set of complexes no further reaction can be

included in any realization of the kinetic model without changing its dynamics.
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3.4 Summary

I have proven new results regarding to dense realizations of kinetic systems, using a

geometric approach. I have shown that a dense linearly conjugate realization of a kinetic

system with a fixed set of complexes and fulfilling an additional finite set of linear

constraints determines a superstructure considering all realizations of the constrained

model. The correctness of the algorithms presented in the dissertation depends on this

property. The results are described in detail in Section 3.1 and summarized in Thesis

I.a.

I have developed a novel polynomial-time algorithm to compute a dense linearly con-

jugate realization of constrained kinetic models. The advantage of the method is that

it applies linear optimization methods, and it works for every kinetic system without

restrictions on the variables. This algorithm is applied as a subroutine in the algorithms

presented in Theses II, III.a, III.b and IV.b. I have also shown that even if there are

arbitrarily predefined upper bounds considering the variables, the set of possible reac-

tion graph structures representing linearly conjugate realizations is the same as in the

unbounded case. Therefore the computer implementations of the algorithms presented

in this dissertation can work accurately. The results are described in detail in Section

3.2 and summarized in Thesis I.b.

The related publications are [51], [57] and [58].
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Chapter 4

Computing weakly reversible

realizations

In a reversible reaction network every reaction is reversible, i.e. the reaction Ci → Cj
takes place in the reaction network if and only if there is a reaction Cj → Ci as well.

The property investigated in this section is a generalized version of reversibility, which

has an influence on the dynamical properties.

Definition 4.1. A chemical reaction network (S, C,R) is called weakly reversible if

for all complexes Ci, Cj where i, j ∈ {1, . . . ,m} and i 6= j it holds that the complex Cj is

reachable from complex Ci through a series of reactions if and only if Ci is also reachable

from Cj.

The purpose of this section is to demonstrate a computation method for determining

weakly reversible realizations, however, it is important to mention the most important

dynamical properties of these realizations as well.

4.1 Dynamical properties of special weakly reversible

reaction networks

For the demonstration of these relations further notions are required. Let the reaction

network (Y,Ak) be defined by the sets S, C,R where |S| = n, |C| = m and |R| = r

hold. A linkage class of a directed graph is a weakly connected component, which is a

maximal connected component of the graph not considering the directions of the edges.

Let l denote the number of linkage classes of the reaction graph G(Y,Ak).

For every reaction Ci → Cj a vector vk = [Y ].j − [Y ].i ∈ Rn is defined, where k is

in {1, . . . , r}. The generated subspace of the vectors v1, . . . , vr is the stoichiometric

subspace S corresponding to the reaction network, and its dimension is s. If x0 ∈
Rn+ refers to a concentration then (x0 + S) ∩ Rn+ is called a positive stoichiometric

compatibility class that contains the concentration x0.

30
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Using these notations the deficiency d of the reaction network (Y,Ak) can de defined

as:

d = m− l − s (4.1)

The point x∗ ∈ Rn is a complex balanced equilibrium concentration of the mass

action system ẋ = Y · Ak · ψY (x) if Ak · ψY (x∗) is equal to the zero vector 0m. If this

property holds for every equilibrium concentration of the mass action system then the

system is called complex balanced. It is known from [32] that complex balance implies

weak reversibility.

The following theorems summarize the most important dynamical properties of special

weakly reversible reaction networks.

Theorem 4.2. Deficiency Zero Theorem [32] – original form, for weakly reversible

reaction networks

A mass action system is complex balanced in the case of any positive values of reaction

rate coefficients if and only if the corresponding chemical reaction network is weakly

reversible and it has deficiency zero.

Theorem 4.3. Deficiency Zero Theorem [7] – application oriented form

Let us consider a mass action system for which the corresponding chemical reaction net-

work is weakly reversible and has deficiency zero. Then, in the case of all positive values

of reaction rate constants the system has in every positive stoichiometric compatibility

class exactly one equilibrium concentration and it is locally asymptotically stable.

Theorem 4.4. Deficiency One Theorem [42]

Let us consider a chemical reaction network where the deficiency is δ and the number of

linkage classes is l. Let δi for i ∈ {1, . . . , l} refer to the deficiency of the ith linkage class

considered as a reaction network. Assume that
l∑

i=1
δi = δ and for all indices i ∈ {1, . . . , l}

δi ≤ 1 holds. If the reaction network is weakly reversible, then for any fixed values of

reaction rate coefficients there exists in every positive stoichiometric compatibility class

exactly one equilibrium point and at least one of them is positive.

It is presumed that weakly reversible realizations have other important properties. The

Boundedness conjecture states that a weakly reversible mass action system has

bounded trajectories in the case of any nonnegative initial state x(0). And the so

called Global Attractor Conjecture states that the equilibrium point of a complex

balanced kinetic system in the corresponding positive stoichiometric compatibility class

is a global attractor. The proofs of the conjectures in the general case has not been pub-

lished yet, although their correctness is proven for the case of one linkage class reaction

networks in [43] and [34] by the same author. It is very likely that the Global Attractor

Conjecture has finally been proven, its description can be read in [12], but it has not

been published yet.
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4.2 Structural properties

A series of reactions that is applied in Definition 4.1 is a directed path in the reac-

tion graph, therefore it is more convenient to apply graph properties to formulate an

equivalent of weak reversibility.

Definition 4.5. A directed graph G(V,E) is called strongly connected if for any

vertices v ∈ V (G) there is a directed path to every other vertex w ∈ V (G) in the graph. A

maximal strongly connected subgraph of a directed graph is called a strong component

of the graph. If a strong component contains only one vertex, then it is called a trivial

strong component.

The vertex set of every directed graph can be uniquely partitioned into strong compo-

nents, since mutual reachability defines an equivalence relation on the set of vertices,

with the strong components as equivalence classes. It is trivial that this relation is re-

flexive and symmetric, only transitivity needs to be justified. For every pair of vertices

vi, vj ∈ V (G) let pij be a directed path from vi to vj , if there is any. (If there are several

such paths, then any of them can be chosen.) Let us assume that the vertices vi and vj
as well as the vertices vj and vk can be reached from each other via directed paths. Then

by taking pij and then pjk a directed path from vi to vk can be created. Similarly, a path

from vk to vi can be obtained by concatenating the paths pkj and pji. Consequently,

the vertices vi and vk can be reached from each other and transitivity holds.

The following lemma gives a necessary and sufficient condition for weak reversibility.

Lemma 4.6. A reaction network (Y,Ak) is weakly reversible if and only if there are no

edges between different strong components of the reaction graph G(Y,Ak).

Proof. If the reaction graph has one strong component then the lemma is automatically

fulfilled. LetG1 andG2 be two disjoint strong components of the reaction graph. Assume

indirectly that there is a directed edge−−→v1v2 connecting them, v1 ∈ V (G1) and v2 ∈ V (G2)

hold, and the reaction network is weakly reversible. Then by definition there is a directed

path from v2 to v1 as well. In this case the vertices v1 and v2 are equivalent according

to the mutual reachability equivalence relation, the equivalence classes of which are the

strong components. But it was assumed that they are in different equivalence classes,

which is a contradiction.

G G1 2

v
1

v
2

Figure 4.1: There are no edges between strong components.

Let us assume that there are no edges between different strong components of the reac-

tion graph G(Y,Ak). For any two vertices v1 and v2 it holds that if there is a directed
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path between them in either direction then v1 and v2 must be in the same strong com-

ponent. Then there exists a directed path in the opposite direction as well.

For Algorithm 2 presented in this chapter it is necessary to determine the strong com-

ponents of given graphs. There are several methods for solving this problem, the most

widely known are Kosaraju’s algorithm (also called as Kosaraju-Sharir algorithm) see

[44] and [45] and Tarjan’s algorithm see [46]. These are polynomial-time algorithms

based on Depth First Search.

4.3 Algorithm for computing weakly reversible realizations

There are several methods in the literature that aim to compute weakly reversible re-

alizations of a kinetic system. Most of them apply a necessary and sufficient algebraic

condition for weak reversibility, which states that a CRN is weakly reversible if and

only if there is a strictly positive vector in the kernel of the Kirchhoff matrix Ak of the

network. In [35] a MILP based method was introduced for computing linearly conjugate

weakly reversible realizations using this condition. Later, in [36] a linear programming

based method was also proposed for computing linearly conjugate weakly reversible CRN

realizations. This algorithm however can be applied only within the predefined intervals

of each variable and the number of required decision variables increases very fast with

the number of complexes.

The motivation of the algorithm presented in this section was published by Szederkényi et

al. in [22], and it computes a dense dynamically equivalent weakly reversible realization

of a given kinetic system with a fixed set of complexes. It is an iterative polynomial-time

method that applies graph properties and the LP optimization framework. The great

advantage of this algorithm is that it requires the minimum number of variables, just

the ones that are necessary to characterize a reaction network, and these variables are

not necessarily considered to be bounded. This method can be extended to find a dense

linearly conjugate weakly reversible realization of a kinetic system that is supplemented

with a finite set of linear constraints as well. The main result of this section is the proof

of correctness of the generalized algorithm, that has been proposed in [51].

The basic idea of the method is that edges between different strong components cannot

occur in the reaction graph of a weakly reversible realization, see Lemma 4.6.

There are two procedures applied repeatedly during the algorithm:

FindLinConjDense([M,Y ], L,G) computes the dense linearly conjugate realization

(T−1, Ab) of the kinetic system [M,Y ] that also fulfils the set L of additional linear

constraints and its reaction graph is a subgraph of the given directed graph G. This

latter property can also be given by linear constraints, so according to Proposition 3.5 it

can be computed using a polynomial-time algorithm. This method has been presented

in Chapter 3 as Algorithm 1.
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FindCrossedges(G) returns the set of edges between the strong components of the

graph G. Kosaraju’s or Tarjan’s algorithm is suitable, but any other polynomial-time

method can also be applied to compute the strongly connected components of the graph

G. Then the edges with endpoints in different strong components have to be determined.

This computation requires just the checking of every edge, i.e. it can be done in |E(G)|
steps.

In the algorithm G(T−1, Ab) refers to the reaction graph representing the linearly con-

jugate realization (T−1, Ab), E(G) is the edge set of the graph G, and Km denotes the

complete directed graph on m vertices, i.e. for each pair of vertices there are edges in

both directions. The complete graph is necessary only in the first application of the

procedure FindLinConjDense, it represents that there are no restricted reactions, no

additional constraints during the computation of the dense realization.

Algorithm 2 Computes a weakly reversible linearly conjugate realization
Inputs: [M,Y ], L
Output: (T−1, Ab)

1: (T−1, Ab) :=FindLinConjDense([M,Y ], L,Kn)

2: G := G(T−1, Ab)

3: while FindCrossedges(G) 6= ∅ do

4: E(G) := E(G)\ FindCrossedges(G)

5: (T−1, Ab) := FindLinConjDense([M,Y ], L,G)

6: G := G(T−1, Ab)

7: end while

8: if E(G) = ∅ then

9: There is no weakly reversible linearly conjugate realization.

10: else

11: (T−1, Ab) is a weakly reversible linearly conjugate realization.

12: end if

In the first step of the algorithm a dense linearly conjugate realization is computed. It

is known from [15] and the description on Section 3.1 that all other realizations can be

represented by subgraphs of the reaction graph of the dense realization. If this realization

is not weakly reversible, then it has edges between its strong components. Consequently,

if there is a weakly reversible realization of this kinetic system, then its reaction graph

cannot contain the edges connecting the strong components of the dense realization.

Then a dense linearly conjugate realization without these edges is computed. If the

result is again not weakly reversible, then the dense realization restricting the cross-

component edges is considered in the next step. During these steps the number of

possible reactions might decrease very fast, however, according to Proposition 3.3 this

computation returns the correct the answer.

Proposition 4.7. For any kinetic system, the dense weakly reversible linearly conju-

gate realization determines a superstructure among weakly reversible linearly conjugate

realizations, and this realization can be computed in polynomial time by the application

of Algorithm 2 .
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Proof. Let G be the reaction graph of a weakly reversible linearly conjugate realization

of the kinetic system [M,Y ]. The graph G must be a subgraph of the reaction graph

representing the dense linearly conjugate realization, which is denoted by G0. Since there

cannot be any edges between the strong components of G, and each strong component

of G is a subgraph of a strong component of G0, the cross-component edges of G0 cannot

be in the set E(G) of edges in G. Since the realization described by the graph G is a

linearly conjugate realization, according to Proposition 3.3 G must be a subgraph of the

constrained dense linearly conjugate realization, where these edges are restricted. Let

the graph G1 represent this realization.

If there are edges connecting different strong components in the graph G1, then these

cannot be in E(G) either. Therefore another realization is computed that is represented

by the graph G2 as reaction graph. The graph G2 cannot contain the cross-component

edges of G1 and it must be a subgraph of G1. According to its properties, G must be a

subgraph of G2.

The computation goes on until such a realization is found where there are no cross-

component edges, or no edges at all, as written in Algorithm 2. If there is any weakly

reversible realization, then the first case must occur, and G must be a subgraph of

the graph computed by the algorithm, therefore this result determines a superstruc-

ture among weakly reversible linearly conjugate realizations, and it must be the dense

one. If the second case occurs, then there exist two weakly reversible linearly conjugate

realization of the kinetic system with the given set of complexes.

The computation requires the solution of at most m2 − m LP optimization problems

and the same number of times the characterization of the strong components. Both

methods require polynomial time, consequently the whole computation can be done in

polynomial time.

4.4 Examples

In this section the working of Algorithm 2 is demonstrated for the linearly conjugate

and dynamically equivalent cases of an example from [35], that has been mentioned in

[51] and in Section 2.5.2 of this thesis as Example 2 as well. The kinetic system [M,Y ]

is defined by the matrices M and Y :

M =

1 0 0 −2 0 0 1 0 0 0

0 −1 0 0 0 0 1 0 0 0

0 0 0 1 0 0 −3 0 0 0



Y =

1 2 2 2 1 2 1 2 1 1

2 2 1 0 0 0 0 0 1 0

0 0 0 0 0 1 2 2 2 1


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4.4.1 Weakly reversible dynamically equivalent realization

For finding a dense weakly reversible dynamically equivalent realization, first the al-

gorithm determines the dense dynamically equivalent realization [Y,Ak1] of the kinetic

system [M,Y ], where

Ak1 =



−1 0 0 0 0 0 5e− 1 0 0 0

1 −1 1e7 0 0 0 0 0 0 0

0 1 −2e7 0 0 0 0 0 0 0

0 0 1e7 −3 0 1e7 0 0 0 0

0 0 0 2 0 0 0 0 0 1e7

0 0 0 1 0 −2e7 0 0 0 0

0 0 0 0 0 0 −1.00000035e7 0 1e7 1e7

0 0 0 0 0 1e7 1 0 0 0

0 0 0 0 0 0 1e7 0 −1e7 0

0 0 0 0 0 0 2 0 0 −2e7



Then the strong components of its reaction graph are determined. The reaction graph

structure can be seen in Figure 4.2, where the edges between different strong components

are indicated with dashed lines.
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C10

Figure 4.2: Reaction graph structure of the dense dynamically equivalent realization
[Y,Ak1].

The edges connecting different strong components cannot be included in any weakly

reversible realization of this kinetic system due to the superstructure property of the

dense realization. Therefore in the second step a constrained dense realization is com-

puted, the constraints are defined in order to exclude the reactions C1 → C2, C3 → C4,

C4 → C5, C6 → C8, C7 → C1, C7 → C8 and C10 → C5. However, it turns out that the

constrained optimization problem is infeasible, therefore there is no weakly reversible

dynamically equivalent realization of the kinetic system [M,Y ].
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4.4.2 Weakly reversible linearly conjugate realization

The computation of a weakly reversible linearly conjugate realization begins with the

characterization of the dense linearly conjugate realization (Y,Ak2) of the kinetic sys-

tem [M,Y ], where Ak2 is the Kirchhoff matrix and T−1 is the state transformation

matrix corresponding to the realization. Using the previously introduced notation of

linearly conjugate realizations it would be referred to as (T−1, Ab2), where the trans-

formed Kirchhoff matrix Ab2 is equal to Ak2 ·Ψ−1T

Ak2 =



−5.7e3 0 0 0 0 0 7.1e2 0 0 0

5.7e3 −2.9e3 7.1e6 0 0 0 7.1e2 0 0 0

0 1.4e3 −1.4e7 0 0 0 1.4e3 0 0 0

0 1.4e3 7.1e6 −1.4e4 0 7.1e6 1.4e3 0 0 0

0 0 0 8.6e3 0 0 4.6e3 0 0 1.4e7

0 0 0 1.4e3 0 −1.4e7 7.1e3 0 0 0

0 0 0 7.1e3 0 0 −1.4e7 0 1.4e7 7.1e6

0 0 0 7.1e3 0 7.1e6 1.4e3 0 0 0

0 0 0 7.1e3 0 0 1.4e7 0 −1.4e7 7.1e6

0 0 0 1.4e3 0 0 2.9e3 0 0 −2.9e7



T−12 =

5.7143e3 0 0

0 4.2857e3 0

0 0 7.1429e3



For this graph as well the strong components are defined, and the edges between different

strong components are drawn with dashed lines.
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Figure 4.3: Reaction graph structure of the dense linearly conjugate realization
(Y,Ak2).

Because of the superstructure property of the dense linearly conjugate realization the

reactions between different strong components cannot be present in a weakly reversible
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realization. Therefore, in the second step a constrained dense linearly conjugate realiza-

tion is computed, that does not contain these reactions. The computation returns the

reaction network (Y,Ak3), where

Ak3 =



−2.1e3 0 0 0 0 0 2e3 0 0 0

2.1e3 −3.6e3 7.1e6 0 0 0 7.1e2 0 0 0

0 1.4e3 −1.4e7 0 0 0 3.6e2 0 0 0

0 2.1e3 7.1e6 −5.7e3 0 0 7.1e2 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 1.4e3 0 0 3.6e2 0 0 0

0 0 0 7.1e2 0 0 −1.4e7 0 1.4e7 0

0 0 0 0 0 0 0 0 0 0

0 0 0 7.1e2 0 0 1.4e7 0 −1.4e7 0

0 0 0 2.9e3 0 0 1.4e4 0 0 0



T−13 =

2.1429e3 0 0

0 5.7149e3 0

0 0 7.1429e3



This realization is also not weakly reversible, there are reactions between complexes

from different strong components,
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Figure 4.4: Reaction graph structure of the reaction network (Y,Ak3) computed in
the second step of the algorithm.

consequently in the next step a constrained realization has to be computed, where the set

of constraints is complemented by the restriction of the cross reactions of the previous

result. The set of constraints is defined to omit the reactions C4 → C5, C4 → C8,

C6 → C8, C7 → C5, C7 → C8 and C10 → C5 based on the realization (Y,Ak2), and

to omit the reactions C4 → C6, C4 → C10, C7 → C6 and C7 → C10 because of the

realization (Y,Ak3).

Since in each step a (constrained) dense realization is computed, by the superstructure

property of these realizations it follows that it is enough to restrict just the union of
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the reactions that have been declared as cross-component edges in this or in any of the

previous steps.

The solution of the optimization problem is the realization (Y,Ak4) defined by the ma-

trices

Ak4 =



−5.5e2 0 0 0 0 0 2.7e3 0 0 0

5.5e2 −4e3 1e7 0 0 0 1.7e2 0 0 0

0 2e3 −2e7 0 0 0 1.8e2 0 0 0

0 2e3 1e7 −1.1e3 0 0 2e2 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 7.3e2 0 0 −2.0e7 0 2e7 0

0 0 0 0 0 0 0 0 0 0

0 0 0 3.6e2 0 0 2.0e7 0 −2e7 0

0 0 0 0 0 0 0 0 0 0



T−14 =

5.4848e2 0 0

0 6e3 0

0 0 2.1940e3



This realization has 5 strong components, four trivial components and a non-trivial one,

while there are no edges connecting them, therefore it is a weakly reversible realization.

Interestingly, there are exactly those reactions present in this realization that are in

(Y,Ak3), only the restricted reactions are missing.
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Figure 4.5: Reaction graph describing the realization computed in the second step of
the algorithm.

It follows that there exists a linearly conjugate weakly reversible realization but no

dynamically equivalent weakly reversible realization of the kinetic system [M,Y ].
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It can be seen from the example that linear conjugacy may significantly increase the num-

ber and extend certain important properties of reaction graph structures corresponding

to a given kinetic system in comparison to dynamical equivalence.

4.5 Summary

I have proposed a new polynomial-time algorithm for computing a weakly reversible

linearly conjugate realization of a kinetic system by extending the method introduced

in [22]. I have proven that the CRN returned by the algorithm is a dense weakly

reversible linearly conjugate realization of the kinetic system, if there exists such a

realization. I have also shown that the returned realization defines a superstructure

among all linearly conjugate weakly reversible realizations of the kinetic system. The

results are summarized in Thesis II.

The related publications are [51], [57] and [58].
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Chapter 5

Computing all possible reaction

graph structures

It is known that most kinetic systems have several different realizations. This rises

the question: Is it possible to determine all these realizations? As it has been shown

in Corollary 3.7 there might be a continuum of dense realizations of a kinetic system.

Similarly, it is possible that there are other different but structurally identical realizations

as well. Therefore, the more reasonable and better formulated problem discussed in this

chapter is the computation of all possible reaction graph structures representing linearly

conjugate realizations of a kinetic system [M,Y ] with a fixed set of complexes.

Two different algorithms are presented in Sections 5.1 and 5.2 to compute the possible

structures. Since the aim of these methods is the same, some of the applied notations

are identical. These notations are introduced below.

During the computations the reaction graph structures are represented by binary se-

quences, that decode the presence of the edges like a characteristic vector. For simplicity

in the notations R refers to such a binary sequence and also the corresponding linearly

conjugate realization determined during the computation. The reaction graph structure

of the realization R is denoted by GR, and E(GR) refers to the set of edges of this graph.

According to Proposition 3.3 a reaction can be present in any of the linearly conjugate

realizations of the kinetic system [M,Y ] if and only if this reaction takes place also

in the dense linearly conjugate realization of the same kinetic system. Consequently,

the edges which are not present in the dense realization do not require representation.

It was proven in Proposition 3.5 that the dense realization can be computed using a

polynomial-time algorithm, and this is the initial step of both methods.

There might exist so-called core reactions as well, that are present in every linearly

conjugate realization of the kinetic system. It is possible that there are no core reactions

of a kinetic system in the case of a given set of complexes, but also there might be several

such reactions. The core reactions of the kinetic system [M,Y ] are represented by the

core edges that form the set Ec[M,Y ]. There are several methods for determining

the set of core edges, see [39] or for a faster method [47]. A generalized version of the

41
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latter one is presented also in this work as Algorithm 7. The computation of the core

reactions is not necessary for the correct operation of the algorithm, but performing this

step might save computational time and space. Therefore this is the second step in both

methods.

Based on the above, every reaction graph structure representing a linearly conjugate

realization is uniquely determined if it is known which of the non-core reactions of the

dense realization are present in the realization. Let the dense realization and its reaction

graph structure be denoted by D and GD, respectively. Then the required length of the

binary sequences applied for the representation is q = |E(GD) \ Ec|. For the definition

of the sequences an ordering of the non-core edges needs to be fixed. Let ei be the ith

edge and let R[i] denote the ith coordinate of the sequence R corresponding to this edge.

The formal definition of the coordinates of a sequence is

e ∈ E(GR)⇐⇒


∃i e = ei, R[i] = 1

or

e ∈ Ec

(5.1)

From now on the term ‘sequence’ will refer to such a binary sequence of length q. It is

easy to see that using the notation of the sequences the dense realization is characterized

by the sequence 1q with all coordinates equal to 1.

During both algorithms the sequences are temporarily stored in indexed stacks. The

rules that determine which sequences might be stored in a particular stack are different

but the data structures are defined identically. The stack with index k is referred to as

S(k), and the number of elements in this stack is denoted as |S(k)|. At the beginning

all stacks are empty, but during the running of the algorithm sequences are pushed in

and popped out from them. The command ‘push R into S(k)’ pushes the sequence R

into the stack S(k), and the command ‘pop from S(k)’ pops a sequence out from S(k)

and returns it. (By the definition of the data structure the sequence pushed in last will

be popped out first.)

The discovered graph structures are stored in a binary array of size 2q called Exist,

where the indices of the fields are the sequences as binary numbers. At the beginning

the value in each field is zero, and after the computation the value of the field Exist[R]

is 1 if and only if there is a linearly conjugate realization that can be represented by the

sequence R.

5.1 Stacking algorithm for computing all reaction graph

structures

The algorithm presented in this section is the first method in the literature to compute

all reaction graph structures, presented in [52]. The basic idea for the dynamically

equivalent case comes from Prof. Zsolt Tuza, but the detailed formulation and extension
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to the linearly conjugate case as well as the proof of correctness is the work of the author

of this thesis.

During the computation the binary sequence representation and indexed stacks are ap-

plied, while the results are stored in a binary array, as defined earlier. In this method the

rule of storing a sequence R in a stack depends on the number of edges in the reaction

graph GR, which is referred to as e(R). The sequence R is stored in the stack S(k)

at some point during the computation if and only if e(R) = k holds, consequently the

stacks are indexed from 1 to q.

Within the algorithm the following procedure is used repeatedly:

FindLinConjWithoutEdge([M,Y ], R, i) computes a constrained dense linearly con-

jugate realization of the kinetic system [M,Y ] with a fixed set of complexes. It is an

application of Algorithm 1. The additional inputs R and i are a sequence encoding

the input reaction graph structure, and an integer index, respectively. The procedure

returns a sequence U encoding the computed linearly conjugate realization for which

the reaction graph GU is a subgraph of GR and U [i] = 0 holds. If there exist no such

realization then the sequence 0q with all coordinates equal to zero is returned. This

computation can be performed in polynomial time as it was proven in Proposition 3.5.

Algorithm 3 Stacking algorithm to determine all reaction graph structures
input: [M,Y ], q
output: Exist

1: push 1q into S(q)

2: Exist[1q]:=1

3: for k = q to 1 do

4: while |S(k)| > 0 do

5: R:= pop S(k)

6: for i = 1 to q do

7: if R[i] = 1 then

8: U := FindLinConjWithoutEdge([M,Y ], R, i)

9: if U 6= 0q and Exist[U ] = 0 then

10: Exist[U ]:= 1

11: push U into S(e(U))

12: end if

13: end if

14: end for

15: Print R

16: end while

17: end for

The algorithm starts with the computation of the dense realization and its binary se-

quence 1q is put into stack S(q). Then in a for loop the stacks are taken according to

decreasing order of indices from q to 1. In each step a sequence R is popped out from
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the actual stack S(k), until there is any, and for all of its reactions it the computation

of a realization U is attempted where the given reaction is not present and GU is a

subgraph of GR. If there exists such a realization then the binary sequence representing

it is pushed into the stack S(l) for which l = e(U) holds. For every determined reaction

graph structure its existence is saved in the array Exist, which is the output of the

algorithm, and it is applied also to avoid doing the same computation multiple times.

It can be proven that the presented method is correct and the search is indeed exhaustive.

Proposition 5.1. For any kinetic system [M,Y ] with any fixed set of complexes all

the possible reaction graph structures representing linearly conjugate realizations can be

computed after finitely many steps by Algorithm 3. The whole computation might require

exponential time depending on the large number of possible directed graphs, but the time

elapsed between the displaying of two linearly conjugate realizations is always polynomial.

Proof. Let us assume indirectly that there is a sequence W which is not returned by the

algorithm, but it corresponds to a linearly conjugate realization of the kinetic system

[M,Y ]. Let R represent another realization, which was computed by the algorithm

and GW is a subgraph of GR, i.e. if W [i] = 1 then R[i] = 1 for all i ∈ {1, . . . , q}.
There must be such a realization since the dense realization D fulfils the requirements

for each W , and if there is more than one such realization, then let R be the one with

minimum number of reactions. Since the sequences W and R cannot be identical there

exists an index j so that W [j] = 0 and R[j] = 1 hold. During the computation there is a

point (line 8) when the procedure FindLinConjWithoutEdge([M,Y ], R, j) is applied.

Since the realization W fulfils the constraints, the computed sequence U is not 0q and

it represents the dense realization with the prescribed properties. Consequently, GW is

a subgraph of GU . Since it was assumed that W is not returned by the algorithm the

sequences U and W cannot be identical. From this it follows that R is not minimal,

which is a contradiction.

The computation will eventually come to an end since every sequence R is put only

once and into only one of the stacks, that is S(e(R)). The number of optimization steps

considering the sequence R as input is exactly e(R). The number of sequences with the

same number of edges as R is at most
( q
e(R)

)
. Consequently, the number of required

optimization steps is at most
q∑
i=1

i ·
(
q
i

)
= q · 2q−1.

The computation between the printing of two consecutive sequences requires the ap-

plication of the linear optimization step FindLinConjWithoutEdge([M,Y ], R, i) at

most e(R) ≤ q times, with some additional minor computation. Therefore the time

elapsed is always constant times polynomial.

5.1.1 Computing dynamically equivalent realizations using smaller

parallel steps

As it has been presented in [52], in the case of dynamically equivalent realizations it is

possible to split the computation steps in smaller units that can be done simultaneously.
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These realizations are special linearly conjugate realizations where the transformation

matrix T is the unit matrix. The variables of the model are are the entries of matrix

Ak, and Equation (2.14) characterizing the desired dynamical properties can be written

in a more simple form:

Y ·Ak = M (5.2)

It is easy to see that the values of the variables in the jth column of matrix Ak depend

only on the parameters in the jth column of matrix M and on the entries of matrix

Y . Therefore the columns of Ak might be computed simultaneously, and any possible

reaction graph structure corresponding to a dynamically equivalent realization can be

determined by choosing a possible value in the case of each column and building the

Kirchhoff matrix of the realization from them. It follows that the number of dynamically

equivalent realizations, that define different reaction graph structures, is the product of

the numbers of the possible column structures.

The super-structure property of dense realizations is inherited by the columns of the

matrix Ak, therefore the same algorithm can be applied for the computation of columns

as was used for determining linearly conjugate realizations.

However, in this version of the algorithm it is better to determine the ordering of non-

core edges according to columns. Let Nj denote the number of non-core edges in column

j, and let Dj refer to the sequence describing the jth column of the dense dynamically

equivalent realization. The stacks are also needed to be defined separately for each

column. The sequence Rj representing a jth column gets stored in stack Sj(k) if and

only if the number of coordinates equal to 1, denoted by e(Rj), is exactly k.

The computed sequences are stored during the algorithm in a two-dimensional binary

array called ExistColumn[j, Rj ]. The first index refers to the column and the second

index is the sequence as a binary number. At the beginning all coordinates are equal to

zero.

The applied procedures are as follows:

DyneqColumnWithoutEdge([M,Y ], j, Rj , i) computes the jth column of the Kirch-

hoff matrix describing a constrained dense dynamically equivalent realization of the

kinetic system [M,Y ]. The constraints are determined by the two last inputs, a se-

quence Rj and an integer index i. The procedure returns a sequence Uj representing a

jth column so that Uj [l] = 0 if Rj [l] = 0 for all l ∈ {1, . . . Nj} and also Uj [i] = 0 hold.

If there is no such column, then −1 is returned. This computation can be performed in

polynomial time.

BuildAk(ExistColumn) builds all possible dynamically equivalent realizations from the

sequence parts in ExistColumn and saves them in the array Exist.
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Algorithm 4 Computes all dynamically equivalent realizations
input: [M,Y ], N1, . . . , Nm

output: Exist

1: for j = 1 to m do

2: push Dj into Sj(Nj)

3: for k = Nj to 1 do

4: while size.Sj(k) > 0 do

5: Rj := pop Sj(k)

6: for i = 1 to Nj do

7: if Rj [i] = 1 then

8: Uj := DyneqColumnWithoutEdge([M,Y ], j, Rj , i)

9: if Uj ≥ 0 and ExistColumn[j, Uj ] = 0 then

10: ExistColumn[j, Uj ]:=1

11: push Uj into Sj(e(Uj))

12: end if

13: end if

14: end for

15: end while

16: end for

17: end for

18: BuildAk(ExistColumn)

5.1.2 Parallel implementation of Algorithm 3

It is possible to apply parallel implementation of Algorithm 3 for computing linearly

conjugate realizations as well, since the results of the optimization steps FindLin-

ConjWithoutEdge([M,Y ], R, i) considering a fixed sequence R have no effect on each

other. It holds for the newly computed realizations that the number of reactions is

less than in the input realization, therefore when the procedure FindLinConjWith-

outEdge([M,Y ], R, i) is applied there would be no more sequences put into the stack

S(e(R)). Consequently it is also possible to do the optimization steps for different

sequences at the same time. However, the recording of the computed reaction graph

structures has to be done sequentially.

The details of the implementation were presented in [55]. The computations were carried

out on a Lenovo D60 workstation with two 2.60GHz Xeon (E5-2650 v2) processors and

with 32 Gb RAM (DDR3 1600 MHz, 0.6ns). The software was written in Python (ver.

2.7.6). Additionally, Python packages such as pyzmq (ver. 14.7.0), cyLP (0.7.2), Cython

(ver. 0.23.4) and CBC (ver. 2.8.5) were used. The linear programs were solved with the

CLP solver, which is part of CBC.

The efficiency of the parallel implementation has been tested in the case of two kinetic

system models. Example 4 was introduced previously in Section 3.3.1, while Example 6

is taken from [48] and models a switch-like behaviour in yeast cell cycle regulations. The

details of the model can be found in the original paper. The computation has returned
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that Example 4 has 17 160 structurally different linearly conjugate realizations on a fixed

set of 6 complexes, while in the case of Example 6 there are 721 possible realizations

that are defined on a set of 19 complexes.

The implementation was tested on both examples with different numbers of parallel

processes (workers). Figure 5.1 depicts the total computation times calculated as the

average of the execution times of the individual workers. The numbers in the brackets are

the standard deviations which indicate that the work load is evenly distributed among

the workers.
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Figure 5.1: Average execution times of the workers in the cases of Examples 6 and 4.

5.2 Sequencing algorithm for computing all reaction graph

structures

The algorithm presented in this section is another method for computing all reaction

graph structures representing linearly conjugate realizations of a kinetic system [M,Y ]

with a fixed set of complexes. Its development as well as the proof of correctness and

efficiency is the work of the author of this thesis. The results were presented in [53].

In this method the starting slices of the sequences have a distinguished role. For every

index k ∈ {1, . . . q} a special equivalence relation is defined on the set of sequences,

so that R =k R
′ holds if and only if for all indices i ∈ {1, . . . k} the coordinates R[i]

and R′[i] are equal, i.e. the first slices of length k in the sequences are the same. The

equivalence class of the relation =k containing the sequence R is referred to as Ck(R). It

has to be mentioned that for every equivalence class any of its elements can be assigned

as representative element.
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During the algorithm q + 2 pieces of stacks are applied, that are indexed from 0 to

q + 1. The definition and notations of the stacks is the same as before, but the rule

of storing the sequences is different. The sequence R might be stored in stack S(k) at

some point during the computation only if R represents the dense realization in Ck(R).

According to the definition the stacks S(0), S(q) and S(q + 1) have no use, but these

have a technical role in the algorithm, as it will be shown later.

The property of having some set of reactions and have another set forbidden can be en-

sured by linear constraints. It can be given as some elements of the matrix Ak are strictly

positive and others are zero. Because of the non-strict inequalities it cannot properly

be included in the LP model, but the proof of Proposition 3.3 can still be applied, since

it was not supposed there that all the halfplanes should be closed. Consequently, if a

sequence R is in the stack S(k) then R defines a superstructure among the sequences in

Ck(R). More formally

[R ∈ S(k), W ∈ Ck(R) ] =⇒ [ ∀j ∈ {1, . . . , q} W [j] ≤ R[j] ] (5.3)

The binary array Exist defined as before is also applied during the computation. As it

will be shown in Proposition 5.3 the application of this array is not necessary for the

running of the algorithm, since none of the possible sequences is returned multiple times.

Furthermore, at the end of the computation all the computed sequences are contained

by the stacks S(q) and S(q+ 1), but it might be more convenient to sum up the results

of the algorithm in a single data structure that allows easy access to the individual

structures.

It will be shown in Section 6.2.3 that the application of the indexed stacks can also

be avoided and one stack is sufficient. This approach makes the application of parallel

implementations possible.

Within the algorithm two procedures are applied:

FindLinConjWithZeros([M,Y ], R, k, i) computes a dense linearly conjugate realiza-

tion of the kinetic system [M,Y ] where all those coordinates are zero, that have indices

at most k and are zero in the sequence R, or are indexed from k+ 1 to i. If there exists

such a realization of the kinetic system, then the sequence W representing it is generated

and it is compared to R. If W =k R holds then the procedure returns W . If there is no

realization fulfilling the given constraints or the computed realization does not belong

to Ck(R) then the procedure returns −1.

(The comparison step is necessary since there might be more zero coordinates corre-

sponding to the indices 1 to k of W than required, and in this case the computed

realization will turn up as the result of the procedure with a different input sequence R′

as well.)

FindNextOne(R, k) returns the smallest index i for which k < i and R[i] = 1 hold. If

there is no such index, i.e. R[j] is zero for all k < j, then q + 1 is returned.
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Algorithm 5 Sequencing algorithm to determine all reaction graph structures
input: [M,Y ], q
output: Exist

1: push 1q into S(0)

2: Exist[1q] := 1

3: for k = 0 to q − 1 do

4: while |S(k)| > 0 do

5: R := pop from S(k)

6: i := FindNextOne(R, k)

7: push R into S(i)

8: while i ≤ q do

9: W := FindLinConjWithZeros([M,Y ], R, k, i)

10: if W < 0 then

11: BREAK

12: else

13: i := FindNextOne(W, i)

14: push W into S(i)

15: Exist[W ] := 1

16: end if

17: end while

18: end while

19: end for

The computation starts by putting the sequence 1q representing the dense realization

into the stack S(0) and also saving it in the array Exist. Then the stacks are taken

in increasing order of indices from zero to q − 1. In the general step a sequence R

is popped out from the actual stack S(k) as long as it is not empty. If the index

i = FindNextOne(R, k) is smaller than q + 1, then by the definitions it follows that

R defines a superstructure not only in Ck(R) but in Ci(R) as well. Therefore R is put

into stack S(i) in order to save it for further examination. If there is no index i greater

than k for which R[i] = 1 holds, then i is equal to FindNextOne(R, k) = q+ 1. In this

case R defines a superstructure in Cq(R), but in order to avoid further complications

it is put into S(i) = S(q + 1) and the examination of sequence R finished. This step

is the reason why all the sequences with last coordinate equal to zero are all stored in

the stack S(q + 1) after the computation. All the other computed sequences, with last

coordinate equal to one, are saved in the stack S(q).

If i is smaller than q+ 1, in the while loop in lines 8− 17 the possible zero gaps starting

from index k+1 in the sequences of Ck(R) are examined. Since the values corresponding

to the indices between k and i are all known to be zero, at the first attempt the largest

index of the gap should be i. If there is no suitable realization, i.e. the procedure

FindLinConjWithZeros(R, k, i) returns -1, then there cannot be any realization with

i − k or more consecutive zeros following the coordinate k in Ck(R). In this case the

examination of R is finished and another sequence is taken into account, if there is any.
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If a real sequence W is returned by the procedure, index i = FindNextOne(W,k) is

looked up, that is equal to FindNextOne(W, i) in the case of the actual value of the

index i. Since W is a dense realization in Ci(W ), it is put into S(i) and saved in array

Exist as well. Then, if i is smaller than q + 1, it is attempted to find a realization with

at least one more consecutive zeros following the coordinate k than W has.

The computation stops when there are no more sequences in stacks with indices smaller

than q. At this point all possible sequences representing linearly conjugate realizations

of the kinetic system are stored in the stacks S(q) and S(q + 1), and it can be proven

that this computation is accurate.

Proposition 5.2. For any kinetic system [M,Y ] with a fixed set of complexes all the

possible reaction graph structures representing linearly conjugate realizations can be de-

termined by Algorithm 5 after finitely many steps.

Proof. Let us assume indirectly that there is a linearly conjugate realization represented

by the sequence V which is not returned by the algorithm. Let R be another sequence,

which was returned by the algorithm, it was in stack S(p) at some point during the

computation, V =p R holds and p is the greatest such number. There must be such a

sequence, since the dense realization D and p = 0 meet the conditions. If p = q or q+ 1,

then V is equal to R, consequently it is returned by the algorithm, so it can be assumed

that p ≤ q − 1 holds.

There is a point during the computation when the sequence R is popped out from the

stack S(p). Let us assume, that FindNextOne(R, p) = i and FindNextOne(V, p) = j

hold. It follows from the superstructure property of R that i can be at most j.

If j is equal to i then V =i R holds. But in this case at some point of the computation

sequence R is in stack S(i), which means that p is not maximal, and it is a contradic-

tion.

If i < j holds then the procedure FindLinConjWithZeros(R, p, i) is applied first

during the examination of the sequence R. Since the realization V fulfils the con-

straints, the procedure must return a sequence W1. W1 represents the dense realization

in Ci(W1), but V ∈ Ci(W1) and V [j] = 1 hold, therefore W1[j] is also equal to 1 and

FindNextOne(W1, p) = j1 ≤ j must be true.

If j1 = j holds, then W1 =j V and W1 is in stack S(j) at some point of the computation.

This means that p is not maximal, which is again a contradiction.

If j1 < j holds, then the procedure FindLinConjWithZeros(R, p, j1) is applied. Since

the realization represented by sequence V fulfils the constraints, it returns a sequence

W2 for which FindNextOne(W2, p) = j2 ≤ j holds. If j2 is equal to j, then it is a

contradiction, otherwise the computation can be continued similarly as before.

These steps either lead to a contradiction for p not being maximal or result an infinite

increasing sequence of integers j1, j2, . . . which has an upper bound q, and it is again

a contradiction. This means that there cannot be any sequence V which represents a

linearly conjugate realization of the kinetic system that is not returned by the algorithm.
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The total computation time can be well described by the number of optimization steps,

i.e. the application of the procedure FindLinConjWithZeros. An optimization step

concerning a realization is performed only when it is in a stack,at most as many times as

the number of not fixed coordinates. In stack S(k) there might be at most 2k different

sequences, therefore a very rough upper bound on the number of optimization steps is
q∑

k=0

(q − k) · 2k = 2q+1 − q − 2.

Proposition 5.3. Within the computation according to Algorithm 5 no realization is

returned twice by the procedure FindLinConjWithZeros.

Proof. Assume by contradiction that there is a sequence W which is computed twice

during the algorithm, i.e. there are sequences R1 and R2, and integers k1, k2, i1 and i2
so that the objects in similar positions are not all identical, and the following holds:

W = FindLinConjWithZeros(R1, k1, i1) = FindLinConjWithZeros(R2, k2, i2)

(5.4)

It can be assumed that k1 ≤ k2 holds, and according to this relation two cases can be

distinguished.

First let us assume that k1 and k2 are equal. It comes from the working of the al-

gorithm that R1 =k1 W holds and since R1 is in stack S(k1) at some point of the

computation, it defines a superstructure in Ck1(W ). Similarly it follows that R2 defines

a superstructure in Ck2(W ) = Ck1(W ), and on account of the uniqueness of the super-

structure the sequences R1 and R2 must be identical. There must be some difference

among the inputs, therefore it can be assumed that i1 < i2 holds. Both optimiza-

tion steps are done when the sequence R1 is popped out from the stack S(k1), but

the smaller index i1 is applied first. The result of the optimization is the sequence

W = FindLinConjWithZeros(R1, k1, i1) for which the next nonzero coordinate af-

ter k1 is at the index j = FindNextOne(W,k1). If j equal to q or q + 1 then the

the examination of the sequence R1 from the coordinate k1 is finished, and the pro-

cedure FindLinConjWithZeros(R1, k1, i2) is not applied. In the case of a smaller

j the procedure FindLinConjWithZeros(R1, k1, j) is applied and it returns either

−1 or a proper sequence V . In the first case the examination is finished. Otherwise,

the returned sequence V cannot be equal to W , since W [j] is one but V [j] is zero.

This property is fulfilled in the case of every larger value of the index j, therefore

i1 < i2 < j must hold, which implies that in this case during the algorithm the pro-

cedure FindLinConjWithZeros(R1, k1, i2) is not called. Consequently, if k1 = k2
holds, then R1 is identical to R2 and assuming i1 < i2 in all cases the procedure

FindLinConjWithZeros(R1, k1, i2) is not called, which is a contradiction.

Now it can be assumed that k1 is smaller than k2. From the definitions it follows

that R1 =k1 W holds, at some point of the computation R1 is in the stack S(k1)

and therefore R1[k1] is 1. Similarly it follows that R2 =k2 W and R2[k2] = 1 hold.

Consequently, R1 and R2 are in the equivalence class Ck1(R1) = Ck1(W ), where R1

represents the dense realization. From this it follows that R1[k1] = R2[k1] = R1[k2] =

R2[k2] = 1 holds, and W [k1] = W [k2] = 1 is also true. As it was assumed the procedure
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FindLinConjWithZeros(R1, k1, i1) returns W . But since there are consecutive zero

coordinates from index k1+1 to i1 in the sequence W and W [k2] = 1 holds, the inequality

k1 < i1 < k2 must be true and j = FindNextOne(W,k1) can be at most k2. Since

W =k2 R2 holds, W =j R2 is also true. According to the algorithm the sequence W

is in the stack S(j) at some point of the computation, therefore the reaction graph

GR2 must be a subgraph of graph GW . It leads to contradiction, since as results the

procedure returns a realization with less coordinates equal to 1, therefore from the result

FindLinConjWithZeros(R2, k2, i2) = W it should follow that GW is a subgraph of

GR2 , and the sequences R and W are not identical.

Remark 5.4. It is possible that a realisation of the given kinetic system is computed

multiple times by the procedure FindLinConjWithZeros, however it is returned only

once, when it is in the required equivalence class, in all other cases the procedure returns

-1. This is the property stated and proved as Proposition 5.3.

5.2.1 Parallel implementation of Algorithm 5

This algorithm is also suitable for parallel implementation. The sequences can be stored

in a single stack and the algorithm can work with them simultaneously, since the actual

result depends only on the properties of the actually computed realization. This version

of the algorithm was introduced in [54] and in Section 6.2.3 as well for computing all

realizations of an uncertain kinetic system. Since a kinetic system can be considered

as a special type of uncertain kinetic system, and linear conjugacy does not change the

linearity of the model, this algorithm can be applied for the efficient computation of all

possible linearly conjugate realizations of a kinetic system.

5.3 Examples

In this section the operation of both algorithms is demonstrated and compared to each

other on four kinetic systems. For all the examples the results of the two algorithms

were identical, differences were only in the running times.

It will be shown that the number of possible reaction graphs describing linearly conjugate

realizations can grow very fast depending on the number of complexes, but can also be

very small in a big network.

5.3.1 Example 1 (continued)

This example was published in [19], and it was also introduced in Section 2.5.1. The

kinetic system [M,Y ] is defined by the matrices

M =

[
3k1 −k2 0

−3k1 k2 0

]
Y =

[
0 3 2

3 0 1

]
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For the numerical computations, the parameter values k1 = 1 and k2 = 2 were used.

As the result of the algorithm 18 different sequences/reaction graph structures were

returned. This small example is special in the sense that the sets of different reaction

graph structures corresponding to dynamically equivalent and linearly conjugate real-

izations are identical, since the computed transformation matrix T was the unit matrix

in every case. The reaction graphs denoted by G1, . . . , G18 are presented in Figure 5.2.

Using the numerical results, it was easy to solve the equations for dynamical equivalence

symbolically as well. With the application of this the reaction rate coefficients are given

as functions of the parameters k1 and k2. From the computation it follows that there are

two reaction rate coefficients k31 and k32 which do not depend on the input parameters,

just on each other, and the reactions determined by these might together be present or

non-present in the reaction network. Therefore, a nonnegative parameter p is applied

to determine the values of these coefficients. In the reaction graphs G1, . . . , G9 the

parameter p is positive, and it is zero in the reaction graphs G10, . . . , G18. Furthermore,

the reaction graph Gi for i ∈ {1, . . . , 9} has exactly the structure of the graph Gi+9

extended with the reactions C3 → C1 and C3 → C2.

The reaction graph G1 (the complete directed graph) represents the dense realization,

and consequently all other reaction graphs are subgraphs of it (not considering the edge

weights).
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Figure 5.2: All reaction graph structures of Example 1 with possible reaction rate
coefficients.
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5.3.2 Example 4 (continued)

The purpose of this example is to show the possible large number of structurally different

linearly conjugate realizations even in the case of a relatively small kinetic system. The

reaction network examined in this section was published in [40] as example A1, and it

was also examined in Section 3.3.1 in this thesis as well.

The kinetic system [M,Y ] is defined by the matrices

M =

[
0 −k2 k3 −2k4 k5 0

k1 0 −k3 k4 −k5 0

]
Y =

[
0 1 0 2 2 3

0 0 1 0 1 0

]

The reaction rate coefficients used in the computations are the same as in [40], namely:

k1 = 1, k2 = 1, k3 = 0.05, k4 = 0.1, k5 = 0.1, in which case the system shows oscillatory

behaviour. The dense linearly conjugate realization (T−1ld , A
ld
b ) has 19 reactions, as it

can be seen in Figure 5.3.

C6 C2

C3C5

C1

C4

Figure 5.3: Reaction graph structure of the dense linearly conjugate realization
(T−1ld , Ald

b ).

Aldb =



−80 1.167e7 3.083 3.333e6 0.333 0

0 −2e7 0.5 5e6 0.5 0

80 0 −4.25 4 0.5 0

0 5e6 0.25 −2e7 1 0

0 0 0.25 4 −8.5 0

0 3.333e6 0.167 1.167e7 6.167 0


T−1ld =

[
40 0

0 80

]

Algorithms 3 and 5 both returned as many as 17160 different reaction graph structures

corresponding to linearly conjugate realizations of this kinetic system, all of which can

be found in the electronic supplement available at:

http://daedalus.scl.sztaki.hu/PCRG/works/publications/Ex2_AllRealSuppl.pdf

Out of these, 17154 can be described by a weakly connected reaction graph, while

6 have disconnected reaction graphs, with the same linkage classes. Since this prop-

erty can be ensured by linear constraints (the edges between the linkage classes are
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excluded), according to Proposition 3.3 the realization having the maximum number

of edges determines a superstructure among realizations obeying the same constraints.

This constrained dense realization can be described by the matrices Acldb and T−1cld , and

its reaction graph is shown in Figure 5.4.

C6

C5

C1

C2

C3

C4

Figure 5.4: The reaction graph structure of the dense linearly conjugate realization
(T−1cld , A

cld
b ) having two linkage classes.

Acldb =



−50 1.25e7 0.625 0 0 0

0 −2.5e7 1.25 0 0 0

50 0 −2.5 5 0 0

0 1.25e7 0.625 −5 0 0

0 0 0 0 −5 0

0 0 0 0 5 0


T−1cld =

[
50 0

0 50

]

It also turned out from the computations that in this case the sparse realization is unique,

and it is the initial network, that has been given in the original article to characterize

the kinetic system. It is shown in Figure 5.5.
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6

Figure 5.5: The reaction graph structure of the initial CRN (Y,Ak), that is the sole
sparse realization of this kinetic system.
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Ak =



−k1 k2 0 0 0 0

0 −k2 k3 0 0 0

k1 0 −k3 k4 0 0

0 0 0 −k4 0 0

0 0 0 0 −k5 0

0 0 0 0 k5 0


The distribution of the computed reaction graph structures over the number of reactions

is shown in Figure 5.6.
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Figure 5.6: Number of different reaction graph structures with given numbers of
reactions in the case of Example 4.

5.3.3 Example 5 (continued)

The kinetic system examined in this section was published in [41], and it has also been

examined in Section 3.3.2 of this thesis. It can be originated from a reaction network

modelling the operation of the glyoxylate bypass. The kinetic system [M,Y ] character-

izing its dynamics is defined by the matrices:

M =



0.3 0.12 1.25297 −1.6 0 0 0 0 −33

1.06 0.94 3.9 0 −4.62 0 0 −0.6 0

1.36 1.06 0 −1.6 −4.62 0 0 0 0

−1.36 0 3.48297 1.6 0 0 0 −0.6 0

0 −1.06 1.67 0 4.62 0 0 0 −33

0 0 −5.15297 0 0 0 0 0.6 33


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Y =



0 0 0 1 0 1 0 0 1

0 0 0 0 1 0 1 1 0

0 0 0 1 1 0 0 0 0

1 0 0 0 0 1 0 1 0

0 1 0 0 0 0 1 0 1

0 0 1 0 0 0 0 0 0


By running Algorithm 3 or 5 it can be seen that this kinetic system has only 3 structurally

different dynamically equivalent realizations. One is the dense realization presented in

Section 3.3.2, the other two are both one reaction short compared to the dense realiza-

tion. The reaction graph structures of these other realizations can be seen in Figures

5.7 and 5.8.

C4 C1

C2 C5

C6

C3

C7C8

C9

Figure 5.7

C4 C1

C2 C5

C6

C3

C7C8

C9

Figure 5.8

5.4 Computation results and efficiency analysis

In this section the performances of Algorithms 3 and 5 are compared to each other

by the application of two examples. In the case of both algorithms single threaded

implementations were applied in order to make the comparison fair. It was checked and

confirmed that the two algorithms computed exactly the same reaction graph structures

for both examples, but in performance they have shown a considerable difference.

All the computations were performed using single thread implementations on a Lenovo

D60 workstation with two 2.60GHz Xeon (E5-2650 v2) processors and 32 Gb RAM

(DDR3 1600 MHz, 0.6ns). The algorithms were implemented in MATLAB [49] using

the YALMIP modelling language [50].

5.4.1 Example 7

The kinetic system examined in this section was originally published in [7], where it

was represented by Equations (7-3) and (7-4) characterizing a dynamically equivalent

realization (Y,Ak) of it, where
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Y =

[
2 3 1 0

1 0 2 3

]
Ak =


−1 0 0 ε

1 −ε 0 0

0 ε −1 0

0 0 1 −ε


The reaction graph is depicted in Figure 5.9.

C1

C4 C3

C2

ε

1

1

ε

Figure 5.9: The reaction graph representing the CRN.

The coefficient matrix M of the kinetic system [M,Y ] is defined as

M = Y ·Ak =

[
1 −2ε −1 2ε

−1 2ε 1 −2ε

]

In the case of the parameter value ε = 1/7 both algorithms have found 784 different re-

action graph structures representing linearly conjugate realizations of this simple kinetic

system. The distribution of possible different graph structures with given numbers of

reactions is depicted in Fig. 5.10. As it is visible, the number of sparse structures, that

have 4 directed edges is 9 in this case.

It can also be obtained that the dense realization (Adb , T
−1
d ) contains all the 12 possible

reactions, i.e. it can be represented by the complete directed graph. The matrices

characterizing the dense realization are the following:

Ad
b =


−5e7 7.143e2 1.25e7 0.00036

2.917e7 −9.524e2 8.33e6 2.381e2

1.25e7 0.00036 −5e7 7.143e2

8.33e6 2.381e2 2.917e7 −9.524e2

 T−1d =

[
5000.005 0

0 5000.005

]
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Figure 5.10: Number of different reaction graph structures with given numbers of
reactions of the kinetic system [M,Y ]

It is interesting to mention that in the case of this kinetic system there is only one

realization (T−1s2 , A
s2
b ) where the reaction graph is not connected. In this case there are

two linkage classes and the realization is a sparse one. Its characterizing matrices are as

follows:

As
b =


−5000.005 1428.573 0 0

5000.005 −1428.573 0 0

0 0 −5000.005 1428.573

0 0 5000.005 −1428.573

 (T s)−1 =

[
5000.005 0

0 5000.005

]

Table 5.1 shows the comparison results for Algorithms 3 and 5. The explanation of the

compared features in Tables 5.1 and 5.2 is the following:

1. The total running time of the algorithm from start to end.

2. The computation time spent for solving optimization (i.e. linear programming)

problems, including the setup of constraints.

3. The number of different reaction graph structures corresponding to linearly con-

jugate realizations of the examined kinetic system found by the applied methods.

4. The total number of function calls for computing constrained dense realizations

(FindLinConjWithZeros in Algorithm 5, and FindLinConjWithoutEdge in

Algorithm 3).
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5. The number of infeasible function calls for computing constrained dense realiza-

tions (these are computed in item 4 as well).

6. The number of computed valid reaction graph structures that had been computed

previously at least once.

7. The average time that is elapsed between displaying/storing two distinct consecu-

tive reaction graph structures.

8. The maximal time elapsed between displaying/storing two distinct consecutive

reaction graph structures.

9. The variance of time intervals elapsed between displaying/storing two distinct

consecutive reaction graph structures.

The computation times are measured and presented in every corresponding property in

seconds.

Table 5.1: Comparison of the properties of the proposed algorithms in the case of
Example 7

feat. no. feature description Algorithm 5 Algorithm 3

1. total running time [s] 617.5386 2933.4868

2. total optimization time [s] 616.1069 2923.1713

3. no. of distinct valid structures found 784 784

4. no. of constrained dense real. comps. 1096 5825

5. no. of infeasible comp. steps 312 2240

6. no. of structures found again 0 2801

7. avg. computation interval [s] 0.788 3.7416

8. max. computation interval [s] 14.97 12.0999

9. variance of computation intervals [s2] 0.30339 2.3894

5.4.2 Example 4 (continued)

In this section as well the example first introduced in [40] as example A1 is examined.

The kinetic system [M,Y ] is characterized by the matrices

In the original article [40] the kinetic system is given by the following realization of it,

described by the matrices

M =

[
0 −k2 k3 −2k4 k5 0

k1 0 −k3 k4 −k5 0

]
Y =

[
0 1 0 2 2 3

0 0 1 0 1 0

]

The reaction rate coefficients are the same as in [40], namely: k1 = 1, k2 = 1, k3 =

0.05, k4 = 0.1, k5 = 0.1.

Table 5.2 shows the comparison results for this example.
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It can be seen that the advantage of Algorithm 5 over Algorithm 3 increased slightly

in the case of the studied larger example considering overall computation time. This

fact mainly comes from Proposition 5.3 that results in a significantly lower number of

constrained dense realization computation steps than [52]. However, as features 8 and

9 show, the solution in [52] may guarantee a ‘more even’ run with smaller variance in

the computation intervals. The reason for this is the important property of Algorithm

3 that polynomial time is elapsed between displaying any two consecutive realizations.

Table 5.2: Comparison of the properties of the proposed algorithms in the case of
Example 4

feat. no. feature description Algorithm 5 Algorithm 3

1. total running time [s] 23 359.4359 139 456.3050

2. total optimization time [s] 23 126.6604 135 217.6015

3. no. of distinct valid structures found 17 160 17 160

4. no. of constrained dense real. comps. 39 662 211 265

5. no. of infeasible comp. steps 22 502 79 304

6. no. of structures found again 3 820 114 801

7. avg. computation interval [s] 1.1698 8.1268

8. max. computation interval [s] 813.7367 22.2412

9. variance of computation intervals [s2] 38.6325 7.8097

5.5 Summary

I have proven the correctness of a new algorithm for computing all possible reaction graph

structures representing linearly conjugate realizations of a kinetic system on a fixed set

of complexes. This algorithm is the first method in the literature for determining all the

reaction graph structures realizing a given kinetic dynamics. The computation might

require exponential time because of the large number of possible structures, but it can

be shown that between the determination of two different structures always polynomial

time is elapsed. Furthermore, the algorithm is suitable for parallel implementation. The

results are described in detail in Section 5.1 and are summarized in Thesis III.a.

The related publications are [52], [55] and [59].

I have designed another new and efficient algorithm as well for the computation of all

structurally different linearly conjugate realizations of a kinetic system. I have shown

that the algorithm returns every realization only once, furthermore, it is also suitable

for parallel implementation. The performance of the new algorithm has been compared

to that of the algorithm in Section 5.1, and considering all the examples the number of

required optimization steps decreased by more than 80% in the case of this algorithm.

The results are described in detail in Section 5.2 and are summarized in Thesis III.b.

The related publications are [53] and [60].
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Chapter 6

Uncertain kinetic systems

There are cases when the parameters characterizing the kinetic model are not precisely

known, for example if these are determined from noisy measurements. In this case

the polynomial system describing the dynamics requires to be written using uncertain

parameters. In this chapter a generalized version of kinetic systems is defined that is

able to represent uncertain parameters and additional linear constraints as well. The

results summarized in this section were presented in [54].

6.1 Introduction of uncertain kinetic systems

Let us consider a kinetic system [M,Y ] where both the coefficient matrix M and the

complex composition matrix Y are in Rn×m. The entries of the matrix M characterize

the column vector vec(M) = [[M ]>.1, . . . , [M ]>.m]>, which is the concatenation of the

columns of the matrix M and it represents a point in the Euclidean space Rnm. In

the uncertain model it is assumed that the possible points vec(M) are all the points

of a closed convex polyhedron P, which is defined as the intersection of q halfspaces.

The boundaries of the halfspaces are hyperplanes with normal vectors n1, . . . , nq ∈
Rnm and constants b1, . . . , bq ∈ R. Applying these notations, the polyhedron P can be

characterized as the set of solutions of a linear inequality system.

P = {v ∈ Rnm | v> · ni ≤ bi, 1 ≤ i ≤ q}} (6.1)

In the characterization of the polyhedron P not only the estimated values of the param-

eters but also the kinetic property of the polynomial system should be considered. This

can be ensured by prescribing the sign pattern of the coefficient matrix M as defined in

Proposition 2.4. However, in the case of uncertain kinetic models the complex composi-

tion matrix Y is known and the coefficients are unknown, while for a given dynamics the

set of complexes can be defined in various ways, therefore the constraints characterizing

the kinetic condition should be given differently:

[Y ]ij = 0 =⇒ [M ]ij ≥ 0 i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} (6.2)

63
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These constraints are of the same form as the inequalities in Equation (6.1), for example

the constraint vec(M)k = [M ]ij ≥ 0 (where k = (i−1)m+j) can be written by choosing

the normal vector ni to be the unit vector −enmk and bi to be the null vector 0nm.

It is possible to define a set L of finitely many additional linear constraints on the vari-

ables to characterize certain additional properties, and these constraints can affect not

only the entries of the coefficient matrix M but the Kirchhoff matrix of the realizations

as well. Such constraint can be for example the exclusion of a set of reactions, or the

restriction of mass conservation on a given level, see e.g. [52]. Let the column vector

vec(Ak) ∈ Rm2−m be defined as the column extension of the Kirchhoff matrix having

only its off-diagonal entries as coordinates, and let r be the number of constraints in the

set L. Then the equations can be written in the form

vec(M)> · αi + vec(Ak)
> · βi ≤ di (6.3)

where αi ∈ Rnm, βi ∈ Rm2−m and di ∈ R hold for all i ∈ {1, . . . , r}. These constraints

do not change the general properties of the model, and it can be described by a linear

programming problem, as it will be shown in Section 6.1.1. It is a more general model,

within which uncertain kinetic systems without additional linear constraints form special

case where L is ∅, and non-uncertain kinetic systems are a special case as well, where

L = ∅ holds and P is a point in Rnm.

In the uncertain case, too, it is assumed that the set of complexes is fixed, therefore

the parameters of the model are the polyhedron P of possible coefficients, the set L of

constraints and the complex composition matrix Y . Hence a constrained uncertain

kinetic system is referred to as the triple [P, L, Y ], but it will be called in this thesis

uncertain kinetic system for brevity.

Definition 6.1. A reaction network (Y,Ak) is called a realization of the uncertain

kinetic system [P, L, Y ] if there exists a coefficient matrix M ∈ Rn×m so that the

equation M = Y · Ak holds, the point vec(M) is in the polyhedron P and the entries of

the matrices M and Ak fulfil the set L of constraints. Since the matrix Y is fixed but

the coefficients of the polynomial system can vary, this realization is referred to as the

matrix pair (M,Ak).

In other words if there is a coefficient matrix M defining suitable parameters and a

reaction network (Y,Ak) that is a dynamically equivalent realization of the kinetic system

[M,Y ] then this CRN is called a realization of the uncertain model.

6.1.1 Computational model for uncertain kinetic systems

A realization (M,Ak) of an uncertain kinetic system [P, L, Y ] in the case of a fixed set of

complexes similarly to realizations of a non-uncertain kinetic system can be computed

using the linear optimization framework.

In the optimization model the variables are all the entries of the matrix M and the off-

diagonal entries of matrix Ak. The constraints regarding the realizations of the uncertain
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model can be written as follows:

vec(M)> · ni ≤ bi i ∈ {1, . . . , q} (6.4)

M = Y ·Ak (6.5)

[Ak]ij ≥ 0 i 6= j, i, j ∈ {1, . . . ,m} (6.6)
n∑
i=1

[Ak]ij = 0 j ∈ {1, . . . ,m} (6.7)

[M ]ij ≥ 0 [Y ]ij = 0, i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} (6.8)

Equations (6.4) ensure that the parameters of the dynamics correspond to a point of

the polyhedron P. Dynamical equivalence is defined by Equation (6.5), while Equations

(6.6) and (6.7) are required for the Kirchhoff property of matrix Ak to be fulfilled. The

constraints in the set L can be written in the form of Equation (6.3) and also added to

the computation model.

The objective function of the optimization model can be defined according to the desired

properties of the realization, for example in order to examine if the reaction Ci → Cj
can be present in the reaction network or not the objective can be defined as max[Ak]ji.

Since a realization of an uncertain kinetic system is defined by the corresponding coef-

ficient matrix M ∈ Rn×m and Kirchhoff matrix Ak ∈ Rm×m, it can be represented as

a vector [vec(Ak)
>, vec(M)>]> in the Euclidean space Rm2−m+nm. Due to the linearity

of the constraints in the computational model, the set of possible realizations of an un-

certain kinetic system [P, L, Y ] is represented by all the points of a convex polyhedron

Q defined by Equations (6.4)–(6.8).

6.1.2 Properties

It has been proven in Proposition 3.3 that the dense linearly conjugate realization of

a kinetic system defines a superstructure among all realizations. This property can be

extended to the case of uncertain kinetic systems.

Definition 6.2. A reaction network (Y,Ak) is called the dense/sparse realizations of

the uncertain kinetic system [P, L, Y ] if it is realization where the maximum/minimum

number of reactions are present.

The proof of the superstructure property of the dense realization is based on the same

idea as the proof of Proposition 3.3. Since the representing set Q of all solution of an

uncertain kinetic system is convex, it contains the intervals connecting any two of its

points, therefore there cannot be any realization containing a reaction that is not present

in the dense realization.

Proposition 6.3. A dense realization (M,Ak) of an uncertain kinetic system [P, L, Y ]

determines a superstructure among all realizations of the uncertain model.
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It follows from Proposition 6.3 that the structure of the dense realization is unique.

If there were two different dense realizations, then the reaction graphs representing

them would contain each other as subgraphs, which implies that these realizations are

structurally identical.

In some cases it is possible to prove the structural uniqueness of the uncertain model.

Proposition 6.4. The dense and sparse realizations of an uncertain kinetic system

[P, L, Y ] have the same number of reactions if and only if all realizations of the model

are structurally identical.

Proof. According to the definitions if in the dense and sparse realizations there is the

same number of reactions, then in all realizations there must be the same number of

reactions. Since the structure of the dense realization is unique, there cannot be two real-

izations with the maximal number of reactions but having different structures, therefore

all realizations must be structurally identical to the dense realization.

The converse statement is trivial. If all the realizations of the model are structurally

identical, then the dense and sparse realizations must also have identical structures.

6.2 Algorithms to compute realizations and properties of

an uncertain kinetic system

Due to the similar model structure, certain algorithms designed for computing realiza-

tions of a non-uncertain kinetic system can be modified in order to work for determining

similar properties in the case of uncertain kinetic systems. In fact, since the uncertain

model is a generalized version of a kinetic system that allows parameter uncertainty

and additional linear constraints, the methods can directly be applied for computing

the given properties in connection with dynamically equivalent realizations of a kinetic

system if it is defined as an uncertain model.

6.2.1 Polynomial-time algorithm to determine dense realizations

The dense realization of the uncertain kinetic system can be computed by the appli-

cation of a recursive polynomial-time algorithm. The basic principle of the method is

similar to the one presented in Section 3.2. To every off-diagonal entry of the matrix

Ak a realization is assigned where this value is positive, if this is possible. If a real-

ization is assigned to the entry [Ak]ij then the reaction Cj → Ci must be present in

this realization. In general, the same realization can be assigned to several reactions,

therefore there is no need to perform a computation step for each reaction separately.

The convex combination of the assigned realizations is also a realization of the uncertain

model, although they are in general realizations of different kinetic systems that fulfil

the constraints regarding the coefficients. If all the coefficients of the convex combina-

tion are positive, none of them is zero, then all reactions that take place in any of the
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assigned realizations are present in the convex combination as well. Consequently, the

obtained realization represents a dense realization, where all reactions are present that

are possible.

The computation can be performed in polynomial time since it requires at most m2−m
LP optimization steps, but in most cases much fewer steps are sufficient.

In the algorithm the assigned realizations are represented as points in Rm2−m+nm and

form a convex polyhedron Q as defined earlier. The realizations are determined using

the following procedure:

FindPositive([P, L, Y ], H) returns a pair (R,B). The point R ∈ Q represents the

realization of the uncertain model [P, L, Y ] for which the value of the objective function∑
j∈H Rj considering a set H ⊆ {1, . . . ,m2 − m} of indices is maximal. The other

returned object is a set B of indices where k ∈ B if and only if Rk > 0. If there is no

realization fulfilling the constraints then the pair (0m
2−m+nm, ∅) is returned.

At the construction of the dense realization the arithmetic mean is applied as convex

combination, i.e. if the number of the assigned realizations is k then all the coefficients

of the convex combination are equal to 1
k .

Algorithm 6 Computes a dense realization
Input: [P, L, Y ]
Output: Result

1: H := {1, . . . ,m2 −m}
2: B := H

3: Result := 0 ∈ Rm2−m+nm

4: loops := 0

5: while B 6= ∅ do

6: (R,B) := FindPositive([P, L, Y ], H)

7: Result := Result+R

8: H := H \B
9: loops := loops+ 1

10: end while

11: Result := Result/loops

12: if Result = 0 then

13: There is no realization with the given properties.

14: else

15: Result is a dense realization.

16: end if

Proposition 6.5. The realization returned by Algorithm 6 is a dense realization of

the uncertain kinetic system [P, L, Y ].

Proof. Since the set of solutions is represented as a convex set Q, the the point Result

computed as the convex combination of realizations is indeed a realization of the uncer-

tain kinetic system [P, L, Y ]. If the returned point Result does not represent the dense
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realization, then there is a reaction Ci → Cj which is present in the dense realization but

it does not take place in Result. By the operation of the algorithm it follows that there

must be a realization assigned to the reaction Ci → Cj , consequently this reaction takes

place in the realization computed as the convex combination of the assigned realizations

as well. This is a contradiction.

6.2.2 Core reactions of the uncertain model

A reaction is called core reaction of a kinetic system if it is present in every realization

of the kinetic system [39]. It is possible that there are no core reactions, but there might

be several of them as well. Furthermore, if all the realizations are structurally identical,

then by Proposition 6.4 it follows that every reaction is a core reaction.

The notion of core reactions can be extended to the case of uncertain models as well, in

order to further analyse the structural properties of the realizations.

Definition 6.6. A reaction Ci → Cj is called a core reaction of the uncertain kinetic

system [P, Y, L] if it is present in every realization of the model. In the realizations all

possible coefficient matrices M has to be considered for which vec(M) ∈ P holds.

Let [P, L, Y ] and [P ′, L, Y ] be two uncertain kinetic systems defined with identical sets

of complexes and additional linear constraints so that the polyhedron P ′ is a subset of

P. If the sets of core reactions in the models are denoted as CP and CP ′ , respectively,

then it is easy to see that CP ⊆ CP ′ must hold. This property holds also in the special

case, when the polyhedron P ′ is a single point in Rnm and [P ′, L, Y ] is a kinetic system

defined as an uncertain kinetic system.

The set of core reactions of an uncertain kinetic system can be computed using a

polynomial-time algorithm. This method has been first published in [47] for a special

case, where the coefficients of the polynomial system have to be in predefined inter-

vals and the polyhedron P is a cuboid. Since the model applies only the property that

all the constraints characterizing the model are linear, it can be applied without any

modification to uncertain kinetic systems as well.

The question whether a certain reaction is a core reaction of a kinetic model or not,

can be answered by solving a linear optimization problem. If this question has to be

decided for all the possible reactions, the computation can be done more efficiently than

doing separate optimization steps for every reaction. The idea is to minimize the sum of

variables representing the entries of the Kirchhoff matrix. Generally, several variables in

the minimized sum are zero in the computed realization, which means that the reactions

corresponding to these variables are not core reactions. This step is repeated with the

remaining set of variables until the computation does not return any non-core reactions.

Finally, the remaining variables need to be checked one-by-one.

In the algorithm the sets of indices corresponding to the off-diagonal entries of the

Kirchhoff matrix Ak are referred to by their characteristic vectors. The set B ⊆
{1, . . . ,m2 −m} is represented by the vector b ∈ {0, 1}m2−m, which is defined as
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bi =

{
1 if i ∈ B
0 if i /∈ B

(6.9)

It necessary to utilize some operations on the sets, that is written using the notation of

the characteristic vectors:
b ∗ c represents the set B ∩ C, i.e. it is an element-wise ‘logical and’

c represents the complement of set C, i.e. it is an element-wise negation.

More formally the procedure applied during the computation is the following:

FindNonCore([P, L, Y ], b) computes a realization of the uncertain kinetic system [P, L, Y ]

represented as a point R ∈ Rm2−m+nm, for which the sum of the coordinates with in-

dices in the set B ∈ {1, . . . ,m2 −m} is minimal. The procedure does not return this

realization but the vector c, the characteristic vector of set C which contains the in-

dices corresponding to zero entries of the Kirchhoff matrix of the realization R, i.e.

C ⊆ {1, . . . ,m2 −m} and [i ∈ C ⇐⇒ Ri = 0].

Algorithm 7 Computes the set of core reactions
Inputs: [P, L, Y ]
Output: b

1: b := 1

2: c := b

3: while c 6= 0 do

4: c := FindNonCore([P, L, Y ], b)

5: c := c ∗ b
6: b := b ∗ c
7: end while

8: for i = 1 to m2 −m do

9: if bi 6= 0 then

10: c := FindNonCore([P, L, Y ], em
2−m

i )

11: b := b ∗ c
12: end if

13: end for

14: if b = 0 then

15: There are no core reactions of the model [P, L, Y ].

16: else

17: The vector b characterizes the core reactions of the model [P, L, Y ].

18: end if

Proposition 6.7. Algorithm 7 computes the set of core reactions of the uncertain

kinetic system [P, L, Y ] in polynomial time.

Proof. Let us assume by contradiction that the algorithm does not return the proper

set of core reactions. There can be two different types of error:
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a) Let us assume that there is an index i for which the corresponding reaction is a core

reaction, but according to the algorithm it is not. In this case there must be a realization

R computed by the algorithm so that Ri is zero. This is a contradiction.

b) Let us assume that there is an index j for which the corresponding reaction is not

a core reaction but the algorithm returns the opposite answer. Consequently, after

the while loop of the computation (from line 8) the coordinate bj must be equal to

1. Then there is a point when this singular reaction is exmined by the application

of the procedure FindNonCore([P, L, Y ], em
2−m

j ). According to the assumption in the

returned realization R the coordinate Rj must be zero, which also yields a contradiction.

The computation according to the algorithm can be performed in polynomial time, since

it requires the solution of at most m2−m LP optimization problems and some additional

minor computation.

6.2.3 Algorithm to determine all possible reaction graph structures of

uncertain models

Especially in the case when the dynamical model is not precisely known, it is useful to

be able to enumerate all the possible realization structures. The principles of methods

presented earlier in Sections 5.1 and 5.2 for computing all structurally different lin-

early conjugate realizations of a given kinetic system can be applied with appropriate

modifications regarding the description of the optimization model.

In this section an efficient algorithm is introduced for computing all possible reaction

graph structures of an uncertain kinetic system [P, L, Y ] defined with a fixed set of

complexes. The proposed method is an improved version of Algorithm 5 presented in

Section 5.2, where all the optimization steps can be done simultaneously. The correctness

of the presented method is also proven here.

The data representation and notations are very similar to the ones in Section 5.2.

The reaction graph structures are represented as binary sequences, and due to the super-

structure property it is sufficient to denote the non-core reactions of the dense realization.

Let the number of these reactions be denoted by z. The dense realization is referred to

as the sequence 1z with all coordinates equal to 1.

In the notations the equivalence relations =k and the corresponding equivalence classes

Ck(R) for k ∈ {1, . . . , z} are also applied. The difference compared to Algorithm 5 is that

the computed sequences get stored during the computation in a single stack S instead

of several ones. For further examinations it is necessary to know the largest index of the

fixed part. Therefore, the realizations are represented as a pair (R, k), where R is the

binary sequence and k is an integer. The realization (R, k) can be put into the stack S

if R represents the dense realization in Ck(R). The command ’push (R, k) into S’ puts

the sequence R into the stack and ’pop from S’ takes a sequence out of the stack and

returns it. The number of sequences in the stack S is denoted by size(S).
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The results of the whole computation are stored in a binary array called Exist, defined

as before. Since in this method the sequences are stored in just one stack, the application

of the array Exists is necessary.

Within the algorithm two procedures are applied, that are similar to the subroutines of

Algorithm 5:

FindRealization((R, k), i) computes a dense realization of the uncertain kinetic sys-

tem [P, L, Y ], for which the representing binary sequence W is in Ck(R) and for every

index j ∈ {k+ 1, . . . , i} the coordinate Wj is zero, if it exists. Since in case of the strict

inequalities the calibration of the small number ε might be a difficult task, to make the

computation more accurate a dense realization is computed that fulfils only the con-

straints corresponding to the specified coordinates of a sequence that need to be zero. It

is possible that among the first k coordinates there are more zeros than required, there-

fore the computed sequence W is compared to the sequence R. The procedure returns

the sequence W only if W =k R holds, otherwise −1 is returned. If the optimization

model is infeasible then the returned object is also −1.

FindNextOne((R, k)) returns the smallest index i for which k < i and Ri = 1 hold. If

there is no such index, i.e. Rj is zero for all k < j, then it returns z + 1.

Algorithm 8 Computes all reaction graph structures
Inputs: [P, L, Y ], z
Output: Exist

1: push (1z, 0) into S

2: Exist[1z := 1

3: while size(S) > 0 do

4: (R, k) := pop from S

5: i := FindNextOne((R, k))

6: if i < z then

7: push (R, i) into S

8: end if

9: while i < z do

10: W := FindRealization((R, k), i)

11: if W < 0 then

12: BREAK

13: else

14: i := FindNextOne(W, i)

15: Exist[W ] := 1

16: if i < z then

17: push (W, i) into S

18: end if

19: end if

20: end while

21: end while
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Since the Algorithm 8 is a generalized version Algorithm 5 applying the advantages of

parallel implementations, the proof of its accuracy is similar to that in Proposition 5.2.

Proposition 6.8. Algorithm 8 computes all possible reaction graph structures repre-

senting realizations of an uncertain kinetic system [P, L, Y ].

Proof. Let us assume by contradiction that there is a realization of the uncertain kinetic

system [P, L, Y ] represented by the sequence V which is not returned by Algorithm 8.

Let R be another sequence that was stored in the stack S as (R, p) at some point during

the computation, for which V =p R holds and p is the greatest such number. If p = 0

then D is suitable to be R, and by the operation of the algorithm it follows that p < z

holds. (If p were equal to z, then V would be equivalent to R and it is a contradiction.)

There is a point during the computation when (R, p) is popped out from the stack S.

Let us assume that FindNextOne(R, p) returns i and FindNextOne(V, p) returns j.

In this case i ≤ j must hold since R represents the superstructure in Cp(R) and if i were

equal to j then p would not be maximal.

At the examination of sequence R the procedure FindRealization ((R, p), i) is applied

first, and it must return a valid sequence W1 since its constrains are fulfilled by the

realization V as well. If FindNextOne(W1, p) is j1 then j1 < j must hold, since W1

represents the dense realization in Ci(W1), V is also in Ci(W1), and if j1 was equal to j

then p would not be maximal.

The computation can be continued with the procedure FindRealization((R, p), j1). It

must return a valid sequence W2 for which FindNextOne(W2, p) = j2 ≤ j holds, that

can be shown by applying similar reasoning as earlier.

These steps must lead to contradiction either by p not being maximal or by creating an

infinite increasing sequence of integers that has an upper bound. Consequently, every

possible reaction graph structure that represents a realization of the uncertain kinetic

system [P, L, Y ] is returned by the algorithm.

A similar proof to that in the case of Proposition 5.3 can be applied to show that

during the computation every reaction graph structure is returned only once. Since

the calculations of procedure FindRealization((R, k), i) are independent of the results

of every other call of the same procedure, therefore the order of the calls is irrelevant

regarding the result of the entire computation.

6.3 Illustrative examples

In this section the operation of Algorithms 6, 7 and 8 is demonstrated on two examples

in the case of different degrees and types of uncertainties, and even with additional linear

constraints.
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6.3.1 Example 1 (continued)

The model that serves as a basis for this example was presented previously in [19], [52]

and it was examined in Sections 2.5.1 and 5.3.1. The uncertain model is generated using

the kinetic system [M,Y ], where the characterizing matrices are

M =

[
3c1 −c2 0

−3c1 c2 0

]
Y =

[
0 3 2

3 0 1

]

During the computations the parameter values c1 = 1 and c2 = 2 were applied.

In the case of this example two types of parameter uncertainty with the corresponding

two different polyhedrons are examined.

6.3.1.1 Uncertainty defined by independent intervals

This model represents a special case in the class of uncertain kinetic systems, since the

possible values of every coefficient of the kinetic system are determined by independent

upper and lower bounds that are defined as relative distances. If the entry [M ]ij of the

coefficient matrix M is represented by the coordinate vec(M)l of the point vec(M) ∈ R6

and the relative distances of the upper and lower bounds are given by the real constants

γl and ρl from the interval [0, 1], respectively, then the equations defining the polyhedron

PA ⊂ R6 of the uncertain parameters can be written in terms of the coordinates M̃l as

vec(M)> · e6l ≤ (1 + γl) · [M ]ij

vec(M)> · (−e6l ) ≤ (ρl − 1) · [M ]ij

In the examined uncertain kinetic system [PA, L, Y ] no additional linear constraints are

considered, i.e. L = ∅.

In Section 5.3.1 all possible reaction graph structures representing dynamically equiv-

alent realizations of the kinetic system [M,Y ] have been presented. Obviously, these

structures must appear among the realizations of the uncertain kinetic model [PA, ∅, Y ]

as well, but there might be more possible structures among the realizations of the un-

certain kinetic system.

Interestingly, the result of the computation was that in the case of any degree of the

uncertainty coefficients γl, ρl ∈ [0, 1) for all l ∈ {1, . . . 6} the sets of possible reaction

graph structures of the uncertain model [PA, ∅, Y ] and of the original kinetic system

[M,Y ] are identical. This result might be contrary to expectations, but for this small

example it is easy to prove that the obtained graph structures are correct for all positive

values of the parameters c1 and c2. To do this, the computation has to be divided into

smaller steps.

It has been shown in [53] that in the case of dynamically equivalent realizations the

computation can be done column-wise. By the definition of matrix multiplication it
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follows that Y · Ak = M holds if and only if Y · [Ak].j = [M ].j holds for all j ∈
{1, . . . ,m}. Consequently, the jth column of matrix Ak depends only on the jth column

of matrix M . These computations can be done separately, and all the possible reaction

graph structures can be constructed by choosing a column structure for every index

j ∈ {1, . . . ,m} and building the Kirchhoff matrix Ak of the realization from them.

Consequently, if in the case of the jth column the number of different structures is pj ,

then the number of structurally different realizations is
m∏
j=1

pj .

In order to make the notations less complicated the entries of the Kirchhoff matrix are

denoted as the reaction rate coefficients, i.e. [Ak]ij = kji for all i, j ∈ {1, 2, 3}, i 6= j.

The results in the case of the first column:

Y ·

−k12 − k13k12
k13

 =

[
3c1
−3c1

]
k12, k13 ∈ R+ =⇒ k12 ∈ [0, c1], k13 =

3

2
c1 −

3

2
k12

(6.10)

It can be seen that for every positive value of the parameter c1 the two corresponding

reaction rates can realize 3 of the 22 = 4 possible structurally different solutions. Both

can be positive, or either one can be positive while the other one is zero. (Possible

outcomes are for example: k12 = 1
2c1, k13 = 3

4c1 or k12 = 0, k13 = 3
2c1 or k12 = c1, k13 =

0.) The fourth case, when both k12 and k13 are zero is possible only when [M ].1 = [0 0]>,

which requires the corresponding parameters of uncertainty ρi to be at least one.

In the case of the second column, 3 of the 4 possible outcomes can be realized and a

similar reasoning can be applied.

Y ·

 k21
−k21 − k23

k23

 =

[
−c2
c2

]
k21, k23 ∈ R+ =⇒ k21 ∈ (0,

c2
3

), k23 = c2 − 3k21

(6.11)

In the third column there is no uncertainty because there are only zero entries in [M ].3.

Consequently, in the case of [Ak].3 only 2 solutions are possible. The two corresponding

reactions can either be both present or both missing.

Y ·

 k31
k32

−k31 − k32

 =

[
0

0

]
k31, k32 ∈ R+ =⇒ k31 ∈ R+, k32 = 2k31 (6.12)

It follows from the above computations that the number of possible reaction graph

structures is 3·3·2 = 18, and the generated structures are identical to the ones presented

in Section 5.3.1. This number could be larger only if all the reaction rates in the first

or second column of Ak can be zero, but this requires the entries in the corresponding

column [M ].1 or [M ].2 to be zero.
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6.3.1.2 Uncertainty defined as a general polyhedron

It is interesting to examine another uncertain kinetic system generated from the ki-

netic system [M,Y ], where the set PB of possible coefficients is defined as a polyhe-

dron. If the matrix M of coefficients is represented by the vector vec(M) ∈ R6, where

vec(M)> = [[M ]11, [M ]21, [M ]12, [M ]22, [M ]13, [M ]23], then let the equations determining

the polyhedron PB be the following:

vec(M)> · (−e61) ≤ 0

vec(M)> · (−e64) ≤ 0

vec(M)> · e65 = 0

vec(M)> · e66 = 0 (6.13)

vec(M)> · [1, 1, 1, 1, 0, 0]> = 0

vec(M)> · [0,−1,−1, 0, 0, 0]> ≤ 7

vec(M)> · [−1, 0, 0, 1, 0, 0]> ≤ −1

In this case again, no additional linear constraints are considered in the uncertain model.

The computation of all possible reaction graph structures shows that in addition to the

structures realizing the original kinetic system [M,Y ] depicted in Figure 5.2 there are 6

more structures, presented in Figure 6.1.
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Figure 6.1: The additional possible reaction graph structures of the kinetic system
[P, L, Y ] compared to the original kinetic system [M,Y ].

It can be seen that the point vec(M1)
> = [3,−3,−2, 2, 0, 0] corresponding to the orig-

inal non-uncertain kinetic system is in the polyhedron PB, therefore the 18 structures

determined by its realizations must be among the realizations of the uncertain kinetic

system.
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Then similarly to that in Section 6.3.1.1, the columns of the matrix Ak can be considered

independently. Since the entries in column [M ].3 are all zero in every point in the

polyhedron PB, only the previously mentioned two outcomes are possible in the case of

this column. There can be more realizations only if all the reaction rates in at least one

of the columns [Ak].1 or [Ak].2 can be zero, which is possible only if all the entries in [M ].1
or [M ].2 are zero. By the constraints of the polyhedron PB it follows that [M ]11 ≥ 1.

Consequently, the column [M ].1 cannot be zero, but [M ].2 can, for example the point

vec(M2) = [3,−3, 0, 0, 0, 0]> ∈ PB fulfils this property. For the columns of the matrices

M and M2, the following hold: [M2].1 = [M ].1 and [M2].3 = [M ].3. Therefore, for the

first and third columns of Ak there are 3 and 2 possible outcomes, respectively. This

means that the number of further reaction graph structures (compared to the original

kinetic system [M,Y ]) is 3 · 2 = 6. It is easy to see that these are exactly the ones

presented in Figure 6.1 with possible reaction rates, where p ∈ R+ \ {0}.

6.3.2 Example 5 (continued)

The other example examined here is the glyoxylate bypass model presented in [41] and

also in Section 3.3.2. The kinetic system [M,Y ] characterizing its dynamics is defined

by the matrices:

M =



0.3 0.12 1.25297 −1.6 0 0 0 0 −33

1.06 0.94 3.9 0 −4.62 0 0 −0.6 0

1.36 1.06 0 −1.6 −4.62 0 0 0 0

−1.36 0 3.48297 1.6 0 0 0 −0.6 0

0 −1.06 1.67 0 4.62 0 0 0 −33

0 0 −5.15297 0 0 0 0 0.6 33



Y =



0 0 0 1 0 1 0 0 1

0 0 0 0 1 0 1 1 0

0 0 0 1 1 0 0 0 0

1 0 0 0 0 1 0 1 0

0 1 0 0 0 0 1 0 1

0 0 1 0 0 0 0 0 0


It has been shown in Section 5.3.3 that there are 3 structurally different realizations of the

kinetic system and 10 of the 12 reactions are core reactions. Let us examine the uncertain

models [Pα, ∅, Y ] where the uncertainty of the parameters is defined with independent

intervals characterized as relative distances. The polyhedron Pα is a cuboid defined

similarly to PA, the upper and lower bounds are determined by the rate coefficients

γl = ρl = α ∈ [0, 1] for all indices l ∈ {1, . . . , 54} of vec(M).

vec(M)> · e54l ≤ (1 + γl) · vec(M)l l ∈ {1, . . . , 54} (6.14)

vec(M)> · (−e54l ) ≤ (ρl − 1) · vec(M)l l ∈ {1, . . . , 54} (6.15)

DOI:10.15774/PPKE.ITK.2018.004 

 

 



Chapter 6. Uncertain kinetic systems 77

It is easy to see that the number of realizations increases as α grows, while the number of

core reactions decreases, since the polyhedrons Pα define an ascending system of sets. In

Figure 6.2 the numbers of possible realizations and core reactions can be seen depending

on α. It has to be mentioned however, that in the case of this particular kinetic system

for any rate 0 < α < 1 of uncertainty the number of reactions present in the dense

realization is the same, and based on the superstructure property its structure as well

is unchanged.

Figure 6.2: The number of structurally different realizations and core reactions de-
pending on the rate of relative parametric uncertainty.

6.4 Summary

I have described an uncertain kinetic system model which is a generalization of kinetic

models and it can include a finite set of additional linear constraints as well. I have

proven that the superstructure property of dense realizations holds also in the case of

the uncertain model, and the algorithms designed for computing the dense realization,

the set of core reactions and all realization structures of a given kinetic system can be

extended for the case of uncertain models. The results are described in detail in Sections

6.1.2 and 6.2, and summarized in Thesis IV.

The related publications are [54] and [56].
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Conclusions

In this thesis the structural properties of mass action kinetic systems were examined

using the different approaches of linear algebra, graph theory and convex geometry, as

well as by introducing accurate and efficient novel algorithms for the computational

analysis of kinetic models applying the linear programming framework.

7.1 New scientific results

Thesis I. I have proven new results regarding to dense realizations of kinetic

systems, using a geometric approach.

The realizations represented as points in the Euclidean space form a convex polyhedron,

and this property can be utilized efficiently from a computational point of view.

Thesis I.a I have proven that a dense linearly conjugate realization of a

kinetic system with a fixed set of complexes and an additional finite set of

linear constraints determines a superstructure considering all realizations of

the constrained model.

The superstructure property is essential for the correct operation of all the algorithms

presented in this dissertation.

The results are described in detail in Section 3.1.

Related publications: [51], [57], [58]

Thesis I.b I have developed a novel polynomial-time algorithm to compute a

dense linearly conjugate realization of a kinetic system with a fixed set of

complexes and fulfilling an additional finite set of linear constraints.

The advantage of the method is that it applies linear optimization methods, it avoids

the use of integer variables, and it works for every kinetic system without restrictions

on the variables. I have proven that the algorithm returns the dense linearly conjugate

realization, or as special case the dense dynamically equivalent realization of any kinetic

78
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system. This algorithm is applied as a subroutine in the algorithms presented in Theses

II, III.a, III.b and IV.b.

I have shown that even if there are arbitrarily predefined upper bounds considering the

variables the set of possible reaction graph structures representing linearly conjugate re-

alizations is the same as in the unbounded case, therefore the computer implementations

of the algorithms presented in this dissertation can work accurately.

The results are described in detail in Section 3.2.

Related publications: [51], [57]

Thesis II. I have proposed a new algorithm for computing a weakly reversible

linearly conjugate realization of a kinetic system by extending the method

introduced in [22].

I have proven that the algorithm runs in polynomial time, and it returns a dense weakly

reversible linearly conjugate realization of the kinetic system, if it exists.

I have also shown that the computed dense realization defines a superstructure among

all linearly conjugate weakly reversible realizations of the kinetic system.

The results are described in detail in Chapter 4.

Related publications: [51], [57], [58]

Thesis III. I have achieved new results on computing all possible reaction

graph structures representing linearly conjugate realizations of a kinetic sys-

tem.

Thesis III.a I have proven the correctness of a new algorithm for computing

all possible reaction graph structures representing linearly conjugate realiza-

tions of a kinetic system on a fixed set of complexes.

The algorithm is the first method in the literature for computing all the reaction graph

structures realizing a given kinetic dynamics.

The computation might require exponential time because of the large number of possible

structures, however, between the determination of two different structures polynomial

time is elapsed. Furthermore, it is possible to apply parallel implementation of the

algorithm using e.g. many core architectures.

The results are described in detail in Section 5.1.

Related publications: [52], [55], [59]

Thesis III.b I have designed a new efficient algorithm for computing all struc-

turally different linearly conjugate realizations of a kinetic system.

I have proven that this algorithm also returns all possible reaction graph structures

representing linearly conjugate realizations of a kinetic system.

I have also shown that the algorithm returns every realization only once, furthermore,

it is also suitable for parallel implementation.
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The performance of the new algorithm has been compared to that of the algorithm in

Thesis III.a, and considering all the examples the number of required optimization steps

decreased by more than 80% in the case of the new algorithm.

The results are described in detail in Section 5.2.

Related publications: [53], [60]

Thesis IV. I have proven new results regarding to special uncertain kinetic

system models, where the parameters are in a convex polyhedron.

The introduced model is a generalization of the original kinetic model that can include

a finite set of additional linear constraints as well.

Thesis IV.a I have shown that the superstructure property of dense realiza-

tions holds also in the case of uncertain kinetic systems.

This property depends on the fact that the set of solutions of an uncertain kinetic model

is a convex polyhedron. The results are described in detail in Section 6.1.2.

Thesis IV.b I have proven that the algorithms designed for computing the

dense realization, the set of core reactions and all realization structures of

a given kinetic system can be extended for the case of uncertain kinetic

systems.

I have also shown that the algorithm developed for computing all structurally different

realizations and presented in Thesis III.b is suitable for parallel implementation.

The results are described in detail in Section 6.2.

Related publications: [54], [56]

7.2 Application possibilities

The possibilities of applying existing algorithms is wide, since these can often be used as

parts of other computational methods. The algorithm developed for computing dense

realizations has already been applied as subroutine in all the other algorithms introduced

in this thesis.

The algorithm extended for the computation of weakly reversible linearly conjugate

realizations is the first method for solving this problem, which will possibly generate some

new ideas and interesting structure based results considering these special realizations.

For example one can take advantage of the fact that the algorithm returns the dense

weakly reversible realization which defines a superstructure among weakly reversible

realizations of the kinetic system. Furthermore, the algorithm can be generalized to

the case of constrained kinetic systems, and by using this kind of computation steps

it is possible to design an algorithm for determining every weakly reversible realization

corresponding to a given kinetic system.
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The algorithms designed for determining the set of possible reaction graph structures

can be applied for the accurate computation of realizations which are more difficult to

characterize, for example sparse realizations. An other application of this computational

method might be the CRN design based on dynamics.

It is clear that the kinetic model defined with uncertain parameters has the biggest

potential in practical applications. For example in the case of a system model identified

by the application of noisy measurements the kinetic model with polyhedric uncertainty

introduced in this thesis can be defined using the estimated values of the parameters.

7.3 Plans for future work

I intend to further examine the structural properties of kinetic systems and to develop

new computational methods by analysing the properties of chemical reaction networks

and the results of the known algorithms. The following are the topics of interest:

• Analysis of the large number of possible reaction graph structures characteriz-

ing realizations of a kinetic system returned by Algorithm 5 using structural and

algebraic properties.

• Symbolic implementation of Algorithm 5 at least in the dynamically equivalent

case in order to be able to characterize the possible reaction rates in the computed

structures.

• Development of more advanced distinguishability analysis methods using the struc-

tural properties of dense and sparse realizations.
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[20] G. Szederkényi and K. M. Hangos. Finding complex balanced and detailed balanced

realizations of chemical reaction networks. Journal of Mathematical Chemistry,

49:1163–1179, 2011.
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[53] B. Ács, G. Szederkényi, and D. Csercsik. A new efficient algorithm for determining

all structurally different realizations of kinetic systems. MATCH Commun. Math.

Comput. Chem., 77:299–320, 2017. IF: 3.139, Q1.
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