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Chapter 1

Introduction

The term light field is mathematically defined as a function that describes the amount of light
fared in all directions from every single point in space at a given time instance[1]. Over a con-
tinuous time, the collection of light rays emitted at all the points in space continuously defines
a 3D scene. Presenting a scene in 3D, thus, involves capturing wavelengths of light at all points
in all directions at all time instances and displaying this captured information within a given
region of interest of a scene. However, this may not possible in reality due to practical limi-
tations such as complex capturing procedure and enormous amount of data every single time
instant. Many attempts were made in the past for simplifying and displaying slices of light field
such as : stereoscopy (Anaglyph 3D system, Polarized 3D system, Active shutter 3D system),
lens based autostereoscopic displays, volumetric displays, head mount displays and displays
based on motion tracking and spatial multiplexing etc., The main idea behind was to reduce the
number of dimensions of the light field function to derive a discrete segment of light field [2].
However, practical means to produce highly realistic light field with continuous depth cues for
3D perception are still unavailable.

A more pragmatic and elegant approach for presenting a light field along the lines of its actual
definition has been pioneered by HoloVizio: projection-based light field displaying technology[3]
[4] [5]. Taking inspiration from the real-world, a projection-based light field display emits light
rays from multiple perspectives using a set of projection engines. Various scene points are de-
scribed by intersecting light rays at corresponding depths. A holographic diffuser modulates the
emitted light rays and helps to achieve directional light transmission with minimum aliasing.
These displays have a high potential to be the future 3D display solution and novel methods to
process the massive light field data are very much needed.

1.1 Open-Ended Questions

In order to meet the FOV requirements of a light field display and to have a realistic and natural
3D displaying, we need to capture views from several cameras. In the current generation of
light field displays, horizontal only parallax is supported and thus it is enough to consider the
camera setups in one dimensional configuration. It is clear that for providing high quality 3D
experience and supporting motion parallax, we require massive input image data. The increased
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1.2. Aims and Objectives Introduction

dimensionality and size of the data opened up many research areas ranging through capturing,
processing, transmitting, rendering and interaction. Some of the open ended questions are

• Content creation - what are the optimal means to acquire/capture suitable light field data
to fully meet the requirements of a given light field display?

• Representation, coding & transmission - what is the optimal format for storing and
transmitting acquired light field data?

• Rendering & synthesis - how the captured light field data can be used for rendering and
how to create/synthesize the missing light rays?

• Interaction - how the interaction can be extended for light field content to appeal to the
design, gaming and media industry?

• Human visual system - how the human visual system functioning can be exploited to
improve the quality of light field rendering?

• Quality Assessment - what are the ways to measure/quantify the quality of a light field
rendering and how can we automatically detect any annoying artifacts?

1.2 Aims and Objectives

The main aim of the current work is to assess the requirements for suitable and universal capture,
rendering and interaction of 3D light field data for projection-based light field displays. Specif-
ically, the emphasis is on representation, rendering and interaction aspects. Considering the
existing rendering procedures, the first part of the work aims to derive the requirements for light
field representation for given display configurations and also presents a rendering prototype with
light weight multiview image data. The second part of the work aims to optimize the rendering
procedures to comply with the display behavior. In the last part, the objective is to experiment
and evaluate interactive rendering using low cost motion sensor device.

1.3 Scope of Work

Concentrating on projection-based light field displays, the work has three branches : assessing
the requirements for a suitable representation, rendering visual quality enhancement through
depth retargeting and exploring direct touch interaction using Leap Motion Controller.

• By implementing and testing the state-of-art rendering methods, requirements for a future
light field representation are presented for projection-based light field displays. The scope
of this work does not include deriving a standard codec for encoding/decoding the light
field.

• The depth retargeting method solves a non-linear optimization to derive a noval scene
to display depth mapping function. Here, the aim is not to acquire/compute accurate
depth, instead use a real-time capturing and rendering pipeline for investigating adaptive

2



Introduction 1.4. Workflow

depth retargeting. The retargeting is embedded into the renderer to preserve the real-
time performance. For testing the performance, the retargeting method is also applied to
synthetic 3D scenes and compared with other real-time alternatives. Comparison is not
carried out with methods that are not real-time.

• The direct touch interaction setup provides a realistic direct haptic interaction with virtual
3D objects rendered on a light field display. The scope of this work does not include any
modeling of an interaction device.

1.4 Workflow

The work began with a study of several light field representations for real-world scenes that
were proposed in the literature. The main idea behind investigating a representation is not de-
riving an efficient and real-time light field encoding/decoding method, but rather explore the
light field display geometry to investigate a suitable representation. Existing and well-knowns
representations are based on the notion of displaying 3D from multiple 2D. However, projection-
based light field displays represent a scene through intersecting light rays in space i.e., instead
of several discrete 2D views, any user moving in front of the display perceives several light field
slices. Thus, the existing light field representations are not optimized for such displays and the
required representation should consider the process of light field reconstruction (rendering) on
these displays.

A popular approach for light field rendering from real-world scenes is to acquire images from
multiple perspectives (multiview images) and re-sample the captured database to address the
display light rays [6, 7, 8]. Due to the geometrical characteristics of light field displays, it is
more reliable to render using images acquired from several closely spaces cameras. Depending
on the display geometry, we may need 90-180 images. By carefully examining how several
light rays leaving the display are shaded, I derived a data reduction approach that eliminates
the unwanted data during reconstruction process. Based on the immediate observations, a light
weight representation based on discrete 2D views with each view having a different resolution
than the other is followed. These investigations also opened up the requirements for a novel light
field representation and encoding schemes.

A different approach for light field rendering in the literature is all-in-focus rendering [9]. In-
stead of directly sampling the captured data base, this rendering approach also computes the
depth levels for various display light rays. A major advantage using this approach is that, it is
possible to achieve a good quality light field with less number of cameras. However, the visual
quality is highly dependent on the accuracy of the available depth. Currently, there are not any
real-time methods that can deliver pixel precise accurate depth for novel light field reconstruc-
tion. Thus, this rendering approach is not taken forward for investigations related to light field
representation.

One of the important constraints of any 3D display is available depth of field (DOF). If the extent
of scene depth is beyond the displayable extent, a disturbing blur is perceived. An important goal
of the work was to address the problem of depth retargeting for light field displays (constraining
the scene depth smartly to fit to the display depth of field). Warping based approaches are
proposed in the literature stereo 3D depth retargeting. These methods do not explicitly consider
the scene [10] and they need further adaption to suit to the full parallax behavior of a light
field display. Furthermore with methods based on warping, distortions are inevitable, especially,
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1.4. Workflow Introduction

if there are vertical lines in the scenes. An alternative is to compute and work on the scene
depth directly to achieve retargeting. As depth calculation is an integral part of the all-in-focus
rendering pipeline, this approach is taken further and the behavior is adapted to achieve content
adaptive and real-time depth retargerting on a light field display.

Interaction and rendering are intertwined processes. As light field displays represent a novel
technology in the field of 3D rendering, they also require design and evaluation of novel interac-
tion technologies and techniques for successful manipulation of displayed content. In contrast
to classic interaction with 2D content, where mice, keyboards or other specialized input devices
(e.g., joystick, touch pad, voice commands) are used, no such generic devices, techniques, and
metaphors have been proposed for interaction with 3D content. The selected interaction tech-
niques usually strongly depend on individual application requirements, design of tasks and also
individual user and contextual properties. One of the goals of the current work is to enable accu-
rate, natural and intuitive freehand interaction with 3D objects rendered on a light field display.
For this purpose a basic and most intuitive interaction method in 3D space, known as "direct
touch" is proposed. The method directly links an input device with a display and integrates both
into a single interface. The main aim was not to research a hand or motion tracking hardware,
but use commercially available Leap Motion Controller sensor for motion sensing and achieve
an interactive rendering for manipulation of virtual objects on a light field display.

All the work is implemented in C++ using OpenGL SDK[11]. The rendering code for light field
depth retargeting is written in CUDA[12]. For programming the interaction part, Leap SDK[13]
is used.
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Chapter 2

Research Methodology

For experiments on assessing the light field representation requirements and implementing the
data reduction prototype, a real-time capture and rendering system [8] based on re-sampling the
captured light field with 27 USB cameras is used. Glasses-free 3D cinema system developed by
Holografika is used for viewing the renderings (see [C2]).

The end-to-end capture and retargeted rendering pipeline is implemented in Linux. On-the-
fly light field retargeting and rendering is implemented on GPU using CUDA. The results of
the propsed content aware retargeting are teseted on a Holografika 72in light field display that
supports 50◦ horizontal Field Of View (FOV) with an angular resolution of 0.8◦. The aspect
ratio of the display is 16:9 with single view 2D-equivalent resolution of 1066× 600 pixels. The
display has 72 SVGA 800x600 LED projection modules which are pre-calibrated using an au-
tomatic multiprojector calibration procedure [14]. The front end is an Intel Corei7 PC with an
Nvidia GTX680 4GB, which captures multiview images at 15 fps in VGA resolution using 18
calibrated Logitech Portable Web cameras. The camera rig covers a base-line of about 1.5m and
is sufficient to cover the FOV of light field display. In the back end, we have 18 AMD Dual Core
Athlon 64 X2 5000+ PCs running Linux and each equipped with two Nvidia GTX560 1 GB
graphics boards. Each node renders images for four optical modules. Front-end and back-end
communicate over a Gigabit Ethernet connection.

For experiments on interaction, Leap Motion Controller is used as a tracking device. HoloVizio
OpenGL wrapper (see [4]) is used for real-time light field rendering and a small scale light field
display of the size comparable to the FOV of Leap Motion Controller is used for visualization
and interaction. For accurately acquiring the interaction data, the Leap Motion Controller is
placed at 100mm below the center of the display.
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Chapter 3

New Scientific Results

The results of this dissertation can be categorized into three main parts:

results dealing with light field

• Representation

• Retargeted rendering

• Interaction

The respective contributions are briefed in the following thesis groups.

3.1 Thesis Group I - Light Field Representation

Examining the light field conversion process from camera images acquired from several
closely spaced cameras, I proposed a fast and efficient data reduction approach for light
field transmission in multi-camera light field display telepresence environment.
Relevant publications: [C2] [C3] [C4] [C5] [O1] [J3] [O2] [O3]

3.1.1 Fast and Efficient Data Reduction Approach for Multi-Camera Light Field

Display Telepresence System

I proposed an automatic approach that isolates the required areas of the incoming multiview
images, which contribute to the light field reconstruction. Considering a real-time light field
telepresence scenario, I showed that up to 80% of the bandwidth can be saved during transmis-
sion.

• Taking into account a light field display model and the geometry of captured and re-
constructed light field, I devised a precise and automatic data picking procedure from
multiview camera images for light field reconstruction.
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New Scientific Results 3.2. Thesis Group II - Retargeted Light Field Rendering

• The proposed method does not rely on image/video coding schemes, but rather uses the
display projection geometry to exploit and eliminate redundancy.

• Minor changes in the capturing, processing and rendering pipeline have been proposed
with an additional processing at the local transmission site that helps in achieving signif-
icant data reduction. Furthermore, the additional processing step needs to be done only
once before the actual transmission.

3.1.2 Towards Universal Light Field Format

Exploring the direct data reduction possibilities (without encoding and decoding), I presented
the preliminary requirements for a universal light field format.

• Simulations were made to see how the field of view (FOV) of the receiver’s light field
display affects the way the available captured views are used. Seven hypothetical light
field displays were modeled, with the FOV ranging between 270 and 890. Source data
with 180 cameras, in a 1800 arc setup, with 1 degree angular resolution has been used.

• Analyzing the pixel usage patterns during the light field conversion, the affect of display’s
FOV on the number of views required for synthesizing the whole light field image has
been realized.

• This analysis has shown that depending on the FOV of the display, the light field conver-
sion requires 42 to 54 views as input for these sample displays. Note the actual number
depends on the source camera layout (number and FOV of cameras), but the trend is
clearly studied.

• Based on the use cases and processing considerations, three aspects were formulated that
need attention and future research when developing compression methods for light fields:

– The possibility to encode views having different resolution must be added.

– The ability to decode the required number of views should be supported by the ability
to decode views partially, starting from the center of the view, thus decreasing the
computing workload by restricting the areas of interest.

– Third, efficient coding tools for nonlinear (curved) camera setups shall be developed,
as we expect to see this kind of acquisition format more in the future.

3.2 Thesis Group II - Retargeted Light Field Rendering

I presented a prototype of an efficient on-the-fly content aware real-time depth retarget-
ing algorithm for accommodating the captured scene within acceptable depth limits of a
display. The discrete nature of light field displays results in aliasing when rendering scene
points at depths outside the supported depth of field causing visual discomfort. The ex-
isting light field rendering techniques: plain and rendering through geometry estimation,
need further adaption to the display characteristics, for increasing quality of visual percep-
tion. The prototype addresses the problem of light field depth retargeting. The proposed
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3.2. Thesis Group II - Retargeted Light Field Rendering New Scientific Results

algorithm is embedded in an end-to-end real-time system capable of capturing and recon-
structing light field from multiple calibrated cameras on a full horizontal parallax light
field display.
Relevant publications: [C6] [C7] [C8] [J4] [J2] [C9]

3.2.1 Perspective Light Field Depth Retargeting

I proposed and implemented a perspective depth contraction method for live light field video
stream that preserves the 3D appearance of salient regions of a scene. The deformation is
globally monotonic in depth, and avoids depth inversion problems.

• All-in-focus rendering technique with 18 cameras in the capturing side is considered for
implementing the retargeting algorithm and a non-linear transform from scene to display
that minimizes the compression of salient regions of a scene is computed.

• To extract the scene saliency, depth and color saliency from perspectives of central and two
lateral display projection modules is computed and combined. Depth saliency is estimated
using a histogram of the pre-computed depth map and to estimate color saliency, a gradient
map of the color image associated to the depth map of the current view is computed and
dilated to fill holes. The gradient norm of a pixel represents color saliency.

• To avoid any abrupt depth changes scene depth range is quantized into different depth
clusters and the depth and color saliency inside each cluster is accumulated.

• While adapting the scene to display, displacement of depth planes parallel to XY = 0 plane
results in XY cropping of the scene background. Thus, in order to preserve the scene
structure, perspective retargeting approach is followed i.e., along with z, XY positions are
also updated proportional to 1

δZ , as done in a perspective projection. Thus in the retargeted
space, the physical size of the background objects is less than the actual size. However, a
user looking from the central viewing position perceives no change in the apparent size of
the objects as the scene points are adjusted in the direction of viewing rays.

3.2.2 Real-time Adaptive Content Retargeting for Live MultiView Capture and

Light Field Display

I presented a real-time plane sweeping algorithm which concurrently estimates and retargets
scene depth. The retargeting module is embedded into an end-to-end system capable of real-
time capturing and displaying with full horizontal parallax high-quality 3D video contents on a
cluster-driven multiprojector light field display with full horizontal parallax.

• While this use is straightforward in a 3D graphics setting, where retargeting can be imple-
mented by direct geometric deformation of the rendered models, the first setup for real-
time multiview capture and light field display rendering system incorporating the adaptive
depth retargeting method has been proposed and implemented.

• The system seeks to obtain a video stream as a sequence of multiview images and render
an all-in-focus retargeted light field in real-time on a full horizontal light field display.
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New Scientific Results 3.2. Thesis Group II - Retargeted Light Field Rendering

The input multiview video data is acquired from a calibrated camera rig made of several
identical off the shelf USB cameras.

• The captured multiview data is sent to a cluster of computers which drive the display
optical modules. Using the display geometry and input camera calibration data, each
node estimates depth and color for corresponding light rays. To maintain the real-time
performance, the depth estimation and retargeting steps are coupled.

3.2.3 Adaptive Light Field Depth Retargeting Performance Evaluation

I evaluated the objective quality of the proposed depth retargeing method by comparing it with
other real-time models: linear and logarithmic retargeting and presented the analysis for both
synthetic and real-world scenes.

• To demonstrate results on synthetic scenes, two sample scenes are considered: Sungliders
and Zenith. The original depths of the scenes are 10.2m and 7.7m, that are remapped to a
depth of 1m to match the depth range of the display. Retargeted images are generated by
simulating the display behavior.

• To generate the results for logarithmic retargeting, a function of the form y = a + b ∗
log(c+x) is used, where y and x are the output and input depths. The parameters a, b & c
are chosen to map the near and far clipping planes of the scene to the comfortable viewing
limits of the display.

• Objective evaluation is carried out using two visual metrics: SSIM and PSNR. Results
show that the adaptive approach performs better and preserves the object dephts, avoiding
to flatten them.

• To demonstrate the results on real-world scenes, using a simple hand-held camera, the
processes of live multiview capturing and real-time retargeted rendering is recorded. It
should be noted that the 3D impression of the results on the light field display can not be
fully captured by a physical camera.

• Experiments show that the results from the real-world scenes conform with the simulation
results on the synthetic scenes. By following direct all-in-focus light field rendering, areas
of the scene outside the displayable range are subjected to blurring. Linear retargeting
achieves sharp light field rendering at the cost of flattened scene. Content aware depth
retargeting is capable of achieving sharp light field rendering and also preserves the 3D
appearance of the objects at the same time.

• The front end frame rate is limited at of 15fps by the camera acquisition speed. The back
end hardware used in the current work supports an average frame rate of 11fps. However,
experiments showed that Nvidia GTX680 GPU is able to support 40fps.

• In the back end application the GPU workload is subdivided in this way: 30% to upsample
depth values, 20% for census computation, 15% jpeg decoding, 13% to extract color from
the depth map, other minor kernels occupy the remaining time. Retargeting is embedded
in the upsampling and color extraction procedures.
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3.3. Thesis Group III - Light Field Interaction New Scientific Results

3.3 Thesis Group III - Light Field Interaction

I designed and implemented two interaction setups for 3D model manipulation on a light
field display. The gesture-based object interaction enables manipulation of 3D objects with
7DOFs by leveraging natural and familiar gestures.
Relevant publications: [C10] [C11] [J1] [C1]

3.3.1 HoloLeap: Towards Efficient 3D Object Manipulation on Light Field Dis-

plays

I designed and implemented HoloLeap - a system for interacting with light field displays (LFD)
using hand gestures. For tracking user hands, leap motion controller (LMC) is used which is
a motion sensing device introduced by Leap Motion Inc. and fits very well with the interaction
needs. The device is proven to be relatively inexpensive, precise and is useful in tracking the
hands and finger inputs than any existing free hands interaction devices. The device has a high
frame rate and comes with a USB interface. The device provides a virtual interaction space of
about one sq. meter with almost 1/100th millimeter accuracy.

• Manipulation gestures for translation, rotation, and scaling have been implemented. Con-
tinuous rotation ("spinning") is also included. I designed a custom gesture set, as the
increased depth perception of a light field display may affect object manipulation.

• The goal was to enhance the ad-hoc qualities of mid-air gestures. Compared to handheld
devices (e.g., a mouse) gestural interaction allows one to simply walk up and immediately
begin manipulating 3D objects. Rotation uses a single hand. The user rotates their wrist
in the desired direction to rotate the object. It allows for fast.

• Rotation uses a single hand. The user rotates their wrist in the desired direction to rotate
the object. It allows fast correction for each rotational degree of freedom and multiple axes
of rotation in a single gesture. Moving two hands at once without increasing the distance
between them translates the object. Scaling is activated by increasing and decreasing the
distance between palms. HoloLeap does not use zooming as LFDs have a limited depth
range. Scaling is provided as an alternative to facilitate model inspection and to easily
provide an overview. Continuous rotation (spin) is activated with a double-hand rotation
gesture.

Freehand Interaction with Large-Scale 3D Map Data

Extending the 3D model interaction framework, I implemented a gesture based interaction sys-
tem prototype for the use-case - interaction with large-scale 3D map data visualized on a light
field display in real time. 3D map data are streamed over Internet to the display end in real-time
based on requests sent by the visualization application. On the user side, data is processed and
visualized on a large-scale 3D light field display.

• The streaming and light field visualization is done on the fly without using any pre-
rendered animations or images. After acquiring the interaction control messages from the
Leap Motion Controller, rendering is performed in real-time on the light-field display’s.
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New Scientific Results 3.3. Thesis Group III - Light Field Interaction

• For real-time visualization, HoloVizio OpenGL wrapper library is used which intercepts
all OpenGL calls and sends rendering commands over the network as well as modify
related data (such as textures, vertex arrays, VBOs, shaders etc.) on the fly to suit the
specifications of the actual light field display.

• During interaction, panning in horizontal and vertical directions can be done by translating
the virtual camera in the opposite direction by a given amount and is achieved using one
hand (either left or right). For rotation, the virtual camera is made to mimic the hand
rotation gestures. Zooming is achieved using two hands. Bringing two hands closer is the
gesture for zooming out and taking the hands apart results in zooming in.

• The presented system is first of its kind exploring the latest advances in 3D visualization
and interaction techniques.

3.3.2 Exploring Direct 3D Interaction for Full Horizontal Parallax Light Field

Displays Using Leap Motion Controller

I proposed the first framework that provides a realistic direct haptic interaction with virtual 3D
objects rendered on a light field display. The solution includes calibration procedure that lever-
ages the available depth of field and the finger tracking accuracy, and a real-time interactive
rendering pipeline that modifies and renders light field according to 3D light field geometry and
the input gestures captured by the Leap Motion Controller. The implemented interaction frame-
work is evaluated and the results of a first user study on interaction with a light field display are
presented. This is a first attempt for direct 3D gesture interaction with a full horizontal parallax
light field display.

• The application generates random patterns of tiles in run time and rendered at a given
depth. In parallel, the application receives interaction data from Leap Motion Controller,
processes and updates the renderer in real-time. The controlling PC runs GL wrapper and
feeds the resulting visual data to optical modules. Hence we can see the same application
running on a LCD monitor in 2D and on light field display in 3D.

• Real-time visualization is achieved using OpenGL wrapper library. A controlling PC runs
two applications: main OpenGL frontend rendering application for 2D LCD display and
backend wrapper application that tracks the commands in current instance of OpenGL
(front end application) and generates modified stream for light field rendering. The front
end rendering application also receives and processes user interaction commands from
Leap Motion Controller in real-time.

• The interaction and display spaces are calibrated to provide an illusion of touching virtual
objects. To the best of my knowledge, the is a first study involving direct interaction
with virtual objects on a light field display using Leap Motion Controller. The proposed
interaction setup is very general and is applicable to any 3D display without glasses. The
method is scalable, and the interaction space can easily be extended by integrating multiple
Leap Motion Controllers.
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3.3. Thesis Group III - Light Field Interaction New Scientific Results

Direct touch interaction system evaluation

I have conducted a user study to evaluate the proposed freehand interaction with the light field
display through a simple within-subject user study with 12 participants.

Three tiles of the same size were displayed simultaneously and the participants were asked to
point (touch) the surface of the red tile as perceived in space. The positions of the tiles varied
from trial to trial to cover the entire FOV of the display. 3D and 2D display modes were used
representing two different experimental conditions:

• In 2D mode, the displayed objects were distributed on a plane in close proximity of the
display surface; and

• In 3D mode, the objects were distributed in a space with the distance varying from 0 to 7
cm from the display.

The 2D mode provided a control environment, which was used to evaluate the specifics of this
particular interaction design: the performance and properties of the input device, display dimen-
sions, specific interaction scenario (e.g., touching the objects), etc. Each participant was asked
to perform 11 trials within each of the two conditions. The sequence of the conditions was ran-
domized across the participants to eliminate the learning effect. The light field display and the
interaction design were evaluated from the following aspects: task completion times, cognitive
workload and perceived user experience.

Results show that users did not perceive any significant differences between the conditions in
terms of general impression, the easiness to learn how to interact with the content, the efficiency
of such interaction, the reliability or the predictability of the interfaces used and the excite-
ment or the motivation for such an interaction. The exception is the novelty subscale where a
tendency towards higher preferences for the 3D mode can be observed. The analysis of the post-
study questionnaire revealed that the rendered objects were seen clearly in both experimental
conditions. However, the users favored the 3D mode in terms of rendering realism. When asked
to choose the easiest mode, the user’s choices were equally distributed between both modes.
However, when asked which mode led to more mistakes in locating the exact object position,
two-thirds indicated the 3D mode, which is reflected also in longer task completion times in this
particular mode. Finally, when asked about their preference, two-thirds of the participants chose
the 3D mode as their favorite one.
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Chapter 4

Applications of the Work

3D video is increasingly gaining prominence as the next major innovation in video technology
that greatly enhances the quality of experience. Consequently, the research and development
of technologies related to 3D video are increasingly gaining attention [15]. The research and
development work done during this thesis work mainly finds applications related to the content
transmission and rendering parts.

In recent years, the telepresence systems [16, 17] tend to be equipped with multiple cameras to
capture the whole communication space; this integration of multiple cameras causes the gen-
eration of huge amount of dynamic camera image data. This large volume of data needs to be
processed at the acquisition site, possibly requires aggregation from different network nodes and
finally needs to be transmitted to the receiver site. It becomes intensely challenging to transmit
this huge amount of data in real time through the available network bandwidth. The use of
classical compression methods for reducing this large data might solve the problem to a cer-
tain degree, but using the compression algorithms directly on the acquired data may not yield
sufficient data reduction. Finding the actual portion of data needed by the display system at
receiver site and excluding the redundant image data would be highly beneficial for transmitting
the image data in real time. The proposed automatic data reduction approach exploring the target
display geometry might be handy in such situations.

The current generation 3D films are mainly based on Steroscopic 3D. Every year, more and more
movies are produced in 3D and television channels started to launch their broadcast services for
events such as sports and concerts in 3D. But despite these technological advances, the practical
production of stereoscopic content that results in a natural and comfortable viewing experience
in all scenarios is still a challenge [10]. Assuming that the displaying part has no limitations,
the basic problem in a stereoscopic setting lies in the human visual perception [18] [19]. With
the advances of more natural 3D displaying technologies, the visual performance has greatly
increased. However, the problem of depth accommodation has slid to the display side and there
is a need for techniques that address the display content adaption. The content adaptive depth
retargeting presented in the work can be applied for automatically adapting the scene depth to
the display depth. The method works in real-time and can be applied for automatic disparity
correction and display adaption.

Light field displays offer several advantages over volumetric or autostereoscopic displays such
as adjacent view isolation, increased field of view, enhanced depth perception and support for
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Applications of the Work!
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Figure 4.1: Multi-camera telepresence system.

horizontal motion parallax. However, it is unclear how to take full advantage of these benefits,
as user interface techniques with such displays have not been explored. Google street view
development laid an important milestone for online map services. The prototyped interaction
setups can be extended for applying to such navigation purposes.
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