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“Hope is not the conviction that something will turn out well but the certainty that some-

thing makes sense, regardless of how it turns out.”

Vaclav Havel
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Abstract

Quantitative measurement and analysis of human motion is a key concept in under-

standing processes of our movement system. High precision measurement devices have

advanced research activity in movement rehabilitation, performance analysis of athletes

and the general understanding of the motor system during the last decades by making

objective movement pattern comparison possible. This advancement was further accel-

erated by model-based analysis approaches that enabled explicit characterization of the

studied movement patterns.

From behavioral aspects, manual and visual target tracking represents an important

part of human movements and show strong predictive behavior. Studies investigating

predictive manual tracking so far focused on the explanation of finger acceleration as a

function of the 2D-tracking error and on the relation between the 3D-tracking error and

path curvature and spatial depth but did not consider the control of shoulder, elbow

and wrist joints. In the first part of the thesis an experimental setup and procedure is

presented to investigate how motor synergies (involving the aforementioned joints) differ

between predictive and non-predictive movements. During the analysis, motor synergies

are evaluated by applying the uncontrolled manifold method to the joint angle variance

during 2D tracking of a target on a graphics tablet, where the 2D pen position is used

as the hypothetical task variable by the method. It is investigated whether the synergy

index – defined by variance ratios affecting and being irrelevant for the task variable

– drops during predictive, internally driven tracking movements compared to visually,

externally driven tracking movements.

In the second part of the thesis the development of a custom wearable measurement

device for arm movements is presented. The prototype incorporates inertial sensors

for movement recording to overcome issues accompanying measurements with line of

sight methods and enables evaluation and analysis of various sensor calibration, filtering

and sensor fusion algorithms in a fully customizable manner. In the last part, a novel

kinematic algorithm is introduced that utilizes orientation information of arm segments

(directly measurable with inertial sensors) to perform joint angle reconstruction in real-

time.
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Chapter 1

Introduction

1.1 Motivation and scope

Movement is an essential part of our daily lives. It is so essential that we tend to

forget its importance and take it for granted until we have to experience restrictions in

our movement capabilities because of one of surprisingly many possible reasons. The

human movement system is extremely complex from both anatomical and functional

aspects, having centralized and distributed nature at the same time that assures adequate

operation in very diverse situations.

As a simple example let us consider the case when someone touches a hot surface without

any prior knowledge about its temperature: the movement starts with a voluntary part

where motion planning, initiation and timing (among other functions) are performed in

the interconnected neural structures of the cerebrum, cerebellum and brainstem, followed

by the transmission of the execution commands to intermediate gateways in the spinal

cord controlling the coordinated operation of different muscle groups through their α-

motoneuron pools to make the arm extend and touch the surface. But simultaneously,

the arm contains additional automatic built-in safety mechanisms (reflexes) that serve

protecting purposes against various damaging factors – like burning the skin in our

example – functioning independently of the central nervous system that results in far

shorter reaction times than we could achieve voluntarily (generating an evasive movement

even before we start noticing the pain). These reflexes are independent of cognitive

processes as their functions are realized by direct wiring of neural pathways between the

1
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Chapter 1. Introduction 2

sensor elements (muscle spindles, Golgi-tendons and various receptors of the skin) and

the α-motoneuron pools in the spinal cord responsible for direct muscle control. Without

going into further details (a comprehensive material on the topic can be found in [1]),

even this simple example shows that the complexity and systematic structure of our

movement system is an exciting, yet to be fully explored field of science.

Human movement science and selected fields of biomedical engineering aim to develop

methodologies for proper examination of various aspects of our movement system. By

elaborating quantitative measurement and analysis techniques of human movements,

advancements in these fields have contributed to movement rehabilitation techniques [2],

performance analysis of athletes [3] and general understanding of the motor system [4]

during the last decades by making objective movement pattern comparison possible. This

advancement was further accelerated by model-based analysis approaches that enabled

explicit characterization of the studied movement patterns [5].

It should be noted however that the possibilities for quantitative examination of the move-

ment system in its whole are always constrained by the technology available to date. This

is particularly true in the case of analysis of complex scenarios involving higher functional

levels of the movement system (possibly including cognitive processes) that cannot be

measured and tracked directly today. On the other hand, direct measurement of move-

ment kinematics has became a standard process that can be performed with various

movement analyzer systems using electromagnetic1, mechanical2, ultrasound3, optical4

or inertial5 technology. These measurements combined with additional recorded modal-

ities (e.g. biopotential, force or (in rare cases) fMRI data) form the observation space in

the wast majority of human movement analysis studies. As a consequence, conclusions

about the underlying processes often have to be drawn incorporating simplified math-

ematical models or previous behavioral observations into these studies, in addition to

appropriate experimental design that excludes as many uncontrolled factors as possible.

As a subfield of movement science, understanding the nature and internal workings of

human arm movements is of particularly high interest because we use our arms and

hands in every situation when object manipulation is needed at any complexity level.

1Polhemus’ product portfolio – http://polhemus.com/motion-tracking/overview/
2Gypsy 7 – http://metamotion.com/gypsy/gypsy-motion-capture-system.htm
3Zebris’ CMS systems – http://www.zebris.de
4Vicon – https://www.vicon.com/; OptiTrack – http://www.optitrack.com/
5Xsens – https://www.xsens.com/
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Chapter 1. Introduction 3

As a consequence, analysis of the underlying control methods in specific movement tasks

and environmental conditions is a key aspect to gain more detailed knowledge of neural

processes of our manual interaction with the environment.

In this thesis, three main topics are presented as an effort to contribute to the field

of human movement science. The first topic covers an experimental study investigat-

ing details of target tracking arm movements while the other two introduce engineering

contributions to the field of measurement techniques by presenting the design and imple-

mentation of a wearable measurement system along with an algorithm that establishes

the connection between inertial measurements and model based analysis of movement

kinematics.

1.2 Thesis outline

Chapter 2 introduces an experimental setup and procedure that was designed to in-

vestigate how motor synergies differ between predictive and non-predictive movements.

Motor synergies were evaluated by applying the UCM method to the joint angle variance

during 2D tracking of a target on a graphics tablet, where the 2D pen position was used

as the hypothetical task variable. It was investigated whether the synergy index drops

during predictive, internally driven tracking movements compared to visually, externally

driven tracking movements. To address this question, tracking movements between pe-

riodic (and pre-trained) and non-periodic presentation modes were compared, which are

known to challenge predictive and visually driven tracking modes respectively.

Chapter 3 describes the engineering prototype development of a custom wearable mea-

surement device based on my experiences with a movement analyzer system using ultra-

sound technology. The prototype incorporates inertial sensors for movement recording to

overcome issues accompanying measurements with the previous system (i.e. bulky setup,

highly constrained measurement volume and low sampling rate) and enables evaluation

and analysis of various sensor calibration, filtering and sensor fusion algorithms in a fully

customizable manner.

An additional goal of this thesis is to extend the measurement and analysis workflow

of human arm movements with a method that allows accurate and real-time calculation

of anatomical joint angles for a widely used SIMM/OpenSim upper limb model when

DOI:10.15774/PPKE.ITK.2017.002



Chapter 1. Introduction 4

measurements are performed with the developed prototype. For this purpose a custom

kinematic algorithm is introduced in Chapter 4 that utilizes orientation information of

arm segments (directly measurable with inertial sensors) to perform joint angle recon-

struction in real-time.

Chapter 5 summarizes the results and concludes the thesis.

DOI:10.15774/PPKE.ITK.2017.002



Chapter 2

Synergistic Control in Manual

Tracking

The current chapter is based on the author’s articlce entitled “Motor synergies during

manual tracking differ between familiar and unfamiliar trajectories”. [J1]

2.1 Background

Manual and visual target tracking represents an important part of human movements

and shows strong predictive behavior. This becomes most obvious when comparing

tracking onset delay with phase delays during pursuit of periodic movements [6] or when

the movement continues after disappearance of the target [7]. Oculomotor and manual

tracking responses affect each other [8, 9] and seem to share predictive mechanisms [10].

Previous studies investigating predictive manual tracking focused on the explanation of

finger acceleration as a function of the 2D-tracking error [11] and on the relation between

the 3D-tracking error and path curvature and spatial depth [12] but did not consider the

control of shoulder, elbow and wrist joints.

The Uncontrolled Manifold Method

The analysis of joint angle variability, especially its structural decomposition into task-

relevant and task-irrelevant components with respect to hypothesized task variables, is

5

DOI:10.15774/PPKE.ITK.2017.002



Chapter 2. Synergistic Control in Manual Tracking 6

used to address redundancy in movement control mechanisms and was proposed by Scholz

and Schöner [13] as the ”Uncontrolled Manifold Method” (UCM). In this context the

term ”task variable” does not imply that it was explicitly addressed in the instructions

to the subject, but that the covariation in the effector space is optimized to stabilize this

variable. The main concept of the UCM is to divide the total variance of the joint angles

into two orthogonal sub-components that do and do not affect the proposed task variable.

The variance in the component which does not influence the task variable is called the

”uncontrolled variance” (VUCM) and can be used as an indicator of flexibility of the

control system, while variance in its orthogonal component is called the ”controlled” or

”orthogonal variance” (VORT). The relative size of VUCM with respect to VORT, quantified

by the so-called synergy index, can be used to characterize the stability of the task

variable [14].

In more detail, after selecting a hypothetical task variable (e.g. the endpoint of the

arm), the Jacobian matrix (J) can be obtained by the linearization of the task variable

components expressed as a function of joint angles at the mean arm configuration. J

expresses the linear mapping of differential changes in the 7-dimensional joint-space (∆ϕ)

to differential changes of the task variable (∆ν) as shown in (2.1).

∆ν = J ∆ϕ (2.1)

The basis of the uncontrolled manifold is named BUCM, that of the orthogonal subspace

is called BORT. BORT and BUCM can be obtained from the Q matrix produced by the QR-

decomposition of the transposed Jacobian matrix: [Q,R] = qr
(
JT
)
; Q = [BORT,BUCM],

where Q is orthogonal, BORT contains the first three and BUCM the last four columns of

Q. The normalized variances of the projections on the two subspaces can be computed

as shown in (2.2) and (2.3), where DoFORT and DoFUCM denote the dimensions of BORT

and BUCM, respectively. The synergy index is defined as si =
VUCM

VORT

.

VORT =
trace

(
BT

ORT Σ BORT

)
DoFORT

(2.2)

VUCM =
trace

(
BT

UCM Σ BUCM

)
DoFUCM

(2.3)
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Chapter 2. Synergistic Control in Manual Tracking 7

The normalization of the variances in the two subspaces to their respective dimensions is

needed to ensure that, for a spherical distribution of the effector variables, the synergy

index has the expected value of one, independent of the dimension of the task variable.

A large synergy index of the joint angle variance with respect to the task variable indicates

that the ”bad” variance (affecting the task variable) is relatively small compared to

”good” variance (not affecting the task variable). It is important to note that this

synergy index is specific for the chosen task variable and is not a general measure of

covariation. The UCM method has been used to show the synergistic properties of the

motor control system involving reaching [15, J3], finger coordination [16, 17, 18] and

bimanual pointing tasks [19, 20].

Optimal feedback control theory

According to the theory of optimal feedback control [21], motor synergies can be explained

by a feedback controller minimizing costs expressed as the sum of two terms, a so called

task-error depending on system states (joint angles and velocities), and a penalty on the

control signals. This theory predicts that the synergy index decreases under open loop

conditions, increases with increasing motor noise, and decreases with increasing sensory

noise. Therefore, it can be expected that predictive and non-predictive movements which

differ in precision (noise) and in the contribution of feedforward commands, show different

motor synergies. However, such expectations of the theory are based on the assumption

that the feedback controller is optimally adjusted to the actual conditions.

This chapter investigates how motor synergies differ between predictive and non-

predictive movements. Motor synergies were evaluated by applying the UCM method to

the joint angle variance during 2D tracking of a target on a graphics tablet, where the 2D

pen position was used as the hypothetical task variable. It was investigated whether the

synergy index drops during predictive, internally driven tracking movements compared to

visually, externally driven tracking movements. To address this question, the presented

work compares tracking movements between periodic (and pre-trained) and non-periodic

presentation modes, which are known to challenge predictive or visually driven tracking

modes respectively.

DOI:10.15774/PPKE.ITK.2017.002
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2.2 Methods

2.2.1 Subjects

Seven healthy subjects participated in the study (6 males, 1 female, age: 33.4 ± 12.4

years, mean ± standard deviation). All subjects had normal or corrected-to-normal

vision. Five subjects had right hand dominance and 2 subjects had left hand domi-

nance according to their preferential hand use during writing. All subjects performed

the movements with their dominant hand. Because of marker measurement errors that

could not be corrected, data from one of the right-handed male subjects were excluded

from kinematic analysis of joint angle variances, but not from tracking performance anal-

ysis. Subjects had given informed consent prior to participation in the experiment. The

experimental procedure was in accordance with the Declaration of Helsinki and approved

by the local Ethics Committee.

2.2.2 Experimental setup

The subjects sat in front of a table which was mounted with a graphic tablet that featured

an integrated display (Figure 2.1, WACOM Cintiq 21UX, 43.2 × 32.4 cm, frame rate: 60

Hz) used for presentation of the target. The target was a white colored disk (diameter

1 cm) and moved in front of a gray background. The luminous sterance of the background

luminance was about 20 cd/m2 and the target had a luminance of about 130 cd/m2. The

sitting position of each subject was adjusted in the following way: (1) the body midline of

the subject was aligned with the vertical midline of the graphic tablet, (2) the distance

between the table on which the tablet was mounted and the subject’s chair, and the

height of the chair were aligned to get the subject facing the graphic tablet’s midpoint

orthogonally, (3) all possible target positions were within the anatomical range of motion

of the subject’s measured arm, but not at extreme positions, and (4) to prevent trunk

movements and to fixate the head, a supporting chin-rest with adjustable height was

used. Post-hoc analysis revealed that the average movement amplitude of the acromion,

defined as the largest distance between any pair of time samples of its 3D trajectory, was

1.48 ± 0.25 cm (N=6). The viewing distance of the display was 40 cm.

DOI:10.15774/PPKE.ITK.2017.002
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sound emitting 
marker

6
1

2
34

graphic 
tablet

chin-rest

5

eye tracking 
device*

* eye tracking data 
was not analyzed in 
the current study

Figure 2.1: Experimental setup. Numbers 1-6 indicate ultrasound markers of the
motion analysis system. The elbow bracelet that held the fourth and fifth markers was
not attached to the chin-rest (as the figure may give an incorrect intuition), just to
the subject’s arm. Subjects sat on a chair that was adjusted to provide stable fixation
for their trunk. The target is depicted on the graphic tablet’s screen as a white disk.
The dashed line was never presented on the screen, it is only used in the figure to
imply target movement. The eye tracking device is depicted in the figure because the
measurement was part of an extended study that involved the analysis of eye movement
data in addition to movement kinematics, however this modality was not included in

the analysis presented in the thesis.

Subjects were asked to track the target as accurately as possible with the pen of the

graphic tablet using their dominant hand. Tracking performance was analyzed based on

the pen data, recorded as 2D coordinates in the tablet’s reference frame. Arm movements

were recorded by an ultrasound-based movement analyzer system (Zebris Medical, Isny,

Germany) running at 33 Hz. The markers were attached to the following positions: (1)

the metacarpophalangeal joint of the index finger, (2) the metacarpophalangeal joint of

the little finger, (3) the center of the wrist. Markers (4) and (5) were attached to a

bracelet directly above the elbow at the medial and lateral ends of the bracelet. Marker

(6) was attached to the acromion. From these marker positions, a geometrical model

of the arm with 7 degrees of freedom (DoF) was reconstructed in the tablet’s reference

frame using a method described previously [J3]. The origin of this reference frame was

the center of the tablet’s screen, its x and y axes coincided with the screen’s horizontal

and vertical axes, while the z-axis was perpendicular to the screen pointing towards the

subject (forming a right-hand coordinate system).
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All data (target position, pen position and marker positions) were recorded by a com-

puter running the real-time REX system [22], a QNX Neutrino RTOS-based software

environment that is widely used to control neuroscience experiments1 and mapped at

the common sampling rate of 1 kHz.

2.2.3 Design and procedure

As described in the introduction, the aim of the study was to investigate the effects of

predictive and non-predictive tracking modes on movement performance and control. To

achieve this, various 2D target trajectories were generated with a pseudo-random shape.

One of these trajectories (TR1) was only presented in periodic repetitions, whereas the

other trajectories (TR2, TR3, TR4) were presented in a random order without repeti-

tions. Moreover, in order to further stimulate predictive tracking of TR1, subjects were

familiarized with this trajectory during an initial training block (see Measurement blocks

for further details of the experimental design).

Trajectories

The 2D-velocities of the generated trajectories were based on sums of 5 harmonics with

random phase and a base frequency corresponding to a period of 4 s. The 5 harmonics

had frequencies of 0.25, 1, 1.75, 2.5, and 3.25 Hz. The peak velocities of the compo-

nents were proportional to a Gaussian envelope with a value 1 at 0 Hz and decayed

for higher frequencies. The decay of 3 dB was reached at 0.75 Hz. The frequency and

magnitude values of the summed components were selected after visual inspection of

various parameter combinations. Both x and y velocities were generated independently.

Integrating these velocities yielded the 2D trajectories. These trajectories were then re-

sampled nonlinearly to adjust the sampling distance (sd) according to (2.4), where V

denotes the tangential velocity, r is the radius of curvature, and K and α are two free

parameters [23]. This method is known as the two-thirds power law that describes an

empirical relationship between the shape and the kinematics of free-hand and manual

tracking movements [24, 25], and it was applied here to assure that the subjects perceive

the generated trajectories as natural as possible to avoid trajectory-induced error factors

during the analyzed tracking movements.

1http://www.qnx.com/products/neutrino-rtos/neutrino-rtos.html?lang=en
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sd

∆t
= V = K

(
r

1 + α · r

) 1
3

(2.4)

The variable ∆t specifies the sampling interval for the generated movement trace. The

parameters K and α were adjusted to achieve a mean tangential velocity of 10 cm/s and

a ratio between the maximum and minimum tangential velocity of 2.

In this way 14 different random trajectories were generated independently from each

other. Figure 2.2 shows the 4 trajectories (TR1 to TR4) used for repeated presentation,

as described in the next section. The remaining 10 trajectories (uniformly denoted as

TRU) were used to introduce ”unpredictable” sections, as described below.
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Figure 2.2: The presented target trajectories. Closed traces were generated by
integrating sums of 5 harmonics with a random phase and a base frequency correspond-
ing to a period of 4 s. Labels (TR1-TR4) were assigned randomly to the generated

trajectories.
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Measurement blocks

The smallest unit of the design was one presentation of a generated trajectory, which is

referred to as a ”trial”. Trials were grouped into so-called ”sub-blocks”, followed by a

pause of 4 s. The initial trials of these sub-blocks were not included in the analysis because

they differed from the other continuation trials in the movement initiation required after

the 4 s pause (see also Data exclusion). The main experiment was composed of 6 blocks,

each consisting of several sub-blocks as described below (for a graphical representation,

see Figure 2.3). Blocks were separated by a break of about 5 minutes.

(1) In the first block, only the trajectory TR1 was presented in the so-called periodic

training presentation mode as follows. The block consisted of 10 sub-blocks each con-

taining 4 trials with periodic presentation of TR1. The purpose of this block was to

make the subject familiar with the selected trajectory without introducing unwanted

fatigue effects (pauses between sub-block executions). From the 40 presented trials, 30

continuation trials were analyzed.

(2) The periodic training block was followed by 5 test blocks, each presenting 12 sub-

blocks. Six of these sub-blocks showed the non-periodic test presentation mode and

contained the three trajectories TR2, TR3 and TR4 in a random order led by one of

the unpredictable sections (TRU). Each of these 6 sub-blocks contained one of 6 possible

permutations of TR2, TR3 and TR4. Alternating with the non-periodic test sub-blocks,

6 sub-blocks were inserted with TR1 in the so-called periodic test presentation mode.

This presentation mode was – apart from the vicinity to the non-periodic test sub-blocks

– identical to the periodic training mode. After exclusion of the initial trials of the

periodic test sub-blocks and the initial, unpredictable sections of the non-periodic test

sub-blocks, the five test blocks provided in total 90 trials (5 blocks × 6 sub-blocks × 3

trials) of periodic test trials (TR1), and 90 trials (5 blocks × 6 sub-blocks × 3 trials) of

non-periodic test trials (TR2, TR3 and TR4).

The specific structure of the non-periodic sub-blocks kept the subjects under the illusion

of path randomness despite repetitive presentations of TR2-TR4. These repetitions

were necessary to calculate joint angle variance-covariance which is the basis for the

Uncontrolled Manifold Method.
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To test whether effects of periodic or non-periodic presentations were related to differ-

ences between the trajectories rather than to the presentation modes a control experiment

was performed on a different day, at least five weeks after the main experiment. This

control consisted of a single ”non-periodic” block with 10 sub-blocks, each starting with

one of the ”unpredictable” sections (TRU) followed by TR1, TR2, TR3 and TR4 in a

random order. Thus, each trajectory was presented 10 times.

2.2.4 Data analysis

All data analysis was performed using MATLAB 7.9.0 (Mathworks, Natick, USA).

Tracking delay

Reduced tracking delay is the primary indicator for predictive versus visually driven

tracking modes. Therefore, tracking delay was assessed by the time lag (ms) of pen

position, evaluated by an algorithm used in previous studies [12]. In this algorithm, the

hand-target distance was computed between the current hand position and the target

position at any sampling point between 500 ms before and 100 ms after the current time.

The lag was defined as the time point at which the hand-target distance was minimal.

The average tracking delay was computed separately for each subject, block, presentation

mode, and was averaged across all respective sampling points.

Data exclusion

The initial trial of each sub-block showed a tracking delay which started at a large value

and rapidly decreased during the first half-cycle (2 s), due to movement initialization.

For example, in the initial trial of the first sub-block of the training the tracking delay

decreased during the first 2 s from 292 ± 67 ms to 120 ± 53 ms. For that reason,

all initial trials of all sub-blocks were excluded from the analysis. As a further step of

preprocessing, the time courses of the tracking delays were checked for the occurrence

of discontinuities (related to discontinuous mapping between hand position and target

position). Since these discontinuities occurred only near to the start and the end of the

trials, all data from a time window of 1 s around the trial start were excluded from the

analysis.
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Application of the uncontrolled manifold method

Like the average tracking delay, the uncontrolled manifold method was applied separately

for each combination of the factors subject, block, and presentation mode, averaged across

all respective sampling points. Following the method described in Section 2.1, the synergy

index was calculated with the pen position as the hypothetical task variable. Because

of this, the arm configuration was constrained to 6 DoF since the z-component of the

pen was constrained to the surface of the screen. Thus, the normalization factors were

DoFORT = 2 and DoFUCM = 4. The total variance (Vtotal) of the joint angles was

computed as the trace of the variance-covariance matrix (Vtotal = trace(Σ)).

Statistical analysis

To test whether tracking performance differed between the trajectories (TR1 - TR4),

each of the dependent variables tracking delay, the total variance and the synergy index

of the control experiment was submitted to a repeated measures ANOVA with the factor

trajectory (4 levels). For the main experiment each of these dependent variables was

submitted to two repeated measures ANOVAs, one for the periodic training block and

one for the test blocks. To analyze potential learning effects during the training con-

secutive pairs of the 10 sub-blocks were pooled to form a repeated factor block number

with 5 levels. To analyze the differences between periodic and non-periodic presentation

modes and potential training effects in the test blocks, the two repeated measures fac-

tors presentation mode (2 levels) and block number (5 levels) were used. Post-hoc tests

were performed using Tukey’s HSD test. Effects were considered significant for α-errors

p < 0.05. α-errors different from this value are reported in the results to give a better

intuition about the particular effect (e.g. p = 0.06 is a non-significant but marginal

effect). Normality of the analyzed variables was checked with the Lilliefors test. Data

sphericity was tested using Mauchly’s sphericity test. Wilks’ lambda multivariate test

was applied if sphericity was not fulfilled. Descriptives of normally distributed variables

are given as mean ± standard deviation and as median [interquartile range] otherwise.

Statistical results are reported in the following standard forms:

One-sided and paired T-test: T(df) = T-value, p < p-value

Repeated measures ANOVA: F(dflevels, dferror) = F-value, p {<, =, >} p-value

DOI:10.15774/PPKE.ITK.2017.002
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where df means degrees of freedom and T-value and F-value are the values of the corre-

sponding T and F statistics (for short descriptions of the methods and reporting stan-

dards, please follow the links in the footnotes 2 3).

2.3 Results

Subjects reported that they felt familiar with the trajectory TR1 after the pure periodic

training block of the main experiment, and that they also recognized it easily in the

periodic test sub-blocks. In contrast, none of the subjects noticed that the trajectories

TR2-TR4 were repeatedly presented. In the control experiment the tracking delay was

160 ± 20 ms, averaged across the 7 subjects, and showed a marginal effect of the fac-

tor trajectory (main effect F(3,18) = 2.94; p = 0.06). However, none of the post-hoc

tests reached significance (Tukey: p > 0.1), indicating that the different shapes of the

trajectories did not have a major effect on tracking mode. This was further supported

by the observation that neither the total variance (48.8 ± 21.6 deg2) of the joint angles

nor the synergy index (17.0 ± 11.5) differed between the four trajectories (main effect of

trajectory (F(3,15) < 0.43; p > 0.73).

2.3.1 Training block

In the training block the tracking delay decreased from 116 ± 41 ms during the first block

to 94 ± 33 ms in the last block (Figure 2.4). This decrease was significant, as confirmed

by the main effect of the factor block (F(4,24) = 3.68; p < 0.02). In the post-hoc test

the tracking delay turned out to be longer in the first blocks than in the last three blocks

(Tukey: p < 0.05).

The overall mean of the synergy index during the training was 3.8 ± 2.0, significantly

larger than 1 (one sided T-test: T(5) = 3.4; p < 0.01), indicating that most of the joint

angle variance was irrelevant for the pen position. There was also a significant main

effect of the factor block number on the synergy index (F(4,2) = 50.9; p < 0.02). The

third block showed a larger synergy index (5.77 ± 4.71) than the last block (1.93 ± 0.98;

2https://statistics.laerd.com/statistical-guides/dependent-t-test-statistical-guide.php
3https://statistics.laerd.com/statistical-guides/repeated-measures-anova-statistical-guide.php
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Figure 2.4: Time course of the tracking delay (A) and of the synergy index
(B) in the training block. Consecutive pairs of the 10 sub-blocks were pooled to
form the factor block number with 5 levels. Circles indicate the mean across subjects,
and the whiskers indicate the 95% confidence interval of the mean. The occurrence of
learning is suggested by the decrease of the tracking delay and of the synergy index

across the blocks.

Tukey: p < 0.04). Thus, the time course of both the synergy index and the tracking

delay showed a decrease during training.

The overall mean of the total variance of the joint angles remained relatively low during

training (5.64 ± 1.78 deg2) and did not show a significant main effect on the factor block

number.

2.3.2 Test blocks

The tracking delay during the test block was smaller (main effect of presentation mode

F(1,6) = 84.3;p < 0.001) in the periodic presentation mode (91 ± 24 ms; N=7) compared

to the non-periodic presentation mode (145 ± 27 ms; N=7). No main effect or interaction
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involving the factor block number was observed, indicating that the tracking delay was

stable throughout the test blocks.

Figure 2.5 A-C shows the effect of the presentation mode on the total variance of the joint

angles and their two normalized projections. The normalized variance in the uncontrolled

manifold (VUCM) was 16.3 ± 12.0 deg2 during the non-periodic presentation mode and

strongly decreased in the periodic presentation mode by 75% to 4.0 ± 2.7 deg2 (Figure

2.5 B). The normalized variance in the orthogonal subspace (VORT) decreased by 42%

from 1.2 ± 0.7 deg2 (non-periodic) to 0.7 ± 0.4 deg2 (Figure 2.5 C, periodic). Figure

2.5 D shows that the stronger decrease of VUCM than of VORT also caused the synergy

index to be smaller (main effect of presentation mode: F(1,5) = 6.63; p < 0.05) in the

periodic presentation mode (9.07.6; N=6) compared to the non-periodic presentation

mode (15.2 ± 10.4; N=6). Like for the tracking delay, also for VUCM or VORT no main

effect or interaction involving the factor block was observed.

Unsurprisingly, because of the decrease of VUCM and VORT, the total variance of the

joint angles was also smaller (paired T-test: T(5) = 2.57; p < 0.05) during the periodic

(17.46± 10.50 deg2) than during the non-periodic presentation mode (67.82± 49.34 deg2,

Figure 2.5 A). Interestingly, when the very same trajectory TR1 was tracked periodically

during the training block, the total variance (5.64 ± 1.78 deg2) was even smaller than

during the test blocks (paired T-test: T(5) = 2.91; p < 0.05).

In the inter-trial standard deviation of the 2D-pen position, the decrease of VORT during

the periodic presentation was only reflected in an insignificant difference between the

non-periodic (9.64 [6.78] mm) and the periodic presentation mode (7.42 [2.01] mm).

2.4 Discussion

The purpose of this study was to investigate the effects of prediction on joint angle

variability in manual tracking movements. The results of the test blocks showed that both

task-relevant and task-irrelevant variance decreased during tracking of familiar compared

to unfamiliar trajectories. Since this decrease was stronger for the irrelevant than for

the relevant variance, the synergy index also decreased during periodic tracking. The

synergy index, as well as the total variance of the joint angles was smallest during periodic

training, intermediate during the periodic test, and largest during the non-periodic test.
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Figure 2.5: Effects of the presentation mode on joint angle variances. Small
open symbols show the total variance of the joint angles (A: Vtotal = trace(Σ)) and
the normalized projections of the variance on the subspaces irrelevant (B: VUCM) or
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of the ordinates. The variances were acquired during the test block in the periodic
presentation mode (periodic) and the non-periodic presentation mode (non-periodic).
The symbols labeled paired difference show the difference in the variance between non-
periodic and periodic presentation modes for each subject. Symbols in panel D) show
the synergy index. Bars indicate the mean across subjects, and the whiskers indicate
the 95% confidence interval of the mean. All variances (Vtotal, VUCM, VORT) decreased
in the periodic compared to the non-periodic presentation mode. The decrease was
larger for VUCM than for VORT, leading also to a decreased synergy index during periodic

presentation.

The control experiment showed that these differences were indeed due to the presentation

mode and not just an artifact due to the different shapes of the trajectories.

2.4.1 Predictive tracking

The observation that subjects recognized the trajectory TR1, but none of the other

trajectories, shows that knowledge about TR1 acquired during training was used for

cognitive processes. It also suggests that this knowledge could be used for movement

control. That predictive command components played a larger role during tracking
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of the familiar than of the unfamiliar trajectories is mostly supported by the reduced

tracking delay on TR1 that gradually decreased during training. Similar developments of

predictive command components during repetitive manual tracking of the same trajectory

were observed previously [12, 26].

Since the trajectories TR2-TR4 were also repeatedly presented during the test blocks,

and because they were, like TR1, a superposition of only a few harmonic components,

it is rather likely that predictive strategies were also used on the trajectories TR2-TR4.

However, the reduced tracking delay on TR1 suggests that the observed differences be-

tween the ”familiar” and the ”unfamiliar” trajectories were most likely related to the

amount of prior knowledge used for movement control.

Remarkably, the tracking delay of the very first training block (116 ± 41 ms) was already

smaller than the average tracking delay of the control experiment (160 ± 20 ms). This

was due to the rapid decrease of the tracking delay during the first half-cycle of the

initial training trial. In the periodic presentation mode of TR1 (training and test blocks)

the tracking delay stayed small during the periodic continuation trials (only those were

analyzed). This points to a fast buildup of predictive command components in manual

tracking and is consistent with smooth pursuit which is known to develop predictive

components even before the end of the first period of target motion [27, 28]. Differences

in the tracking delay between the continuation trials of the training and of the control

most likely result from differences in these fast developing predictive components between

periodic and non-periodic presentation modes.

Thus, the smaller tracking delay on the familiar than on the unfamiliar trajectories

during the test blocks may be due to the differences between periodic and non-periodic

presentation modes as well as to the previous experience with TR1 during the training

block. In both cases the differences reflect the use of prior knowledge about the trajectory

used for movement control.

2.4.2 Adjustments of the synergy index

During the test blocks, not only the tracking delay, but also the synergy index was smaller

while tracking TR1, when more prior knowledge about the trajectory was available. A

decrease of the synergy index during learning was also observed with a bi-manual pointing
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task [19]. In this experiment, similar to the current study, an improvement in precision

was associated with a greater decline of VUCM than of VORT.

Other adjustments of motor synergies were previously observed in a series of studies in-

vestigating task variables that changed suddenly after they were kept stationary for some

time. Immediately before such a change, an anticipatory drop in the motor synergies was

found for finger forces [29, 30, 31] as well as for muscle modes during posture control [32].

These synergy adjustments are viewed as feed-forward support for destabilizing a task

variable in preparation for its sudden change, and demonstrate fundamental differences

in the motor control of static posture and movement. In contrast, the synergy adjust-

ment reported in the current study represents differences between movement execution

modes.

Latash et al. [14] suggested that a decrease of the synergy index may be a specific outcome

of learning. This is also an attractive hypothesis to explain the presented experimental

data since a decrease of the synergy index was observed concurrent with the acquisition of

prior knowledge about the target trajectory. However, so far it is not clear whether this

change in the structure of the variance indicates a change of the underlying movement

goal (the cost function which is minimized). Alternatively, changes of the structure of

the effector variance may be a direct consequence of using prior knowledge to achieve the

same movement goal. To discuss this question, it is necessary to concern the respective

predictions of motor control theory.

Two different basic mechanisms have been proposed to explain synergy indices larger than

one: specific minimization of task-relevant motor noise by optimal feedback control [33,

21], or planning noise systematically corrected for task errors [34]. Concerning planning

noise, the model of van Beers et al. [34] predicts that the synergy index converges to a

limit determined by the size of error corrections in the task-relevant and task-irrelevant

subspace (see Appendix). If the system has no information about the task relevance of

different noise components, explorations of the motor space should be homogeneous and

all noise components should be corrected by the same percentage. The synergy index

expected in that case is one. If learning does not only concern the prior knowledge of

the 2D trajectory but also the knowledge about the task relevance of movement plan

corrections, one might expect the synergy index to increase with learning. However,

our experimental findings show the opposite result. Therefore, explaining this finding by
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changes on the planning level means assuming a specific change in the strategy of selective

error correction. From this perspective, this change reflects a true modification of the

movement goal and not just an automatic consequence of the acquisition of knowledge

about the trajectory or about the task structure.

Concerning the effects of optimal feedback control on the synergy index, it is less clear

whether the reported results also suggest a change in the underlying movement goal

(whose achievement is represented by the task error). The next section focuses on this

question.

2.4.3 The coice of cost function to model changing prior knowledge

about the trajectory

The predictions of optimal feedback control for the synergy index during tracking with

more or less precise prior knowledge about the trajectory have not been well investigated.

It is discussed in the following whether this theory predicts the observed decrease of the

synergy index with larger prior knowledge. For simplicity the discussion is restricted to

the case of linear dynamic systems and signal-independent noise.

According to Todorov and Jordan [21] optimal feedback control reduces the variance

of effectors in the task-relevant dimensions and explains the synergy index being larger

than one. However, this study did not consider tracking movements but goal-directed

movement with endpoint costs. Yüksel et al [35] presented an optimal feedback control

law for tracking, developed within the linear-quadratic-gaussian (LQG)-framework [36]

but did not analyze the synergy index predicted by such a controller. In the current

study the algorithm of Yüksel et al. [35] was applied to a simplistic plant in which a

lowpass filtered 2D-position signal was used to stabilize the 2D-system state on a moving

1D-subspace. It resembles manual tracking in that the plant and the motor control

signal have a larger DoF than the trajectory. To analyze the dependence of the synergy

index predicted by optimal control theory, two different approaches were adopted. The

first investigates the effects of changing noise parameters while keeping the cost function

unchanged, whereas the second presents a specific change of the cost function explaining

the experimental results. The details of these simulations are shown in the Appendix.
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Figure 2.6: Simulation result of optimal feedback, applied to a simplistic
tracking system with a 2D-effector space and a 1D-target trajectory. The
task error is computed as a weighted average between a tracking error in the target
space (weight θ) and in the effector space (weight (1 − θ)). σT : standard deviation
of the process noise of the additional system state trajectory error. σMOT : standard
deviation of the process noise of the 2D effector space (motor noise). A/B: invariant
control law (θ = 1) C/D: variable control law (0 ≤ θ ≤ 1) A/C: Synergy index computed
as the ratio between the variance of the 2D-motor states irrelevant and relevant for the
tracking error in the 1D-target space. B/D: Total variance of system in the effector
space. Results are averages across 100 periods, each simulated with 101 discrete time

samples.

Invariant cost function

Yüksel et al. [35] studied trajectory planning in a task-space which is a linear function

(C) of the effector space with reduced DoF. They minimized the outcome of a cost

function (ε2) that is the sum of task error and control costs, where the task error term

is a quadratic form of the difference between the actual position of the system and the

planned trajectory (y
t
), both expressed in the task space as shown in (2.5).
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ε2 =
T∑
t=0

∥∥∥Cxt − yt∥∥∥2 +
∥∥∥uTt Rut

∥∥∥2 (2.5)

The vector xt denotes the position of the system in the effector space, i.e. the system

state, and Cxt its projection on the task space. The control costs are expressed as a

quadratic form of the control signals ut. In this section it is assumed that both the cost

function and the system dynamics are invariant with respect to prior knowledge of the

target trajectory. For optimal feedback control within the LQG-framework, this assump-

tion has the important implication that the control law generating the control signal on

the basis of the current state estimate stays invariant as well [37]. To incorporate the

target predictability the system analyzed by Yüksel et al. was extended by an additional

state representing the difference between the actual and the expected trajectory that

is called the trajectory error. The trajectory error affects the actual task error, it is

observed by visual input, but it is not subject to control. The process noise (i.e. the

random components of the input driving the system states) of the trajectory error is

used to model the uncertainty about the trajectory: It is set to zero to mimic complete

prior knowledge about the trajectory, and is increased with increasing uncertainty (see

Appendix).

Simulations of this system with invariant control law (Figure 2.6 A) show that its synergy

index decreases with increasing process noise of the trajectory error. This is because the

state changes induced by the optimal control law are constrained to the task-relevant sub-

space. Consequently, increasing process noise of the trajectory error leads to an increase

of task-relevant variance and a decrease of the synergy index. Thus, optimal feedback

predicts the opposite effect to that observed experimentally. In contrast, decreasing mo-

tor noise leads to a decrease of the synergy index and of the total variance (Figure 2.6

A/B) as reported by Todorov and Jordan [21]. This is caused by decreased optimal

estimator gain of the motor states induced by decreasing motor noise (Wiener filter, see

Appendix). Even though this change is in the direction of the change observed in the

current experiment, no further support was found for a direct link between a systematic

decrease of peripheral motor noise of the arm and the acquisition of prior knowledge

about the trajectory.
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Variable cost function

The basic assumption of the last section of an invariant cost function seems to be in-

compatible with the results. The next question to discuss is which dependencies of the

cost function on target predictability can explain the data. Changes of the cost function

might concern control costs or the task error.

First, the control costs are considered. Increase of motor control costs leads in general

to a decrease of the control signals, but will not systematically affect the constraint

of the induced state changes on the task-relevant subspace. Consequently, increasing

control costs results in a reduction of the control gain, which reduces the synergy index

and increases the total variance in the effector space. Increasing the motor cost of our

simplistic motor plant by a factor of 10 resulted in a decrease of the synergy index

from 2.5 to 1.7, and an increase of the total variance from 1.7 to 1.9. The directions of

these changes are again not compatible with the experimentally observed decrease of the

synergy index together with a decrease of the total variance.

Finally, changes of the cost function were investigated related to changes of the task

error. It was hypothesized that without prior knowledge of the trajectory, the task error

is expressed in the coordinates of the low-dimensional, external target space, whereas,

with improving prior knowledge, the control strategy changes towards minimization of

a task error that reflects the differences between the actual and the planned trajectory

in the effector space. This cost function can be expressed as shown in (2.6), where F

denotes the projection of the extended states (including the trajectory error) on the

effector space.

ε(θ)2 =
T∑
t=0

θ ·
∥∥∥Cxt − yt∥∥∥2 + (1− θ) ·

dim(y
t
)

dim(xt)
·
∥∥∥F (xt − x∗t )

∥∥∥2 +
∥∥∥uTt Rut

∥∥∥2 (2.6)

The task error is expressed in the external target space for θ = 1, and in the effector

space for θ = 0. The planned trajectory x∗t was assumed to be identical with the optimal

feedforward solution minimizing ε(θ = 1)2. Figure 2.6 C shows that the synergy index

converges to 1 as the task error converges towards the tracking error in the effector space

(θ = 0). In this case, the total variance (Figure 2.6 D) converges to 1.27. Consistent with
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the experimental result, both synergy index and total variance decrease with decreasing

θ (Figure 2.6 C/D). It is important to note that this hypothetical change in the task error

is not a consequence of the acquired knowledge about the target trajectory but reflects

a strategic change of the movement goal (parameterized by the additional parameter θ).

This is also reflected by the fact that, for θ = 0, both synergy index and total variance

become independent of the uncertainty of the expected trajectory in the target space

(σT ) because the cost function ε(θ = 0)2 is independent of trajectory error (Figure 2.6

C/D).

Experimental support for a strategic change of the movement goal is provided by the

observation that the synergy index during periodic presentation of TR1 was larger dur-

ing the test block (9.0 ± 7.6) compared to the end of the training block (1.93 ± 0.98)

immediately before. At the same time such a difference was not observed for the track-

ing delay (end of training block: 94 ± 33 ms; test block 91 ± 24 ms). This suggests

that the drop of the synergy index is not directly coupled to the efficiency of motor

prediction, nor to the amount of available knowledge about the target trajectory. Both

reduced synergy index and reduced effector variance seem to be features of a particular

movement control mode which characterizes largely automated movements from visually

driven tracking movements. For sequential pointing movements, such different movement

execution modes were proposed in [38] describing a gradual shift of the movement goal

defined in target space to one defined in motor coordinates. The variable cost function

proposed here for tracking corresponds to such a gradual shift of the control strategy

between a task error defined in target coordinates (θ = 1) or motor coordinates (θ = 0).

2.4.4 Conclusion

In summary, the experimental finding shows a smaller synergy index during tracking of

familiar compared to unfamiliar trajectories. In contrast, motor control theory predicts

that minimizing the tracking error in the target space implies that the synergy index

decreases with impaired prior knowledge about the target trajectory. This prediction is

independent of whether the synergy index is explained by control mechanisms for the

compensation of planning noise or peripheral motor noise. Consequently, the opposite

experimental finding suggests that the movement goal (formalized by the cost function,

and achieved by the control strategy) differs between tracking of familiar and unfamiliar
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trajectories. The difference can be characterized by a modification of the task error being

minimized. For visually driven tracking of unfamiliar trajectories, the task error seems to

be defined in target coordinates, whereas for familiar trajectories it seems to be defined in

motor coordinates. This strategic shift between visually driven and automated tracking

movements explains the observed decrease of the synergy index on familiar trajectories.
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Chapter 3

A Development Framework for

Arm Movement Measurements

Subsections 3.1 and 3.2 in the current chapter are based on the author’s article entitled

“A measurement system for wrist movements in biomedical applications”. [C1]

3.1 Background

The area of health assisting technology have been more and more active in the last few

years in the field of medical instrumentation, movement rehabilitation, prosthetic devices

and fitness accessories, just to name a few. This process resulted in a wider spread of

devices addressing different areas on the border of life sciences and engineering, from

simple commercial products (e.g. small pulse monitors) to very complex research projects

like the Modular Prosthetic Limb1 and its control interfaces.

Human movement recording – a complementary area to these fields – however, did not

show this level of activity. The presumable reason for this is that the measurement meth-

ods in motion tracking applications are standardized, tested and validated since decades

and manufacturers keep providing high level laboratory systems to meet these require-

ments. The most widely used measurement systems apply line-of-sight (LoS) methods

(optical or ultrasound-based) that require a fixed marker-sensor structure. In these cases

1http://www.jhuapl.edu/prosthetics/scientists/mpl.asp
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passive (optical) or active (ultrasound) markers are placed on anatomically relevant lo-

cations of the studied subject. Having the markers in place, measurements have to be

performed in a specialized laboratory environment where locations and orientations of

the sensor elements (i.e. cameras or microphones) are known and invariant (at least

across trials). This means that even though the spatial positions of the markers can be

determined with good accuracy – especially with optical systems – the possible range

of motion will always be constrained by the actual measurement volume covered by the

sensors of the system. Although this property is not an issue for many movement anal-

ysis scenarios, there are cases when a measurement method allowing unconstrained free

space movement would be more beneficial (e.g. various outdoor activities or ergonomic

assessment of work environments, to name a few).

Advancements in the field of inertial sensor technology have given rise to new devel-

opment directions in laboratory-free movement analysis methods. The main difference

between LoS and inertial systems is the recorded modality: while LoS methods determine

the spatial locations of markers based on planar position (optical) or timing (ultrasound)

information, inertial sensors give their orientation in space by measuring physical quanti-

ties acting on them directly. These quantities are linear acceleration and angular velocity

in most cases while they are supplemented with magnetic field measurements in more

complete setups. To obtain orientation from raw inertial measurements, various sensor

fusion algorithms have been developed utilizing Kalman-filters [39, 40], gradient descent

methods [41], complementary filters [42, 43] and other techniques [44], most of them being

capable for real-time operation in embedded systems. In addition, the recent evolution

of chip-scale inertial sensors based on MEMS technology further widened the possibilities

of wearable measurement device development by making the core sensing elements avail-

able for better integration. While there is no gold standard among fusion algorithms and

sensor chips as compromises have to be made in aspects of accuracy, system complexity

and computational demand of the fusion algorithm, it can be stated that inertial sensor

technology is taking a more and more growing part in human movement measurements

(a good example for this progress is Xsens’ product portfolio).

A further aspect with regard to biomedical applications is the possibility of recording

other modalities, most importantly bioelectric signals like muscle activities (electromyo-

gram, EMG). Measuring EMG is a key aspect to get deeper insight into the dynamics of

movements because it gives closer information about muscle activation patterns. While
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there are many approaches in the literature for individual EMG recording [45, 46, 47,

48], research efforts towards integrated systems utilizing kinematic measurements and

muscle activity recording in the same package has only been started recently [49, 50]

2. As to the best of the author’s knowledge, there is only one commercially available

EMG+IMU system on the market (TRIGNOTM IM, provided by Delsys from 2016Q3 3),

that incorporates many small sensor units, each containing a single-channel EMG elec-

trode and an inertial sensor. This system, while seeming to be a good overall solution

for whole-body performance assessment in various situations, has some major differences

from the system presented in the current chapter, e.g. it may use a proprietary and

closed source kinematic model for movement reconstruction that needs to deal with the

unique placement of the sensors. In particular, sensor placement seems to be optimized

for EMG measurements (i.e. targeting muscles) and not for IMU operation.

The work described in this chapter is an effort towards the development of a research

oriented, fully customizable, integrated and wearable measurement system specifically

targeting arm movements in order to record and analyze movement patterns for biomed-

ical applications. The system aims to provide a framework for development and testing of

inertial sensor based movement measurement and analysis techniques including custom

hardware setup, calibration routines, sensor fusion and device control from various plat-

forms. While the complete system design includes EMG measurement capability, this

chapter focuses mainly on the practical considerations and implementation of kinematic

movement recording.

3.2 Measurement device

The concept of the system is depicted in Figure 3.1. The core of the design is a Base

Unit responsible for controlling the measurements, collecting sensor data, performing

pre-processing tasks and sending and/or storing the output data. The EMG sensors and

the Base Unit itself are planned to be integrated into a sensor ring around the lower arm

to reduce measurement noise and make usage more practical compared to standard wet-

electrode EMG systems using long wires. There are four inertial sensors in the design

which are placed (1) on the back of the hand, (2) at the distal end of the lower arm right

2In fact, almost the same time as the work presented in this chapter was started.
3http://www.delsys.com/products/emg-auxiliary-sensors/trigno-im/
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Base Unit

Inertial sensor

EMG electrode

Upper arm Lower arm Hand

Trunk

Figure 3.1: Concept drawing of the measurement system. The Base Unit is
planned to be integrated into an EMG sensor ring around the lower arm. Inertial sensors
are placed at the distal end of the lower arm right before the wrist joint and on the back
of the hand, allowing the measurement of the hand’s relative orientation with respect

to the lower arm’s orientation.

before the wrist joint, (3) on the distal end of the humerus right before the elbow joint

and (4) on the lower end of the sternum. This arrangement allows the measurement of

arm segment orientations relative to the trunk that is essential for movement analysis

and a generic issue in free moving environments (i.e. the subject’s trunk is often fixed

during laboratory measurements).

The concept and placement of the EMG sensor ring is similar to Thalmic Labs’ commer-

cial product called Myo, however the proposed setup addresses a more research oriented

scenario providing a higher EMG data rate (the Myo has only 200 Hz EMG output

rate based on the company’s website4) and external inertial sensors for the kinematic

measurement of the whole arm. Considering the planned target applications, the main

system requirements are the following:

• At least 100 Hz recording of arm orientation.

• Up to 6 channel, 1 kHz recording of forearm surface EMG.

• Real-time data streaming and on-board data storage capability.

• Low power consumption and self-contained, wireless operation.

4http://developerblog.myo.com/raw-uncut-drops-today/
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3.2.1 Base unit

The block diagram of the Base Unit is depicted in Figure 3.2. It is designed with an

STM32F407VG microcontroller unit (MCU) as its central element which is a high per-

formance ARM Cortex-M4 core running at up to 168 MHz. The MCU has 1 MB flash

and 192 kB SRAM, built-in 12-bit 2.4 MSPS ADCs, various serial peripherals (including

I2C, SPI and UART), a dedicated SDIO interface for high speed SD card control and a

16-stream DMA controller. In the initial phase of development an STM32F4 Discovery

board was used as the central hardware element of the system which provides access to

almost all pins of this MCU and a debugger unit in the same package.

Because the system is designed to run from battery, a dedicated power management unit

is needed that generates stable 3.3V digital supply from battery input ranging between

1.8V to 5.5V using a buck-boost converter (TPS63001). This allows the selection of

battery type best fitting for the actual application from the available supply of various

sizes, nominal voltages and capacities. The ±5V analog supply required for the devel-

oped EMG frontend (described in Section 3.2.3) is provided using a dual-output charge

pump (MAX865) and ultralow-noise positive and negative low-dropout linear regulators

(TPS7A4901 and TPS7A3001, respectively). Wireless device control and data stream-

ing is performed by a Bluetooth 2.1 transceiver connected to the MCU through UART

interface. Bluetooth 2.1 was chosen instead of Bluetooth 4 low energy (BLE) because

based on test measurements the total transmission speed required for raw data stream-

ing including EMG (230.4 kbaud) is higher than the reliable limit of BLE. Although

this decision highly affects power consumption of the total system (Bluetooth current

consumption: about 40mA ↔ about 8mA), raw data transmission is needed to keep

maximal flexibility of the system.

Device firmware was implemented in C using the Eclipse IDE (version Kepler) and the

GNU Tools for ARM Embedded Processors package on an Ubuntu 12.04 LTS system.

Device programming and debugging was performed with OpenOCD (versoin 0.8.0). As

written earlier, the central element of the system is an STM32F407VG ARM Cortex-

M4 high performance 32-bit microcontroller from STMicroelectronics. As this device

provides enough horsepower to easily handle the flash and RAM overhead of an operating

system, the Base Unit’s firmware was designed and implemented using FreeRTOSTM
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Figure 3.2: Block diagram of the Base Unit. All measurement and processing is
performed by an ARM Cortex-M4 core running at 168 MHz. The Base Unit contains
a Power Management Unit to provide the digital and analog supplies, data streaming
(Bluetooth) and data storage (SD card) modules. Inertial sensors and EMG electrodes

are handled through corresponding hardware interfaces.

5, a free and industry standard real-time operating system for embedded applications.

FreeRTOS’ Task, Queue and Semaphore structure allowed designing system functionality

at a higher abstraction level and with straightforward execution scheduling. For low-

level device driver implementation, ST’s Standard Peripheral Library for the STM32F4

Discovery kit (version 1.1.0) was used. The MCU’s DMA controller was utilized in each

scenario where it was applicable to further improve execution parallelism.

3.2.2 Inertial sensors

To perform measurements of joint kinematics, single chip 9 degrees-of-freedom MEMS

inertial sensors were used (MPU-9250, InvenSense Inc.). Each sensor is a multi-chip

module consisting of two dies integrated into a single package. One die houses the

3-axis accelerometer and the 3-axis gyroscope, while the other die houses the 3-axis

magnetometer that is internally connected to the chip’s control electronics via I2C bus

[51]. Individual sensor component properties are shown in Table 3.1.

5http://www.freertos.org/
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Table 3.1: Inertial sensor properties (MPU-9250)

Sensor type Full-scale range Resolution Sampling rate

Accelerometer ± 2, 4, 8, 16 G 16-bit up to 1kHz

Gyroscope ± 250, 500, 1000, 2000 ◦/sec 16-bit up to 8kHz

Magnetometer ± 4800µT 14 or 16-bit up to 100Hz

Based on these properties the sensors are able to provide enough flexibility to measure

most common human movement tasks without saturation. Considering the planned

movement tasks (low to moderate speed arm movements) the sensors were used as follows:

• Accelerometer: ± 2G, 16-bit, 200Hz

• Gyroscope: ± 500◦/sec, 16-bit, 200Hz

• Magnetometer: ± 4800µT/sec, 16-bit, 100Hz

In addition to the base unit’s firmware, a dedicated driver was developed for the inertial

sensors to utilize control, calibration and measurement processes over the I2C bus. Zero

motion calibration of the accelerometer and the gyroscope was implemented as part of the

sensor initialization process, while hard and soft iron calibration of the magnetometer

was realized in the control software as described in Section 3.3.2. However there is a

proprietary on-chip Digital Motion Processor (DMP) in each sensor package, it was not

used because it is only capable of performing 6-axis (accelerometer + gyroscope) sensor

fusion, and there was no publicly available documentation for this unit at the time of

development. Instead, a computationally efficient open source orientation filter [41] was

used to provide sensor orientations in software using a gradient descent based 9-axis

fusion algorithm. The applied method provides direct quaternion output (avoiding the

phenomenon of gimbal lock) and is easily able to provide stable output rates above

100 Hz enabling the system to meet and exceed the requirements for orientation data

measurement (for details, see Section 3.3.4).

Sensor synchronization High precision clock sources are essential for the synchro-

nized operation of any sampled system. This becomes more obvious when multiple

sensors are applied and required to keep the designed time frames during device opera-

tion. The used inertial sensors apply selectable on-chip internal clock sources that either

offer low power consumption in specific cases by using a relaxation oscillator when the
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gyroscope is off or higher accuracy by using any of the X, Y or Z axis gyroscopes at

the expense of increased current need. One issue is however that even when the higher

precision option is enabled – because of the lack of any external synchronization or clock-

ing option – small deviations between individual sensors will result in different sample

intervals among the used chips.

As this phenomenon is inevitable in this case, the problem was handled by configuring

each sensor to signal an interrupt when new measurement data is ready to be read

from its internal FIFO storage6. At system initialization, a short timing measurement

is performed by starting the IMUs in the order they are attached to the base unit. The

measurement runs until 10 interrupts from each sensor is noticed and the time intervals

between consecutive interrupt pulses are stored in RAM. This is followed by averaging the

time interval samples of the individual sensors and reordering the sensor start sequence

to assure fastest first, slowest last operation. The synchronization problem is solved by

periodically restarting the sensors in every 500 ms to avoid too much timing drift and

measurement frame overlapping. This induces an additional issue however: at every

restart, the first measurement data in each sensor shows a glitch that would have an

impact on the reconstructed orientation thus they are filtered out with a simple linear

interpolation technique in the base unit’s firmware.

3.2.3 EMG frontend

The schematic of the prototype EMG electrode frontend is depicted in Figure 3.3. Con-

sidering differential signal recording for each channel (EMG− and EMG+), the central

element of the design is the INA128 instrumentation amplifier (InAmp) with adjustable

gain and dual power supply operation. The gain can be set with an external resistor (RG)

between 1 and 10,000. The device has wide power supply range (±2.25V to ±18V), low

quiescent current (700µA) and high common-mode rejection ratio even at lower gains

(∼ 90dB at f = 1kHz, G = 10V/V) that all make it suitable for portable EMG appli-

cations. To allow amplification tuning during development, the gain resistor section of

6This means increased system load in general because the host processor needs to handle every new
data sample instead of a buffered operation. There is no other option in this case however, because even
the sensors have a 512-byte FIFO (able to store up to 28 samples of 9-axis data), only Data Ready and
FIFO Overflow interrupts are available, rendering the sensor practically unusable for buffered operation.
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Figure 3.3: Schematic drawing of the active EMG electrode frontend. The
design incorporates differential electrode setup with active body ground driver and an

offset controller unit.

the frontend (R1 to R3) is designed to be adjustable over the full gain range of the am-

plifier (R1 = 100kΩ trimmer, RG = 50kΩ - 5Ω resulting in 2 - 10,000 V/V gain), while

providing the average of input potentials to the active ground driver circuit.

The ground driver feeds back the inverted and amplified average input voltage to the body

through a high impedance connection to reduce the amount of common-mode offset and

noise (including 50Hz power line noise) in the differential signal. Besides amplification,

offset control is an other essential part of signal acquisition and conditioning which is

realized by a three resistor (R7 to R9) passive voltage averaging circuit connected to the

InAmp’s reference pin through a unity-gain buffer. Using this solution the DC offset of

amplifier output can be altered by about ±1.43V which is suitable to compensate offsets

introduced by the combination of the small amount of constant inter-electrode voltage

(between EMG− and EMG+) and higher gains. For testing purposes offset control is

performed manually using a trimmer resistor on the prototype circuit, however in the

final design this functionality will be integrated with one of the MCU’s 12-bit DAC’s

for automated offset compensation even on longer terms (in this case considering 3.3V

operation, R7 to R9 resistor values need to be adjusted).

Figure 3.4 shows test output from the InAmp with the gain kept at a lower level to avoid

output saturation and noise amplification. During the measurement a single channel

differential recording from the area of wrist flexion muscles on the forearm was performed
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Figure 3.4: Test EMG measurement. A representative output of the designed
EMG frontend circuit during a single channel differential recording from the area of

wrist flexion muscles on the forearm.

using standard Ag/AgCl electrodes with an inter-electrode distance of about 3cm (effects

from motion artefacts were minimised using self adhesive electrodes). The test circuit

was assembled on a breadboard including power isolation (THB 3-0511), ±5V analog

supply (using MAX865, TPS7A4901 and TPS7A3001) and the frontend itself and its

output was measured directly with an oscilloscope. The recorded data shows satisfying

EMG characteristics [52] with a spectral distribution between 10 and 200Hz.

At the current state of the work the final output stage of the frontend is still being

developed. This will integrate a high order low-pass filter designed for further signal

amplification and anti-aliasing purposes (AAF), and a biasing circuit that offsets the

InAmp’s zero-symmetrical output to half of the analog reference voltage in order to

utilize the whole range of the used ADC. Considering the practical bandwidth of EMG
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signals of up to 500Hz [52] the AAF’s cutoff frequency will be set to this value while the

stopband attenuation remains dependent of ADC sampling frequency and resolution. For

example, running the integrated 12-bit ADC of the selected MCU at 8 kHz, the AAF

must provide -73 dB gain at 4 kHz stopband frequency which is achievable with a 5th

order linear phase active low-pass filter. If finer resolution is needed for the selected

application and a 16-bit ADC is considered, the stopband gain of the AAF change to

-97 dB which means a 7th order linear phase filter with a 4 kHz stopband frequency.

Because of the anti-aliasing stage, the oversampled data can be digitally filtered and

decimated in the MCU’s firmware using a digital FIR filter to get proper 1kHz output.

Even though the analog circuitry for EMG measurements has not been finalized yet,

firmware for EMG recording was implemented by using the MCU’s built-in 12-bit SAR-

ADC. Considering the realization aspects of the AAF after the analog EMG frontend,

a sampling frequency of 8 kHz was implemented for 6 input channels. The sampling is

followed by a digital decimating low-pass filter (Fc = 500 Hz, decimation factor = 8) using

ARM’s CMSIS DSP library. To assure minimal lag and jitter during the measurement,

the ADC is controlled in scanning mode using DMA with double buffering. This setup

assures aliasing-free recording of EMG signals at 1 kHz output rate for each channel.

3.2.4 Hardware prototype

The prototype of the measurement device was constructed using ready-to-use develop-

ment tools and hardware modules to make the first implementation more convenient and

flexible for iterative development as it is shown in Figure 3.5. The depicted device con-

tains the full set of hardware and firmware elements for kinematic movement recording

and reconstruction (including sensor measurements and fusion), full firmware support

for EMG measurements described above and all supporting hardware except the analog

frontend.

3.3 Control software

At the first stage of development, the PC-side control application was implemented using

MATLAB. The software’s main goal is to complete system functionality by providing a

control interface and supplementary algorithms for the measurement unit (i.e. graphical
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interfaces for different device control scenarios, various calibration routines and flexi-

ble testing of sensor fusion algorithms and analysis techniques). System functionality is

distributed among the base unit and the control software in a way that low level compu-

tations having strict timing requirements are performed on the base unit’s MCU while

higher level tasks that need to be performed only once (like the magnetometer calibration

involving eigenvalue / eigenvector calculation) are implemented in the control software

and only the relevant results are sent back to the base unit. This scheme allows higher

flexibility and efficiency of the total system by keeping the battery powered base unit’s

power consumption at low level while performing computationally intensive tasks on a

higher performance CPU.

Although some of the algorithms described below have been integrated into the base

unit’s firmware (e.g. the simplified zero motion calibration method or the fusion algo-

rithm), they was implemented and tested first in the control software using the base

unit only for streaming raw measurement data. Direct integration of these methods into

the device firmware was possible because neither needs visual inspection of the recorded

data for reliable operation. However, because of better visualization capabilities of the
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1 STM32F4 Discovery

2 Sensor and analog
interface

3 Sensor multiplexer

4 MPU-9250 inertial
sensors

5 Analog power supply

6 Bluetooth 2.1 
module

7 SD card interface

8 5V Li-ion battery

Figure 3.5: The prototype of the measurement device.
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control software, these algorithms are also introduced here to give a cleaner overview of

the various calibration and analysis methods used in the system.

3.3.1 Data visualization

One of the main goals of the control software is to provide device control and data vi-

sualization capabilities for different operation scenarios of the measurement device (dis-

cussed in section 3.2). In the initial phase of development this was achieved by separate

MATLAB scripts, each implementing a specific measurement task and providing the

corresponding graphical user interface. The implemented tasks are:

• single sensor data visualization (the actual sensor can be selected),

• magnetometer calibration for all sensors,

• sensor frame alignment calibration for all sensors and

• the actual measurement of arm movements with example applications (e.g. drawing

with the arm in 3D or moving virtual objects).

All scripts use the serial port at 230.4 kbaud as the communication interface accessing

the measurement device through the serial port profile (SPP) of the Bluetooth classic

standard. Recorded data are transmitted in blocks containing 5 samples of each measured

feature, resulting in a buffered display of the data at 20 Hz. This value was experimentally

determined as the optimal solution to the GUI responsiveness↔MATLAB refresh speed

bottleneck. Figure 3.6 shows an example screenshot of a single sensor data visualization

task. In this setup, raw sensor data (acceleration, angular velocity and magnetic field)

as well as sensor fusion output (quaternions and the resulting 3D orientation) are shown

to check device operation in real time.

3.3.2 Calibration of raw sensor measurements

Each of the chosen inertial sensors incorporate three individual sub-components for three-

axis measurement of linear acceleration (accelerometer), angular velocity (gyroscope) and

external magnetic field (magnetometer). When fusion algorithms are used to reconstruct

the spatial orientation of the sensor from these physical quantities, proper calibration

and inter-component frame alignment are essential to obtain accurate estimations of

orientation. While the mutual orthogonality of the individual components’ x-, y- and
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Figure 3.6: Single sensor data visualization. A representative screenshot with
added annotations for the task of showing raw output data and estimated device ori-
entation as the result of the sensor fusion algorithm discussed in section 3.3.4. The
recorded movement pattern shown in the figure contained three rotations about each of
the main axes of the sensor (x, y and z), each having an estimated peak amplitude of
90◦. The starting position was as shown in the actual 3D plot, the z axis being parallel
to the direction of gravity. The first movement contained a negative rotation about
the sensor’s y axis, followed by a positive rotation by about 180◦ and again a negative
to return the sensor to the starting position. The second movement was similar about
the x axis with opposite directions. The third movement was a positive and negative

rotation about the sensor’s z axis.

z-axes along with the alignment of the inter-component local frames is affected by the

accuracy of the sensors’ manufacturing process, calibration of zero motion offsets and

the hard and soft iron errors corrupting magnetometer measurements must be handled

in software.

Zero motion offsets – the naive approach Independently of the assumption of axis

orthogonality and accurate alignment of internal sensor frames, offset errors may occur in

the accelerometer and gyroscope readings even in the absence of any motion. To handle

this, a simple zero motion calibration protocol was implemented and is performed before

a measurement session as follows:

1. The sensors are fixed to a specific holder that keeps them in the same orientation

along a straight line. In this reference orientation all sensors’ z-axis points against

gravity, with the x and y-axis direction being irrelevant.
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2. While the sensors are in a stationary position, a measurement is performed for 2

seconds. The length of this frame is independent of the actual sampling frequency

set for the measurement device.

3. Recorded accelerometer and gyroscope samples are averaged and stored for the

correction of further measurements. Before this step however, the z-axis values

of the accelerometers are gravity compensated to get the real offset value of that

direction.

Table 3.2 shows typical reduction results of zero motion offset errors when the described

method is used.

Table 3.2: Zero motion offset values (MPU-9250)

Sensor type Offset compensation x-axis y-axis z-axis

Accelerometer (G)
before 0.0086 ± 0.0022 0.0265 ± 0.0021 0.0616 ± 0.0034

after 0.0003 ± 0.0022 0.0006 ± 0.0021 0.0275 ± 0.0033

Gyroscope (◦/s)
before 2.1148 ± 0.0580 1.4948 ± 0.0689 3.7185 ± 0.0805

after 0.0313 ± 0.0671 0.0874 ± 0.0697 0.0334 ± 0.0699

Accelerometer calibration Although Table 3.2 shows satisfactory offset reduction,

it should be noted that the naive algorithm may not give accurate results in every case as

it assumes zero-g level offsets as the only disturbing factor for sensor outputs. In reality

the output of the accelerometer is affected by other factors like axis sensitivity and the

sensor’s misalignment in the internal frame of the moving body [53]. These factors can

be handled by the following extended model of sensor output generation [54].


AOx

AOy

AOz

 = M(3×3)


1

Sx
0 0

0
1

Sy
0

0 0
1

Sz



ARx +Ox

ARy +Oy

ARz +Oz

 (3.1)

where AR is the raw accelerometer data, M is the sensor misalignment matrix, S is the

sensitivity vector, O contains the offset values and AO is the final accelerometer output.

Equation 3.1 can be rewritten into the form of
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AO(3×1) = W(3×3) ·AR(3×1) + v(3×1) =

=
[
W(3×3) v(3×1)

]
·

AR(3×1)

1

 =

= X(3×4) ·Aext
R (4×1)

(3.2)

where W includes all possible cross-axis interactions and misalignment rotations while

v corresponds to the offset values. The goal of accelerometer calibration is to determine

the values of W and v that result in ‖AO‖ = 1 for any raw measurements in arbitrary

positions. To achieve this, accelerometer data in 6 predefined stationary orientations

have to be recorded (+1G and -1G for each of the 3 axis) and a general linear model

have to be fitted to the recorded data (X and Aext
R ). During this process, recorded and

target data corresponding to the stationary orientations (Aext
R [i] and AO[i], i ∈ {1, ..., 6})

are pooled together resulting in

AO(3×n) = X(3×4) ·Aext
R (4×n) , (3.3)

where n is the total number of sample points. From this equation, X can be determined

by using least squares optimization as

X = AO ·
([(

Aext
R

)T ·Aext
R

]−1
·
(
Aext

R

)T)
. (3.4)

Having X as the optimal least squares fit for the overall recorded data, calibrated ac-

celerometer values can be calculated by using equation 3.2.

While this method takes every aspect of possible accelerometer errors into account, its

effectiveness is highly dependent on the accuracy of the used calibration equipment (e.g.

a solid calibration box with mutually orthogonal sides and precise sensor mounting).

Furthermore, its automation is a bit more problematic than of the naive approach as the

stationary orientation segments from the measurement data have to be visually inspected

in the current implementation to prevent errors in the calibration data. It has to be

mentioned however that this feature could be further developed towards fully automatic

operation by detecting zero motion intervals in real-time during the calibration process.
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Gyroscope calibration Similarly to the accelerometer, scale, offset and axis misalign-

ment errors affect MEMS gyroscopes, too. The problem in this case however is that while

gravitational acceleration can be used as the reference external signal to calibrate the

accelerometer, in a general setup there is no additional equipment available that is able

to produce reliable angular velocities required for gyroscope calibration (e.g. a rate ta-

ble with an optional thermal chamber [55]). Although alternative methods have been

proposed that do not require external equipment for gyroscope calibration [56], only the

simple zero motion bias compensation method (described earlier) was implemented for

the gyroscope components of the used MPU-9250 sensors in the current version of the

control software.

Magnetometer calibration Just as in the case of the previously shown sensor com-

ponents, raw output of magnetometers may be affected by error factors of scaling, offset,

axis misalignment and nonorthogonality. In addition, surrounding ferromagnetic mate-

rials may present further error sources that are either constant or induced with time and

orientation dependent properties. The constant term is called hard iron error and is gen-

erated by ferromagnetic materials in the close vicinity of the sensor component (usually

originating from the PCB on which the sensor is mounted) while the induced term is

called soft iron error and is presented by materials generating their own magnetic field

in response to an externally applied field (originating outside of the sensor PCB) [57].

Many algorithms have been proposed to deal with these error factors [57, 58, 59, 60] with

the most common approach being based on ellipsoid fitting and its inverse transformation.

During this process, raw magnetometer measurements are recorded while the sensor is

rotated into various orientations, resulting in a 3D point cloud that represents the actual

composition of the surrounding magnetic field around the sensor (the earth’s geomagnetic

field distorted by hard and soft iron errors). In the error-free case, this point cloud

should lie on a sphere centered at the origin of the sensing axes and with a radius of

the geomagnetic field’s strength at the location of the recording. However, because

these magnetic disturbances are inevitable in real world environments, measurements

usually show both hard and soft iron errors that cause the recorded point cloud to

form a distorted ellipsoid with an offset from the sensing origin. The purpose of the

magnetometer calibration algorithm is to find the best fitting ellipsoid to the recorded

data and determine the inverse transformation that converts the distorted data points
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Figure 3.7: Magnetometer calibration. A representative plot of the magnetometer
calibration procedure. Raw measurement data is recorded in various sensor orientations
(black line), followed by an ellipsoid fitting step (light green patch). Having the pa-
rameters of the best fitting ellipsoid, the hard and soft iron compensation values are

calculated and a calibrated dataset is produced (blue line).

into a sphere with a chosen radius (this can be done without loosing information because

data fusion algorithms use only the direction (not the magnitude) of the magnetic field

for orientation reconstruction).

This method is implemented in the system as an offline process by having a magnetometer

calibration mode on the measurement device and a specific part in the control software.

During the magnetometer calibration process, the sensors are mounted to a holder that

keeps them in the same orientation along a straight line (similarly to the naive approach

of zero motion offset compensation). While the holder with the four sensors is rotated into

various spatial orientations, the measurement device record raw sensor data at 100 Hz

and transmits them to the corresponding script of the control software. As soon as

sufficient number of samples are recorded, the measurement is stopped and an ellipsoid

is fitted to each set of raw magnetometer data using [61]. Having the parameters of the

best fitting ellipsoids, the hard and soft iron compensation values are calculated and sent

back to the measurement device to enable real-time magnetometer error correction for

later measurements. A representative plot of the procedure is shown in Figure 3.7.
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It should be noted that using this method to calibrate the magnetometer may not be

sufficient in every situation as it assumes that scaling, offset and axis misalignment

errors can be handled by the hard and soft iron error compensation algorithm without

further corrections. In the currently presented application and with the used sensors this

approach seemed to be efficient enough for adequate operation, but care should be taken

when applying this calibration method only in other practical setups.

3.3.3 Calibration of sensor frame alignments

By having calibrated raw sensor data, the next important step is to determine the mis-

alignment between the sensor frame and the body frame for each sensor package. This

is needed because the inertial sensors measure all physical quantities relative to their

internal reference frame (with axes directions determined by the edges of the sensor IC

package) meaning that if the sensor axes do not coincide with the measured object’s

own axes (e.g. in the case of an arm segment), the reconstruction of the motion will

be incorrect. This phenomenon is inevitable when using inertial sensors for human mo-

tion recording because sensor placement on body segments will always be arbitrary and

inaccurate as a consequence of soft tissue and skin movement in addition to the fact

that internal joint rotation axes of the separate body segments are very hard – if not

impossible – to guess accurately in the phase of sensor placement.

To overcome this issue, a calibration algorithm for sensor frame alignment was devel-

oped partially based on [59]. Although this algorithm can be used to estimate sensor

misalignment in human arm movement recording scenarios, for demonstrative purposes

the specific steps will be introduced based on the simple setup shown in Figure 3.8. The

calibration steps are the following, where plain text relates to the general case and italic

text to the example.

1. The inertial sensor is placed arbitrarily on the measured body segment. (See Figure

3.8.)

2. Two separate movements are performed in a way that each movement represents a

rotation about a principal axis of the measured body segment’s internal reference

frame (the axes must be different and orthogonal). These calibration movements

are performed in an orientation that assures that the actual rotation axis does not

coincide with the gravitational force vector. (Rotations about body x and y axes.)
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Sensor frame coordinate axes (         )x y z, ,

Figure 3.8: Experimental setup for sensor frame alignment calibration of
inertial sensors. In this setup the sensor was intentionally placed with a bad alignment
on the measured body to simulate arbitrary sensor placement. The two calibration
movements were rotations about the x and y axes of the body’s internal reference frame
(indicated by white arrows). The task of sensor frame alignment calibration is to find

the transformation between the sensor frame and the body frame.
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Figure 3.9: Example for manual movement segment selection.

3. During the rotational movements, raw accelerometer and gyroscope data are

recorded and stored on the control PC.

4. After finishing the calibration movements, two raw data sets are manually selected

based on visual inspection of angular velocities (gyroscope data) corresponding to

the chosen internal reference frame axis (x, y or z). (See Figure 3.9.)

5. By having separate data segments representing (mostly) clean rotational move-

ments about specific axes, the recorded accelerometer data can be used to estimate

the current axis of rotation. In detail, when rotating the sensor about a specific

rotation axis, the gravitational force vector will have a significant impact on the
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recorded data points. This means that assuming low speed and smooth rotations,

the 3D point cloud of the recorded accelerometer data will be spread uniformly

around the rotation axis. This phenomenon can be utilized to estimate the direc-

tion of the rotation axis as the less variant direction of the point cloud given by

Principal Component Analysis (PCA) for example. (See Figure 3.10.)

6. After performing the previous step for both measured data segments to estimate

the two rotation axes, an orthonormal basis is generated that represents the actual

orientation misalignment of the inertial sensor. (See Figure 3.10.)

7. The last step of the algorithm is to store the misalignment configuration in quater-

nion representation for real-time correction of raw sensor data. (A representative

plot of correction results is shown in Figure 3.11.)

In real human arm movement recording scenarios, the calibration of sensor orientations is

performed by specific movements in the trunk and the shoulder, elbow and wrist joints in

a way that the corresponding segments move along anatomical axes that are considered

to be orthogonal to each other. The movements are 1) trunk flexion and adduction, 2)

shoulder abduction and upper arm rotation, 3) elbow flexion and pronation / supination

and 4) wrist flexion and deviation, respectively.
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DOI:10.15774/PPKE.ITK.2017.002



Chapter 3. A Development Framework for Arm Movement Measurements 49

100 200 300 400 500 600 700
-1.5

-1

-0.5

0

0.5

1

1.5

100 200 300 400 500 600 700
-600

-400

-200

0

200

400

600

Raw [x]

Raw [y]

Raw [z]

Calibrated [x]

Calibrated [y]

Calibrated [z]

Accelerometer data

Gyroscope data

G

DPS

Sample # (×10ms)

Figure 3.11: Sensor frame alignment results. The figure shows raw and calibrated
recordings from the accelerometer (top) and the gyroscope (bottom). The recorded
movement was a periodic rotation of the measured body about the y axis of its internal
reference frame (rotation about the green axis in Figure 3.8). In the case of proper sensor
placement, y axis data should remain at a low level for the accelerometer while gyroscope
readings should show the the biggest amplitude changes with the x and z axes being
invariant. As the figure shows, the described calibration method performs acceptably
well in the correction of physical sensor misalignment by modifying the recorded raw

data according to the estimated orientation.

3.3.4 Sensor fusion algorithm

For proper reconstruction of sensor orientations from calibrated raw measurements, a

gradient descent based sensor fusion algorithm was used [41] that outputs orientation

information in quaternion format, avoiding the problem of gimbal-lock 7 accompanying

Euler-angle representation. This approach was selected instead of other methods because

its orientation reconstruction accuracy is among the the most widely used algorithms’

(e.g. complementary filter or Kalman-filter) [62], it can be implemented in an efficient

way (277 scalar operations, 332 bytes of RAM usage 8) and it is available in open source

format. 9 The method estimates the actual orientation in a given time instant by numer-

ically integrating the estimated rate of change of orientation. The algorithm calculates

7Gimbal lock is the loss of one degree of freedom in a three-dimensional, three-gimbal mechanism that
occurs when the axes of two of the three gimbals are driven into a parallel configuration, ”locking” the
system into rotation in a degenerate two-dimensional space.

8http://x-io.co.uk/res/doc/madgwick internal report.pdf
9http://x-io.co.uk/open-source-imu-and-ahrs-algorithms/
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this rate of change by using gyroscope data, with the magnitude of the gyroscope error

(β) removed in the direction determined by measurements from the accelerometer and

the magnetometer. β represents all zero mean gyroscope measurement errors expressed

as the magnitude of a quaternion derivative.

In practice, β is a tunable filter gain that determines the relative amount of contribution

of gyroscope and accelerometer + magnetometer data to the final orientation estimation.

As an example, Figure 3.12 shows orientation reconstruction results from a simple repre-

sentative recording. During the measurement, one of the four inertial sensors was rotated

by hand about the x axis of its internal reference frame. Although the intended amount

of rotation was 90◦, the final angle only approached this value because of performing the

task by hand without any reference orientation measurement.

The upper subplot on the left of Figure 3.12 shows the corresponding reconstructed

orientation angle with different β values in Euler-angle representation for better visual

interpretation, while the lower subplot shows the corresponding gyroscope readings of

the sensor’s x axis and the actual β values during adaptive operation mode. The subplot

on the right shows a magnified view of the reconstructed angles in the interval marked

by the rectangle on the upper left plot. As the figure shows, the value of β has a direct

impact on reconstruction efficiency in a way that with smaller β-s the algorithm reacts

slower for dynamic movements but keeps static noise at a low level, while larger β-s allow

faster dynamic adaptation at the expense of increased static noise (continuous lines on the

right side plot). Based on this (in addition to the statements in the previous paragraphs),

β can be considered as a filter parameter that controls the passband characteristics of

orientation reconstruction (with low and high β values corresponding to LPF and HPF

operation, respectively).

While the original paper [41] uses a fixed value for β, it also suggests that applying

dynamic values for this parameter may be beneficial in many applications to handle

short and long term measurement errors (e.g. accelerations due to motion, distortions in

the local magnetic field or gyroscope bias drift). As an example for this, a simple adaptive

case was implemented that changes the value of β based on the absolute value of the

actual angular velocity to deal with both dynamic and static phases of the movement.

The lower subplot of Figure 3.12 shows the adaptive changes in the the value of β with
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respect to the corresponding gyroscope measurements, while the dashed line on the right

subplot shows the resulted angle values.

While the presented approach seems to solve the dynamic ↔ static error trade-off for

this specific case, it should be noted that without available reference orientation mea-

surements everything shown in the figure should be considered just as demonstration

of the concept. Considering real arm movement measurement scenarios, the optimal

adaptive control of β may be determined by using data from high precision reference

measurements (e.g. simultaneous recording with an optical system).

3.3.5 Anatomical joint angle reconstruction from sensor orientations

After applying the calibration methods and fine tuning the sensor fusion algorithm pre-

sented in the previous sections, one important step still needs to be performed in order

to utilize the measurement system in human arm movement analysis. The purpose of all

processing steps introduced so far was to measure and reconstruct the spatial orientations

of human body segments with wearable inertial sensors as accurately as possible. Al-

though information about body segment orientations in a selected global reference frame

allows visualization and kinematic analysis of the movements already (if segment lengths

are known, but these can be measured by hand for example), this representation lacks

the direct connection with anatomical joint angle definitions, making the findings of the

kinematic analysis hard to interpret from the aspects of the movement control system.

The state of the art solution to this problem is to use model-based analysis tools (like

SIMM [63] or OpenSim [64]) to ”fit” an anatomically reasonable model to the recorded

data, resulting in joint angle outputs that generated the actual movement. While this

approach has its benefits, because the corresponding workflow has been developed to

analyze marker based optical motion capture data, there are some additional processing

step necessary to transform segment orientations determined by the presented measure-

ment system to marker information directly usable by these tools. In order to analyze

movements with this approach correctly, the generic kinematic model has to be scaled

first to match the actual subject’s anatomical sizes (making accurate segment length

measurements of very high importance). Following this step, the joint angle configura-

tion of the model that gives the best fit for the recorded marker positions is calculated
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by an optimization algorithm in each time instant. While this approach gives anatomi-

cally relevant kinematic results, it has relatively high computational need because of the

optimization step, rendering the method unable for real-time operation.

While this is not a problem in most clinical movement analysis scenarios for which

the model-based approach was developed, it leaves room for improvement in directions

where real-time anatomically relevant kinematic information could be used. As an effort

to make contributions to this field, Chapter 4 introduces an algorithm that is capable

for real-time reconstruction of anatomical joint angles defined in a widely used upper

limb kinematic model without the need of model scaling or computationally intensive

optimization methods.

3.3.6 Standalone software version

The implementation of the tasks described in the previous sections in separate script

files allowed modular testing and validation of the applied methods with targeted data

visualization capabilities, however redundancy in the codebase started to develop as new

scripts have been implemented along the process. To overcome this issue and to make

system usability independent of MATLAB, the re-implementation of the core function-

ality has been started in Python using the Kivy framework10 that was created to aid the

development of cross-platform multitouch applications. With this approach, one unified

codebase may be used to target desktop and mobile (Android and iOS) platforms in the

future, allowing the application of the system in various environments.

3.4 Conclusion

In this chapter the design and implementation details of a biomedical measurement device

were shown. The system is able to record the kinematic state of the human arm by using

inertial sensors and to record the surface electrical activities of forearm muscles. Various

calibration and data filtering algorithm have been introduced with representative cases

presented along the process. Further work includes finalization and integration of EMG

frontend design, PCB design and manufacturing of the device and data validity testing

with reference measurements using a medical grade optical system.

10https://kivy.org/#home

DOI:10.15774/PPKE.ITK.2017.002



Chapter 4

Inverse Kinematics for Inertial

Sensors

The current chapter is based on the author’s articlce entitled “Real-time inverse kine-

matics for the upper limb: a model-based algorithm using segment orientations”. [J2]

4.1 Background

Quantitative movement analysis is a key concept in understanding processes of the human

movement system. Evolved, high precision measurement devices have advanced research

activity in movement rehabilitation [65, 66, 2, 67], performance analysis of athletes [3]

and general understanding of the motor system [68, 4, J1, 69] during the last decades

by making movement pattern comparison possible. This advancement was further accel-

erated by model-based analysis approaches that enabled explicit characterization of the

studied movement patterns [70, 71, 72, 73, 74, 5].

In addition to accurate measurement methods discussed in the previous chapter, proper

evaluation of the recorded motion is an other key building block of human movement

analysis. Although various geometric approaches have been developed to describe move-

ment kinematics, the need for standardization of kinematic (and kinetic) analysis of

human movements have led to the development of model based tools like SIMM [63]

and OpenSim [64] among others. These software packages provide biomechanical models

and analysis pipelines to perform various processing steps e.g. model editing, scaling,

54
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kinematic and dynamic calculations. Using these tools, obtaining useful movement prop-

erties may become a standard process that produces outputs directly comparable across

movement tasks and studies.

For the purposes of the current study OpenSim was chosen as the reference model-based

movement analysis tool because it uses a mature multibody dynamics engine (Simbody),

it can handle SIMM’s model format, it provides various APIs (MATLAB, Java, Python)

for integration with custom software and it is free and open source with a growing commu-

nity behind. For kinematic analysis, OpenSim uses the ”standard” offline measurement-

scaling-inverse kinematics pipeline where the actual biomechanical model (single limb

to full body) is fitted to measurement data. During this process, positions of virtual

markers placed on specific model segments are fitted to experimentally recorded marker

positions of the subject with the same arrangement. Scaling is important to generate

subject-specific model instances while inverse kinematics (IK) is performed to extract

model-defined anatomical joint angles that produced the movement. OpenSim uses a

text-based structured XML model format that contains all information needed for the

biomechanical description of the human body (bodies, kinematic constraints and forces

(i.e. muscles)) that are accessible through API calls, too.

Complex measurement and analysis of upper limb movements including kinematics and

muscle activities is an exciting and growing subfield of human movement analysis [75,

76, 77, C2, 78] that promises better understanding of control patterns during specific

movements, and as an example benefit may – on the longer term – advance control tech-

niques currently applied to arm and hand prostheses. This process however needs tighter

integration of kinematic measurement and reconstruction (from raw data to anatomical

joint angles) as the time and computational overhead of the offline measurement-scaling-

inverse kinematics scheme gives a bottleneck in applications where real-time analysis of

the control patterns with respect to the actual kinematics would be beneficial.

The main goal of this chapter is to extend the measurement and analysis workflow of

human arm movements with a method that allows accurate and real-time calculation of

anatomical joint angles for a widely used SIMM/OpenSim upper limb model in cases

when inertial sensors are used for movement recording. For this purpose a custom kine-

matic algorithm is introduced that utilizes orientation information of arm segments to
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perform joint angle reconstruction. Accuracy and execution times of the proposed algo-

rithm are validated against OpenSim’s IK method on various platforms.

4.2 Methods

4.2.1 Upper limb model

To analyze arm kinematics with OpenSim, the most complete model available was cho-

sen known as the Stanford VA Upper Limb Model [79]. It is freely available as part of

the Simtk project [80] in SIMM model format [81] that can be imported directly into

OpenSim. The model is based on experimental data, includes 15 degrees of freedom

and 50 muscle compartments and enables the evaluation of kinematics, muscle-tendon

lengths, moment arms, muscle forces and joint moments in an anatomically reasonable

setup (conforming to the ISB recommendation on definitions of joint coordinate systems

of various joints for the reporting of human joint motion [82]). After importing, the struc-

ture of the model follows OpenSim’s convention including bodies connected with joints,

rotational and translational kinematic constraints and forces defining muscle paths and

attributes. The 15 degrees of freedom define the kinematics of the shoulder(3), elbow(2),

wrist(2), index finger(4) and thumb(4). As the current work focuses on kinematics of

the shoulder, elbow and wrist joints only, any muscles and kinematics of the index finger

and the thumb will not be taken into account further in this chapter. The seven degrees

of freedom that define the kinematic state of the whole arm excluding the fingers are

elevation plane, thoracohumeral (elevation) angle and axial rotation for the shoulder,

elbow flexion and forearm rotation for the elbow and deviation and flexion for the wrist.

The model represents the upper limb as a linked kinematic chain of bodies, each having a

parent body, a location in the parent’s frame and a joint describing the possible relative

motion of the child with respect to the parent. The three-dimensional posture of the arm

is generated by consecutive rotations of bodies determined by the actual angle values

(joint coordinates) in proximal to distal order. As the movement of the shoulder girdle

(clavicle, scapula and humerus) is complex and cannot be measured directly in most cases,

the model implements regression equations that vary only with the thoracohumeral angle

to determine the position of the shoulder joint with respect to the thorax.
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Figure 4.1: Representations of the used upper limb model with reference
poses and markers. (A) Screenshot taken from OpenSim while displaying the used
full arm model. The reference configuration is shown as a shaded overlay on an actual
example configuration determined by the joint angle vector [θelv = 0◦, θsh elv = 63◦,
θsh rot = 15◦, θel flex = 95◦, θpro sup = −60◦, θdev c = 0◦, θflex c = 20◦]. (B) Rep-
resentation of the model’s exported structure in MATLAB producing the same actual
configuration as in sub-figure (A) using the developed forward kinematics function (func-
tionally equivalent to OpenSim’s version). (C) Locations of prototype markers that are
solely used to the reconstruction of model-defined anatomical joint angles with the pro-
posed algorithm. (D) Locations of virtual markers that are used for the algorithm
validation process by serving as inputs to OpenSim’s inverse kinematics tool directly.
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The reference orientation of the model (all joint coordinate values equal 0◦) occurs when

all of the following conditions are true [79] (for a visual reference, see Figure 4.1/A):

1. The shaft of the humerus is parallel to the vertical axis of the thorax.

2. In case of shoulder elevation, the humerus moves in the plane of shoulder abduction.

3. In case of elbow flexion, the forearm moves in the sagittal plane.

4. The hand is in the sagittal plane.

5. The third metacarpal bone in aligned with the long axis of the forearm.

After detailed investigation of the XML file containing all parameters of the selected

model, the numerical algorithm with exact rotation axes and order was reproduced that

generates arm orientation from actual joint angle values. During this process the position

of the shoulder joint is calculated first from the thoracohumeral angle. This is followed by

four consecutive rotations in the shoulder joint in the order of elevation plane, elevation

angle, -elevation plane and axial rotation, where the rotation axes of elevation plane

and axial rotation overlap in the reference arm orientation. Elbow flexion occurs in the

humeroulnar joint while forearm rotation takes place in the radioulnar joint. Motion of

the wrist is distributed among the proximal and distal rows of carpal bones by having

two rotations for each row (four in total) both depending on flexion and deviation values.

For visual reference of the rotations defined in the model, see Figures 4.2 and 4.3.

Markers, scaling and inverse kinematics

To evaluate subject motion with OpenSim, model parameters have to be adjusted to

experimental data. As of OpenSim’s latest version at the time of writing (version 3.3),

this can be achieved by using marker based motion capture data and virtual markers

located on the model at approximately the same places as the experimental markers

are located on the subject. This setup allows automatic subject specific scaling of the

model [83] and calculation of anatomical joint coordinates (inverse kinematics) during

the measured movement using weighted least squares optimization [84]. In the inverse

kinematics tool, individual marker weights can be user specified and the least squares

problem is solved with a quadratic programming solver (convergence criterion: 0.0001,

iteration limit: 1000). As the efficiency of both scaling and inverse kinematics is highly

dependent on the accuracy of virtual marker locations, marker placement is usually an

iterative process until the best fit to experimental data is found.
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4.2.2 Prototype markers

To enable the utilization of the upper limb model with inertial measurements, a pro-

totype marker set was defined. For this purpose, orthonormal bases were formed for

each anatomical joint (shoulder, elbow and wrist) and markers were placed at specific

locations in these bases to reflect the actual compound rotations among the respective

degrees of freedom (for the corresponding mathematical definitions, see appendix B.1).

Orthonormal bases

Shoulder: The three independent model axes for the shoulder (defined in model bodies

humphant, humphant1 and humerus that have the same position), collectively denoted as

Bsh orig, were good candidates to form a basis because they are unit length vectors (like

all axes in the model) and almost orthogonal to each other (pairwise deviations from right

angle are 0.00064◦, 0.0029◦ and 0.0002◦). For proper operation of the proposed algorithm

however, these axes were orthogonalized using QR decomposition (see appendix B.2) to

prevent error accumulation during the calculations. This resulted in the orthonormal

basis Bsh orth.

As a result, rotations in the shoulder can be expressed as elemental rotations of Bsh orth

with acceptable angle errors due to the pairwise deviations between the original and new

basis vectors after orthogonalization (0.000019◦, 0.000655◦ and 0.002925◦, respectively).

Elbow: As relative orientation of the two rotation axes in the elbow is not close enough

to orthogonal and the axes are defined in different parent bodies (rel flex → ulna

and rpro sup → radius), the orthonormal basis Bpro sup and the rotation matrix

R
Bpro sup
rel flex (θel flex) were formed to properly express the compound rotation as the product

of an axis-angle and an elementary rotation about the main axis in Bpro sup. Again, some

angle errors are expected while calculating the elbow flexion angle in this basis because

rel flex is threated as it would belong to the radius body of the model.

Wrist: Rotations in the wrist are the most complex among the three anatomical joints.

Effects of the two active joint coordinates (deviation and flexion) are distributed among

two model bodies (lunate and capitate), each having two nonorthogonal rotations (rdev,

rflex → lunate and rpdr1, rpdr3 → capitate) depending on both joint coordinates. To

deal with the complexity of this structure, the orthonormal basis Bpdr3 and rotation
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axes r
Bpdr3

dev , r
Bpdr3

flex and r
Bpdr3

pdr1 were constructed to prepare the calculation of θdev and

θflex. Using this approach, rdev and rflex are threated as if they would belong to the

capitate body of the model.

Marker placement

In order to add virtual markers to any OpenSim model, the parent body and the location

within the parent’s frame have to be defined for each marker. Having the orthonormal

bases from the previous section (Bsh orth, Bpro sup and Bpdr3), 12 prototype markers were

placed on the model as follows (for reference, see Figure 4.1/C):

• Four markers were placed into each orthonormal basis having one at the origin of

the actual basis ([0 0 0] in its parent body) and one in each axis of the basis.

• The markers were named using the convention PMx [SH|EL|WR] [O|X|Y|Z] where

PM refers to prototype marker, x is the serial number of the basis in which the

marker is located (1-3), [SH|EL|WR] refers to the anatomical joint in which the

marker is located and [O|X|Y|Z] refers to the marker’s location within the actual

basis (origin or any of the axes). For example the name of the wrist’s origin marker

is PM3 WR O.

Because all markers follow their parent bodies’ orientation during analyzed movements,

coordinates of the difference vectors between the origin markers and the same basis’ axis

markers reflect the compound rotation matrix in each anatomical joint (in the corre-

sponding basis) at any time instant. To utilize this feature it is crucial that the structure

of each joint’s marker subset remains consistent during measurements (by keeping the

formation of an orthonormal basis), because any deviation in relative marker positions

renders the derived compound rotation matrix inaccurate. As a consequence, it is recom-

mended to use arm segment orientations to calculate the actual positions of prototype

markers instead of measuring them directly. This can be achieved when using optical

motion capture devices as segment orientations can be reconstructed with most systems

by having at least three markers on each segment, however this is still an offline pro-

cess. More importantly, utilizing orientation information makes the application of inertial

sensors possible and beneficial in this setup as they are used to determine orientation

directly. As an additional benefit, the offset-independent nature of orientation informa-

tion enables subject-independent joint angle reconstruction, rendering the scaling step of
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the standard inverse kinematics approach unnecessary in the process. Using this feature

a real-time inverse kinematics algorithm is introduced in the next section that provides

joint coordinate outputs coherent with OpenSim’s inverse kinematics tool.

4.2.3 Algorithm description

The key point in accelerating the selected upper limb model’s inverse kinematics calcula-

tion is the model specific determination of prototype marker locations. By constructing

representative orthonormal bases in each anatomical joint of interest (Bsh orth in the

shoulder, Bpro sup in the elbow and Bpdr3 in the wrist) joint specific rotations can be

addressed as elementary or axis-angle rotations in the corresponding bases. Having pro-

totype markers in locations that reflect the actual orientations of these bases gives the

possibility to express joint coordinates (rotation angles) in an efficient way, even in closed

algebraic form in the shoulder and the elbow. As there was no closed form solution found

to calculate angles in the wrist, a numerical algorithm is given for this part of the problem.

MATLAB R2015b (Mathworks, Natick, MA, USA) was used for algorithm prototyping

and development.

Shoulder

Because shoulder prototype markers are placed on the model in a way that they show the

actual orientations of the main axes of Bsh orth, an experimental (numerical) compound

rotation matrix can be constructed from their spatial coordinates as shown in (4.1),

where each marker position should be considered as a row vector.

R̃shoulder =



PM1 SH X− PM1 SH O

PM1 SH Y− PM1 SH O

PM1 SH Z− PM1 SH O

 Bsh orth


T

(4.1)

By utilizing the kinematic structure of the shoulder joint (and keeping the assumption

that R̃shoulder= Rshoulderas detailed in appendix B.3), estimations of rotation angle val-

ues can be calculated as follows:
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θ̃sh elv = arccos
(
R̃shoulder

(2,2)

)
(4.2a)

θ̃elv = atan2
(
R̃shoulder

(3,2) ,−R̃shoulder
(1,2)

)
(4.2b)

θ̃sh rot = arcsin

(
AR̃shoulder

(2,1) +BR̃shoulder
(2,3)

A2 +B2

)
(4.2c)

where A = sin(θ̃elv) sin(θ̃sh elv)

B = cos(θ̃elv) sin(θ̃sh elv)

Although the formulations in (4.2a) and (4.2c) could be susceptible to modulo π and

sign errors in general, the allowed angle ranges defined in the model (θsh elv: 0◦ → 180◦,

θsh rot: −90◦ → 20◦) keep these equations safe to use until the experimental data does

not force the model outside of these ranges.

Elbow

Similarly to the shoulder, the experimental compound rotation matrix can be constructed

from the actual spatial positions of the elbow’s prototype markers. Because the model

implements rotations in an incremental way, a reverse rotation of the extracted frame

have to be performed in the shoulder’s basis to get the correct experimental rotation

matrix for the elbow as shown in (4.3).

R̃elbow =



PM2 EL X− PM2 EL O

PM2 EL Y− PM2 EL O

PM2 EL Z− PM2 EL O

 (Bsh orth R̃shoulder BT
sh orth

)
Bpro sup


T

(4.3)
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Having R̃elbow= Relbowestimations of joint angle values in the elbow can be calculated

as (for further details, see appendix B.5):

θ̃el flex = arccos

(
R̃elbow

(1,1) − x
2

1− x2

)
(4.4a)

θ̃pro sup = arcsin

(
AR̃elbow

(1,2) +BR̃elbow
(1,3)

A2 +B2

)
(4.4b)

where r
Bpro sup

el flex = [x y z]

A = y sin
(
θ̃el flex

)
− xz

(
cos(θ̃el flex)− 1

)
B = z sin

(
θ̃el flex

)
+ xy

(
cos(θ̃el flex)− 1

)

As in the case of the shoulder, (4.4a) and (4.4b) should be used with care because of

modulo π and sign errors, but again having sufficient joint angle limits in the model

(θel flex: 0◦ → 130◦, θpro sup: −90◦ → 90◦) application of these formulas is safe until

experimental data does not force the model outside of these ranges.

Wrist

The experimental compound rotation matrix for the wrist can be constructed from the

actual spatial positions of its prototype markers. Because of incremental rotations in the

model, reverse rotations of the extracted frame have to be performed in the shoulder’s

and elbow’s bases to get the correct experimental rotation matrix as shown in (4.5).

R̃wrist =



PM3 WR X− PM3 WR O

PM3 WR Y− PM3 WR O

PM3 WR Z− PM3 WR O

(Bsh orth R̃shoulder BT
sh orth

)
·

·
(
Bpro sup R̃elbow Bpro sup

T
)

Bpdr3


T (4.5)
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Although there is no closed form solution to calculate joint angle rotations in the wrist,

the flexion angle can be determined as the solution of the following root finding problem

(further details and definitions of a, b, c, x, y and z can be found in appendix B.7):

Given F (θflex, σ) = −θflex + η + σ atan2
(

Re
(√

ξ − c2
)
, c
)
,

where

η = atan2(b, a)

σ ∈ {−1, 1}

ξ = a2 + b2

find θflex = µ such that F (µ, σ) = 0.

(4.6)

Based on this definition, the following properties hold for F (θflex, σ):

1. (−θflex + η) defines a baseline with constant negative slope for the two possible

solutions F (θflex,−1) and F (θflex, 1).

2. Because of the definition of the atan2(y,x) function, the value of atan2
(√

ξ − c2, c
)

will always be positive if
√
ξ − c2 is real (i.e. c2 ≤ ξ). This implies that the two

solutions to F (θflex, σ) do not cross the baseline but remain ”below” (σ = −1)

and ”above” (σ = 1) of it for all values of θflex.

As c depends on the actual compound rotation matrix R̃wrist, its value is influenced

by both θdev c and θflex c. As a consequence, there may be wrist configurations where

c2 > ξ for some regions of θflex, driving F (θflex, σ) into a singular state within these

regions. To prevent problems arising from this situation during the root finding process,

singularity border points for θflex can be determined as follows. Let (4.7) as defined in

(B.17), only θflex changed to ϑ to denote specific singularity border points.

c = x cos(ϑ) + y sin(ϑ) + z (4.7)

Considering (4.6), singularity borders occur at locations where c2 = ξ, resulting in c1,2 =

±
√
ξ. Using these equalities and Euler’s formula, c can be rewritten into an exponential
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form that can be solved for ϑ resulting in the formulas shown below.

c1 =
√
ξ :

ϑ
(1)
1,2 = − ln

(√
ξ − z ±

√
ξ − 2z

√
ξ − x2 − y2 + z2

x− iy

)
i

(4.8)

c2 = −
√
ξ :

ϑ
(2)
1,2 = − ln

(
−
√
ξ + z ±

√
ξ + 2z

√
ξ − x2 − y2 + z2

x− iy

)
i

(4.9)

As a result, four separate complex-valued singularity border points can be determined

for all wrist configurations. To get a better understanding of the structure of F (θflex, σ),

the function was visually inspected with an interactive MATLAB script developed for

this purpose. The tool allows the simulation of different user-defined wrist configurations

through separate sliders for θdev c and θflex c while plotting all relevant information about

the problem (a representative screenshot is shown in Figure 4.4). Based on manual testing

throughout the model-defined ranges for θdev c and θflex c, the following observations

were made:

1. The condition in (B.12) is always met.

2. ϑ
(k)
1,2 ((k = 1) ∨ (k = 2)) are separate real numbers if there is a singularity region

in the actual wrist configuration for ck. In this case θflex = ϑ
(k)
1 and θflex = ϑ

(k)
2

indicate singularity border locations directly.

3. ϑ
(k)
1,2 ((k = 1) ∨ (k = 2)) are complex conjugates if there is no singularity region in

the actual wrist configuration for ck. In this case θflex = Re
(
ϑ
(k)
1

)
= Re

(
ϑ
(k)
2

)
indicates the location where the values of F (θflex,−1) and F (θflex, 1) are closest

to (k = 1) and furthest from (k = 2) each other.

4. Re
(
ϑ
(2)
1,2

)
always remain outside the model defined range of θflex.

5. θflex = η is the ”gluing point” of F (θflex,−1) and F (θflex, 1), meaning that the

singularity region for c1 starts to develop from this location, driving F (θflex, σ) to

”stick” to the baseline.

6. If there is a singularity region for c1, Re
(
ϑ
(1)
1

)
remains always smaller than µ

where F (µ, σ) = 0.

7. In cases when the singularity region starts to develop (i.e.
∣∣∣Im(ϑ(k)1

)∣∣∣ is sufficiently

small but not zero), two separate roots may appear, but only one being valid.
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8. F (θflex, σ) will have a valid root at θflex = μ if and only if σ = sign (μ− η).

Figure 4.4: Representative screenshot of the tool developed for visual inspec-
tion of F (θflex, σ) (defined in Equation (4.6)). The interactive MATLAB script
allows simulation of different user-defined wrist configurations through separate sliders
for θdev c and θflex c while plotting all relevant information about the optimization prob-
lem. The two thinner vertical black lines located at ±35◦ indicate model-defined limits

for θflex.

Based on these observations, (4.6) can be solved with Algorithm 1. Having the value of

θflex, θflex c and θdev c can be calculated as follows:

θ̃flex c = 2 ∗ θflex (4.10a)

θ̃dev c = atan2
(
wT

1 r1 × v1,v
T
1 w1 −

(
vT
1 r1
) (

wT
1 r1
))

(4.10b)

where v1 = exp
(
θflexr̂

Bpdr3

flex

)
r
Bpdr3

pdr1 and w1 =
(
R̃wrist exp

(
−θflex ̂[1 0 0]

))
r
Bpdr3

flex .

Although the computational demand of wrist angle calculations is higher than of the

shoulder and the elbow, the algorithm has still higher overall time efficiency than the

optimization approach used by OpenSim’s Inverse Kinematics tool, as it is shown in the

Results section.
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Algorithm 1: Numerical algorithm to calculate θflex
Data: x, y, z, η and ξ from (B.17) and (4.6)

Result: θflex = µ such that F (µ, σ) = 0

1 calculate ϑ
(1)
1 and ϑ

(1)
2 from (4.8)

2 determine the interval [ζ1, ζ2] in which F (µ, σ) changes sign

3 if
∣∣∣ϑ(1)1 − ϑ

(1)
2

∣∣∣ < 10−10 then

4 θflex ←− arg zero
µ∈[ζ1,ζ2]

F (µ, 1)

5 else if Re
(
ϑ
(1)
1

)
> η then

6 θflex ←− arg zero
µ∈[ζ1,ζ2]

F (µ, 1)

7 else if Re
(
ϑ
(1)
1

)
< η then

8 θflex ←− arg zero
µ∈[ζ1,ζ2]

F (µ,−1)

9 else

10 θflex ←− η

11 end

4.2.4 Algorithm validation

Testing and validation of the described algorithm was automated using OpenSim with

its Python API and MATLAB. To make direct comparison possible between OpenSim’s

optimization method and the proposed algorithm, 8 additional virtual markers were

placed on the model at locations that are suitable for optical motion capture (e.g. using

Vicon) simulating an environment where OpenSim is generally applied. The virtual

marker locations are the following (for visual reference, see Figure 4.1/D):

• VM1 TH : Thorax marker at the upper end of the sternum.

• VM2 AC : Acromio-clavicular joint of the shoulder girdle.

• VM3 EL IN : Medial epicondyle of the humerus.

• VM4 EL OUT : Lateral epicondyle of the humerus.

• VM5 WR IN : Distal head of the radius.

• VM6 WR OUT : Distal head of the ulna.

• VM7 MC2 : Distal head of the second metacarpal bone.

• VM8 MC5 : Distal head of the fifth metacarpal bone.
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Figure 4.5: Representative simulated movement pattern used for algorithm
validation. Simulated movement patterns were generated to validate the proposed
kinematic algorithm. 100 separate pseudo-random joint coordinate trajectories were
constructed as 5th order Bézier-curves having 5 seconds duration and 100 Hz sampling
frequency. PMx and VMx marker trajectories were calculated with our forward kine-
matics MATLAB function to generate simualted ”measurement” data for the proposed

algorithm and OpenSim.

The structure of the upper limb model (including marker positions) was extracted using

OpenSim’s Python API and saved into a .mat file for further processing with MATLAB.

A forward kinematics function (functionally equivalent to OpenSim’s implementation)

was developed in MATLAB to calculate body and marker positions for specific joint

coordinate vectors of [θelv, θsh elv, θsh rot, θel flex, θpro sup, θdev c, θflex c] in the model,

enabling the analysis of trajectories for both PMx and VMx markers from artificially gen-

erated movement patterns (Figure 4.1/B-D).

Simulated movement patterns

To avoid possible problems accompanying experimental measurements, simulated move-

ment patterns were generated to test the performance and validity of the proposed al-

gorithm. 100 separate pseudo-random (random seed = 10) joint coordinate trajectories

were constructed in MATLAB having a duration of 5 seconds and a sampling frequency

of 100 Hz. The trajectories were generated as 5th order Bézier-curves as shown in (4.11)
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using 6 uniformly distributed control points (0%, 20%, . . . , 100%) with randomly cho-

sen values for each joint coordinate from their valid intervals defined in the model. A

representative movement pattern is shown in Figure 4.5.

B5(t) =
5∑
i=0

(
5

i

)
ti (1− t)5−i Pi =

= (1− t)5P0 + 5t(1− t)4P1 + 10t2(1− t)3P2+

+10t3(1− t)2P3 + 5t4(1− t)P4 + t5P5

where t ∈ [0, 1] and

Pi, i ∈ {0, . . . , 5} are the control points.

(4.11)

Following this step, forward kinematics was performed for each of the simulated patterns

to calculate PMx and VMx marker trajectories yielding simulated ”measurement” data as

it would have been recorded during a real movement. The resulted trajectories were then

used as inputs to inverse kinematics calculations with OpenSim (VMx) and our algorithm

(PMx) while the corresponding movement patterns served as reference for the outputs of

each of the tested methods.

Inverse kinematics with OpenSim

To speed up the validation process, OpenSim (v3.3) was compiled from source on a Su-

permicro server having two Intel R© Xeon R© E5-2695 v3 CPUs (with a total of 56 execution

threads) and 64 GB RAM, running Ubuntu Server 14.04.2 LTS operating system. Al-

though the inverse kinematics (IK) algorithm in the used OpenSim version do not utilize

multi-core architectures natively, each IK task can be divided into separate subtasks

that can run in parallel thanks to the applied optimization method (there is no data

dependency between time frames). To utilize this property, a pipeline was developed us-

ing MATLAB and Bash to prepare VMx marker data and the required files for OpenSim

and manage file transfers, multi-threaded IK execution, results collection and evaluation.

One important step before performing the IK calculation in OpenSim is subject-specific

scaling of the used model and relative weighting of the markers. As only simulated data

were used in the current study on an unmodified upper limb model, the scaled model
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file was identical to the original file during IK execution, while all marker weights were

equal.

Algorithm implementation

The prototype of the proposed algorithm was implemented in MATLAB and tested

with the simulated PMx marker trajectories. Calculation of (4.6) was performed using

MATLAB’s built-in fzero() function. Based on the MATLAB version, the algorithm

was implemented in ANSI C to target practical applications. In this case (4.6) was

solved with Brent’s root finding algorithm from [85]. Furthermore, compilation options

were included to assess the effects of different data precisions (float or double) on the

accuracy and execution time of the algorithm. This was not an option with MATLAB

because fzero() cannot be used with float input.

To address possible accuracy problems arising from the lower precision of float data, an

additional test case with a simple output continuity check for wrist angles was included,

namely when the absolute difference between two successive θflex c values is larger than

5◦, the actual θflex c will be the previous θflex c+0.5◦. This modified version of the

algorithm is denoted with mod. suffix among the results. Estimated memory footprints

of the implemented algorithm variants (for the ARM builds) are listed in Table 4.1.

Table 4.1: Memory footprint estimations of the implemented algorithm for
the ARM builds. Each row represents a separate implementation variant. Table
values show the estimated memory footprint (Flash and Static RAM) of the imple-
mentation calculated by running the arm-none-eabi-size command on the generated

executable files.

Implementation variant Flash SRAM

Float 23.9 kB 2.4 kB
Float mod. 24.1 kB 2.4 kB

Double 33.4 kB 2.6 kB

Evaluation platforms

MATLAB and C implementations of the proposed algorithm were tested on a system with

an Intel R© Core R© i5-540M processor running Ubuntu Desktop 14.04.4 LTS. In addition,

the C implementation was evaluated on the following microcontroller units (MCUs) that

are capable of targeting resource constrained environments (e.g. wearable measurement

devices) with high performance:
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1. STM32F407VG – ARM Cortex-M4 core with single precision floating point unit

(FPU), up to 168 MHz core clock, 1 MB Flash memory, 192 KB SRAM

2. STM32F746NG – ARM Cortex-M7 core with single precision FPU and L1-cache,

up to 216 MHz core clock, 1 MB Flash memory, 320 KB SRAM

For proper comparison, both MCUs were clocked at 168 MHz and the source codes

differed only in device specific details (e.g. hardware initialization). Algorithm evaluation

on the MCUs was controlled with MATLAB via a UART link including data preparation,

transmission and storage.

Performance metrics

To evaluate the overall performance of the algorithm compared to OpenSim’s IK method,

accuracy and execution times were analyzed in all cases (OpenSim, MATLAB and C

implementations). To assess accuracy, RMS values were computed for the differences

between the calculated and simulated joint coordinate trajectories for each trial. Means

and standard deviations of these RMS values were then calculated across trials for each

platform and precision (where this was applicable).

Running times of OpenSim’s IK evaluation were calculated as a sum of subtask execution

times from the IK log output directly. Algorithm execution times were measured by the

tic and toc methods in MATLAB, the clock() function from the <time.h> library for

the C implementation on PC and on-chip hardware timers clocked at 1 MHz for both

MCUs.

Data exclusion from OpenSim trials

Although inverse kinematics in OpenSim was calculated using an unmodified and un-

scaled model in each trial, there were cases when large step errors occurred at seemingly

random locations in the IK output (independently of subtask borders mentioned in sec-

tion Inverse kinematics with OpenSim). This phenomenon may be handled by marker

placement adjustment or error checking in measurement data in general. As IK input

was strictly controlled by using simulated trajectories and the markers remained intact

in the model between trials, further troubleshooting would have been needed to find a

solution to this issue. Because the main emphasis of the study is the proposed algorithm
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and not OpenSim’s internal workings and IK troubleshooting, all OpenSim trials were

excluded from final accuracy assessment where any of the resulted joint coordinate RMS

errors exceeded 5◦ to not bias the results with incorrect data. As a result, only 59 trials

out of 100 were used to calculate the accuracy of OpenSim’s IK algorithm. This however

did not have any effect on the other measurements, so MATLAB and all C results were

calculated across 100 trials.

4.3 Results

4.3.1 Accuracy

RMS errors from algorithm evaluation are shown in Table 4.2. The results show that

considering the mean of all valid trials (59 for OpenSim, 100 for all others), all platforms

performed reasonably well producing errors below 3◦ for all joint coordinates.

Regarding OpenSim it can be seen that errors for each joint coordinate are larger than

those provided by our algorithm. The reason for this can lie in the optimization ap-

proach of OpenSim that in fact contains hard-coded convergence (0.0001) and itera-

tion (1000) limits. However these limits prevent OpenSim’s IK algorithm to match

the simulated movement patterns perfectly, they provide a practical solution to the

accuracy ↔ running time trade-off for the software’s general usage.

MATLAB and C implementations of the proposed algorithm performed equally well for

shoulder and elbow angles independent of the used data precision (double / float).

This could occur because of the relatively low number of operations needed by these

joint coordinates shown in equation groups (4.2) and (4.4) that prevented considerable

error accumulation due to the lower precision of float. Regarding wrist angles a clear

distinction can be made between double and float (MATLAB uses double as default).

The two main reasons for this phenomenon are 1: the significantly larger computational

demand of θdev c and θflex c involving iterative processes that can lead to precision error

accumulations and 2: rounding error based mismatch in the root finding process involved

in the calculation of θflex in rare cases when two roots are present in (4.6). A deeper

analysis among the trial-wise results revealed that the second reason was more signifi-

cant as roughly 70% of the trials ended up in no more than 0.1◦ maximum error with
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float precision. The rest of the trials contained 1-5 ”wrong” samples showing 15-20◦

impulse-like errors while the remaining samples within the trial did not have this prob-

lem. Investigation of the erroneous samples revealed that indeed a wrong root for (4.6)

was found in these cases. To deal with this issue, an output continuity checking step was

implemented for float precision in cases denoted with the mod. suffix. This turned out

to be a simple yet effective solution to the problem as the corresponding results show the

disappearance of the impulse-like errors.

4.3.2 Execution time

To assess overall performance, execution times were compared between OpenSim’s IK

method and our proposed algorithm on different platforms and are shown in Table 4.3.

Measurement results show that the optimization approach of OpenSim performed the

calculation of a single iteration in 145 ms on average. Because of the application specific

nature of the proposed algorithm, its running times considering different implementations

(MATLAB / C), data precisions (double / float) and platforms (PC / ARM Cortex-

M) all showed a significant increase in execution performance compared to OpenSim, the

worst result being about 5 ms on average for a single iteration.

As expected, the C implementation is more than two orders of magnitude faster than the

MATLAB version on the PC, yielding execution times per iteration about 10 µs with all

precision variants (double, float and float mod.). Opposed to this, running times on

embedded platforms showed more scattered results. The difference between double and

float is more expressed in these cases while application of the FPU accelerates float

computations even further (hard float entries in Table 4.3). Regarding the modified

algorithm variant it can be seen that even the extra continuity check adds some amount

to the execution time per iteration, the possibility to use float precision brings more

speed advantage, especially with the FPU enabled. These findings are true for both

tested MCUs with the observation that ARM’s M7 architecture is about twice as fast as

M4 when running the presented algorithm with the same core clock.
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Table 4.2: RMS errors. Each row represents a separate test environment for the reference (OpenSim) and proposed inverse kinematics algorithm.
The columns show mean ± standard deviation joint angle RMS errors across all valid trials (59 for OpenSim, 100 otherwise) for each test environment.

Test environment θelv θsh elv θsh rot θel flex θpro sup θdev c θflex c

OpenSim 0.0429 ± 0.0339 0.0192 ± 0.0053 0.1472 ± 0.0760 0.0764 ± 0.0288 0.6365 ± 0.1701 0.9198 ± 0.2477 2.2916 ± 1.1142
MATLAB 0.0028 ± 0.0003 0.0006 ± 0.0002 0.0014 ± 0.0007 0.0005 ± 0.0002 0.0008 ± 0.0006 0.0023 ± 0.0041 0.0049 ± 0.0087

PC double 0.0028 ± 0.0003 0.0006 ± 0.0002 0.0014 ± 0.0007 0.0005 ± 0.0002 0.0008 ± 0.0006 0.0025 ± 0.0051 0.0053 ± 0.0107
PC float 0.0028 ± 0.0003 0.0006 ± 0.0002 0.0016 ± 0.0013 0.0005 ± 0.0002 0.0008 ± 0.0006 0.4193 ± 0.8995 1.1148 ± 2.4730
PC float mod. 0.0028 ± 0.0003 0.0006 ± 0.0002 0.0016 ± 0.0013 0.0005 ± 0.0002 0.0008 ± 0.0006 0.0045 ± 0.0092 0.0097 ± 0.0195

ARM M4 double 0.0028 ± 0.0003 0.0006 ± 0.0002 0.0014 ± 0.0007 0.0005 ± 0.0002 0.0008 ± 0.0006 0.0025 ± 0.0051 0.0053 ± 0.0107
ARM M4 soft float 0.0028 ± 0.0003 0.0006 ± 0.0002 0.0016 ± 0.0013 0.0005 ± 0.0002 0.0008 ± 0.0006 0.4193 ± 0.8995 1.1147 ± 2.4730
ARM M4 hard float 0.0028 ± 0.0003 0.0006 ± 0.0002 0.0016 ± 0.0013 0.0005 ± 0.0002 0.0008 ± 0.0006 0.4095 ± 0.9051 1.0944 ± 2.4840
ARM M4 soft float mod. 0.0028 ± 0.0003 0.0006 ± 0.0002 0.0016 ± 0.0013 0.0005 ± 0.0002 0.0008 ± 0.0006 0.0078 ± 0.0128 0.0170 ± 0.0276
ARM M4 hard float mod. 0.0028 ± 0.0003 0.0006 ± 0.0002 0.0016 ± 0.0013 0.0005 ± 0.0002 0.0008 ± 0.0006 0.0077 ± 0.0128 0.0167 ± 0.0275

ARM M7 double 0.0028 ± 0.0003 0.0006 ± 0.0002 0.0014 ± 0.0007 0.0005 ± 0.0002 0.0008 ± 0.0006 0.0025 ± 0.0051 0.0053 ± 0.0107
ARM M7 soft float 0.0028 ± 0.0003 0.0006 ± 0.0002 0.0016 ± 0.0013 0.0005 ± 0.0002 0.0008 ± 0.0006 0.4193 ± 0.8995 1.1147 ± 2.4730
ARM M7 hard float 0.0028 ± 0.0003 0.0006 ± 0.0002 0.0016 ± 0.0013 0.0005 ± 0.0002 0.0008 ± 0.0006 0.4095 ± 0.9051 1.0944 ± 2.4840
ARM M7 soft float mod. 0.0028 ± 0.0003 0.0006 ± 0.0002 0.0016 ± 0.0013 0.0005 ± 0.0002 0.0008 ± 0.0006 0.0078 ± 0.0128 0.0170 ± 0.0276
ARM M7 hard float mod. 0.0028 ± 0.0003 0.0006 ± 0.0002 0.0016 ± 0.0013 0.0005 ± 0.0002 0.0008 ± 0.0006 0.0077 ± 0.0128 0.0167 ± 0.0275
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Table 4.3: Execution times. Each row represents a separate test environment for
the reference (OpenSim) and proposed inverse kinematics algorithm. Table values show
mean ± standard deviation for a single iteration across all valid trials (59 for OpenSim,
100 otherwise) and the speed increase of each tested setup with respect to OpenSim.

Test environment Execution Time per iteration (ms) Speedup wrt. OpenSim

OpenSim 145.0532 ± 10.0669 1x
MATLAB 2.3656 ± 0.6689 61x

PC double 0.0111 ± 0.0013 13011x
PC float 0.0088 ± 0.0008 16416x
PC float mod. 0.0097 ± 0.0013 14982x

ARM M4 double 4.8777 ± 0.3554 30x
ARM M4 soft float 2.7327 ± 0.0928 53x
ARM M4 hard float 0.9713 ± 0.0214 149x
ARM M4 soft float mod. 2.7394 ± 0.0930 53x
ARM M4 hard float mod. 0.9740 ± 0.0216 149x

ARM M7 double 2.3124 ± 0.1704 63x
ARM M7 soft float 1.4293 ± 0.0504 101x
ARM M7 hard float 0.4462 ± 0.0117 325x
ARM M7 soft float mod. 1.4296 ± 0.0505 101x
ARM M7 hard float mod. 0.4478 ± 0.0115 324x

4.4 Discussion

Evaluation results of the tested algorithms show that each approach provides proper

accuracy for most common arm movement analysis scenarios. One important aspect

however is that while OpenSim provides a useful general tool for biomechanical analy-

sis including fields beyond inverse kinematics (e.g. inverse and forward dynamics), the

calculation of joint angles from the actual experimental data is rather demanding com-

putationally. As the output of this step gives the basis for all other analysis methods

in the software, the amount of time needed for the overall processing pipeline highly

depends on the efficiency of this algorithm. As Table 4.3 shows, the average amount of

time needed for OpenSim’s IK algorithm to perform a single iteration would allow about

7 Hz operation that falls behind the generally accepted practice in human movement

recording of at least 50 Hz. This property excludes OpenSim from tight integration with

systems requiring real-time movement kinematics, however that is not the software’s

original target application anyway (up to version 3.3 at least).

Considering the algorithm proposed in the study Tables 4.2 and 4.3 show a significant

improvement in performance in both accuracy and execution time when compared to

OpenSim’s IK method. The main reason for this difference is the algorithm’s application

specific nature with the utilization of both the internal structure of the used upper limb
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model and inertial sensing of movement to determine limb segment orientations directly.

As the MATLAB version showed proper accuracy and sufficiently short execution time

on the PC, implementation of the algorithm in ANSI C was reasonable to assess its

”real” performance without the overhead of a general prototyping tool that MATLAB

essentially has. Because accuracy results are the same or very similar across specific

variants of the C implementation (i.e. using double / float precision), only execution

time differences are discussed later in the text.

Running times of the algorithm’s C implementation showed more than four orders of mag-

nitude speedup on the tested Intel R© Core R© i5-540M processor compared to OpenSim’s

IK algorithm on a more recent and higher performance server CPU with Xeon R© archi-

tecture, yielding about 10 µs execution time per iteration for all variants. However this is

an impressive improvement, running the algorithm on PC would still pose problems from

practical aspects of possible applications (e.g. total size and mobility of the measurement

system or communication overhead between the measuring and processing device), so the

real benefit of this speed increase lie in the ”spare” performance that opened the way to

testing the algorithm in resource constrained embedded environments. Evaluation of the

proposed method on high performance MCUs showed that all implementation variants

that provided good accuracy (double and [soft/hard] float mod.) had acceptable

execution times on both architectures (M4 and M7) for real-time operation, considering

100 Hz as sufficient sampling frequency for human movement analysis. Based on these

results, the specific implementation variant should be chosen taking the overall design

requirements of the actual practical application into account (i.e. wearable measure-

ment devices like the one presented in [C1]) as in most cases the algorithm should fit

into a system containing other computationally demanding processes (like sensor fusion

algorithms) with power consumption being a critical part of the design for example.

An other practical advantage of the described algorithm is that it enables subject-

independent joint angle reconstruction during the measurements. This means that by

taking advantage of the offset-independent nature of orientation sensing, no scaling is

required for the proper calculation of inverse kinematics (opposed to OpenSim) as long

as the IMUs are able to produce good approximations of limb segment orientations.

It needs to be emphasized however that the application specific nature of the algorithm

and its dependency on the used upper limb model induce some practical considerations,
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too. Even in cases when the sensors provide accurate orientation information of the

measured limb, care must be taken when determining the limb’s reference orientation

based on the measurements. The reason for this is mainly inter-subject variability in

the sense that even the model defines the reference posture clearly, it cannot be assumed

that any actual subject will reproduce the same posture very accurately that can lead

to offset errors during the measurement. Furthermore, the assumption was made during

algorithm development that the measured movement always remains within the valid

joint angle ranges defined in the model. As long as this assumption holds (as in the

case of simulated movement patterns presented in this study), the algorithm should not

have problems with proper joint angle reconstruction. However, if outliers are present

in the experimental data (e.g. reference posture errors, inaccuracies in the measurement

or the sensor fusion algorithm or extreme anatomical ranges of a subject) undefined

output states can occur. This may be handled with a simple saturation technique on the

algorithm level but rather should be prevented by applying proper experimental design

and calibration methods. In a practical setup this involves proper sensor placement and

various steps before the measurements including zero motion offset compensation, hard

and soft iron error compensation in the magnetometer and determining relative sensor

orientations with respect to the measured segments [59, 86] for example.

4.5 Conclusion

With keeping the upper mentioned considerations in mind it can be stated that the

proposed algorithm is capable for real-time reconstruction of standardized anatomical

joint angles even in embedded environments, opening the way to complex applications

requiring accurate and fast calculation of model-based movement kinematics. Having

this property the proposed method brings the possibility to widen the application areas

of OpenSim and accelerate its overall analysis pipeline by transferring the calculation of

inverse kinematics into the measurement device in cases when inertial movement sensing

is applicable.

As an example, in cases when kinematics and muscle activities are both recorded during

arm movements, in addition to the reconstruction of joint angles, on-line labeling of

muscle activity data can be achieved based on the actual kinematic state of the arm

within the measurement device. This may result in reduced overall analysis time with
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OpenSim and produce a training set for analysis of complex movement activation patterns

that can be used to improve the control methods of upper limb prostheses in the future.
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Chapter 5

Conclusion

Each chapter describing the particular field of measurement and analysis of human arm

movements is concluded with its own conclusion section. In this chapter the new scientific

results are highlighted.

5.1 New scientific results

Thesis I. I have shown experimentally that during target tracking arm movements the

human movement system optimizes different cost functions based on knowledge about the

target trajectory in a way that for visually driven tracking of unfamiliar trajectories the

task error to be minimized is defined in target coordinates, whereas for familiar trajecto-

ries it is defined in motor coordinates.

Corresponding publication: [J1]

I have designed an experimental study and the corresponding measurement setup to in-

vestigate the differences in motor synergies between predictive and unpredictive tracking

arm movements for cases when subjects tracked a target moving in 2D on a graph-

ics tablet with a hand-held pen, while their arm movements were not restricted. The

measurement setup assured time accurate presentation of the visual stimulus to trigger

subject movement while synchronized recording of the pen’s planar position and 3D kine-

matics of the subject’s arm were also realized. By applying the Uncontrolled Manifold

Method and techniques from optimal feedback control theory of human arm movements,

81
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I have shown that the movement goal differs between tracking of familiar and unfamiliar

trajectories. The difference can be characterized by a modification of the task error being

minimized for different movement execution modes.

Thesis II. I have developed a wearable measurement device and a corresponding model-

based kinematic reconstruction algorithm that is able to determine the arm’s anatomical

joint angles in real-time, based on the spatial orientations of arm segments. The overall

performance gain of the method compared to the approach of a widely used biomechanics

simulation software is 1) up to x14982 on CPU, 2) up to x149 on an ARM Cortex-M4

MCU and 3) up to x324 on an ARM Cortex-M7 MCU while it maintains numerical

accuracy with the reference solution.

Corresponding publications: [C1], [J2]

Model based analysis of human upper limb movements has key importance in under-

standing the motor control processes of our nervous system. Various simulation software

packages have been developed over the years to perform model based analysis. These

packages provide computationally intensive – and therefore off-line – solutions to cal-

culate the anatomical joint angles from motion captured raw measurement data (also

referred as inverse kinematics). In addition, recent developments in inertial motion sens-

ing technology show that it may replace large, immobile and expensive optical systems

with small, mobile and cheaper solutions in cases when a laboratory-free measurement

setup is needed. The thesis contributes to the workflow of measurement and analysis of

human arm movements with an engineering prototype of a wearable measurement sys-

tem and an algorithm that allows accurate and real-time estimation of anatomical joint

angles for a widely used OpenSim upper limb kinematic model when inertial sensors are

used for movement recording.

By utilizing the inherent kinematic structure of the selected OpenSim upper limb model

(Stanford VA Upper Limb Model [79]), I have created a numerical algorithm that is

able to reconstruct model-defined custom rotation angles based on marker positions

within a virtual marker set specifically defined for this task. The virtual markers are

placed in specific locations within the local coordinate frames of selected model bodies

in a way that they form separate orthonormal bases in each anatomical joint of interest
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(shoulder, elbow and wrist) and represent the corresponding compound rotation matrices

of model-defined joint angles in the global reference frame. Having the markers bound

to their parent bodies, their positions in the global reference frame are determined by

the actual orientation of their corresponding arm segments during any movement within

the valid joint limits defined by the model. As the orientation of inertial sensors can

be reconstructed from their measured physical quantities with efficient algorithms, by

proper placement and calibration they can be used to update virtual marker positions –

and as a result, the compound rotation matrices of model-defined joint angles – during

measured arm movements. The developed numerical algorithm utilizes this feature to

reconstruct the anatomical joint angles of the model in real-time by extracting angle

values from the corresponding compound rotation matrices.
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5.2 Application of the results

Given that the thesis covers both theoretical and technical topics of human movement

science, several fields of application are possible. In the first part, the behavioral aspects

of specific target tracking arm movements were investigated. It was found that available

knowledge about the target trajectory has an impact on the actual execution mode of the

movement. Experimental data showed that subjects tried to minimize the pen position

error when the trajectory of the target was unknown while this goal was shifted towards

the minimization of joint angle variability in the case when target trajectory was known as

a result of preliminary training. While these findings contribute to the understanding of

the human movement system in general, they may be utilized in practical rehabilitation

applications as well. Considering post-stroke assessment, the developed experimental

setup and procedure may be used to give deeper insight into the actual state of the

patient’s movement system and reveal higher level effects of the injury (e.g. reduced

effectiveness of motor learning and visuo-motor coordination).

In the second part of the thesis, by developing the prototype of a wireless and wearable

measurement device based on inertial sensors, the evaluation of laboratory-free mea-

surement of human arm movements was started. As the prototype enables evaluation

and analysis of various sensor calibration, filtering and sensor fusion algorithms in a

fully customizable setup, it may be used in various applications where measuring the ac-

tual kinematic state of the arm can be utilized (e.g. state assessment for rehabilitation,

human-machine interfaces or better presence integration in virtual reality environments).

Another contribution to the field of human movement recording was the development of a

real-time reconstruction algorithm that is capable to determine model based anatomical

joint angles from inertial sensor data directly. As a result, tighter integration of kinematic

measurement and reconstruction can be achieved to resolve the time and computational

overhead of the offline measurement-scaling-inverse kinematics scheme applied in human

movement science that has been giving a bottleneck in applications where real-time

analysis of the control patterns with respect to the actual kinematics would have been

beneficial. As an example, the algorithmic concept of a system for the classification of

forearm muscle activity signals based on the arm’s kinematic state is presented in [C2],

while the design of a practical implementation using real-time data labeling with the

developed prototype is shown in [C3].
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Appendix A

Chapter 2: Mathematical

Background

A.1 Partial compensation of planning noise

The planned trajectory x̄
(k)
pl in trial k is described [34] as a random walk process with

partial compensation of the error ē(k) =
(
x̄
(k)
pl −mpl

)
. Starting from x̄

(0)
pl = mpl + r0pl

the random walk is defined by the recursion

x̄
(k+1)
pl = x̄

(k)
pl −Dē(k) + r

(k)
pl , (A.1)

with spherical Gaussian noise r
(k)
pl ∼ N

(
0, ρ2I

)
. The compensation is proportional to the

gain matrix D = Q [δ(i− j)ci]ij QT , which corrects task-relevant and task-irrelevant

errors by a fixed proportion cORT and cUCM respectively:

ci =


cORT for 1 ≤ i ≤ DoFORT

cUCM for 1 +DoFORT ≤ i ≤ DoFORT +DoFUCM

(A.2)

with 0 < cUCM < cORT < 1, because correction in the task-relevant dimensions is larger

than in the task-irrelevant dimensions. The matrix Q contains a complete orthonormal

basis composed of the two bases of the two subspaces Q = [BORT,BUCM], QTQ = I.

85
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Subtracting mpl and left multiplying both sides of the recursion in x̄
(k)
pl with QT shows

that in centered and normalized coordinates the random walk can be written as

ȳ(k+1)
pl

= ȳ(k)
pl
− [δ(i− j)ci] ȳ(k)pl + QT r

(k)
pl (A.3)

with ȳ
(0)
pl = QT r0pl and QT r

(k)
pl ∼ N

(
0, ρ2I

)
. The normalized variance in the two sub-

spaces is computed as

V
(k)
ORT = ρ2

k∑
i=0

(1− cORT)2i = ρ2
1− (1− cORT)2k+2

2cORT − c2ORT

(A.4)

and

V
(k)
UCM = ρ2

k∑
i=0

(1− cUCM)2i = ρ2
1− (1− cUCM)2k+2

2cUCM − c2UCM

(A.5)

Thus, the time course of the synergy index is

si(k) =
V

(k)
UCM

V
(k)
ORT

=
2cORT − c2ORT

2cUCM − c2UCM

· 1− (1− cUCM)2k+2

1− (1− cORT)2k+2
. (A.6)

This shows that the synergy index starts at the value si(0) = 1, increases during its time

course, and converges to

lim
k→∞

si(k) =
2cORT − c2ORT

2cUCM − c2UCM

> 1 . (A.7)

A.2 Separation of feedforward and feedback components

with complete knowledge of the target trajectory

An optimal controller was designed for a plant described by

xt+1 = Axt + Bu+ w (A.8)
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with A = 0.8 · I2×2, B = I2×2 and Gaussian motor noise wMOT ∼ N
(
0, σ2MOTI

)
. The

control law was designed to minimize the sum of task error and control effort across all

time points of the movement:

ε2 =

T∑
t=0

∥∥∥Cxt − yt∥∥∥2 +
∥∥∥ut∥∥∥2 . (A.9)

The task was to keep the 2D position x on a diagonal line (running from left-up to right-

down) that intersects the y-axis at the moving point yt (i.e. C = [1, 1]). Yüksel et al.

[35] have shown that the optimal control law is given by ut = u∗t −M (x̂t − x∗t ), where

x∗t is the feedforward component that minimizes

ε2
∗

=
T∑
t=0

∥∥∥Cx∗t − yt∥∥∥2 +
∥∥∥u∗t∥∥∥2 (A.10)

in the absence of any motor noise: x∗t+1 = Ax∗t + Bu∗. Feedback of xt was provided

by a measurement which was contaminated by Gaussian sensory (proprioceptive) noise

nPROP ∼ N
(
0, ξ2PROP · I

)
. A Wiener filter was used to obtain the state estimate x̂t from

the measurement:

x̂t = x∗t + S (xt + nPROP − x∗t ) (A.11)

with S =
σ2MOT

σ2MOT + ξ2PROP

· I.

A.3 Extension to incomplete knowledge about the target

trajectory

Extending the optimal solution given in [35] to situations with incomplete knowledge

about the trajectory, it is only necessary to extend the system states x by an additional

state (trajectory error ∆yt) expressing the unexpected deviation between the actual and

the expected target location:
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x̃t =

 xt

∆yt

 (A.12)

x̃t+1 =

A 0

0 1

 x̃t +

B

0T

u+

wMOT

wT

 (A.13)

The task error is now defined by C̃x̃−yt with C̃ = [C,−1]. The process noise is extended

to the vector

wMOT

wT

 ∼ N (0,W̃
)

(A.14)

with

W̃ =

σ2MOT · I 0

0 σ2T

 (A.15)

where the covariance σ2T of the process noise of the trajectory error ∆yt quantifies the

size of the uncertainty about the trajectory yt. Visual feedback of the actual target

position provides, after subtraction of the expected trajectory, a measurement for the

actual trajectory error. In this way, the measurement

xt + nPROP − x∗t (A.16)

is extended to

x̃t +

nPROP

nT

− x̃∗t , (A.17)

where the corresponding measurement noise is extended to the vector

nPROP

nT

 ∼ N (0, Ñ
)

(A.18)
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with

Ñ =

ξ2PROP · I2×2 0

0 ξ2T

 . (A.19)

With these modifications the uncertainty about the trajectory yt was equivalently ex-

pressed by an uncertainty in the extended system state x̃t . For this modified system, the

separation of the optimal control signal u into feedforward and feedback components can

be performed in exactly the same way as shown by Yüksel et al. [35]. This consideration

shows that the feedback control law applied to the estimate of the state error x̃ itself

is not expected to depend on the availability of prior knowledge about the trajectory,

since both the cost function and system dynamics are not expected to depend on target

predictability. In contrast, the optimal filter for estimating the state error depends on

the precision of the prior knowledge because the gain matrix S̃ of the Wiener filter for

the extended system is

S̃ =


σ2MOT

σ2MOT + ξ2PROP

· I2×2 0

0T
σ2T

σ2T + ξ2T

 . (A.20)

Thus, optimal feedback control predicts that visual feedback should be ignored with very

precise prediction of the target trajectory (σ2T → 0). Similarly, also the estimation gain

for the motor states decrease with decreasing motor noise σ2MOT.

A.4 Task error computed as weighted average of tracking

errors in the target space and in the effector space

The optimal feedback controller for the cost function with the variable task error

ε(θ)2 =

T∑
t=0

θ ·
∥∥∥Cxt − yt∥∥∥2 + (1− θ) ·

dim(y
t
)

dim (xt)
·
∥∥∥F (xt − x∗t )

∥∥∥2 +
∥∥∥uTt Rut

∥∥∥2 (A.21)
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was computed for the extended system described in the last paragraph (the ∼ is omitted

here for simplicity). The projection matrix was F =

1 0 0

0 1 0

. The feedforward and

the feedback components were again computed using the algorithm of Yüksel et al. [35].

In this section it is shown that this is possible because the cost function ε(θ)2 can be

transformed as required by this algorithm. For each θ in the range 0 < θ < 1, the

weighted average of the two tracking errors can be expressed as the square norm of a

tracking error expressed in a third coordinate system as

θ ·
∥∥∥Cxt− yt∥∥∥2 + (1− θ) ·

dim(y
t
)

dim(xt)
·
∥∥∥F (xt − x∗t )

∥∥∥2 =
∥∥∥D(θ) ·xt− dt(θ)

∥∥∥2 + ct(θ) (A.22)

with

D(θ) = L0.5(θ) ·VT (θ) , (A.23)

dt(θ) = D−1
T

(θ)

[
θCT y

t
+ (1− θ)

dim(y
t
)

dim(xt)
FTFx∗t

]
(A.24)

and

ct(θ) = θyT
t
y
t
+ (1− θ)

dim(y
t
)

dim(xt)
x∗t
TFTFx∗t − dTt (θ)dt(θ) . (A.25)

V(θ) and L(θ) denote the eigenvectors and eigenvalues of

[
θCTC + (1− θ)

dim(y
t
)

dim(xt)
FTF

]
= V(θ) · L(θ) ·VT (θ) . (A.26)

Since ct(θ) does not depend on the control signal, the minimization of ε(θ)2 in ut gives

the same result as minimizing

δ(θ)2 =

T∑
t=0

∥∥∥D(θ)xt − dt(θ)
∥∥∥2 +

∥∥∥uTt Rut

∥∥∥2 . (A.27)

This cost function has the form required by the algorithm of [35].
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A.5 Parameter settings for the simulation

Optimal control (feedforward and feedback) of the specified extended system was simu-

lated using the following settings:

• ξ2T = 0.1

• ξ2PROP = 0.05

• σ2MOT = [0.05, 0.15, 0.25, 0.35, 0.45]

• σ2T = [0.1, 0.3, 0.5, 0.7, 0.9]

For each combination of motor noise and trajectory noise 100 trajectories were simulated.

Each trajectory was composed of 101 sampling points. The expected trajectory was a

sinusoidal movement: yt = sin( 2πt
N+1) for 0 ≤ t ≤ 100. The resulting tracking errors in

the effector space F(xt − x∗t ) were concatenated into a 10100 × 2 matrix. The synergy

indices shown in Fig. 5A/C were computed as the ratio between the variances of these

error distributions projected on the two diagonals. The total variance shown in Fig.

5B/D is the sum of these two variances.
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Chapter 4: Mathematical

Background

B.1 Definitions

To facilitate algorithm description in the text, notations in Table B.1 will be used to

identify each degree of freedom and the rotation axes and angle values for them, where

each rotation axis (raxis id) should be considered as a row vector.

Table B.1: Axis and angle notations. The table lists identifiers derived from the
model file and notations of rotation axes and angles for all relevant degrees of freedom

used for algorithm formulation.

Anatomical joint Degree of Freedom Identifier Rotation axis Rotation angle

Shoulder elevation plane elv relv θelv
thoracohumeral (elevation) angle sh elv rsh elv θsh elv

axial rotation sh rot rsh rot θsh rot

Elbow elbow flexion el flex rel flex θel flex

forearm rotation pro sup rpro sup θpro sup

Wrist deviation dev rdev θdev
flexion flex rflex θflex

proximal-distal r1 pdr1 rpdr1 θpdr1
proximal-distal r3 pdr3 rpdr3 θpdr3

Furthermore, the following definitions are introduced (for a visual reference, see Figure

B.1):

1. An orthonormal basis with a selected rotation axis in its main axis will be noted as

Baxis id 0, where axis_id_0 is the identifier of the axis (e.g. for a basis with relv in

its main axis the basis will be Belv). If the basis is not formed by orthogonalization

92

DOI:10.15774/PPKE.ITK.2017.002



Appendix B. Chapter 4: Mathematical Background 93

of rotation vectors in the model (as in the case of the shoulder), Baxis id 0 is defined

as

Baxis id 0 =


raxis id 0

r2

r3


T

where (B.1a)

r2 =
raxis id 0 × (raxis id 0 − [1 0 0])

‖raxis id 0 × (raxis id 0 − [1 0 0])‖
and (B.1b)

r3 =
raxis id 0 × r2
‖raxis id 0 × r2‖

(B.1c)

2. The rotation axis raxis id expressed in the basis Baxis id 0 is defined as

rBaxis id 0
axis id = raxis idBaxis id 0 (B.2)

3. Given a unit length vector r ∈ R3, Rodrigues’ formula gives the rotation matrix

about r of an arbitrary angle θ ∈ [−π, π[ as

exp (θr̂) = I3 + sin (θ) r̂ + (1− cos (θ)) r̂2

where r̂ : R3 → R3 def
= r̂ v = r× v

(B.3)

4. The matrix representation of an axis-angle rotation formed from a unit axis raxis id

and angle θaxis id expressed in the basis Baxis id 0 is given as follows:

RBaxis id 0
raxis id

(θaxis id) = exp
(
θaxis id r̂Baxis id 0

axis id

)
≡


xxC + c xyC − zs xzC + ys

yxC + zs yyC + c yzC − xs

zxC − ys zyC + xs zzC + c



where rBaxis id 0
axis id = [x y z]

s = sin (θaxis id)

c = cos (θaxis id)

C = 1− c

(B.4)

5. The i-th element of vector v is denoted as v(i). Similarly, the (i, j)-th element of

matrix R is denoted as R(i,j), where i is the row index and j is the column index.
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Indexing complete rows and columns is denoted as R(i,:) and R(:,j), respectively.

Local reference frame ofGlobal reference frame

Figure B.1: Visual representation of the definitions. The subplot on the
left side shows elements related to definitions 1 and 2 in the global reference frame
(raxis id 0 = [1, 0.5, 0.5], raxis id = [1,−1, 0]). The subplot on the right side shows
elements related to definitions 2, 3 and 4 in the local reference frame of Baxis id 0. The
gray arrow shows the spatial rotation that RBaxis id 0

raxis id
(θaxis id) represents in matrix form.

B.2 QR orthogonalization

The general formula of QR orthogonalization is shown below, whereA is a regular matrix,

Q is an orthogonal matrix, R is an upper triangular matrix, S is the sign diagonal matrix

of R and B is the resulting orthogonal matrix.

A = QR (B.5)

S =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
sii = 1 if rii > 0

sii = −1 if rii < 0

sij = 0 if i 
= j

(B.6)
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B = QS (B.7)

B.3 Auxiliary calculations for the shoulder

The orientation of the humerus is determined by four consecutive rotations in the shoulder

in the order of elevation plane, elevation angle, -elevation plane and axial rotation degrees

of freedom (for axis and angle notations, see Table B.1). Based on axis definitions in the

model, rotations about relv and rsh rot can be estimated with an elementary rotation

about the second axis of Bsh orth while the estimation of the rotation about rsh elv can

be done with an elementary rotation about Bsh orth’s third axis as shown in (B.8).

RBsh orth
relv (θelv) =


cos(θelv) 0 sin(θelv)

0 1 0

− sin(θelv) 0 cos(θelv)

 (B.8a)

RBsh orth
rsh rot (θsh rot) =


cos(θsh rot) 0 sin(θsh rot)

0 1 0

− sin(θsh rot) 0 cos(θsh rot)

 (B.8b)

RBsh orth
rsh elv (θsh elv) =


cos(θsh rot) − sin(θsh elv) 0

sin(θsh elv) cos(θsh rot) 0

0 0 1

 (B.8c)

Using these definitions, the symbolic expression of the compound rotation matrix that

represents the actual orientation in the shoulder can be calculated as shown in (B.9).

For the convenience of calculation, this step was performed with MATLAB’s Symbolic

Math Toolbox using the script shown in appendix B.4.
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Rshoulder = RBsh orth
relv (θelv) RBsh orth

rsh elv (θsh elv) RBsh orth
relv (−θelv) RBsh orth

rsh rot (θsh rot) =



A cos(θsh rot)−B sin(θsh rot) − cos(θelv) sin(θsh elv) A sin(θsh rot) +B cos(θsh rot)

sin(θelv) sin(θsh elv) sin(θsh rot)+ cos(θsh elv) cos(θelv) sin(θsh elv) sin(θsh rot)−

cos(θelv) sin(θsh elv) cos(θsh rot) sin(θelv) sin(θsh elv) cos(θsh rot)

B cos(θsh rot)− C sin(θsh rot) sin(θelv) sin(θsh elv) B sin(θsh rot) + C cos(θsh rot)



where A = cos(θsh elv) cos2(θelv) + sin2(θelv)

B = (1− cos(θsh elv)) cos(θelv) sin(θelv)

C = cos(θsh elv) sin2(θelv) + cos2(θelv)

(B.9)

B.4 MATLAB code for the compound rotation matrix of

the shoulder

% anonymous function to generate rotation matrix about the second axis of

% the actual basis

R_2nd =@(theta) [ cos(theta) 0 sin(theta) ;

0 1 0 ;

-sin(theta) 0 cos(theta)];

% anonymous function to generate rotation matrix about the third axis of

% the actual basis

R_3rd =@(theta) [cos(theta) -sin(theta) 0 ;

sin(theta) cos(theta) 0 ;

0 0 1];

% symbolic variables for the joint coordinates (rotation angles)

syms elv_angle shoulder_elv shoulder_rot;
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% generate the individual rotation matrices

R_elv_angle = R_2nd(elv_angle);

R_shoulder_elv = R_3rd(shoulder_elv);

R_elv_angle_minus = R_2nd(-elv_angle);

R_shoulder_rot = R_2nd(shoulder_rot);

% calculate the compound rotation matrix

R_shoulder = R_elv_angle * R_shoulder_elv * R_elv_angle_minus * R_shoulder_rot;

B.5 Auxiliary calculations for the elbow

The orientation of the forearm is defined by two consecutive rotations in the order of

elbow flexion and forearm rotation. If expressed in Bpro sup, the rotation matrix about

rel flex can be estimated as R
Bpro sup
rel flex (θel flex) while rotation about rpro sup corresponds

to the elementary rotation about the first axis of Bpro sup (denoted as R
Bpro sup
rpro sup (θpro sup)).

Multiplication of these matrices yields the compound rotation matrix in the elbow as

shown in (B.10) (the corresponding MATLAB script can be found in appendix B.6).
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Relbow = R
Bpro sup
rel flex (θel flex) R

Bpro sup
rpro sup (θpro sup) =

=



(1− cos(θel flex))x
2+ A sin(θpro sup)− A cos(θpro sup)+

cos(θel flex) B cos(θpro sup) B sin(θpro sup)

z sin(θel flex)− D cos(θpro sup)− −D sin(θpro sup)−

C E sin(θpro sup) E cos(θpro sup)

−y sin(θel flex)− G sin(θpro sup)+ G cos(θpro sup)−

F H cos(θpro sup) H sin(θpro sup)



where

r
Bpro sup

el flex = [x y z]

A = y sin(θel flex)− F

B = z sin(θel flex) + C

C = xy (cos(θel flex)− 1)

D = (1− cos(θel flex)) y
2 + cos(θel flex)

E = x sin(θel flex) + yz (cos(θel flex)− 1)

F = xz (cos(θel flex)− 1)

G = (1− cos(θel flex)) z
2 + cos(θel flex)

H = x sin(θel flex)− yz (cos(θel flex)− 1)

(B.10)

B.6 MATLAB code for the compound rotation matrix of

the elbow

% anonymous function to generate rotation matrix about the first axis of

% the actual basis

R_1st =@(theta) [1 0 0 ;

0 cos(theta) -sin(theta) ;

0 sin(theta) cos(theta)];

% symbolic variables for axis coordinates (spatial) and

% joint coordinates (rotation angles)

syms x y z elbow_flexion pro_sup;

% auxiliary variables for the axis-angle rotation matrix
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c = cos(elbow_flexion);

s = sin(elbow_flexion);

C = 1 - c;

% generate the individual rotation matrices

R_pro_sup = R_1st(pro_sup);

R_elbow_flexion = [x*x*C+c , x*y*C-z*s , x*z*C+y*s ;

y*x*C+z*s , y*y*C+c , y*z*C-x*s ;

z*x*C-y*s , z*y*C+x*s , z*z*C+c ];

% calculate the compound rotation matrix

R_total = R_elbow_flexion * R_pro_sup;

B.7 Auxiliary calculations for the wrist

The orientation of the hand is defined in the model by four consecutive rotations in the

order of deviation, flexion, proximal-distal r1 and proximal-distal r3. Although deviation

and flexion are used here as intermediate rotations, naming convention of actively con-

trolled joint coordinates and intermediate rotations is inconsistent in the model file at

this point because active joint coordinates of the wrist are called deviation and flexion,

too. To prevent ambiguity, angle values of controlled joint coordinates of the wrist will

be denoted as θdev c and θflex c further in the text. Intermediate wrist rotations are

distributed among two rows of carpal bones with different rotation angles depending on

the actual values of θdev c and θflex c as follows:

1. deviation and flexion are defined in the lunate body with rotation angle values of

θdev = θdev c and θflex = 0.5 ∗ θflex c.

2. proximal-distal r1 and proximal-distal r3 are defined in the capitate body with

rotation angle values of θpdr1 = 1.5 ∗ θdev c if θdev c is negative and θpdr1 = θdev c

otherwise, and θpdr3 = 0.5 ∗ θflex c.

3. The angle limits for the controlled coordinates are: θdev c ∈ [−10◦, 25◦] and θflex c ∈

[−70◦, 70◦].
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If expressed in Bpdr3, the rotation matrices about rdev and rflex can be estimated as

R
Bpdr3
rdev (θdev) and R

Bpdr3
rflex (θflex), while rotation matrices for rpdr1 and rpdr3 can be ex-

pressed as R
Bpdr3
rpdr1 (θpdr1) and an elementary rotation about the first axis of Bpdr3, denoted

by R
Bpdr3
rpdr3 (θpdr3). Similarly to the shoulder and elbow joints, the compound rotation ma-

trix in the wrist can be written as follows:

Rwrist = R
Bpdr3
rdev (θdev) R

Bpdr3
rflex (θflex) R

Bpdr3
rpdr1 (θpdr1) R

Bpdr3
rpdr3 (θpdr3) (B.11)

One difficulty however is that this formulation contains three axis-angle rotations out of

four that makes Rwrist a very complex symbolic expression with no closed form algebraic

solution for the individual rotation angle values.

This problem was handled using a decomposition approach from the literature. As it

is shown by Piovan and Bullo in [87], three Euler angles about arbitrary axes can be

determined from a rotation matrix if the rotation axes are known and the following

condition is fulfilled:

∣∣rT1 (R− r2 rT2
)
r3
∣∣ ≤√1−

(
rT1 r2

)2 √
1−

(
rT3 r2

)2
(B.12)

where R is the rotation matrix and {r1, r2, r3} are the column vector rotation axes. If

we assume that r1, r2, r3 and R satisfy (B.12), Euler angle values {θ1, θ2, θ3} can be

calculated as follows:

• θ2 is one of the two solutions to

(θ2)1,2 = atan2(b, a)± atan2
(√

a2 + b2 − c2, c
)

(B.13)

where a = −rT1 r̂22r3, b = rT1 r̂2r3 and c = rT1
(
R− I3 − r̂22

)
r3.

• if RT r1 6= ±r3, then the angles θ1 and θ3 are uniquely determined by

θ1 = atan2
(
wT

1 r1 × v1,v
T
1 w1 −

(
vT1 r1

) (
wT

1 r1
))

(B.14)

θ3 = −atan2
(
wT

3 r3 × v3,v
T
3 w3 −

(
vT3 r3

) (
wT

3 r3
))

(B.15)

where v1 = exp (θ2r̂2) r3, w1 = Rr3, v3 = exp (−θ2r̂2) r1, w3 = RT r1.
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As the inverse of any rotation matrix equals its transpose and the model defines the

equality of θflex = θpdr3, (B.11) can be rewritten into

Rwrist


1 0 0

0 cos (θflex) sin (θflex)

0 − sin (θflex) cos (θflex)

 = R
Bpdr3
rdev (θdev) R

Bpdr3
rflex (θflex) R

Bpdr3
rpdr1 (θpdr1). (B.16)

Having R̃wrist= Rwrist, (B.13) can be used to express θflex from (B.16) as follows (all

rBaxis id 0
axis id here are considered as column vectors):

(θflex)1,2 = atan2(b, a)± atan2
(√

a2 + b2 − c2, c
)
,

where

a = −
(
r
Bpdr3

dev

)T (
r̂
Bpdr3

flex

)2
r
Bpdr3

pdr1

b =
(
r
Bpdr3

dev

)T
r̂
Bpdr3

flex r
Bpdr3

pdr1

c =
(
r
Bpdr3

dev

)T
R̃wrist


1 0 0

0 cos (θflex) sin (θflex)

0 − sin (θflex) cos (θflex)

− I3 − (r̂
Bpdr3

flex

)2
 r

Bpdr3

pdr1 =

= x cos (θflex) + y sin (θflex) + z

(B.17)

where x, y and z are defined as

x =
(
r
Bpdr3

pdr1

)T [
0,
(
r
Bpdr3

dev

)T
R̃wrist

(:,(2,3))

]T

y =
[
r
Bpdr3

pdr1 (3)
,−r

Bpdr3

pdr1 (2)

] [(
r
Bpdr3

dev

)T
R̃wrist

(:,(2,3))

]T

z =
[
r
Bpdr3

pdr1 (1)
,−r

Bpdr3

pdr1 (2)
,−r

Bpdr3

pdr1 (3)

]



R̃wrist
(1,1) R̃wrist

(2,1) R̃wrist
(3,1)

0 0 0

0 0 0

 +

+


−1 0 0

0 1 0

0 0 1

 r
Bpdr3

flex

(
r
Bpdr3

flex

)T
 r

Bpdr3

dev
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