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Abstract

This dissertation (i) describes parallel histogram modification tech-

niques with embedded morphological preprocessing methods within

the CNN-UM framework, describes and illustrates how the imple-

mentation of the algorithm results in an adaptive multi-thresholding

scheme when histogram modification is combined with embedded mor-

phological processing at a finite small number of gray-scale levels;

(ii) presents an immune response inspired algorithmic framework for

spatial-temporal target detection applications using CNN technol-

ogy. The given algorithms can be implemented effectively only by

using a computer upon which thousands of elementary, fully parallel

spatial-temporal actions can be implemented in real time. Experi-

ments demonstrate that the developed system can detect unknown

patterns and dynamical changes in image sequences.
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Chapter 1

Introduction

Every day it is worth wondering over the beauties of Nature, life and its biological

processes, came to that the complexity of only one cell. We can wonder and

admire, however we will never be able to understand it fully. We often take

courage, with our humbleness is on the small side, to copy or horn in its processes.

The alibi of Medicine is simple: the protection of human life. An engineer can

offer his knowledge to the doctor, and give better instruments to him or find

ideas from studying medicine and apply them to provide more effective solutions

of engineering problems.

During my research I worked on two problemfields, which are tightly connected

to the domain of medical biology. One of them concentrates on helping the work

of cardiologists; with the other, I would like to get ideas while studying the

processes of our immune system.

The two fields / opened problem are the following:

• the implementation of a real-time filter algorithm in the diagnos-

tics of noisy ultrasound images

• the detection of real-time, multi target, spatial-temporal novelty

detection in image flows

In the case of cavity detection and processing of medical ultrasound images

we have to tackle several problems like low contrast and heavy noise. The state

of the art technologies (e.g. 3D echocardiography) need extremely high speed

and real time processing. In the course of my research I was searching

1



2 1. INTRODUCTION

for a method which, besides simultaneous contrast enhancement, noise

filtering and shape enhancement, could be implemented on the input

image with real-time processing. The output image can be an appropriate

input to the next level of processing, where cavity and other object detection

would be accomplished.

In medical image processing, numerous solutions were found for the problems

arising in the preprocessing phase. (i.e., contrast enhancement, noise supression,

shape enhancement). The most common solutions emerged from the fields of

nonlinear diffusion and curve evolution, where the execution of the algorithms

based on parial differential equations can not be solved in real-time with tradi-

tional computational methods because of the computational needs of the newest

appliances.

Meanwhile, it is not a trivial engineering problem to make the analog imple-

mentation of a complicated algorithm either. It was my goal as well to show

that an analog implementation was possible, and an adequate speed up can be

achieved.

If we thoughtfully examine our immune system we could say it is a “great

thinker”. It often passes abstract and molecularly coded information between its

billions of interconnected cells. It remembers past events and predicts future ones.

Forming a dynamic model of its environment, its plasticity adjusts interactions

of its cells, population sizes moreover genes. If we cut a piece out of a brain, we

seriously influence its functioning contrary to the immune system, which continues

to function even after suffering heavy damages. Neurons rarely multiply, but

immune cells grow and are replaced constantly, because they war and guard our

body against intruders, viruses, bacteria and harmful mutations. It does not

need to be held in a protective bone case like the brain. It is distributed with

no central controller, with no Achilles heel. It is intelligent, it monitors not only

the world outside, but the trillions of cells that we are made from. It knows

exactly what is going on inside us, even at molecular scales, while our brain is

oblivious. Maybe its intelligence quotient is not measurable and we will never be

able to lead a conversation with it, but while clever brains are optional in living

creatures, clever immune systems are crutial.
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The cell-level interaction of immune system is based on identification and

recognition of 3D molecule patterns. During my research the object I proposed

is a creation of a model, which, similarly to the 3D spatial pattern detection of

the immune system, is able to detect and recognize dynamic objects in 2D image

flows. I intended to design topographical algorithms and their experi-

mental realization where huge number of target objects are monitored

in real time to detect previously unknown events. So my goal was

spatial-temporal novelty detection.

Novelty detection can be a challenge in several areas. Nowadays, one of these

areas is robotics, where novelty detection - the differentiation of the general sensor

input and the sensory pattern not yet experienced - provides useful knowledge to

mobile robots in a dynamically changing environment.

Sensor-close computation can be crucial trom the point of view of utilization

efficiency, since it could help solving some of the general problems of traditional

systems, namely the reduction of the bandwidth of image transfer from the sensor

to the computational unit and the time meeded to process images in real-time.

The dissertation is organized as follows. Chapter 2 describes parallel his-

togram modification algorithms with embedded morphological preprocessing me-

thods within the CNN-UM framework. Chapter 3 presents experimental results

processing real-life and echo-cardiographic images, measured on different hard-

ware/software platforms, including a 64 × 64 CNN-UM chip. In Chapter 4 an

immune response inspired algorithmic framework is presented for spatial-temporal

target detection applications using CNN technology. Chapter 5 demonstrates that

the given immune response inspired algorithms can detect unknown patterns and

dynamical changes in image sequences. Chapter 6 summarizes the main results

and highlights further potential applications, where the contributions of this dis-

sertation could be efficiently exploited.

A number of appendices illustrate this work and summarize some of the the-

oretical background. In Appendix A and B a short summary of CNN technology

as well as a new mathematical description of continuous machines on flows are

given. Appendix C presents some basic results about level-set theory. In Ap-

pendix D, experimental results corresponding to Chapter 3 are given. For those
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who are not familiar with biology, some important functions of immunology are

summarized in Appendix E.

The author’s publications and other publications connected to the dissertation

can be found at the end of this document.



Chapter 2

PDE Based Histogram
Modification with the Level-Sets

This chapter describes parallel histogram modification techniques with embed-

ded morphological preprocessing methods within the CNN-UM framework. The

procedure is formulated in terms of nonlinear partial differential equations (PDE)

and approximated through finite differences in space, resulting in coupled non-

linear ordinary differential equations (ODE). The I/O mapping of the system

(containing both local and global couplings) can be calculated by a complex ana-

logic (analog and logic) algorithm executed on a nonlinear array processor, called

the cellular nonlinear network universal machine (CNN-UM, [20]).

2.1 Introduction

Nonlinear PDE-based image processing has been introduced to the field of com-

puter vision by [69], and to the field of medical imaging by [70]. In the last years

there has been an intensive research reaching from the mathematical foundations

and properties of PDE-based image processing.

Quite some efforts have been undertaken in order to find reliable and effi-

cient numerical schemes for nonlinear diffusion filtering: see e.g., [55, 72, 73, 74],

and partial differential equations (PDE’s) have dominated image processing re-

search recently. The three main reasons for their success are: (i) their ability to

transform a segmentation modeling problem into a partial differential equation

framework and their ability to embed and integrate different regularizers into

5
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these models; (ii) their ability to solve PDE’s in the level set framework using

finite difference methods; and (iii) their easy extension to a higher dimensional

space [73] .

Nonlinear diffusion filtering on current PCs or workstations can be achieved

in the order of a second in 2D, and in the order of a minute for typical 3D data

sets that arise in medical imaging [71].

Basically, contrast enhancement techniques are divided in the two groups,

local and global, and their most popular representatives can be found in any

basic book in image processing and computer vision.

The formalization of multiscale analysis given in [54] leads to a formulation of

recursive, causal, local, morphological, and geometric invariant filters in terms of

solutions of certain partial differential equations of geometric type, providing a

new view on many of the basic mathematical morphology operations. One of their

basic assumptions was the locality assumption, which aimed to translate into a

mathematical language the fact that basic operations which were a kind of local

average around each pixel or, in other words, only a few pixels around a given

sample influence the output value of the operations. Obviously, this excluded

the case of algorithms as histogram modification. This is why operations like

those in [23, 24, 25] and described in my thesis work are not modeled by these

equations.

I analyze a set of PDEs designed for simultaneous (i) contrast enhancement,

(ii) noise suppression and (iii) shape enhancement1. Based on spatial approxima-

tions and using a discrete set of gray-values these PDEs will be decomposed to

spatially interacting ODEs (discrete in space and continuous in time).

My aim was to realize a fast filter algorithm which can be used efficiently in

ultrasound diagnostics. In the course of my research I was searching for a method

which, besides simultaneous contrast enhancement, noise filtering and shape en-

hancement, could be implemented on the input image with real-time processing.

The most common solutions emerged from the fields of nonlinear diffusion and

curve evolution, where the execution of the algorithms based on parial differ-

ential equations can not be solved in real-time with traditional computational

1shape enhancement: the characteristic properties of an image are enhanced and the irrel-
evant parts are suppressed.
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methods because of the computational needs of the newest appliances. The cho-

sen computer architecture, the CNN-UM has several advantages (fast speed, local

interaction, parallel and sensor-close processing) that makes this machine suit-

able for implementing the problem on. Meanwhile, it is not a trivial engineering

problem to make the analog implementation of a complicated algorithm either.

It was my goal as well to show that an analog implementation was possible, and

an adequate speed up can be achieved.

Due to poor or changing lighting conditions image snapshots (or video-flows)

are often captured at low contrast in different scenarios. On the other hand,

the majority of known algorithms taking these images as input are in general

fairly sensitive to huge (or rapid) contrast changes between consecutive images,

which could significantly degrade the processing performance. Recent advances

of different visual microprocessors resulted in new hardware platforms for parallel

algorithms and are also the basis for the increased interest in the development of

new parallel nonlinear techniques for contrast improvement.

This chapter is organized as follows. In Section 2, a short introduction is given

to contrast enhancement through an example. Section 3 contains mathematical

PDE formulations for histogram equalization with the level-sets. My PDE based

histogram modification algorithms are presented in Section 4. Section 5 presents

execution time data. In Section 6, the extent of the algorithmic schemes are sum-

marized with morphological processing of the level-sets. In Section 7, conclusions

are presented.

2.2 Contrast Enhancement Through Histogram

Modification

The most common way to improve the contrast of an image is to modify its

gray-value distribution, the image histogram. For example, histogram equaliza-

tion (see Figure 2.1 (a) and (c)) is a basic method that drives the image pixel

values into different gray-scale levels in order to achieve a uniform distribution

[21, 22]. This global technique improves the contrast and does not modify the
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level-sets2 of the image (see Figure 2.1 (b) and (d)). Histogram modifications

can also be formulated in terms of PDEs [23, 24, 25] that give a hope to a fully

parallel implementation. The PDE formulation makes it also convenient to com-

bine other preprocessing schemes with histogram modification in order to build

contrast invariant segmentation methods (see two different modified outputs in

Figure 2.1 (e) and (g) with their corresponding level-sets in Figure 2.1 (f) and

(h), respectively).

In this chapter, I investigate and modify some of these recent formulations, de-

rive and implement efficient new algorithms for cellular nonlinear array processor

architectures.

2.3 PDE Formulations

Let us consider the following PDE designed for histogram equalization [23, 24, 25]:

∂Φ(x, y, t)

∂t
= (N2 − N2

M
Φ(x, y, t))− A

[
L(v, w, t)Φ(x,y,t)

]
(2.1)

where Φ(x, y, t) : [0, N ]2 × [0, T ] → [0, M ] is the image intensity, N and M are

constants, and A [·] : <2 → < stands for the area measure of a level-set.

The level-sets L(v, w, t)Φ(x,y,t) : [0, N ]2 × [0, T ] → {0, M} are the “binary

shadows” of the image and can be described as follows:

L(v, w, t)Φ(x,y,t) = LΦ =

{
1, if Φ(v, w, t) ≥ Φ(x, y, t),
0, otherwise.

(2.2)

Then the calculation of the area measure is defined as follows:

A [LΦ] = A [(v, w) : Φ(v, w, t) ≥ Φ(x, y, t)] =

∫ N

v=0

∫ N

w=0

LΦdvdw. (2.3)

A modified and extended version of Equation (2.1) that allows a simultaneous

contrast enhancement with noise suppression [23, 24, 25] is as follows:

∂Φ(x, y, t)

∂t
= ακ + (N2 −H(Φ(x, y, t)))− A [LΦ] , (2.4)

2In mathematics, a level set of a real-valued function f of n variables is a set of the form
(x1, ..., xn)|f(x1, ..., xn) = c where c is a constant. That is, it is the set where the function takes
on a given constant value. When the number of variables is two, this is a level curve (contour
line), also see Appendix C.
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Figure 2.1: Constructive use of a programmable global PDE on a CNN architec-
ture – the above example demonstrates complex histogram modifications where
simultaneous contrast enhancement is connected with noise filtering and embed-
ded morphological processing. (a) original, low contrast image, (b) level sets of
(a); (c) histogram equalized image through a PDE based processing, (d) level
sets of (c); (e) PDE based histogram modification output with embedded differ-
ential morphological processing at scale 3τ and 2 gray-scale levels, (f) level sets
of (e); (g) PDE based histogram modification output with embedded differential
morphological processing at scale 5τ and 8 gray-scale levels, (h) level sets of (g).
Observe that the level sets are preserved in case of global histogram equalization
and how embedded morphological processing modifies the level sets leading to a
meaningful segmentation result.
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where α is a constant, κ is a regularizing term, and H(·) : < → < represents a

prescribed monotone increasing function.

A further novel generalization that adds shape enhancement by morphological

processing of the level-sets is as follows:

∂Φ(x, y, t)

∂t
= ακ + (N2 −H(Φ(x, y, t)))− A

[
Lg(Φ)

]
, (2.5)

where Lg(Φ) is a “threshold transformed” level set and g(·) : < → < is a general

nonlinear function.

I assume the function g(·) to depend implicitly (explained later) on Γ [U,B]

that stands for a morphological processing of U with a structuring element B (a

disk).

Two forms of morphological processing will be investigated, the n-step “erode-

dilate” and “dilate-erode” operations [22] (⊕ and ⊗ stand for dilation and ero-

sion, respectively) described by the following set-theoretic formulations:

Γ [U,B] = ((U ⊕B)(n)⊗)(n) or Γ [U,B] = ((U ⊗B)(n)⊕)(n). (2.6)

The input set U of these operations is either a level-set LΦ or a level-set

section: LΦ1,Φ2 = LΦ2 − LΦ1.

2.4 Approximating the Histogram Modification

PDEs

Mapping the PDEs introduced in the previous section into nonlinear ODEs I con-

sider two cases corresponding to Equation (2.1), and Equation (2.5) respectively.

All these approximations could be implemented as a complex analogic algorithm

executable on an existing architecture [26, 27].

Case 1: Contrast enhancement through histogram equalization (Figure 2.1c

and 3.2b)

Based on Equation (2.1) assuming N2 = 1; M = 1:

dφij(t)

dt
= −φij(t) + (1− A

(1)
ij ). (2.7)

Case 2: Contrast enhancement, denoising and embedded morphological pro-

cessing (Figure 2.1g and 3.2c-d)
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Based on Equation (2.5) assuming α = 1; κ = div(grad(φ)), H = N2/M ; N2 =

1; M = 1:

dφij(t)

dt
= −2φij(t) + (1− A

(2)
ij )+

1/4(φi−1,j(t) + φi+1,j(t) + φi,j−1(t) + φi,j+1(t))
(2.8)

In all cases A
(1)
ij = A

(2)
ij = const during the evolution [24], therefore should

only be calculated once. Aij represents area (number of pixels in this discrete

case). For the steady-state solution Φt = 0, we have:

Aij = A [(v, w) : Φ(v, w) ≥ Φ(i, j)] = 1− Φ(i, j) (2.9)

Then for a, b ∈ [0, 1] , b ≥ a,

A [(i, j) : b ≥ Φ(i, j) ≥ a] = b− a (2.10)

which means that the histogram is constant. Therefore the steady-state solution

of Equation (2.1) gives a normalized image via histogram equalization.

Though Aij is the output of a global transformation it is possible to give an

approximation based on purely local (analog and logic) operations. This “spatial

decomposition” will be discussed in the sequel.

A
(2)
ij in Equation (2.8) differs from the first two versions, since it should include

an embedded morphological processing [28]. Also, contrast stretching and further

desirable smoothing and enhancement properties can be added to the algorithm.

The following operational notations and definitions will be used throughout

the algorithm descriptions (all templates referenced can be found in the CNN

Software Library [29]):

Definition 1: Threshold – thresholds a gray-scale input image at a given

gray-scale level. The output is a binary image defined as follows:

Thr(Φij, λ) =

{
1, if Φij ≥ λ,
0, otherwise.

(2.11)

CNN implementation: by using the THRESH template.

Definition 2: Area – calculates the area measure corresponding to a given

level-set of the input image. The output is a scalar defined as follows (Φij,Bin is
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the level-set calculated by the Thr function):

Area(Φij,Bin) =
N∑

i=1

N∑
j=1

Φij,Bin. (2.12)

CNN implementation: by using the DIFFUS template the average value of an

image can be calculated in the specified domain. If the initial state is a constant

image (all pixels are set to +1) over the specified level-set then the diffusion

output at steady-state gives a normalized area measure (a value in the range of

[0, 1]) of the level-set domain related to the entire image area.

Definition 3: Set level – sets the value of all pixels over a given mask to a

specified gray-scale level. The output is a gray-scale image defined as follows:

SetLev(Φij,Bin, v) =

{
v, if Φij,Bin = 1,
0, otherwise.

(2.13)

CNN implementation: by using the SETLEV template.

Definition 4: Erode – calculates erosion of a binary input image with a

specified structuring element B. The set theoretical definition of the erosion

based on Minkowski subtraction is as follows (- denotes translation):

Erode(Φij,Bin, B) = Φ⊗B = ∩{Φij,Bin − b : b ∈ B} . (2.14)

CNN implementation: by using the EROSION template (single-step erosion) or

PROPE (continuous erosion by a trigger-wave).

Definition 5: Dilate – calculates dilation of a binary input image with

a specified structuring element B. The set theoretical definition of the erosion

based on Minkowski addition is as follows (+ denotes translation):

Dilate(Φij,Bin, B) = Φ⊕B = ∪{Φij,Bin + b : b ∈ B} . (2.15)

CNN implementation: by using the DILATION template (single-step erosion) or

PROPD (continuous dilation by a trigger-wave).

Definition 6: Norm – calculates a normalized version of a gray-scale input

image. The formulation of the operation is as follows (Dmin and Dmax stand
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for the minimum and maximum of the available dynamic range; Φmin and Φmax

stand for the minimum and maximum of the input image, respectively):

Norm(Φij) = Dmin +
Dmax −Dmin

Φmax − Φmin

(Φij − Φmin) =

Dmin +
∆D

∆Φ
(Φij − Φmin)

(2.16)

CNN implementation: first Φmin and Φmax is calculated by using the THRESH

template and global logic. Since ∆D is known a priori, the implementation of

Equation (2.16) leads to an analogic algorithm based on template SCALE and

simple arithmetics. Remark: the constant b0 = ∆D/∆Φ that is the central

element of the B term in SCALE is image dependent, thus interaction with the

digital environment is needed. It should be noted though that Norm is not an

essential part of the histogram modification algorithm, it is included into the

extended version (Algorithm 2, see later) in order to increase the robustness in

a physical implementation with a limited analog precision (especially in case of

very low input image dynamic range).

Definition 7: Diffuse – calculates a constrained linear low-pass filtered

version of a gray-scale input image. The formulation of the operation is as follows

(∗ denotes convolution):

Diff(Φij,1, Φij,2) = αΦ1 ∗Gσ1 + (1− α)Φ2 ∗Gσ2 (2.17)

where in 1D : Gσ(ξ) = (1/σ
√

2π)e−ξ2/2σ2

CNN implementation: Equation (2.17) describes a homotopy in between two

different linear convolutions by a Gaussian kernel. Under fairly mild conditions

at some time t this corresponds to the solution of a constrained diffusion type

partial differential equation. After spatial discretization this can be mapped to a

CNN structure [30, 31] programmed by template CDIFFUS. In this form the B

term directly approximates Gσ2 , while the transient length is explicitly related

to Gσ1(t ≈
√

σ1).

The pseudo-code description of the histogram modification algorithm can be

found in Figure 2.2.

Algorithm 1 and 2 show the implementation steps of Equation (2.7) and Equa-

tion (2.8) including all necessary calculations. The UMF (Universal Machines on
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Figure 2.2: Pseudo code description of two versions of the histogram modifica-
tion. Algorithm 1 implements histogram equalization, while Algorithm 2 is the
generalized histogram modification with embedded morphological processing of
the level-sets.
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Flows) description of the algorithmic core can be seen in Figure 2.3. The CNN

flow-chart of the generalized histogram modification analogic algorithm (Algo-

rithm 2) can be seen in Figure 2.4.

Algorithm 1 executes histogram equalization. In the first step, the initializa-

tion of the variables takes place. It is followed by a loop, whose variable is the

same as the number of level-sets. The first step of the body of this loop is the

thresholding of the input image with adequate values depending on the level-sets

and get a result, called binary shadow. Taking the XOR opration of this result

and a former binary shadow we have a binary image. The algorithm measures

the area of this image. The black pixels of the binary image filled a grayscale

value proportional to the measured area. The resulting picture is added to the

output image (called global bias map), then the iteration is continued. At the

end of the iteration, the output image gives the histogram-equalized result.

Algorithm 2 (as contrasted to Algorithm 1) is suitable for running morpho-

logical or wave operations within the body of the loop on the binary image. In

Figure 2.2 and 2.3 we can follow the algorithm and its morphological operations

can execute closing with the help of dilation and erosion of a variable number.

This way, noise suppression and shape enhancement is executed. At the end the

algorithm denoises the image with the help of diffusion.

In Figure 2.4, the fourth block of the flowchart, which executes the measure-

ment of the area, can have other alternative solutions as well (e.g., counting the

pixels). At the threshold step and other modules, further adaptive strategies can

be embedded. ∗ mark: fuzzy decomposition instead of fixed threshold decompo-

sition. In case of the results overlap SMAP images sub-quantum level adoptation

can be done. ∗∗ mark: expand diffusion only to local areas instead of the entire

image regions over a circular area calculated from TMapNew and TMapOld. ∗∗∗
mark: mebedded morphological processing the level-sets function SMap, which

has been showed and done in Algorithm 2.

2.5 Execution time

In Figure 2.3, we can follow the time requriments of the independent steps of

the algorithm. The execution time of the algorithm, depending on the number of
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Figure 2.3: UMF (Universal Machines on Flows) description of Algorithm 2.

Nr. of level-sets Nr. of morphology steps Execution time (CNN τ)

2 0 242 τ
16 3 2276 τ
32 4 4852 τ

Table 2.1: Execution time depending on the number of level-sets and the number
of morphological steps.
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Figure 2.4: The CNN analogic algorithm approximating the histogram modifi-
cation PDEs discussed in Section 4. The processing stages are as follows: (1)
Initialization, (2) Set threshold level, (3) Detect regions above threshold, (4) Cal-
culate area measure, (5) Set Global Bias Map pixels, (6) Modify image histogram
with noise suppression (regularization). Blocks 2-5 should be repeated q times
(the number of gray-scale levels that specify the accuracy of the approximation).
In the flowchart *, **, and *** mark the stages where the subroutines implement-
ing further adaptive strategies can be embedded. Morphological operations are
embedded at *** processing the level-set function SMap.
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level-sets (i) and the morphological steps (m) is (20 + i(111 + 10m))τ , where τ is

the time constant depending on the CNN implementation. The chosen optimal

output has an execution time of 2276 τ (see Table 2.1).

2.6 Extended Algorithmic Schemes – Morpho-

logical Processing Of The Level Sets

An adaptive multi-thresholded output with shape enhancement can be obtained if

a morphological processing is embedded at each gray-scale level considered. This

could be implemented either through a multi-step erosion and dilation operations

or using trigger-waves that approximate a continuous-scale binary morphology

with flat structuring elements [32]. The description of the extended algorithm

that contains the multi-step dilate-erode operations can be seen in Figure 2.2

(Algorithm 2).

2.7 Conclusions

In this chapter, I worked out nonlinear partial differential equation based parallel

histogram modification algorithms for contrast enhancement and noise suppres-

sion. The morphological and wave processing steps of the CNN operate on a finite

number of level-sets (Thesis 1.1). The steps of the algorithm are the following:

for a given input image it produces XOR between two neighboring, thresholded

level-sets and then morphological and wave operations are executed. This result

is the current binary image. These binary images will be summed iteratively.

The values of the pixels, covered by the current binary mask, are increased with

a value proportional to the area of the current binary image (measured by diffu-

sion). The outcome is provided after a diffusion filter (Figure 2.4).

Its application of medical imaging can give solutions (i) for real-time ultra-

sound image processing of echo-cardiographic diagnostics and (ii) MRI image

evaluation. Experimental results can be found in the next chapter.



Chapter 3

Morphological Processing of the
Level-Sets – Experiments

I describe and illustrate how the implementation of the algorithm results in an

adaptive multi-thresholding scheme when histogram modification is combined

with embedded morphological processing at a finite (small) number of gray-scale

levels. This has obvious advantages if the further processing steps are segmen-

tation and/or recognition. Comperative experimental results processing real-life

and echo-cardiographic images are measured on different hardware/software plat-

forms, including a 64× 64 and 128× 128 CNN-UM chips (ACE4k, ACE16k [27,

26, 33]).

3.1 Introduction

The resulting analogic (analog and logic) CNN [20, 26, 27, 34, 35, 36, 37] algo-

rithms are implemented on different hardware-software platforms. Measurement

results prove that various real-time image processing based solutions could use

this technique as an efficient front-end scheme. Furthermore, it is demonstrated

that the implementations accelerated by a CNN-UM chip [26, 27] are faster than

the optimized solutions on a high-end DSP (Texas 6x).

Heavy engineering problem was to optimize the analog implementation of my

algorithm to achieve as fast performance as possible. It was my goal to show that

an efficient implementation was possible on existing CNN chips (Acex), and an

adequate speed up can be achieved.

19
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During the implementation, the optimalization of the use of analog memories

had to be solved: minimalizing the outer data transfers (there is no need for extra

data transfer), tuning parameters of the hardware needed for wave operations,

and counting the linear combinations of images.

This chapter is organized as follows: In Section 2 experimental results are

given for several different hardware-software platforms. Section 3 contains the

parameters for CNN templates used in the algorithms. In Section 4 the imple-

mentation of the full algorithm is presented. In Section 5 conclusions can be

found.

Figure 3.1: Programmable global PDE on a cellular nonlinear architecture –
simultaneous contrast enhancement with noise suppression: original, low contrast
image (a,c); enhanced – histogram equalized (b,d).

3.2 Experimental Results

For comparative analysis I have implemented the histogram modification method,

discussed in Chapter 2, (Algorithm 2 without diffusion filtering, but including

the morphological processing of the level-sets) in 6 different hardware-software

configurations listed bellow (the 7th complete CNN-UM chip implementation is

discussed in Section 3.4).

Version 1. in MATCNN MATLAB Toolbox simulating all analog CNN dy-

namics with an optimized C-code running on a CISC. µP: Pentium 1 GHz.

Version 2. as Version 1, except for simulating through the CNN fixed-points

with an optimized C-code.
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Figure 3.2: Programmable global PDE on a cellular nonlinear architecture –
simultaneous contrast enhancement and noise filtering with embedded morpho-
logical processing of the level-sets: (a) original, low contrast image, (b) histogram
equalized image, (c)-(d) histogram modification with embedded differential mor-
phological processing (implemented through expanding and shrinking trigger-
waves) at two different scales (3t and 5t) and 8 distinct gray-scale levels.

Version 3. as Version 2, except for the C-code contains the entire algorithm.

Version 4. in Aladdin Professional with an optimized C-code that contains

the entire algorithm running on a DSP. µP: Texas TMS6x 250 MHz.

Version 5. as Version 4, except for the morphology operation is optimized

at the assembly level.

Version 6. as Version 4, except for the morphology operation is optimized

for the CNN-UM chip. µP: ACE4k [26, 27].

Version 7. in Aladdin Professional running the entire algorithm on a CNN-

UM chip. µP: ACE4k [26, 27].

Detailed measurement results can be seen in Figure 3.3 Observe in Fig-

ure 3.3(b) that 7×2 binary morphology operations including logic are completed

within 100 µs on the ACE4k CNN-UM chip.

3.3 CNN template parameters

The structure of linear templates used in the histogram modification algorithm

can be seen in Equation (3.1). Matrix A and B are central symmetrical, some

typical parameter values are in Table 3.1.
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Figure 3.3: Comparison of different algorithmic implemenentations (Ver1-Ver6).
(a) Execution time of Histogram Modification algorithms (q=8), (b) Execution
time of binary morphology.
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Table 3.1: Linear CNN templates used in the histogram modification algorithms.
In boundary condition specification (Bc): ZF – zero flux, [-1,1] – constant.

FeedBack (A) Control (B) Current BCond
Template a0 a1 a2 b0 b1 b2 I Bc
THRES 2 0 0 0 0 0 0 1
SETLEV 0 0 0 1 0 0 0 0
EROSION 1 1 0 0 0 0 -4 -1
DILATION 1 1 0 0 0 0 4 -1
DIFFUS 0 0,15 0,10 0 0,15 0,10 0 ZF
CDIFFUS 0 0,15 0,10 0 0,15 0,10 0 ZF

A =

 a2 a1 a2

a1 a0 a1

a2 a1 a2

 ; B =

 b2 b1 b2

b1 b0 b1

b2 b1 b2

 ; z (3.1)

I would like to present some results that show the effiency of the algorithm.

The figures and their results executed with different parameters can be found in

Appendix D in more detail.

3.4 ACE16k experiments and results

A number of related examples on artificial and real-life images can be found

in Appendix D. The last experiments were performed on ACE16k chip whose

128×128 size and technical parameters make this chip unique on the market[33].

To take up a challenge, I attempted to implement the full algorithm on a

CNN-UM chip without any external data transfer and with as many level-sets

as possible. At a first step, I used AladdinPro software, where the AMC lan-

guage provides access to both microprocessors of the Bi-i system, to ACE16k and

Texas DSP. Some conventional operations, as multiplication or linear combina-

tion can be processed on DSP more easily. In this case, the external data transfer

between the microprocessors had significant time loss, although improving the

performance, the morphological and wave operations were running on the CNN

chip. Experimental results can be seen in the middle column of Figure 3.5.
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Figure 3.4: Simulation results for different inputs. More results can be seen in
Appendix D. Left image is the input, right image is the result for each image
pair.
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After the morphological and wave operations were tested and tuned on the

ACE16k chip, the next step was to implement the full algorithm on the chip. This

implementation was a challenge, because in the course of long time data storage

the memories of ACE16k lost data, so quality decreased and noise appeared in the

stored images. The computing of linear combination of two images with adequate

accuracy using only internal analog memories was a hard problem, too.

Having 128 × 128 resolution and 4 level-sets, the measured running speed

of this implementation was 3.93 ms/frame. Results can be seen in Figure 3.5.

Implementation codes can be found on the attached CD.

Figure 3.5: The results of the ACE16k chip experiments. In the first column some
images of the original input image sequence can be seen. These were recorded by
an infra camera. In the second column the results of the Bi-i system are presented
in the case of 8 level-sets. This implementation combined the CNN-UM with a
DSP. The third column shows those results which were the output of the ACE16k
chip in the case of 4 level-sets. This implementation was achieved completely on
the CNN-UM.
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3.5 Conclusions

In this chapter, I have shown how a PDE, designed for simultaneous contrast

enhancement, noise suppression, and shape enhancement could be implemented

as an analogic algorithm relying on purely local operations. I have also per-

formed an exhaustive comparative experiment of different implementations on

various hardware-software platforms with CISC, DSP microprocessors and CNN-

UM Ace4k and Ace16k chips.

I proved experimentally that it satisfies the theoretical expectation qualita-

tively and quantitatively to a good approximation. For 128×128 image resolution,

a speed of 200 frame/s could be achieved (Thesis 1.2). I presented the typical

parameters of linear CNN templates, which were used in the algorithm. I success-

fully implemented the full algorithm on the ACE16k chip without any external

data transfer. Experiments on image sequences show the results.



Chapter 4

Immune Response Inspired
Target Detection Algorithms

In this chapter I show that, similar to the nervous system and the genetic sys-

tem, the immune system provides a prototype for a “computing mechanism”. I

present an immune response inspired algorithmic framework for spatial-temporal

target detection applications using CNN technology [20, 53]. Unlike most ana-

logic CNN algorithms [34, 53] here I will detect various targets by using a plethora

of templates.

4.1 Introduction

During the last twenty years, the nervous system and later the genetic system have

become useful “prototypes” for computer engineers in solving complex problems.

“Neurocomputing” and “genetic algorithms” are now standard subjects taught

in undergraduate curriculum. The third area having biological motivation and

just emerging, is the application of the immune system, which may also play a

similar role in the future [49, 50, 51].

Artificial Immune Systems (AIS) mimic the human immune system that has

refined capabilities and methodologies, to build efficient algorithms that solve

engineering problems. Moreover, our immune system possesses important prop-

erties, such as diversity, noise and fault tolerance, learning and memory and self-

organization, which give it an advantage compared to other standard methods

[49, 50].

27
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During my research, I intended to design topographical algorithms and their

experimental realization where huge number of target objects are monitored in

real time to detect previously unknown events. So my goal was spatial-temporal

novelty detection.

Novelty detection is the identification of new or unknown data or signal that a

machine learning system is not aware of during training. Novelty detection is one

of the fundamental requirements of a good classification or identification system

since sometimes the test data contains information about objects that were not

known at the time of training the model.

There are a multitude of applications where novelty detection is important

including computer vision, signal processing, pattern recognition, data mining,

and robotics [57, 58].

Several applications require the classifier to act as a detector rather as a

classifier, that is, the requirement is to detect whether an input is part of the

data that the classifier was trained on or it is in fact unknown. This technique

is useful in applications such as fault detection [86], visual detection for mobile

robots [83, 84], video surveillance [85], image region classification [56] and several

others. Recently, there has been an increased interest in novelty detection as

a number of research articles have appeared on autonomous systems based on

adaptive machine learning.

Basically, there are two approaches of novelty detection: statistical based and

neural network based approaches [57, 58].

Statistical approaches are mostly based on modeling data based on its sta-

tistical properties and using this information to estimate whether a test samples

comes from the same distribution or not [57].

Neural networks have been widely used for novelty detection. Compared to

statistical methods, some issues for novelty detection are more critical to neural

networks such as their ability to generalize, computational expense while training

and further expense when they need to be retrained [58].

To compare my work to the research areas of novelty detection, we can observe

that it is rather statistical approach, because it has similar properties as statistical

approaches have: easily re-trainable and the evaluation of the algorithm is based

on the sub-patterns of the images.
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Figure 4.1: After the initialization phase (a), known input patterns keep the
system tolerant and during the recognition phase (b) unknown objects can cause
detection, if they can be differentiated from the unimportant noise.

The process of antigen presentation I used, gave several ideas for solving

engineering problems, but, up to my knowledge, it has never been used for novelty

detection problems based on image processing in a similar way. I have not found

any similar processing methods in the literature of the AIS [82].

In this chapter I present immune response inspired algorithms for spatial-

temporal target detection applications with extensions and a summary of my

earlier work [13, 7, 8, 9]. Unlike in most analogic CNN algorithms [34, 53] here we

are detecting various targets by using thousands of templates. These algorithms

can be reasonably implemented only if we have a computer where thousands of

elementary, fully parallel spatial-temporal actions can be implemented real-time.

Fortunately, the recent CNN-UM [48, 40] based cellular wave computer and its

visual microprocessor physical implementations, both CMOS [27, 38] as well as

optical [75, 41], are ideally suited for this purpose.

In Figure 4.1., I show the basic idea. This is a simple example where the

detection is based on the tail type of the planes. During the initialization the

system was taught not to detect the planes with the first type of tail (Figure 4.1.a).

Then, in the recognition phase, the planes which have the same tail, will not be

detected, but any other type of tail, the unfamiliar ones (on Figure 4.1.b), will

be detected.

The organization of this chapter is the following. First, I present the analogy

of immune response and CNN algorithms for target detection. Section 3 intro-

duces the specific target detection problem and its solution via a multi-template,

immune response inspired CNN algorithm. In Section 4, I discuss some special
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feature extraction subroutines of my algorithm. Conclusions can be found in

Section 5.

4.2 The Analogy of Immune Response and CNN

Algorithms for Target Detection

A basic knowledge of immune systems [47] and cellular nonlinear networks [53] is

recommended for reading this section. The reader may find more details in the

Appendix.

The immune system is constantly in contact with its environment, and during

this interaction, features are extracted and 3D molecule patterns are identified

and detected by the process of immune response. This 3D dynamic pattern

recognizer system has several other important properties (e.g.,memory), see Ap-

pendix E and [47, 46].

Humans might observe their environment through a visual process on 2D

video flows recordeda and processed by their eyes and transmitted to the brain for

further processing. Cellular Wave Computer based on the CNN-UM architecture

is an efficient way for grasping the dynamics of the living visual system. The fast

processing and computation performance of the vast numbers of immune cells can

be mimicked by running a huge number of templates per second on the CNN-UM

based physical implementation [38, 27].

My model is an attempt to use the analogy of 3D immune pattern recognizer,

nature created immune system, to solve the dynamical object recognition and

detection problem in 2D image flows.

4.2.1 Antigen Presenting

My model is based on the antigen presenting analogy. The short summary of this

process is described in this section. Antibodies are complex molecules (created by

B-lymphocytes and plasma cells,) that can bind to, deactivate and help remove

antigens. After an antigen presenting cell (APC) e.g., B-lymphocyte, binds to an

antigen through its antibody receptors, it ingests it. The antigen is digested into
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Figure 4.2: Antigen presenting and its CNN model

small pieces (called peptides), which are inserted into a groove in another type

of molecule (MHC) and transported to the surface of the APC.

The T-lymphocyte also contains specific receptors on its surface, and it tries

to bind to the APC, to its MHC-peptide. A successful binding sends chemical

signals (e.g.,by cytokines) that stimulate the T-lymphocytes to divide.

On the left side of Figure 4.2, the procedure described above is illustrated.

The antigens meet their match in APCs digested into peptides and presented

to T-lymphocytes. If the T cells can bind to the APCs then it means that an

antigen has been successfully detected.

The right side of Figure 4.2. is a diagram of my CNN model and the assigned

notions are mapped. The 2D video flow is the input of the system – from which

I extract the features using a feature extractor module. The extracted features

depend on the current application, and exploit the advantages of the CNN-UM.

In my model and example I worked with 5 × 5 or 3 × 3 binary patterns. In my

work the chosen output gives a comfortable processing because the running of

5× 5 templates on 5× 5 patterns give unequivocal pattern recognition. The final

output can be a binary value of detection. If any template fits into the pattern

and recognizes it, then the target detection was successful.

My model defines the antigens and T-lymphocytes as two data items with
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Figure 4.3: If in the position of 1 s black pixels and in the position of -1 s white
pixels are found, the matching is successful, while pixel color in the position of
the 0 s is indifferent. Therefore (a) and (b) give successful matching while (c) is
unsuccessful.

different characteristics and goals. The antigens can be represented by n × n

sized binary (black and white) matrixes. Colors can be coded with 1 (black)

and -1 (white) numbers. Each antigen is usually a 3 × 3 or 5 × 5 subpattern

of a binary picture which is extracted from the input image flow by a special

feature extraction method. These patterns (2D-strings [81]) can be recognized

by my T-lymphocytes, called match-templates [42]. They are usually 3 × 3 or

5× 5 matrixes and contain 1, -1 and 0 numbers. During the interaction between

templates and patterns, if in the position of 1 s black pixels and in the position

of -1 s white pixels are found, the matching is successful, while pixel color in the

position of the 0 s (or otherwise “don’t care” elements) is indifferent. An example

can be seen in Figure 4.3.

4.2.2 The Parallel Notions

The essence of my model is based on the presentantion of antigen-peptides. For

a better understanding, it is worth comparing the parallel concepts of my model

again. The members of this mechanism correspond to the objects of my CNN

algorithm. The summary of these parallel notions can be seen in Table 4.1.

The equivalent of the antigen is the 2D image flow with various objects. This

may contain both non-pathogen objects and pathogen objects. The patterns

extracted from the 2D video flow, which are parallel to the peptides, can be

effectively processed by CNN-UM. The function of B-lymphocyte corresponds to
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Table 4.1: Mapping between the immune system and the CNN algorithm.

Immune System CNN algorithm

Antigen Various objects or events in a 2D image flow
Non-Pathogen Non-dangerous objects or events in a 2D image flow
Pathogen Dangerous objects or events in a 2D image flow (targets)
Antigen-peptides Patterns and/or properties of the objects or events,

e.g., 5× 5 patterns
APC Feature extraction module
T-lymphocyte Templates
Antibodies (flags for targets on the objects in the 2D flow)
Complement -
Cytokines, Tc, NK Detection message
Memory cell Specialized template with several recognition
Recognition Template matching
Life of an organism Number of interactions
Affinity measure Number of “don’t care” elements

the feature extractor, which is a problem specific module. It converts the gray-

scale or color input flow to binary. The T-lymphocytes – which carry out the

recognition – are parallel to the templates. The role of the antibodies is not very

important in my model, after the recognition of patterns they can be regarded as

flags in the input flow.

The complement and the innate immune system (see Appendix E) do not

play a significant role in my model. The message signal has little importance

at this point. The most essential is the detection message which occurs during

a successful detection. Memory cells are specified templates with several recog-

nitions, where recognitions are successful template matchings between the data

items. The life of an organism can be symbolized by the number of interactions.

The number of “don’t care” elements can characterize the efficiency (matching

affinity) of a template.

4.2.3 Artificial Immune Systems (AIS)

“Artificial immune systems (AIS) are adaptive systems, inspired by theoretical

immunology and observed immune functions, principles and models, which are
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applied to problem solving” [50]. For the AIS, immune cells and molecules are

represented by data items which take apart in some general-purpose algorithm

that models specific interactions and aspects of the immune systems.

In the AIS [49, 50], antigens, lymphocytes and any molecules have a general-

ized shape m in shape-space S. This generalized shape can be represented as an

attribute string – set of binary or other coordinates – of length L. Therefore any

molecule string m can be regarded as a point in an L-dimensional shape-space.

The interaction of an antigen and a peptide is assessed via a common (Euclidean,

Manhattan, Hamming, etc.) D distance measure, which is also called an affinity

measure, between their proportional strings. Usually a relation is defined between

the distance D and the recognition region Vε proportionally to the recognition

threshold or cross-reactivity threshold ε. If the D distance measure between data

items is larger than ε, then a successful recognition is assumed between the items.

In my model the S shape-space has 9 or 25 dimensions, because the sub-

pattern matrixes can be represented by 25 or 9 long binary vectors and the

templates correspond to 25 or 9 long vectors (coordinates can be -1, 1, or 0). The

distance measure between an antigen (Ag = 〈Ag1, Ag2, ...AgL〉) and a template

T = 〈T1, T2, ...TL〉 is

D =
L∑

i=1

δi, where δi

{
0, if Ti = Agi or Ti = 0,
1, if Ti 6= Agi

(4.1)

My match template class does the recognition if and only if the D distance is 0.

Contrary to common AIS, where the molecules usually are represented by simi-

lar vectors, the sub-patterns and template vectors generally differ in my model.

There are “don’t care” elements in the templates, whose position are fixed within

their vectors. Therefore, I could not give a definition of affinity as other AISs

have. If a match-template has d “don’t care” elements, it can detect 2d dif-

ferent sub-patterns. The more “don’t care” elements it has, the more different

sub-patterns are, which are detected. Therefore, the affinity of a template can

be characterized by the number of the “don’t care” elements. This affinity is

called template affinity α. This affinity has a similar effect to the usual affinity

or cross-reactivity threshold in AIS. A sub-pattern can be matched successfully

by 2L =
∑L

α=0

(
L
α

)
different match-templates, where α is the affinity, defined
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formerly. The maximum number of sub-patterns that can be recognized by a

template set is
∑

2αi , where the αi is the template affinity of ith template of

the template set. During the recognition phase a successful template is cloned

changing one of its 0 elements to -1 or 1, where the 0 element has been chosen

by uniform random process, therefore the clones are more specific and two new

templates are added to the template set. The lifetime of a template is extended

if it is successful and its specificity reaches a given threshold (d ≤ 1). Parallel to

the recognition process, the actual template repertoire can be expanded with new

templates using negative selection. It is also beneficial to refresh the template

repertoire by replacing the unsuccessful old templates with low template affinity

ones.

4.3 A Target Detection Problem and Its Algo-

rithm

The immune system endeavors to solve a target detection problem where the ob-

jects to be detected are not predetermined. These objects can be numerous. The

system has to react as quickly as possible to distinguish between non-pathogen

and pathogen objects to protect the body from the pathogens.

The algorithm in Figure 4.4. is an attempt to provide a framework to solve

the target detection problem below as effectively as the human immune system.

The algorithm has two parts – initialization and recognition which sequentially

follow each other. In the course of initialization, a “non-dangerous” template set

(T cells) is created. This template set contains templates which are not able to

recognize the initial objects – the non-dangerous objects. This process is called

negative selection [79, 80]. The output of the negative selection – templates –

performs the recognition in the second part. The randomly chosen templates

(lymphocytes in the bone marrow) are tested (in the thymus) against a pattern

flow which is extracted (by the APCs) from the initial 2D image flow. Those

templates, which do not match any of the patterns, are selected as the “non-

dangerous” ones.

In the recognition phase, every member of the selected template-set tests

the actual pattern extracted from the input image flow of the recognition part,
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Figure 4.4: Target detection CNN algorithm.

and if it recognizes the unfamiliar pattern then a detection message is generated.

These templates are called prosperous and get higher priority, and thus have more

opportunities to recognize patterns. The mutation and division module operates

on the templates and its sequence to improve the effectiveness of the algorithm.

The steps of the algorithm can be followed in the tail example in Figure 4.5.

4.3.1 Initialization part of the Algorithm

The details of the former immune response inspired CNN algorithm framework

(Figure 4.4) is described by a Universal Machines on Flows (UMF) flow chart.

The general UMF diagram of initialization or otherwise selection part of the al-

gorithm can be seen on Figure 4.6. In my first experiments I worked with simple

feature extraction and selection subroutines. Some more complex feature extrac-

tion subroutine can be found in section 4.4. In the first tests my feature extraction

subroutine was empty (i.e. I began with binary images) and the selection subrou-

tine contained different match templates, therefore, the recognition was solved by

its pattern matches. In case of 3× 3 matching templates, the initial template set
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Figure 4.5: AIS based algorithm framework for a simple example. The random
initial template set is generated by the bone marrow model. After negative se-
lection of the initial 2D image flow, the template set is prepared for detection.
In the recognition phase, in the event that any members of the template set are
able to match the actual pattern with a given threshold, then a detection mes-
sage is generated. The influence of mutation is provided by a loop-back from the
template-runner to the template-set.
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( HTEM INI ) contains the following match templates [42]:

HTEM INI =


MATCH(p) |b11 = 1; ∀

i6=1∧j 6=1
i, j bij = 0; ∀k, l 0 ≤ k ≤ 1,

0 ≤ l ≤ 1, akl = 1 ∨ akl = 0 ∨ akl = −1; z =
∑
k,l

|akl| − 0.5


(4.2)

where p is the index of the elements and |HTEM INI |
∆
= Cp therefore 0 < p < Cp.

The goal of the initialization part is to obtain a set of only “non-dangerous”

templates. These templates must not recognize the self input, the input of the

initialization part. Thus, those templates which can recognize any of the input

frames are HTEM INI . For the output set

G = {p |MATCH(p) ∈ HTEM INI ; Gp 6= 0} (4.3)

where Gp is the detection result of the selection subroutine and G contains the

indexes of non-selected templates. (In Equation (4.3) Gp sometimes has to be

bigger then a given threshold) The resultant non-dangerous template set is the

following:

NDT = {MATCH(p) |p ∈ G} (4.4)

therefore this set is the input of the recognition part: HTEM REC = NDT and

|HTEM REC |
∆
= Cq

4.3.2 Recognition part of the Algorithm

In both parts of the algorithm, the input pictures are processed by the template

elements of the corresponding H set until the match. These loop mechanisms

can be observed in Figure 4.6. and Figure 4.8 and helped by parameters p and q.

There is a difference between the recognition part and initialization part of

the algorithm in the mechanism of the loop process. In the recognition part we

do not need to process all the elements of the corresponding H-set because one

match is enough for a successful recognition.

For generality the mutation and division subroutine is accomplished. One of

its potential realizations can be seen in Figure 4.9.

In the mutation and division subroutine of my model, the winning template

may change its position. The successful template and its clones will be placed
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Figure 4.6: The UMF diagram of the selection part of my immune response
inspired CNN algorithm.

Figure 4.7: The UMF diagram of my subroutine of selection.
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Figure 4.8: The UMF diagram of the recognition part of my immune response
inspired CNN algorithm.

Figure 4.9: The UMF diagram of my subroutine of mutation and division.
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at the beginning of the execution order, therefore efficient templates have an

advantage over the other ones. They process the input earlier and help the entire

algorithm to run faster.

4.4 Feature extraction subroutines

In my model, in the event that I have 3× 3 match-templates in my selection sub-

routine, the feature extraction subroutine is responsible for converting grayscale

or color input images to binary patters, where each 3 × 3 sub-pattern contains

as much information as possible. First, let us suppose that the input image is

grayscale and the templates are 3 × 3. In the algorithm, the input image is

threshold nine times at different levels:

THRES(i) =
2i

9
− 1 i = 1, 2, ..., 9 (4.5)

Each element in the 3×3 binary pattern is defined by a given threshold result.

Practically, each threshold result is AND-ed to its mask to select its position in

the 3× 3 sub-pattern.

MASK(i)kl =


1, k = i mod 3 + 3m; l = i div 3 + 3m;

m ∈ Z; 0 ≤ m ≤ 21
0, otherwise.

(4.6)

where k,l are the coordinates of pixels. All these masked binary images are

logically OR-ed to give the output result. The UMF description of this algorithm

can be seen on Figure 4.10b.

The second case is to combine different input images, that is the three color

channels (red, green, blue) of the input images. The method is similar to the

gray-scale case, only there are three threshold levels and each input set defines

only three pixels in the pattern. The UMF description of this algorithm can be

seen on Figure 4.10a.

Although in my experiments I used 3× 3 or 5× 5 matching templates in se-

lection modules, it is possible to match and recognize different sizes of patterns.

Using simulators, it is straightforward to use 5×5 templates but it is also possible

to find and recognize binary templates of any size and shape[8]. This decompo-

sition method is based on combining 3× 3 templates. The templates can overlap
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Figure 4.10: (a) The UMF diagram of the feature extractor subroutine for color,
(b) for grayscale input images.

Table 4.2: Comparison of different matching templates. Note that same tem-
plate combinations (arrangement can be seen on Figure 4.11) can cover different
amount of pixels depending on their overlapping topology (3. and 4. row).

Size of Nr. of Nr. of Nr. of different Nr. of different
templates templates pixels patterns templates

3× 3 1 9 512 19683
5× 5 1 25 33554432 847288609443
3× 3 2 12 4096 531441
3× 3 2 14 16384 4782969

each other, but no inconsistency is allowed in the overlapped area, which means

that 1 and -1 elements are not allowed in the same pixel position. Only one of

them can be other than 0 (’don’t care’).

For example an interesting and important case can be using two 3×3 templates

overlapping each other and building a pattern which contains fourteen pixels, see

Figure 4.11. Let us compare the different properties of these matching templates

in Table 4.2.

The variations of 3× 3 patterns may be less than the application needs, but

5 × 5 patterns give more variations than I could cover in real time. Note that

these match templates contain “don’t care” elements, so in order to recognize

all variations of binary patterns, I do not need all templates. In the event that
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Figure 4.11: A potential decomposition for the bordered pattern by two 3 × 3
templates. Note that the overlapped area is darker and contains “don’t care”
elements.

two or more templates are being used to recognize more complex patterns, the

computational cost will be greater, because we need less template combinations.

4.5 Conclusions

The immune system is a source of inspiration for developing intelligent problem

solving techniques [49, 50, 52]. In this chapter, I introduced an immune response

inspired algorithmic framework and showed that the functional model of human

immune response can be described in a cellular network (CNN) algorithmic frame-

work (Thesis 2.1). I have presented the analogy of immune response and my CNN

algorithm for target detection problems in image flows. After shortly summariz-

ing the theory and mathematical description of my model from the point of AIS,

the subroutines of my algorithm framework are described. Also sample feature

extraction methods are presented.

Its application of surveillance can give solutions for real-time image processing

of novelty detection. Experimental results can be found in the next chapter.





Chapter 5

CNN-UM Implementation and
Experiments

The algorithms introduced in the previous chapter can be implemented success-

fully only by using a computer upon which thousands of elementary, fully parallel

spatial-temporal actions can be implemented in real time. My tests show a sta-

tistically complete success rate, and I present a particular example of recognizing

dynamic objects. Results from experiments in a 3D virtual world with different

terrain textures are also provided to demonstrate that the system can detect un-

known patterns and dynamical changes in image sequences. Possible applications

of this algorithm include in explorer systems for terrain surveillance. Hardware

experiments are also demonstrated on ACE16k CNN-UM wave-computer.

5.1 Introduction

In my experiments, the CNN-UM processor runs not only the sensory prepro-

cessing algorithm, but the learning and recognition methods, too, which in co-

operation with digital algorithms allows for fast image processing in real-time

applications.

Section 2 presents an experiment with several hundreds of different targets

and the use of several thousand templates to detect them. The statistical success

rate is practically 100%. In section 3, I show an example which is a special

application of my algorithmic framework for dynamic object detection. Section

4 describes a real time surveillance application implemented in the Aladdin Pro

45
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environment utilizing the ACE4k chip [27, 38] and gives time measurements. In

Section 5, applied mutation subroutines are presented. Section 6 shows the result

of my experiments, which were performed on the ACE16k chip. In Section 7,

conclusions can be found.

5.2 An Experiment and Its Evaluation

In this first experiment my goal was to test the kernel of the algorithm which were

introduced in Chapter 4, the template runner (in Figure 4.4.) and measuring its

speed performance. One of the main points is to determine the necessary number

of templates, which is a critical value of applicability.

Over the course of experiment, the defending “T-lymphocyte” templates were

randomly chosen as 5×5 match-templates. The objects in the input flow (antigen-

peptides) were 8 × 8 binary pictures, each containing randomly chosen 5 × 5

patterns. These patterns have to be recognized by my system.

In these first tests, all the input patterns are offensive objects. If an uniden-

tified object is recognized by one of the templates then it is eliminated. If the

number of unrecognized offensive objects is over a critical value, then the defense

was unsuccessful. If all the offensive objects are eliminated, then the defense was

successful.

There are 500 input patterns and 2000–5000 templates in each test. My goal

was to set the system parameters to recognize all the input objects. My tests were

performing in a CNN simulation environment called Aladdin Professional 2.4.

5.2.1 Results of the Tests

The pattern and template series were different. The results of the recognition

phase can be seen in Table 5.1. In four cases the randomly generated match-

templates could detect all the patterns. The maximum number of different tem-

plates is 325 (=847288609443), while the maximum different patterns can be 225

(=33554432). My result shows that 5000 randomly selected templates can recog-

nize all the randomly generated patterns, because the zero, “don’t care” value in

the templates helps to successfully recognize the patterns.
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Table 5.1: Result of first test. Number of unrecognized patterns are given for
different pattern and template series.

Name of Pattern-series Name of Template-series Number of
(500 in each) (2000 in each) unrecognized patterns

A a 56
B b 15
C c 0
D d 0
E e 0
F f 73
G g 13
H h 1
I i 0

In the second test, I performed the same template series on different pattern

series. As shown in Table 5.2, a template series gives similar result with different

pattern series. Template series number c could recognize all the patterns in

pattern-series A-F because this template set may contain some templates which

have a lot of zero value.

In the third test, I tried to calculate the size of template series that are large

enough to recognize all patterns in the pattern series where each pattern series

contains 500 patterns. I can not promise that every randomly generated template

series can cover the whole pattern target space but my result gives a statistical

estimation of the number of templates which is usually practical.

The results in Table 5.3 show that at least 5000 different templates are nec-

essary to match all the 500 different patterns. 5000 templates out of 325 could

detect all the 500 patterns out of 225.

5.2.2 Theoretical aspects

In this section, I give an approximation based probability analysis of the needed

computational power, estimating the size of the template set. If a template

contains k 0 (don’t care) elements then it can recognize 2k different patterns.

The more 0 elements it has, the greater the number of patterns it recognizes,
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Table 5.2: Result of second test. Number of unrecognized patterns are given for
different pattern with same template series.

Name of Pattern- Name of Template- Number of unrecognized
series series patterns

A a 56
B a 52
C a 48
D a 55
E a 56
F a 43
G a 57
H a 47
I a 58
A b 15
B b 15
C b 24
D b 17
E b 19
F b 14

A-F c 0

Table 5.3: Result of third test. A statistical estimation of the size of template
series that are large enough to recognize all patterns in the pattern series where
each pattern series contains 500 patterns.

Name of Template- Size of Template- Number of unrecognized
series series patterns

a 2000 30
a 3000 9
a 4000 1
a 5000 0
b 2000 28
b 3000 7
b 4000 3
b 5000 0
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but the specificity will be needed. If we have a set of templates, the maximum

number of patterns that can be recognized by this set is∑
2αi (5.1)

where αi is the number of the 0 (don’t care) elements of the ith template of the

set. I evaluated these summarizations for my different template series (a,b, etc.)

and the results were around 6 million. As we know, the different patterns can be

225 = 33 million. Let us examine this problem from another point of view. The

probability that a random template contains 0 don’t care elements, or in other

words, that it can match only one pattern, is

225

325
(5.2)

The probability that a random template can match exactly 2k patterns is(
25
k

)
225−k

325
(5.3)

If we summarize this formula by multiplying with the appropriate value (2k), we

can get the mean value (∼= 1328.8). The mean value is how many patterns will be

covered by a template. This result shows, that 5000 templates can match with

approximately 6.6 million patterns.

Comparing the experimental results to the theoretical analyzes, my result is

different. This difference perhaps exist because 500 samples of 33 million is not a

significant representation. Note that in my experiment also all the elements were

chosen randomly. The theoretical value of the size of the template set is around

25000.

If I use 3× 3 sized templates, based on a similar theoretical proof the size of

the template set should be at least around 39. It is not proved that this set will

cover all of the same sized sub-patterns, but it gives a good order of magnitude.

It must be noted, however, that any sub-patterns can be recognized by special

decomposition of 3 × 3 templates [39]. The templates can overlap each other

without any inconsistency, which means that -1 and 1 are not allowed in the

same overlapped position. Only one of the overlapped values can be other than
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Table 5.4: Comparison of time necessities between Pentium PC and ACE4k.

Simulation Real hardware

Processor: 3Ghz Pentium IV. ACE4k
Input size: 64× 64 64× 64
Number of templates: 5000 5000
Template size: 3× 3 3× 3
Software: Aladdin 2.4 Aladdin 2.4

Time: 312 sec 0.4 sec

0. An example of overlapping decomposition can be seen in Figure 4.11. In this

case where the pattern contains 14 pixels the size of the template set should be

around 292.

5.2.3 Time measurement

The running time of my algorithm is a significant parameter. Therefore, I mea-

sured its running time of the selection subroutine both in simulation and an

ACE4k chip environment. The comparisons of the different environments and

my results can be seen in Table 5.4.

We can observe that the hardware requires significantly less time. These

results show that my model can be implemented in real-time applications.

5.3 A simple example

My goal was developing a system which is able to recognize unexpected, irregular,

dynamic events. Based on my former model and algorithmic frame I would like to

show with a simple example that my theory is adaptable to real applications. This

example explains how special, dangerous, or abnormal movements of dynamic

objects can be detected. I used a simple car racing game where the movement of

cars was followed on an a priori path. Normally, they do not go off their given

path. In this example using my model the system was able to recognize abnormal
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Figure 5.1: Sample pictures of the 2D input image flow. The difference is that
on the second image the white car is missing.

events after a short learning period- if the car moved fast, it went off its path. My

experiment was implemented in Aladdin Professional 2.4 simulator environment.

5.3.1 The algorithm

The algorithm frame of the example can be seen Figure 4.6. and Figure 4.8. The

source of the 2D image flow input was a common web camera with 30 fps image

flow. The moving objects were detected on the input flow and their centroid and

position were calculated by an algorithm defined via AMC code. The coordinates

of the position of each detected object have been converted into 3 × 3 patterns

using their binary code.

These 3 × 3 patterns were transformed into pictures and the randomly gen-

erated match template set (contained 1, -1 and 0 numbers) was running on the

set of these pictures in the initialization phase. The result of this phase was a

template set that contained templates in which none of them recognized any of

the input patterns.

In the recognition phase of my example, the input image flow was created as

it was in the initialization phase but the speed of the cars was increased, which

causes some accidents and this result gave that the cars went off their paths. All

these “dangerous” events were detected successfully.



52 5. CNN-UM IMPLEMENTATION AND EXPERIMENTS

Figure 5.2: Cumulative figures of dynamic objects in initialization and recognition
input flow.

Figure 5.3: Steps of the feature extractor module.
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Figure 5.4: The centroids of detected objects are in the enclosed area. The
system was able to recognize abnormal events after a short (e.g., few seconds
long) learning period- if the car moved fast, it went off its path.

5.3.2 Result

The centroids of detected objects are in the enclosed area in Figure 5.4. This

result shows that all the abnormal cases were detected successfully.

My example is simple and can be solved efficiently in other ways (e.g.,with

neural networks or classifier methods), but my result proved that my immune

response inspired model has efficient applicability with real-time speed and easy

implementation.

The speed of the algorithm is not enough to solve high speed applications,

but the car racing experiment gave a reasonable, real-time result.

5.4 Sample application, result and time mea-

surements

My development focused on a real time application that is able to detect un-

known objects, patterns and geological formations based on their textures. It

can be used in visual systems where autonomous surveillance is needed or where

there is no human presence. It is a helpful additional property of existing surveil-

lance systems subject to unexpected occasions and give detection warnings. For

example, it could be a useful, complementary function on Mars rovers because

due to the long distances real time remote control is unfeasible.

This application was implemented in the Aladdin Pro environment utilizing

the ACE4k chip [38, 27]. The input frames of the algorithm were generated in a
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Table 5.5: The most relevant parameters in my AIS visual analyzer model.

Parameter name Meaning and values Experiment values

InitSetSize The size of the template set, 200
usually between 100 and 500.

InitMethod The initial method can be random creation
random creation or loading
stored data.

ImmuneProcessLevels Learning phase, recognition combined phase
phase or combined phase.

Agelimit Length of the non-active state 50
after successful matching.

FeatureExMethod Color or gray-scale feature color
extraction method.

MatchThreshold Needed threshold value for 30
successful matching, usually
between 1 and 100.

Mutation True or false. true
MutationValue Probability value of mutation . 0.3

between 0 and 1

3D virtual world by a common PC. In this environment, the position, speed and

movements were controllable manually. The gray-scale or color input pictures

were converted to binary patterns by my presented feature extraction algorithm,

see Figure 4.10a and 4.10b. The selection subroutine worked with a randomly

generated match template set, which contained 100–500 templates. A texture or

image was detected by a template if the number of the successful matching of the

template with the sub-patterns was more than the MatchThreshold parameter

value. The most relevant parameters in my real-time experiments are summarized

in Table 5.5.

5.4.1 Experiments

In the first experiment, I used the initialization and recognition phases separately.

In the initialization phase, all the templates of the initial set was run on some

input images of the actual view of the virtual world. The size of these input images
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Figure 5.5: The input image is on (a). On (b) converted binary images can be
seen. Dots on (c) show the result of the detection. Note that different colors can
be detected with the same templates.

was 64 × 64. They usually contained some typical texture patterns, e.g.,texture

of mountains, ocean or forest. During the process, in case of successful matching

the template was selected out from the set. During the recognition phase, the

algorithm detected all textures, which were not members of the initial input flow.

But those sub-patterns, which the system has been taught with, have not been

detected. Detection results can be seen in Figure 5.5.

In the second experiment, the initialization and recognition part periodically

followed each other. If any template had a detection, it was selected out temporar-

ily. For a longer period if this template has detection, it was not allowed to send

detection message. I assumed that if something was detected by this template,

then the next few detections would carry no new information and, therefore, it is

not worth sending a warning message. The dynamics of this process can be seen

in Figure 5.6.

In my experiments the success rate (SR) of the algorithm was 1.0 for 25-25

independent runs with the given experiment values in Table 5.5. The average

number of evaluations to solution (AES) index was 17.32 for 25 independent runs,

which means, on the average, 18 template runnings per frame were sufficient for
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a successful detection.

Figure 5.6: The horizontal coordinates show the time based on the the input
frames. The vertical value is the label of the current template. Different peaks
appear when the texture of the environment manly changed and at least one
template has detected a new pattern. The first peak came when we reached the
mountains, the second shows the water, third is the ground again and the last
one the ocean again.

5.4.2 Observations

The time measurements of the algorithm are summarized in Table 5.6. The

difference of the speed between the gray-scale and color method is caused by the

data transfer in memory, as the color images are 3 times bigger than the gray-

scale ones. These results show that my algorithm can run in real time even if I

use the combination of two 3× 3 templates for sub-pattern detection.

Along with the run of my application, we can follow the different parts of the

processing on Figure 5.7. In the beginning, the system was in the recognition

phase. The green line shows how the number of templates selected out was

increasing when I changed it to the initialize (learning). The yellow line shows

if there was any detection and which template was successful after I turned the

recognitions phase back on.

If we evaluate the match number (number of those sub-patterns, which can

match with the actual template) on an input image for each template of a given

template set, than this statistical analysis will yield a kind of histogram, which
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Table 5.6: Running time of the algorithm and number of matching with different
input image flows (grayscale/color) and template set size (100/200/500), image
size is 64× 64, template size is 3× 3

Feature extraction method Nr. of templates Frame /sec Nr. of matches/sec

for gray-scale 100 46-48 18 million
for gray-scale 200 36-38 28 million
for gray-scale 500 20-22 40 million
for color 100 38-40 15 million
for color 200 32-34 25 million
for color 500 18-20 36 million

Figure 5.7: Dynamical statistics of the templates during the initialization and
recognition phase. The horizontal coordinates show the time based on the input
frames. The vertical value is the label of the actual template. The yellow line
shows the number of the last or actually successful templates. Blue shows
how many templates were run on the image. Green shows the number of
templates selected out and the size of the template set is currently 200.
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Figure 5.8: Immune histograms of different gray-scale inputs. The size of the
template set is 200.

I decided to call the immune histogram. Moreover, because the matching tem-

plates can contain “don’t care” elements and the pixel of sub-patterns contain

information about different pixels and the matching result is also dependent on

the local neighborhood, my immune histogram is not equal to the well-known

histogram.

Note that because the immune histogram can be different depending on the

actual template set, it is an open question as to how we should choose the template

elements and how we can interpret the result if the system has active mutation.

On Figure 5.8. some immune histograms can be seen. These results show

that this method is able to distinguish between different types of inputs. If a

template contains many “don’t care’ elements, its recognition ability is high, and

it will recognize almost any kind of pattern. There is a bar on the right side of

the immune histograms (Nr. 190), which shows that the match number of the

appropriate template is always high. Observe also, that some templates have low

match numbers in all cases, probably they contain few “don’t cares’, which make

them very specific.
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5.5 Mutation subroutines

Emphasizing the significance of the mutation of the immune system I would like

to mention three motivations why it was applied in my implementation.

Increased affinity: Increased affinity will increase the chance of binding with

the antigen, and therefore increase the efficiency of the attack by the immune

cells. If a pathogen is associated with multiple patterns it is very well possible

that a T-Cell that recognizes one of these shades does not recognize the other

one.

Memory: Some of the most successful immune cells will mutate into long

lived memory cells. This effect serves mainly to increase the speed of the immune

response for latter invasions of the same pathogen. For this reason, in my model

the T-Cells have to be equipped with some sort of activity flag showing how

effective they have been in recognizing pathogenic patterns.

Set Completion: Due to the great number of different immune cells, it is

hardly ever possible to cover the whole space with the actual immune cell set.

Having some form of rotation in non-recognizing T-Cells by mimicking cell death

and the spawning of new randomly created T-Cells will assure set completion

over a larger span of time.

5.5.1 Implementation

In the next part of this section two methods of the implementation mutation are

described.

Affinity Maturation: When a template is successful in the recognition of a

pattern, there is a certain chance that it will generate a mutation. Mutation

candidates are generated as follows: If a template is general (i.e., has multiple

zeros) one of the zeros of the template will be mutated into either a +1 or a

-1, making the mutation more specific. If it is already specific (d < 2), the

mutation will just be random. The generated mutation candidate is tested on

the input antigen to see whether it is more successful in recognition than the

original version. The success of the template is determined by the number of

matches found in the antigen. If the mutation candidate is found to be more

successful than the original, it is tested to see whether it is triggering a response
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to the self set. In case the mutation is accepted, the original will be replaced. In

case a test on the mutation candidate fails, the mutation will be rejected, and

the candidate is removed (cell death). Since I want the system to be running in

real time it is not feasible to run the whole self set each time we want to perform

a mutation. Therefore this test is spread out over time. After every input image

the mutation candidates will be tested on one of the images from the self set.

Affinity maturation realizes increased detection efficiency, and makes the system

more suitable for implementing pathogen recognition.

Set Completion: The total number of patterns recognized by the entire tem-

plate set is kept in a variable. When this value drops below a threshold related

to the total number of possible patterns, new random templates will be spawned.

Of course, these templates are tested against the self set before being allowed into

the pool.

5.6 Ace16k experiments

In this section, I describe two experiments, which were presented on Bi-i system

and implemented on ACE16k chip. The inputs were real images transferred from

the optical interface of the chip. The feature extraction module and the algo-

rithmic template core were implemented on the chip. The evaluation of results,

template storage, mutation and administration of their different properties were

performed on the DSP. This combination gave better performance with real-time

processing.

The first experiment shows dynamic adaptation of the system to the environ-

ment. In the rows, from left to right, the order of the images are the following.

The first image is the gray-scale input. Its binary converted version is the second

image. You can see the detection points of all the templates in the third image.

The last image is the combination of the input and the detection points, where

the detection points belong to a template whose number of detection points is

higher than a value. From up to down the following can be observed: at the be-

ginning, the system has several detection points, but during learning, the number

of detection points decrease. Once objective is covered, the template set was en-
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riched with new templates by the mutation routines. New detection points show

that the input has changed again while the covering was removed (Figure 5.9).

Figure 5.9: The system’s dynamic adaptation to the environment. In the rows,
from left to right, the order of the images are the following. The first image is
the gray-scale input. Its binary converted version is the second image. You can
see the detection points of all the templates in the third image. The last image
is the combination of the input and detection points, where the detection points
belong to a template whose number of detection points is higher than a given
number. From up to down the number of frame indexes are 1, 23, 28, 64 in time.

In the second experiment, I show that the implemented system with particu-

lar parameters can be appropriate for object recognition and border estimation.

The relation between the images is similar as in Figure 5.9. From up to down

the following can be observed: the first image shows that the system is already

adapted to the environment, there is no detection. In the second and third row,

two results of an image sequence can be seen, where a palm in front of the camera
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shows the detection points, mainly on the fingers and upper part of the palm are

detected Figure 5.10. The full video can be found on the attached CD.

Figure 5.10: This figure shows that the implemented system with particular pa-
rameters can be appropriate for object recognition and contour estimation. The
relation between the images is similar as in Figure 5.9. From up to down the
number of the frames are 18, 21, 30 in time.

5.7 Conclusions

Nature has developed a powerful 3D pattern recognizer defense system. My

model was inspired by this, and the results show that it is efficiently usable

on 2D patterns (pictures). CNN’s spatio-temporal dynamics with fast template

processing is an effective tool for modelling the spatio-temporal dynamics of the

immune system. The immune system provides a special algorithm, covers the

target space, is able to learn and has memory. The proposed strategy has been

successfully applied in a sample texture analyzer application and gave promising

results. The CNN-UM chip (Acex) implementation of my algorithm is able to

detect novelty events in image flows reliably, running 10000 templates/s with

video-frame (25 frame/s) speed and on image size of 128× 128 (Thesis 2.2).



Chapter 6

Conclusions

The results of research on preprocessing algorithms were presented in Chapter 2

and 3. The second chapter showed that the proposed PDE based algorithm relies

on purely local operations in CNN environment. The CNN structure is ideal

for image processing and executing the morphological- and wave-operations on

the level-sets. In the third chapter, different implementations are presented and

comparative experiments show that from several hardware-software systems the

CNN-UM provides the fastest performance. In sample images, the advantages of

the algorithm, noise suppression and contrast enhancement are demonstrated.

In Chapter 4 and 5, a biology-inspired algorithm is presented to mimic the

immune response of human immune system. The designed framework and al-

gorithm are capable of detecting previously unknown spatial-temporal events in

natural or artificial video flows in real time. Theory and mathematical descrip-

tion are summarized in the framework of general artificial immune systems. Some

of possible feature extraction methods are given, which are able to convert gray-

scale and color images into binary ones. Experimental tests and results show a

statistically complete success rate of the recognition.
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Summary

6.1 Methods used in the experiments

In the course of my work, instruments of numerous disciplines were

applied. The theory of partial differential equations and non-linear

diffusion filtering was used for my preprocessing algorithms, where

embedded morphological and wave operations were applied on dif-

ferent level-sets. The application of the theory of level-sets is often

used in the case of object-segmentation and the implementations of

problems needing the tracking of curve evolution. During my research

I united the benefits of the binary morphological operators with the

application of the method of level-sets. I compared both qualitative

and quantitative measurements of my simulation and experimental

results implemented in different hardver environments.

In the course of planning my human immune response inspired algo-

rithms I became acquainted with the essential and functional notions

of medical immunology.

The properties (pattern recognition, distributivity, noise and fault

tolerance, resilience, immune learning and memory, robustness, self-

organization) and computational power of the immune system stirred

my intentions towards applying its effective methods.

During the planning of the algorithm I used the known methods of

the immune response:

• the process of the maturation and negative selection of the im-

mune cells in the thymus
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The proposed system and algorithms have been also described in the

theory of artificial immune systems (AIS). I measured the speed of

its hardware implementation in case of different types of inputs. The

mutation module of the algorithm has been described by standard

measures of genetic algorithms.

Computer architectures based on the cellular nonlinear/neural net-

work (CNN) paradigm and its 64× 64 or 128× 128 sized VLSI imple-

mentations offer adequate solution for both spatial modeling of discret

PDE and high-speed pattern matching.

In my algorithms designed for CNN-UM wave computers I used al-

ready published template classes. It was an important aspect of the

chosen templates being able to be executed reliably on available CNN-

UM hardware systems. Besides using published templates, in some

cases, usually in real-time hardware experiments I tuned templates.

In the course of the implementation of my analogical CNN algorithms

I intended to raise efficiency, using both CNN and conventional digital

solutions and implemented the most suitable algorithmic steps on the

appropriate machine. In the first step of software development I used

MATLAB environment with MatCNN simulation toolbox on Intel x86

PC. The real-time hardware experiments were done on ACE-BOX and

Bi-i systems, where 64× 64 sized Ace4k and 128× 128 sized Ace16k

analog/binary CNN-UM chips were built in.

The implementation independent description of the developed meth-

ods was completed in different “CNN languages” (UMF) ensuring

their applicability on different hardware platforms.

6.2 New scientific results

1. Thesis: Partial differential equation (PDE) based histogram mod-

ification, contrast enhancement and noise suppression with CNN al-
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gorithms using morphological and wave processing of the level-sets.

In the engineering practise of medical biology and in other difficult

dynamical image diagnostical problems often preprocessing methods

are needed which perform contrast enhancement, noise supression and

other methods on the images providing better results for latter pro-

cessing. In the course of my research I have designed and implemented

a PDE based CNN-UM algorithm, which applies histogram modifica-

tion and equalization while performing morphological and wave oper-

ations on certain level-sets. These morphological and wave-operations

improve noise supression and shape enhancement. The output image

could make the later processing of the object-detection more success-

ful. See in [2], [13], [18] and Chapter 2 and 3.

1.1. I showed that nonlinear partial differential equation

(PDE) described, morphological and wave operation-based

parallel histogram modification can be realized with spatial

approximation by operating on finite number of level-sets.

To sum up the algorithm, in a given input image it XOR two neigh-

bouring, thresholded level-sets and morphological and wave opera-

tions are executed, this result is the current binary image. These

binary images will be summed iteratively (with the current binary

mask). The values of the pixels, covered by the current binary mask,

are increased with a value proportional to the area of the current bi-

nary image (measured by diffusion). The outcome is obtained after a

diffusion filter (Figure 2.3.).

The execution time of the algorithm, depending on the number of

level-sets (i) and the morphological steps (m) is (20+ i(111+10m))τ ,

where τ is the time constant depending on the CNN implementation.

The chosen optimal output (see Figure 3.) has an execution time of

2276 τ .
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I have implemented this complex analogic (analog and logic) algo-

rithm containing both local and global couplings on a stored program

nonlinear array processor relaying on purely local operations. The

global coupling here is histogram equalization with contrast enhance-

ment.

1.2. I showed that the chosen level-set based algorithm

can be implemented on an analog CNN-UM chip (Acex)

and I proved experimentally that it satisfies the theoretical

expectation qualitatively and quantitatively to a good ap-

proximation. For 128x128 image resolution, a speed of 200

frame/s could be achieved.

I have done comparative experiments of different implementations of

the algorithm on different hardware-software platforms, equally PC,

DSP and CNN-UM microprocessors. The results show that the ex-

ecution time of morphological operations could be a few thousand

and the execution time of the full algorithm could be more than 100

frame/s (Figure 3.3.).

Figure 3.3a. shows that the execution time of the full algorithm pro-

vides the best results in case of ACE4k and increasing the number

of morphological steps, contrary to the other systems, the speed is

constant. In Figure 3.3b. it can be seen that the processing time of

binary morphology in case of CNN-UM is much better as compared

to the other hardware-software systems.

Experimental results can be seen with different parameters in Fig-

ure D.2. Observe, how the embedded morphological processing mod-

ifies the level-sets and provides a more reasonable result from the

segmentation point of view. I have also implemented the full algo-

rithm with wave-propagation on ACE16k-box hardware. In this case,
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having 128 × 128 resolution and 4 level-sets, the measured running

speed was 3.93 msec/frame.

The achieved method can be parameterized on demand for all of

real-time image processing problems, where the input image contains

heavy noise and histogram equalization is needed.

2. Thesis: Working out pattern recognition topographic algorithms in-

spired by the T-cell based immune response of human immune system,

modelling on CNN-UM and experimental implementation for spatial-

temporal novelty detection in case of a great many objects.

I have worked out analogic algorithms, designed their models and

experimentally implemented them on a CNN-UM wavecomputer. In

these algorithms I have used the negative selection principle of the

human immune system, processing the patterns in 2D image flows, to

detect previously unknown events in images in real time.

The algorithms advantageously exploit the parallel processing poten-

tial of the architecture of CNN-UM wave computers. See in [1], [5-7],

[12], [16] and Chapter 4 and 5.

2.1. I showed that the functional model of the immune

response can be described in a cellular neural network (CNN)

algorithmic framework and can be applied as an efficient im-

age processing method.

Modelling the cell-based interactions of the 3D molecule pattern recog-

nition and detection of the immune system I have developed topo-

graphic analogic algorithms for pattern detection, which are able to

detect and recognize dynamic objects and patterns in 2D image flows.

Real-time processing and the evaluation of a large number of target

objects, similarly to the immune system, is the major benefit of the

developed method.
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The algorithm has two main parts: learning and recognition. The

cores are very similar. During learning based on randomly chosen

CNN Match template set, using the principle of negative selection,

a template set is constructed, which will not recognize the already

thought objects as dangerous. This output template set is responsi-

ble for the recognition in the latter part of the algorithm. The member

templates of this set test the actual patterns of the image flow in the

recognition part and in the case of an unfamiliar pattern, a warning

message is generated. The template-mutation methods of the imple-

mented algorithm provide a relatively simple, real-time adaptation to

dynamic environments, which makes the system robust.

I have summarized the theory and the matematical description of my

model in the framework of general artificial immune systems (AIS)

too. Contrary to AIS, where the objects are represented by the same

type of vectors, the patterns and templates are different here. I have

defined a distance between the CNN template class and patterns,

called template affinity. By the means of this affinity, I have proved

that the system does not need to run all kind of templates to detect

all the patterns. Moreover I have estimated the necessary size of the

template set.

I have worked out analogic CNN algorithms, which are able to convert

grayscale and color images into binary ones efficiently.

I have designed this conversion to be fast and preserve as much in-

formation as possible besides that there is no need to do any further

image data transfer.

The algorithm subsamples the input image and thresholds at nine

levels storing the binary values in 3 × 3 neighbouring subpatterns.

The location of these subpatterns are arranged by binary masks and

OR logical operations.
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In case of color input image, the patterns can be determined by com-

bining three color channels, each channel gives three binary values.

2.2. I worked out a real-time algorithm and its CNN-UM

chip (Acex) implementation based on my model, which is

able to detect novelty events in image flows reliably, running

10000 templates/s with video-frame (25 frame/s) speed and

on image size of 128x128.

I have implemented the algorithms on general CNN-UM chips (ACE4K,

ACE16K) and I have realised the full framework implementations (on

ACE4K-box and Bi-i) as a real-time tool, which are able to run more

than 10000 templates per second to be equivalent to around 40 mil-

lion evaluated object interactions per second. Measurement results

and computational power of the CNN-UM implementation can be

seen in Table 1. as compared to an avarage PC. We can observe that

at ACE4k-box, the required running time is significantly less.

I have defined a statistical property of the images, called immune-

histogram, which is based on the subpatterns of the images.

The tests of this implemented system have been done in a virtual 3D

environment and also in real environment with optical input. In the

test application the system was tought by a given pattern-set and in

the course of recognition the object-patterns, different form the given

tought set, are detected in real-time as unfamiliar patterns (objects).

One of the major advantage of this system is that the learning mech-

anism, powered by mutation and selection methods, is fast and auto-

matic. Experimental tests and results show a statistically complete

success rate of the recognition.
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6.3 Examples for application

All the developed algorithms and implementations offer solutions for

real application problems.

My running time measurements prove that the histogram modification

algorithm (first thesis) can be applied efficiently in real-time image

preprocessing methods.

Its application in medical imaging can give solutions (i) for real-time

ultrasound image processing of echocardiographic diagnostics and (ii)

fMRI image evaluation.

In the second thesis the presented model and its algorithms were de-

signed to be able to be used in complex surveillance systems, to learn

fast, to be adaptive to dynamic environments and to send alarm mes-

sages based on different rules, if necessary.

This system can be well-applied in any situation, where human pres-

ence is beyond its ability or the supervision can not be real-time, but

immediate decision based on visual input is required.

All the applied templates can be executed on every commercial CNN-

UM chips, moreover, they are available on the EYE-RIS1 systems

which will be soon on the market.

1A new chip and OEM system of Anafocus Ltd. (Sevilla) (with 176× 144 QCIF resolution

and 10000 frame/sec image-speed besides 100mW consumption)





Appendix A

The CNN Computer (a Cellular

Wave Computer) – Notions and

Dynamics

Cellular nonlinear/neural networks (CNNs) are regular, single or multi-layer, par-

allel processing structures with analog nonlinear dynamic units (cells). The state

value of the individual processors is continuous in time and their connectivity

is local in space. The program of these networks is completely determined by

the pattern of the local interactions, the so-called template. The time-evolution

of the analog transient, “driven” by the template operator and the cell dynam-

ics, represents the elementary computation in CNN (results can be defined both

in equilibrium or non-equilibrium states of the network). The standard CNN

equation[34] contains only first order cells placed on one layer of a regular grid

and the interconnection pattern is linear.

A cellular wave computer architecture that includes CNN dynamics as its main

instruction, is the CNN Universal Machine (CNN-UM, [20]). The CNN-UM

makes it possible to efficiently combine analog array operations with local logic.

Since the reprogramming time is approximately equal to the settling time of a non-

propagating analog operation it is capable of executing complex analogic (analog
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and logic) algorithms. To ensure stored programmability, a global programming

unit is added to the array and for an efficient reuse of intermediate results, each

computing cell is extended by local memories. In addition to local storage, every

cell might be equipped with local sensors and additional circuitry to perform

cell-wise analog and logical operations.

Using the CNN-UM we are able to design and run analog and logic CNN wave

algorithms. It is known that CNN-UM is universal as a Turing Machine[40] and

as a nonlinear operator. Therefore many problems can be solved by this machine.

Its structure suggests using it for image processing in numerous applications.

Beyond the classical image processing there are a lots of new methods of solving

problems based on partial differential equations which need huge computational

power. Most of these kind of problems can be transformed into CNN algorithm

too.

Another important scope is the biological modeling. The researchers found in

early times that CNN can be used for modeling some parts of the human visual

system, mainly the outer retina. Recently, a multilayer, multichannel retina

model has been developed [41]. Because of the simple structure of CNN, it is

realizable in real hardware. Nowadays implementations run 64 × 64 Ace4k or

128× 128 Ace16k chips.

A.1 Standard CNN Dynamics

The cellular nonlinear network (CNN) is a locally connected, analog processor

array which has two or more dimensions. A standard CNN architecture consists

of an M ×N rectangular array of cells C(i, j) with Cartesian coordinate (i, j)i =

1..M, j = 1..N (Figure A.1)

The sphere of influence, Sr(i, j), of radius of r of cell C(i, j) is defined to be

the set of all neighboring cells satisfying the following property:

Sr(i, j) =

{
C(k.l)| max

1≤k≤M,1≤l≤N
{|k − i| , |l − j|} ≤ r

}
(A.1)

where r is a positive integer. The structure of an elementary cell can be seen on

Figure A.2.
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Figure A.1: MxN representation of CNN structure

Figure A.2: The build-up of a CNN cell
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Ixu(ij, kl) = Bij,klvukl
; Ixy(ij, kl) = Aij,klvykl

;

Iyx =
1

2Ry

(
∣∣vxij

+ 1
∣∣− ∣∣vxij

− 1
∣∣) (A.2)

A.2 CNN Templates

The state of a cell depends on interconnection weights between the cell and its

neighbors. These parameters are expressed in the form of the template:

A =

 ai−1j−1 ai−1j ai−1j+1

aij−1 ai1j aij+1

ai+1j−1 ai+1j ai+1j+1

B =

 bi−1j−1 bi−1j bi−1j+1

bij−1 bi1j bij+1

bi+1j−1 bi+1j bi+1j+1

 z = zij (A.3)

A template has two main parts, a feedforward and feedback matrixes. These

parts are called A and B templates. The z on Equation (A.3) is the offset (bias)

term. In the simplest case the template is given by 19 numbers, 9 feedback, 9

feedforward and one bias terms. This 19 number template is an elementary oper-

ation of CNN-UM and codes a complex spatial-temporal dynamics. An analogical

algorithm might contain some templates and logical operations. The following

differential equation system describes the dynamics of the network:

Cx

dvxij
(t)

dt
= − 1

Rx

vxij
(t) +

∑
C(k,l)∈Sr(i,j)

Aij;klvykl
(t)+

∑
C(k,l)∈Sr(i,j)

Bij;klvukl
(t) + zij

vyij
(t) = f(vxij

(t)) = 1/2(
∣∣vxij

(t) + 1
∣∣− ∣∣vxij

(t)− 1
∣∣),

i = 1, M ; j = 1, N

(A.4)

The figure of the given function can be seen on Figure A.3. This is called

standard nonlinearity.

In the case where the values of Aij;kl; Bij;kl do not depend on i and j, the

template is space invariant. In most cases the value of the offset current does

not depends on space zij = z. Because of the regular 2D shape of the CNN, the

value of a cell can be represent by a pixel of a picture. This gray-scale value can
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Figure A.3: The output characteristic function of a CNN cell.

be between white (-1) to black (1). Sometimes we use fixed state mask whose

values allow or permit the change of the values of their cells. 3D CNN networks

can connect like layers and this gives multi-layer CNN networks. Its differential

equation is similar to Eq. (A.4):

Cxm

dvxmij
(t)

dt
= − 1

Rxm

vxmij
(t)+

P∑
n=1

(
∑

C(k,l)∈Sr(i,j)

Amn;ij;klvynkl
(t) +

∑
C(k,l)∈Sr(i,j)

Bmn;ij;klvunkl
(t)) + zmij

(A.5)

where p is the number of layers, m is the current layer, and Amn and Bmn give

the connection between n and m layers. For the solution of a given example, we

have to give the input U , x(0) initial state and the templates with the algorithm.

The result is Y after running the transient. In most cases we can work with

predefined templates that can be found in the software library [42].

A.3 CNN Universal Machine

The CNN Universal Machine (CNN-UM) is based on a CNN (Figure A.4). This

is the first programmable analog processor array computer with own language

and operation system whose VLSI implementation has same computing power as

a supercomputer in image processing applications [20]. The extended universal
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cells of CNN-UM are controlled by global analogic programming unit (GAPU),

which has analog and logic parts: global analog program register, global logic

program register, switch configuration register and global analogic control unit.

Every cell has analog and logical memory.

Figure A.4: The architecture of CNN Universal Machine



Appendix B

Universal Machine on Flows

(UMF)

This appendix introduces a new computational model[4] for exploring the algo-

rithmic and computational complexity of the CNN-UM operating on image flows.

The continuous nature of the computations performed on the CNN-UM is cap-

tured by a subset of the recently defined Universal Machine on Flows (UMF). The

new, purely continuous computational model can imitate the complete CNN-UM

processing. Hopefully, using this model, new insights can be gained into the

computational capabilities of the CNN-UM and the algorithms developed for the

CNN-UM can be more easily described from a computational complexity stand-

point.

The first section describes the Continuous Machine on Flows (CMF) model

with mathematical precision, specifying its mode of computation, inputs, outputs

and other details. Furthermore, constructive algorithm is given, which prove that

the CNN-UM can be translated into a CMF.
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B.1 The Continuous Machine on Flows

The formal definition of the new computational model provides the basis on which

to build the computational complexity analysis in later sections. Let us first start

with the definition of a flow. Φ is a flow iff:

φ(t) ∈ [−B, B] ∈ <; t ∈ [0, T ] ∈ < and differentiable except in countable

number of points and φ(0) ∈ < is a well-defined known value; notation: < φ >=

T , i.e. the length of the flow.

You can intuitively think of a flow as a continuously changing function in the

time interval t ∈ [0, T ]. Our proposed computing model operates exclusively on

such flows.

The continuous machine on flows (CMF) as a mathematical object is given

by an 8-tuple, CMF (Φ, A,B, Γ, �,i Φ,o Φ,o φ) , where:

• The � is a special symbol that signals the non-existence of a flow, all func-

tions on � = �

• Φ = {φi, i ∈ [1, I] ∩ Z} is a set of a countable number of flows defined in

a finite time-window. Outside of the time-window: φi(t) = �, notation:

|Φ| = I i.e. number of flows

• iΦ is the set of explicit input flows: iΦ ⊂ Φ. These flows have predefined

dynamics in a time-window or as a default: iΦ(t) = iΦ(0), if t > 0

• oΦ is the set of result (or output) flows oΦ ⊂ Φ and oφ /∈ oΦ

• oφ is a specially designated single output flow, serving as an indicator show-

ing when the machine has stopped. This is analogous to the acceptance

state of a Turing machine.

• A = {αi} , αi(Φk(t)) is a special function: < ∪ {�} → < ∪ {�} otherwise if

α(�) is undefined then α(�) = �

• B = {βi} , βi is a multi-variable function of γβΦi ⊆ Φ : <|γβΦi| → [−K, +K] ∈
<. It is bounded, continuous except in countable number of points.
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• Γ = {γi} , γi is a multi-variable function of γβΦi ⊆ Φ : <|γβΦi| → [−L, +L] ∈
<. It is bounded, differentiable and not continuous only in countable num-

ber of points.

• γβΦi is the set of input variables in the βi or γi functions of φi , thus φi is

an
∣∣γβΦi

∣∣-port [9]

• to ensure locality: 3/4
∣∣γβΦi

∣∣2 + 1/4
∣∣γβΦi

∣∣ >
∑

j

∣∣γβΦi ∩ γβΦj

∣∣ should be

satisfied

This 8-tuple completely specifies the machine for computation. The dynam-

ics of the ith flow: φi(t) ∈ Φ/iΦ is governed by these rules using the flows{
γβΦi ∪ φk

}
; i, k < |Φ| :

if αi (φk(t)) = � or ∃φ ∈γβ Φi(t), φ = � then φi(t) = �
else if αi(φk(t)) = 0 then φi(t) = γi(

γβΦi(t))

else dφi(t)
dt

= βi(
γβΦi(t)))

From the above equations, it follows that the CMF defines a map: <|iΦ|(t) →
<|oΦ|(t) The operation of the CMF can be described as follows: it starts at t = 0,

setting Φ(0) = 0 and executing the dynamics specified by A, B and Γ. It stops

if oφ(t) = � and oΦ(t) is the output. Note that this stopping condition is similar

to the way the end of computation is defined on a Turing machine.

Remarks: The CMF can be used as a decision machine:

• Accept: if oφ(t) = � ∀φi(t) ∈ oΦi : φi(t) 6= �

• Decline: if oφ(t) = � ∃φi(t) ∈ oΦi : φi(t) = �

• The partial recursive functions are equivalent to ∃iΦ or Φ(0) input: ∀t > 0
oφ(t) 6= �

Simplification: φ(0) = 0 can be pre-defined for all φ ∈ Φ/iΦ
iΦ2 = iΦ ∪ Φ0, |Φ0| = |Φ/iΦ| to specify the initial states and Φ = Φ ∪ {s0}
for s0 : α = 1, β = 1

for all other φi : α′ = s0α and γ′ = δ(s0)Φ
(i)
0 + (1 − δ(s0))γ, where δ(x) = if

(x = 0) 1 else 0
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B.1.1 The flow graph of CMF

Let us define the flow graph of CMF, which tries to capture the internal interde-

pendencies of the computation. Let the nodes be the flows, with the directed links

representing the connections; formally: GCMF (Φ,
{
∀iγβΦi → φi

}
). The process-

ing structure of the CMF at a given time-instant can be described by a sub-graph,

which contains only those links, where the source node is in the actual/valid func-

tion of the destination flow. This sub-graph can be decomposed to α0 and α1

sub-graphs. The α0 sub-graph contains only those nodes, whose α value is equal

to zero and only those links, where the source node is a flow in its γ function.

Similarly, the α1 sub-graph contains only those nodes, whose α 6= 0 and only

those links, where the source node is a flow in its β function.

The locality of the CMF network is guaranteed if the clustering coefficient is

less than 3/4. The clustering coefficient is the division of the total number of

sub-graph edges of the nodes in the immediate neighborhood of the central node

by all the possible edges in this sub-graph.

Consider the following simple flow-structure: φi(0) = 1, α = 0, γ = φ2 φ2(0) =

2, α = 0, γ = φ1 This situation is called state-anomaly. This anomaly means

that the computation can be in a deadlock, whence the algorithm is unusable.

Keeping any of the following constraints (which are not necessary but enough),

the CMF avoids the state-anomaly.

(1) All α functions must have only a countable number of zero crossings.

(2) The α0 sub-graph at each time-instance must not contain a directed circle.

B.1.2 Implementing the CNN-UM on the CMF

Consider the following CNN template {A, B, z} execution on an M × N grid

running until T

ẋ = −x + A ∗ y + B ∗ u + z, y = f(x)

The CMF equivalent:

• iΦ = {u11, . . . , uMN , z11 . . . zMN} ; oΦ = {y1, . . . , yMN} ; Φ = iΦ ∪ oΦ ∪
{x11, . . . , xMN , oφ}
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• for ∀ij, xij(0) is given; αij = 1, γij = xij, βij = A ∗ y + B ∗ u + z − x

• for ∀ij, yi(0) := f(xi); αij = 0, γij = f(xij), βij = 0

• oφ(t) := if (o < t < T ) : 1 else �

Boundary conditions can be handled in the following way:

• fixed: coded into flow with α = 0

• periodic or zeroflux: modifying the function β of the boundary cells/flows

Extension for using a fixed state mask:

• iΦ2 = iΦ ∪ {m11, . . . ,mMN}

• change xij : α′
ij = mij; if mij = 0 freezes else activate the cell

A timer or clock can be established with the following construction:

• φ(0), α = φ− T, β = 1, where T is the period/trigger-time

– to stop computation: γ = �

– to restart computation: γ = 0

Time-constant of a layer defined by the layer’s state resistance and capacity:

R and C

• change xij : β′
ij = (RC)−1βij; the RC is the time-constant: τ

Arithmetic operation, e.g.,x ADD y: α = 0; γ(x, y) = x + y Logic operation,

e.g.,x NAND y:

• if 0 = false, 1 = true: α = 0; γ(x, y) = 1− xy

• if −1 = false, 1 = true: α = 0; γ(x, y) = (1− x− y − xy)/2

GW: Global white (white defined as −1) α = 0, γ =
∑

(φi + 1)

Higher-order cells: connect flows in β-functions

Memory to store one time-instant of a flow: Φmemory : β = 0, γ = φinput, α =

0(write), 1(read)
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Level-set Method

The level-set method is popular in the numerical implementation of curve evolu-

tion and boundary localization. One of its attractive ability is to handle topo-

logical changes automatically. Curve evolution methods have received lots of

attention and found applications in various areas.

Consider a moving boundary in normal direction with a known speed function

F . The goal is to track the curve evolution and stop the curve at interesting object

boundaries. To achieve this goal, the speed needs to be properly designed. The

speed function F can be written as F = F (L, G, I) where L are local properties

determined by curvature, normal direction or any local geometric information; G

are global properties of the front determined by the shape and position of the

front; I are independent properties of the shape of the front. Among different

methods, the variational approach is the most popular, where the curve evolution

speed is derived from the gradient of the energy function.

There are two ways to describe interface motion: with the boundary value

and initial value partial differential equations. In the first case, dC
dt

= F ~N , where

C is the curve, F is the speed function and ~N is the outward normal of curve

C (Figure C.1a). In the second case, dΦ
dt

+ F |∇Φ| = 0, where Φ is a higher-

dimensional time dependent level-set function and F is the speed function. The

curve C is represented inplicitly as the zero level set of a function Φ as shown in

Figure C.1b. In principle, the level set function Φ can be arbitrary as long as its
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Figure C.1: The boundary value (a) and initial value (b) partial differential equa-

tions based methods.

zero level set equals C. For numerical stability reasons, a popular choice for Φ in

numerical practice is the signed distance function defined as:

Φ(x) =


miny∈C ‖x− y‖ if x is outside C;

0, if x ∈ C;
−miny∈C ‖x− y‖ if x is inside C;

(C.1)

where ‖x− y‖ denotes the Euclidean distance.

There are certain advantages associated with these two perspectives on prop-

agating interfaces [43]:

• both are unchanged in higher dimension.

• topological changes in the evolving front are handled naturally.

• both rely on viscosity solutions of the associated partial differenctial equa-

tions on order to guarantee that the unique, entropy-satisfying weak solu-

tion is be obtained.

• both are accurately approximated by computational schemes which exploit

techniques boorwed from the numerical solutions of hyperbolic conversation

laws.



87

• intrinsic geometric properties of the front are easily determined in both

formulations.

• both methods are made efficient through the use of adaptive computational

strategies.

Nevertheless, there are significant differences between the two approaches[43].

The most obvious difference is that the initial value level set formulation allows

for both negative and positive speed function F . The front may move backward

and forward as it evolves. The boundary value perspective is restricted to fronts

that always move in the same direction.

Boundary value formulation leads to the Fast Marching Method[43], initial

value formulation leads to the Narrow Band Level-Set Method[43, 44, 45]. These

PDE based methods with additional formulations provide solutions a wide range

of problems and applications, such areas as geometry, grid generation, seismic

analysis, computational geometry, computer vision, fluid mechanics and material

sciences.





Appendix D

Morphological processing –

Examples

D.1 Simulation and chip experiment results –

Closing and opening

As test images both natural or artificial images are chosen. The examples here

demonstrate the advantages of my complex histogram modification algorithm:

simultaneous contrast enhancement, noise filtering and shape enhancement.

Simulation results and chip experiments of the extended histogram modifica-

tion algorithm with embedded morphologic closing and opening. The input of the

algorithm is the original image shown at the top. One dimension of the montage

represents the morphological dimension, the number of morphological operations

performed at each equalization level (left-right: 0,1,2,3,(4,5,6)). The other dimen-

sion reflects the number of equalization levels (top-down: 2,4,8,16,32,(64,128)).
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Figure D.1: Simulation results of the extended histogram modification algorithm

with embedded morphologic closing. The input of the algorithm is the original

image shown at the top. The columns of the montage stand for the morphological

dimension, the number of morphological operations performed at each equaliza-

tion level (left-right: 0-6). The rows reflect the number of equalization levels

(top-down: 2,4,8,16,32,64,128).
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Figure D.2: Simulation results of the extended histogram modification algorithm

with embedded morphologic closing. The input of the algorithm is the original

image shown at the top. The columns of the montage stand for the morphological

dimension, the number of morphological operations performed at each equaliza-

tion level (left-right: 0-6). The rows reflect the number of equalization levels

(top-down: 2,4,8,16,32,64,128).
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Figure D.3: Simulation results of the extended histogram modification algorithm

with embedded morphologic closing. The input of the algorithm is a contrast

suppressed noisy version of the original image shown at the top. The columns of

the montage stand for the morphological dimension, the number of morphological

operations performed at each equalization level (left-right: 0-4). The rows reflect

the number of equalization levels (top-down: 2,4,8,16,32).
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Figure D.4: Simulation results of the extended histogram modification algorithm

with embedded morphologic closing. The input of the algorithm is a contrast

suppressed noisy version of the original image shown at the top. The columns of

the montage stand for the morphological dimension, the number of morphological

operations performed at each equalization level (left-right: 0-4). The rows reflect

the number of equalization levels (top-down: 2,4,8,16,32).
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Figure D.5: Simulation results of the extended histogram modification algorithm

with embedded morphologic closing. The input of the algorithm is a contrast

suppressed noisy version of the original image shown at the top. The columns of

the montage stand for the morphological dimension, the number of morphological

operations performed at each equalization level (left-right: 0-4). The rows reflect

the number of equalization levels (top-down: 2,4,8,16,32).
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Figure D.6: Simulation results of the extended histogram modification algorithm

with embedded morphologic closing. The input of the algorithm is a contrast

suppressed noisy version of the original image shown at the top. The columns of

the montage stand for the morphological dimension, the number of morphological

operations performed at each equalization level (left-right: 0-4). The rows reflect

the number of equalization levels (top-down: 2,4,8,16,32).
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Figure D.7: Simulation results of the extended histogram modification algorithm

with embedded morphologic opening. The input of the algorithm is the original

image shown at the top. The columns of the montage stand for the morphological

dimension, the number of morphological operations performed at each equaliza-

tion level (left-right: 0-6). The rows reflect the number of equalization levels

(top-down: 2,4,8,16,32,64,128).
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Figure D.8: Chip experiments of the extended histogram modification algorithm

with embedded morphologic closing. The input of the algorithm is the original

image shown in the top left corner. The columns of the montage reflect the

number of equalization levels (left-right: 2,4,8,16,32). The rows stand for the

morphological dimension, the number of morphological operations performed at

each equalization level (top-down: 0-3).
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Figure D.9: Chip experiments of the extended histogram modification algorithm

with embedded morphologic opening. The input of the algorithm is the original

image shown in the top left corner. The columns of the montage reflect the

number of equalization levels (left-right: 2,4,8,16,32). The rows stand for the

morphological dimension, the number of morphological operations performed at

each equalization level (top-down: 0-3).
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Figure D.10: Simulation results of the extended histogram modification algorithm

with embedded morphologic closing. The input of the algorithm is the original

image shown at the top. The columns of the montage stand for the morphological

dimension, the number of morphological operations performed at each equaliza-

tion level (left-right: 0-6). The rows reflect the number of equalization levels

(top-down: 2,4,8,16,32,64,128).





Appendix E

The Immune System – Notions

and Dynamics

The cells and molecules responsible for defending our body first detect the in-

truders, their “targets”, then they attack and destroy them. Our immune system

produces antibodies against bacteria, meanwhile activating the complement sys-

tem; lymphocytes destruct cells with virus infections because they recognize little

pieces (peptides) of the virus on the surface of the infected cell. Cancer is also

eliminated by this defense mechanism [46].

Humans have a well-organized protection called immune response against for-

eign substances. (i.e. antigens: all materials, that can be specifically recognized as

defensive (pathogen) or non-defensive (non-pathogen) by the immune system with

specific reaction [46].) The most important members of the immune response are

B- and T-lymphocytes (Lymphocytes mediate the adaptive immune response and

are responsible for the recognition and elimination of the pathogens), cytokines

(small molecules that signal between cells, inducing growth, differentiation, ac-

tivation and regulation of immunity) and antibodies (soluble protein molecules

created and secreted by B cells and plasma cells). The antibodies are also used

as antigen-receptors on the surface of B-lymphocytes. The immune response is a

gently controlled process with all kinds of gain and attenuate mechanisms.
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Table E.1: The comparison of innate and adaptive immunity.

Innate Adaptive

Characteristics

Specificity - +

Amplify Linear exponential

Memory None Yes

Latency - +

Reacting Components

Blood proteins Complement system Antibodies

Cells Phagocytes, Dendr.cells B,T Lymphocytes

The immune system can respond to more than ten million antigens of different

kinds, this response is more or less specific. The system also has a memory which

can remember former antigens; therefore, the recognition is more successful.

Innate and Adaptive Immunity

Innate immunity consists of mechanisms that are capable of rapid responses to

microbes, react in essentially the same way to repeated infections and may not

distinguish fine differences between foreign substances.

In contrast to innate immunity, more highly evolved defense mechanisms are

stimulated by exposure to infectious agents. This form of immunity develops as a

response to antigens (e.g., infection) and it is called adaptive immunity [47]. This

immunity is mediated by T- and B-lymphocytes, with antigen-specific receptors

on the surface.

Intracellular microbes, such as viruses survive and proliferate inside host cells,
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where they are inaccessible to circulating antibodies. Defense against such infec-

tions is the main function of activated macrophages (innate immunity) and T

cells (adaptive immunity).

Clonal Selection Hypothesis

Two theories have been developed for describing the process of antigen-detection:

the instruction and the selection theories. According to the instruction theory,

the antigens shape the cells (or cellular antigen receptors), which will detect them.

The selection theory supposes a vast number of prefabricated immune cells and

from this set the most suitable immune cells detect the antigens. The detection

of an antigen causes cell division and increases the number of effective immune

cells. According to the present state of science, the selection theory corresponds

to the facts.

The immune cells are generated in the primary immune organs (bone marrow

and thymus). The random gene rearrangement in the bone marrow proves that

the antigen detecting receptors of the lymphocytes are not equal to the other

cells, considering the genes at DNA level of these receptors. An adult person is

exposed to approximately 10 million antigens in his life, to which he should create

the distinct lymphocytes of the immune response out of 80,000-100,000 genes,

which is nonsense, since we have all together 35-40,000 genes. The molecular

essence of specificity can be searched in a very small part of the antigen-detecting

molecule (i.e. T-cell receptors and antibodies on B cells), whose pocket consists

of three parts, which can combine freely, so the immune system can choose from

at least 100 billion possibilities.

The T-cells emerging from the bone marrow have to pass a two-level selection

in the thymus. The T-cell only recognizes the morsels of antigens if they are

accompanied by the adequate HLA-molecules.

A segment of the cell-molecules are typical for the individual and are inher-

itable. One of these molecule families on the surface of the cells is the so-called

“histocompatibility” (tissue-tolerance) group of antigens. These are identified
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Figure E.1: After a pseudorandom genetic process in the bone marrow, less than

5% of the lymphocytes will survive the selection in the thymus.

by the genes of the “Main Histocompatibility Complex” (MHC). In the human

organism, the designation of MHC genes is HLA.

Molecules of class MHC-I can be revealed in all of our cells bearing a cell nu-

cleus/core, while molecules of class MHC-II can only be found in a small number

of our cells (e.g., B-lymphocytes, dendritic cells and macrophages).

HLA is an “identification number”; it is a fact the surface of our cells is full

of MHC-I and MHC-II molecules peculiar to our parents. In the course of the

immune system’s operation, MHC molecules have tasks in two processes. One is

the selection in the thymus and the other is the “organization” of the procedure

of the antigen’s presenting. There are pockets on the MHC molecules, where the

cell can put the morsels of antigen on display for the T-cell.

If a T-cell is unable to detect its own HLA-molecules, it dies; similarly, if it

identifies the belonging “self” antigens, then it exposes the organism to danger,

so it has to perish. Approximate 95% of the living T-cells that come out of bone

marrow die.

The selection of the antibody-producing cells (B and plasma cells) is carried

out as follows: during the immune response, the less effective (i.e. fabricating an-

tibodies that react with weaker binding energy) B-cell will fail gradually, because

it has no access to its “life-saving” antigen stimulus and dies.
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Figure E.2: The life of a lymphocyte.

The immune system continuously maintains itself in good condition; it only

keeps the really useful T-lymphocytes and the best B cells in stock.

While the organism is disturbed by the stimulus of antigen, the specific fast-

operating (’effector’) lymphocyte recognizes exactly what kind of antigen will

multiply and the immune response is prepared. The antigen-specific and also

extremely long-life immune memory cells are formulated as well. Therefore, the

next appearance of the newly arrived, but already detected antigen will result in

a more effective immune response. This is the secondary immune response.

The Life of a Lymphocyte

The vigilant patrols of the immune system consist of constantly circulating lym-

phocyte cells in the circulatory system and in the lymphatic gland. Occasion-

ally, they enter the immune organs, where the actual “job” (division, antibody-

production, differentiation) is done.

The entering and exiting movements of the lymphocytes along the blood and

lymphatic paths are helped by the cell-surface (adhesive) lymphocytes. These

help the journey of the lymphocyte. The adhesive proteins/lymphocytes also

help activation. The immune system, as a kind of police, functions perfectly, its

stock is relatively big (division), its observation potential (diversity) is large-scale;

they are well-trained and tested (selection) and extremely mobile (travels).
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Cytokines

Cytokines are the messenger molecules of the various physiological systems includ-

ing the immune system. They are highly important molecules with a complicated

network among them, which transmits signs of the immune system. The crowd

of chemical signs coming from the outside world (e.g., cytokines) is translated to

the language of the sign transmission – here we have more options -, and during

the input impacts, the final translation is the DNA, the language of gene coordi-

nation, (adapted from the signs of the outside world). The more the significance

of the biological signs grows, the closer we advance to the molecular control of

cell division.

Pathogen or Non-Pathogen?

The greatest secret of immunological mechanisms is how it can “separate” the self

and non-self materials on the cellular level. This is an active immune response

fully recognizing and refusing its own antigens.

Immune tolerance derives from two sources. First, the negative selection of

the thymus filters dangerous T-cells, which is not enough in the lack of the pres-

ence of all the possible peptides of all the auto-antigens. The second step is in

the periphery, where the belonging reactive T-lymphocytes receive strengthening

signals inadequate in quality and quantity; therefore they become lame.

After a while, the T and B-lymphocytes decline in the periphery, if they do

not get the strongest positive sign of the immune system, the antigen, associated

with proper helping effects.

Our own most important substances are insured twice. The first defensive

line is the immune tolerance, which applies to all our own substances. The other

– a small, harmless immune response – is the presence of natural substances that

hides its own components (immunological homunculus) from the real, dangerous

immune response.

Immunological ignorance is a highly important, and not yet comprehended

function: in a way, the immune system attempts to deal merely with the essential
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things; to have a neutral impact upon the organism, it does not answer.

A well-functioning system not only focuses on the appropriate parts of the

antigen, but also mirrors where the peptide (pointing towards the T-cells) comes

from.

Besides the selection and processing of the antigen and activation of a lym-

phocyte bearing a specific antigen receptor, it controls the choice of the effector

system to which the procession of the antigen is left. We are far from understand-

ing why the immune system behaves almost as a sense organ, or how it chooses

from many possibilities to serves our interests in the best way.

During the immune response, the organism reaches a series of typical deci-

sions in order to get through (in the most advantageous way) to the tolerance of

self-antigens, the protection of the significant antigens until the removal of the

dangerous, foreign/stranger antigens and until the ignorance of the neural foreign

antigens.

Complement System

By the avalanche-like activation of the complement system (consisting of protein-

degrading enzymes), we can prevent the majority of bacterium infections from

attacking us. The complement system can be activated in three ways: by antigen-

antibody reaction, and by two not antigen-specific ways. The activation makes a

final mark/signal on the cells to be phagocytated. The cast event of the activation

is the formulation of the cell-solution-inducing complex. The process is hindered

and slowed down by brakes in many stages, e.g., when self-cells are dissolved.
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