

i

LARGE SCALE ANNOTATION OF BIOMOLECULAR DATA USING

INTEGRATED DATABASE MANAGEMENT TOOLS

Ph.D. dissertation

Pázmány Péter Catholic University

Faculty of Information Technology and Bionics

Roberto Vera Alvarez

Supervisor: Prof. Sándor Pongor

2014

DOI:10.15774/PPKE.ITK.2014.011

ii

DOI:10.15774/PPKE.ITK.2014.011

i

Abstract

Bioinformatics experiments usually require efficient computational systems that streamline the

data processing. Recent advances in high-throughput technologies have been expanding the

experimental scenario. This fact is producing an avalanche of unmanageable data converting the

biological sciences from a poor data discipline to a rich one. Furthermore, next-generation

sequencing (NGS) technologies created to sequence very long DNA pieces at low cost, are

widely used to generate biological data. Unfortunately, the bioinformatics‘ tools haven‘t changed

their algorithms and computational techniques to deal with this data explosion. Therefore, the

integration of biological data, as a product of those technological advances, is far from being a

solved task although it is one of the most important and basic element inside the bioinformatics

research and/or System Biology projects.

Hence, in this thesis, we developed a biological data integration framework (JBioWH) that has a

modular design for the integration of the most important biological databases. The framework is

comprised of a Java API for external use, a desktop client and a webservices application. This

system has been supplying integrative data for many bioinformatics projects. Also, a program

(Taxoner) was developed to identify taxonomies by mapping NGS reads to a comprehensive

sequence database. As a result of alterations to the indexing used, this pipeline is fast enough to

run evaluations on a single PC, and is highly sensitive; as a result, it can be adapted to the

analysis problems such as detecting pathogens in human samples. Finally, a workflow for DNA

sequence comparison is presented. This workflow is applied either to create a marker database

for taxonomy binning or just to obtain unique DNA segments among a group of targets

sequences. It is based on a set of in-house developed programs that includes the JBioWH and

Taxoner. All the programs developed are freely available through the Google Code Platform.

DOI:10.15774/PPKE.ITK.2014.011

ii

DOI:10.15774/PPKE.ITK.2014.011

iii

List of Publications

1. Pongor L S, Vera R, Ligeti B, Fast and sensitive alignment of microbial whole genome sequencing

reads to large sequence datasets on a desktop PC: application to metagenomic datasets and pathogen

identification. PloS one 2014; 9(7):e103441.

2. Dogsa I, Choudhary KS, Marsetic Z, Hudaiberdiev S, Vera R, Pongor S, Mandic-Mulec I: ComQXPA

Quorum Sensing Systems May Not Be Unique to Bacillus subtilis: A Census in Prokaryotic Genomes.

PloS one 2014, 9(5):e96122.

3. Vera R, Perez-Riverol Y, Perez S, Ligeti B, Kertész-Farkas A, Pongor S: JBioWH: an open-source Java

framework for bioinformatics data integration. Database: the journal of biological databases and

curation 2013, 2013:bat051.

4. Kertész-Farkas A, Reiz B, Vera R, Myers MP, Pongor S: PTMTreeSearch: a novel two-stage tree-

search algorithm with pruning rules for the identification of post-translational modification of

proteins in MS/MS spectra. Bioinformatics (Oxford, England) 2013, 30:234-241.

5. Ligeti B, Vera R, Lukacs G, Gyorffy B, Pongor S: Predicting effective drug combinations via network

propagation. In: 2013 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE; 2013: 378-381.

6. Perez-Riverol Y, Vera R, Mazola Y, Musacchio A: A parallel systematic-Monte Carlo algorithm for

exploring conformational space. Current topics in medicinal chemistry 2012, 12:1790-1796.

7. Perez-Riverol Y, Sánchez A, Ramos Y, Schmidt A, Müller M, Betancourt L, González LJ, Vera R, Padron

G, Besada V: In silico analysis of accurate proteomics, complemented by selective isolation of

peptides. Journal of proteomics 2011, 74:2071-2082.

8. Sanchez A , Perez-Riverol Y , González LJ , Noda J, Betancourt L, Ramos Y, Gil J, Vera R, Padrón G ,

Besada V: Evaluation of Phenylthiocarbamoyl-Derivatized Peptides by Electrospray Ionization Mass

Spectrometry: Selective Isolation and Analysis of Modified Multiply Charged Peptides for Liquid

Chromatography-Tandem Mass Spectrometry Experiments. Analytical chemistry 2010, xxx:552-559.

9. Mazola Reyes Y, Chinea Santiago G, Guirola Cruz O, Vera Alvarez R, Huerta Galindo V, Fleitas Salazar

N, Musacchio Lasa A: Chemical compounds having antiviral activity against dengue virus and other

flaviviruses. In.: WO/2009/106019; 2009.

10. Rodriguez Fernandez RE, Vera Alvarez R, de la Nuez Veulens A, Mazola Reyes Y, Perea Rodriguez SE,

Acevedo Castro BE, Musacchio Lasa A, Ubieta Gomez R: Antineoplastic compounds and

pharmaceutical compositions thereof. In.: WO/2006/119713; 2006.

DOI:10.15774/PPKE.ITK.2014.011

iv

DOI:10.15774/PPKE.ITK.2014.011

v

List of Abbreviations

Bp Base pair

BWT Burrows-Wheeler transforms

DBG Bruijn Graph

LC Liquid chromatography

mRNA messenger RNA

MS Mass Spectrometry

NGS Next-generation sequencing

OLC Overlap/Layout/Consensus

PCR polymerase chain reaction

RAM Random-access memory

rRNA ribosomal RNA

tRNA transfer RNA

WGS Whole-genome shotgun

XML eXtensible Markup Language

DOI:10.15774/PPKE.ITK.2014.011

vi

DOI:10.15774/PPKE.ITK.2014.011

vii

List of Figures

Figure 1: Biological database growth during the last decade .. 12

Figure 2: Flow chart for the analysis of a metagenome from sequencing to functional annotation. Only the basic flow

of data is shown up to the gene prediction step. For the context-based annotation approach, only the gene

neighborhood method has been implemented thus far on metagenomic data sets; although in principal,

other approaches which have been used for whole genome analysis can also be implemented and tested

[84]. ... 17

Figure 3: Overlap between protein databases. Figure from ProgMap [1] server. .. 28

Figure 4: The JBioWH architecture and the relationship between the components .. 39

Figure 5: Loading times against the number of elements inserted. The outliners are the Draft Genomes (48 084 s),

KEGG (50 416) and UniProt TREMBL (253 304 s). .. 40

Figure 6: Linear correlation between the loading times and the number of elements inserted. The outliers are left out

 ... 41

Figure 7: JBioWH relational schema with the main tables and their relationship. .. 44

Figure 8: The relations between the Basement and first group of modules ... 47

Figure 9: The number of code lines included into the JBioWH framework. Statistics taken from

http://www.ohloh.net/p/jbiowh/ .. 52

Figure 10: Number of code lines in the JBioWH framework. Statistics taken from http://www.ohloh.net/p/jbiowh/ 52

Figure 11: The functionality to manage the DBMS. .. 53

Figure 12: The structure of the Search functionality. The interface JBioWHSearch is implemented by the modules

search classes that extends the SearchFactory abstract class. .. 54

Figure 13: The JBioWH parser structure. .. 54

Figure 14: A screenshot of JBioWH Desktop Client. The left panel shows the relational schemes opened. The top

right panel shows the list of the database inserted in the relational scheme, while on the bottom left panel

one can see the tables in the selected database. ... 55

Figure 15: The search interface with constrains. ... 56

Figure 16: The SQL query interface with the result list. ... 57

Figure 17: The result interface showing the gene linked to the protein. .. 57

Figure 18: The webservices associated web site showing the available Datasets.. 58

Figure 19: The available webservices methods for the Protein module. ... 59

Figure 20: Mapping of reads to bacterial strains using artificial chromosomes. A strain is a segment of the artificial

chromosome that is named by a label in the taxonomical hierarchy. .. 68

Figure 21: Mapping of reads to gene functions within an annotated genome. A gene is a segment of the genome that

is named by a label in the functional hierarchy, such as the COG/EggNOG system or the GO databases. .. 69

Figure 22: COG Functional classification made by the Gene Assignment tool for the genes identified by Taxoner.. 74

DOI:10.15774/PPKE.ITK.2014.011

file:///C:\Documents%20and%20Settings\roberto\My%20Documents\Dropbox\Documents\Personal\PhD\Pazmany\Thesis\Thesis\Dissertation_Roberto_Vera_with_reviewers_suggestions_no_colored.docx%23_Toc400370478
file:///C:\Documents%20and%20Settings\roberto\My%20Documents\Dropbox\Documents\Personal\PhD\Pazmany\Thesis\Thesis\Dissertation_Roberto_Vera_with_reviewers_suggestions_no_colored.docx%23_Toc400370486
file:///C:\Documents%20and%20Settings\roberto\My%20Documents\Dropbox\Documents\Personal\PhD\Pazmany\Thesis\Thesis\Dissertation_Roberto_Vera_with_reviewers_suggestions_no_colored.docx%23_Toc400370491
file:///C:\Documents%20and%20Settings\roberto\My%20Documents\Dropbox\Documents\Personal\PhD\Pazmany\Thesis\Thesis\Dissertation_Roberto_Vera_with_reviewers_suggestions_no_colored.docx%23_Toc400370492
file:///C:\Documents%20and%20Settings\roberto\My%20Documents\Dropbox\Documents\Personal\PhD\Pazmany\Thesis\Thesis\Dissertation_Roberto_Vera_with_reviewers_suggestions_no_colored.docx%23_Toc400370495
file:///C:\Documents%20and%20Settings\roberto\My%20Documents\Dropbox\Documents\Personal\PhD\Pazmany\Thesis\Thesis\Dissertation_Roberto_Vera_with_reviewers_suggestions_no_colored.docx%23_Toc400370495
file:///C:\Documents%20and%20Settings\roberto\My%20Documents\Dropbox\Documents\Personal\PhD\Pazmany\Thesis\Thesis\Dissertation_Roberto_Vera_with_reviewers_suggestions_no_colored.docx%23_Toc400370496
file:///C:\Documents%20and%20Settings\roberto\My%20Documents\Dropbox\Documents\Personal\PhD\Pazmany\Thesis\Thesis\Dissertation_Roberto_Vera_with_reviewers_suggestions_no_colored.docx%23_Toc400370496

viii

Figure 23: Reads, unique segments and markers (left), cumulative coverage values (right). Note that reads can

overlap with each other but unique (―diagnostic‖) segments ad markers are disjunct. Also note that markers

must fully overlap with the unique segments. ... 81

Figure 24: Logical scheme of identifying a query sequence as a marker using a nearest neighbor paradigm. 87

Figure 25: The outline of the GSMer procedure. A unique region of 100 nt is indicated shown in pink. Imagine

sliding a window of 50nt along the sequence. The first and last windows passing the < 85% threshold are

indicated by black lines. .. 88

Figure 26: The outline of a sparse tiling procedure for marker identification. Note that the unique region (pink) can

overlap with a minimum of one, or a maximum of two tiling windows. .. 89

Figure 27: Two types of marker datasets, illustrated on a hypothetical species of 3 strains. Left: A set union type

definition, k-mers appearing in any of the 3 strains of the species. This is a non-redundant set, i.e. k-mers

appearing in more than one strain appear only once. Right: A set-intersection type definition, k-mers

appearing in all 3 strains of the species. Note that this is a much smaller set. .. 91

Figure 28: Workflow for unique segments identification .. 92

Figure 29: The figure shows the percent of bp assigned against the Taxoner score for the Burkholderia genus. After

the score of 0.30 the Taxoner returns the same result. .. 94

Figure 30: Percent of bp assigned per Taxoner score for the Complete Genomes using the nt file as Taxoner

database. .. 98

Figure 31: Distribution of the assigned bp against the Taxonomic ranks using different Taxoner scores................... 99

DOI:10.15774/PPKE.ITK.2014.011

file:///C:\Documents%20and%20Settings\roberto\My%20Documents\Dropbox\Documents\Personal\PhD\Pazmany\Thesis\Thesis\Dissertation_Roberto_Vera_with_reviewers_suggestions_no_colored.docx%23_Toc400370498
file:///C:\Documents%20and%20Settings\roberto\My%20Documents\Dropbox\Documents\Personal\PhD\Pazmany\Thesis\Thesis\Dissertation_Roberto_Vera_with_reviewers_suggestions_no_colored.docx%23_Toc400370498
file:///C:\Documents%20and%20Settings\roberto\My%20Documents\Dropbox\Documents\Personal\PhD\Pazmany\Thesis\Thesis\Dissertation_Roberto_Vera_with_reviewers_suggestions_no_colored.docx%23_Toc400370498
file:///C:\Documents%20and%20Settings\roberto\My%20Documents\Dropbox\Documents\Personal\PhD\Pazmany\Thesis\Thesis\Dissertation_Roberto_Vera_with_reviewers_suggestions_no_colored.docx%23_Toc400370499
file:///C:\Documents%20and%20Settings\roberto\My%20Documents\Dropbox\Documents\Personal\PhD\Pazmany\Thesis\Thesis\Dissertation_Roberto_Vera_with_reviewers_suggestions_no_colored.docx%23_Toc400370500
file:///C:\Documents%20and%20Settings\roberto\My%20Documents\Dropbox\Documents\Personal\PhD\Pazmany\Thesis\Thesis\Dissertation_Roberto_Vera_with_reviewers_suggestions_no_colored.docx%23_Toc400370500
file:///C:\Documents%20and%20Settings\roberto\My%20Documents\Dropbox\Documents\Personal\PhD\Pazmany\Thesis\Thesis\Dissertation_Roberto_Vera_with_reviewers_suggestions_no_colored.docx%23_Toc400370500
file:///C:\Documents%20and%20Settings\roberto\My%20Documents\Dropbox\Documents\Personal\PhD\Pazmany\Thesis\Thesis\Dissertation_Roberto_Vera_with_reviewers_suggestions_no_colored.docx%23_Toc400370501
file:///C:\Documents%20and%20Settings\roberto\My%20Documents\Dropbox\Documents\Personal\PhD\Pazmany\Thesis\Thesis\Dissertation_Roberto_Vera_with_reviewers_suggestions_no_colored.docx%23_Toc400370501
file:///C:\Documents%20and%20Settings\roberto\My%20Documents\Dropbox\Documents\Personal\PhD\Pazmany\Thesis\Thesis\Dissertation_Roberto_Vera_with_reviewers_suggestions_no_colored.docx%23_Toc400370502
file:///C:\Documents%20and%20Settings\roberto\My%20Documents\Dropbox\Documents\Personal\PhD\Pazmany\Thesis\Thesis\Dissertation_Roberto_Vera_with_reviewers_suggestions_no_colored.docx%23_Toc400370502
file:///C:\Documents%20and%20Settings\roberto\My%20Documents\Dropbox\Documents\Personal\PhD\Pazmany\Thesis\Thesis\Dissertation_Roberto_Vera_with_reviewers_suggestions_no_colored.docx%23_Toc400370502
file:///C:\Documents%20and%20Settings\roberto\My%20Documents\Dropbox\Documents\Personal\PhD\Pazmany\Thesis\Thesis\Dissertation_Roberto_Vera_with_reviewers_suggestions_no_colored.docx%23_Toc400370502
file:///C:\Documents%20and%20Settings\roberto\My%20Documents\Dropbox\Documents\Personal\PhD\Pazmany\Thesis\Thesis\Dissertation_Roberto_Vera_with_reviewers_suggestions_no_colored.docx%23_Toc400370503
file:///C:\Documents%20and%20Settings\roberto\My%20Documents\Dropbox\Documents\Personal\PhD\Pazmany\Thesis\Thesis\Dissertation_Roberto_Vera_with_reviewers_suggestions_no_colored.docx%23_Toc400370504
file:///C:\Documents%20and%20Settings\roberto\My%20Documents\Dropbox\Documents\Personal\PhD\Pazmany\Thesis\Thesis\Dissertation_Roberto_Vera_with_reviewers_suggestions_no_colored.docx%23_Toc400370504

ix

List of Tables

Table 1: Types of NGS technologies ... 4

Table 2: Goals of next generation sequencing ... 5

Table 3: The parallelism between NGS and high throughput proteomics ... 5

Table 4: Object oriented design for the C structures. .. 34

Table 5: Tools available in the BioC Project. .. 35

Table 6: List of Google Code Projects developed. .. 35

Table 7: Data sources included in JBioWH ... 40

Table 8: Loading times, final data sizes and number of elements inserted. This example was executed in a computer

with two Intel Core CPU Q6850 (3.00 GHz and 4.0 MB of cache) and 8.0 GB of RAM running OpenSuSE

13.1 (Linux version 3.11.10-11-desktop. .. 41

Table 9: Two simple examples and their solutions using SQL language and the Java API code 60

Table 10: This table shows the use of the TaxonomyGraph class to create the hierarchical structure of a Taxonomy

family. ... 62

Table 11: This table shows the genes encoding for drug‘s target protein that are in the same chromosome at a

distance less than a specific number of pair bases. .. 63

Table 12: Current size of a few databases subsets and the number of artificial chromosomes necessary for the

analysis. ... 69

Table 13: Typical running times for the alignments. ... 77

Table 14: Detection of species in a metagenomic datasets .. 78

Table 15: Analysis of known and unknown B. anthracis strains. .. 79

Table 16: Summary pros and cons for the marker database design, .. 84

Table 17: The table shows the percent of bp assigned to the taxonomic levels for the Burkholderia genus using a

Taxoner score of 0.50. Note that the table continues in the next page. They should be seen in parallel. 96

Table 18: Complete genomes data downloaded from the NCBI FTP site 03/24/2014. ... 98

Table 19: Run times for the creation of the Marker database for different set of input data 100

DOI:10.15774/PPKE.ITK.2014.011

x

DOI:10.15774/PPKE.ITK.2014.011

xi

Acknowledgements

This work is the result of an exceptionally fruitful collaboration between institutions from Cuba,

Italy and Hungary. The project started during my first visit to the ICGEB in 2008, when I was

invited by Prof. Sándor Pongor. His support, kindness and, especially, his scientific vision has

made possible all these results. Special thanks are due to my friends and close collaborators,

Yasset Perez-Riverol (European Bioinformatics Institute), Sonal K. Choudhary and Sanjar

Hudaiberdiev (ICGEB, Trieste), Lőrinc S. Pongor (Semmelweis University, Budapest) and

Balázs Ligeti (Pázmány University, Budapest). Much of this work is the result of our common

efforts so a large part of the credit goes to them.

I wish to express my gratitude to ICGEB-Trieste, Italy, to LNCIB, Trieste, Italy, and to Pázmány

Péter Catholic University, Budapest, Hungary for the fellowships and the financial support. In

particular, I wish to thank the help and assistance of Profs. Francisco E. Baralle (ICGEB) and

Claudio Schneider (LNCIB)

I want to thank my labmates at ICGEB, Sonal and Sanjar for being family and for the many

English corrections to my thesis and my presentations. I also want thank my colleagues at

LNCIB, Vanessa Florit and Raffaella Florit for their trust and support.

My special hanks are due to all my friends in Trieste, especially to Piero, Roberta, Giacomo,

Elena, Giorgia, Giampaolo, Simona, Sorrentino, Roberto and Daniela for their friendship and

support.

And to my catholic community at the San Giusto Cathedral of Trieste: Grazie mille per la

preghiera e per ricordarci che non dobbiamo avere paura: Dio ci ama e sempre provvede.

I would like to thank my wife and children for being there for me always and letting me work

despite of their needs. And to my parents and my sister for their sacrifices which made me the

man that I am: Gracias mis amores por todo. Este también es un logro de todos ustedes. Los amo

infinitamente.

DOI:10.15774/PPKE.ITK.2014.011

xii

DOI:10.15774/PPKE.ITK.2014.011

xiii

Contents

ABSTRACT ... I
LIST OF PUBLICATIONS ... III
LIST OF ABBREVIATIONS .. V
LIST OF FIGURES ... VII
LIST OF TABLES .. IX
ACKNOWLEDGEMENTS ... XI
CONTENTS ... XIII
1 INTRODUCTION .. 1

1.1 NEXT-GENERATION SEQUENCING .. 3

1.1.1 Sequence alignment algorithms ... 6

1.1.2 Hash table based approaches .. 6

1.1.3 Improved seeding techniques ... 6

1.1.4 Improved seed extension .. 8

1.1.5 Fast aligners based on suffix/prefix try.. 8

1.1.6 Sequence assembly ... 9

1.2 OMICS DISCIPLINES AND BIOLOGICAL DATABASES .. 11

1.2.1 Genomics ... 13

1.2.2 Transcriptomics ... 15

1.2.3 Metagenomics and Metatranscriptomics ... 16

1.2.4 Proteomics ... 21

1.2.5 Metabolomics/metabonomics ... 23

1.2.6 General databases ... 24

1.3 INTEGRATION OF BIOLOGICAL DATA ... 25

1.3.1 Heterogeneity and redundancy in biological data ... 27

1.3.2 The format of biological data .. 29

1.4 SCOPE ... 30

2 MATERIALS AND METHODS ... 31

2.1 DATABASE DESIGNS .. 31

2.2 PROGRAMMING LANGUAGES AND LIBRARIES .. 31

2.2.1 Java .. 31

2.2.2 C .. 32

2.2.3 Bash shell scripting .. 35

2.3 GOOGLE CODE PROJECTS ... 35

2.4 CLOUD PLATFORMS .. 36

3 RESULTS AND SUMMARY .. 37

DOI:10.15774/PPKE.ITK.2014.011

xiv

3.1 BIOLOGICAL DATABASE INTEGRATION ... 37

3.1.1 General approach .. 37

3.1.2 Data sources .. 38

3.1.3 Relational schema .. 42

3.1.4 Java API .. 51

3.1.5 Web services .. 58

3.1.6 Examples .. 60

3.1.7 Applications ... 64

3.1.8 Summary .. 65

3.2 PREDICTION OF BACTERIAL TAXA AND GENE FUNCTION FROM NGS RESULTS .. 67

3.2.1 The Taxoner principle .. 67

3.2.2 The Taxoner algorithm .. 71

3.2.3 Desktop and server versions .. 75

3.2.4 Run times and examples ... 76

3.2.5 Analyzing metagenomic datasets ... 77

3.2.6 Analyzing known and unknown strains .. 78

3.2.7 Summary .. 80

3.3 THE GENOME SPECIFIC MARKER DATABASE .. 81

3.3.1 The marker database approach ... 85

3.3.2 Production of markers for higher level taxa or other sequence groups... 90

3.3.3 Overview of the database production workflow... 91

3.3.4 Sequence comparison for the Burkholderia genus... 93

3.3.5 Marker database for the Complete Genomes .. 98

3.3.6 Run times and space complexity .. 100

3.3.7 Summary .. 100

4 CONCLUSION ... 102
5 REFERENCES .. 106

DOI:10.15774/PPKE.ITK.2014.011

1

1 Introduction

The introduction of information technology to manage the biological data has been

changing the biological research. Also, a technological revolution on labs, like low-cost

genomic DNA sequencing technologies and biological assays made by robots, have been

contributing to this new era of the biological sciences.

The field of Bioinformatics is a product of this new era. The National Center for

Biotechnology Information (NCBI) defines bioinformatics in 2001 as:

―Bioinformatics is the field of science in which biology, computer science, and information

technology merges into a single discipline. There are three important sub-disciplines within

bioinformatics: the development of new algorithms and statistics with which to assess

relationships among members of large data sets; the analysis and interpretation of various

types of data including nucleotide and amino acid sequences, protein domains, and protein

structures; and the development and implementation of tools that enable efficient access

and management of different types of information.‖

This discipline have been used for decades as a basic support for biological research

projects, its use provides a better understanding of complex biological process.

Additionally, the Systems Biology, known as the next big intellectual challenge in biology,

has been integrating the Bioinformatics tools in its research projects producing high quality

results. This synergy is not a method but a paradigm, a general approach of thinking [2].

They form an inter-discipline that makes use of principles, knowledge and tools coming

from biology, computer sciences, medicine, physics, chemistry and engineering, bridging

the gaps between them [3].

This paradigm is helping to develop new research archetypes that shifts focus from

traditional studies of single gene or protein to unified systems view on biological processes.

It combines data-mining from large-scale, technology-driven projects, such as human

DOI:10.15774/PPKE.ITK.2014.011

2

genome or structural genomics projects, with traditional hypothesis-driven experimental

work.

The aforementioned way of thinking tend to improve the understanding of the biology and

its mechanisms, particularly, the interactions between its key elements (DNA, RNA,

proteins, chemical compounds, cells, etc.). The bottom up approach builds on its key

elements, which are strictly related to the OMICS data sets, and the proposed models of

biological systems.

This integration through novel methodologies is not limited to the description of the

existing knowledge using a new syntax. It combines old and new models to develop new

approaches for the characterization of the biological systems.

Based on an integrationist approach, this paradigm fills the empty spaces left by the

reductionist approaches where the complex system is nothing more than the sum of its

parts. These reductionist approaches have played an important role in the development of

the biology sciences until now. They allowed the identification of the majority of the

biological elements independently. Unfortunately, they offer no convincing concepts and

methods to comprehend how system properties emerge [4].

The technical challenges of the Systems Biology [5] are mainly along four lines: (i) system-

wide component identification and quantification (―OMICS‖ data sets); (ii) experimental

identification of physical component interactions, primarily for information processing

networks; (iii) computational inference of structure, type, and quantity of component

interactions from data; and (iv) rigorous integration of heterogeneous data [41]. Being this

last step significantly behind, such that many more data are generated than possibly can be

analyzed or interpreted [6].

DOI:10.15774/PPKE.ITK.2014.011

3

1.1 Next-generation sequencing

Knowing the DNA sequence is essential for all kind of projects in biological research.

Scientists extracting the genetic information from the biological systems produced a

limitless insight to the ―OMICS‖ disciplines, especially to the Genomics and

Transcriptomics. The DNA sequencing techniques have been evolving continuously, and

consequently, they have been incorporating new challenges to the Bioinformatics.

On the other hand, major developments of bioinformatics usually result from parallel

development in data processing. ―Traditional bioinformatics‖ provides data processing and

storage technologies that served protein and DNA sequencing technologies developed from

the 70‘s and 80‘s. However, next generation sequencing (NGS), that is an umbrella name

for DNA sequencing technologies that followed after 2000, is a complete new approach

that cannot be afforded using the traditional bioinformatics tools. The goal of this chapter is

to give an overview of the data processing of NGS, I briefly review this field based on

Homer and Li [7].

These new sequencing technologies often aims at sequencing very long DNA pieces, such

as whole chromosomes, although, large-scale sequencing can also be used to generate very

large numbers of short sequences. Also, they are designed for low-cost sequencing

producing high-throughput DNA sequences data of the order of giga base-pairs (Gbp) per

machine day [8].

There are two groups of DNA sequencing technologies that fall into the NGS umbrella. The

first group (second generation) follows chemical synthesis techniques, similar in part to

conventional Sanger sequencing, another group (third generation) uses single molecular

techniques that, on one hand, do not require amplification, but on the other hand, report

single molecule variants, see Table 1.

From the perspective of bioinformatics, the length and the accuracy of the reads is the most

important (two right columns), as this will determine the probability of chance identities,

i.e. the background noise of sequence alignment.

DOI:10.15774/PPKE.ITK.2014.011

4

NGS applications fall into a few characteristic categories, listed in Table 2. It is interesting

to realize the parallelism between the data processing perspectives of high throughput

proteomics and NGS. Nevertheless, the two fields were developed in vastly different ways,

see Table 3.

Table 1: Types of NGS technologies

―Generation‖ Type of sequencing Instrument
Max read

length

Accuracy

Second generation sequencers

sequencing-by-

synthesis

Roche/454 700 99.9%

Illumina 150 98%

sequencing-by-ligation ABI/ SOLiD 75-100 99.9%

sequencing-by-

synthesis

Ion Torrent/Life

Technologies

200 98%

Third generation sequencers

(single molecule sequencing)

single-molecule

sequencing
Helicos

50 99.5%

single-molecule

sequencing
Pacific Biosciences

1500 87-99

nanospore single-

molecule sequencing
Oxford Nanospore

n/a n/a

The Bioinformatics approaches used by the NGS applications to process the data can be

described by two main groups. The first group includes the approaches to manipulate, store

and share the experimental results, namely reads or segments of DNA sequences, including

the experimental description. The second group includes computational applications to

process the experimental results. These computational tools can be generally classified in

tools to align the DNA reads and tools to assemble the final DNA sequence.

DOI:10.15774/PPKE.ITK.2014.011

5

Table 2: Goals of next generation sequencing

Category Application example

De novo sequencing of complete

genomes
Description of new species, identification of unique genes.

Complete genome resequencing Identification of mutations and polymorphisms; structural variants

Paired-end sequencings Inherited and acquired structural variations (e.g. CNV)

Metagenomic sequencing Study of microbial communities, detection of pathogens

Transcriptome sequencing Quantifying/comparing gene expression

MicroRNA sequencing Gene regulation studies

Exome sequencing Concomitant study of all exons in all genes

Molecular barcode sequencing Parallel identification of several species

Table 3: The parallelism between NGS and high throughput proteomics

 NGS High throughput proteomics

Macromolecular

fragments
Random, overlapping Enzyme generated, disjunction

Analysis of single

items

Genomics, assembly

Goal: single genome sequencing

De novo sequencing by proteomics

Goal: Single protein sequencing

Analysis of complete

mixtures

Metagenomics;

Goal: Identification of taxa in

complex communities

High throughput MS/MS; Goal: identification

of proteins in complex mixtures

DOI:10.15774/PPKE.ITK.2014.011

6

1.1.1 Sequence alignment algorithms

The crucial part of NGS data processing is the alignment of the DNA reads. Most current

alignment algorithms index structures either for the read sequences or for the reference

database sequence, or sometimes both. Based on the index properties, alignment algorithms

can be largely grouped into two large categories: a) algorithms based on hash tables, b)

algorithms based on suffix trees and algorithms based on merge sorting. (An additional

group consists of Slider [9] and its descendant SliderII [10], we concentrate on the first two

categories).

1.1.2 Hash table based approaches

All hash table based algorithms essentially follow the idea of BLAST of Steve Altschul and

associates [11, 12] which can be called a seed-and-extend paradigm. The philosophy was

based on protein sequencing, but the main corollaries keep also for DNA sequencing. The

fundamental supposition is that homologous sequences contain conserved segments that

can be located by the position of k-mer words shared by two sequences. BLAST keeps the

position of each k-mer (k = 11 by default) subsequence of the query in a hash table with the

k-mer sequence being the key, and scans the database sequences for k-mer exact matches,

by looking up the hash table. A sufficient (user selected) number of k-mers is called a seed.

BLAST extends and joins the seeds first without gaps and then refines them by a Smith-

Waterman alignment [13, 14]. It outputs statistically significant local alignments as the

final results. This basic approach has been improved and adapted to alignments of different

types, but here we focus on mapping a set of short query sequences against a long reference

genome of the same species.

1.1.3 Improved seeding techniques

Ma and associates realized that seeds of k non-consecutive identities are more sensitive

than seeds of k consecutive identities, used in the original BLAST algorithm [15, 16]. A

seed allowing internal mismatches is called a spaced seed; the number of matches in the

DOI:10.15774/PPKE.ITK.2014.011

7

seed is its weight. The time complexity of spaced seed alignment is approximately

proportional to mnL/4
q
 where q is the weight, m the number of templates, n the number of

reads and L the genome size. The memory required by hashing genome is usually log2 L

max(4q, L/s) bytes where s is the sampling frequency [17]. It is memory demanding to hold

in RAM a hash table with q larger than 15. Homer and associates proposed a two-level

indexing scheme for any large q [18]. They build a hash table for j-long (j < q, typically 14)

bases. To find a q-long key, they look up the hash table from the first j bases and then

perform a binary search among elements stored in the resulting bucket. Looking up a q-

long (q > log4 L) key takes O(max(1, log4 L – j)) time, only slightly worse than the optimal

speed O(1). And, as a consequence, the peak memory becomes independent of q.

The idea can be implemented in several ways, sometimes linked to the peculiarities of

individual sequencing technologies; we only cite a few here. The program Eland builds k-

mer templates for the reads. For an Illumina read it builds 6 templates and allows for two

mismatches during the alignment. SOAP [19] adopts almost the same strategy except that it

indexes the genome rather than reads. SeqMap [20] and MAQ [21] allow k mismatches,

this requires an exponentially high number of templates for the same sensitivity which is

inefficient for larger k values. To improve the speed, MAQ only takes advantage of the fact

that the first half of the reads is more reliable so it accepts only 2 mismatches in the first

28bp i.e. the most reliable part of an Illumina read. MAQ will extend the partial match

when a seed match is found. There are several other programs that capitalize on the same or

similar ideas, for a further review see [7].

A potential problem with consecutive seed and spaced seed is they disallow gaps within the

seed. Gaps are usually found afterwards in the extension step by dynamic programming, or

by attempting small gaps at each read positions [19, 20]. The q-gram filter [22-24] is based

on the observation that at the occurrence of a w-long query string with at most k differences

(mismatches and gaps), the query and the w-long database substring share at least

(w+1)−(k+1)q common substrings of length q [25-27]. Methods based on spaced seeds and

the q-gram filters are similar in that they both rely on fast lookup in a hash table. They are

mainly different in that the former category initiates seed extension from one long seed

DOI:10.15774/PPKE.ITK.2014.011

8

match, while the latter initiates extension usually with multiple relatively short seed

matches. In fact, the idea of requiring multiple seed matches is more frequently seen in

capillary read aligners such as SSAHA2 and BLAT; it is a major technique to accelerate

long-read alignment.

1.1.4 Improved seed extension

Due to the use of long spaced seeds, many aligners do not need to perform seed extension

or only extend a seed match without gaps, which is much faster than dynamic

programming. Nonetheless, several improvements over BLAST have been made regarding

seed extension. A major improvement comes from accelerating the standard Smith-

Waterman with vectorization. The basic idea is to parallelize alignment with the CPU

SIMD instructions such that multiple parts of a query sequence can be processed in one

CPU cycle. Using the SSE2 CPU instructions implemented in most latest x86 CPUs,

[28]results in a revised Smith-Waterman algorithm that is over 10 times faster than the

standard algorithm. Novoalign (http://novocraft.com), CLC Genomics Workbench

(http://clcbio.com) and SHRiMP are known to make use of vectorization.

Another improvement is achieved by constraining dynamic programming around seeds

already found in the seeding step [18, 29, 30]. Thus, unnecessary visits to cells far away

from seed hits in iteration are greatly reduced. In addition, [31] found that a query can be

aligned in full length to an L-long target sequence with up to k mismatches and gaps in

O(kL) time, independent of the length of the query. These techniques also help to accelerate

the alignment when dynamic programming is the bottleneck.

1.1.5 Fast aligners based on suffix/prefix try

The use of hash tables is getting impractical for larger input data sizes. As a consequence,

current aligners seek to the inexact matching problem to the exact matching problem and

involve two steps: 1) identifying exact matches and 2) building inexact alignments

supported by exact matches. To find exact matches, these algorithms rely on a certain data

DOI:10.15774/PPKE.ITK.2014.011

9

representations, such as suffix tree, enhanced suffix array [32] and FM-index [33]. The

advantage of using a try as the basic data structure is that alignment to multiple identical

copies of a substring in the reference is only needed to be done once because these identical

copies collapse on a single path in the try, whereas with a typical hash table index, an

alignment must be performed for each copy. It should be noted that the choice of these data

structures is independent of methods of step 2 for finding inexact matches i.e. an algorithm

built upon FM-index, for example, would also work with suffix tree index in principle.

Algorithms in this class make use of key methods, such as the Burrows-Wheeler transform

(BWT) [34], the Ferragina-Manzini index (FM) [33] and the Huffman coding (HC) [35].

Briefly, BWT is a lossless compression algorithm used among others in bzip2, it allows one

to compress and decompress data without loss of information. The compression of

biological data, such as a genome becomes practical if one combines BWT with HC or

other coding technique. A BWT encoded dataset is not suitable for searching in itself, but

Ferragina and Manzini discovered in 2005 that a new index, now called the FM index,

which can search a BWT dataset without decompression. With this combination we have a

new index structure that can replace the hash table with a concomitant gain in speed.

Further, speedup is possible by avoiding dynamic programming, even though some of the

current programs allow dynamic programming as a more sensitive option.

There are two current programs that are widely used today in the bioinformatics

community. BWA [36] is the program of the Durbin group that was the first in time, it is

relatively sensitive but somewhat less fast than Bowtie [37] and Bowtie2, developed at the

Salzberg group which is considered somewhat faster but less sensitive.

1.1.6 Sequence assembly

The assembly process is out of the scope of this thesis, however, we would like to introduce

briefly some concepts and algorithms used to assemble DNA segments up to chromosome

length.

DOI:10.15774/PPKE.ITK.2014.011

10

An assembly is a hierarchical data structure that maps the sequence data to a putative

reconstruction of the target. It groups reads into contigs and contigs into scaffolds. Contigs

provide a multiple sequence alignment of reads plus the consensus sequence. The scaffolds,

sometimes called supercontigs or metacontigs, define the contig order and orientation and

the sizes of the gaps between contigs. Scaffold topology may be a simple path or a network

[38].

Sequence assembly is the reconstruction of sequence up to chromosome length. The

assembly task is relegated to computer software [39]. Assembly is possible when the target

is over-sampled by the shotgun reads, such that reads overlap. De novo Whole-genome

shotgun (WGS) assembly refers to reconstruction in its pure form, without consultation to

previously resolved sequence including from genomes, transcripts, and proteins [38]. DNA

sequencing technologies share the fundamental limitation that read lengths are much

shorter than even the smallest genomes. WGS overcomes this limitation by over-sampling

the target genome with short reads from random positions. Assembly software reconstructs

the target sequence.

The NGS assemblers can be group into three categories, all based on graphs. The

Overlap/Layout/Consensus (OLC) methods rely on an overlap graph. The de Bruijn Graph

(DBG) methods use some form of K-mer graph. The greedy graph algorithms may use

OLC or DBG.

The OLC approach was typical of the Sanger-data assemblers. It was optimized for large

genomes in software including Celera Assembler [40], Arachne [41, 42], and CAP and

PCAP [43]. The OLC approach has been reviewed elsewhere [44]. The most

representatives assembler programs using this approach are Newbler [45], the Celera

Assembler [40] and Edena [46]

The DBG approach is most widely applied to the short reads from the Solexa and SOLiD

platforms. It relies on K-mer graphs, whose attributes make it attractive for vast quantities

of short reads, see [47] for review. The most representatives assembler programs using this

DOI:10.15774/PPKE.ITK.2014.011

11

approach are Euler developed for Sanger reads [48-50], Velvet [51, 52], ABySS [53],

AllPaths [54] and SOAPdenovo [55].

1.2 OMICS disciplines and biological databases

The OMICS suffix has been added to the names of many kinds of biological studies

undertaken on a large or genome-wide scale. Today, there are numerous derivatives of the

basic concept of large-scale biological analysis, with the common denominator of aiming to

study the complete repertoire of particular biological entities [56]. It includes several

disciplines that are growing within this new biological era. They are mainly represented by

Genomics, Transcriptomics, Metagenomics and Metatranscriptomics, Proteomics,

Metabolomics/metabonomics, Localizomics, etc.

The advent of whole-genome sequencing and other high-throughput experimental

technologies transform the biological research from a relatively data poor discipline into

one that is data rich [5]. This exponential increment of the data produced by the OMICS

disciplines is associated to the number of available biological databases. A synergy

between the OMICS and the Bioinformatics tools is used to produce, store, process and

validate the biological data. They use high-throughput screening experiments for

identification and validation of biological entities; computational tool and databases to

manage the data generated in the previous stage; and algorithms for computational

predictions of biological properties and interactions [57-59].

One of the biggest problems of this synergy is that the high-throughput experimental

technologies used for querying the biological system have an inherent high rate of false

positive results and they are able to produce an unmanageable volume of data [60, 61].

Although, each experiment result obtained is not useful by itself. They have a limited utility

unless efficient computational systems are used to manage, integrate and process them.

Indeed, a biological database as any kind of database is a collection of data that is

organized so that its contents can easily be accessed, managed, and updated [59, 62]. A

DOI:10.15774/PPKE.ITK.2014.011

12

simple database might be a single file containing many records, each of which includes the

same set of information.

The Nucleic Acids Research (NAR) journal online Molecular Biology Database Collection

[63] published a collection of 1552 databases that are sorted into 14 categories and 41

subcategories. This updated collection includes only active databases at the beginning of

2014, see Figure 1.

Figure 1: Biological database growth during the last decade

These set of categories and subcategories are not the only way to classify the biological

databases. Some authors grouped them in three general groups for better understanding [4].

The first group includes the primary databases. These databases contain information of the

sequence or structure alone. It includes nucleotide, RNA, protein sequences and structures

databases. A second group includes databases which are generated by a computational

processing of the primary databases and they are named secondary databases. This group

includes databases of genes, genomes, protein domains and families, etc. Finally, the last

group, named composite databases or metabases [64], includes databases generated from

DOI:10.15774/PPKE.ITK.2014.011

13

the integration of the primary and secondary databases. This group has been growing

according with the level of acceptance of the Systems Biology and its use to solve problems

in research projects. Also, it is closely related to one of the most important problems faced

today which is the integration of biological data.

We accept and respect these classifications; however, we will present and discuss the

biological databases in more detail through the organization of the OMICS disciplines. This

structure follows the Systems Biology point of view and offers a better overview of all its

elements and their integration. Despite of that, the databases will be located in one of these

three groups once they are presented and analyzed. Furthermore, there are 1552 active

databases, so only the most important and useful databases will be presented and discussed

here.

1.2.1 Genomics

This OMICS discipline is defined as the study of the whole genome sequence and the

information contained therein, is clearly the most mature of all OMICS [5]. Since 1995,

when the first bacterial genome was sequenced [65], a huge explosion on genomic data has

occurred. More than thousand organisms have been sequenced producing more than 169

million of sequences available according to the NCBI statistics [66].

In the last years, this discipline has received a fresh support with the arrival of new

technologies for sequencing at low costs. These high-throughput sequencing (or next-

generation sequencing) technologies are able to produce thousands or millions of sequences

concurrently [67].

Additionally, the genomics databases represent the most widely used databases and they are

the best established. With terabytes of data, these databases cover the three main groups

aforementioned.

The primary databases related to Genomics are: GenBank [68], DDBJ [69] and ENA [70].

These databases provide public repositories for the nucleotide sequences data. They daily

DOI:10.15774/PPKE.ITK.2014.011

14

exchange data between them to ensure worldwide coverage. These databases contain

sequences for almost 260 000 formally described species [68]. They offer to the user web

portals and desktop tools to submit and update entries creating a direct channel between the

database administrators and the data suppliers.

The secondary databases are mainly represented by Entrez Gene [71], Entrez Genome [72],

KEGG Genes and KEGG Genome [73], GOLD [74] and Ensembl [75].

The Entrez Gene database is a gene-specific database which establishes a gene-to-sequence

relationship used by other NCBI resources. It provides tracked, unique identifiers for genes

and to report information associated with those identifiers for unrestricted public use [71].

The Entrez Genome database provides access to more than six thousand complete genomes.

The database offers a graphical overview of an entire genome to the level of a single gene.

At the level of a genome or a chromosome, a Coding Regions display gives the locations

coding regions, and the lengths, names and GenBank identification numbers of the protein

products [72].

The KEGG is an integrated database of 15 main databases. KEGG Genes and KEGG

Genome are the KEGG resources related to the Genomics discipline. KEGG Genes is a

collection of gene catalogs for all complete genomes generated from publicly available

resources. The KEGG Genome is a collection of organisms with known complete genome

sequences. Similar to NCBI databases, the KEGG database offers multiple tools for

submitting the data to their resources. It also provides an avowed group of biocurators

involved in the analysis, interpretation and integration of the biological information into the

data repositories.

The GOLD database provides an online centralized portal for genomic and metagenomic

projects. It includes the implementation of GOLD-specific controlled vocabularies for

representation of the associated data, in coordination with the Genomics Standards

Consortium (GSC) [74, 76].

DOI:10.15774/PPKE.ITK.2014.011

15

Finally, the Ensembl project creates and distributes genome annotations and provides

integrated views of other valuable genomic data for supported genomes. Ensembl provides

unique tools, datasets and user support compared to similar projects such as the UCSC

Genome Browser. It offers an open software infrastructure with diverse analysis pipelines

supporting a variety of genome analysis methods [75].

1.2.2 Transcriptomics

Transcriptomics is defined as the study of Transcriptome and its interactions.

Transcriptome is set of all RNA molecules including the messenger RNA (mRNA),

ribosomal RNA (rRNA) and transfer RNA (tRNA). All this important molecules perform

multiple vital roles in coding, decoding, regulation, and expression of genes.

There are several databases related with this OMICS discipline. Both the primary and the

secondary databases are included in this particular discipline.

The most important primary databases in this discipline are Ribosomal Database Project

(RDP) [77] and miRBase database [78]. These databases provide a computational

framework for management of Transcriptomics primary data.

The RDP database has expanded its resources to handle high-throughput data. Also, it

provides a set of Open Source tools for custom analysis. Whereas, the miRBase has

focused on micro RNA, which play an important role in cellular physiology, development

and disease using a negatively regulating gene expression approach [79].

The secondary databases are led by the HMDD [80], DIANA-LncBase [81] and NCIR [82].

The HMDD database is a collection of experimentally supported human microRNA

(miRNA) and disease associations. It provides a web interface for users to browse, search

and download data sets. Also, user friendly tools are available for submission.

The DIANA-LncBase database provides experimentally verified and computationally

predicted microRNA targets on long non-coding RNAs. The miRNA-lncRNA interactions

supported by experimental data for both human and mouse species are also available.

DOI:10.15774/PPKE.ITK.2014.011

16

The NCIR database provides a rapid access to all RNA structures with emphasis in those

with base-base interactions reported. Moreover, the database offers a collection of

important properties associated to RNA molecules and to their interactions [82].

1.2.3 Metagenomics and Metatranscriptomics

Metagenomics and Metatranscriptomics describe the functional and sequence-based

analysis of the collective genomes contained in a sample [83], see Figure 2. They provide a

unique opportunity to explore earth‘s limitless environments harboring scores of yet

unknown and mostly unculturable microbes and other organisms [84]. Whereas WGS

targets one genome, metagenomics usually targets several. They refer to culture-

independent studies of the collective set of genomes of mixed microbial communities and

apply to explorations of all microbial genomes in consortia that reside in environmental

niches, in plants, or in animal hosts [85].

Metagenomics is a powerful approach for exploring the ecology of complex microbial

communities. Its power will be realized when it is integrated with classical ecological

approaches and efforts to culture previously unculturable microorganisms, which will likely

be facilitated by clues about the physiology of the uncultured microorganisms derived from

metagenomic analysis. Microscopy and stable isotope analysis are two approaches that will

be particularly informative when linked to metagenomics [86].

Metagenomics and associated meta-strategies have arrived at the forefront of biology

primarily because of 2 major developments, the deployment of next-generation sequencing

technologies and the emerging appreciation for the importance of complex microbial

communities in mammalian biology and in human health and disease.

However, each stage of the analysis suffers heavily due to inherent problems of the

metagenomic data generated, including incomplete coverage, massive volumes of raw

sequence data produced by the next-generation sequencers, generally short read-lengths,

species abundance and diversity and so on [87, 88].

DOI:10.15774/PPKE.ITK.2014.011

17

The metagenomics assembly problem is confounded by genomic diversity and variable

abundance within populations. Assembly reconstructs the most abundant sequences [89].

Simulations indicate high rates of chimera, especially in short contigs assembled from

complex mixtures [90]. Studies that rely on characterization of individual reads prefer long

reads [91]. The role for de novo genomic assembly from NGS metagenomics data should

grow as NGS read lengths and NGS paired-end options increase.

Figure 2: Flow chart for the analysis of a metagenome from sequencing to functional annotation. Only the basic

flow of data is shown up to the gene prediction step. For the context-based annotation approach, only the gene

neighborhood method has been implemented thus far on metagenomic data sets; although in principal, other

approaches which have been used for whole genome analysis can also be implemented and tested [84].

DOI:10.15774/PPKE.ITK.2014.011

18

1.2.3.1 Taxonomy identification in Metagenomics

One direct application of metagenomics using NGS technologies is the taxonomy

identification in unknown samples [92]. This is crucial in various fields, such as detection

of human or animal pathogens [93], detection of bacterial contamination in food samples

[94] etc. Additionally, the majority of these organisms in environmental samples belong to

hitherto unknown taxonomic groups, the challenges is not only just to catalog the known

organisms, but also to identify and characterize new organisms belonging to known or

unknown taxonomic groups. These organisms could belong to an entirely new species or

genus or family or order or class or even a new phylum [95].

This process is known as ―Taxonomic binning‖ and corresponds to the process of assigning

a taxonomic identifier to sequence fragments, based on information such as sequence

similarity, sequence composition or read coverage [96].

Next generation sequencing is increasingly becoming the method of choice in many areas

because of the richness of data it can provide. Moreover, metagenomics produces massive

volumes of raw sequence data were NGS technologies are used, so, the processing of NGS

data is problematic in many respects. Namely, current sequence alignment problems were

developed with genome sequencing in mind; they are optimized for handling a single

reference genome (the human genome) on which they work very efficiently.

Current computational approaches for taxonomic binning fall into two broad categories.

The first group, marker-based methods seek to bypass the bottleneck via search space

reduction, using dedicated, small datasets. A typical example is 16S RNA analysis wherein,

a dataset of short sequence items is searched with sensitive alignment techniques, such as

BLAST [12]. While this is the traditional standard for taxonomic identification, it has well

known limitations, including the need for PCR amplification that introduces extra overhead

as well as experimental bias. Alternatively, word-based techniques combined with artificial

intelligence can be used to construct a database of clade-specific recognizers that make it

possible to use rapid string matching techniques for species identification [97].

DOI:10.15774/PPKE.ITK.2014.011

19

The MetaPhlAn [98] program uses a small clade-specific sequence marker database using

the genome sequences of the known taxa that can be searched with general purpose

aligners. This search is extremely fast and accurate for determining taxa and their

approximate proportions within large microbial communities. A potential common

drawback of marker-based approaches is the frequent lack of lower (e.g. strain-level) taxon

identification, as the markers are often identical to many strains. This may cause problems

in identifying pathogenic strains of common commonly occurring bacteria such as E. coli.

A recently developed program uses a radically different approach, that of compressing

sensing [99]. This methodology goes back to a ―mixing problem‖ used in various fields of

signal processing and analytical chemistry. Briefly, if pure signals (pure chemical

materials) can be described in terms of a vector, than the mixed signal can be described as a

linear combination of these vectors, where the coefficients of each vector are proportional

to the % of each signal/chemical material in the mixture. For n vectors of m components,

we have (n-1) percentage values (coefficients). This problem defines a set of n linear

equations, each of them containing m members (vector components).

In the technical life, there are many, sometimes over a hundred years old methods for such

problems, least squares fitting is perhaps the best known. The problem requires that the

number of measured vector components should be greater than the number of coefficients,.

Compressed sensing [100] simply relies to the relatively recent discovery that such

equation systems can be solved for problems where the number of number of measured

components are low, but the number of equations is also below a certain limit. Metagenome

identification is such a problem: From all the possible species, only a few or a few hundred

are present.

As vector description, WGSQUIKR uses 7-mer word composition vectors (16 000

components), calculated for entire genomes. The reads of a metagenomics experiments are

directly translated into a 7 mer vector, which can be considered as a mixture of pure

genomic vectors and the system of equations solved via the methods of compressed

sensing.

DOI:10.15774/PPKE.ITK.2014.011

20

In the second group of metagenome sequencing approaches, whole genome shotgun

sequencing reads are directly aligned against a comprehensive sequence database. In this

group of approaches database search is a critical step since aligning a large set of reads

against a comprehensive database using high quality aligners such as BLAST is either too

time consuming, or requires computational resources that that are not readily available for

all research groups. A good alternative to BLAST style alignment are the dedicated aligners

developed for next generation sequencing such as bowtie2 [101], BWA [102], mrFAST

[103] (for a review sew see [7]). These aligners are extremely fast but often require an

excessive amount of memory for storing the indexed database, especially when

comprehensive sequence databases are used.

A crucial step in all approaches is taxon assignment [96] which is often carried out via

various flavors of lowest common ancestor search within a taxonomic hierarchy. Briefly,

alignment programs assign reads either to one taxon (say, an E. coli strain), or to several

taxa (say 100% identity with an E. coli strain and an E. fergusoni strain), and in the latter

case the lowest common taxonomic ancestor (the genus Escherichia) is reported. This

principle is used in such popular programs as MEGAN [97, 104], Mothur [105] and SOrt-

ITEMS [106].

The variety of computational approaches indicates that there is a need for further

computational improvements. The need for dedicated tools is a crucial problem, since most

of the current software tools are developed for general research purposes. In research

settings, the qualitative and quantitative answers are not always clearly separated. For

instance, the presence of E. coli reads in an output may be a safe indication for E. coli being

present, but the number of the identified reads is not necessarily a quantitative measure of

the abundance of the species. Currently, MetaPhlAn is considered a reliable quantitative

indicator for species abundance in metagenome analysis [98]. Diagnostic settings pose a

separate problem: here one has to precisely detect whether or not a pathogen is present

above a certain threshold level, but the knowledge of the exact quantity is not necessarily

important.

DOI:10.15774/PPKE.ITK.2014.011

21

1.2.4 Proteomics

Proteomics is the discipline to study the large-scale set of proteins, particularly their

structures and functions. It is based on the study of the Proteome which describe the

cellular stage or the external conditions of the cell. The Proteome analysis is an essential

tool in the understanding of regulated biological systems [107]. It can be used to compare

cellular stages in order to determine the molecular mechanism that are involves in a specific

cellular process. Additionally, there is a great interest in the Proteomics due to the fact that

the majority of the pharmacological targets are proteins [108].

In current science, proteomics is almost exclusively used for a well defined field where

mass spectrometry is used for the analysis of complex protein or peptide mixtures. Namely,

mass spectrometry coupled with high performance liquid chromatography has become the

de facto experimental standard for the proteomic analysis of complex biological materials

such as tissue samples, biofluids, immunoprecipitates etc [109]. Each sample produces

many thousand spectra, so the interpretation of LC-MS/MS relies entirely on computational

tools [110]. The field of mass spectrometry is very complex, so, an overview of the topics

closely related to bioinformatics analysis used in routine analysis of biological samples will

be outlined.

Proteomics databases are widely spread on internet and include the most heterogeneous

biological data. Moreover, they have more tools associated covering a huge range of

applications than any other biological database.

The most important databases for this discipline are UniProt [111], RefSeq [112], RCSB

PDB [113] and the protein DB from the Ensembl project, already described [75]. The first

two databases are primary databases and include the protein sequences and its primary

descriptions. The last one is a metabase that integrates several kinds of biological data and

computational tools.

The UniProt database provides freely accessible resource of protein sequences and

functional annotations. This database has two sections: a reviewed section containing

manually annotated records with information extracted from literature and curator-

DOI:10.15774/PPKE.ITK.2014.011

22

evaluated computational analysis (UniProtKB/Swiss-Prot), and an unreviewed section with

automatically annotated records (UniProtKB/TrEMBL) [68]. The proportion of reviewed

entries varies between proteomes, and is obviously greater for the proteomes of intensively

curated model organisms.

The RefSeq database integrates an organism‘s genomic, transcript and protein sequence

with descriptive feature annotation and bibliographic information. It is build from sequence

data available in public archival sequence databases of the International Nucleotide

Sequence Database Collaboration. Unique features of the RefSeq collection include its

broad taxonomic scope, reduced redundancy, informative cross-links between nucleic acid

and protein records [112].

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB)

provides a structural view of biology for research and education. The online PDB archive is

a repository for the coordinates and related information for more than 84 000 entries,

including proteins, nucleic acids and large macromolecular complexes that have been

determined using X-ray crystallography, NMR and electron microscopy techniques [113,

114]. This database includes cross-references with UniProt databases for a close

relationship between the protein sequence and the structure.

The next group of databases is secondary databases which provide proteins properties,

domains, families and motifs.

The first group of databases to be mentioned is the protein clusters. These databases

provide data sets of proteins clustered or grouped by sequence similarity or any other

feature. The most representative database of this group is UniRef [115]. It provides

clustered sets of sequences from the UniProt database sequences. Currently covering 44

million source sequences, the UniRef100 combines identical sequences and subfragments

from any source organism into a single UniRef entry. UniRef90 and UniRef50 are built by

clustering UniRef100 sequences at the 90 or 50% sequence identity levels.

DOI:10.15774/PPKE.ITK.2014.011

23

Alike, the protein families databases are led by the Pfam database [116]. This database

includes a curated set of protein families, each of which is defined by two alignments and a

profile hidden Markov. It contains 14 831 manually curated entries.

The next group of databases is protein orthologs. Orthology refers to a homologous

relationship resulting from a speciation event, as opposed to paralogy, which is the result of

a gene duplication event [117]. The first database in this group is the COG [118]. This

database includes one-to-many and many-to-many orthologous relationships in form of

clusters. Each COG consists of individual orthologous genes or orthologous groups of

paralogs from three or more phylogenetic lineages. The COG database lacks phylogenetic

resolution and is not regularly updated due to the manual labor required. However, its

groups are still used by other databases to classify proteins. As an extension of COG, the

eggNOG database was created [119]. It can be updated without the requirement for manual

curation, covers more genes and genomes than COG, contains a hierarchy of orthologous

groups to balance phylogenetic coverage and resolution and provides automatic function

annotation of similar quality to that obtained through manual inspection [120].

1.2.5 Metabolomics/metabonomics

These two OMICS disciplines are one of the essential parts of the Systems Biology

approach. They are used for the study of metabolism which makes life possible and is one

of the most complex processes in nature [121].

The discipline of metabolomics seeks to identify the complete set of metabolites, or the

Metabolome, of the cell. The related metabonomics field specifically studies the dynamic

metabolic response of living systems to environmental stimuli or genetic perturbation

[122]. The Metabolome represents the output that results from the cellular integration of the

Transcriptome, Proteome and Interactome [5]. The Interactome is the whole set of

molecular interaction. It includes the protein-DNA, protein-protein and protein-metabolites

interactions dictating many cellular processes [123].

DOI:10.15774/PPKE.ITK.2014.011

24

There are several secondary databases and metabase systems related with the two OMICS

disciplines. The first group is related to the Interactome and includes the databases for

molecular interactions. These databases are led by BioGrid [124, 125], IntAct [126, 127],

MINT [128, 129] and DIP [130]. All these databases provide protein-DNA, protein-protein

and protein-metabolites interactions with a high redundancy between them.

The metabase systems are led by KEGG [73], Reactome [131], BioCyc and MetaCyc [132,

133]. All these systems provide collections of pathway databases with multiple tools for

data analysis. The tools are online resources specialized on pathway analysis and

visualization. The main differences between them are related with the level of curated and

predicted data included into the database. The KEGG and Reactome resources offer a more

manually curated set of data than the other systems but, at the same time, the BioCyc and

MetaCyc predicted data are really useful in multiple scenarios.

1.2.6 General databases

The general databases are resources which are not generated by the OMICS disciplines but

they are used by them. The taxonomy and ontology databases are included in this extra

category. These are useful databases that are used to standardize the species names and

terms used by the biological databases.

The main taxonomy database is the NCBI Taxonomy [134]. This database provides

nomenclature and classification for the source organisms in the biological databases. Its

taxonomy identifier (taxid) is widely used by all other databases to identify the source

organism of the biological data.

Finally, the Gene Ontology (GO) database is a community-based bioinformatics resource

that classifies gene product function through the use of structured, controlled vocabularies.

It serves as a comprehensive source of functional information on gene products and

descriptions of functions through the use of domain-specific ontologies. The GO terms

follow a hierarchical organization that is widely used by other biological databases [135].

DOI:10.15774/PPKE.ITK.2014.011

25

1.3 Integration of biological data

The computer assisted data integration is an important field of Bioinformatics. It can be

defined as the problem of combining data residing at different sources, and providing the

user with a unified view of these data [136, 137]. The integration of biological data is

essential to understand and analyze the function of a biological entity; therefore, it is

essential for the Systems Biology. In addition, it can be used as an effective mechanism of

data validation reducing the false positives produced by the experimental technologies

[138, 139] and to know the extended biological context of a biological entity, including its

relationships with other elements [140]. However, this is one of the most open subjects on

Bioinformatics [141] because there is not a definitive solution for the integration of the

biological databases [142].

Data integration is one of the oldest themes in computer science that takes another face

when it is dealing with biological data. It is perhaps one of the most challenging tasks today

due to the nature of the data itself. Even though, it is well known its importance for the

Systems Biology and, in general, for the biological sciences. This integration faces a lot of

complexities that go beyond of a simple integration process. The fast accumulation of data

and its eventual modification are only one side of the problem. The heterogeneity and

redundancy are also an important part of this complexity.

The problem of integrating biological data sources has several aspects none of which have

been solved with the available tools [143-146]. The most important aspects are: (i) a large

collection of interrelated heterogeneous data that are connected through internet, (ii) they

are distributed using various file formats and delivery systems [147, 148], and finally, (iii)

there is not a unique solution for data integration because it depends on the biological or

application context in which it will be used.

There are several active biological databases which share a high level of redundancy or

semantic equivalent data. Each database has its own Web-based interface and its own

schema and access formats. Therefore, the number of available biological databases may

befog the integration process. This number can be reduced if the biological or application

DOI:10.15774/PPKE.ITK.2014.011

26

context is used to address the task [149]. Additionally, the interoperability between them,

which depends on the use of the unique ID keys, can make the integration process difficult

due to inconsistencies between databases version and updates.

Moreover, the biological data are often reformulated in some fashion or worst; they may

have a short lifetime and can be neglected after new experimental evidence. Therefore, the

integration process has to be an ongoing process closely related to the data generation

process.

This volatile property of the data may have terrible consequences if the context is not taken

into account. For example, the simple way to model the data about two proteins which

interact in a metabolic pathway can be just the proteins‘ IDs and the metabolic pathway‘s

name. However, the protein-interacting region can be added to the model if more details are

needed. After new experimental evidences, the protein-interacting region changes, and the

database have to be updated. This update would affect the solution where the protein-

interacting region is included and not the simple solution aforementioned. Both solutions

are practical but their use will depend on the context.

The simple solution would be enough for metabolic network construction and the extended

solution would be useful for virtual experiments on drug design. In the last case, changing

the protein-interacting region could affect seriously the experiment result. This example

shows how the application context can reduce the complexity of the integration process.

Hence, the general task of data source integration can be seen to consist of five conceptual

tasks: (i) transformation from heterogeneous data model to a global model, (ii) semantic

schema matching, (iii) schema integration, (iv) data transformation to the global schema

and (v) comparison and identification of semantic equivalent data [150].

Traditionally, biological database integration efforts are classified into three main classes

[151]: federated, mediated and warehouse-style integration. Federated integration,

(sometimes termed portal, navigational or link integration) provides hyperlinks to join data;

early examples include SRS [152] and Entrez [71]. The Semantic Web and linked data are a

DOI:10.15774/PPKE.ITK.2014.011

27

more recent approaches that use the World Wide Web to create typed links between data

from different resources [153]. With the federated approach, it is relatively easy to provide

up to date information but extra care is required to maintain the links. On the other hand,

mediated integration, also called view integration provides a unified query interface and

collects the results from various data sources. DiscoveryLink [154], BioMediator [155],

BioMoby [156] are good examples of this approach.

Finally, warehouse databases integrate data sources in one place include Biowarehouse

[157], Biozon [158], Atlas [159], EnsMart [160] and IGD [161] [157, 159, 162-164]. This

approach provides fast querying over joined data sets, but also requires continuous

updating.

1.3.1 Heterogeneity and redundancy in biological data

The inherent heterogeneity of the biological data, which arises in many forms, ranging from

the hardware and software platform that a database system is based on, to the data model

and schema used to provide logical structure for the stored data, to the various kinds of data

and information that are being stored. This heterogeneity of the data is a problem which

one faces during the data integration process [136].

The heterogeneity can be found at different levels of the biological data organization.

Data heterogeneity

 Naming differences: Two objects that represent the same concept are named

differently, e.g. ProteinID or UniProtID.

 Semantic differences: Two objects that represent the same concept are described

differently, e.g. proteins in UniProt [111] and proteins in DrugBank [165] represent

the same concept but they have a complete different set of properties and attributes.

 Content differences: Two databases both contain gene data, but one also contains

gene functions using the COG [166] and the other does not.

DOI:10.15774/PPKE.ITK.2014.011

28

 Format differences: Data elements use different formats to represent the same

concept, using numeric id in Entrez Gene [71] for the Gene ID vs. strings on KEGG

Genes [167].

Database heterogeneity

 Schematic dissimilarity: The relationships among the entities are defined

differently.

 Query language dissimilarity. Two databases with similar content do not share a

common query language. Individual sources provide their own user-access

interface, all of which a user must learn in order to retrieve information that is likely

spread across several sources. Additionally, the sources often allow for only certain

types of queries to be asked, thereby protecting and preventing direct access to their

data.

 Format dissimilarity: The databases are distributed using different file format and

release systems.

The heterogeneity has been faced using methods that seek to unify the biological databases

through the imposition of external structures. The

uses of ontologies and vocabulary standardization

schemes have been also used.

The redundancy is another problem to face. For

example, the UniProt, RefSeq and Ensembl

databases are highly redundant among them [1] but,

at the same time, they include sets of unique

proteins, see Figure 3.

This redundancy increases when large-scale

automatic processes are being used for the data

Figure 3: Overlap between protein

databases. Figure from ProgMap [1] server.

DOI:10.15774/PPKE.ITK.2014.011

29

generation and, as a result, the database management becomes more difficult and time-

consuming. Although, there have been several attempts to remove excessive redundancy

inside a database [168], the redundancy between different databases remain uncontrollable.

1.3.2 The format of biological data

The biological data comes in multiple kinds of formats. The majorities of the biological

databases provide flat files in text with their specific formats or non-standardized tabular

text files. Also, the new experimental technologies are providing a huge number of

different files formats [169]. The lack of standardization in the biological data obstructs the

data exchange and process by external researchers. Multiple parsers and compilers have

been written by decades to extract the biological data from the flat files representing a

waste of resources and time.

Inconsistency on key definitions, internal errors, lack of standardization and computer

readable file structures, files with gigabytes of size in text format without any methods to

verify the file integrity are the most common problems faced during the work with the

biological data.

In the last years, multiple initiatives have introduced community standards to the biological

data files. They are trying to provide standard computer libraries, in several computer

languages, for data manipulation. The eXtensible Markup Language (XML) [170] file

format have been adopted by many databases [171] due to its benefits on data definition

and integrity, also, because it is widely used by multiple computer systems. This file format

allows the definitions of your own markup language keeping a standard file structure.

Furthermore, multiple international initiatives have been developed to offer standard

definitions for the biological data files. As an example, the Proteomics Standards Initiative

(PSI) [172] have been working to define community standards for data representation in

proteomics to facilitate data comparison, exchange and verification.

DOI:10.15774/PPKE.ITK.2014.011

30

1.4 Scope

Several Bioinformatics problems have been discussed during this introduction. Although,

they may seem independents there is a strong relationship among them. First, all of them

need an organized and structured data supplier system. Also, optimized, fast and reliable

computers programs to process the data are required.

This thesis concentrates on developing three approaches to solve some of the

aforementioned problems. First, a system named Taxoner, designed for prediction of

bacterial taxa and gene function from NGS results is presented. Then, a workflow, based on

the Taxoner programs and the JBioWH framework, is used as a DNA marker databases

generator or just for DNA sequence comparison. Finally, JBioWH, a framework for

biological data integration is presented.

All the software presented in this thesis are open-source and freely available through their

respective web sites.

DOI:10.15774/PPKE.ITK.2014.011

31

2 Materials and Methods

During the course of these projects, many tools, pipelines and computational environments have

been developed using various programming languages and third party libraries.

A workstation computer (two Intel Core CPU Q6850 (3.00 GHz and 4.0 MB of cache) and 8.0

GB of RAM) with GNU/Linux operating system (kernel version 3.11.10-11-desktop),

specifically OpenSuSE distribution version 13.1, was used for developing and tests the

programs.

The Google Cloud Platform [173] was used for computations which require a high performance

computing using virtual machines in-house modified to create a virtual Beowulf like Cluster

[174] inside the cloud platform.

2.1 Database designs

Relational schemas were developed using standard SQL language. The Database Management

System used was MySQL community server [175] version 5.6.

The MySQL Workbench Tool [176] was used for design and visualization of the relational

schemas. All databases developed have an associated MySQL Workbench project freely

available for users.

2.2 Programming languages and libraries

2.2.1 Java

Oracle Java Standard Edition (SE) [177] version 7 was used for the Java programs. Netbeans

IDE [178] was used as integrated development environment for writing the Java codes.

All the source code generated using Java languages are freely available through the projects web

sites using their respective version control systems. The source code building process is executed

by the Maven tool [179]. This is a software project management and comprehension tool. It is

used to manage a projects building, reporting and documentation from a central location.

DOI:10.15774/PPKE.ITK.2014.011

32

Several Java technologies and libraries have been used in the projects. The most important

technologies used are EclipseLink [180] for the Java Persistence Model (JPA), Red Hat JBoss

Middleware [181] for the webservices development, JGraph [182] for graph computing and

visualization, Mojarra JavaServer Faces [183] using the Java Server Faces (JSF) technology and

Primefaces [184] as JSF component for web interfaces.

2.2.2 C

The ANSI C language was used for programs with a high computing demand. The GCC

compiler for GNU/Linux operating systems was used as compiler for the C code. The projects

use the Make program to build the executables and libraries using the well-known Makefile.

The parallelism in the programs was implemented using the POSIX Thread [185] library. This

library allows our programs to take advantage of the multicores and multiprocessors

architectures available today.

Additionally, the MPICH [186] library, an implementation of the Message Passing Interface

(MPI) paradigms [187], was used to extend the parallelism of our programs from the multicores

and multiprocessor architectures to the cluster platforms where the communication between the

nodes is preformed through computer networks.

2.2.2.1 The BioC library and tools

Nowadays, working with ―mountains‖ of data is a common task in Bioinformatics. Frequently,

high level programming languages like Perl, Python or even Java are not fast enough to process

data efficiently. For instance, a simply random access to entries of a fasta of size 50 GB becomes

prohibitively resource consuming, even in high performance computational environments like

the Google Cloud Platform. For facing this problem, there arose a necessity to develop some

utilities on low-level programming language.

As a result, highly optimized and fast programs were developed to for dealing with demanding

tasks in terms of computational power and highly loaded data access. The BioC library is a

freely available C project comprised of eight modules. These modules are structured in the form

DOI:10.15774/PPKE.ITK.2014.011

33

of two major groups; the first group contains the basic data structures and functions to process

error, memory, time and string objects. Full documentation is freely available in

https://code.google.com/p/bioc/wiki/bioc.

The main idea of boosting access time is loading the data into custom data structures and

indexing them using B+ Trees [188].

B+ tree ("bee plus tree") is a data structure used as an index to facilitate fast access to the

elements of a larger body of data, such as the entries in a database. Each target object (entry) is

associated with an index key. The B+ tree is laid out like a family tree, where each node has

some number of keys that is between some predetermined maximum limit and half that limit

(inclusive). Each node also has one more pointer than the number of its keys. (A "pointer" is the

address of a location in memory.) You can picture the node as having alternating pointers and

keys, starting and ending with pointers.

At the bottom level of the B+ tree are the leaves. Each pointer on the leaf except the last

(rightmost) one points to the data object whose key stands immediately to the right of that

pointer. The rightmost pointer points to the next leaf over to the right. Then, each bunch of

leaves has its own parent node. If there are enough of these parents, then they, in turn, are

divided into bunches, each of which shares but one parent — and this one-parent-many-children

family tree goes all the way up to a single ancestor at the top, the root. The internal nodes, which

are the parents, grandparents, etc., of the leaf nodes, also have keys, which are (initially)

duplicates of some of the keys on the leaves. A given internal node's keys are "representative"

copies of a few of the keys to be found on the leaves that are the (ultimate) descendants of that

node. The pointers on the internal nodes point to nodes at the next level down on the tree, which

may be leaves or other internal nodes.

Our B+ Tree implementation exploits two kinds of keys, integer based keys and string based

keys. Both approaches can index any kind of object without data duplication. These kinds of

indexes can be used to create an index of offset positions in a fasta file using the entries‘ GI as

keys, see full description of data structures and functions in

https://code.google.com/p/bioc/wiki/btreeString. Index catalogue is created from a fast sequential

DOI:10.15774/PPKE.ITK.2014.011

34

reading of the file where the sequences are excluded and only the headers are processed. The

entry‘s offset position is used to create the B+ Tree which takes the GI as keys.

The second group has two Bioinformatics modules, the fasta and the taxonomy modules. These

modules were implemented in Object Oriented Design fashion, in order to encapsulate the

functions/methods available for each data structure and hide internal functions. This is a useful

approach that increases the readability and reusability of the code offering a safe environment for

developing, see Table 4. All the data structures developed using this approach have two standard

functions, the first one named free used to release the memory occupied by the object and the

second named toString to print the object.

Table 4: Object oriented design for the C structures.

Data structure definition in the .h file Function access from the object in .c file

struct fasta_s {
 /**
 * Set the fasta header
 *
 * @param self the container object
 * @param string the header
 */
 void (*setHeader)(void *self, char *string);
};
typedef struct fasta_s *fasta_l;

// Header definition
char *header = "the fasta header";

// Creation of the fasta_l object
fasta_l myObj = CreateFasta();

// Setting the fasta header
myObj->setHeader(myObj, header);

The fasta module is designed to process fasta files. It has a fasta_l data structure with methods to

manipulate the sequence and the header. Also, the module has independent functions for

creating, reading and writing B+ Tree indices from fasta files allowing a fast and random access

to the entries. See https://code.google.com/p/bioc/wiki/fasta for full description of the fasta

module.

The second module of this group is named taxonomy and it is designed to load the NCBI

Taxonomy database using B+ Tree index for fast retrieval of the taxonomy entries. Several

Bioinformatics experiments need a taxa organization and/or classification according to their

lineage or rank. This module provides a fast way of using the taxa information in C programs.

See https://code.google.com/p/bioc/wiki/taxonomy for full description of the taxonomy module.

BioC project provides a set of tools for making use of the concepts and paradigms described

above. They are briefly summarized in Table 5.

DOI:10.15774/PPKE.ITK.2014.011

35

Table 5: Tools available in the BioC Project.

Tool Description BioC modules used

BuildBtreeIndexFasta Build a binary index file for a fasta file B+ Tree, Fasta

SplitFastaFile Split a fasta file by reads (overlapped or not) B+ Tree, Fasta

TaxLineageFromGi Print the taxonomy lineage from GenBank Gi B+ Tree, Taxonomy

TaxLineageFromTaxId Print the taxonomy lineage from TaxId B+ Tree, Taxonomy

TaxonerAssamblerMarkerDB
A basic assembler program for the Taxoner output using

overlapped reads

B+ Tree, Fasta,

Taxonomy

2.2.3 Bash shell scripting

Bash shell is a command processor script language widely used by the Linux users to create

small programs that can be used to integrate complex workflows and pipeline processes. This

scripting language was used in our projects to create automatics scripts for retrieval,

manipulations and transformations of data files.

Also, several scripts were developed for the Google Cloud administration and configuration

offering an automatic workflow for running computational experiments on the Cloud.

2.3 Google Code Projects

The Google Code Platform [189] is a free project hosting service that provides a free

collaborative development environment for open source projects. The source codes developed

are included in Projects that are freely available using the Google Code hosting services.

This platform offers to each project a version control system. In our projects we are using the

Apache Subversion System (SVN) [190], to manages files and directories, and the changes made

to them, over time. Also, an easy Wiki pages maker is available for publishing the project

documentation developed by the programmers.

Table 6: List of Google Code Projects developed.

Name URL Language

Taxoner http://code.google.com/p/taxoner/ C

JBioWH http://code.google.com/p/jbiowh/ Java

BioC http://code.google.com/p/bioc/ C

The Table 6 shows the list of projects published on the Google Code Platform and the

programming languages used on them.

DOI:10.15774/PPKE.ITK.2014.011

36

2.4 Cloud Platforms

Google Cloud Platform provides both a fully managed platform and flexible virtual machines,

allowing the users to choose a system that meets the needs of their own projects. This platform is

built on the same infrastructure that allows Google to return billions of search results in

milliseconds.

For our projects, a virtual Beowulf like cluster was implemented on the Google Cloud Platform.

The virtual machines provides by Google were modified to have a server virtual machine (head)

and multiple computing clients (nodes).

The head virtual machine runs a network file system (NFS) server. The NFS server is a

distributed file system protocol that allows a client computer to access files over a network much

like local storage is accessed. Also, a network information system (NIS) is installed on the head.

The NIS is a client-server directory service protocol for distributing system configuration data

such as user names and host names, between computers on a computer network.

Additionally, the head includes the Torque Resource Manager that is a distributed resource

manager providing control over batch jobs and distributed computer nodes. This server allows

the creation of queues to organize and manage the jobs executed by the users.

Virtual cluster also includes a directory named progs distributed by the NFS server with the most

important programs for Bioinformatics installed in it. This directory allows the usage of the

virtual cluster for any Bioinformatics projects.

Two scripts where developed to start the head virtual machine remotely from our workstations

and to create, start and delete the client nodes. These scripts, developed in bash, use the Google

Cloud gcutil utility to interact with the cloud platform. Using this platform we can easily expand

or reduce our virtual cluster depending on our needs. The nodes are created from a snapshot

image and they are inserted in the cluster environment automatically.

DOI:10.15774/PPKE.ITK.2014.011

37

3 Results and Summary

3.1 Biological Database integration

3.1.1 General approach

Biological database integration is one of the most challenging topics on Bioinformatics. As we

mentioned above, the integration of biological data has to be an ongoing project due to the nature

of the data itself. The data heterogeneity and the redundancy are important problems to be solved

during an integration process. Also, the biological context has to be taken into account in order to

reduce the integration domain. Multiple the systems have been developed to integrate biological

data using different kinds of approaches. However, as we specified in the Introduction, a number

of specific challenges still remain.

We present here a data integration framework developed using Java environment, usage of which

is not restricted to it. Java BioWarehouse (JBioWH) is an open-source framework developed in

Java which offers to the Bioinformatics community a set of computational tools designed for a

wide range of users. Users with advanced programming skills in Java, SQL and Webservices can

find JBioWH a useful framework to work with biological data. At the same time, users without

programming skills can use the JBioWH multiplatform desktop client to perform complex

queries to the integrated data included in the system.

The framework is freely available in https://code.google.com/p/jbiowh/. This site also offers full

documentation and multiple examples, figures and tables. Also, a Google Group called jbiowh-

discuss (https://groups.google.com/forum/#!forum/jbiowh-discuss) is active for posting

questions and ideas; it keeps an open channel between the system‘s users and our developer

group. Additionally, a MySQL server, designed for demonstration purposes, is available at:

hydra.icgeb.trieste.it:3307 and a Webservices site available at: http://net.icgeb.org/jbiowh-

webservices/.

Our goal was to design a flexible system which would be used in multiple scenarios. Its modular

design allows the creation of context dependent integrated databases where the database size and

DOI:10.15774/PPKE.ITK.2014.011

38

the databases to integrate can be fully manipulated by the user. This made the JBioWH

completely different from the available solutions due to its versatility. It can be used in personal

computers with a low level of resources, in big servers for high demanding tasks or simply in the

Cloud through the Google Cloud Platform [191].

Five interrelated components sketch out the JBioWH architecture: (i) the data sources, (ii) the

relational schema and database, (iii) Java API, (iv) Desktop client and (v) Webservices. This

architecture and the relationship between the components can be seen on Figure 4, further

description of these components will be outline in the next subchapters.

3.1.2 Data sources

JBioWH contains data retrieved from 24 databases, see Table 7. The framework provides a Java

command line tool for fetching the data from their own providers and insertion of data into the

JBioWH relational database (top of the Figure 4). This process includes the data transformation

from their own file formats to internals TSV files which are inserted into MySQL database.

This command line tool is able to work with the data locally or remote. Also, compressed files

can be handled in order to reduce network transfer and data storage.

The loading times depend on the size of the data to be inserted. Small databases like NCBI

Taxonomy [134], Gene Ontology [135], DrugBank [165] and OMIM [192] can be loaded in a

few minutes. However, big databases like Gene [193], UniRef [115] and KEGG [73] may take

multiple hours. The worst case is the UniProt TREMBL which can take until 3 days on a

personal computer. The Table 8 shows the database original file size, the final MySQL file size,

the loading times and the number of elements inserted.

Figure 5 shows loading times against the total number of elements inserted into the MySQL

database. For small and medium databases the loading time scales linearly. However, three

databases do not obey this tendency: Draft Genomes (48 084 s), KEGG (50 416 s) and UniProt

TREMBL (253 304 s). Draft Genomes and the KEGG databases include multiple files, so the

process of opening and closing of these files create a long delay which is not the case for other

databases. The case of the UniProt TREMBL is the other exception. This database includes only

DOI:10.15774/PPKE.ITK.2014.011

39

one file of 21 GB but it contains 1x10
9
 elements to insert. Leaving out the outliers and fitting a

linear equation to the rest we can find a correlation coefficient of 0.98. The Figure 6 shows the

graph for this linear correlation and the linear equation itself.

 Figure 4: The JBioWH architecture and the relationship between the components

DOI:10.15774/PPKE.ITK.2014.011

40

Table 7: Data sources included in JBioWH

Data Type Data Source URL
Data

Format

Taxonomy NCBI Taxonomy ftp://ftp.ncbi.nih.gov/pub/taxonomy/taxdump.tar.gz Delim. Text

Ontology GO ftp://ftp.geneontology.org/pub/go/godatabase/archive/latest-full/ OBO XML

Gene Gene ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/ Delim. Text

Gene KEGG Gene http://www.bioinformatics.jp/en/keggftp.html Text

Gene GenBank ftp://ftp.ncbi.nih.gov/genbank Text

Gene RefSeq ftp://ftp.ncbi.nih.gov/refseq/release/ Text

Chromosome Genomes ftp://ftp.ncbi.nih.gov/genomes/ Delim. Text

Protein UniProt ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/ XML

Enzyme KEGG Enzyme http://www.bioinformatics.jp/en/keggftp.html Text

PPI IntAct ftp://ftp.ebi.ac.uk/pub/databases/intact/current/psi25/pmidMIF25.zip PSI 25 XML

PPI MINT ftp://mint.bio.uniroma2.it/pub/release/psi/current/psi25/pmids/ PSI 25 XML

PPI DIP http://dip.doe-mbi.ucla.edu/dip/ PSI 25 XML

PPI BioGrid http://thebiogrid.org/ PSI 25 XML

Prot. Cluster UniRef ftp://ftp.uniprot.org/pub/databases/uniprot/uniref/uniref100/ XML

Drug DrugBank http://www.drugbank.ca/system/downloads/current/drugbank.xml.zip XML

Drug KEGG Comp. http://www.bioinformatics.jp/en/keggftp.html Text

Pathway KEGG Pathway http://www.bioinformatics.jp/en/keggftp.html Text

Reaction KEGG Reaction http://www.bioinformatics.jp/en/keggftp.html Text

Disease OMIM http://www.omim.org/downloads Text

Prot. Domain PFAM ftp://ftp.sanger.ac.uk/pub/databases/Pfam/releases/Pfam26.0/database_files/ SQL

Prot. Groups COG ftp://ftp.ncbi.nih.gov/pub/COG/ Text

Prot. Groups eggNOG http://eggnog.embl.de/version_4.0.beta/downloads.v4.html Text

Prot. Groups NCBI Prot Cluster ftp://ftp.ncbi.nih.gov/genomes/CLUSTERS/ Text

Prot. Groups PirSF ftp://ftp.pir.georgetown.edu/databases/pirsf/ Text

The databases were accessed in May 2014.

Figure 5: Loading times against the number of elements inserted. The outliners are the Draft Genomes (48 084 s), KEGG

(50 416) and UniProt TREMBL (253 304 s).

DOI:10.15774/PPKE.ITK.2014.011

41

Table 8: Loading times, final data sizes and number of elements inserted. This example was executed in a computer with

two Intel Core CPU Q6850 (3.00 GHz and 4.0 MB of cache) and 8.0 GB of RAM running OpenSuSE 13.1 (Linux version

3.11.10-11-desktop.

DB Download Date File size (MB) MySQL size (MB) Load time (s) No. main elements No. elements Total elements

GO Ontology 3/22/2013 4 70 16 39 118 473 599 512 717

DrugBank 3/23/2013 90 143 24 6 711 397 847 404 558

DIP 3/22/2013 164 280 90 1 1 833 668 1 833 669

NCBI Taxonomy 3/22/2013 159 547 143 1 002 774 2 778 537 3 781 311

MINT 3/22/2013 990 15 466 308 1 400 4 394 018 4 395 418

OMIM 3/23/2013 163 332 381 22 811 879 509 902 320

IntAct 3/22/2013 2 757 2 579 494 6 234 14 851 480 14 857 714

BioGrid 3/22/2013 2 598 2 053 652 1 15 583 825 15 583 826

Complete Genomes 3/25/2013 577 2 055 1 132 7 301 020 14 603 906 21 904 926

UniProt (SwissProt) 3/22/2013 737 4 228 2 185 539 616 51 168 667 51 708 283

Gene 3/22/2013 5 619 14 801 2 484 11 402 702 97 450 383 108 853 085

PFAM 3/28/2013 31 000 20 501 12 668 14 831 259 648 666 259 663 497

UniRef 90 3/25/2013 4 379 25 787 13 606 13 613 286 332 379 407 345 992 693

Draft Genomes 3/11/2013 3 130 6 143 48 084 17 166 166 17 168 429 34 334 595

KEGG 6/11/2011 40 668 14 784 50 416 126 478 130 469 935 130 596 413

UniProt (TREMBL) 3/5/2013 21 953 131 352 253 304 29 266 939 1 056 770 378 1 086 037 317

Total (GB and Hours) 112.29 235.47 107.22 80 510 088 2 000 852 254 2 081 362 342

Figure 6: Linear correlation between the loading times and the number of elements inserted. The outliers are left out

DOI:10.15774/PPKE.ITK.2014.011

42

3.1.3 Relational schema

For the integrated database, we designed a relational database scheme in SQL. The relational

scheme contains 414 tables including auxiliary tables for cross-references and for speeding up

the ‗join‘ operations. Figure 7 shows the main tables and their relationships.

Additionally, the JBioWH relational schema is designed to store all the information that comes

from biological databases. This means that JBioWH can be treated as a relational representation

of each of biological databases, without any missing features. This is possible because the

original sequential data representation in terms of large flat files was transformed into

representation in terms of object relations, which we call as biological objects.

While the storage of all the information that comes from the original sources might seem as a

waste of space and resources, it gives JBioWH framework extra features. First, it can be used as

a data supplier to other applications, allowing a fast data retrieval process to integrated data.

Second, context dedicated views of the relational schema can be generated without adding new

data to the relational database.

The schema can be described through databases groups. These groups organize the JBioWH’s

database modules taking into account the level of cross-references of the biological databases.

There are three groups: (i) the basement group which includes the aforementioned general

databases (NCBI Taxonomy and Gene Ontology) that does not included references from any

other database, (ii) the primary group which includes primary databases like GenBank and

UniProt, and (iii) the secondary group which include secondary databases and metabases.

On the other hand, two informative tables are included into the relational schema which does not

hold biological data. The first one is the DataSet table which is used to store the biological data

sources information. This table stores information such as the data source name, version, release

date, the user who performed the insertion etc. Also, a status field is included which is used to

store to current status of the database, e. g. status: created that is used when the database is

created for the first time and is under the insertion process, updating that is used when the

database is being updated and inserted that is used when the created or updating processes

ended successfully. The identifier of this table is used as a foreign key in the main tables of the

different modules to keep the track of the biological objects.

DOI:10.15774/PPKE.ITK.2014.011

43

The second informative table is named WIDTable. This table is used to keep the last global

identifier used by the system. The WID identifier, that is explained bellow, is a global unique

number that is used as a surrogate primary key to identify every database entry.

3.1.3.1 Naming convention and global surrogate primary key

Additionally, the naming convention is used to organize the table names offering a direct way to

identify which module the table belongs. Each database module uses the name of its main table

as a prefix for the other module‘s tables. For instance, in the Taxonomy module the main table is

called Taxonomy and all other tables of this module are named using the prefix Taxonomy (the

table which stores the synonyms is named: TaxonomySynonym).

A surrogate primary key named WID is generated and is used to identify the biological objects

inserted into the database. This is a global unique number that can be used to identify all the

entries inserted into the database. Also, it is used to create cross-references between the entries.

The next available number (which is the last number plus one) is stored in the WIDTable

aforementioned.

Many biological databases use strings as unique identifiers instead of integers. As it is well

known, the usage of strings as identifiers in the SQL databases increase the index size and

introduce some delay during the ‗join‘ operations. The JBioWH‘s relational schema uses name

conventions which include the creation of WID, which is not a descriptive value, in each table as

internal identifier and surrogate primary key in order to reach the best possible performance.

This internal identifier will be hidden from users keeping the original identifier (the one that

come with the biological database) as the main reference for users. The WID field will be only

available if the JBioWH is used from a computer client application or directly in the SQL

environment.

DOI:10.15774/PPKE.ITK.2014.011

44

Figure 7: JBioWH relational schema with the main tables and their relationship.

DOI:10.15774/PPKE.ITK.2014.011

45

The fields which are foreign keys follow a similar convention; they use the foreign table‘s

name as a prefix followed by the underscore ―_‖ character and the foreign field‘s name, e.

g. the Taxonomy table has a field named WID as surrogate primary key and the

TaxonomySynonym table has a field named Taxonomy_WID as a foreign key between

the Taxonomy and the TaxonomySynonym tables.

The many-to-many relationship tables are also included in the naming conventions. The

tables use as prefix the name of the table which owns the relationship and at the same time

defines to which module the table belongs to. For instance, the table named

Protein_has_Ontology represents the relationship between the proteins and the ontology

terms, i. e. one protein can have multiple ontology terms and one ontology term can be used

by multiple proteins. This table belongs to the Protein module and will remain empty if the

proteins are not inserted into the database.

3.1.3.2 Basement group

The basement group is formed by the NCBI Taxonomy and Gene Ontology databases.

These databases do not include cross-references to any other biological database but they

are cited by all of them.

The Taxonomy module includes the NCBI Taxonomy database. This database is used to

organize the biological data through a curated taxonomy classification and nomenclature of

all biological organisms. It is cited by almost all of the biological databases through the

TaxId identifier. This is a unique numerical field used to identify all biological organisms.

The module includes eight tables plus six temporal tables that are used during the insertion

process.

The Ontology module includes the Gene Ontology database. The module includes eighteen

tables in total with 5 temporal tables. This database offers the possibility to use well

defined terms to classify the biological objects. The GO database use a string identifier for

its terms, therefore the WID is inserted in the main module (Ontology table) as surrogate

primary key. This key is used in the cross-references as the naming convention specify.

DOI:10.15774/PPKE.ITK.2014.011

46

3.1.3.3 Primary group

The primary group includes modules for primary databases. These modules are Protein,

GenBank, and the Gene.

The Protein module follows the UniProt XML file format structure and contains all

database data including the proteins sequences. It includes sixty tables in total; eleven are

used for many-to-many relations and fourteen are temporary tables. This is a highly cross-

reference module but also it contains multiple cross-references to other databases. One

important characteristic of the UniProt database is that it includes a wide and well curated

list of cross-references. This module splits the Unipart‘s external database references table

(ProteinDBReference) into multiple tables creating small tables for each external database

that is cited by UniProt, e. g. the modules includes tables like ProteinGO, ProteinGene,

ProteinDrugBank, etc. Those tables are used to store the original cross-reference data that

comes in UniProt. Additionally, the relational schema includes relationship tables like

Protein_has_Ontology, Protein_has_GeneInfo and Protein_has_DrugBank which are

used to store the cross-reference between the databases using the JBioWH‘s surrogate

global primary key and are created from the before mentioned tables.

The GenBank module is based on the GBK file format from the NCBI. This module

includes nine tables in total; one of them is used to store the relation between the GenBank

CDS and the Gene information. The relational schema stores the nucleotide sequences

offering a fast delivery system for multiple applications. This module can be used not only

for the GenBank database but also it can be used to manage any database using the GBK

file format. For instance, this module can be used for the RefSeq database offering a

relational schema for a more concise database than the GenBank, although their usage will

depend on the biological context.

The last database included in this group is not a primary database but it contains the gene

data. This database is the NCBI Gene database that is cited by multiple databases. It acts as

the bridge between GenBank and UniProt data. This module includes thirty nine tables in

total with five many-to-many relation tables and eighteen temporary tables.

DOI:10.15774/PPKE.ITK.2014.011

47

The relationships between these modules are through the Gene module. The GenBank CDS

are linked to the genes and the genes are linked to the proteins. Additionally, they are

linked to the basement group through bilateral relations with the tables on that group. The

Figure 8 shows the relations between these modules.

As can be seen in the figure, the modules are designed in a circular reference way. This

design is useful because it allows join queries that can start in any table of the circle but it

may introduce extra complications from the programming point of view. Extra care has to

be taken on the programming side to handle this circular reference and the data integrity

during insertion or update processes.

Figure 8: The relations between the Basement and first group of modules

DOI:10.15774/PPKE.ITK.2014.011

48

3.1.3.4 Secondary group

The secondary group is formed by the rest of modules included into the JBioWH relational

schema. This group includes the Chromosome, Protein-Protein interaction, Protein clusters,

Drugs, Pathway, Disease, Protein families and Protein Groups modules.

The chromosome module is based on the Genomes database of the NCBI and it is closely

related to the Gene database. The modules is based on the data of the PTT and RNT file

formats offering the possibility to work with genes‘ positions in the chromosomes. The

module includes five tables and it is linked to the Gene, Protein and Taxonomy modules.

The Protein-Protein interaction module is based on the MIF25 file format. The module

includes forty two tables with one temporary table. It is linked to the Protein module. This

module can store the data provided by BioGrid, IntAct, MINT, DIP and any other database

providing MIF25 file format. This module can be used for protein network reconstruction.

Protein cluster module is based on the UniRef database and it is connected to Protein and

Taxonomy modules. It includes eight tables with one temporary table. The UniRef database

includes 3 kinds of protein clusters, 50, 90 and 100 % of identity. The module can handle

all three files but they will be inserted as independent datasets.

The Drugs module is based on the DrugBank database and contains forty seven tables. It is

connected to the Protein and Pathway modules. This module has the particularity of

included proteins which have different biological meanings than the proteins in the UniProt

database. Consequently, there are some redundancy between the Drug and the Protein

modules. The Target object in DrugBank is a protein but with an associated biological

role. Therefore, the biological object is not the protein sequence and its attributes but also,

its biological role. These biological roles are mapped to the Protein module using many-to-

many relationship tables like: Protein_has_Drugbank for the proteins who act as targets,

Protein_has_DrugBankAsCarriers for the proteins which act as carriers, the

Protein_has_DrugBankAsEnzyme for proteins which act as enzymes and

Protein_has_DrugBankAsTransporters for proteins which act as transporters. This

DOI:10.15774/PPKE.ITK.2014.011

49

approach allows joining extra information that comes with DrugBank to all the useful

information included in UniProt.

The Pathway module is based on the KEGG database and includes 84 tables. This is one of

the most cross-reference modules in the relational schema; it is linked to Gene, Protein,

DrugBank and Taxonomy. It has a hierarchical design that starts with KEGGCompounds,

KEGGGenes, KEGGEnzymes and KEGGReactions blocks. Then, all of them are linked

through the KEGGPathway block. The KEGGPathway is graph based structure where

the nodes are the KEGGEnzymes and the edges are the KEGGReactions. This module

can be used for metabolic pathway reconstruction.

Disease module is based on the OMIM database. The module includes 22 tables with 3

temporary tables. This module is linked to the Gene module.

The next module is the Protein domain. This module is based on PFAM database and

includes 39 tables with 3 temporal tables. The tables of this module are based on the SQL

files provided by PFAM.

Finally, the last module is the Protein Groups module. It contains four sub-modules based

on the following databases: PirSF, COG/eggNOG, NCBI Protein Cluster and the

OrthoXML [194] file format.

All these sub-modules provide orthologous groups for genes and proteins. We designed the

Protein Groups module as the addition of the tables included by the four sub-modules

mentioned. The approaches followed by these databases to generate the orthologous groups

are completely different and they can be used according to the biological context of the

experiments.

The PirSF based sub-module includes 3 tables. The module is linked to the Protein module

and it is based on the ―pirsfinfo.dat‖ file. The Orthologs group‘s members provided by

PirSF use the UniProt Accession Number for the protein identification. The cross-reference

in JBioWH is recreated using the internal WID in order to avoid the usage of strings for

cross-references.

DOI:10.15774/PPKE.ITK.2014.011

50

The COG/eggNOG sub-module includes 10 tables with 2 temporary tables. This module is

linked to the modules: Taxonomy, Gene and Protein. Although the COG database is no

longer updated, it is included into the JBioWH because several databases and

bioinformatics tools still use the COG classification of functional groups. Also, the module

was designed to store the eggNOG database using the same JBioWH relational schema as

the COG database. As we aforementioned, the eggNOG database is a continuity of the

COG database keeping the same organizational schema of functional categories and groups.

The Protein Cluster module includes 9 tables and it is linked to the Taxonomy, Gene and

Protein.

The OrthoXML file format based sub-module includes 10 tables. This sub-module is not

based in a particular database; it can handle any database which provides the data using the

OrthoXML file format. This file format is designed broadly to allow the storage and

comparison of orthology data from any ortholog database. It establishes a structure for

describing orthology relationships while still allowing flexibility for database-specific

information to be encapsulated in the same format. This file format is used by the OMA

[195, 196] and ProGMap [1] among others.

3.1.3.5 Cross-references

The cross-references in the JBioWH relational schema are one-to-one, one-to-many and

many-to-many relations. All of them are created using the cross-references that come with

the biological databases.

There are two cases of cross-reference between the databases. The first one is when the

cross-reference is in one direction, e. g. one database includes a cross-reference of another

database that doesn‘t have any reference to the first one. In this case the owner database of

the relationship is the one that includes the cross-reference and the relation table will be

included into its JBioWH module. Namely, we use the Gene Ontologies references

included in the UniProt entries. However, the Gene Ontology database does not contain any

DOI:10.15774/PPKE.ITK.2014.011

51

reference; so, the Protein module has a relation table named Protein_has_Ontology that is

the many-to-many relationship between the Proteins and the ontology terms.

The second case of cross-reference is when both databases are cited among them. In this

case the module which will be the relationship owner is selected according to the biological

meaning of the data. As an example we can see the cross-references between UniProt and

Gene databases. The final relationships are generated using the data provided by two

databases. They are converted to the internal JBioWH‘s WID and then, the redundant ones

are eliminated. This procedure allows us to create multiple relationships that are not

available using the databases independently.

3.1.4 Java API

The Java API has been designed for maintaining the relational database and querying the

data. It is implemented using the Oracle Java SE 7 [177] and the classes were designed

according to the standard Java design patterns [197]. The usage of commonly known

design patterns from the field of object oriented software design in software development

leads to standardization of the code, making it easier to understand and use for other

programmers or users.

The API has three principal libraries, jbiowh-core, jbiowh-dbms and jbiowh-persistence

and five Java applications, jbiowh-parser, jbiowh-desktop, jbiowh-webservices, jbiowh-

webservices-client and jbiowh-tools.

This is an ongoing work that is used by several external projects to our lab. Also, the

framework is indexed by multiple search engines like the Ohloh metasite

(http://www.ohloh.net/p/jbiowh/).

The Figure 9 shows the number of lines committed per time. This graph shows that

JBioWH have been growing during the time and is in continues development.

DOI:10.15774/PPKE.ITK.2014.011

52

Figure 9: The number of code lines included into the JBioWH framework. Statistics taken from

http://www.ohloh.net/p/jbiowh/

The next Figure 10 shows the statistics for the JBioWH source code.

Figure 10: Number of code lines in the JBioWH framework. Statistics taken from http://www.ohloh.net/p/jbiowh/

3.1.4.1 The Core library

The first library includes all basic classes of the JBioWH framework. It also has other

useful classes like JBioWHUserData class which is used to store the User information, the

VerbLogger class used as the logger system and the fileformats package.

In addition, this package provides the classes for parsing some files used by JBioWH

framework. The formats supported are the BIOpolyer Markup Language (bioml) [198], the

NCBI XML Blast [12], fasta [199] and the Structured Query Language (SQL).

DOI:10.15774/PPKE.ITK.2014.011

53

3.1.4.2 The DBMS library

The second library comprises of classes which are used to manage

the Database Management Systems (DBMS). This library includes

an interface named JBioWHDBMS which is used to specify the

available methods to interact with the DBMS. This class is

implemented by the WHMySQL class that extends the

aforementioned JBioWHUserData class, see Figure 11. The

WHMySQL class is used to communicate the JBioWH

framework with the MySQL DBMS [175].

3.1.4.3 The Persistence library

The last library applies the Java Persistence Model (JPA) for the JBioWH relational

schema. This library operates the classes to handle the database entities in accordance with

the object-oriented model described by the JPA approach. Each entity maps the relationship

between the biological objects giving total interconnectivity between the objects within the

Java code. The core classes use the EclipseLink [180] library to map object-oriented

models onto the relational database tables in the back-end through the JBioWHPersistence

singleton class.

Additionally, this library employs the JBioWHSearch interface to provide the methods to

search over the JBioWH relational schema. Also, an abstract class named SearchFactory is

provided here. This abstract class includes the basic modules that will be used by the class

that implement the JBioWHSearch class, see Figure 12.

Figure 11: The functionality to

manage the DBMS.

DOI:10.15774/PPKE.ITK.2014.011

54

Figure 12: The structure of the Search functionality. The interface JBioWHSearch is implemented by the modules

search classes that extends the SearchFactory abstract class.

3.1.4.4 The Parser application

The jbiowh-parser application comprises of classes which are used for reading the data

from the data sources (parsers) and inserting into the relational schema. This application

can process the data sources locally (previously copied by the user) or remotely through an

HTTP or FTP server (the data sources servers providers).

A JBioWHParser interface is used by the parsers which also extend the ParserFactory

class as shown in the Figure 13. This application includes java packages for each module

with classes that implement the JBioWHParser interface and also extends the

ParserFactory class.

Figure 13: The JBioWH parser structure.

DOI:10.15774/PPKE.ITK.2014.011

55

Each module implements their own methods to connect to the source databases, retrieve

data in flat file format, parse and put the data into the relational database using the jbiowh-

persistence and jbiowh-dbms libraries. Modules can be loaded or unloaded independently

from each other; hence, unnecessary data can be easily omitted to save storage space and to

speed up query execution. The biological databases are often large and their syntax is often

poorly defined. This problem frequently causes failures while loading the data in the

available integration frameworks, or worse, it can corrupt the biological data themselves.

The loader functions of JBioWH were designed to preserve the biological data so that the

loader process stops in case of errors in the database format or structure.

3.1.4.5 The Desktop application

The JBioWH Desktop Client application (jbiowh-desktop) has been developed for users

who are not familiar with SQL scripting or the Java programming languages. The client

application provides a graphical interface to access, manipulate and execute complex

queries by simple mouse clicking from the integrated database (the desktop client is

illustrated in Figure 14).

Figure 14: A screenshot of JBioWH Desktop Client. The left panel shows the relational schemes opened. The top

right panel shows the list of the database inserted in the relational scheme, while on the bottom left panel one can

see the tables in the selected database.

DOI:10.15774/PPKE.ITK.2014.011

56

Next example shows a query over the Protein, Taxonomy and Ontology modules performed

by the user. The query is to find the proteins which have the EC (Enzyme Id) equal to

2.7.11.22 belonging to the Taxonomy Caenorhabditis elegans species and to the Ontology

term: GO:0007126 (Meiosis). The result is shown with a tab named CDK1_CAEEL which

is the name of the protein.

The application has a temporary working space, the tab Result, where the user can store

intermediate results that will be used in further queries as shown in the Figure 15. In this

example, two queries are executed to retrieve the Taxonomy and Ontology objects that are

used in the final query as Constrains.

Figure 15: The search interface with constrains.

DOI:10.15774/PPKE.ITK.2014.011

57

The search interface is designed to allow complex queries using the Constrains box as

shown in the Figure 15. The result interface is shown in the Figure 17

Figure 16: The SQL query interface with the result list.

Figure 17: The result interface showing the gene linked to the protein.

DOI:10.15774/PPKE.ITK.2014.011

58

Additionally, the application provides a SQL editor that allows the execution of queries on

the relational schema. The editor is highlighted to help the typing and the results are shown

in a different tab that also includes a simple filter as shown in Figure 16.

3.1.5 Web services

The JBioWH webservices (jbiowh-webservices and jbiowh-webservices-client) are

applications designed to provide the integrated data inserted into the JBioWH relational

schema access over a HTTP. The webservices have an associated web site that is published

using the Apache Tomcat server [200], see a demo server: http://net.icgeb.org/jbiowh-

webservices/. The associated web site offers a table with the data inserted into the relational

schema as shown in the Figure 18. Also, tutorial pages are published for each module in

order to describe the available webservices paths (methods) for each module.

Figure 18: The webservices associated web site showing the available Datasets.

DOI:10.15774/PPKE.ITK.2014.011

59

The URL path is structured using the global path webservices (common for all modules),

the module‘s name (protein), the method‘s name (accession) and the parameters

(040R_%25). Additionally, all modules included the count and the search methods. The

search method is implemented using the JBioWHSearch interface. Each module will have

a search path that acts as a wrapper to the search interface. This allows to include

automatically all the search options available for the module directly in the webservices.

For example, for the Protein module the paths are showed in the Figure 19.

Finally, the parameters passed to the webservices are designed to use regular expressions in

the MySQL format. The regular expressions have to be encoded using the HTTP encoding

system in order to be correctly passed through the webservices to the DBMS.

Figure 19: The available webservices methods for the Protein module.

DOI:10.15774/PPKE.ITK.2014.011

60

3.1.6 Examples

To show the multiple applications that JBioWH framework can have we would like to

describe some experiments. The experiments are designed to use all the available features

of JBioWH from the Java API to the Desktop client.

Additionally, there are multiple examples published on the project‘s Web site

http://code.google.com/p/jbiowh/wiki/Examples.

Examples of simple data retrieval (retrieving one protein sequence, or all human sequences)

are shown in

The Table 9 shows two solutions for each problem, i.e. the SQL command for retrieving

the data, and the Java code used in conjunction with the API.

Table 9: Two simple examples and their solutions using SQL language and the Java API code

More complex questions can be solved using the JBioWH Java API. These kinds of

questions cannot be solved directly using SQL language (neither the Desktop Client). The

API can be used to answer queries that cannot be easily handled by the SQL language.

Task SQL solution Java solution

Retrieve the protein
sequence for the

protein Q8DR59

from UniProt.

SELECT p.seq FROM Protein p INNER
JOIN ProteinAccessionNumber a ON
a.Protein_WID = p.WID WHERE
a.AccessionNumber = 'Q8DR59';

JBioWHSearch sProt = new SearchProtein();
List prots = sProt.search(‚Q8DR59‛, null);

for(Protein p : (List<Protein>) prots)
 System.out.println(p.getSeq());

Retrieve the protein

sequence of all
human proteins

SELECT p.seq FROM Protein p INNER
JOIN Protein_has_Taxonomy pt ON
pt.Protein_WID = p.WID INNER JOIN
TaxonomySynonym ts ON
ts.Taxonomy_WID = pt.Taxonomy_WID
WHERE ts.Synonym like 'human';

JBioWHSearch sTax = new SearchTaxonomy();
JBioWHSearch sProt = new SearchProtein();

List taxs = sTax.search(‘human’,null);

List c = new ArrayList();
List o = new ArrayList();
c.add(taxs);
o.add("IN");

JPLConstrains constrain = new
JPLConstrains(c,o,null);

List prots = sProt.search(‚‛, constrain);

for(Protein p : (List<Protein>) prots)
 System.out.println(p.getSeq());

DOI:10.15774/PPKE.ITK.2014.011

61

Namely, recursive queries such as finding nearest neighbors in terms of metabolism,

taxonomy or chromosomal locations are typical examples of this kind of a problem.

For instance, we want to find out if there are antibiotics that target a certain chromosomal

region. As an example, we take the ±10 genes in the chromosomal neighborhood of the

gene spr0328 of Streptococcus pneumoniae R6, which encodes the protein Endo-alpha N-

acetylgalactosaminidase (Q8DR60). The JBioWH will find gene spr0329 (GeneId:

934791). This gene encodes protein Q8DR59, a penicillin-binding protein that is the target

of Oxacillin, Hetacillin, Nafcillin, Ampicillin, Cefalotin, Azidocillin, Cefotaxime, Cefoxitin

and Cephalexin.

To answer this question one needs to retrieve gene and chromosomal position information

from the Gene and Genome databases, respectively, then use the cross-references to

identify the corresponding proteins in the UniProt database. Subsequently, JBioWH

retrieves antibiotic information for these proteins from DrugBank. The total execution time

for this operation is 10 s. The complete description and the source code are available at

http://code.google.com/p/jbiowh/wiki/Example7.

We can extend the scope of this question for an entire taxonomic subgroup. The question

now is whether the orthologs of gene spr0328 in a certain taxonomic group have

chromosomal neighbors that encode for antibiotic targets. We will use the ±10 genes

neighborhoods in two genera, Streptococcus and Burkholderia.

To answer this question, we first have to retrieve the taxonomic groups. For this purpose,

JBioWH uses graph structures that can be created by extending the JBioWHGraph class

in Java. For instance, the TaxonomyGraph class represents the hierarchical structure of a

Taxonomy family. Table 10 shows the data of three example taxonomies that can be

created by a code shown in http://code.google.com/p/jbiowh/wiki/Example5.

DOI:10.15774/PPKE.ITK.2014.011

62

Table 10: This table shows the use of the TaxonomyGraph class to create the hierarchical structure of a Taxonomy

family.

Family Tax Id
Graph

Time (s)
Vertex Edges

Bacteria 2 283 371 283 370 121

Burkholderia 32008 3790 3789 4

Streptococcus pneumoniae 1313 303 302 3

Then, we want to get the orthologs of spr0328 from all Streptococci, located within a 10-

gene neighborhood of spr0328 and thereafter, locate the antibiotic target genes. For the

location of the orthologs JBioWH uses the eggNOG databases. In Streptococcus, JBioWH

finds two genes encoding antibiotic target proteins, gene 934791 of S. pneumoniae R6,

which was already found in our first example, and gene 930269 S. pneumoniae TIGR4.

The total execution time for this query was 15 s. The complete description and the source

code are available in http://code.google.com/p/jbiowh/wiki/Example8.

Now we further generalize the query: Given a taxonomic group find all chromosomal

regions (say maximum 5000bp in length) that harbor at least two genes encoding antibiotic

targets.

Again, we will use the genera Streptococcus and Burkholderia as the examples. JBioWH

will use TaxonomyGraph class to retrieve the genus members. The NCBI PTT table of the

genomes will be used for a step-by-step search. Genes that encode an antibiotic target will

be identified through links to UniProt, and from UniProt to DrugBank. The results in Table

11 show that one gene-pair in S. pneumoniae TIGR4, and two gene- pairs in Burkholderia

xenovorans LB400 are retrieved. The execution time for Streptococcus is 112 s and for the

Burkholderia 249s. The complete description and the source code are available at

http://code.google.com/p/jbiowh/wiki/Example6.

DOI:10.15774/PPKE.ITK.2014.011

63

Table 11: This table shows the genes encoding for drug’s target protein that are in the same chromosome at a

distance less than a specific number of pair bases.

Family Genes Found gene ID Species Time(s)

Streptococcus pneumoniae 41 576 930805-930802 Streptococcus pneumoniae TIGR4 112

Burkholderia 224 568 4010698 -4010703
4010703-4010704

Burkholderia xenovorans LB400 249

Finally, we show examples related to drugs that act on similar targets. In the database, the

drugs are linked to proteins, and proteins are members of a network of metabolic pathways.

In this system, two drugs can be (i) target neighbors, if they act on the same protein (ii)

pathway neighbors, if they act on proteins that belong to the same metabolic pathway or

(iii) distant neighbors, if they act on different pathways, and in the latter case it is important

to know, in addition, how far apart in the metabolic network the two drugs are because

distant relationships can be biologically meaningless.

Questions related to (i) and (ii) can be answered by SQL queries but they need multiple

joints, which makes the search time-consuming, especially in the case of (ii). Questions of

type (iii), however, involve a prohibitively large number of multiple SQL join operations.

JBioWH can handle these complex queries because of the graph structures implemented

using the DrugPathwayGraph class.

Hetacillin (DrugBank id: DB00739) is a beta-lactam that does not have intrinsic

antibacterial activity, but is converted in the human body to Ampicillin, which is active

against a variety of organisms. In DrugBank, Hetacillin is reported to act only on

Penicillin-binding protein 1A (UniProt Id: PBPA_STRR6) and Penicillin-binding protein

2B (UniProt Id: PBP2_STRR6) both of which are parts of the pathway Peptidoglycan

biosynthesis (KEGG: spr00550) of the strain S. pneumoniae R6 (TaxId: 171101).

Other links of Hetacillin are not reported even though its metabolite Ampicillin is well-

known to act on various organisms. If we use a simple SQL query, only the links to S.

pneumoniae R6 will be found. However, the DrugPathwayGraph class can be used to

find all target neighbors, pathway neighbors and also distant neighbors of the Hetacillin.

DOI:10.15774/PPKE.ITK.2014.011

64

The answer provided by JBioWH is that (i) the drug has 19 target neighbors that would act

on the same protein target, (ii) has 38 pathway neighbors and (iii) the drug has 35 nearest

distant neighbors that are identified as antibiotics. The execution time was 300-400 s.

In addition, the drug-pathway graph can be useful for identifying antibiotic drugs that target

the same pathway in other organisms. For instance, Ceftazidime (DrugBank Id: DB00438)

and Cyclacillin (DrugBank Id: DB01000) are antibiotic drugs that target the same pathway

as Hettacillin, but in three different organisms, S. pneumoniae R6 (TaxId: 171101),

Escherichia coli str. K-12 substr. MG1655 (Taxid: 511145) and Clostridium perfringens

str. 13 (Taxid: 195102). This answer can be obtained using the DrugPathwayGraph class

as described in http://code.google.com/p/jbiowh/wiki/Example10.

We point out that graph-based queries cannot be easily answered by SQL-based systems

such as relational databases that do not have graph extensions, and these queries are

practically impossible to answer using the traditional central resources or federated

databases such as Biomart [201, 202]. Although the data sources involved are well-known

and sufficiently cross-referenced, it would require multiple visits from one database to

another, which would make the process too time-consuming and complex for human

operators, and also, too vulnerable to network failure. On the other hand, such complex

questions may arise in data mining projects where the queries need to be answered many

times within a loop.

3.1.7 Applications

The JBioWH has been used as integrated data supplier system to different OMICS

disciplines like genomics, proteomics and drug design. A detailed explanation of these

applications is out of the scope of this Thesis. Therefore, we simply mentioned them and

the scientific papers and patents related to those works.

Specifically, the integrated database was used in drug design experiments to characterize

the metabolic pathways and the protein targets. The Drug module was used to provide the

drug-target relationship used to test the docking programs and the three-dimensional

DOI:10.15774/PPKE.ITK.2014.011

65

location of the drug inside the protein‘s active site. See the patents [203, 204] and paper

[205].

Also, proteomics databases designed for protein identification using the Mascot Server

[206] was created from JBioWH. Specifics criterions for filtering the proteins by

sequences composition was used in order to create training datasets for testing proteomics

experiments. See the papers [207, 208].

Finally, JBioWH is the data supplier of the applications used to study Quorum Sensing

Systems. This application requires classified taxonomic data integrated with the bacterial

genomes. See the paper [209].

3.1.8 Summary

The JBioWH framework provides an open-source Java API for integrating biological data

from various public databases in a data warehouse manner. The aim of JBioWH is to allow

users to construct application-specific databases taking into account the biological context;

in this chapter, we present a demo example of integrating 24 data sources. The integrated

database is hosted on a local computer so it can be used for data-intensive calculations.

This feature is especially important for queries that are not, or not easily, accommodated on

central data resources.

We note also that this feature could be important in environments with slow, or limited,

Internet access. The relational schema of JBioWH is defined in a MySQL DBMS, and

contains Java classes and parsers that load the modules of the JBioWH with data from

public databases.

Finally, JBioWH includes an API interface for programmatic access and a Desktop Client

that lets users easily manipulate and query data via a graphical interface. Future work will

aim to integrate further biological data sources and the implementation of other DBMS

such as PostgreSQL and Oracle.

DOI:10.15774/PPKE.ITK.2014.011

66

The webservices application can be used by external programs to retrieve data from the

integrated database over HTTP. This kind of communications between the integrated

database and the application clients is very important for mobile applications due to the

actual limitation of the mobile platforms to use the Java Persistence models.

DOI:10.15774/PPKE.ITK.2014.011

67

3.2 Prediction of bacterial taxa and gene function from NGS results

Identification of bacteria in unknown samples is crucial in various fields, such as detection

of human or animal pathogens, detection of bacterial contamination in food samples etc.

Next generation sequencing is increasingly becoming the method of choice in many areas

because of the richness of data it can provide, however the processing of NGS data is

problematic in many respects. Namely, current sequence alignment problems were

developed with genome sequencing in mind; they are optimized for handling a single

reference genome (the human genome) on which they work very efficiently.

From the computational point of view, the problem lies in the indexing process. All

database search programs, starting from BLAST, gain efficiency by indexing the database

in a form that can be rapidly searched. Current alignment programs (BWA, Bowtie2) use

the Burrows Wheeler Transform combined with the Ferragina index for preprocessing the

database.

An indexed database can be quite large, but searching such a database with a query is not

proportional to the database size, it rather depends on the length and number of the queries.

Current aligners are optimized for indexing one ―human-size‖ genome and running a large

number of reads against the indexed database. Identification of bacterial taxa is not such a

task, here we have many thousands of genomes, draft genomes and individual DNA

sequences and in an optimal case, we should use all these data for the identification of

bacteria. Running searches on these genomes separately may require several thousand of

separate indexing and alignment procedure which is computationally not tractable.

3.2.1 The Taxoner principle

The idea we proposed to solve this problem is the construction of a number of artificial

genomes from many bacterial sequences, and running alignments on the artificial

chromosome. In this way, we can use the advantages of the genome-mapping programs.

When aligning a complex metagenomic dataset against the artificial chromosomes, in the

ideal case, each read will map to its own genome, so the mapping will provide a way to

DOI:10.15774/PPKE.ITK.2014.011

68

identify the taxa present in the sample. For this aim, we need to know the location of

genomes within the artificial chromosomes.

From the logical point of view, our database consists of segments of a large artificial

chromosome sequence which is nothing but a large annotated sequence. Each annotated

segment represents a taxon, more precisely a bacterial strain which is a leaf in the

taxonomic hierarchy, so whenever a sequencing read maps to a segment, in can be traced

back to a taxon, see Figure 20.

Importantly, this process is analogous with the mapping of reads to an annotated genome.

In an annotated genome, the segments are the genes which are named according to the

function they carry. The functions are defined as part of a classification scheme, such as the

COG, eggNOG or GO databases.

The analogy between taxon assignment and function assignment allows us to develop a

common system which will interpret metagenomic sequencing reads in terms of both taxa

and functions. The central data structure is the artificial chromosome - which is – same as

the sequences annotated in GenBank or UniProt – contains annotated segments. The

annotation is particular in this case. The top level corresponds to a genome which is named

by a taxon. The next level corresponds to segments annotated within the genome segments;

these are the genes, named by the functional hierarchies.

Figure 20: Mapping of reads to bacterial strains using artificial chromosomes. A strain is a segment of the artificial

chromosome that is named by a label in the taxonomical hierarchy.

… … …

genome of

strain1

genome of

strain2

genome of

strain3

strain

1

strain

3

strain

2

―artificial chromosome‖

NGS read

DOI:10.15774/PPKE.ITK.2014.011

69

The database is a set of artificial chromosomes which have to be built from the public

databases, given as concatenated FASTA files. A database can be built from the finished

(complete) bacterial genomes, and then it will allow the identification of taxa and gene

functions. Or it can also include draft genomes, or simply the entire nt database of NCBI.

The number of chromosomes that need to be built depends on the capacity of the computer.

Table 12 shows the current size of a few databases and the number of artificial

chromosomes necessary for the analysis. The artificial chromosomes are then indexed

using the indexing facility of Bowtie2 which is the current aligner used by the Taxoner

program.

Table 12: Current size of a few databases subsets and the number of artificial chromosomes necessary for the

analysis.

The original dataset was the NCBI nt

Database Size (GB) No. of Chromosomes Bowtie Index size (GB)

Bacteria 13.4 4 18.8

Archaea 0.58 1 0.83

Fungi 2.6 1 3.7

Virus 2.0 1 2.8

In addition to the artificial chromosome data, we also need the taxonomy tree, the gene

sequences and their positions in the chromosome and COG or GO data. These data are

extracted using an SQL script over the JBioWH integrated database. This script uses the

Figure 21: Mapping of reads to gene functions within an annotated genome. A gene is a segment of the genome that

is named by a label in the functional hierarchy, such as the COG/EggNOG system or the GO databases.

gene1

(function1)
gene2

(function2)

gene3

(function3)

annotated genome

NGS read
… … …

fu

n
ctio

n
2

fu

n
ctio

n
1

fu

n
ctio

n
3

DOI:10.15774/PPKE.ITK.2014.011

70

JBioWH modules GenBank, COG, Protein Cluster and Taxonomy (see Section 3.1 for

further explanation of the JBioWH framework). Then, the text file obtained is converted to

a binary B+ Tree index using an in-house program developed in C (see Section 2.2.2.1).

This program creates a B+ Tree index to store the data in a form that allow fast retrieval.

We mention that the design of the index files is not a straightforward task, since genomes

and genes are named with a number of different ids that all have to be correctly mapped

before we can establish an unequivocal mapping between the taxon, the gene and the

function (See Section 3.2.2.4).

An important problem is the handling of uncertainties which is solved by empirical rules.

First, a read can map to several taxa. In this case, the lowest common ancestor will be used

as the resulting taxon, so, if a read maps both the Escherichia coli and to Escherichia

fergusoni strains, it will be assigned to the genus Escherichia, but if it maps to two E. coli

strains, it will be assigned to the species E. coli. But if a read maps to two taxa in such a

manner that it overlaps their endpoints within the artificial chromosome, the read will be

discarded as an artifact.

Mapping of reads to functions represent a different problem of uncertainties. In our

approach, we used the functions annotated for known genes instead of performing a

function prediction. For instance, if a read is assigned to a region who fall inside an

annotated gene that gene and its annotated functions will be assigned to the read and

reported by our programs.

Additionally, it is assumed that functions are constant within the members of species and

not necessarily within higher taxonomies levels. Accordingly, if a read maps to several

species, it will be not used for function assignment. If a read overlaps with two functions

annotated in a genome, both functions will be reported.

Further sources of uncertainties are genes to which functions are not assigned. It is well

known that most bacterial genomes contain a large number of such genes. When building

the function assignment database for Taxoner, extra effort is made to assign a function to

DOI:10.15774/PPKE.ITK.2014.011

71

the hypothetical genes if reliable data are found in other databases, such as COG and

eggNOG. In other words, the hypothetical proteins are re-annotated before insertion into

the Taxoner database. Reads mapping to the remaining hypothetical proteins that are

without function will be reported separately during the analysis.

3.2.2 The Taxoner algorithm

Taxoner is a program that identifies taxa, primarily bacteria, by mapping NGS reads to a

comprehensive sequence database such as the NCBI nt database or its predefined subsets.

The program is developed in such a way that I can run both on standard desktop/laptop

computers under the Linux operating system or in high performance system like the Google

Cloud Platform.

The algorithm consists of 3 phases. i) In the preprocessing phase, the database is divided

into partitions and indexed with the bowtie2-build program of the Bowtie2 package.

Alternatively, pre-built indices can be downloaded from the project site. ii) Alignment is

carried out with bowtie2 and the taxa are identified with a lowest common ancestor search

algorithm. The standard output of this phase is a summary of the found taxa and alignments

in the SAMtools format. iii) Unlike other metagenome analysis programs, Taxoner can

optionally provide a list of genes identified at the species level, along with their predicted

functions. It also contains a utility that can produce a summary of the found functions,

based on the COG-EggNOG scheme of functional descriptors [166, 210], using a B+ tree

index. In addition, the read alignments provided in the SAMtools format can be further

processed with other taxon assignment programs such as MEGAN.

3.2.2.1 The Taxoner pipeline

Taxoner is a pipeline written in C, which currently uses Bowtie2 [101] (2.0.0-beta5) for the

sequence alignments.

The input is a reference nucleotide database in the form of concatenated FASTA file, and a

set of nucleotide sequence reads typically 40-500bp in length, in fastq format. The Taxoner

DOI:10.15774/PPKE.ITK.2014.011

72

database is freely available from http://pongor.itk.ppke.hu/taxoner/databases/bowtie2/. The

NCBI Taxonomy database retrieved on 11-07-2013.was used for taxon assignment. For

function assignment, Taxoner uses a preformatted dataset that contains two binary files

which can be easily created from a pipeline that uses a SQL script and the JBioWH

framework [211].

The binary files can be downloaded from

http://pongor.itk.ppke.hu/taxoner/databases/geneassignment/ and the pipeline description

can be found in the Taxoner Google Code web site.

The source code is freely available from the Taxoner Project published on the Google Code

web site (http://code.google.com/p/taxoner/). The program runs on Linux computers and

includes a simple html graphical interface for local use. The program can be operated in the

command line mode and allows evaluation of large read datasets on personal computers or

laptops with at least 8GB RAM. A demo web server, with test cases and a capacity to

process datasets up to 100 thousand reads can be found at http://pongor.itk.ppke.hu/taxoner.

3.2.2.2 Preprocessing

The database used for alignment is created using the NCBI nt fasta file. The standard

database creation process is done by splitting the nt fasta file into ~4Gb fasta files (sub-

databases), where the headers of each fasta sequence is replaced with the GI identifier and

the organism taxon ID. The fasta files cannot be larger than ~ 4.0 Gb, since Bowtie2 has a

limit on the reference genome size. When the database is created, the final step is then to

index each reference fasta file with the bowtie2-build program. Since the nt database is not

restricted to microbial organisms, an alternative database can be created by extracting the

subset organisms of interest (e.g. bacteria, fungi, archaea, see Table 12).This greatly

reduces the analysis time since reads do not have to be aligned to non-microbial entries. For

this reason we made a pre-parsed and indexed database for each major microbial

superkingdom available that can be downloaded via our website at

DOI:10.15774/PPKE.ITK.2014.011

73

https://code.google.com/p/taxoner/wiki/07_Databases. We also included a database creator

program that can create a database with any taxon ID(s) specified by the user.

3.2.2.3 Analysis

For the analysis the user must provide the input parameters (listed and explained below,

under command line usage). During analysis, Taxoner first runs Bowtie2 using the default

or user specified parameters and writes the alignments into a SAM (Sequence

Alignment/Map)[212] file.

The sequence alignment with Taxoner is done using the Bowtie2 aligner and the pre-

indexed databases. Since the nt database is too large to fit in a single fasta file, the input

sequencing reads have to be aligned separately against each sub-database. Fortunately,

Bowtie2 is a multithreaded aligner, which enables faster alignments using multithreaded

processors. After all reads are aligned against each database, the taxonomic evaluation can

be done. The main difficulty here is that a read can align with the same alignment quality to

each fasta file. For this reason, Taxoner calculates a ―local‖ common ancestor (LCA) for

each read in each alignment file and then merges the results into one file. In the final step,

the merged file is sorted by read‘s name and a final LCA is calculated for each read using

their ―local‖ lowest common ancestors.

The output is a file that contains read names, alignment information, nearest neighbor taxon

ID, start and ending positions of the alignment against the best hit and the genome

accession number of the best hit. An optional output is a MEGAN compatible output,

which enables the post analysis and visualization of the results.

3.2.2.4 Gene Assignment

In the Taxoner framework, detection of genes and assignment of functions is a problem

analogous to function assignment (see Figure 21). This is a standalone utility that take the

DOI:10.15774/PPKE.ITK.2014.011

74

alignment output in the Taxoner format and maps the hits to genes specified in GenBank

[213].

Function assignment is carried out by a scheme that is analogous to taxon assignment and it

is performed on reads assigned to strains or to species. Briefly, a read mapping a (protein or

RNA coding) gene within a strain contributes one count to that function. Reads assigned at

species level are assigned to the highest-ranking gene‘s function in the top-list. It is

assumed that genes within a species have identical functions, so if there are several hits

within the same species the read is assigned to the highest-ranking annotated gene. The

result of function assignment is a list of functions with the corresponding read counts. The

COG-EggNOG scheme of functional descriptors [166, 210] is used for functional

assignments, in conjunction with a pre-calculated database file that uses the B+ Tree index

[214] for fast function retrieval. The B+ Tree index algorithm was implemented in C. Its

implementation is part of a C library developed by our group and is freely available at

https://code.google.com/p/bioc/, see Section 2.2.2.1.

Figure 22: COG Functional classification made by the Gene Assignment tool for the genes identified by Taxoner.

DOI:10.15774/PPKE.ITK.2014.011

75

The identifiers of the genes are stored either in a relational database, prepared with the

JBioWH [211] framework, or are stored in the form of a binary file with a B+ Tree index.

This stored form contains from-to location of each gene, the identifier and pointers to the

COG-eggNOG [166, 210, 215] functional classification terms. If a read is mapped to one

single genome, and the hit overlaps with one or more genes, each of the concerned genes

will receive one hit. If the read is 100% identical with several genomes, then the first

genomes in the Bowtie2 alignment will receive the hit. After evaluating all hits in this

manner, a potentially large number of genes will have hits assigned. The utility can simply

list the genes with the number of hits, or can combine the genes into functional categories

using the COG-eggNOG scheme. As result, the hits collected by single genes will be added

up to higher categories, and graphical statistics can be made. Examples are shown in Figure

22.

3.2.2.5 Output files generation.

The output of this phase is a file with a list of GenBank accession number(s), taxonomy id,

NCBI protein id, NCBI gene symbol, the number of reads hitting the gene, a list of

COG/eggNOG ids and NCBI Protein Cluster ids. Examples are deposited at

http://pongor.itk.ppke.hu/taxoner/examples/.

3.2.3 Desktop and server versions

Taxoner includes a web based graphical interface that helps users to run the programs and

parse the results. This interface is a JavaScript based set of web services developed using

AngularJS library [216] and running over on the Nodes.JS platform [217].

This graphical interface is designed to be used locally on a PC. It offers input forms for the

different components of the Taxoner system. The starting script will open a web site

running on http://127.0.0.1:8081 (the local computer) and creates a series of web services

running in the same IP address but in different ports.

DOI:10.15774/PPKE.ITK.2014.011

76

It is well know that modern web browsers do not have access to the local file system due to

a security issue. As such a set of different web services must be created to allow access to

the local files from the web browser.

The Taxoner web services are running on ports from 8081 to the 8084. The port 8081 is for

the HTTP web site (the user interface). The rest are ports for internal uses: port 8082 offer a

web service to read and parse the log files of Taxoner, 8083 is a web service to run system

commands from the web browser and 8084 is a web service to create the Taxoner

summaries from the output files.

Three web forms are available on the graphical interface to run the Taxoner program, the

gene assignment program and to parse the outputs of both programs and show a summary

of them.

Full description and images of the graphical interface can be seen at

https://code.google.com/p/taxoner/wiki/06_Graphical.

In addition, a demo server was developed for demonstration purposes using the same look

and feel of the local graphical interface. This web server offers the same features as the

graphical interface but has a file size limitation for the input files. The demo server is

available from http://pongor.itk.ppke.hu/taxoner.

3.2.4 Run times and examples

We evaluate the performance of Taxoner in comparison with Metaphlan [98], BLASTall

[218] and MegaBLAST [219], both in combination with the MEGAN taxon assignment

program [97, 104]. Metaphlan was selected because of its speed and accuracy in estimating

taxon composition, BLAST was selected because of its reputation in alignment.

It is noted that comparison is a complex task since, for instance, Metaphlan compares reads

to its own small taxon-marker database of about 367 million nucleotides that includes only

bacteria. BLAST and Taxoner, on the other hand can run on comprehensive databases such

as NCBI nt (52 billion nucleotides), which includes all species, or on a bacterial subset

DOI:10.15774/PPKE.ITK.2014.011

77

(typically 15.5 billion nucleotides). The search of the database thus impacts the speed and

the accuracy of the results.

The actual alignment times for Taxoner, Metaphlan and BLAST depend on the size of the

database and the number of threads used for the calculation, and naturally on the length and

the number of the reads to be evaluated. The input read datasets used for testing are listed

Table 13.

Table 13: Typical running times for the alignments.

 Running time
1

 Dbase 1 thread 4 threads 12 threads

MetaPhlAn
5
 own bacterial marker dbase

2
 14 sec 7 sec 6 sec

Taxoner
5
 NCBI nt Bacteria

3
 165 sec 105 sec 90 sec

Taxoner
5
 NCBI nt full dbase

4
 2446 sec 2031 sec 1866 sec

MEGABLAST
6
 NCBI nt bacteria

3
 8.3 h n/a 3.9 h

MEGABLAST
6
 NCBI nt full dbase

4
 37.6 h n/a 9.4h

1Read dataset: Dataset A, Table 1. Processor: Intel(R) Xeon(R) CPU E5-2640; 2The built-in dataset is 366,988,039

nucleotides (367 MB) and contains only bacterial sequences; 3 15,400,949,699 nucleotides (15 GB), downloaded on

11/07/2013; 4 52,380,339,934 nucleotides (54 GB), downloaded on 11/07/ 2013; 5Times include taxon assignment; 6

time of taxon assignment by MEGAN is not included.

3.2.5 Analyzing metagenomic datasets

The classification performance of Taxoner is compared with that of two programs in Table

14. We carried out an analysis of a metagenomic dataset published by the Human

Microbiome Project that consisted of 6.5 and 1.4 million reads (Dataset G and H,

respectively) and consisted of equal amounts of 22 strains representing 22 species. The data

presented in Table 14 show that Taxoner can detect taxa at the strain level, which is in

contrast to MetaPhlAn (and other programs, such as WGSQUIKR). The accuracy of

MetaPhlAn and Taxoner are comparable in this task, but it has to be mentioned that

Taxoner can achieve this accuracy only if one sets a minimum threshold to the number of

reads necessary to identify a taxon (strain, species, etc). MetaPhlAn uses a similar

thresholding for improving the accuracy. Without setting this threshold, Taxoner will report

all spurious similarities, which would result in a very high number of false positives. In this

analysis we also included WGSQUIKR, an extremely fast and innovative program that uses

compressed sensing principles for finding a number of taxa that can identify the presence of

DOI:10.15774/PPKE.ITK.2014.011

78

the reads [99]. This analysis is extremely fast, the number of taxa present is apparently

underestimated at all taxonomic levels.

Table 14: Detection of species in a metagenomic datasets

A) Illumina sequenced HMP Mock Community sample1 (dataset G)

 MetaPhlAn Taxoner2 WGSQUICKR

No of

positives

(taxa

present)

TP3 FN4 FP5
F-

measure
TP FN FP

F-

measure
TP FN FP

F-

measure

strain 22 NA6 NA NA NA 14 7 8 0,65 1 20 79 0,02

species 22 21 1 7 0,84 20 2 0 0,95 9 13 67 0,18

genus 19 18 1 5 0,86 17 2 0 0,94 13 6 45 0,34

family 18 18 0 6 0,86 17 1 0 0,97 13 5 29 0,43

B) 454 sequenced HMP Mock Community sample1 (dataset H)

 MetaPhlAn Taxoner7 WGSQUICKR

taxa

assigned

No of

positives

(taxa

present)

TP FN FP
F-

measure
TP FN FP

F-

measure
TP FN FP

F-

measure

strain 22 NA NA NA NA 9 12 19 0,37 1 20 58 0,03

species 22 19 3 0 0,93 19 3 0 0,93 5 17 52 0,13

genus 19 16 3 0 0,91 16 3 0 0,91 8 11 37 0,25

family 18 16 2 0 0,94 16 2 0 0,94 9 9 23 0,36

The data was a mock community dataset provided by the Human Microbiome Project, consisting of 22 strains.
2Only those hits (read-taxon assignments) were considered where the worst alignment score was at least 0.9.

Positive taxa predicted by Taxoner are those that received at least 1000 hits (dataset G). 3True positives. 4False

negatives. 5False positives. 6Not available. 7Only those hits (read-taxon assignments) were considered where the

worst alignment score was at least 0.9. Positive taxa predicted by Taxoner are those that received at least 100 hits

(dataset H).

3.2.6 Analyzing known and unknown strains

Given the very high sequence variability of bacterial genomes, it is crucial to know whether

or not the genome of a bacterium to be detected by NGS is included in the database. This is

a very important question, since unknown strains represent the majority of environmental

samples. In the context of data analysis, a strain is known when its genome or draft genome

is included in the database. With this in mind we compared the detection probability of two

Bacillus anthracis strains (Table 15). The ―known‖ strain was the Sterne strain, used for

vaccination, and the dataset consisted of 100bp long overlapping segments (―artificial

reads‖) of the genome, offset by 50bp. This is thus a perfect dataset on which no mistakes

are expected. The unknown strain was a Japanese isolate which was not included in the

database at the time of this analysis, and the dataset contained 7.7 million Illumina reads.

DOI:10.15774/PPKE.ITK.2014.011

79

In fact, the number of errors (false negatives) is substantially higher for the strain not

included in the database. The synthetic reads generated from a genome included in the

database are perfectly detected by Taxoner, which is not surprising (they are perfectly

detected also by MegaBLAST, data not shown). What is somewhat unexpected is that

Metaphlan detects a substantial % of species not present in the samples, even in the

synthetic reads. Even though we cannot explain this finding, it is good to remember, that B.

anthracis belongs to the B. cereus group which includes three highly related species, B.

cereus, B. thurigiensis and B. anthracis. This is reflected by the fact that a large

percentage, about 75% of the synthetic reads generated from the Sterne strain is 100%

identical in all three species (data not shown). Metaphlan assigns these reads to the Bacillus

genus, while Taxoner (and Megan) assigns the reads to the B. cereus group. This illustrates

the fact that species % reported by the various programs highly depend on the database as

well as on the taxonomy definitions used by the given programs.

Table 15: Analysis of known and unknown B. anthracis strains.

Taxa assigned Metaphlan1 Taxoner2

A) Strain included in the database (B. anthracis strain Sterne (NCBI taxon id: 260799), 104574 synthetic reads, Dataset F)

all 991 reads 104,573 reads

genus Bacillus 100.00 100.00%

species Bacillus anthracis 76.60% 100.00%

species Bacillus cereus 15.40% 0.00%

species Bacillus thuringiensis 8.00% 0.00%

species other 0.00% 0.00%

 False negative %3
23.40% 0.00%

B) Strain not included in the database (B. anthracis strain BA104 (NCBI taxon id: Not Available) , 7.7million Illumina reads, Dataset

E)

all 96,045 reads 7,379,118 reads

genus Bacillus 99.58% 100.00%

species Bacillus anthracis 65.30% 96.50%

species Bacillus cereus 18.70% 0.80%

species Bacillus thuringiensis 15.60% 0.40%

species other 0.00% 2.30%

 False negative % 34.44% 3.50%
1The values are taken from the standard output of the program. 2Values indicate the number of reads expressed as

% of the total. 3False negative% is the % of taxa (Metaphlan) and reads (Taxoner) detected but not present

DOI:10.15774/PPKE.ITK.2014.011

80

3.2.7 Summary

Here we described a pipeline of programs, called Taxoner that uses a fast aligner and a

comprehensive database for analyzing metagenomic datasets. As a result of alterations to

the indexing used, this pipeline is fast enough to run evaluations on a single PC, and it is

highly sensitive so it can be adapted to analysis problems such as detecting pathogens in

human samples.

Taxoner is much faster and at times more accurate than BLAST based evaluation schemes.

In our case we tested BLAST in conjunction with the MEGAN program.

Detection of unknown strains is a problem to most aligners. It is important to remember

that strains of the same species isolated from different natural environments can differ in a

very large portion of their genome. As such analyzing the metagenome of soil bacteria may

require the identification of strains that are largely novel as compared to the current

databases. In this sense, approaches based on a comprehensive database, such as Taxoner,

are at an advantage in comparison to approaches based on marker databases. This is

because new strains do not necessarily contain the unique sequences included in a marker

database. On the other hand, this is an important problem since detection of hazardous

pathogens requires strain level identification. This feature is included in Taxoner, but not in

many other programs designed for metagenome analyses.

We note that Taxoner uses bowtie2, and not BLAST, still its sensitivity is at times better

than that of BLAST-based methodologies. This shows that fast alignment techniques may

provide a useful alternative for sensitive analysis of metagenomic samples.

DOI:10.15774/PPKE.ITK.2014.011

81

3.3 The Genome Specific Marker Database

Modeling the alignment of reads to a genome is only seemingly simple. Namely, sequence

reads are of varying length and quality, various segments of genomic DNA may not be

equally amenable to sequencing reaction.

However, as a first approximation, we can neglect these differences and model a simpler

problem (Figure 23, left). Let‘s suppose that the reads are of roughly equal length, R, and

they are evenly distributed along the genome.

For diagnostic use, we need to distinguish those segments of the genome that are unique i.e.

they can serve as diagnostic identifiers of the genome. Let‘s denote the cumulative length

of such unique parts is U. And finally, if one is to build a marker database, one has to

identify suitable markers which, by definition will be a subset of the unique segments. Let‘s

denote the cumulative length of the markers as M.

To describe the problem in quantitative terms, we define the coverage values. For N

sequencing reads of length R and a total DNA length D, the read coverage Cr is defined as:

D

NR
Cr  (1)

For genome sequencing, the only DNA in the sequencing reaction is the genome being

sequenced G. In this case,

reads

unique segments

markers

genome 1.0

Cr

Cu

Cr

Figure 23: Reads, unique segments and markers (left), cumulative coverage values (right). Note that reads can

overlap with each other but unique (“diagnostic”) segments ad markers are disjunct. Also note that markers must

fully overlap with the unique segments.

DOI:10.15774/PPKE.ITK.2014.011

82

G

NR
Cr  (2)

For genome sequencing, Cr has to be greater than one, for medical diagnostics read

coverage of several thousands are necessary.

When bacterial communities are sequenced such as in metagenomics experiments, the read

coverage may fall much below one. Namely, for rare species we may only get a few reads.

We can denote the proportion of a given genome within the total DNA being sequenced is

aG (0 ≤ aG ≤ 1) we can express the expected coverage of genome in a mixture of genomes

as:

Ga

NR
C

G

r  (3)

In other words, aG is 1 for genome sequencing, and can be close to zero for metagenomics

experiments which, at the same time, indicates the importance of high sequence coverage in

metagenomics experiments. We note the read coverage values defined in this manner do

not correspond to the real coverage of the genome by reads. Namely, real life reads are not

disjunct but can be highly overlapping, so Cr can be >>1. However, as we take that the

reads are distributed evenly along the genome and among the various genomes, this

proportion is considered constant.

The proportion of the unique diagnostic regions within a genome is denoted by the

coverage value Cu as

G

U
Cu  (4)

Here U denotes the unique portion of the genome. In principle, 0 ≤ Cu ≤ 1, in practice the

proportion of the unique parts is much smaller, e.g. the proportion of the markers, selected

for identification purposes within a given genome is denoted by the coverage value Cm as

DOI:10.15774/PPKE.ITK.2014.011

83

G

M
Cm  (5)

In this equation M denotes the unique portion of the genome. In principle, 0 ≤ Cm ≤ Cu, in

practice the proportion used by a particular marker database is often defined empirically

with statistics, for instance a sufficient number of marker regions are collected that allow

safe identification of genomes in a given dataset.

We can now estimate pgi, the probability of genome identification by aligning a single read

to the genome or to a marker database. Note, that the read is considered perfect if its

sequence is part of the DNA to be sequenced. If we compare the read with the entire

genome, we would expect that pgi will be 1 since the read is contained within the genome.

This may hold for long reads, however, we know that sequences of 40nt can occur by

chance. So the probability of genome identification is better for long reads and decays for

shorter reads. This property can be simply captured by assigning a significance value to the

hit, which is calculated by aligner programs such as BLAST or Bowtie.

Let‘s now consider a marker database which is, by definition shorter than the genome itself.

Since the reads are evenly distributed along the genome, only Cm fraction of them will hit

the marker database and result in positive genome identification. In other words, the size of

the marker dataset of a given genome should be close to CmL so as to ensure a high

probability identification.

Another approach is to use the entire genome as the database which, by definition includes

the unique regions necessary for identification. Even this simple overview shows that there

are several compromises possible when we design a marker database, as summarized in the

Table 16.

As a specific example I mention Metaphlan, which is a small database, Cm~0.01. The

search is extremely fast, but the sensitivity is quite low, we need over 100 reads per

genome in order to notice one or two of them.

DOI:10.15774/PPKE.ITK.2014.011

84

Table 16: Summary pros and cons for the marker database design,

Marker

database
Pros Cons

Small, Cm<< Cu Fast searches

Low sensitivity, need for high read coverage, some

genomes contain few unique regions, dbase building

takes time

Large, Cm ~ Cu Medium to Fast searches
Higher sensitivity, some genomes contain few unique

regions, dbase building takes time

Full genome
Full coverage, high

sensitivity
Long searches

Taxoner, described in the previous section, uses full genomes as the database, so it‘s

searching times is about 10 times that of Metaphlan. However the sensitivity is much

better, genomes can be detected from a few reads.

GSMer [220] has a larger marker database than Metaphlan, but smaller than a full genome.

The sensitivity and the search times are thus between Metaphlan and Taxoner.

One problem which is not mentioned so far explicitly is the taxonomic depth of

identification. Taxon are usually identified by versions of the lowest common ancestor

algorithm, i.e. reads common to two strains within one species and not present elsewhere,

are assigned to the species. If a large part of the genomes of two strains are common, much

more reads will be identified at the species level than at the strain level. On the other hand,

we can define marker sequences also for the species level (or for higher taxonomic levels).

These higher level marker datasets can be substantially bigger that those defined at the

strain level. As a result, the searching time can increase above the practical level.

The selection of the marker dataset is not easy even if the markers are ideally specific for a

given strain or species. Small marker datasets allows for fast searching, but a sufficiently

sensitive detection of low abundance species may require prohibitively high read coverage.

The loss of sensitivity also makes the detection of lower taxonomic levels more difficult.

Full genomic databases, on the other hand, allow a sufficiently sensitive detection at lower

read coverage values, but the search time may become prohibitively long because a large

number of identical sequences are present in the database (redundancy caused by common

sequence parts).

DOI:10.15774/PPKE.ITK.2014.011

85

Parallel to identification by NGS, the methods of in vitro identifications also need unique

markers, especially PCR primers, for various taxa. In addition to the condition to ubiquity,

efficient primers need to have certain physicochemical properties, like stability, melting

point etc., which are required for the PCR reaction. The summary of these conditions is

beyond the scope of this thesis; we can find good descriptions in [221, 222]. Briefly, when

the goal is to design efficient primers for PCR identification, unique sequences of a marker

dataset are processed further by primer design program that will select a subset of potential

sequences.

From this brief introduction it is conspicuous that one needs to find the right balance

between database size, sensitivity, taxonomic depth and search time. We will use these

principles for designing a) a taxon identification system that uses NGS reads for

metagenomic communities and b) a nearly non-redundant, comprehensive bacterial marker

database, suitable for marker selection and primer design.

3.3.1 The marker database approach

There are several ways to construct specific marker databases, but the underlying

workflows are not always described clearly in the literature. We can roughly picture the

problem as a k-mer tiling: we cover a selected genome with overlapping words. As we

increase the size of the words, we find words that are ―unique‖ in sense that only the

selected genome contains it and no other genome or genome segment in the entire database.

Then, we simply concatenate our unique words into marker regions. We need to note that

―uniqueness‖ means that a certain word does not have an exact match, but more precisely,

we may be better of looking for words whose nearest neighbors are less than, say, 80%

identical. In order to find unique words, we need, as an example, a) to check the occurrence

of all words in the database and preselect the unique ones, b) as we build up the tiling we

need to check if the actual word is in the preselected list of unique words.

This workflow is not practical since the number of potentially useful words (say 25 to 50

mers) is too large; it is not practical to search all of them in the database. The GSMer

DOI:10.15774/PPKE.ITK.2014.011

86

database uses an interesting workaround: It first establishes a set of redundant words that

occur only in more than one genome. Then it makes a dense 50mer tiling for the target

genome, and discards those words that contain one of the redundant words. This means that

the retained 50mer will have few close neighbors since all of their subsequences are

―unique‖ (i.e. have neighbors max 80% identical with them). This is thus a two step

procedure and generates a set of overlapping words that are not concatenated into longer

regions or ―contigs‖. In many cases, the number of unique sequences is too low, so the

procedure has to be repeated with longer unique words. In any case, this procedure

approaches the ―unique regions‖ from a below, i.e. finding relatively short words with very

high resolutions (dense tiling).

The approach we propose is to find the unique regions from above, i.e. make a sparse tiling

with longer words, say 100mers, offset by 20-50 nucleotides. There are relatively few such

words in a genome, i.e. the resulting set of words (in the range of a few hundred thousand

k-mers) is small as compared to the capacity of current aligners such as Bowtie. The

solution is then straightforward, we make a Bowtie search against a large comprehensive

database, using Taxoner, and simply identify the k-mers that have no sequence neighbors

above the level of, say 80% identity. Henceforward, we simply concatenate the words into

regions wherever possible. This analysis does not take prohibitively long times, it gives

long regions for strains, species or genera, i.e. for any desired taxonomic level.

It is useful to overview this seemingly trivial problem from the perspective of string

matching. According to a naive definition, a unique region of a genome is a substring that

does not occur in other database entries.

While this subsequence can be useful for finding the only database entry which it contains,

we immediately have to add it as a biological marker. This ―unique segment‖ should be

common to all individual members of a strain (or species), so we cannot use simplistic

terms like identity or non-identity, and we have to consider small local mutations,

sequencing errors, etc.

DOI:10.15774/PPKE.ITK.2014.011

87

So we are better off if we use approximate string matching terms, i.e. a marker substring

has to be at least x% identical with the genome of other organisms within its strain (or

positive group) and has to be less than y% identical with the genome of other organisms (or

negative group). It is easy to realize that this is a nearest neighbor definition where

distance/similarity-like measures and thresholds are used to determine group membership

(Figure 24).

The second problem is how we define the boundaries of a unique segment. Imagine we

have a unique region to start with – can we extend it and check whether or not the extended

segment still obeys our marker criteria? This is certainly possible; this is essentially how

BLAST finds HSPs between two sequences. For optimizing markers in an entire database

this may not be computationally feasible, but it is not even important. Namely, the identity

criterion is by and large arbitrary, and we can easily find regions that approximately match

this criterion, using a tiling approach.

For the construction of the GSM (genome specific marker) database, a dense tiling was

applied to the target genome using 50 nucleotide words, shifted by one nucleotide. Each

50mer was checked against a precomputed list of 18mer redundant words, that occurred in

at least two genomes. The 50mer was considered a marker (―GSM‖) if it did not contain

such a redundant word, in other words one would naively expect that it was less than 18/50

Figure 24: Logical scheme of identifying a query sequence as a marker using a nearest neighbor paradigm.

identity > x % identity < y %

query

+ group
- group

DOI:10.15774/PPKE.ITK.2014.011

88

= 36 % identical with anything else in the database. This is not true, however. Since a

50mer can contain two nonadjacent polymorphisms with respect to another genome, say at

positions 17 and 42, respectively, which will ensure that it is still 96% identical with

another sequence, but this 50mer still will be included by the GSMer procedure since it

does not contain any contiguous 18mers known as redundant words.

In order to exclude such cases, the GSMer database uses a second validation step, a

MEGABLAST screening that discards all 50mers that are more than 85% identical with

anything else in the database. Note that this is a three-step procedure (1: Build the database

of redundant words, 2: perform dense tiling of the each genome, exclude those 50mers that

contain redundant words, and 3: filter the results for 85% identity using BLAST). Steps 2

and 3 have to be performed for ALL genomes, and if the number of markers is below a

certain threshold (a minimum of 50 pieces of 50mer markers), they are repeated again for a

redundant database of larger words.

Because of the BLAST, searches and the iterative multistep filtering are a very time

consuming processes that are not particularly accurate in terms of the boundaries. Let‘s

imagine a single unique region of 100 residues within a genome. This region would be

covered by 100 – 50 +1 = 51 completely unique markers with zero identity to other

genomes, and further 7 markers would pass the 85% percent limit of the BLAST search on

either side of the regions (Figure 25). This is a total of 114 GSMs for a single region

(meaning 114 BLAST searches for this single region.

genome

100 nt

7 nt 7 nt

―first GSM window‖ ―last GSM window‖

Direction of window sliding

Figure 25: The outline of the GSMer procedure. A unique region of 100 nt is indicated shown in pink. Imagine

sliding a window of 50nt along the sequence. The first and last windows passing the < 85% threshold are indicated

by black lines.

DOI:10.15774/PPKE.ITK.2014.011

89

Because of the high computational load and the low accuracy of the boundaries, let‘s

consider an alternative procedure. We apply a sparse tiling to a genome; we cover it by

windows of 100 nt, offset by 20. It is easy to show (Figure 26), that wherever we place a

unique region within this roster, it will be covered by 2 consecutive windows. In other

words, it will be located within a region of 150nt, which is larger (―less accurate‖) than the

one noted in Figure 25. Nevertheless, the uncertainty of the boundaries is proportional with

the offset (average equals half of the offset), so the accuracy can be linearly improved as

we decrease the offset.

Based on this consideration we suggest the following, non-iterative procedure for building

a database of genome-specific markers.

1. Cover the target genome with a sparse tiling (say windows of 100nt, offset 50nt).

2. Do a similarity search using a fast aligner, such as Bowtie2, against the entire DNA

dbase. Exclude windows that have neighbors above a similarity threshold (say 70-

80%).

3. Concatenate overlapping windows.

The differences between this outline and the GSMer procedures are conspicuous: a)

similarity search is the only identification step; there is no need for building a pre-

computed database for filtering. b) A different similarity search process is used which is

optimal for the purpose. Namely, genome aligners look for minimal differences (as is

Figure 26: The outline of a sparse tiling procedure for marker identification. Note that the unique region (pink) can

overlap with a minimum of one, or a maximum of two tiling windows.

genome

100 nt

100 nt

100 nt

 Unique region, L=100 nt

Tiling windows, L=100 nt , offset = 50 nt.

DOI:10.15774/PPKE.ITK.2014.011

90

necessary here), while the much more time consuming BLAST programs used in GSMer

look for maximal similarities. c) More similarity searches are used, but this is not a problem

for the fast genome aligners. For instance, an average bacterial genome needs 100 000

Bowtie searches which allows one to process the database of complete genomes in 10 hours

on a Google Cloud virtual Machine server (n1-standard-8, 8 virtual CPUs (2.75 GCEUs)

and 30 GB of memory). In comparison, the search of testing the GSMer database on the

same computer would take a minimum of 30 days.

3.3.2 Production of markers for higher level taxa or other sequence groups

It is important to realize that the identification of marker segments follows the simplified

logics presented in Figure 24. In this scheme any two disjunct groups of genomes can be

selected as a pair of positive/negative groups. So we can generate markers for one strain

(positive group), vs. the rest of the database (negative group). But we can also generate

markers for one species vs. the rest of the database – these will be species level markers.

Using this definition, a species level marker is a sequence that appears in any of the

genomes belonging to the species. This type of definition is a set-union (Figure 27). But

conversely, we can collect marker windows that appear in all strains of a species, which

corresponds to the intersection of sets.

It is important to realize that the simple picture in Figure 27 does not hold for practical

situations. Namely, the union-type definition cannot be made easily non-redundant since

the marker regions never completely overlap, i.e. the marker dataset for a species may not

be much smaller than the sum of all strain-markers.

DOI:10.15774/PPKE.ITK.2014.011

91

On the other hand, Figure 27 illustrates two important points: i) we can define marker

regions, which appear in the genome of one strain but not in the other strains (the +group in

Figure 24 will be one strain, all others will be the –group). ii) The problem of strain-

specific identification is not an easy one. Namely, strains within a bacterial species can

differ in a large part of their genomes, so every isolate of a species can be roughly regarded

as a ―new strain‖.

3.3.3 Overview of the database production workflow

The marker database was obtained following the workflow shown in Figure 28. This

approach can be used either to create a marker database for taxonomy binning or just to

obtain unique segments of a sequence.

Strain A Strain B

Strain B

Strain A Strain B

Strain B

Figure 27: Two types of marker datasets, illustrated on a hypothetical species of 3 strains. Left: A set union type

definition, k-mers appearing in any of the 3 strains of the species. This is a non-redundant set, i.e. k-mers appearing in

more than one strain appear only once. Right: A set-intersection type definition, k-mers appearing in all 3 strains of the

species. Note that this is a much smaller set.

DOI:10.15774/PPKE.ITK.2014.011

92

Figure 28: Workflow for unique segments identification

The initial targets are the sequences in fasta format that will be processed for the unique

marker extraction. The sparse tilling over these sequences is executed using the

SplitFastaFile program included in the BioC library. This program cover the targets

sequences producing overlapped reads with length and offset entered as parameters.

The obtained reads are aligned with Bowtie2 using the Taxoner database. This procedure

will create the SAM alignments of the targets reads with the database. Bowtie2 can report a

number of alignments per reads (option -k) or just all of them (option -a). Reporting all

alignments per reads is a time consuming process that can delay the Bowtie2 runs from a

few hours to days. In our cases, we realized that results reporting all alignments and those

using just the first 2000 alignments are completely equal differing just in the runtime.

Therefore, the marker database was generated using the first 2000 alignments from Bowtie.

Then, the SAM files are processed by Taxoner for the taxon assignments using the score

parameter as input. This score parameter is used to set the maximum percent of identities

allowed between the target read and the database reads. Subsequently, from the taxon

assignments point of view, having a read assigned to the strain level means that the next

DOI:10.15774/PPKE.ITK.2014.011

93

aligned database segment to that reads fall below the 80% of identity. Following this idea,

the concatenated reads that will be assigned to any taxonomic level can be considered as

unique segments for that level.

Finally, the TaxonerAssemblerMarkerDB program, included in the BioC library, is used

to concatenate the reads using the Taxoner output creating the marker databases for the

different taxonomic ranks.

It should be noted that this approach can be used to compare sequences in order to know

how similar they are. For example, if the Taxoner database is created with the same targets

sequences, then, the workflow align the targets sequences again themselves. Consequently,

the concatenated reads that will be assigned to the different taxonomic level can be

considered as unique segments for that level. This is a useful procedure that can be used to

compare families, species or even genus for DNA studies.

3.3.4 Sequence comparison for the Burkholderia genus

The aforementioned workflow was used to create a marker database for the Burkholderia

genus. Accordingly with the previous section, using the same targets sequences as Taxoner

database the workflow will return the unique segments of those targets for each taxonomic

level. This kind of study shows how similar the strain and species inside a genus are.

Then, 39 Burkholderia sequences were used from the Complete Genomes database with a

total of 145,993,599 bp. We executed our workflow varying the Taxoner score from 0.05 to

0.99. As we commented previously, lower Taxoner score turn out in more specificity of the

unique segments assigned to each taxonomic level.

DOI:10.15774/PPKE.ITK.2014.011

94

The Figure 29 shows the variation of the bp assigned to each taxonomic level against the

Taxoner score. It can be seen that lower scores reduce the bp assigned to the strain (no

rank) and species level, but at the same time, it increases the bp assigned to the genus and

species group. Moreover, reducing the Taxoner score allows the program to collect more

alignments per read. Then, for those collected alignments, the lowest common ancestor

algorithm is executed assigning a taxa to the read. Therefore, we can say that the reads

assigned to a taxonomic level are unique for that level if more alignments per read are

collected.

Finally, the Table 17 shows the full distribution of bp for the Taxoner score 0.50. Here we

can see the variability in the sequences among the taxonomic groups. There are special

cases like Burkholderia mallei species which does not have any unique segment between

Figure 29: The figure shows the percent of bp assigned against the Taxoner score for the Burkholderia genus. After the

score of 0.30 the Taxoner returns the same result.

DOI:10.15774/PPKE.ITK.2014.011

95

the strains whereas, Burkholderia rhizoxinica HKI 454 has 97.78% of unique sequences.

Additionally, we can say the 32.72% of the sequences is similar for the whole genus.

DOI:10.15774/PPKE.ITK.2014.011

96

Table 17: The table shows the percent of bp assigned to the taxonomic levels for the Burkholderia genus using a

Taxoner score of 0.50. Note that the table continues in the next page. They should be seen in parallel.

GENUS SPECIES GROUP

Taxonomy Length
bp

assigned

% of

total bp
Taxonomy Length

bp

assigned

% of

species

group

bp

Burkholderia 142545178 46642275 32.72

cepacia complex 43447291 6232175 14.34

pseudomallei

Group
58085018 37817075 65.11

DOI:10.15774/PPKE.ITK.2014.011

97

SPECIES STRAIN

Taxonomy Length
bp

assigned

% of

species

bp

Taxonomy Length
bp

assigned

% of

strain

bp

lata 3694126 1084400 29.35

ambifaria 7000128 944125 13.49
 ambifaria AMMD 3556545 451,675 12.70

 ambifaria MC40-6 3443583 358,000 10.40

cenocepacia 14181430 2764525 19.49

 cenocepacia AU 1054 3294563 427,400 12.97

 cenocepacia HI2424 3483902 81,700 2.35

 cenocepacia J2315 3870082 747,975 19.33

 cenocepacia MC0-3 3532883 305,125 8.64

 sp. CCGE1001 4063449 566175 13.93

 sp. CCGE1002 3518940 2643600 75.12

 sp. CCGE1003 4077097 2707675 66.41

 cepacia GG4 3463655 866,475 25.02

 multivorans ATCC 17616 3448466 1,523,800 44.19

mallei 13961522 21575 0.15

 mallei ATCC 23344 3510148 0 0.00

 mallei NCTC 10229 3458208 0 0.00

 mallei NCTC 10247 3495687 0 0.00

 mallei SAVP1 3497479 0 0.00

thailandensis 7776995 309250 3.98
 thailandensis E264 3809201 948,500 24.90

 thailandensis MSMB121 3967794 1,127,700 28.42

 pseudomallei 668 3912947 106,875 2.73

 pseudomallei BPC006 4001777 30,075 0.75

 pseudomallei K96243 4074542 133,275 3.27

 pseudomallei MSHR305 4054155 113,300 2.79

 pseudomallei MSHR346 4098576 106,125 2.59

 pseudomallei NCTC

13179 3997089 103,300 2.58

 pseudomallei 1026b 4092668 36250 0.89

 pseudomallei 1106a 3988455 31950 0.80

 pseudomallei 1710b 4126292 120050 2.91

 sp. RPE64 3013410 2198250 72.95

 sp. YI23 3131280 2300525 73.47

 sp. KJ006 3145156 140225 4.46

 phenoliruptrix BR3459a 4152217 651,300 15.69

 phymatum STM815 3479187 3,019,225 86.78

 phytofirmans PsJN 4467537 2,771,075 62.03

 gladioli BSR3 4413616 3,439,525 77.93

 glumae BGR1 3906507 2,912,000 74.54

 vietnamiensis G4 3652814 612,075 16.76

 xenovorans LB400 4895836 3,189,000 65.14

 rhizoxinica HKI 454 2755309 2694050 97.78

DOI:10.15774/PPKE.ITK.2014.011

98

3.3.5 Marker database for the Complete Genomes

The Complete Genomes from the NCBI was used to generate a marker list using as

Taxoner database the bacteria subset of the nt file. The Table 18 shows the data of the

target sequences used as input in our workflow. The reads are 100 bp long with an offset of

25 bp.

Table 18: Complete genomes data downloaded from the NCBI FTP site 03/24/2014.

Target Group Sequences bp No. reads

Complete genomes 5,190 9,572,092,555 127,628,722

Figure 30: Percent of bp assigned per Taxoner score for the Complete Genomes using the nt file as Taxoner

database.

The Figure 30 shows the percent of bp assigned using different Taxoner score values.

Varying this score does not produce a considerable change in the number of bp assigned.

However, as we can see in the Figure 31, the score redistribute the reads among the

Taxonomic ranks depending of the percent of identity between the targets reads and the

DOI:10.15774/PPKE.ITK.2014.011

99

Taxoner database. The reads are switched from the strain and species ranks to the genus

when the score change from 0.90 to 0.50. As was explained before, the reduction of the

Taxoner score increase the percent of identity of the reads that are assigned to any

Taxonomic rank.

Figure 31: Distribution of the assigned bp against the Taxonomic ranks using different Taxoner scores.

The potential uses of a marker database fall in two main categories: i) Taxon identification

by computational analysis. This is the approach initiated by Metaphlan [98] and adopted by

other programs such as GSMer. ii) Designing diagnostic tools such as PCR primers of

microarray tests. This is an important practical application since the identification of

potential pathogens, microbial contaminants is crucial in many areas. With these areas in

mind, we developed a server application http://pongor.itk.ppke.hu/markerdb that has the

following functionalities:

DOI:10.15774/PPKE.ITK.2014.011

100

a) Defining marker sequences unique for bacterial groups, i.e. finding markers that are

diagnostic for a strain, or a group of strains. This task can include running primer

selection algorithms on various subgroups of the marker database.

b) Defining differential markers that can distinguish (group of) sequences from

another group of sequences. This is important when we try to detect one particular

(group of) strain(s) in the present of closely related strains.

3.3.6 Run times and space complexity

Creating a marker database from genomes sequences can be time consuming even if

powerful computers are used. Table 19 shows the total time for different set of input data. It

should be notice that in the case of general databases like NCBI NT a pre-filter step is

needed in order to extract the target taxonomies.

The workflow‘s space complexity depends on the different stages. The biggest space, both

RAM and hard disk is required by Bowtie when it is doing the alignments. It requires 8.0

GB of RAM minimum and 500 GB of disk space.

Table 19: Run times for the creation of the Marker database for different set of input data

Input DB
Initial
Size
(GB)

Selecting
microbial

entries
(Hour)

Creation of
tiling

segments
(Hour)

Creation of
Taxoner-

Bowtie DB
(Hour)

Identifying
unique

segments,
Taxoner
(Hour)

Concatenation of
unique segments

(Hour)

Total
Time

(Hour)

NCBI nt 60 4 6 4 18 6 42

Complete
Bacterial
Genomes

9.4 - 1.5 2 9 3 15.5

Burkholderia
genus 0.14 - 0.1 0.1 0.002 0.1 0.3

3.3.7 Summary

During this section we presented a workflow for the generation of a DNA marker database

from (group of) sequences and a Taxoner database. This workflow allows the identification

of unique DNA segments among the (group of) sequences targets. Also, it can be use for

DOI:10.15774/PPKE.ITK.2014.011

101

sequence comparison from taxonomic groups providing a taxa classification of DNA

segments.

The workflow uses a group of in-house developed programs and the Bowtie2 aligner. The

programs developed by our group are freely available through the Google Code Platform.

We show a complete comparison for the Burkholderia genus using the workflow and the

percentages for each taxonomic level.

Additionally, a marker database was created from the Complete Genomes from the NCBI.

This database is freely available through the project web site.

Finally, a web server was developed to compare groups of sequences using an automatic

pipeline based on the workflow aforementioned.

DOI:10.15774/PPKE.ITK.2014.011

102

4 Conclusion

The integration and fast processing of biomolecular data are crucial topics for the Life Sciences.

An avalanche of data is generated continuously by the new experimental technologies producing

new kinds of data or simply modifying the existent one. Next-generation sequencing (NGS)

technologies can sequence the complete genome of isolated organisms or complex mix of them

at a very low cost. It is becoming a standard approach to detect individual species or pathogenic

strains of microorganisms. Computer programs used in the NGS community have to balance

between speed and sensitivity and as a result, species or strain level identification is often

inaccurate and low abundance pathogens can sometimes be missed. Parallel to that,

Bioinformatics‘ tools are changing slowly its way of access, manage and integrate the upcoming

data but this evolution is not fast enough.

In this thesis, we presented a) an open-source framework for biological data integration

(JBioWH), b) a pipeline of programs (Taxoner) for taxonomic binning or metagenomics

analysis of complex mix of NGS data and c) a workflow for DNA sequencing comparison that

can be used for the generation of marker databases or just for identification of unique DNA

segments from a group of target sequences.

The JBioWH framework is a mature computational system freely available that can be used to

answer complex biological questions, or just, as supplier system of integrative data to others

client applications. It can be used for intensive querying of multiple data sources and the creation

of streamlined task-specific data sets on local PCs.

JBioWH is based on a MySQL relational database and provides four kind of access to the

integrated data: a) direct access to the relational schema (SQL), b) programmatically access

through the Java API (java persistence model and search classes), c) graphical access through the

Desktop Client and d) html access through the webservices (JSON and XML).

The system has a modular design that can be easily modified accordingly to the biological

context of the problem. Therefore, JBioWH can be tailored for use in specific circumstances,

including the handling of massive queries for high-throughput analyses or CPU intensive

DOI:10.15774/PPKE.ITK.2014.011

103

calculations. At present, JBioWH contain parsers for retrieving data from 24 public databases

(e.g. NCBI, KEGG, etc) [223].

Finally, the JBioWH framework has been used by several Bioinformatics projects associated to

different OMICS disciplines like genomics, proteomics and drug design.

Taxoner is a pipeline of programs designed to perform taxonomic binning or metagenomics

analysis of NGS data. Its main advantage over the equivalent programs is related to the correct

identification of unknown strains. Therefore, this approach can be used for the detection of

hazardous pathogens that requires strain level identification. Multiple datasets were analyzed by

Taxoner showing its advantages over the rest of available programs. When applied to

metagenomic datasets, Taxoner can provide a functional summary of the genes mapped and can

provide strain level identification as shown [224]. It is much faster and at times more accurate

than BLAST-based evaluation schemes as those used by the MEGAN program meaning that it

can be run on desktop or laptop computers. The Taxoner source code is freely available and a

demo server was published for demonstration porpoises.

Finally, a workflow for DNA sequencing comparison and DNA markers identification, based on

in-house developed programs, that include JBioWH and Taxoner, was presented. DNA markers

are unique nucleotide sequences allowing the detection of certain organisms and to distinguish

those organisms from all other species, using in silico or experimental technologies. Markers can

be used as the basis for diagnostic assays to detect microbes in environmental or clinical

samples.

The workflow developed was used to study sequences similarities among the complete genomes

of the Burkholderia genus. As a result, taxonomic levels were assigned to unique DNA segments

of the members of this genus. This study shows the variability in the sequences among the

taxonomic groups. There are special cases like Burkholderia mallei species which does not

contain a single unique segment in their strains and on the other hand, Burkholderia rhizoxinica

HKI 454 has 97.78% of unique sequences. Additionally, we can say that the 32.72% of the

sequences is similar for the whole genus.

Lastly, a marker database was generated from the NCBI Complete Genomes using this

workflow. 5190 sequences were included, they generated 127,628,722 reads after the windows

DOI:10.15774/PPKE.ITK.2014.011

104

tiling. The study showed that the number of bp assigned by Taxoner does not change with the

variation of the Taxoner‘s score. Just the distributions of the DNA segments among the

taxonomic levels change accordingly with the percent of identity between the reads and the

Taxoner database. The workflow description, programs and flat files of the marker database are

freely available. Also, a web site was published for demonstration purposes.

DOI:10.15774/PPKE.ITK.2014.011

105

DOI:10.15774/PPKE.ITK.2014.011

106

5 References

1. Kuzniar A, Lin K, He Y, Nijveen H, Pongor S, Leunissen JAM: ProGMap: an

integrated annotation resource for protein orthology. Nucleic acids research 2009,

37:W428-W434.

2. Longtin R: An Integrated Approach : Systems Biology Seeks Order in Complexity.

Journal of the National Cancer Institute 2005, 97:6-8.

3. Medina MÁ: Systems biology for molecular life sciences and its impact in

biomedicine. Cellular and molecular life sciences : CMLS 2013, 70:1035-1053.

4. Sauer U, Heinemann M, Zamboni N: Genetics. Getting closer to the whole picture.

Science (New York, NY) 2007, 316:550-551.

5. Joyce AR, Palsson BØ: The model organism as a system: integrating 'omics' data

sets. Nature reviews Molecular cell biology 2006, 7:198-210.

6. Chuang H-Y, Hofree M, Ideker T: A decade of systems biology. Annual review of cell

and developmental biology 2010, 26:721-744.

7. Li H, Homer N: A survey of sequence alignment algorithms for next-generation

sequencing. Briefings in bioinformatics 2010, 11(5):473-483.

8. Metzker ML: Sequencing technologies - the next generation. Nature reviews Genetics

2010, 11(1):31-46.

9. Malhis N, Butterfield YS, Ester M, Jones SJ: Slider--maximum use of probability

information for alignment of short sequence reads and SNP detection. Bioinformatics

2009, 25(1):6-13.

10. Malhis N, Jones SJ: High quality SNP calling using Illumina data at shallow

coverage. Bioinformatics 2010, 26(8):1029-1035.

11. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search

tool. Journal of molecular biology 1990, 215:403-410.

12. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ:

Gapped BLAST and PSI-BLAST: a new generation of protein database search

programs. Nucleic acids research 1997, 25(17):3389-3402.

13. Smith TF, Waterman MS: Identification of common molecular subsequences. Journal

of molecular biology 1981, 147:195-197.

14. Gotoh O: An improved algorithm for matching biological sequences. Journal of

molecular biology 1982, 162(3):705-708.

15. Li M, Ma B, Kisman D, Tromp J: Patternhunter II: highly sensitive and fast

homology search. Journal of bioinformatics and computational biology 2004, 2(3):417-

439.

16. Ma B, Tromp J, Li M: PatternHunter: faster and more sensitive homology search.

Bioinformatics 2002, 18(3):440-445.

17. Wu TD, Nacu S: Fast and SNP-tolerant detection of complex variants and splicing in

short reads. Bioinformatics 2010, 26(7):873-881.

18. Homer N, Merriman B, Nelson SF: BFAST: an alignment tool for large scale genome

resequencing. PloS one 2009, 4(11):e7767.

19. Li R, Li Y, Kristiansen K, Wang J: SOAP: short oligonucleotide alignment program.

Bioinformatics 2008, 24(5):713-714.

DOI:10.15774/PPKE.ITK.2014.011

107

20. Jiang H, Wong WH: SeqMap: mapping massive amount of oligonucleotides to the

genome. Bioinformatics 2008, 24(20):2395-2396.

21. Li H, Ruan J, Durbin R: Mapping short DNA sequencing reads and calling variants

using mapping quality scores. Genome research 2008, 18(11):1851-1858.

22. Rumble SM, Lacroute P, Dalca AV, Fiume M, Sidow A, Brudno M: SHRiMP: accurate

mapping of short color-space reads. PLoS computational biology 2009, 5(5):e1000386.

23. Weese D, Holtgrewe M, Reinert K: RazerS 3: faster, fully sensitive read mapping.

Bioinformatics 2012, 28(20):2592-2599.

24. Weese D, Emde AK, Rausch T, Doring A, Reinert K: RazerS--fast read mapping with

sensitivity control. Genome research 2009, 19(9):1646-1654.

25. Burkhardt S, Kärkkäinen J: Better Filtering with Gapped q-Grams. Fundamenta

Informaticae 2003, 56(1):51-70.

26. Jokinen P, Ukkonen E: Two algorithms for approxmate string matching in static

texts. In: Mathematical Foundations of Computer Science 1991. Edited by Tarlecki A,

vol. 520: Springer Berlin Heidelberg; 1991: 240-248.

27. Cao X, Li S, Tung AH: Indexing DNA Sequences Using q-Grams. In: Database

Systems for Advanced Applications. Edited by Zhou L, Ooi B, Meng X, vol. 3453:

Springer Berlin Heidelberg; 2005: 4-16.

28. Farrar M: Striped Smith-Waterman speeds database searches six times over other

SIMD implementations. Bioinformatics 2007, 23(2):156-161.

29. Slater GS, Birney E: Automated generation of heuristics for biological sequence

comparison. BMC bioinformatics 2005, 6:31.

30. Eppstein D, Galil Z, Giancarlo R, Italiano GF: Sparse dynamic programming. In:

Proceedings of the first annual ACM-SIAM symposium on Discrete algorithms; San

Francisco, California, USA. 320238: Society for Industrial and Applied Mathematics

1990: 513-522.

31. Myers E: AnO(ND) difference algorithm and its variations. Algorithmica 1986, 1(1-

4):251-266.

32. Abouelhoda MI, Kurtz S, Ohlebusch E: Replacing suffix trees with enhanced suffix

arrays. Journal of Discrete Algorithms 2004, 2(1):53-86.

33. Ferragina P, Manzini G: Opportunistic data structures with applications. In:

Foundations of Computer Science, 2000 Proceedings 41st Annual Symposium on: 2000

2000. 390-398.

34. Burrows M, Wheeler DJ: A block-sorting lossless data compression algorithm. In:

Technical report 124. Digital Equipment Corporation, Palo Alto CA; 1994.

35. Huffman DA: A Method for the Construction of Minimum-Redundancy Codes.

Proceedings of the IRE 1952:1098–1102.

36. Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler

transform. Bioinformatics 2009, 25(14):1754-1760.

37. Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient

alignment of short DNA sequences to the human genome. Genome biology 2009,

10(3):R25.

38. Miller JR, Koren S, Sutton G: Assembly algorithms for next-generation sequencing

data. Genomics 2010, 95(6):315-327.

39. Staden R: A strategy of DNA sequencing employing computer programs. Nucleic

acids research 1979, 6(7):2601-2610.

DOI:10.15774/PPKE.ITK.2014.011

108

40. Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ, Kravitz SA,

Mobarry CM, Reinert KH, Remington KA et al: A whole-genome assembly of

Drosophila. Science 2000, 287(5461):2196-2204.

41. Jaffe DB, Butler J, Gnerre S, Mauceli E, Lindblad-Toh K, Mesirov JP, Zody MC, Lander

ES: Whole-genome sequence assembly for mammalian genomes: Arachne 2. Genome

research 2003, 13(1):91-96.

42. Batzoglou S, Jaffe DB, Stanley K, Butler J, Gnerre S, Mauceli E, Berger B, Mesirov JP,

Lander ES: ARACHNE: a whole-genome shotgun assembler. Genome research 2002,

12(1):177-189.

43. Huang X, Yang SP: Generating a genome assembly with PCAP. Current protocols in

bioinformatics / editoral board, Andreas D Baxevanis [et al] 2005, Chapter 11:Unit11

13.

44. Jorde L, Little P, Dunn M, Subramaniam S: Encyclopedia of Genetics, Genomics,

Proteomics and Bioinformatics; 2005.

45. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J,

Braverman MS, Chen YJ, Chen Z et al: Genome sequencing in microfabricated high-

density picolitre reactors. Nature 2005, 437(7057):376-380.

46. Hernandez D, Francois P, Farinelli L, Osteras M, Schrenzel J: De novo bacterial

genome sequencing: millions of very short reads assembled on a desktop computer.

Genome research 2008, 18(5):802-809.

47. Pop M: Genome assembly reborn: recent computational challenges. Briefings in

bioinformatics 2009, 10(4):354-366.

48. Pevzner PA, Tang H: Fragment assembly with double-barreled data. Bioinformatics

2001, 17 Suppl 1:S225-233.

49. Zhang Y, Waterman MS: An Eulerian path approach to local multiple alignment for

DNA sequences. Proceedings of the National Academy of Sciences of the United States

of America 2005, 102(5):1285-1290.

50. Pevzner PA, Tang H, Tesler G: De novo repeat classification and fragment assembly.

Genome research 2004, 14(9):1786-1796.

51. Zerbino DR, Birney E: Velvet: Algorithms for de novo short read assembly using de

Bruijn graphs. Genome research 2008, 18(5):821-829.

52. Zerbino DR, McEwen GK, Margulies EH, Birney E: Pebble and rock band: heuristic

resolution of repeats and scaffolding in the velvet short-read de novo assembler.

PloS one 2009, 4(12):e8407.

53. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I: ABySS: a parallel

assembler for short read sequence data. Genome research 2009, 19(6):1117-1123.

54. Maccallum I, Przybylski D, Gnerre S, Burton J, Shlyakhter I, Gnirke A, Malek J,

McKernan K, Ranade S, Shea TP et al: ALLPATHS 2: small genomes assembled

accurately and with high continuity from short paired reads. Genome biology 2009,

10(10):R103.

55. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K et al: De

novo assembly of human genomes with massively parallel short read sequencing.

Genome research 2010, 20(2):265-272.

56. Ellegren H: Genome sequencing and population genomics in non-model organisms.

Trends in ecology & evolution 2014, 29:51-63.

DOI:10.15774/PPKE.ITK.2014.011

109

57. Hwang D, Rust AG, Ramsey S, Smith JJ, Leslie DM, Weston AD, de Atauri P, Aitchison

JD, Hood L, Siegel AF et al: A data integration methodology for systems biology.

Proceedings of the National Academy of Sciences of the United States of America 2005,

102:17296-17301.

58. Hwang D, Smith JJ, Leslie DM, Weston AD, Rust AG, Ramsey S, de Atauri P, Siegel

AF, Bolouri H, Aitchison JD et al: A data integration methodology for systems

biology: experimental verification. Proceedings of the National Academy of Sciences of

the United States of America 2005, 102:17302-17307.

59. Toomula N, Kumar A, Kumar D S, Bheemidi VS: Biological Databases- Integration of

Life Science Data. Journal of Computer Science & Systems Biology 2012, 04:87-92.

60. Heath AP, Kavraki LE: Computational challenges in systems biology. Computer

Science Review 2009, 3:1-17.

61. von Mering C, Bork P: Teamed up for transcription. In: Nature. vol. 417; 2002: 797-

798.

62. Date CJ: An Introduction to Database Systems (8th Edition). 2003:1024.

63. Fernández-Suárez XM, Rigden DJ, Galperin MY: The 2014 Nucleic Acids Research

Database Issue and an updated NAR online Molecular Biology Database Collection.
Nucleic acids research 2013:1-6.

64. Wren JD, Bateman A: Databases, data tombs and dust in the wind. Bioinformatics

(Oxford, England) 2008, 24:2127-2128.

65. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult

CJ, Tomb JF, Dougherty BA, Merrick JM et al: Whole-genome random sequencing

and assembly of Haemophilus influenzae Rd. Science 1995, 269:496-512.

66. Coordinators NR: Database resources of the National Center for Biotechnology

Information. Nucleic acids research 2012, 41:8-20.

67. Hall N: Advanced sequencing technologies and their wider impact in microbiology.

The Journal of experimental biology 2007, 210:1518-1525.

68. Benson Da, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW:

GenBank. Nucleic acids research 2013, 41:D36-42.

69. Kosuge T, Mashima J, Kodama Y, Fujisawa T, Kaminuma E, Ogasawara O, Okubo K,

Takagi T, Nakamura Y: DDBJ progress report: a new submission system for leading

to a correct annotation. Nucleic acids research 2013:gkt1066-.

70. Pakseresht N, Alako B, Amid C, Cerdeño-Tárraga A, Cleland I, Gibson R, Goodgame N,

Gur T, Jang M, Kay S et al: Assembly information services in the European

Nucleotide Archive. Nucleic acids research 2013, 42:D38-D43.

71. Maglott D, Ostell J, Pruitt KD, Tatusova T: Entrez Gene: gene-centered information at

NCBI. Nucleic acids research 2011, 39:D52-D57.

72. Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K, Chetvernin V,

Church DM, DiCuccio M, Federhen S et al: Database resources of the National Center

for Biotechnology Information. Nucleic acids research 2011, 39:D38-D51.

73. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M: Data,

information, knowledge and principle: back to metabolism in KEGG. Nucleic acids

research 2013:1-7.

74. Pagani I, Liolios K, Jansson J, Chen I-Ma, Smirnova T, Nosrat B, Markowitz VM,

Kyrpides NC: The Genomes OnLine Database (GOLD) v.4: status of genomic and

DOI:10.15774/PPKE.ITK.2014.011

110

metagenomic projects and their associated metadata. Nucleic acids research 2012,

40:D571-579.

75. Flicek P, Amode MR, Barrell D, Beal K, Billis K, Brent S, Carvalho-Silva D, Clapham P,

Coates G, Fitzgerald S et al: Ensembl 2014. Nucleic acids research 2014, 42:D749-755.

76. Field D, Amaral-Zettler L, Cochrane G, Cole JR, Dawyndt P, Garrity GM, Gilbert J,

Glöckner FO, Hirschman L, Karsch-Mizrachi I et al: The Genomic Standards

Consortium. PLoS biology 2011, 9:e1001088.

77. Cole JR, Wang Q, Fish Ja, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A,

Kuske CR, Tiedje JM: Ribosomal Database Project: data and tools for high

throughput rRNA analysis. Nucleic acids research 2014, 42:D633-642.

78. Kozomara A, Griffiths-Jones S: miRBase: annotating high confidence microRNAs

using deep sequencing data. Nucleic acids research 2014, 42:D68-73.

79. Bartel DP, Lee R, Feinbaum R: MicroRNAs : Genomics , Biogenesis , Mechanism ,

and Function Genomics : The miRNA Genes. Cell 2004, 116:281-297.

80. Li Y, Qiu C, Tu J, Geng B, Yang J, Jiang T, Cui Q: HMDD v2.0: a database for

experimentally supported human microRNA and disease associations. Nucleic acids

research 2014, 42:D1070-1074.

81. Paraskevopoulou MD, Georgakilas G, Kostoulas N, Reczko M, Maragkakis M,

Dalamagas TM, Hatzigeorgiou AG: DIANA-LncBase: experimentally verified and

computationally predicted microRNA targets on long non-coding RNAs. Nucleic

acids research 2013, 41:D239-245.

82. Nagaswamy U, Larios-Sanz M, Hury J, Collins S, Zhang Z, Zhao Q, Fox GE: NCIR: a

database of non-canonical interactions in known RNA structures. Nucleic acids

research 2002, 30:395-397.

83. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM: Molecular biological

access to the chemistry of unknown soil microbes: a new frontier for natural

products. Chemistry & biology 1998, 5(10):R245-249.

84. Prakash T, Taylor TD: Functional assignment of metagenomic data: challenges and

applications. Briefings in bioinformatics 2012, 13(6):711-727.

85. Petrosino JF, Highlander S, Luna RA, Gibbs RA, Versalovic J: Metagenomic

pyrosequencing and microbial identification. Clinical chemistry 2009, 55(5):856-866.

86. Riesenfeld CS, Schloss PD, Handelsman J: Metagenomics: genomic analysis of

microbial communities. Annual review of genetics 2004, 38:525-552.

87. Wooley JC, Godzik A, Friedberg I: A primer on metagenomics. PLoS computational

biology 2010, 6(2):e1000667.

88. Kunin V, Copeland A, Lapidus A, Mavromatis K, Hugenholtz P: A bioinformatician's

guide to metagenomics. Microbiology and molecular biology reviews : MMBR 2008,

72(4):557-578, Table of Contents.

89. Williamson SJ, Rusch DB, Yooseph S, Halpern AL, Heidelberg KB, Glass JI, Andrews-

Pfannkoch C, Fadrosh D, Miller CS, Sutton G et al: The Sorcerer II Global Ocean

Sampling Expedition: metagenomic characterization of viruses within aquatic

microbial samples. PloS one 2008, 3(1):e1456.

90. Mavromatis K, Ivanova N, Barry K, Shapiro H, Goltsman E, McHardy AC, Rigoutsos I,

Salamov A, Korzeniewski F, Land M et al: Use of simulated data sets to evaluate the

fidelity of metagenomic processing methods. Nat Meth 2007, 4(6):495-500.

DOI:10.15774/PPKE.ITK.2014.011

111

91. Wommack KE, Bhavsar J, Ravel J: Metagenomics: read length matters. Applied and

environmental microbiology 2008, 74(5):1453-1463.

92. Nakamura S, Yang CS, Sakon N, Ueda M, Tougan T, Yamashita A, Goto N, Takahashi

K, Yasunaga T, Ikuta K et al: Direct metagenomic detection of viral pathogens in

nasal and fecal specimens using an unbiased high-throughput sequencing approach.

PloS one 2009, 4(1):e4219.

93. Breitbart M, Hewson I, Felts B, Mahaffy JM, Nulton J, Salamon P, Rohwer F:

Metagenomic analyses of an uncultured viral community from human feces. Journal

of bacteriology 2003, 185(20):6220-6223.

94. Carlton RM, Noordman WH, Biswas B, de Meester ED, Loessner MJ: Bacteriophage

P100 for control of Listeria monocytogenes in foods: genome sequence,

bioinformatic analyses, oral toxicity study, and application. Regulatory toxicology

and pharmacology : RTP 2005, 43(3):301-312.

95. Mohammed MH, Ghosh TS, Singh NK, Mande SS: SPHINX--an algorithm for

taxonomic binning of metagenomic sequences. Bioinformatics 2011, 27(1):22-30.

96. Droge J, McHardy AC: Taxonomic binning of metagenome samples generated by

next-generation sequencing technologies. Briefings in bioinformatics 2012, 13(6):646-

655.

97. Huson DH, Richter DC, Mitra S, Auch AF, Schuster SC: Methods for comparative

metagenomics. BMC Bioinformatics 2009, 10 Suppl 1:S12.

98. Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C:

Metagenomic microbial community profiling using unique clade-specific marker

genes. Nature methods 2012, 9(8):811-814.

99. Koslicki D, Foucart S, Rosen G: WGSQuikr: fast whole-genome shotgun

metagenomic classification. PloS one 2014, 9(3):e91784.

100. Donoho DL: For most large underdetermined systems of linear equations the

minimal Communications on Pure and Applied Mathematics 2006, 59(6):797-829.

101. Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2. Nat Methods

2012, 9(4):357-359.

102. Li H, Durbin R: Fast and accurate long-read alignment with Burrows-Wheeler

transform. Bioinformatics 2010, 26(5):589-595.

103. Hach F, Hormozdiari F, Alkan C, Birol I, Eichler EE, Sahinalp SC: mrsFAST: a cache-

oblivious algorithm for short-read mapping. Nat Methods 2010, 7(8):576-577.

104. Huson DH, Auch AF, Qi J, Schuster SC: MEGAN analysis of metagenomic data.

Genome Res 2007, 17(3):377-386.

105. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA,

Oakley BB, Parks DH, Robinson CJ et al: Introducing mothur: open-source, platform-

independent, community-supported software for describing and comparing

microbial communities. Appl Environ Microbiol 2009, 75(23):7537-7541.

106. Monzoorul Haque M, Ghosh TS, Komanduri D, Mande SS: SOrt-ITEMS: Sequence

orthology based approach for improved taxonomic estimation of metagenomic

sequences. Bioinformatics 2009, 25(14):1722-1730.

107. Haynes PA, Gygi SP, Figeys D, Aebersold R: Proteome analysis: biological assay or

data archive? Electrophoresis 1998, 19:1862-1871.

108. Miao Q, Zhang C-C, Kast J: Chemical proteomics and its impact on the drug

discovery process. Expert review of proteomics 2012, 9:281-291.

DOI:10.15774/PPKE.ITK.2014.011

112

109. Aebersold R, Mann M: Mass spectrometry-based proteomics. Nature 2003, 422:198-

207.

110. Webb-Robertson BJ, Cannon WR: Current trends in computational inference from

mass spectrometry-based proteomics. Briefings in bioinformatics 2007, 8(5):304-317.

111. Consortium TU: Activities at the Universal Protein Resource (UniProt). Nucleic acids

research 2014, 42:D191-198.

112. Pruitt KD, Maglott DR: RefSeq and LocusLink: NCBI gene-centered resources.

Nucleic acids research 2001, 29:137-140.

113. Rose PW, Bi C, Bluhm WF, Christie CH, Dimitropoulos D, Dutta S, Green RK, Goodsell

DS, Prlic A, Quesada M et al: The RCSB Protein Data Bank: new resources for

research and education. Nucleic acids research 2013, 41:D475-482.

114. Berman H, Henrick K, Nakamura H, Markley JL: The worldwide Protein Data Bank

(wwPDB): ensuring a single, uniform archive of PDB data. Nucleic acids research

2007, 35:D301-D303.

115. Suzek BE, Huang H, McGarvey P, Mazumder R, Wu CH: UniRef: comprehensive and

non-redundant UniProt reference clusters. Bioinformatics 2007, 23:1282-1288.

116. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A,

Hetherington K, Holm L, Mistry J et al: Pfam: the protein families database. Nucleic

acids research 2014, 42:D222-230.

117. Fitch WM: Distinguishing homologous from analogous proteins. Systematic zoology

1970, 19:99-113.

118. Tatusov RL: A Genomic Perspective on Protein Families. Science 1997, 278:631-637.

119. Jensen LJ, Julien P, Kuhn M, von Mering C, Muller J, Doerks T, Bork P: eggNOG:

automated construction and annotation of orthologous groups of genes. Nucleic

acids research 2008, 36:D250-D254.

120. Powell S, Forslund K, Szklarczyk D, Trachana K, Roth A, Huerta-Cepas J, Gabaldón T,

Rattei T, Creevey C, Kuhn M et al: eggNOG v4.0: nested orthology inference across

3686 organisms. Nucleic acids research 2014, 42:D231-239.

121. Hatzimanikatis V, Li C, Ionita Ja, Henry CS, Jankowski MD, Broadbelt LJ: Exploring

the diversity of complex metabolic networks. Bioinformatics (Oxford, England) 2005,

21:1603-1609.

122. Griffin JL, Bollard ME: Metabonomics: its potential as a tool in toxicology for safety

assessment and data integration. Curr Drug Metab 2004, 5:389-398.

123. Yang GX, Li X, Snyder M: Investigating metabolite–protein interactions: An

overview of available techniques. Methods 2012, 57:459-466.

124. Chatr-Aryamontri A, Breitkreutz B-J, Heinicke S, Boucher L, Winter A, Stark C, Nixon

J, Ramage L, Kolas N, O'Donnell L et al: The BioGRID interaction database: 2013

update. Nucleic acids research 2013, 41:D816-823.

125. Stark C, Breitkreutz B-j, Reguly T, Boucher L, Breitkreutz A, Tyers M: BioGRID a

general repository for interaction datasets. Nucleic acids research 2006, 34:535-539.

126. Kerrien S, Aranda B, Breuza L, Bridge A, Broackes-Carter F, Chen C, Duesbury M,

Dumousseau M, Feuermann M, Hinz U et al: The IntAct molecular interaction

database in 2012. Nucleic acids research 2012, 40:D841-846.

127. Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter F, Campbell

NH, Chavali G, Chen C, Del-Toro N et al: The MIntAct project--IntAct as a common

DOI:10.15774/PPKE.ITK.2014.011

113

curation platform for 11 molecular interaction databases. Nucleic acids research

2013:1-6.

128. Chatr-aryamontri A, Ceol A, Palazzi LM, Nardelli G, Schneider MV, Castagnoli L,

Cesareni G: MINT: the Molecular INTeraction database. Nucleic acids research 2007,

35:D572-D574.

129. Licata L, Briganti L, Peluso D, Perfetto L, Iannuccelli M, Galeota E, Sacco F, Palma A,

Nardozza AP, Santonico E et al: MINT, the molecular interaction database: 2012

update. Nucleic acids research 2012, 40:D857-861.

130. Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D: The Database of

Interacting Proteins: 2004 update. Nucleic acids research 2004, 32:D449-D451.

131. Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G, Caudy M, Garapati P, Gillespie

M, Kamdar MR et al: The Reactome pathway knowledgebase. Nucleic acids research

2013:1-6.

132. Karp PD, Ouzounis CA, Moore-Kochlacs C, Goldovsky L, Tsoka S, Darzentas N, Kunin

V, Kaipa P, Ahre D, Ahrén D et al: Expansion of the BioCyc collection of pathway

genome databases to 160 genomes. Nucleic acids research 2005, 33:6083-6089.

133. Krieger CJ, Zhang P, Mueller LA, Wang A, Paley S, Arnaud M, Pick J, Rhee SY, Karp

PD: MetaCyc a multiorganism database of metabolic pathways and enzymes.

Nucleic acids research 2004, 32:438-442.

134. Federhen S: The NCBI Taxonomy database. Nucleic acids research 2012, 40:D136-

143.

135. Blake Ja, Dolan M, Drabkin H, Hill DP, Li N, Sitnikov D, Bridges S, Burgess S, Buza T,

McCarthy F et al: Gene Ontology annotations and resources. Nucleic acids research

2013, 41:D530-535.

136. Hull R: Managing Semantic Heterogeneity in Databases: A Theoretical Perspective.

Proceedings of the sixteenth ACM SIGACT-SIGMOD-SIGART symposium on Principles

of database systems - PODS '97 1997, 34:51-61.

137. Halevy AY, Halevy AY: Answering queries using views: A survey. The VLDB Journal

2001, 10:270 - 294.

138. Ghisalberti G, Masseroli M, Tettamanti L: Quality controls in integrative approaches

to detect errors and inconsistencies in biological databases. Journal of integrative

bioinformatics 2010, 7.

139. Thiele H, Glandorf J, Hufnagel P: Bioinformatics strategies in life sciences: from data

processing and data warehousing to biological knowledge extraction. Journal of

integrative bioinformatics 2010, 7:141.

140. Shafer P, Isganitis T, Yona G: Hubs of knowledge: using the functional link structure

in Biozon to mine for biologically significant entities. BMC bioinformatics 2006, 7:71.

141. Altman RB: Building successful biological databases. Briefings in bioinformatics 2004,

5:4-5.

142. Karp PD: A strategy for database interoperation. Journal of computational biology : a

journal of computational molecular cell biology 1995, 2:573-586.

143. Chen Y-PP, Chen Q: Analyzing Inconsistency Toward Enhancing Integration of

Biological Molecular Databases. Proceedings of the 4th Asia-Pacific Bioinformatics

Conference 2005:197-206.

144. Philippi S: Data and knowledge integration in the life sciences. Briefings in

bioinformatics 2008, 9:451.

DOI:10.15774/PPKE.ITK.2014.011

114

145. Sansone S-A, Rocca-Serra P, Field D, Maguire E, Taylor C, Hofmann O, Fang H,

Neumann S, Tong W, Amaral-Zettler L et al: Toward interoperable bioscience data.

Nature genetics 2012, 44:121-126.

146. Burge S, Attwood TK, Bateman A, Berardini TZ, Cherry M, O'Donovan C, Xenarios I,

Gaudet P: Biocurators and Biocuration: surveying the 21st century challenges.

Database 2012, 2012:bar059.

147. Stein LD: Integrating biological databases. Nature reviews Genetics 2003, 4:337-345.

148. Wong L: Technologies for integrating biological data. Briefings in bioinformatics

2002, 3:389-404.

149. Myers CL, Troyanskaya OG: Context-sensitive data integration and prediction of

biological networks. Bioinformatics (Oxford, England) 2007, 23:2322-2330.

150. Davidson SB, Overton C, Buneman P: Challenges in integrating biological data

sources. Journal of Computational Biology 1995, 2:557-572.

151. Sujansky W: Heterogeneous database integration in biomedicine. Journal of

biomedical informatics 2001, 34:285-298.

152. Etzold T, Argos P: SRS–an indexing and retrieval tool for flat file data libraries.

Bioinformatics 1993, 9:49.

153. Bizer C, Berlin FU, Heath T, Berners-Lee T: Linked Data - The Story So Far.

International Journal on Semantic Web and Information Systems 2009, 5:1-22.

154. Haas LM, Schwarz PM, Kodali P, Kotlar E, Rice JE, Swope WC: DiscoveryLink: A

system for integrated access to life sciences data sources. IBM Systems Journal 2001,

40(2):489-511.

155. Wang K, Tarczy-Hornoch P, Shaker R, Mork P, Brinkley JF: BioMediator data

integration: beyond genomics to neuroscience data. AMIA Annual Symposium

proceedings / AMIA Symposium AMIA Symposium 2005:779-783.

156. Wilkinson MD, Links M: BioMOBY: an open source biological web services

proposal. Briefings in bioinformatics 2002, 3:331-341.

157. Lee TJ, Pouliot Y, Wagner V, Gupta P, Stringer-Calvert DWJ, Tenenbaum JD, Karp PD:

BioWarehouse: a bioinformatics database warehouse toolkit. BMC bioinformatics

2006, 7:170.

158. Birkland A, Yona G: BIOZON: a system for unification, management and analysis of

heterogeneous biological data. BMC bioinformatics 2006, 7:70.

159. Shah SP, Huang Y, Xu T, Yuen MMS, Ling J, Ouellette BFF: Atlas - a data warehouse

for integrative bioinformatics. BMC bioinformatics 2005, 6:34.

160. Kasprzyk A, Keefe D, Smedley D, London D, Spooner W, Melsopp C, Hammond M,

Rocca-Serra P, Cox T, Birney E: EnsMart: a generic system for fast and flexible

access to biological data. Genome research 2004, 14:160-169.

161. Hagstrom R, Overbeek R, Price M, Micheals G, Taylor R: Overview of the integrated

genomic data system (IGD). In: English: 1992. Argonne National Laboratory: 1-28.

162. Töpel T, Kormeier B, Klassen A, Hofestädt R: BioDWH: a data warehouse kit for life

science data integration. Journal of integrative bioinformatics 2008, 5.

163. Birkland A, Yona G: BIOZON: a system for unification, management and analysis of

heterogeneous biological data. BMC bioinformatics 2006, 7:70.

164. Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, Doerks T, Julien P, Roth

A, Simonovic M et al: STRING 8--a global view on proteins and their functional

interactions in 630 organisms. Nucleic acids research 2009, 37:D412-D416.

DOI:10.15774/PPKE.ITK.2014.011

115

165. Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V et

al: DrugBank 3.0: a comprehensive resource for 'omics' research on drugs. Nucleic

acids research 2011, 39:D1035-D1041.

166. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM,

Mazumder R, Mekhedov SL, Nikolskaya AN et al: The COG database: an updated

version includes eukaryotes. BMC bioinformatics 2003, 4:41.

167. Lachmann A, Ma'ayan A: Lists2Networks: integrated analysis of gene/protein lists.

BMC bioinformatics 2010, 11:87.

168. Li W, Jaroszewski L, Godzik A: Tolerating some redundancy significantly speeds up

clustering of large protein databases. Bioinformatics (Oxford, England) 2002, 18:77-

82.

169. Reese MG, Moore B, Batchelor C, Salas F, Cunningham F, Marth GT, Stein L, Flicek P,

Yandell M, Eilbeck K: A standard variation file format for human genome

sequences. Genome biology 2010, 11:R88.

170. Extensible Markup Language (XML). 2014.

171. Achard F, Vaysseix G, Barillot E: XML bioinformatics and data integration.

Bioinformatics 2001, 17:115-125.

172. Proteomics Standards Inititative [http://www.psidev.info/]

173. The Google Cloud Platform [https://cloud.google.com/]

174. Sterling TL: Beowulf cluster computing with Linux. Cambridge, Mass: MIT Press;

2002.

175. The MySQL DBMS [http://www.mysql.com/]

176. The MySQL Workbench Tool [http://www.mysql.com/products/workbench/]

177. Oracle Java SE 7

[http://www.oracle.com/technetwork/java/javase/downloads/index.html]

178. The Netbeans IDE [https://netbeans.org/]

179. Apache Maven Project [http://maven.apache.org/]

180. The EclipseLink Project [https://www.eclipse.org/eclipselink/]

181. Red Hat JBoss Middleware [http://www-beta.jboss.org]

182. JGraph [http://www.jgraph.com/]

183. Mojarra JavaServer Faces [https://javaserverfaces.java.net/]

184. Primefaces [http://primefaces.org/]

185. Northrup CJ: Programming with UNIX Threads. New York: John Wiley & Sons;

1996.

186. The MPICH library [http://www.mpich.org]

187. Foster I: Designing and building parallel programs : concepts and tools for parallel

software engineering. Reading, Mass.: Addison-Wesley; 1995.

188. Bayer RaM, E. : Organization and Maintenance of Large Ordered Indexes. Acta

Informatica 1972, 1(3):173-189.

189. Google Code Platform [https://code.google.com/]

190. Apache Subversion System [http://subversion.apache.org/]

191. Google Cloud Platform [https://cloud.google.com/]

192. Hamosh A, Scott AF, Amberger JS, Bocchini Ca, McKusick Va: Online Mendelian

Inheritance in Man (OMIM), a knowledgebase of human genes and genetic

disorders. Nucleic acids research 2005, 33:D514-517.

DOI:10.15774/PPKE.ITK.2014.011

116

193. Coordinators NR: Database resources of the National Center for Biotechnology

Information. Nucleic acids research 2014, 42:D7-D17.

194. Schmitt T, Messina DN, Schreiber F, Sonnhammer EL: Letter to the editor: SeqXML

and OrthoXML: standards for sequence and orthology information. Briefings in

bioinformatics 2011, 12(5):485-488.

195. Schneider A, Dessimoz C, Gonnet GH: OMA Browser--exploring orthologous

relations across 352 complete genomes. Bioinformatics 2007, 23(16):2180-2182.

196. Altenhoff AM, Schneider A, Gonnet GH, Dessimoz C: OMA 2011: orthology inference

among 1000 complete genomes. Nucleic acids research 2011, 39(Database issue):D289-

294.

197. Gallardo D: Java design patterns. In: Development. 1-22.

198. Fenyo D: The Biopolymer Markup Language. Bioinformatics 1999, 15(4):339-340.

199. Lipman DJ, Pearson WR: Rapid and sensitive protein similarity searches. Science

1985, 227(4693):1435-1441.

200. The Apache Tomcat Server. 2014.

201. Kasprzyk A: BioMart: driving a paradigm change in biological data management.

Database 2011, 2011:bar049.

202. Durinck S, Moreau Y, Kasprzyk A, Davis S, Moor BD, Brazma A, Huber W: BioMart

and Bioconductor a powerful link between biological databases and microarray

data analysis. Bioinformatics 2005, 21:3439-3440.

203. Mazola Reyes Y, Chinea Santiago G, Guirola Cruz O, Vera Alvarez R, Huerta Galindo

V, Fleitas Salazar N, Musacchio Lasa A: Chemical compounds having antiviral

activity against dengue virus and other flaviviruses. In.: WO/2009/106019; 2009.

204. Rodriguez Fernandez RE, Vera Alvarez R, de la Nuez Veulens A, Mazola Reyes Y,

Perea Rodriguez SE, Acevedo Castro BE, Musacchio Lasa A, Ubieta Gomez R:

Antineoplastic compounds and pharmaceutical compositions thereof. In.:

WO/2006/119713; 2006.

205. Perez-Riverol Y, Vera R, Mazola Y, Musacchio A: A parallel systematic-Monte Carlo

algorithm for exploring conformational space. Current topics in medicinal chemistry

2012, 12:1790-1796.

206. Matrix Science Mascot [http://www.matrixscience.com]

207. Sanchez A, Perez-Riverol Y, González LJ, Noda J, Betancourt L, Ramos Y, Gil J, Vera

R, Padrón G, Besada V: Evaluation of Phenylthiocarbamoyl-Derivatized Peptides by

Electrospray Ionization Mass Spectrometry: Selective Isolation and Analysis of

Modified Multiply Charged Peptides for Liquid Chromatography-Tandem Mass

Spectrometry Experiments. Analytical chemistry 2010, xxx:552-559.

208. Perez-Riverol Y, Sánchez A, Ramos Y, Schmidt A, Müller M, Betancourt L, González

LJ, Vera R, Padron G, Besada V: In silico analysis of accurate proteomics,

complemented by selective isolation of peptides. Journal of proteomics 2011, 74:2071-

2082.

209. Dogsa I, Choudhary KS, Marsetic Z, Hudaiberdiev S, Vera R, Pongor S, Mandic-Mulec

I: ComQXPA Quorum Sensing Systems May Not Be Unique to Bacillus subtilis: A

Census in Prokaryotic Genomes. PloS one 2014, 9(5):e96122.

210. Powell S, Forslund K, Szklarczyk D, Trachana K, Roth A, Huerta-Cepas J, Gabaldon T,

Rattei T, Creevey C, Kuhn M et al: eggNOG v4.0: nested orthology inference across

3686 organisms. Nucleic Acids Res 2014, 42(Database issue):D231-239.

DOI:10.15774/PPKE.ITK.2014.011

117

211. Vera R, Perez-Riverol Y, Perez S, Ligeti B, Kertesz-Farkas A, Pongor S: JBioWH: an

open-source Java framework for bioinformatics data integration. Database (Oxford)

2013, 2013:bat051.

212. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G,

Durbin R: The sequence alignment/map format and SAMtools. Bioinformatics 2009,

25(16):2078-2079.

213. Benson DA, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW: GenBank.

Nucleic Acids Res 2014, 42(Database issue):D32-37.

214. Bayer R, McCreight E: Organization and Maintenance of Large Ordered Indexes.

Acta Informatica 1972, 1(3):173-189.

215. Jensen LJ, Julien P, Kuhn M, von Mering C, Muller J, Doerks T, Bork P: eggNOG:

automated construction and annotation of orthologous groups of genes. Nucleic

Acids Res 2008, 36(Database issue):D250-254.

216. The AngularJS library [https://angularjs.org/]

217. The Node.JS platform [http://nodejs.org/]

218. Shiryev SA, Papadopoulos JS, Schaffer AA, Agarwala R: Improved BLAST searches

using longer words for protein seeding. Bioinformatics 2007, 23(21):2949-2951.

219. Zhang Z, Schwartz S, Wagner L, Miller W: A greedy algorithm for aligning DNA

sequences. J Comput Biol 2000, 7(1-2):203-214.

220. Tu Q, He Z, Zhou J: Strain/species identification in metagenomes using genome-

specific markers. Nucleic acids research 2014, 42(8):e67.

221. Iqbal SS, Mayo MW, Bruno JG, Bronk BV, Batt CA, Chambers JP: A review of

molecular recognition technologies for detection of biological threat agents.

Biosensors & bioelectronics 2000, 15(11-12):549-578.

222. Baker GC, Smith JJ, Cowan DA: Review and re-analysis of domain-specific 16S

primers. Journal of microbiological methods 2003, 55(3):541-555.

223. Vera R, Perez-Riverol Y, Perez S, Ligeti B, Kertesz-Farkas A, Pongor S, Kertész-Farkas

A: JBioWH: an open-source Java framework for bioinformatics data integration.

Database : the journal of biological databases and curation 2013, 2013:bat051.

224. Pongor LS, Vera R, Ligeti B: Fast and sensitive alignment of microbial whole genome

sequencing reads to large sequence datasets on a desktop PC: application to

metagenomic datasets and pathogen identification. PloS one 2014, submitted.

DOI:10.15774/PPKE.ITK.2014.011

