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Kivonat

Lassan tíz éve már hogy a processzorok órajelének folyamatos növekedése - és ezzel a

frekvencia-skálázódásnak köszönhető teljesítmény-növekedés - véget ért. Ez arra kénysze-

rítette a gyártókat, hogy a számítási kapacitás elvárt növekedését más eszközökkel tartsák

fenn. Megkezdődött a processzormagok számának növekedése, megjelentek a többszintű

memória-architektúrák, a vezérlő áramkörök egyre bonyolultabbá váltak, új architektúrák,

segédprocesszorok, programozási nyelvek és párhuzamos programozási technikák sokasága

jelent meg. Ezek a megoldások a teljesítmény növelését, a hatékony programozhatósá-

got és az általános-célú felhasználást hivatottak biztosítani. A modern számítógépeken

a számítási kapacitás ilyen módon való növelésének azonban a - tipikusan nagyméretű -

adatállományok gyors mozgatása szab határt. Ugyancsak korlátozó tényező, hogy a tu-

dományos számítások területén dolgozók még mindig az évtizedekkel ezelőtt bevezetett -

jól bevált és tesztelt - programozási nyelveket és a bennük implementált módszereket kí-

vánják használni. Ezektől a kutatóktól nem elvárható, hogy a saját szakterületükön kívül

még az új hardverek és új programozási módszerek terén is mély ismeretekre tegyenek

szert. Ugyanakkor ezek mélyreható ismerete nélkül egyre kevésbé aknázható ki az új hard-

verekben rejlő egyre magasabb potenciál. Az informatika-tudományok kutatói – köztük

jelen dolgozat szerzője is – arra vállalkoznak, hogy az új hardverekkel és programozási

módszerekkel kapcsolatos tapasztalataikat, eredményeiket olyan formába öntsék – illetve

olyan absztrakciós szinteket definiáljanak – amely lehetővé teszi a más kutatási területeken

dolgozók számára a folyamatosan növekedő számítási kapacitások hatékony kihasználását.

Hosszú évtizedek kutatásai ellenére a mai napig nincs olyan általános célú gépi fordító

mely a régi, soros kódokat automatikusan képes lenne hatékonyan párhuzamosítani és a

modern hardvereket hatékonyan kihasználva futtatni. Ezért az elmúlt időszak kutatásai

egy-egy jól körülhatárolható probléma osztályt céloznak meg – sűrű és ritka lineáris algeb-

ra, strukturált és nem-strukturált térhálók, soktest problémák, Monte Carlo. Kutatásom

céljának – a fenti törekvésekkel összhangban – a nem-strukturált térhálókon értelmezett

algoritmusokat választottam. A nem-strukturált térhálókat rendszerint olyan parciális dif-
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ferenciálegyenletek diszkretizált megoldásánál használják ahol az értelmezési tartomány

szerkezete rendkívül bonyolult és a megoldás során különböző területeken különböző tér-

beli felbontásra van szükség. Tipikus mérnöki problémák – amelyek a nem-strukturált

térhálók segítségével oldhatók meg – például a sekélyvízi szimulációk összetett partvonal

mentén, vagy repülőgépek sugárhajtóművének áramlástani szimulációja a lapátok körül.

Kutatásomat a programozhatóság jelen kori nagy kihívásai motiválták: a párhuzamos-

ság, az adatlokalitás, a teherelosztás és a hibatűrés. A disszertációm célja az, hogy bemu-

tassa a nem-strukturált térhálókon értelmezett algoritmusokkal kapcsolatos kutatásaimat.

Kutatásaim során különböző absztrakciós szintekről kiindulva vizsgálom a nem-strukturált

térhálókkal kezelhető probléma megoldásokat. Ezen eredményeimet végül számítógépes

kódra képeztem le, különös figyelmet szentelve a különböző absztrakciós szintek, a prog-

ramozási modellek, a végrehajtási modellek és a hardver architektúrák összhangjának.

Futtatási eredményekkel bizonyítom, hogy a modern heterogén architektúrákon jelenlévő

párhuzamosság és memória-hierarchia hatékonyan kihasználható kutatási eredményeim

felhasználásával.

Munkám első része a végeselem-módszert vizsgálja, amely egy magasabb absztrakciós

szintet jelent a dolgozat többi részéhez viszonyítva. Ez lehetővé tette, hogy egy magasabb

szinten alakítsam ezt a numerikus módszert a modern párhuzamos architektúrák adottsá-

gait figyelembe véve. Kutatásom megmutatja hogy a végeselem integráció különböző for-

mulációival a memóriamozgatást és tárigényt csökkenteni lehet redundáns számításokért

cserébe, mely az erőforrásokban szűk GPU-k esetén képes magas teljesítményt adni, még

magasrendű elemek esetén is. Ezt követően megvizsgálom az adatstruktúrák problémáját,

és megmutatom hogy egy, a végeselem-módszerekre felírt struktúra, hogyan használható fel

a számítások különböző fázisaiban, valamint levezetem a memória-mozgatás mennyiségét,

és mérések segítségével bizonyítom, hogy a GPU architektúrán magasabb teljesítményt

képes elérni. Végül a ritka mátrixok és vektorok szorzatának párhuzamos architektúrákra

való leképzését vizsgálom, megadok egy heurisztikát és egy gépi tanulási eljárást mely az

optimális paramétereket képesek megtalálni általános ritka mátrixok esetén is.

A második részben – az első rész aránylag szűk kutatási területét kibővítettem, és

– azokat az általános nem-strukturált térhálókon értelmezett algoritmusokat vizsgáltam,

melyek az OP2 Domain Specific Language (DSL) [16] által definiált absztrakcióval leír-

hatóak. Ez az absztrakciós szint alacsonyabb, mint az első részben a végeselem-módszer

esetében alkalmazott absztrakciós szint, ezért a numerikus módszerek magasabb szintű

átalakítására itt nincs lehetőség. Ugyanakkor az OP2 ezen absztrakciója által lefedett te-
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rület lényegesen szélesebb, így magában foglalja a végeselem-módszert, de emellett sok

más algoritmust is, így például a véges térfogat módszert is. Kutatásom második része az

OP2 absztrakciós szintjén definiált algoritmusok magas szintű transzformációival foglalko-

zik. Azt vizsgálja, hogy hogyan lehet a – tipikusan lineárisan megfogalmazott – számítási

algoritmusok végrehajtását párhuzamos architektúrára transzformálni oly módon, hogy

az adatlokalitás, a hibatűrés és az erőforrások kihasználtságának problémáját is megold-

juk. Ezen az absztrakciós szinten a kutatásaim még nem veszik figyelembe azt, hogy a

végrehajtás milyen hardveren valósul meg. Ennek megfelelően a második rész eredményei

megfelelő implementációs paraméterezéssel bármely végrehajtási környezetben felhasznál-

hatóak. Elsőként egy teljesen automatizált algoritmust adok meg, mely képes megtalálni a

végrehajtás során azt a pontot ahol az állapottér a legkisebb, elmenti azt, majd meghibá-

sodás esetén képes attól a ponttól folytatni a számításokat. Ezek után általános megoldást

adok a nem-struktúrált térhálókon értelmezett számítások olyan átszervezésére, mely az

adatelérésekben lévő időbeli lokalitást javítja azzal, hogy egyszerre csak a probléma ki-

sebb részén hajtja végre a számítások sorozatát - ú.n. "cache blocking" technikán alapulva.

Megvizsgálom továbbá a mai heterogén rendszerek kihasználásának kérdését is, melyekben

rendszerint több, eltérő tulajdonságokkal rendelkező hardver van. Megadok egy modellt

a nem-struktúrált térhálón értelmezett algoritmusok heterogén végrehajtására, melyet az

OP2-ben való implementációval igazolok.

Végül kutatásom harmadik része azzal foglalkozik, hogy az OP2 absztrakciós szintjén

definiált algoritmusok miképp képezhetőek le különböző alacsonyabb szintű programozá-

si nyelvekre, végrehajtási modellekre és hardver architektúrákra. Leképezéseket definiá-

lok, amelyeknek segítségével a számításokat egymásra rétegzett párhuzamos programozási

absztrakciókon keresztül a mai modern, heterogén számítógépeken optimálisan végre lehet

hajtani, kihasználva az összetett memória-hierarchiát és a többszintű párhuzamosságot.

Először bemutatom, hogy a végrehajtás miképp képezhető le GPU-kra, a CUDA progra-

mozási nyelv által, felhasználva a Single Instruction Multiple Threads (SIMT) modellt,

valamint hogy hogyan lehet különböző optimalizációkat automatikusan kód generálás se-

gítségével megvalósítani. Másodszor a CPU-szerű architektúrákra való leképzést mutatom

meg, az egyes magokra OpenMP segítségével, valamint a magokon belül az AVX vektor

utasításkészlet és a Single Instruction Multiple Data (SIMD) modell segítségével. A ja-

vasolt leképezések hatékonyságát áramlástani szimulációkon keresztül bizonyítom, többek

közt a Rolls-Royce által repülőgép sugárhajtóművek tervezésére használt Hydra szoftver

segítségével. Mindezt különböző hardvereken végzett mérések segítségével támasztom alá:
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sokmagos CPU-kon, GPU-kon, az Intel Xeon Phi használatával valamint klasszikus és

heterogén szuperszámítógépeken. Eredményeim azt bizonyítják, hogy a nem-strukturált

térhálók probléma osztálya esetében a magas szintű absztrakciók módszere valóban képes

a modern hardverekben rejlő teljesítmény automatizált kiaknázására és mindezek mellett

hatékonyan leegyszerűsíti az algoritmikus problémák megfogalmazását és implementáció-

ját a felhasználók számára.
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Abstract

The last decade saw the long tradition of frequency scaling of processing units grind to

a halt, and efforts were re-focused on maintaining computational growth by other means;

such as increased parallelism, deep memory hierarchies and complex execution logic. After

a long period of “boring productivity”, a host of new architectures, accelerators, pro-

gramming languages and parallel programming techniques appeared, all trying to address

different aspects of performance, productivity and generality. Computations have become

cheap and the cost of data movement is now the most important factor for performance,

however in the field of scientific computations many still use decades old programming lan-

guages and techniques. Domain scientists cannot be expected to gain intimate knowledge

of the latest hardware and programming techniques that are often necessary to achieve

high performance, thus it is more important than ever for computer scientists to take

on some of this work; to come up with ways of using new architectures and to provide a

synthesis of these results that can be used by domain scientists to accelerate their research.

Despite decades of research, there is no universal auto-parallelising compiler that would

allow the performance portability of codes to modern and future hardware, therefore re-

search often focuses on specific domains of computational sciences, such as dense or sparse

linear algebra, structured or unstructured grid algorithms, N-body problems and many

others. For my research, I have chosen to target the domain of unstructured grid compu-

tations; these are most commonly used for the discretisation of partial differential equations

when the computational domain is geometrically complex and the solution requires dif-

ferent resolution in different areas. Examples would include computational fluid dynamics

simulations around complex shorelines or the blades of an aircraft turbine.

The aim of this dissertation is to present my research into unstructured grid algorithms,

starting out at different levels of abstraction where certain assumptions are made, which

in turn are used to reason about and apply transformations to these algorithms. They are

then mapped to computer code, with a focus on the dynamics between the programming

model, the execution model and the hardware; investigating how the parallelism and the
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deep memory hierarchies available on modern heterogeneous hardware can be utilised

optimally. In short, my goal is to address some of the programming challenges in modern

computing; parallelism, locality, load balancing and resilience, in the field of unstructured

grid computations.

The first part of my research studies the Finite Element Method (FEM), therefore

starts at a relatively high level of abstraction, allowing a wide range of transformations to

the numerical methods involved. I show that by differently formulating the FE integration,

it is possible to trade off computations for communications or temporary storage; mapping

these to the resource-scarce Graphical Processing Unit (GPU) architecture, I demonstrate

that a redundant compute approach is scalable to high order elements. Then, data storage

formats and their implications on the algorithms are investigated, I demonstrate that a

FEM-specific format is highly competitive with classical approaches, deriving data move-

ment requirements, and showing its advantages in a massively parallel setting. Finally, I

parametrise the execution of the sparse-matrix product (spMV) for massively parallel ar-

chitectures, and present a constant-time heuristic as well as a machine learning algorithm

to determine the optimal values of these parameters for general sparse matrices.

Following the first part that focused on challenges in the context of the finite element

method, I broaden the scope of my research by addressing general unstructured grid algo-

rithms that are defined through the OP2 domain specific library [16]. OP2’s abstraction

for unstructured grid computations covers the finite element method, but also others such

as the finite volume method. The entry point here, that is the level of abstraction, is lower

than that of the FEM, thus there is no longer control over the numerical method, however

it supports a much broader range of applications. The second part of my research investi-

gates possible transformations to the execution of computations defined through the OP2

abstraction in order to address the challenges of locality, resilience and load balancing

at a higher level, that is not concerned with the exact implementation. I present a fully

automated checkpointing algorithm that is capable of locating the point during execution

where the state space is minimal, save data, and in the case of a failure automatically fast-

forward execution to the point of the last backup. Furthermore, I give an algorithm for

the redundant-compute tiling, or cache-blocking, execution of general unstructured grid

computations that fully automatically reorganises computations across subsequent com-

putational loops in order to improve the temporal locality of data accesses. I also address

the issue of utilisation in modern heterogeneous systems where different hardware with

different performance characteristics are present. I give a model for such heterogeneous
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cooperative execution of unstructured grid algorithms and validate it with an implemen-

tation in OP2.

Finally, the third part of my research presents results on how an algorithm defined once

through OP2 can be automatically mapped to a range of contrasting programming lan-

guages, execution models and hardware. I show how execution is organised on large scale

heterogeneous systems, utilising layered programming abstractions, across deep memory

hierarchies and many levels of parallelism. First, I discuss how execution is mapped to

GPUs through CUDA and the Single Instruction Multiple Threads (SIMT) model, deploy-

ing a number of optimisations to execution patterns and data structures fully automatically

through code generation. Second, I present a mapping to CPU-like architectures, utilis-

ing OpenMP or MPI for Simultaneous Multithreading as well as AVX vector instructions

for Single Instruction Multiple Data (SIMD) execution. These techniques are evaluated

on computational fluid dynamics simulations, including the industrial application Rolls-

Royce Hydra, on a range of different hardware, including GPUs, multi-core CPUs, the

Intel Xeon Phi co-processor and distributed memory supercomputers combining CPUs

and GPUs. My work demonstrates the viability of the high-level abstraction approach

and its benefits in terms of performance and developer productivity.
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Chapter 1

Introduction

To understand the motivation behind this work, first we have to take a journey through

the history of computing; both in terms of hardware and software. We have seen a stagger-

ing amount of innovation and an exponential growth in different aspects of hardware that

are often difficult to keep track of, yet many of these technologies have reached and passed

their climax, drawing the business-as-usual evolution we had enjoyed for two decades into

question. At the same time, software has always been slower to evolve; therefore we must

study its relationship to hardware and how this ever-widening chasm can be bridged - how

the explosion in complexity and parallelism in modern hardware can be efficiently utilised

for the purposes of scientific computations [1].

1.1 Hardware evolution

First, let us look at the evolution of hardware, and specifically changes to computer

architecture, the memory system and how the two interact with each other. These are the

key components that determine what computational throughput may be achieved and it

offers an interesting insight into how certain parameters changed over time and what this

meant to programming approaches, and it perhaps hints at what is to come.

1.1.1 Processing units

Microprocessor design has faithfully followed Moore’s Law for the past forty years.

While the number of transistors on a chip has been doubling approximately every two

years, other characteristics have been undergoing dramatic changes. Processor voltage

starting dropping from 5V in 1995, when constant field scaling (smaller feature sizes)

enabled lower voltages and higher clock frequencies, but due to increasing leakage and

practical power dissipation limitations, both have flattened out by 2005. This was an era of

1
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Figure 1.1. Evolution of processor characteristics

“free” scaling, with single thread performance increasing by 60% per year; supercomputer

evolution at the time relied on flat parallelism and natural scaling from increased clock

frequencies, with no more than a few thousand single-core, single-threaded processors.

By 2005, it had become clear that in order to maintain the growth of computational

capacity, it would be necessary to increase parallelism; multi-core CPUs appeared and

supercomputers went through a dramatic increase in processor core count. Due to market

demands, some, such as Intel, keep manufacturing heavyweight architectures with high

frequency, power-hungry cores and increasingly complicated logic in order to maintain

some level of single thread performance scaling. Observe that Figure 1.1 still shows a

20% scaling per year after 2005, but this is at the expense of huge overheads to support

out-of-order execution, branch prediction and other techniques aimed at reducing latency.

If we were to ignore Intel’s contributions to single thread performance figures, it would

show a mere 13% increase per year. Other vendors, such as IBM with the Blue Gene,

developed lightweight architectures with simpler processing cores that run at lower fre-

quencies, thereby saving power; these are deployed at a massive scale. Alongside increasing

core counts, there is a resurgence of vector processing; CPUs supporting the SSE, AVX

or similar instruction sets are capable of operating on vectors, carrying out the same op-

eration over the values packed into a 128-256 bit register. The emergence of accelerators

took these trends to the extreme; GPUs and the Xeon Phi feature many processing cores

that have very simplistic execution circuitry compared to CPUs, but feature much wider
2
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vector processing capabilities and support orders of magnitude higher parallelism.

Moore’s law itself is in some danger as the limits of CMOS technology are likely to

prohibit scaling beyond a few nanometers (1-5), at which point a transistor would only

be 5-25 atoms across. One way to keep increasing the number of transistors is by stacking

multiple chips on top of each other; however due to heat dissipation requirements and

yield issues, this may be limited to a few layers (around 5). While the end of downscaling

is still 10-15 years into the future, it is not clear what technology would succeed CMOS;

there are several promising alternatives, such as graphene- or silicene-based technolgies,

or carbon nanotubes [17], but most of them are still in their early stages.

1.1.2 Memory

While the economics of processor development has pushed them to gain increasingly

higher performance, the economics of memory chip development favoured increasing ca-

pacity, not performance. This is quite apparent in their development; while in the 1980’s

memory access times and compute cycle times were roughly the same, by now there is

at least two orders of magnitude difference, and accounting for multiple cores in modern

CPUs, the difference is around a 1000×. Serially executed applications and algorithms

therefore face the Von Neumann bottleneck; vast amounts of data have to be transferred

through the high-latency, low-bandwidth memory channel, its throughput is often much

smaller than the rate at which the CPU can work. While this is being addressed by adding

multiple levels of caches and complex execution logic (such as out-of-order execution and

branch prediction) onto CPUs, it also means that the vast majority of the transistors

are dedicated to mitigating the effects of the Von Neumann bottleneck: to address the

question of how to compute fast by reducing latency, as opposed to actually doing the

computations.

It is possible to make faster memory chips, but it is expensive; SRAM, commonly used

for fast on-chip caches, has a cell size that is 6 times larger than DRAM’s. One of the main

issues with these types of memory is that they are volatile; energy is required to maintain

their contents. NAND flash memory on the other hand is non-volatile and has a small cell

size, with a cell capable of storing multiple bits. However, it is currently not capable of

supporting practically infinite read-write cycles (> 1015 as SRAM and DRAM do), only

on the order of 105−106, and access speeds are comparatively slower as well, therefore it is

not a viable candidate for replacing system memory. Although some current technologies

address the latency and bandwidth issues, they are usually expensive to manufacture

3
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Figure 1.2. Cost of data movement across the memory hierarchy

and improvements in one area come with overheads in others; GDDR memory provides

high bandwidth but at increased latency, reduced latency DRAM (RLDRAM) comes at

the cost of increased die area. There is a considerable amount of research into emerging

memory technologies; for example into Spin Transfer Torque RAM (STT-RAM), a type

of magnetoresistive RAM, that promises fast, non-volatile memory rivalling DRAM in

energy efficiency and area requirements and approaches SRAM in terms of performance.

It is unclear how much performance potential is in these new technologies, but it is unlikely

that they would deliver orders of magnitude improvements that would significantly change

the balance between computational throughput and memory bandwidth/latency.

1.1.3 Putting it together

The greatest challenge is architecting a computing system that can deal with such

disparities between the performance of different subsystems and one that can be replicated

and interconnected to create high performance computing systems. The single biggest

problem we are facing is the cost of moving data; as illustrated in Figure 1.2, accessing

registers and carrying out operations is cheap, costing less than a nanojoule, accessing data

from on-chip caches is much more expensive, and depends on the actual distance it has

to be moved. Moving data off-chip is yet another order of magnitude more costly, tens of

nanojoules. While we can expect a 10× increase in computational power by 2018 (compared

to computational power available in 2013, following the same growth trends), there is

currently no technology in production that would allow the same decrease in the cost of

data movement. From a programming perspective, all these limitations ultimately manifest

themselves as low memory bandwidth and high latency. Studies carried out on a range of

4
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applications on traditional CPU hardware show that 18-40% of power consumption comes

from data movement and 22-35% comes from advanced execution logic such as out of order

execution [18].

There are several ways to combat bandwidth and latency issues using general-purpose

hardware, usually applied in combination; (1) using hierarchical memory structures (caches

and scratchpad memory) that reduce access latency, (2) complex execution logic to circum-

vent serial execution, such as out of order execution and branch prediction, (3) through

parallelism, so memory latency can be hidden by executing instructions from other threads

that have data ready. CPUs are traditionally pushing the first two approaches, because

market demand is strong for low latencies and fast single-threaded execution, but ever

since the introduction of Hyper Threading and multiple cores, the third approach is also

being adopted. Having multiple cores however doesn’t solve the problem if only one thread

can be efficiently executed on a core, because it will stall until data arrives. Having a huge

amount of active threads resident on a smaller number of cores is where accelerators

have made great progress; by keeping the state of threads in dedicated hardware, context

switching becomes very cheap. Intel’s Xeon Phi co-processor supports up to 4 threads per

core and the latest Kepler generation NVIDIA GPUs can have up to 2048 threads per 192

cores. Accelerators have to rely on parallelism and a high degree of spatial locality to hide

latency because there is not enough die area for large caches, access to off-chip memory has

a high latency (hundreds of clock cycles) and bandwidth can only be saturated by having

a large number of memory requests in-flight. Trends point to future architectures having

an even wider gap between computational throughput and memory latencies, the number

of cores on a chip is bound to increase at a rate that cannot be matched by increasing

memory performance, therefore an even higher level of parallelism will be required to hide

latency.

Advances in systems architecture and interconnects aim to maintain or improve the

compute-latency ratio in the future. An important issue plaguing accelerators, especially

GPUs, is the PCI-express bottleneck, which limits the rate at which data and compu-

tations can be offloaded; trends show that traditional CPU cores and accelerators are

getting integrated together; Intel’s Knight’s Landing will be a stand-alone device, and

NVIDIA’s Project Denver aims to integrate ARM cores next to the GPU. Unlike the way

floating point units and vector units were integrated into the CPU, accelerators are likely

to remain well separated from general-purpose cores, because they rely on deep architec-

tural differences to deliver such high performance. Furthermore, there is a trend of moving

5
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DRAM closer to the processing cores by including them in the same package; already

some of Intel’s Haswell CPUs include 128MB eDRAM - this of course is more expensive

and difficult to manufacture, but offers higher bandwidth than system memory. Similar

techniques are going to be adopted by NVIDIA’s Volta generation of GPUs and Knight’s

Landing, which will have up to 16 GBs of on-chip stacked high-speed memory. The rise

of silicon photonics promises fast interconnects where lasers, receivers, encoders, decoders

and others can be directly integrated onto the chip. Eventually, optical links would be

developed between CPUs in different nodes, the CPU and system memory, and perhaps

even between different parts of the same chip thereby speeding up data movement and

reducing energy costs. A greater convergence of system components is expected to take

place in the future, where processing, networking and memory are all integrated into the

same package, enabled by 3D stacking that allows layers of silicon circuitry to be stacked

on top of each other, interconnected by through silicon vias (TSVs).

As high performance computing systems grow in size and complexity, resilience be-

comes an important issue, due to several factors: (1) the increase in the number of system

components, (2) near-threshold voltage operation increases soft-error rate, (3) as hardware

becomes more complex (heterogeneous cores, deep memory hierarchies, complex topolo-

gies, etc.) (4) software becomes more complex too, hence more error-prone, (5) applica-

tion codes also become more complex because workflows and underlying programming

techniques have to address increasing latency, tolerate asynchronicity and reduce com-

munications. At extreme scale (such as future exascale systems) this will have serious

consequences, but even at smaller scales, and assuming that a lot of progress is made by

hardware manufacturers, developers of the operating system and libraries such as MPI,

more attention will have to be given to developing resilient applications (by e.g. using

checkpointing) with additional focus on correctness.

From a hardware point of view it seems clear that the trend of increasing latency

is going to continue, and more complicated approaches will be required to combat it;

exploiting locality is going to be essential to reduce the cost of data movement, and to

hide the latency when data does have to be moved, a growing amount of parallelism will be

needed. To mitigate memory access latencies, the size and the depth of memory hierarchies

is expected to keep growing, and parallelism in the hardware will continue to be exposed on

many levels; this presents great challenges in terms of expressing locality and parallelism

through software, a subject of intense research.
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Table 1.1. Amount of parallelism (number of “threads”) required to saturate the full
machine

Machine Parallelism
K-computer 5.120.000
Sequoia 25.165.824
Tianhe-1 103.104.512
Titan 403.062.784
Tianhe-2 90.624.000

1.2 Implications to Programming Models

Programming languages still being used today in scientific computing, such as C and

Fortran, were designed decades ago with a tight connection to the execution models of the

hardware that were available then. The execution model - an abstraction of the way the

hardware works - followed a flat Von Neumann machine: a sequence of instructions for the

Arithmetic Logic Unit (ALU) with a flat addressable memory space. Code written using

these programming models was trivially translated to the hardware’s execution model

and then into hardware instructions. This ensured that the factor most important to

performance, the sequence of instructions, was exposed the programmer, while others

could be handled by the compiler, such as register management, or ignored and left to the

hardware, such as memory movement. Over time, hardware and execution models have

changed, but mainstream programming models remain the same, resulting in a disparity

between the user’s way of thinking about programs and what the real hardware is capable

and suited to do. While compilers do their best to hide these changes, decades of compiler

research has shown that this is extremely difficult.

The obvious driving force between the changes to execution models is the ever in-

creasing need for parallelism; due to the lack of single-core performance scaling, the de-

partmental, smaller-scale HPC systems in a few years will consist of the same number of

processing elements as the world’s largest supercomputers now. Table 1.1 show examples

of the amount of parallelism required to fully utilise some of today’s Top500 [19] systems;

heroic efforts are required to scale applications to such systems and still produce scien-

tifically relevant output. While improvements in hardware are expected to address some

of these challenges by the time a similar amount of parallelism is going to be required

on smaller-scale systems, many will have to be addressed by software; most important of

all is parallelism. At the lowest level, in hardware, marginal improvements to instruction

scheduling are still being made by using techniques such as out-of-order execution but

above that level, in software, parallelism has to be explicit. Despite decades of research no
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universal parallelising compiler was ever demonstrated, therefore it is the responsibility of

the programmer to expose parallelism - in extreme cases up to hundreds of million ways.

Handling locality and coping with the orders of magnitude cost differences between

computing and moving data across the different levels of the memory hierarchy is second

fundamental programming challenge. This is one that is perhaps more against conven-

tional programming methodologies, because it has been almost completely hidden from

the programmer, but just like there is no universal parallelising compiler, it is also very

difficult to automatically improve the locality of computational algorithms. Most of the die

area on modern CPUs is dedicated to mitigating the cost of data movement when there is

locality, but this is something that cannot be sustained: the fraction of memory capacity

to computational capacity is constantly decreasing [20, 1], on-chip memory size per thread

is still on the order of megabytes for CPUs, but only kilobytes of the Xeon Phi and a few

hundred bytes for the GPU. Once again, relying on lower-level hardware features (such as

cache) is not going to be sufficient to guarantee performance scaling; locality will have to

be exposed to the programmer. A simple example of this during a flow simulation would

be the computation of fluxes across faces for the entire mesh - streaming data in and out

with little data reuse - followed by a step where fluxes are applied to flow variables - once

again, streaming data in and out with little reuse; which is the way most simulations are

organised. Instead, if computational steps were to be concatenated for a small number of

grid points, that would increase data-reuse and locality. However, this programming style

is highly non-conventional and introduces non-trivial data dependencies that need to be

handled via some form of tiling [21, 22], resulting in potentially very complex code.

Finally, huge parallel processing capabilities and deep memory hierarchies will inher-

ently result in load balancing issues; the third fundamental obstacle to programmability

according to [23]. As parallelism increases, synchronisation, especially global barriers, be-

come more and more expensive, statically determined workloads for processing units or

threads are vulnerable to getting out of sync with each other due to slight imbalances

in resource allocation or scheduling. Therefore considerable research has to be invested

into algorithms that avoid global barriers and at the same time the performance of local

synchronisation will have to be improved. Furthermore, to tolerate latency due to synchro-

nisation and instruction issue stalls, more parallelism can be exploited - this is what GPU

architectures already do; by keeping around several times more threads than processing

cores it is possible to hide latency due to stalls in some threads by executing others. This

can be combined with dynamic load balancing strategies to ensure the number of idle
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threads is kept to a minimum. Load balancing strategies may be in conflict with the ef-

fort of trying to minimise data movement; especially in architectures with deep memory

hierarchies it may lead to cache invalidation and trashing. For example, operating sys-

tems will move threads between different cores to improve resource utilisation, but with

memory-intensive applications this often results in performance loss because locality is

lost - thread pinning is advantageous in many cases. The idea of moving computations to

data is receiving increasing attention, but as with the other programmability issues, this is

currently not exposed by most programming abstractions and languages, and is contrary

to the way of thinking about algorithms.

Traditionally, most popular programming abstractions and languages focus on the se-

quence of computations to be executed in-order. However, due to the growing disparity

between the cost of computations and data movement, computations are no longer a

scarce resource, studies show the benefits redundant computations as a means to reduce

data movement [24]. Therefore we are experiencing a paradigm shift in programming;

factors that affect performance, therefore factors that should be exposed to the program-

mer are changing, concurrency, locality and load balancing are becoming more important,

computations less so.

While there is a growing number of programming languages and extensions that aim

to address these issues, at the same time it is increasingly more difficult to write scientific

code that delivers high performance and is portable to current and future architectures,

because often in-depth knowledge of architectures is required, and hardware-specific op-

timisations have to be applied. Therefore there is a push to raise the level of abstraction;

describing what the program has to do instead of describing how exactly to do it, leaving

the details to the implementation of the language. Ideally, such a language would deliver

generality, productivity and performance, but of course, despite decades of research, no

such language exists. Recently, research into Domain Specific Languages (DSLs) [16, 25,

26, 27] applied to different fields in scientific computations has shown that by sacrificing

generality, performance and productivity can be achieved. A DSL defines an abstraction

for a specific application domain and provides an API that can be used to describe compu-

tational problems at a higher level. Based on domain-specific knowledge it can for example

re-organise computations to improve locality, break up the problem into smaller parts to

improve load-balancing, and map execution to different hardware, applying architecture-

specific optimisations. The key challenge is to define an abstraction specific enough so

that these optimisations can be applied, but sufficiently general to support a broad set of
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applications.

1.3 Motivations for this research

In light of these developments, an application developer faces a difficult problem. Op-

timising an application for a target platform requires more and more low-level hardware-

specific knowledge and the resulting code is increasingly difficult to maintain. Additionally,

adapting to new hardware may require a major re-write, since optimisations and languages

vary widely between different platforms. At the same time, there is considerable uncer-

tainty about which platform to target: it is not clear which approach is likely to “win” in

the long term. Application developers would like to benefit from the performance gains

promised by these new systems, but are concerned about the software development costs

involved. Furthermore, it can not be expected of domain scientists to gain platform-specific

expertise in all the hardware they wish to use. This is especially the case with industrial

applications that were developed many years ago, often incurring enormous costs not only

for development and maintenance but also for validating and maintaining accurate scien-

tific outputs from the application. Since these codes usually consist of tens or hundreds of

thousands of lines of code, frequently porting them to new hardware is infeasible.

Therefore it is the responsibility of researchers in computer science and associated areas

to alleviate this burden on domain scientists; to explore how scientific codes can achieve

high performance on modern day’s architectures and then try and generalise these expe-

riences, in essence to provide a methodology to domain scientists that can be understood

and directly used in their own research thereby permitting them to focus on the problem

being solved.

A study from Berkeley [25] determined 13 “dwarfs”; groups of algorithms that are

widely used and very important for science and engineering. Algorithms in the same group

tend to have similar computational and data access patterns, therefore they can be often

reasoned about together. Their definition is at a very high level and they encompass a wide

range of applications, but the observation is that while programs and numerical methods

may change, the underlying patterns persist; as they have done for the past few decades.

Therefore they are ideal targets for research, these dwarfs include: dense and sparse linear

algebra, spectral methods, N-body problems, structured and unstructured grids, Monte

Carlo and others. I have chosen unstructured grids as a target for my research since it is

poses interesting challenges due to its irregularity and data-driven behaviour; and at the

same time it is a very important domain in engineering due to its flexibility in describing
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highly complex problems.

With this in mind, the first part of my research focuses on a specific field in unstruc-

tured grid algorithms; the Finite Element Method, exposing algorithmic transformations

relevant to today’s challenges of parallelism and data locality, and to explore and dis-

cuss the mapping of these algorithms to the massively parallel architecture of Graphical

Processing Units.

As a natural generalisation of the first part of my research, I got involved in the OP2

domain-specific “active library” for unstructured grids [16, 2], to study the abstraction and

the implementation of generic unstructured grid algorithms with two main objectives; (1)

to investigate what high-level transformations are possible between the abstract definition

of an algorithm and its actual execution on hardware, and (2) to study how to map the

abstraction to execution on modern architectures that are equipped with deep memory

hierarchies and support many levels of parallelism.

Much research [27, 28, 29, 30, 31, 32] has been carried out on such high-level abstraction

methods targeting the development of scientific simulation software. However, there has

been no conclusive evidence so far, for the applicability of active libraries or DSLs in

developing full scale industrial production applications, particularly demonstrating the

viability of the high-level abstraction approach and its benefits in terms of performance

and developer productivity. Indeed, it has been the lack of such an example that has made

these high level approaches confined to university research labs and not a mainstream

HPC software development strategy. My research also addresses this open question by

detailing our recent experiences in the development and acceleration of such an industrial

application, Rolls-Royce Hydra, with the OP2 active library framework.

1.4 The structure of the dissertation

The structure of this dissertation is slightly different from that of the theses in order to

better separate abstraction from implementation and to clearly describe the background

behind the second part of my research. Figure 1.3 illustrates the structure of this work,

note that for Thesis I., the discussion of I.1 and I.2 is split into two parts; an abstract

algorithmic part, and a GPU implementation and performance investigation part. Also,

while I.3 stems from the study of the Finite Element Method, it also addresses a domain

closely related to unstructured grid algorithms; sparse linear algebra. Each chapter that

discusses my scientific contributions ends with a summary, which states my theses.

I start by briefly discussing the hardware platforms and the associated parallel pro-
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Figure 1.3. Structure of the dissertation

gramming abstractions in Chapter 2 that I use throughout this work. Chapter 3 describes

the theoretical background of the Finite Element Method (Sections 3.1, 3.2) and then

presents my research into algorithmic transformations (Section 3.2) and data structures

(Section 3.3) related to the FEM at an abstract level, discussing matters of concurrency,

parallelism and data movement. It also briefly describes the theoretical background of es-

tablished sparse linear algebra algorithms that I utilise in the solution phase of the FEM

(Section 3.4). Thus, Chapter 3 lays the abstract foundations for Thesis I.1 and I.2.

Chapter 4 takes these algorithms and data structures, and discusses my research into

mapping them to GPU architectures. It begins with a description of GPU-specific imple-

mentation considerations that have to be taken into account when mapping algorithms

to this massively parallel architecture (Section 4.1). Then, it follows the logic of the first

chapter, describing the effect of algorithmic transformations on performance (Section 4.3)

and then discussing how classical data structures (such as CSR and ELLPACK [33]) and

the FEM-specific data structure I describe in Chapter 3 perform on the GPU, with various

means of addressing data races and coordination of parallelism. This completes Thesis I.1

and I.2. Finally, I discuss the extension of my research to the intersection of unstructured

grid algorithms and sparse linear algebra; novel mappings and parametrisations of the

sparse matrix-vector product on GPUs are presented (Section 4.5), forming Thesis I.3.

Chapter 5 serves as an interlude between the discussion of my theses; it introduces

the OP2 domain-specific library for unstructured grid computations and provides a back-

ground and setting to the second half of my research (Section 5.1). I have joined the work

on this project in its second year, and while I have carried out research on a number of

its components, I have only chosen subjects for Thesis groups II. and III. that are self-
12
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contained and pertinent to the over-arching theme of this dissertation. The chapter also

discusses the computational fluid dynamics applications used to evaluate algorithms in

later chapters; the Airfoil benchmark, the Volna tsunami simulation code (which I ported

to OP2) and the Rolls-Royce Hydra industrial application (which my colleagues and I

ported to OP2).

Chapter 6 presents my research into high-level transformations to computations defined

through the OP2 abstraction, Thesis group II., starting with a novel and fully automated

method of checkpointing that aims to improve resiliency and minimise the amount of data

saved to disk (Section 6.1). Subsequently, an algorithm is presented that can improve local-

ity through a technique called tiling [34], and presents my research into how dependencies

across several parallel loops can be mapped out and how execution can be reorganised to

still satisfy these dependencies but only work on parts of the entire problem domain that

fit into fast on-chip memory (Section 6.2). Finally, I discuss the issue of hardware utilisa-

tion in modern day’s heterogeneous systems and present my research into the execution

of unstructured grid algorithms on such systems, modelling performance and discussing

how this is facilitated in OP2 (Section 6.3).

Chapter 7 discusses my research into mapping the execution of unstructured grid algo-

rithms to various hardware architectures, Thesis group III.; first to the Singe Instruction

Multiple Thread (SIMT) model and GPUs (Section 7.2), second to classical CPU architec-

tures and the Xeon Phi, using Simultaneous Multithreading (SMT) and Single Instruction

Multiple Data (SIMD) (Section 7.3). The discussion on how execution scales on modern

supercomputers with CPUs and GPUs is postponed to the Appendix, since the MPI dis-

tributed functionality of OP2 is not my contribution. This chapter serves to present my

research into how an application written once through OP2 can be automatically mapped

to a wide range of contrasting hardware, demonstrating that near-optimal performance

can indeed be achieved at virtually no cost to the application programmer, delivering

maintainability, portability and future-proofing.

Finally, Chapter 8 draws conclusions and Chapter 9 presents the summary of my theses.
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Hardware Architectures Used

This chapter briefly presents the hardware architectures that I use throughout this

work, and later on I will refer back to architectural specifics, execution models and best

practices of programming for a given platform.

Today’s hardware landscape is very diverse, ranging from classical CPUs, through low-

power RISC architectures, general purpose GPUs, and many-core architectures, such as

the Xeon Phi, to field programmable gate arrays. Each of these architectures has their

own strengths and weaknesses, especially in terms of computational problems they are

good at solving. Some of the hardware used in this work are outlined in Figure 2.1,

clearly there are significant differences, therefore, when it comes to mapping unstructured

mesh computations to them, different parallel programming approaches and optimisation

techniques are required.

GPU
CPU Xeon

Phi

Tesla K40 @ 0.87 GHz:
12 GB GDDR5 - 288 GB/s
1.5 MB L2 Cache
16 SMX units
  192 cores
  65k registers
  112 KB cache

Xeon E5-2640 @ 2.5 GHz:
12-64 GB DDR3 - 42 GB/s
20 MB L3 Cache
6 cores
  256 bit vector unit
  256+32 KB cache

Xeon Phi @ 1 GHz:
8GB GDDR5 - 320 GB/s
30 MB L2 Cache
61 cores
  512 bit vector unit
  32 KB cache

PCI-e
8 GB/s

PCI-e

Infiniband
8 GB/s

Unstructured Mesh Computations

Figure 2.1. The challenge of mapping unstructured grid computations to various
hardware architectures and supercomputers
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Core 0 Core 2-7

L1 cache (64kB)

Register file (16*256bit)

SIMD execution unit (256bit)

    L2 cache (256kB) HT Scheduler

L3 cache (15-30 MB)

DDR3 system memory (8-64 GB)

C
PU

Core 1

L1 cache (64kB)

Register file (16*256bit)

SIMD execution unit (256bit)

    L2 cache (256kB) HT Scheduler

Figure 2.2. Simplified architectural layout of a Sandy Bridge generation server CPU

2.1 CPU architectures

CPUs have been constantly evolving for the past several decades, and they carry a

burden of legacy; the need for backwards compatibility and the expectation that subse-

quent generations of hardware should deliver increasing single-thread performance and

reduced latencies. With the end of frequency scaling this became much more difficult, as it

has to be achieved through more complex execution logic and better caching mechanisms.

Moore’s law now pushes CPUs towards supporting increased parallelism; today, high-end

CPUs feature up to 12 cores, each capable of supporting two hardware threads (without

the need for expensive context switching), vector units that are up to 256-bit long (AVX),

and caches up to 30 MB.

There are several excellent publications on CPU hardware and optimisations for achiev-

ing high performance, such as [35], here I discuss some of the specifics pertinent to my

work. Figure 2.2 outlines a Sandy Bridge generation server CPU, note the low number of

registers and the high amount of caches at different levels in the hierarchy. CPUs have

cache coherency across cores, different levels of caches, and threads are allowed to be moved

between different cores by the operating system, which is usually harmful to performance

when carrying out data-intensive scientific computations, thus in practice communication

and synchronisation between cores is considered expensive and within a core cheap, al-

beit the latter is implicit due to the SIMD nature of the hardware. Furthermore, in most

servers there are multiple CPU sockets, which presents a NUMA (Non-Uniform Memory

Access) issue [36]: when memory is accessed on one socket that is allocated to physical

memory connected to the other socket, then the requests have to go through a QPI link

between the two sockets and then to physical memory - this restricts the total bandwidth
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available, and increases latency. Unfortunately most Linux kernels allow threads moving

between sockets, but in practice this can be prevented with tools like numactl, and it is

common to use distributed memory programming to avoid this issue.

The most commonly used parallel programming abstractions are the communicating

sequential processes (CSP) and the simultaneous multithreading (SMT); the former com-

pletely isolates threads effectively simulating a distributed memory environment but the

latter relies on the fact that they share caches and the system memory. In the case of

both abstractions, communication and synchronisation are regarded expensive although

for SMT only the synchronisation is explicit. Finally, vector units use a Single Instruction

Multiple Data (SIMD) model, where instructions are carried out on vectors instead of

scalars. The most commonly used parallel programming libraries are MPI for CSP and

OpenMP for SMT, however for SIMD programming there is no established software ap-

proach; compilers have built-in capabilities to automatically vectorise scalar code, such as

simple for loop with no irregular accessed or loop-carried dependencies, there are language

extensions such as Cilk that are more explicit about data parallelism, thereby providing

more opportunities for the compiler to automatically vectorise computations, and there

are low-level vector intrinsics that have a one-to-one matching with machine-level assembly

instructions, but these are compiler and architecture-specific, therefore their portability is

poor, and their use results in very verbose code. In the latest vector instruction sets there

is support for masked instructions, where it is possible to facilitate divergent execution by

activating and deactivating different vector lanes.

2.2 The Intel Xeon Phi

Intel’s approach to high-throughput, massively parallel computing is the Xeon Phi; it

integrates a large number of Intel CPU cores onto a single chip that are much simpler

compared to server CPU cores, since they are in-order cores with very simple execution

logic, but they support four hardware threads and 512-bit vector units. Each of these

cores has 128 vector registers divided between the four threads, 32KB of data and 32KB

of instruction cache, and the cores themselves are arranged on a ring-bus, with 512 KB of

L2 cache each, giving a total of 30MB shared cache for the 61 cores of the 5110P model.

One of the main selling points of the Xeon Phi is that it uses a Linux-based kernel and

supports the same compiler tools that are used for regular CPU programming; however

this does not mean that code that was running well on the CPU will run well on the Phi

too. Many parallel constructs that used to work well on multicore CPUs (such as critical
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sections) do not scale well to 240-way parallelism, and control-intensive applications with

complex logic also struggle on the logically much simpler cores of the Phi. However, it

does have a high-bandwidth GDDR5 memory, therefore trivially data-parallel compute-

or bandwidth-intensive applications may see significant benefits.

In a similar way to programming CPUs, the Phi supports CSP via MPI libraries

and SMT via various threading libraries, such as OpenMP or Threading Building Blocks

(TBB) and SIMD through compiler auto-vectorisation and vector intrinsics. There are

clearly many differences between CPUs and the Phi, and therefore the same parallelisation

strategies may not work well on the Phi; while on the CPU it is feasible to start an MPI

process for each logical core, on the Phi’s 240 logical cores this rarely leads to good

performance. There are two execution strategies when using the hardware: either native

execution, where the whole of execution takes place on the Phi, or offload mode, where a

code running on the host system (on the CPU) offloads computations and data to the Phi.

The new OpenMP 4 standard introduced the syntax and the semantics for these offload-

type computations, and they are also supported by other libraries, such as OpenCL.

2.3 NVIDIA GPUs

NVIDIA was the first to introduce general-purpose computing capabilities in its Graph-

ical Processing Units and they remain the largest vendor of GPUs for computations. The

GPU compute architecture has close ties with its graphical processing origins; they are

designed to apply the same transformations to different data with very high throughput

- in the past this was restricted to graphics-type computations, but with the introduc-

tion of the Compute Unified Device Architecture (CUDA) [37], it now supports arbitrary

computations.

Figure 2.3 depicts the simplified architectural layout of a Kepler-generation GPUs [38]

- the first thing to note is its structural resemblance to CPUs, but also the huge differences

in terms of actual parameters. While a CPU core has a vector unit up to 256 bits wide

(in some sense 8 logical threads doing the same single precision computations), a GPU

SMX has support for 192 logical threads executing the same instruction (in groups of 32)

at the same time. Furthermore, the size of the caches is much smaller, especially relative

to the number of threads executing at the same time. This leads to the fundamental

difference in how GPUs and CPUs operate and what they are designed to do well: CPUs

are good at low-latency computations with a handful of threads due to their large caches

and their complex execution logic, but GPUs rely on a massive amount of parallelism (tens
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SMX 0 SMX 1 SMX 2

L1 cache (48kB) Shared mem (16 kB)

Register file (65k)

Execution units (192)

Read-only cache (48kB) Scheduler

L1 cache (48kB) Shared mem (16 kB)

Register file (65k)

Execution units (192)

Read-only cache (48kB) Scheduler

L2 cache (1.5 MB)

Off-Chip GDDR memory (5-12 GB)

System Memory (8-64 GB)

PCI-Express

G
PU

Figure 2.3. Simplified architectural layout of a Kepler-generation GPU

of thousands of threads) to hide memory latency; while some threads have outstanding

memory requests, others can carry out their computations - this of course means that the

latency in the execution of individual threads is comparatively worse, but the system-level

throughput can be much higher than on CPUs.

NVIDIA has developed the CUDA ecosystem around their GPUs; this includes the

CUDA language extensions to C, C++ and Fortran, based on the Single Instruction Mul-

tiple Threads parallel programming abstraction, as well as a number of numerical libraries

to support computations common in scientific computing (such as FFTs or dense linear

algebra routines). OpenCL [39] implements a similar programming abstraction and sup-

ports a much wider range of hardware, but its ecosystem is much smaller than that of

CUDA. OpenACC [40] is a directive-based approach to programming GPUs (similar to

OpenMP). In this work, I only utilise CUDA, as it permits the most low-level optimisation

and the highest level of control over execution. Below, I present a summary of architectural

specifics of Fermi and Kepler generation hardware and associated best practices that I use

throughout this work. There are some architectural differences as well as more features

supported in the later generation Kepler GPUs, NVIDIA’s way of differencing between

them is through the specification of the compute capability, which is 2.0 for Fermi, and 3.0

or 3.5 for Kepler. This was published in my paper [3] as a synthesis of various programming

guides, examples and my own experience [37, 41, 42].

In the CUDA programming environment and in its SIMT abstraction there are two

levels of parallelism; on the coarse level there is an execution grid, with a number of
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Figure 2.4. An example of a CUDA execution grid

thread blocks that execute independently with no guarantees as to how their execution

is scheduled. On the fine level, each thread block consists of a number of threads, these

execute simultaneously with access to a shared scratchpad memory and means for fast

synchronisation. This execution model is illustrated in Figure 2.4.

When implementing algorithms in CUDA, the execution model of the hardware needs

to be taken into account to apply optimisations, here I discuss the most important ones:

1. On NVIDIA GPUs, groups of 32 threads called warps are executed in a single in-

struction multiple data (SIMD) fashion. A collection of threads called a thread block

is assigned to a Streaming Multiprocessor (SM or SMX); each SM can process up

to 8(16) thread blocks at the same time, but no more than 1536(2048) threads on

Fermi (Kepler) hardware. If there are too many thread blocks, then some execute

only after others have finished.

2. The number of threads active at the same time (occupancy) depends on their resource

usage: the number of registers and the amount of shared memory. Each Fermi SM

has 32k 32-bit registers and each Kepler SMX has 65k, but each thread can only use

up to 63(255). There is up to 48 KB of shared memory available on each SM.

3. The problem has to be decomposed into fairly independent tasks because collabora-
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tion is very limited. Threads in a thread block can communicate via on-chip shared

memory. For threads that are not in the same thread block, communication is only

possible indirectly via expensive operations through global memory, and even then

synchronisation is only possible by starting a new kernel.

4. Memory bandwidth is very limited between the host and the GPU (PCI-Express)

and has a high latency thus any unnecessary transfers should be avoided.

5. Memory bandwidth to off-chip graphics memory is highly dependent on the pattern

of access and type of access. If threads in the same warp access memory locations

adjacent to each other, than these memory transfers can be bundled together result-

ing in a so called coalesced memory access and the full width of the memory bus can

be utilised. With the introduction of caching, coalesced access is no longer a strict

requirement, however, for reasons described below, it is still desirable.

6. Implicit L1 and L2 caches were introduced with the Fermi architecture; each Stream-

ing Multiprocessor (SM) has a 16k/48k L1 cache, and there is a single shared 768k

L2 cache for the whole chip (1.5 MB for Kepler). The L1 cache size is comparable

to the cache on the CPU (usually 32k), however while a CPU core executes only

a few (1-2) threads, the GPU executes up to 2048 threads per SM. This results

in very constrained cache size per thread: since a cache line (the unit of memory

transaction when loading from/storing to off-chip memory) is 128 bytes long, even

when using 48k L1 cache, only 384 lines can be stored. If all threads read or write

in a non-coalesced way, only 384 of them can get cache hits when accessing that

cache line, the others get a cache miss. Cache hits can greatly improve performance,

but misses cause high latency and potentially cache trashing. It is therefore very

important for threads in the same block to work on the same cache lines, to have

so called "cache locality". On Kepler architectures there is also 48 KB of read-only

non-coherent cache in each SMX that can be used for reading data.

7. Instruction throughput depends on both the number of threads per SM and the type

of instructions: support for Fused Multiply-Add (FMA) enables high floating point

throughput, however unstructured grids require a considerable amount of pointer

arithmetic for which there are no separate integer units - unlike in CPUs.

8. Precision requirements are linked to all of the above as double precision floating

point arithmetic requires more clock cycles for execution, and doubles the bandwidth

requirements.
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Chapter 3

Finite Element Algorithms and

Data Structures

In this chapter, I present the mathematical background of the Finite Element Method

in Section 3.1, based on [43], to serve as a basis for the subsequent discussion of the

corresponding integration algorithm in Section 3.2, where I also describe the algorithmic

transformations at a high level, discussing issues of parallelism, concurrency and locality;

these are going to be mapped to actual implementations in the next chapter. Section 3.3

presents the underlying data structures that are used by the parallel algorithms, with

a focus on potential concurrency issues and the memory footprint of these structures.

Finally, Section 3.4 discusses the algorithms involved in the sparse linear solution phase of

the FEM, based on [44], adding my comments on matters of parallelism and concurrency,

connecting the algorithms with the data structures.

3.1 The Finite Element Method

Unstructured meshes are used in many engineering applications as a basis for the dis-

cretised solution of PDEs, where the domain itself or the required accuracy of the solution

is nonuniform. Variations of the Finite Element Method (FEM) can handle most types

of partial differential equations, but to understand the algorithm, consider the following

simple boundary value problem over the domain Ω [43]:

−∇ · (κ∇u) = f in Ω, (3.1)
u = 0 on ∂Ω. (3.2)

where ∇ is the gradient and κ may be a scalar of function and f : Ω → <. The solution
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is sought in the form of u : Ω → <. With the introduction of a test function v on Ω, the

variational form of the PDE is as follows:

Find u ∈ V such that
∫
Ω

κ∇u · ∇v dV =
∫
Ω

fv dV , ∀v ∈ V, (3.3)

where V is the finite element space of functions which are zero on ∂Ω, or as reformulated
below:

u : a(u, v) = `(v), ∀v ∈ V, (3.4)

a(u, v) =
∫
Ω

κ∇u · ∇v dV , (3.5)

`(v) =
∫
Ω

fv dV . (3.6)

The standard finite element method constructs a finite dimensional space Vh ⊂ V of

functions over Ω, and searches for an approximate solution uh ∈ Vh. Let {φ1...Nv} be a

basis for Vh, then:

uh =
∑

i

ūiφi (3.7)

To find the best approximation to u, it is necessary to solve the system:

Kū = l̄, (3.8)

where K is the n× n matrix, usually called the stiffness matrix, defined by:

Kij = a(φi, φj), ∀i, j = 1, 2, . . . , Nv, (3.9)

and l̄ ∈ <n, usually called the load vector, is defined by:

l̄i = `(φi), ∀i = 1, 2, . . . , Nv. (3.10)

If the underlying discretisation mesh has nodes x̄i, it is possible to choose a finite

element space Vh with basis functions such that φi(x̄j) = δi,j . In this case uh is determined

by its values at x̄i, i = 1, 2, . . . Nv. The mesh is a polygonal partitioning of the domain Ω

into a set of disjoint elements ei ∈ E, i = 1 . . . Ne. The basis functions are constructed so

that φi is non-zero only over those elements e which have x̄i as a vertex. This means that

finite element basis functions φi have their support restricted to neighbouring elements,

therefore the matrix K is going to be sparse. Basis functions are usually chosen to be

piecewise polynomials, therefore in case of first-order elements, the basis functions are

piecewise first-degree polynomials (in 2D this is going to be a bilinear), in case of second-

order elements they are second-degree polynomials, etc.
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In the case of an elasticity problem, the basis functions represent the unit displacement

at different discretisation points (nodes), an entry Kij of the stiffness matrix represents

the force at node i due to the unit displacement at node j, keeping all the other nodes

fixed. With elements of the load vector representing the external force, the solution of the

linear system therefore yields the weights of basis functions - that is the absolute value of

displacement at different discretisation points.

This formulation separates the FEM into two distinct parts: the assembly of the stiff-

ness matrix K and the load vector l̄, and the solution of a sparse linear system of equations

Kū = l̄, henceforth, they will be referred to as the assembly and solution phases.

3.2 Finite Element Assembly

In order to formulate a practical algorithm that could be later implemented, it is

necessary to introduce some notations and data structures that describe the mesh; how

elements and degrees of freedom (unconstrained discretisation points) are connected:

1. Global index for each node in the mesh I = {1 . . . Nv}.

2. Coordinate data for each node in the mesh x̄i ∈ <d.

3. List of elements E = {1 . . . Ne}.

4. Element → node mapping Me mapping from elements of E to a subset of I, where

n is the number of degrees of freedom - d.o.f. in an element. This mapping is an

ordered list of global node indices, for example in a counter-clockwise fashion.

Because the basis functions φi have their support restricted to neighbouring nodes, the

bilinear form in (3.5) can be partitioned and constrained to be the sum of integrals over

a few elements. In practice the stiffness matrix can be constructed by iterating through

every element and adding up the contributions from integrals of non-zero basis functions

φi, i ∈Me(e) over the current element Ωe, as shown in Algorithm 1.

The resulting matrix K will be sparse because only neighbouring basis functions’ prod-

ucts will be non-zero. The bilinear form a(., .) is symmetric, so K is symmetric too. This

algorithm can be described in another way; as carrying out the integration and assembling

dense local matrices Ke which contain the non-zeros that the current element contributes

to the global matrix, then inserting these values to their place in the global matrix. There-

fore one can further split the assembly phase into two logically distinct parts: integration

and insertion.
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Algorithm 1 Element by element assembly of the stiffness matrix and the load vector
[43]
1: for each element e ∈ E do
2: for each degree of freedom i ∈Me(e) do
3: for each degree of freedom j ∈Me(e) do
4: Kij + =

∫
Ωe

κ∇φi · ∇φj dV

5: end for
6: l̄i + =

∫
Ωe

fφi dV

7: end for
8: end for
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Figure 3.1. An example of a quadrilateral finite element mesh, with degrees of freedom
defined for second-order elements

The algorithms in this work are based on quadrilateral elements - Figure 3.1 shows

an example of a mesh composed of quadrilateral elements, with degrees of freedom de-

fined such that (piecewise) second-degree polynomials will be used as basis functions. The

calculation of the coefficients of the basis functions, the local quadrature points and the

gradients are based on a transformation from the reference square. This bilinear transfor-

mation is calculated for every element and applied to the reference square [45].

3.2.1 Dirichlet boundary conditions

In general, essential boundary conditions constrain the solution u:

u = g on ΓDirichlet ⊂ ∂Ω, (3.11)

for some function g on the constrained part of the boundary ∂Ω. This means the nodes on

the boundary have fixed values. This change of course has to appear in the linear system
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Kū = f̄ . In my experiments I assume g = 0 and Γ = ∂Ω according to equation (3.2).

There are two popular ways to implement this, either via pre- or post-processing:

1. Before assembly, renumber the nodes of the mesh in a way that constrained nodes

are not included in the linear system, thereby eliminating them from further com-

putations at the expense of having to look up different indices for accessing data on

the nodes and accessing the linear system.

2. Assemble the stiffness matrix and load vector as if no nodes were constrained, then

set each constrained node’s row and column to zero, the diagonal element to one,

and the entry in the right hand side vector to the prescribed value.

My test programs use the first approach, the non-constrained nodes are referred to as free

nodes or degrees of freedom If = {1 . . . Nf}, Nf ≤ Nv.

3.2.2 Algorithmic transformations

When increasing the degree of polynomials used as basis functions, both the number

of degrees of freedom and the number of quadrature points increase as a square function

of the degree. For 2D quadrilateral elements it is equal to: (degree + 1)2. As Algorithm

1 shows, the number of computations also increases, and by accounting for the numerical

integration, the total is on the order of (degree+1)3. Since there is a huge growth with the

increasing degree of polynomials, I investigate possible formulations of the FE integration.

The classical formulation of the integration is described in Algorithm 2 [43]. Here the

outermost loop is over the quadrature points, computing the local quadrature point by

mapping from the reference square and the corresponding Jacobian once. Then it iter-

ates over pairs of degrees of freedom to compute the product of the gradients of the two

basis functions, evaluated at the current quadrature point, and adding this contribution,

multiplied by the quadrature weight, to the stiffness value. Observe, that this formulation

carries out the minimum number of computations, and only stores the bilinear mapping

locally, however it updates Klocal(i, j) repeatedly, once in each iteration of the outermost

loop over the quadrature points. Therefore this algorithm has good computational effi-

ciency, has a low local storage footprint, but has poor temporal locality in accessing the

stiffness values.
My first transformation, the second formulation, of the integration is described by

Algorithm 3. Here, the loop over quadrature points is now the innermost loop, therefore

the stiffness values are updated with very good temporal locality, however a number of

values are pre-computed and stored locally; the coordinates of local quadrature points and
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Algorithm 2 Traditional formulation of FE integration [43]
1: Ilocal ←Me(e)
2: generate bilinear mapping based on the four vertices
3: for each quadrature point p do
4: calculate local quadrature point for p
5: calculate jacobian J to map to p
6: for i = 1 to length(Ilocal) do
7: if i is not constrained then
8: for j = i to length(Ilocal) do
9: if j is not constrained then

10: Klocal(i, j)+ = weights(p) ∗ ∇φi(p) ∗ ∇φj(p)
11: Klocal(i, j) = Klocal(j, i)
12: end if
13: end for
14: l̄local(i)+ = weights(p) ∗ φi(p) ∗ f(p)
15: end if
16: end for
17: end for

the corresponding Jacobians. Since the number of quadrature points increases linearly with

the degree of polynomials used, this can have large local storage requirements, especially

at high degrees. Like the classical formulation, it also carries out the minimal number of

computations.

Algorithm 3 Local storage formulation of FE integration
1: Ilocal ←Me(e)
2: generate bilinear mapping based on the four vertices
3: pre-compute local quadrature points quadPointslocal

4: pre-compute Jacobians J to map to each quadrature point
5: for i = 1 to length(Ilocal) do
6: if i is not constrained then
7: for j = i to length(Ilocal) do
8: if j is not constrained then
9: for each quadrature point p in quadPointslocal do

10: Klocal(i, j)+ = weights(p) ∗ ∇φi(p) ∗ ∇φj(p)
11: end for
12: Klocal(i, j) = Klocal(j, i)
13: end if
14: end for
15: for each quadrature point p in quadPointslocal do
16: l̄local(i)+ = weights(p) ∗ φi(p) ∗ f(p)
17: end for
18: end if
19: end for

The third formulation of the integrations is described by Algorithm 4, which is struc-

turally similar to Algorithm 3, except that local quadrature points and Jacobians are

re-computed in the innermost loop. Therefore this formulation achieves good temporal
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locality, it only stores the bilinear mapping locally, but performs redundant computations.

Algorithm 4 Redundant compute formulation of FE integration
1: Ilocal ←Me(e)
2: generate bilinear mapping based on the four vertices
3: for i = 1 to length(Ilocal) do
4: if i is not constrained then
5: for j = i to length(Ilocal) do
6: if j is not constrained then
7: for each quadrature point p do
8: calculate local quadrature point for p
9: calculate Jacobian J to map to p

10: Klocal(i, j)+ = weights(p) ∗ ∇φi(p) ∗ ∇φj(p)
11: end for
12: Klocal(i, j) = Klocal(j, i)
13: end if
14: end for
15: for each quadrature point p do
16: calculate local quadrature point for p
17: calculate Jacobian J to map to p
18: l̄local(i)+ = weights(p) ∗ φi(p) ∗ f(p)
19: end for
20: end if
21: end for

These three formulations have a property highly relevant to properties of modern

computer architectures; they trade off computations for local storage and temporal locality,

Chapter 4 discusses how these map to hardware.

3.2.3 Parallelism and Concurrency

Algorithms 2, 3 and 4 describe the FE integration for individual elements that con-

stitute the whole domain. Integration itself is “embarrassingly” parallel; there is no data

dependency between the execution of different elements. However, during insertion there

is a write-after-read data race when incrementing stiffness values in the sparse matrix; two

elements with common degrees of freedom, such as elements sharing an edge or a vertex,

may try to increment the same value. Therefore it is important to address these race con-

ditions; either by carrying out the increment atomically, or by enforcing an ordering in the

execution of potentially conflicting updates. The former may be supported by hardware,

the latter has to be achieved through a modification to the parallel execution of elements;

colouring.

Colouring is done on two levels: blocks of elements and individual elements within the

blocks. This is to allow coarse and fined grained parallelism; in some cases it is advanta-
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geous to have only a single block of elements, but in other cases, for hardware that support

multiple levels of parallelism, it is useful to have many. Only blocks of elements with the

same colour are processed at the same time, thereby making sure that no two blocks access

the same data at the same time. Within these blocks further parallelism can be supported

by colouring individual elements, and then serialising accesses colour-by-colour, with an

explicit synchronisation between each one. This two-level approach is preferred over a sin-

gle colouring of all elements, due to the fact that in such a case all data reuse would be

lost.

3.3 Finite Element Data Structures

There are three principal factors that have to be taken into account when designing

data structures for modern parallel hardware:

1. Memory footprint: how much memory is required to store all the data and auxiliary

information on how to access it.

2. Memory movement: how much data has to be transferred when carrying out an

operation involving the data.

3. Locality: what degree of spatial and temporal locality is achievable when carrying

out operations.

Given that this research is carried out in the context of the Finite Element Method, I

investigate two distinctly different approaches; inserting stiffness values during assembly,

immediately after integration, into a single, globally consistent stiffness matrix (referred to

as the Global Matrix Approach (GMA)), or alternatively to store the dense, local stiffness

matrices for each element and postpone insertion in some form to the solution phase

(referred to as the Local Matrix Approach (LMA)). This section discusses the layout of

input data for the assembly phase and the layout of the sparse matrix that is used as both

the output of the assembly and the input of the solution phase.

Input mesh data consists of the mapping Me, the node coordinates, the mapping from

nodes to the indices of the linear system and the state variables for each node. Since the

algorithm iterates through elements, only the mapping data Me is accessed directly. The

rest of the input data in the assembly phase is accessed in an indirect fashion, based on

the global indices of the degrees of freedom.

The layout of stiffness matrix data is one of the most important factors that will

determine the performance of the finite element method on different hardware: in the
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Figure 3.2. Dense representation of a sparse matrix

assembly phase the amount of data written to the stiffness matrix is at least comparable to

the amount of input mesh data, but for higher order elements it is many times higher. Since

in the solution phase the sparse-Matrix Vector (spMV) product is evaluated repeatedly

when using sparse iterative solvers, the matrix data will be read multiple times and hence

it is very important to optimise its structure.

3.3.1 Global Matrix Assembly (GMA)

There are several different sparse matrix storage formats commonly used [33], here

I discuss their structure and give examples based on the dense representation shown in

Figure 3.2;

1. COO (COOrdinate storage) stores every non-zero, their row, and column indices

separately. These vectors are not necessarily ordered, so during a spMV this may

result in random accesses to the multiplicand and the result vector and in the latter

case write conflicts may occur. It is also difficult to populate such a matrix on

a parallel architecture. Because of these disadvantages I did not use this storage

scheme.

2. CSR (Compressed Sparse Row) stores the non-zeros in a row-major order. As shown

in Figure 3.3, this format uses two arrays storing every non-zero and their column

indices, and an additional array with pointers to the first non-zero of every row and

the total number of non-zeros at the end. The size of the first two arrays are the

same as the number of non-zeros in the matrix, the size of the third array equals the

number of rows plus one. The advantage of CSR is that it is very compact and easy

to read, however it is very difficult to populate in a dynamic way; preprocessing is

necessary to determine the locations of the non-zeros beforehand. This also results

in a lot more input data in the assembly phase.

3. ELLPACK [33, 46] stores the sparse matrix in two arrays, one for the values and one
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Figure 3.3. Memory layout of the Compressed Sparse Row (CSR) format on the GPU
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Figure 3.4. Memory layout of the ELLPACK format. Rows are padded with zeros

for the column indices. Both arrays are of size number of rows ∗max row length.

Note that the size of all rows in these compressed arrays are the same because every

row is padded as shown in Figure 3.4.

4. Hybrid ELLPACK [33] stores the elements up to a certain row length in the ELL-

PACK format and the rest in a COO format. This layout has smaller memory re-

quirements than the ELLPACK, but it is more difficult to use because of the COO

part. Due to the relatively well-known length of the rows in the stiffness matrix, I

only use the ELLPACK format.

3.3.2 The Local Matrix Approach (LMA)

Many numerical methods to approximate the solution of the system of equations

Kū = l̄, such as the conjugate gradient method [44], do not explicitly require the ma-

trix K during operations, such as the sparse matrix-vector multiplication. During the

ȳ = Kx̄ multiplication the local matrix approach gathers the values of x̄, performs the

multiplication with the local matrices, and finally scatters the product values to ȳ [47, 48].

Formally this can be described as follows:

ȳ = AT (Ke(Ax̄)), (3.12)

where Ke is the matrix containing the local matrices in its diagonal and A is the local-to-

global mapping from the local matrix indices to the global matrix indices. Formally this

requires three sparse matrix-vector products, but the mapping matrix A does not have to

be constructed, and the whole operation reduces to Ne dense matrix - vector products, the

gathering of x̄, and the scattering of products to ȳ based on the element-node mapping
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Figure 3.5. Memory layout of local matrices (LM) for first order elements. Stiffness
values of each element are stored in a row vector with row-major ordering

Me.

In the LMA approach I store the dense element matrices, which are of size

(#d.o.f. per element)2. These matrices are stored in vectors, each one containing the

local matrix in a row-major order as shown in Figure 3.5. These vectors are then stored

row-by-row in memory.

3.3.3 The Matrix-Free Approach (MF)

The logic of the local matrix approach can be taken a step further; never storing

local stiffness matrices, but recalculating them every time the matrix-vector product is

performed. This approach can save a high amount of memory space and bandwidth by

not moving stiffness data to and from memory. This method has a different data transfer

versus computation ratio than the others, thus makes an interesting case when exploring

performance bottlenecks of the finite element algorithm.

3.3.4 Estimating data transfer requirements

I have already given an overview of the trade-offs in computations and communica-

tions for assembly algorithms, but the exact ratios depend on the actual implementation.

However, it is possible to give a good estimation for the data movement requirements in

the assembly and the solution phases, therefore here I work out these values, these will be

used later to predict and understand performance.

To provide an estimate of the amount of data to be transferred in both phases, consider

a 2D mesh with quadrilateral elements where the average degree of vertices (in the graph

theoretical sense - the average number of edges connected to vertices) is four, and the

number of elements is Ne. Let p denote the degree of polynomials used as basis functions.

The total number of degrees of freedom is the sum of d.o.f.s on the vertices, the

edges and inside the elements, not counting some on the boundaries, their number is

approximately:
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Nvertex = Ne,

Nedge = 2 ∗Ne(p− 1),
Ninner = Ne(p− 1)2.

(3.13)

In the assembly phase every approach has to read the coordinates of the four vertices,

the mapping Me, write the elements of the stiffness matrix and the load vector. Addition-

ally, global assembly approaches have to read indexing data to determine where to write

stiffness values, which involves at least as many reads per element as there are values in

the local stiffness matrices. Thus, for every element,

Tassembly,LMA = 2 ∗ 4 + (p+ 1)2 + (p+ 1)4 + (p+ 1)2, (3.14)
Tassembly,GMA = Tassembly,LMA + (p+ 1)4, (3.15)

where TLMA, TGMA denote the units of data transferred per element for the local and the

global matrix approaches. It is clear that the local matrix approach moves significantly

less data than the global assembly approaches when p is large.

In the sparse matrix-vector multiplication the matrix values, row indices, column in-

dices and the values of the multiplicand and result vectors have to be moved. The local

matrix approach has to access all of the local stiffness matrices, the mapping Me to index

rows and columns and the corresponding values of the two vectors for every element. Thus,

the amount of data moved is:

TspMV,LMA = Ne(p+ 1)4 + 3 ∗Ne(p+ 1)2. (3.16)

For global assembly approaches, the matrix is already assembled when performing the

spMV, the length of any given row depends on whether the d.o.f. corresponding to that

row was on a vertex, an edge, or inside an element:

Lvertex = (2p+ 1)2,

Ledge = (2p+ 1)(p+ 1),
Linner = (p+ 1)2,

(3.17)

based on (3.13), the total number of stiffness values plus the column indices and the values

of the multiplicand and result vectors:

TspMV,GMA = 3 ∗ (Nvertex ∗ Lvertex

+Nedge ∗ Ledge +Ninner ∗ Linner)
+Nvertex +Nedge +Ninner.

(3.18)

In addition to this, the CSR format has to read indexing data for rows as well, the size of

which is Nvertex +Nedge +Ninner.

Table 3.1 shows the relative amount of data moved by global matrix approaches com-

pared to the local matrix approach for different degree of polynomials used at single and
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Table 3.1. Ratio between data moved by local and global matrix approaches during the
spMV in single and double precision.

Degree 1 2 3 4
ELLPACK/LMA single 1.0 1.81 2.25 2.49
CSR/LMA single 1.04 1.85 2.28 2.51
ELLPACK/LMA double 0.9 1.58 1.93 2.12
CSR/LMA double 0.92 1.6 1.95 2.13

double precision. Observe, that based on these calculations it would be always worth do-

ing LMA except for first degree elements at double precision. However these figures do

not take the effects of caching nor the atomics/colouring employed by LMA into account,

so I expect the actual performance to be somewhat different. Similar calculations can be

carried out for the three dimensional case as well, with the global matrix approaches mov-

ing less data in both precisions at first degree elements and significantly more at higher

degrees.

3.4 Solution of the Sparse Linear System

While it is possible to solve sparse linear systems in the form of Ku = l with direct

methods, these are of O(N3) complexity, therefore only efficient on small matrices, and

due to the fill-in they generate in sparse matrices they are highly non-trivial to implement.

Iterative methods are hugely popular since they are only of O(N2) complexity, there is a

lot of literature on subject [44]. Since I am interested in the type of operations that are

carried out during the iterative solution, I chose the well-known preconditioned conjugate

gradient iteration [44], described by Algorithm 5, the convergence of which is guaranteed

for symmetric positive definite problems.. Note that every step in the algorithm consists of

either operations between dense vectors, or a sparse matrix-vector multiplication (spMV).

Parallelisation of the former is trivial, for the latter though, depending on the data struc-

ture and the parallelisation approach, it may be necessary to handle race conditions when

updating the result vector. In practice, it is the spMV that is the most time-consuming

step, and it is a key operation in most iterative solvers, therefore I investigate it in more

detail.
When using global matrix assembly approaches, it is possible to parallelise over all

non-zeros in the matrix, in which case race conditions between updates with the same row

index have to be handled. Alternatively, one can parallelise over rows of the sparse matrix,

in which case no race conditions exist - since most data structures store the matrix row by

row, this is the most popular parallelisation approach. However, in a multi-level parallelism
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Algorithm 5 The Preconditioned Conjugate Gradient Method for Ku = l [44]
1: r0 = l −Ku0
2: z0 = M−1r0
3: p0 = z0
4: for k = 0 until convergence do
5: αk = rT

k zk

pT
k

Kpk

6: uk+1 = uk + αkpk

7: rk+1 = rk − αkKpk

8: zk+1 = M−1rk+1

9: βk = zT
k+1rk+1

zT
k

rk

10: pk+1 = zk+1 + βkpk

11: k = k + 1
12: end for

setting, it may be worthwhile to map the coarse grained parallelism to independent chunks

of work (e.g. rows) when communication and synchronisation are expensive, and use fine

level parallelism over non-zeros in the same row, where communication and synchronisation

are cheap. Since the sparsity pattern of matrices may be arbitrary, it is clear that there are

trade-offs in the parallelisation approaches that have an important effect on the amount

of parallelism and the locality. These are investigated in more detail in Chapter 4, where

they are applied to GPU hardware, and evaluated on a number of matrices with different

characteristics.

When using the local matrix approach, it is possible to parallelise over elements, degrees

of freedom within elements or even pairs of degrees of freedom within elements, but it

is always necessary to handle race conditions; there may be multiple stiffness entries in

different elements for the same pair of degrees of freedom. However, while during assembly

(degree+1)4 race conditions exist for each element, when using the global matrix assembly

approach, when using the local matrix assembly approach there are only (degree + 1)2

race conditions during one iteration of the solve phase. Furthermore, locality is improved

when parallelising over elements, since during the dense matrix multiplication between an

element matrix and the multiplicand vector, (degree+ 1)2 values of the latter are reused

(degree+ 1)2 times.

When solving ill-conditioned problems with a high condition number, one usually re-

lies on preconditioners to ensure and accelerate convergence during the iterative solution

phase. This consists of the insertion of a step in the iterative algorithm that performs the

preconditioning:

z = M−1r, (3.19)
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Algorithm 6 Coloured SSOR preconditioning [49]
1: Compute z defined by:
2: (L+D)D−1(L+D)T z = r
3: Sub-step: solve (L+D)y = r for y:
4: for colour c = 1...ncolours do
5: for each row i with colour c in parallel do
6: yi = (1/Di)(ri −

∑
columns j with colour<cK(i, j)yj)

7: end for
8: end for
9: Sub-step: solve D−1(L+D)T z = y for z:

10: for colour c = ncolours...1 do
11: for each row i with colour c in parallel do
12: zi = yi − (1/Di)

∑
columns j with colour>cK(i, j)zj)

13: end for
14: end for

whereM is the preconditioning matrix. These preconditioners can range from simple diag-

onal (Jacobi), popular for its ease of use, through SSOR , Cholesky and LU factorisation, to

the most powerful (and most expensive) multigrid-based preconditioners [44]. The Jacobi

preconditioner is defined as follows:

Mij =
{
Kij if i = j
0 if i 6= j

(3.20)

where K is the stiffness matrix, and the Symmetric Successive Over-Relaxation (SSOR)
for symmetric matrices is defined as:

M = (L+D)D−1(L+D)T , (3.21)

where L is the strictly lower triangular part of K and D is the diagonal. The Jacobi

preconditioner is trivially parallel, however the SSOR enforces an ordering during the

solution of the lower and the upper triangular systems, thus I use a red-black variant in

conjunction with a full graph colouring algorithm that ensures that no two nodes that are

connected via an edge are updated at the same time, and provides an ordering for the

upper and lower triangular solves [49]. The algorithm is described in Algorithm 6.

These preconditioners are easily formulated for global matrix approaches, but for SSOR

and the local matrix approach it is necessary to add an additional level of colouring in

order to ensure race-free updates when parallelising over elements.

3.5 Summary and associated theses

In this chapter I presented a brief description of the Finite Element Method based

on [43] and then moved on to present my research into high-level algorithmic transfor-

mations of the FE integration that trade off computations for local storage and memory
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movement [3]. Thus, I have laid the foundations of Thesis I.1: By applying transformations

to the FE integration that trade off computations for communications and local storage,

I have designed and implemented new mappings to the GPU, and shown that the redun-

dant compute approach delivers high performance, comparable to classical formulations for

first order elements, furthermore, it scales better to higher order elements without loss in

computational throughput.

Furthermore I have discussed data structures relevant to the FEM, briefly introducing

CSR and ELLPACK [33] and presented the Local Matrix Approach (LMA) discussing its

properties in terms of memory footprint, memory movement and potential locality, and

shown how algorithms involved in the solution of the sparse linear system can be adopted

to use LMA [3]. This forms the basis of Thesis I.2: I introduced a data structure for the

FEM on the GPU, derived storage and communications requirements, shown its applica-

bility to both the integration and the sparse iterative solution, and demonstrated superior

performance due to improved locality. At the same time, I have introduced the sparse lin-

ear algebra algorithms based on [43, 44] that I use; the conjugate gradient algorithm, the

Jacobi, and the SSOR preconditioners.

This chapter presented an abstract study of the algorithms and data structures in-

volved, not specific to any target architecture, investigating matters of parallelism, con-

currency, data locality and data movement, these will serve as guidelines when carrying

out the actual implementation and they will help understand performance.
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Chapter 4

The FEM on GPUs

In the previous chapter, I have introduced a number of algorithms and data structures;

in this chapter I investigate how these map to the CUDA programming abstraction and

the execution model of GPU hardware, and how they influence performance when applied

to a Poisson problem. Section 4.1 describes the implementation considerations and the

mapping to GPUs, and Section 4.2 presents the experimental setup. Section 4.4 presents

and analyses the performance of different data structures and algorithms on the GPU.

Finally, Section 4.5 describes my research into generic sparse matrix-vector multiplications

on a single GPU and across multiple GPUs.

4.1 Implementation of algorithms for GPUs

When working on unstructured grids, the biggest problem is the gather-scatter type

of memory access, and much depends on the ordering of elements and their vertices. In

the assembly phase the vertex data (coordinates and state variables) have to be gathered

for each degree of freedom in an element. This data is accessed indirectly via the Me

mapping, which usually results in an uncoalesced memory access. After assembling the

local matrices, their elements have to be scattered to populate the global stiffness matrix.

The latter operation poses a data hazard, as neighbouring elements have to write to over-

lapping segments of memory in the global matrix. This problem can be solved either by

colouring the elements and executing the writes colour by colour [50], or by the use of

atomic operations that are guaranteed to carry out the operation uninterrupted, thereby

ensuring data-race-free execution - however these are not yet available for double precision

variables. The problem can be avoided altogether by choosing either non-zeros or whole

lines of the stiffness matrix as a unit of work to be assigned to threads [51]. These ap-
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proaches only involve gather type operations, however the amount of computations and

data movement required is much higher since the algorithm has to iterate through all the

elements connected to the given degree of freedom.

For the CUDA implementations Algorithms 2, 3 and 4 map directly to CUDA threads,

the quadrature points, weights, basis functions and their gradients evaluated at the quadra-

ture points on the reference triangle are kept in constant memory for fast access. The

mapping Me, the ELLPACK storage and the LMA storage of stiffness values are trans-

posed on the GPU to support coalesced accesses when neighbouring threads access data

associated with neighbouring elements. For the example of Me, to access the nth degree

of freedom (out of N) in an element e (out of Ne), normally data would be accessed with

the following index e ∗N +n, after transposition this becomes n ∗Ne + e, thus if adjacent

threads are assigned adjacent e elements, they would be accessing subsequent memory

locations when executing in lockstep, granting good spatial locality.

4.1.1 Related work

Due to the high demand for accelerating finite element methods (FEM) several studies

have investigated FEM implementation on GPUs. The method can be divided into two

phases: the assembly of a matrix, then the solution of a linear system using that matrix. In

general the solution phase is the more time consuming one, specifically the sparse matrix-

vector product between the assembled matrix and vectors used by iterative solvers. Because

this is a more general problem, several studies focused on the performance evaluation of this

operation on the GPU [33, 52, 46] and in the FEM context [53]. Finite element assembly

has also been investigated both in special cases [52, 54, 55, 56] and in more general cases

to show the alternative approaches to matrix assembly for more general problems [51,

47, 57, 58]. Their results show a speedup of 10 to 50 compared to single threaded CPU

performance in the assembly phase, arguably an unfair comparison, and only very limited

speedup in the iterative solution phase.

4.2 Experimental setup

4.2.1 Test problem

Since my goal was to investigate the relative performance of the finite element method

using different approaches on different hardware I chose a simple Poisson-problem with a
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known solution:

−∆u(x̄) = sin(πx1) · sin(πx2), (4.1)

u(x̄) = 0 on ∂Ω, (4.2)

where ∆ = ∇ · ∇, is the Laplace operator.

The underlying two dimensional grid consists of quadrilateral elements with up to 16

million vertices and the order of elements ranges from 1 to 4. The tests run on grids that

have the same number of degrees of freedom, so the number of elements in a fourth degree

test case is one-sixteenth of the number of elements in a first degree test case.

4.2.2 Test hardware and software environment

The performance measurements were obtained on a workstation with two Intel Xeon

X5650 6-core processors, clocked at 2.67GHz with 12Mb shared L3 cache, 256kB L2, and

32kB L1 cache per core, 24GBytes of system memory running Ubuntu 10.10 with Linux

kernel 2.6.35. The system had 2 NVIDIA Tesla C2070 graphical processors installed, both

with 6GB global memory clocked at 1.5GHz and 364-bit bus width, 448 CUDA cores in 14

streaming multiprocessors (SMs) clocked at 1.15GHz. The CPU codes were compiled with

Intel’s C Compiler 11.1, using SSE 4.2, Intel’s OpenMP library and the O2 optimisation

flag. The GPU codes were compiled with NVIDIA’s nvcc compiler with the CUDA 4.2

framework and the -use_fast_math flag.

For accurate timing of GPU computations I used CUDA Events as described in Section

8.1.2 of the CUDA C Best Practices Guide. CPU timings were obtained by using the

clock_gettime(CLOCK_MONOTONIC) function in the standard linux time.h header, called

outside of any OpenMP parallel region.

4.2.3 Test types

Several tests were performed that aim at investigating different aspects of the finite

element algorithm. These tests are analysed from the viewpoint of different performance

metrics such as speed and limiting factors, and also their place in the whole algorithm.

1. Stiffness matrix assembly: different approaches to assembly were tested, using the

CSR and the ELLPACK sparse storage format, the LMA and the Matrix-free ap-

proach. Assembly approaches trading off computations for communications (dis-

cussed in Section 3.2.2) are evaluated, but only the best ones are shown.
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2. Conjugate gradient iteration: the spMV product is the most time-consuming part

of the conjugate gradient method and the only one that depends on the matrix

layout. Performance is displayed on the basis of number of Conjugate Gradient (CG)

iterations per second. The performance of different storage and calculation schemes

was analysed.

3. Data conflicts: race conditions can be handled in two ways: with the use of atomic

operations or colouring. The former is straightforward and does not require any

special implementation considerations. Optimal colouring on the other hand is an

NP-hard problem, but suboptimal colouring algorithms are fast. The GPU algorithm

uses two levels of colouring: thread and block colouring. Blocks with different colours

are executed after each other by a kernel call. Memory writes for threads with dif-

ferent colours are separated by a __syncthreads() call. To decrease the number of

synchronisations, these writes were buffered and grouped.

4. CPU and GPU: the algorithms are implemented as CPU codes using OpenMP

threads executing Algorithm 2 by blocks of elements. In the GPU version one element

is assigned to each thread.

5. Preconditioning: a simple Jacobi or an SSOR preconditioner are included in the

conjugate gradient iteration, and their impact on performance is analysed.

4.2.4 CPU implementation

Comparing single-core CPU performance to the performance of GPUs with hundreds of

processing cores is not realistic since modern systems have multiple CPU cores. To provide

a fair comparison, I implemented the assembly and the solution phase using OpenMP. My

test system included a 2 socket Intel Xeon X5650 processor, with a total of 12 physical

cores, 24 with hyper-threading enabled.

The CPU implementations use a block-colouring approach to avoid race conditions;

each thread works on a block of quadrilaterals and no two blocks with the same colour

have neighbouring quadrilaterals. During assembly in these implementations I do not do

any redundant computations since I follow the commonly used Algorithm 2, discussed

in the previous chapter. To further optimise performance, threads were pinned to CPU

cores through the KMP_AFFINITY=compact environment variable to avoid migration be-

tween sockets. To minimise the effects of non-uniform memory access (NUMA), memory

is initialised from within OpenMP loops corresponding to further computational loops so
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as to make sure that memory most frequently used by different threads during the assem-

bly and the solution process is allocated to physical memory attached to the appropriate

CPU socket (this relies on the first touch page allocation policy of the operating system).

Every CPU figure below shows performance using 24 threads.

The benefit from having more threads is clear in both phases, using 24 threads there

is a 7 to 12 times speedup over a single thread during assembly, and a speedup between 5

and 8 during solve.

4.3 Performance of algorithmic transformations of the FE

integration

As the GPU has significantly less resources per thread than the CPU, it is important

to investigate the balance of computations and communications when it is possible to

trade one for the other. As described in Section 3.2.2, I have implemented three different

approaches, the first that interchanges the loop over quadrature points with the loop over

pairs of degrees of freedom, performing the least amount of computations but resulting

in increased memory traffic because the stiffness values, residing in global memory, are

updated repeatedly (labeled as Global reuse, Algorithm 2), the second using local memory

to precompute the coordinates of local quadrature points to save on computations in

the innermost loop (labeled as Local reuse, Algorithm 3), and the third which recomputes

these coordinates and hence it is the most computationally intensive (labeled as Redundant

compute, Algorithm 4). Figure 4.1 shows that the first approach on the GPU is not a viable

option, however for low degree polynomials the L1 cache can contain the register spillage

resulting from the increased memory footprint of the second approach making it faster

than the redundant compute version. For higher degree polynomials this is no longer

true, the precomputed values are spilled to global memory resulting in a dramatic drop

in instruction throughput and performance. The third approach scales very well with the

increasing degree of polynomials, using the same amount of registers and showing a steady

instruction throughput rate.
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Figure 4.1. Number of elements assembled and instruction throughput using assembly
strategies that trade off computations for communications. Values are stored in the LMA

format

4.4 Performance with different data structures

4.4.1 The CSR layout

The compressed sparse row format (CSR) is one of the most widely used sparse storage

formats, supported by several libraries such as NVIDIA’s CUSPARSE [59]. In the case of

the finite element method the matrix layout can be calculated from the mapping Me and

used in the assembly phase to find the location of a non-zero within its row. My tests use

this approach but it is out of scope of this work to optimise this precomputing phase; in

practice I do this on the CPU and use it as an input to the algorithm.

Assembly phase

In the assembly phase, the global memory address of Kij has to be determined by

accessing the row and column pointers for the current local matrix element, then writing

the value while avoiding write conflicts either via atomic operations or colouring. Only

the column pointer lookup can be coalesced due to the unstructured nature of the grid.

The impact of this overhead decreases with the increasing computational requirements of

higher order elements. Figure 4.2a shows a speedup of up to 4.5 times over the CPU.

Solution phase

There are two approaches to evaluate the matrix-vector product: assign one thread per

row and add up the products with the multiplicand or to assign multiple threads per row

thereby achieving coalesced memory access to the values in the same row. The partial sums
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Figure 4.2. Performance using the CSR storage format

in the latter case are added up by a binary-tree reduction algorithm [8, 33]. Figure 4.2b

shows the performance of only the optimal versions of my CSR spMV kernel compared to

CUSPARSE and CPU versions. By always evaluating and assigning the optimal number

of threads to process the rows of the matrix, my algorithm, compared to CUSPARSE,

shows a speedup of up to 2 times in single and 1.4 in double precision and between 3 to 5

times over the CPU. A heuristic decision algorithm for the number of threads assigned to

process each row is discussed in Section 4.5, it was submitted to NVIDIA, and it is now

included in CUSPARSE.

4.4.2 The ELLPACK layout

The ELLPACK storage format has gained popularity for use on the GPUs because

of its aligned rows as shown in Figure 3.4. The population of the matrix can be done in

a similar way to CSR - precomputing the matrix layout and writing to those memory

locations in a thread-safe way. The other possibility is to allocate an empty matrix with

an extra field for each row that stores the current length of that row. The maximum length

of the rows can be upper-bounded by the number of degrees of freedom in each element

and the maximum degree of vertices in the mesh. Then in the assembly phase each new

value and its column index are appended to the end of the row. This of course requires

more memory space allocated for the matrix, but when computing the local matrices row

by row, each row can be written to global memory safely by increasing the row length

only once with the number of new values to be written. After the assembly, these rows can

be consolidated by sorting them by column indices and adding up values with the same

index. This approach will result in the same matrix as if the layout was precomputed.
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The other approach I call ’lazy ELLPACK’ is to leave the rows as they are, which will

still produce a valid result in the spMV phase, but the rows will be longer. The relative

number of multiple entries for the same column index in a row decreases as the order of

elements increases, making this overhead smaller.

Assembly phase

Computationally the assembly phase is exactly like the others, only the memory access

patterns differ. In the lazy scheme less memory input is required as only one pointer (the

row length) per local matrix row is necessary to determine where to write its values in

global memory, unlike the precomputed version, where a pointer is required for each local

matrix element - but this information can be laid out in memory so the access to it will

be coalesced. When writing data to memory the lazy scheme has to store column indices

for every value, in the precomputed version this is already known. Figure 4.3a shows that

the two schemes perform almost the same when using atomics to avoid race conditions,

but when using colouring the lazy version outperforms the precomputed one as it requires

less synchronisation. The atomic and lazy approaches have a speedup of up to 20 times

over the CPU in single precision and up to 3 times in double precision mode.

Solution phase

In my tests one thread is assigned to each row of the matrix, and since the matrix is

transposed in GPU memory, these threads are reading the values and column indices of the

matrix in a coalesced way - that is if the rows had the same length. Due to caching in Fermi

GPUs, even then whole cache lines will be loaded resulting in excess use of bandwidth.

The lazy scheme has similar issues, but the imbalance between the length of the rows is

worse - when a degree of freedom belongs to more elements, its row in the stiffness matrix

will have more values with the same column index. As shown in Figure 4.3b, the GPU is

up to 6 times faster than the CPU in single and 5 times in double precision.

4.4.3 The LMA method

The local matrix assembly method is based on the observation that in the iterative

solver, the stiffness matrix K is not required explicitly. This approach circumvents the

sparse matrix issues that arise when dealing with unstructured grids by storing stiffness

values on a local matrix basis. This enables completely coalesced access to stiffness values

in both the assembly and the spMV phase - at the expense of postponing the handling
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Figure 4.3. Performance using the ELLPACK storage format

of race conditions. Contributing stiffness values related to degrees of freedom that are on

edges or vertices connecting elements are stored in the local matrices of those elements.

This overhead decreases as the order of elements increases.

Assembly phase

The assembly phase requires the mapping from elements to node indices and the node

coordinates to be read from global memory - the only part of the LMA method that

cannot be coalesced, all writes to global memory are aligned by the thread index. Also

an important aspect of LMA assembly is that there are no write conflicts as each thread

writes to its own memory space. As shown in Figure 4.4a, the speedup of the GPU over

the CPU is up to 20 times in single and 5 times in double precision.

Solution phase

The spMV computation is slightly different from the others as it is based on elements

and not the rows of the matrix. Given these small dense local matrices, it is possible to

efficiently exploit the symmetric nature of the stiffness matrix. In the implementation of the

multiplication this would mean a nested loop with the bounds of the inner loop depending

on the outer loop. However, the compiler is not able to create an efficient machine code

from such a nested loop, so I unrolled the whole dense matrix-vector multiplication by

hand. While CSR and ELLPACK spMV multiplications have to read a column index for

each value in the stiffness matrix, the LMA method uses the mapping Me to get row and
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Figure 4.4. Performance using the LMA storage format

column indices. Thus, as I have shown in Section 3.3.4, at higher degrees the data moved

by LMA is significantly less then the data moved by global matrix approaches.

In this scenario however, more threads can increment the same value of the product

vector; thread safety is guaranteed by the use of atomics or colouring. Figure 4.4b clearly

shows the penalty incurred by the synchronisation between colours. As the spMV phase is

bandwidth limited, and memory accesses which may conflict (i.e. writing to the product

vector) are probably not coalesced anyway, a separate memory transaction has to be

issued for each atomic operation and each coloured write alike. This makes the overhead

of synchronisation between colours a key limiting factor. The GPU achieves speedups of

up to 8 times in single and 4 times in double precision over the CPU.

4.4.4 The Matrix-free method

The matrix free method is very similar to the LMA method, but instead of writing

the local matrices to global memory, it uses them to perform the matrix-vector product,

thereby fusing the assembly and the spMV phase. This of course means that the local

matrices have to be recalculated every time the spMV multiplication is performed. The

matrix-free approach has the advantage of not having to move the stiffness matrix to

and from memory, which saves a lot on bandwidth. On the other hand, calculating local

stiffness matrices is increasingly more computationally expensive with higher order ele-

ments. As a result the matrix-free approach can only be better than the other methods,

if the computation of the local matrices is faster than moving them from global memory

to the chip. Figure 4.5 shows a clearly steeper decline in performance compared to the

spMV phase of other methods, which means that at higher degree elements the matrix-
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Figure 4.5. Number of CG iterations per second on a grid with 4 million degrees of
freedom using the matrix-free method

free method is more compute limited than the other methods are bandwidth limited. On

current hardware the gap between memory transactions and computations is not wide

enough to support such a high amount of redundant computations.

4.4.5 Bottleneck analysis

When considering avenues to improve performance on different hardware, it is first

important to determine whether they are compute or bandwidth limited. The NVIDIA

Tesla C2070 has a theoretical maximum bandwidth of 144 GB/s, and a compute capacity of

1,03 TFLOPS for single and 515 GFLOPS for double precision calculations [60], although

these numbers assume fully coalesced memory accesses and purely fused multiply-add

floating point operations, which have a throughput of one instruction per clock cycle, but

are counted as two operations. Applications rarely achieve more than two-thirds of the

theoretical peak performance. Unstructured grids deal with scattered data access and a

high amount of pointer arithmetics, both of which make the utilisation of GPU resources

difficult. The introduction of L1 and L2 implicit caches with Fermi helps achieve better

memory bandwidth, but in some cases it can degrade performance: cache trashing can

result in a high fraction of the moved data being unused. As a comparison, the Intel

Xeon X5650 system has a theoretical performance of around 120 GFLOPS when SSE

vectorisation is fully utilised, which amounts to 10 GFLOPS per core.

On the computation side, there are certain operations that are a natural fit for the GPU

and provide high throughput, such as floating point multiply and add (32 operations per

clock cycle per multiprocessor). Some integer operations are more expensive: 32 operations

per cycle for addition but only 16 for multiplication and compare. The most expensive
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operations are floating point division and special functions such as square root, sine, cosine,

and exp, which have a throughput of 4 operations per cycle per multiprocessor.

From a single thread perspective the algorithm is a sequence of memory operations

and compute operations. To utilise the maximum amount of bandwidth there have to be

enough threads and enough compute operations so that while some threads are waiting for

data from memory, others can execute compute instructions. In theory, for the Tesla C2070

to operate at maximum efficiency from both the memory and compute perspective there

have to be 28 floating point multiply-add operations for every single precision floating

number loaded from global memory. In practice because of control overhead, other kinds

of operations, and caching this number is significantly less (around 10).

The NVIDIA Visual Profiler gives very useful hints to decide whether a GPU kernel

is compute or memory limited, but it also displays metrics such as ratio of divergence,

cache statistics etc. which can be very helpful when analysing non-trivial aspects of an

algorithm.

The assembly phase

Both the assembly and the spMV phases have to move the entire stiffness matrix to or

from memory, and this transfer makes up the bulk of all memory traffic in both phases.

Looking at the performance degradation in Figure 4.6a, as the order of elements increase,

it is apparent that the assembly becomes much slower than the spMV. This means that

while increasing the order of the elements results in having to move more data to and from

memory, it also requires more computation in the assembly phase because the number of

quadrature points also increases as a square function (in 2D) of the degree of polynomials

used. Figure 4.6b shows a slight increase in instruction throughput for the LMA and ELL-

PACK approaches, and Figure 4.7a shows quickly decreasing bandwidth in the assembly

phase. These factors indicate that the assembly phase is compute limited. CSR throughput

figures on the other hand show an increasing tendency, while its bandwidth utilisation is

the same as that of the other two approaches. The reason for this is the high percentage

of cache misses; while threads writing to LMA and ELLPACK data layouts work on a

small set of cache lines at the same time, thanks to their transposed data layout, threads

writing to the CSR layout do not.

Based on these observations, it can be stated that the assembly kernel is increasingly

compute limited with higher order elements. According to the Visual Profiler’s output and

my own calculations the instruction throughput of the LMA approach is around 500 ∗ 109
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Figure 4.6. Throughput of the FEM assembly when using different storage formats on a
grid with 4 million degrees of freedom

instructions per second, which is a good proportion of theoretical 1TFLOPS throughput

considering the amount of integer arithmetic and control overhead - as a comparison,

the CUBLAS [61] dense matrix-matrix multiplication benchmark reports 630 GFLOPS in

single and 303 GFLOPS in double precision. It is also interesting to see the performance

penalty for colouring (2 to 4 times) - that is the cost of synchronisation within thread

blocks and the multiple kernel calls for different block colours.

When moving to double precision, it can be seen in Figure 4.6a that the LMA assembly

performance is only a fourth of its single precision version. Double precision ELLPACK

and CSR have to use colouring due to the lack of native support for atomic operations

with doubles. In the case of the CPU, the compute limits are again apparent, even though

the CPU versions have to perform less computations at the expense of having to store

local quadrature points and their Jacobians. Regardless of the memory access pattern, all

versions perform similarly.

Using LMA, the GPU’s speedup over the CPU is between a factor of 10 and 30 in single

precision using atomics, and between 2.5 and 7 in double precision. The speed difference

in the actual calculations and in the theoretical performance of the GPU versus the CPU

are very close.

The number of assembled quadrilateral elements per second outperforms triangular

assembly shown in [51, 47] by a factor of up to 10.
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Figure 4.7. Absolute performance metrics during the assembly and solve phases on a grid
with 4 million degrees of freedom

The spMV phase

The sparse matrix-vector product is commonly known to be a bandwidth limited op-

eration [33]. In fact it has to move just a little less data than the assembly phase, but the

number of operations is significantly less: approximately one fused multiply-add for each

non-zero element in the matrix. Figure 4.7a clearly shows a low instruction throughput

compared to the theoretical maximum. Using the LMA approach incurs an overhead of

having to avoid race conditions using atomics or colouring. The LMA approach offers fully

coalesced access to the elements of the stiffness matrix, and both ELLPACK and CSR

use optimisations to improve bandwidth efficiency. However, the access to the elements

of the multiplicand vector is not coalesced, but caching can improve performance. Global

matrix approaches using CSR store the least amount of stiffness data, but they have to

read a column index for every non-zero of the sparse matrix. The LMA approach uses the

mapping Me to get row and column indices. As shown in Section 3.3.4 the local matrix

approach has to move significantly less data, especially at higher degree polynomials.

Figure 4.8a shows that global matrix approaches have very similar performance, but the

less data-intensive local matrix approach provides the best performance for higher order

elements. As expected, the difference increases with the increasing degree of elements. This

also supports the conclusion that the sparse matrix-vector product is bandwidth limited.

Furthermore Figure 4.7b shows the bandwidth utilisation of different approaches. The

ELLPACK layout shows the best bandwidth utilisation, but since it has to move more

data it is still up to 50% slower than the LMA layout. Although using either the CSR

or the ELLPACK layout results in having to move the same amount of useful data, the
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Figure 4.9. Number of CG iterations per second with different preconditioners and
storage formats

transposed layout of ELLPACK provides up to 10% higher effective bandwidth. The zeros

padding the rows of ELLPACK are not factored into these figures. Figure 4.8b shows that

in double precision, the performance of the LMA approach falls back because colouring

has to be used to avoid race conditions.

The GPU’s speedup over the CPU using global matrix approaches is up to 5 in single

precision and 3 in double precision. Local matrix approaches outperform the CPU by up

to 7 times in single and 5 in double precision.

4.4.6 Preconditioning

The diagonal preconditioning adds very little overhead to the conjugate gradient it-

eration; once the diagonal values are extracted from the stiffness matrix, it is a matter

of a simple element-wise vector-vector multiplication, and so it has virtually no impact

(less than 10%) on performance when compared to performance shown in Figures 4.8a

and 4.8b. The coloured SSOR on the other hand involves several kernel launches, for each
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colour, in both the forward and the backward solution steps. In theory, the amount of

useful computations carried out during preconditioning is almost the same as during a

single sparse-matrix vector product. Performance figures are shown in Figures 4.9a and

4.9b. It can be observed that even for global matrix assembly approaches, the performance

penalty is much higher than two times, which is due to the coloured execution: no two

degrees of freedom in the same element can have the same colour, resulting in at least

(degree+ 1)4 colours.

The CSR format is least affected by the coloured execution, because multiple threads

are assigned to compute the product between any given row of the matrix and the mul-

tiplicand vector, which ensures some level of coalescing in memory accesses. ELLPACK

on the other hand stores data in a transposed layout that gives good memory access pat-

terns during an ordinary spMV, however during coloured execution neighbouring rows do

not have the same colour thus neighbouring threads processing rows of the same colour

are accessing rows that are far apart, resulting in very poor memory access patterns due

to big strides and low cache line utilisation. Because of these issues, the performance of

the ELLPACK layout on the SSOR falls rapidly with the increasing degree of polynomials

used. When executing SSOR using the LMA layout, threads are still processing neighbour-

ing elements, however there is no opportunity of data reuse within an element because

by definition all its degrees of freedom have a different colour. Still, LMA’s data layout

enables more efficient memory access patterns, granting it an edge over global assembly

methods in single precision, but the requirement for a two-level colouring approach in

double precision reduces its performance below that of CSR.

Even though ELLPACK is very well suited for simple operations such as the spMV, it

does not scale well to larger degree polynomials. LMA performs well on simple operations

and single precision, but the lack of support for atomics in double precision and the

complexity of the implementation for preconditioners like SSOR do not make it the obvious

best choice. Furthermore LMA restricts the choice of preconditioners: for example an

incomplete LU factorisation with fill-in cannot be applied, because the layout cannot

accommodate the additional non-zeros. However, a geometric or p-Multigrid scheme [62]

could be a good choice in combination with a Jacobi smother; the LMA format has the

geometric information readily available and an element structure can be maintained on the

coarser levels with appropriate restriction schemes. The implementation of such a multigrid

preconditioner is out of scope of this work and will be addressed by future research.
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4.5 General sparse matrix-vector multiplication on GPUs

The sparse matrix-vector multiplication is an integral part of a host of sparse linear

algebra algorithms, in many cases it is the single most time-consuming operation in an

iterative linear solver [44]. Therefore it is an ideal target for performance optimisation,

however, sparsity patters very greatly from one matrix to an other, since they can represent

random graphs, electronic circuits, social interactions, discretisations of partial differential

equations on structured or unstructured grids and a range of other problems. In this part

of my research, I study the parametrisation of the sparse matrix-vector product operation

in order to determine the best possible mapping to the GPU hardware, depending on

properties of different matrices. Previous studies have addressed some of these issues but

they lack the dynamism to adapt execution parameters to different matrices [63, 33, 64,

65, 66]

My main focus is to minimise data transfer by maximising data reuse. When performing

the sparse matrix-vector product, each non-zero element of the matrix is only used once,

and their column and row indices are used to address the multiplicand and result vectors.

Depending on the storage format these indices can be compressed to an extent. More

importantly, the access pattern to the multiplicand vector depends on the structure of the

matrix and, in the general case, very few assumptions can be made about it. This is why

caching mechanisms can greatly improve performance - or in some extreme cases decrease

it. Due to the relatively small amount of cache per thread on the GPU, it is essential to

understand and optimise for these caching mechanisms.

In general, sparse matrices can greatly differ in the number of rows and columns, in

the average and variance of the length of the rows, and in the distribution of non-zeros

within individual rows. Therefore there is no “best” storage format or fixed algorithm for

SpMV multiplication. CSR has widespread usage in the scientific community and it is

the most commonly used format in CPU based algorithms. It is one of the most efficient

formats in terms of storing non-zero values because no padding are redundant storage is

required. Blocked matrix formats store small parts of the matrix in a dense format, thereby

cutting back on the amount of indexing data required. However, their use is limited to

the blocked subclass of sparse matrices, otherwise the fraction of zeros in the dense sub-

matrices would make the storage inefficient. Aligned formats like ELLPACK which are

better suited for data access in vector architectures do not require the explicit storage of

row indices, because all rows have the same length. This results in having to pad shorter

rows with zeros up to the size of the longest row, which means that the memory required
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Figure 4.10. Memory layout of the Compressed Sparse Row (CSR) format on the GPU

for storing both the column indices and non-zero values is higher than absolutely necessary.

In case of matrices with a high standard deviation in the length of the rows this would be

infeasible; to tackle this problem the hybrid format stores rows up to a certain length in

the ELLPACK format, and the rest of the non-zeros are stored along with their row and

column indices in the coordinate (COO) format. However, it is difficult to handle matrices

in the hybrid format, especially when trying to access structural properties of the matrix.

Because of these compromises and the fact that only CSR has widespread support by

other libraries I chose the CSR format for this research.

Many scientific algorithms require repeated execution of sparse matrix-vector products

using either the same matrix or matrices with a very similar structure. A well-known

example is the iterative solution of a system of linear equations where the number of

equations make the use of direct solvers infeasible. Similarly, during Newton-Raphson

iterations, a matrix is constructed, then a linear system is solved, but the matrix itself has

the same structure in each iteration, just different values. In these cases, a sub-optimal

multiplication algorithm can be tuned, and I will show that the overall performance can

be greatly improved.

During the multiplication of a sparse matrix with a vector, each element of a given row

has to be multiplied with the corresponding element from the multiplicand vector, these

products are added up and written to the result vector. The CSR format stores matrix

data in three vectors as shown in Figure 4.10 (a copy of Figure 3.3). The first vector

rowPtrs points to the first element of each row, and its last element is the total number

of non-zeros. The second and third vectors, colIdxs and values, store the column indices

and the values for each non-zero element in the matrix. The total number of rows is dimRow

and the total number of non-zeros is nnz. The simplest serial version of the multiplication

y = Ax using the CSR format is described by Algorithm 7 [33].
Based on Algorithm 7 a multiplication and addition is performed for each non-zero in

the matrix, thus the total number of floating-point operations is:

2 ∗ nnz. (4.3)
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Algorithm 7 Sparse matrix-vector multiplication using CSR storage [33]
for i = 0 to dimRow-1 do
row = rowPtrs[i]
y[i] = 0
for j = 0 to rowPtrs[i+1]-row-1 do
y[i] + = values[row + j]∗x[colIdxs[row + j]]

end for
end for

This formula will be used to calculate the instruction throughput.

Similarly, the number of bytes moved to and from off-chip memory without considering

caching, is for each non-zero its value, column index and corresponding value from the

multiplicand vector x and for every row the pointer to its first element and the write of

the row sum to the result vector y. If there are no empty rows, the amount of data to be

moved:

nnz ∗ (2 ∗ sizeof(float|double) + sizeof(int)) +

dimRow ∗ (sizeof(float|double) + sizeof(int)).
(4.4)

Dividing this quantity by the execution time gives what is called the effective bandwidth,

and this is the formula the figures in [33] are based on, thus I use it for the purpose of

comparability. On a caching architecture this corresponds to each value on each cache line

being read while it is in the cache, but only once.

The worst case scenario occurs when only one value of each cache line is used, thus in

fact a lot more data is moved to the chip, but most of it is not read. In single precision

a cache line holds 32 floats or integers, thus if each memory access loads an entire cache

line, but reads or writes only one value on it before removing it from the cache, the actual

amount of data moved to and from global memory:

32 ∗ ( nnz ∗ (2 ∗ sizeof(float) + sizeof(int)) +

dimRow ∗ (sizeof(float) + sizeof(int)) ).
(4.5)

In the best case scenario, with 100% data reuse, each element of the multiplicand

vector has to be loaded from global memory only once, thus the lower bound on all data

transfers considering perfect cache efficiency is:

nnz ∗ (sizeof(float|double) + sizeof(int)) +

dimRow ∗ (2 ∗ sizeof(float|double) + sizeof(int)).
(4.6)
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int i = blockIdx.x*blockSize + threadIdx.x;
�oat rowSum = 0;
int rowPtr = rowPtrs[i];
for (int j = 0; j<rowPtrs[i+1]-rowPtr; j+=1) {
 rowSum += values[rowPtr+j] * x[colIdxs[rowPtr+j]];
}
y[i] = rowSum;

Figure 4.11. Naive CUDA kernel for performing the SpMV [33].

The naive CUDA implementation

The simplest implementation of the CSR SpMV kernel in CUDA assigns one thread to

each row, defines the block size (blockSize) to be a multiple of the warp size (currently

32), e.g. 128, and calculates the number of blocks (gridSize) accordingly. The sketch of

the CUDA code is described by Figure 4.11.

If the matrix has several elements per row, this implementation suffers from a high

cache miss rate because the cache is not big enough to hold all of the cache lines being

used. Moreover, if the number of non-zeros per row has a high variance over adjacent rows,

some threads run for more iterations than others in the same warp, thus warp divergence

may also become an issue.

Thread cooperation

To reduce the number of cache lines used when accessing the arrays values and

colIdxs, multiple threads can be assigned to work on the same row [33]. The cooper-

ating threads access adjacent elements of the row, perform the multiplication with the

elements of the multiplicand vector x then add up their results in shared memory using

parallel reduction. Finally, the first thread of the group writes the result to the vector y.

Because threads in the same warp are executed in lockstep, the synchronisation between

cooperating threads is implicit - as long as their number is a power of 2, and no more than

the warp size. From here on, the number of cooperating threads assigned to each row is

indicated by coop.

This technique can greatly improve the efficiency of caching; the same cache lines from

the values and colIdxs arrays are used by the cooperating threads, thus there are more

cache lines left for storing the values of the multiplicand vector. If the length of the rows

is not a factor of 32 then this algorithm may also suffer from branch divergence, resulting

in loss of parallelism and decreased performance.

Because of the assignment of subsequent rows to subsequent groups of threads, the

worst case scenario data transfer described by formula (4.5) cannot happen, because either
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reading non-zeros or writing to the result vector uses the same cache line. With coop=1

and long rows, the cache lines storing non-zeros and their column indices may be removed

from the cache after just one read, however writing to the elements of the result vector

will use the same cache line. On the other hand, with coop=32, the cache lines storing

non-zeros and column indices are fully utilised (unless row length is not a factor of 32),

but writing to the elements of the result vector may force loading a new cache line every

time. The effects of this trade-off will be seen in the performance evaluation.

Granularity

It is possible for a cooperating thread group to process more than one row, thereby I

can control the work granularity. Thus, a thread block processes repeat∗blockSize/coop

contiguous rows.

For a fixed value of repeat, blockSize and coop, the total number of blocks is the

following:

gridSize = 1 + (dimRow ∗ coop− 1)/(repeat ∗ blockSize). (4.7)

If repeat is small, the algorithm is fine grained and if repeat is big, the algorithm is

coarse grained. To have sufficient occupancy and load balancing on the GPU, the gridSize

should be at least a few hundred, which may limit small matrices to execute in a fine

grained way. However, for larger matrices, the difference in the number of blocks using the

two approaches may be large.

Granularity is closely related to the efficiency of caching, or cache blocking; if for

example the matrix has a diagonal structure, i.e. the rows access a contiguous block of the

multiplicand vector, then the data reuse is improved by coarse grain processing because

most of the values used are already in the cache. The optimal granularity depends on the

structure of the matrix, which is not known in the general case.

The fully parametrised algorithm

The full parameter space of the algorithm is described by the following parameters:

the number of threads per block (blockSize), the number of cooperating threads per row

(coop) and the number of rows processed by each cooperating thread group (repeat). The

total number of blocks (gridSize) is uniquely defined by these parameters according to

equation (4.7). The complete algorithm is described by Figure 4.12. For the sake of brevity,

the parallel reduction is also parametrised with coop, whereas in my real implementation

there is a different kernel for each different value of coop, thus the reduction is unrolled.
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__global__ void csrmv(float *values, int *rowPtrs, 

       int *colIdxs, float *x, float *y, 

       int dimRow, int repeat, int coop) {

 int i = (repeat*blockIdx.x*blockDim.x + threadIdx.x)/coop;

 int coopIdx = threadIdx.x%coop;

              int tid = threadIdx.x;

 extern __shared__ volatile  float sdata[];

 for (int r = 0; r<repeat; r++) {

  float localSum = 0;

  if (i<dimRow) {

   // do multiplication

   int rowPtr = rowPtrs[i];

   for (int j = coopIdx; j<rowPtrs[i+1]-rowPtr; j+=coop) {

    localSum += values[rowPtr+j] * x[colIdxs[rowPtr+j]];

   }

   // do reduction in shared mem

   sdata[tid] = localSum;

   for(unsigned int s=coop/2; s>0; s>>=1) {

    if (coopIdx < s) sdata[tid] += sdata[tid + s];

   }

   if (coopIdx == 0) y[i] = sdata[tid];

   i += blockDim.x/coop;

  }

 } 

}

Figure 4.12. Parametrised algorithm for sparse matrix-vector multiplication.

Note that there is no use of __syncthreads() thread synchronisation due to the implicit

warp synchronisation discussed in section 4.5.

4.5.1 Performance Evaluation

The test matrices were taken from the University of Florida Sparse Matrix Collection

[67] based on the test cases of the CUSPARSE 4.0 library [59]. 15 of these matrices were

used to train and tune my algorithms, and a total of 44 matrices were used to evaluate them

and calculate performance figures 1. A short summary of the training matrices is shown in

table 4.1. These matrices represent a range of structured and unstructured matrices with

different sizes, different averages and standard deviations in the length of the rows and

different distributions of non-zeros.

In the following sections I describe the performance of the sparse matrix-vector mul-

tiplications when adjusting the parameters of the multiplication algorithm. These perfor-

mance results are interpreted in light of the matrix structure to describe the underlying

bottlenecks. For the sake of clarity, these parameters are discussed one by one, however it
1List of matrices not shown in table 4.1: amazon0505, cont1_l, filter3D, msdoor, troll, ct20stif, halfb,

parabolic_fem, shipsec1, vanbody, BenElechi1, dc1, pkustk12, StocF-1465, bmw3_2, delaunay_n22, large-
basis, poisson3Db, stomach, xenon2, boneS01, mc2depi, qcd5_4, tmt_sym, consph, F2, memchip, rma10,
torso3
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Table 4.1. Description of test matrices, avg. is the average row length and std. dev. is the
standard deviation in row length.

Name dimRow nnz avg. std. dev. Description
atmosmodd 1270432 8814880 6.9 0.24 diagonal, CFD problem
cage14 1505785 27130349 18 5.36 directed weighted graph
cant 62451 4007383 64.2 14.05 narrow diagonal, FEM
cop20k_A 121192 2624331 21.6 13.8 very wide, 2D problem
F1 343791 26837113 39.5 40.86 AUDI engine, FEM
mac_econ_fwd500 206500 1273389 6.2 4.43 macroeconomics problem
pdb1HYS 36417 4344765 60.2 31.93 protein 1HYS
scircuit 170998 958936 5.6 4.39 wide, circuit simulation
shallow_water1 81920 327680 4 0 structured CFD problem
webbase-1M 1000005 3105536 3.1 25.34 web connectivity
nd24k 72000 28715634 398 76.9 ND problem set
crankseg_2 63838 14148858 221 95.8 wide, structural problem
pwtk 217918 11524432 52.8 5.44 pressurised wind tunnel
ldoor 952203 42493817 44.6 14.7 structural problem
2cubes_sphere 101492 1647264 16.2 2.65 electromagnetics simulation

is shown that they are not independent.

Number of cooperating threads

The number of cooperating threads (coop) can be a power of 2, up to the warp size.

Figure 4.13a shows the performance on different test matrices for different values of coop,

with blockSize = 128 and repeat = 8; the performance difference between the best and

worst choice can be more than an order of magnitude. The figure also shows the square

root of the average row length of the matrices; note how the optimal value of coop is

close to this value. Table 4.2 lists the L1 cache hit rates and warp divergence reported by

the CUDA Profiler as a function of the number of cooperating threads. It is important to

note that the cache hit rate usually increases with the increasing number of cooperating

threads because multiple threads access the same cache lines for the matrix data, leaving

space for more cache lines to store the values of the multiplicand vector. However too high

a value of coop results in a high fraction of inactive threads: e.g. shallow_water has four

non-zeros in every line, thus assigning 8 threads to process each row would result in half

of the threads being inactive all the time.

Level of granularity

The number of rows processed by each cooperating thread group is the most important

factor in determining the total number of blocks (gridSize). As Figure 4.13b shows, for

larger matrices the difference in performance is relatively small (around 10%), however for
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Table 4.2. Cache hit rates and warp divergence for test matrices at different values of
coop, based on the CUDA Visual Profiler.

coop 1 2 4 8 16 32
atmosmodd
L1 hit rate (%) 54.5 77.5 79.1 75.3 86.0 90.6
Divergence (%) 2.6 13.3 13.79 15.9 16 16
crankseg_2
L1 hit rate (%) 20.4 48.4 56.1 62.0 60.6 64.4
Divergence (%) 1.8 4.1 5.6 4.8 5.1 5.3
shallow_water1
L1 hit rate (%) 71.8 60.8 59.0 75.7 87.0 92.1
Divergence (%) 0.0 0.0 0.0 16.0 16.0 16.0
webbase-1M
L1 hit rate (%) 72.8 81.2 73.6 80.6 86.9 92.1
Divergence (%) 9.5 9.2 16.8 16.55 16.1 15.9
cant
L1 hit rate (%) 19.56 50.9 60.9 66.9 74.7 78.6
Divergence (%) 8 12.8 7.2 9.9 5.1 6.7

smaller matrices like shallow_water1 high values of repeat results in low occupancy - in

this case at repeat = 32 there are only 20 blocks. In CUDA, the user is not in control

of the execution scheduling of blocks, thus for larger structured matrices higher values

of repeat offer marginally better data reuse. On the other hand, fine grained processing

(more blocks) offers better load balancing across the SMs.

Number of threads in a block

The number of threads in a block (blockSize) plays an important role in determining

occupancy: the maximum number of threads per SM (in Fermi) is 1536, and the maximum

number of blocks per SM is 8. Thus a small block size leads to low occupancy, 33% with

blockSize=64 (64 ∗ 8 = 512). My algorithm also uses shared memory, storing one floating

point number for each thread, which does not limit occupancy; since a double precision

number is 8 bytes long, with 100% occupancy the total amount of shared memory used is

12.2kB. The optimal block size however is usually smaller than what is required for full

occupancy to balance parallelism and cache size per thread. Double precision storage also

effectively halves the number of values held in the L1 cache. For this reason the optimal

value of the parameter is often even smaller in double precision. Figure 4.14 shows the

impact of blockSize on performance.
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Figure 4.13. Performance as a function of the number of cooperating threads and the
number of rows processed per cooperating thread group.
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Figure 4.14. Performance as a function of the number of threads in a block. repeat = 4
and coop is fixed at its optimal value according to Figure 4.13a and 4.13b.
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Figure 4.15. Floating point operation throughput of the sparse matrix-vector
multiplication.

The fixed rule

For general-purpose SpMV code, a constant time fixed rule is required to decide the

input parameters for the multiplication algorithm. For this purpose I first implemented

an exhaustive search algorithm that tests a wide range of parameters and ran the training

matrices through it. Based on this data, I fine-tuned my fixed rule to find the optimal

parameter values that provide the highest average performance. Since this rule is intended

for use by a general-purpose library, this average is not a weighted average, performance

is equally important for smaller and larger matrices.

The fixed rule defines the parameters as follows:

1. blockSize = 128.

2. coop is the smallest power of two which is larger than the square root of the average

row length, up to a maximum limit of the warp size (32).

3. gridSize and repeat is calculated in a way that ensures there are at least 1500

blocks.

The calculation of these parameters incurs virtually no overhead, since only the number

of rows and the number of non-zeros is required.

Figures 4.15a and 4.16a describe performance in single precision and figures 4.15b and

4.16b in double precision. All bandwidth numbers show effective bandwidth as described

by equation (4.4). Since instruction throughput is directly proportional to the number

of non-zeros processed per second (equation (4.3)), it accurately describes the relative

efficiency of data reuse. Note that the bandwidth of the matrix (the distance of non-zeros
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Figure 4.16. Effective bandwidth of the sparse matrix-vector multiplication

from the diagonal) is not directly related to throughput. For example crankseg_2 has non-

zeros everywhere in the matrix but the non-zeros in pwtk lie very close to the diagonal,

and yet their performance is very similar because they are both structured matrices, thus

non-zeros in consecutive rows have similar column indices which enables efficient caching.

The average row length and the relative value of the standard deviation of the length of

the rows has some effect on the performance, however the most important factor is the

“structuredness” of the matrix which is difficult to describe.

Estimating bandwidth and caching

Block and warp scheduling on GPUs is out of the control of the programmer, and the

exact parameters of Fermi’s L1 cache, like associativity, are not public knowledge, thus

exact modelling of the cache is extremely difficult and out of the scope of this work. It

is however possible to estimate the number of cache lines loaded by each block. I make

the following assumptions: (1) cache lines are not shared between blocks, (2) all cache

lines loaded by a block stay in the cache until the execution of that block finishes. These

assumptions only affect the caching of the multiplicand vector significantly, because the

access pattern to other data structures does not depend on matrix structure. Due to the

semi-random assignment of thread blocks to SMs and because the L1 cache is probably not

fully associative, I argue that the first assumption does not overestimate the actual amount

of data moved by too much. The second assumption however implies unconstrained cache

size per block, thus underestimates the actual amount of data moved. I argue that this

error is only significant if the temporal difference between accesses to same cache lines is

high; for structural matrices this is usually low, for non-structural matrices data reuse is
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Figure 4.17. Values of the minimum, the effective and the caching bandwidth in single
precision.

low anyway. The effects of the L2 cache are ignored.

Figure 4.17 shows calculated bandwidth estimates when using the fixed rule, according

to formulas (4.4) and (4.6), and based on the number of cache lines touched by each thread

block. Note that bandwidth in some cases is over 80 GB/s even according to the minimum

formula that assumes perfect data reuse. This is a very high fraction of the theoretical peak

(144 GB/s) considering that in practice a bandwidth over 100 GB/s is rarely achieved. It

is important to observe that for structured matrices data reuse between subsequent rows

is high, thus caching bandwidth falls between the minimum and the effective bandwidth.

In the case of non-structural matrices, several values of the cache lines holding elements

of the multiplicand vector are not read by that block at all, thus caching bandwidth is

even higher than the effective bandwidth, because part of the data moved is not used.

Caching bandwidth has a mean of 83 GB/s with a relatively low variation compared to

other bandwidth figures, which hints at the average hardware utilisation for the problem

of sparse matrix-vector multiplication. In some extreme cases, caching bandwidth exceeds

120 GB/s, probably due to cache lines being in fact shared between blocks.

4.5.2 Run-Time Parameter Tuning

The performance of the SpMV multiplication using the fixed rule is in many cases

close to the optimal, however there is room for improvement in some other cases. An

extreme example is webbase-1M, where the fixed rule only achieves 50% of the optimal

performance, but matrices like atmosmodd, cage14, F1 and ldoor can also benefit from

improved parameters. In a general-purpose library it is not feasible to perform off-line

parameter tuning because it may have a significant overhead. It is also unknown how

many times a sparse matrix-vector multiplication routine is called from the user’s code,
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and whether those calls use the same matrix or different matrices.

I argue that if subsequent calls to the SpMV routine use the same pointers to matrix

data and have the same amount of rows and non-zeros then the matrix structure is not

changing significantly across multiple executions. This hypothesis enables the library to

test slightly different parameters when performing the multiplication in order to find the

best set of parameters. This of course may result in having to run a few multiplications

with worse performance than the fixed rule, but if the number of iterations is large enough,

then this overhead is compensated by the improved overall performance. It is important

to note that in such situations there is no statistical data available, thus system noise may

affect measured performance.

I propose an empirical algorithm that is based on my experience with different param-

eter settings and the parameters found by exhaustive search. The main concepts of the

algorithm are the following:

1. As the first step, double the number of blocks by halving repeat. If the change is

higher than 5%, proceed optimising repeat (step 3). If the change is less than 5%,

double coop and increase blockSize to 192 (step 2).

2. If doubling coop increased performance then try increasing it further, if it did not,

start decreasing it.

3. Depending on whether halving repeat increased or decreased performance, further

decrease or increase it.

4. Finally the value of blockSize is changed in increments (or decrements) of 32, but

no more than 512 and no less than 96 in single and 64 in double precision.

Figure 4.18 shows the impact of tuning on performance in the single precision case.

The fixed rule achieves 84% of the optimal performance on average over the 15 training

matrices, and 73% over all 44 test matrices. Figure 4.19 shows the improvement of perfor-

mance over subsequent iterations due to the run-time tuning. The performance surpasses

the 95% threshold after just 5 iterations, and 98% after 8 iterations. Similar figures apply

in double precision.

Performance analysis on the full test set

To provide a fair assessment of my algorithm I ran it through a set of 44 test ma-

trices and calculated average instruction throughput, bandwidth and speedup figures. I
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Figure 4.18. Single precision floating point instruction throughput after 10 iterations of
run-time tuning.

1 2 3 4 5 6 7 8 9 10
70

75

80

85

90

95

100

105

Iteration

%
 o

f 
o

p
ti
m

a
l

Figure 4.19. Relative performance during iterations compared to optimal, averaged over
the 44 test matrices.

0.5

1

1.5

2

2.5

3

at
m

os
m

od
d

ca
ge

14
ca

nt
co

p2
0k

_A F
1

m
ac

_e
co

n_
fw

d5
00

pd
b1

H
Y
S

sc
irc

ui
t

sh
al

lo
w

_w
at

er
1

w
eb

ba
se

−1
M

nd
24

k
cr

an
ks

eg
_2

pw
tk

ld
oo

r

2c
ub

es
_s

ph
er

e

S
p

e
e

d
u

p
 o

v
e

r 
C

U
S

P
A

R
S

E

 

 Fixed rule

Tuned after 7 iterations

(a) Single precision

0.6

0.8

1

1.2

1.4

1.6

1.8

at
m

os
m

od
d

ca
ge

14
ca

nt
co

p2
0k

_A F
1

m
ac

_e
co

n_
fw

d5
00

pd
b1

H
Y
S

sc
irc

ui
t

sh
al

lo
w

_w
at

er
1

w
eb

ba
se

−1
M

nd
24

k
cr

an
ks

eg
_2

pw
tk

ld
oo

r

2c
ub

es
_s

ph
er

e

S
p

e
e

d
u

p
 o

v
e

r 
C

U
S

P
A

R
S

E

 

 
Fixed rule

Tuned after 7 iterations

(b) Double precision

Figure 4.20. Speedup over CUSPARSE 4.0 using the fixed rule and after run-time tuning
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Table 4.3. Performance metrics on the test set.
CUSPARSE Fixed rule Tuned

Throughput single GFLOPS/s 7.0 14.5 15.6
Throughput double GFLOPS/s 6.3 8.8 9.2
Min Bandwidth single GB/s 28.4 58.9 63.7
Min Bandwidth double GB/s 38.7 54.0 56.8
Speedup single over CUSPARSE 1.0 2.14 2.33
Speedup double over CUSPARSE 1.0 1.42 1.50

found one matrix for which the CSR format and the standard multiplication algorithm

proved unsuitable (dc1 ): not even the exhaustive search found parameters that would

have brought performance above 4 GFLOPS/s. This particular matrix has an average row

length of 6.5, however there are two very long adjacent rows (114200 and 47190 non-zeros)

which results in severe load imbalance that radically decreases performance. Using the

standard SpMV algorithm would be clearly inappropriate in this case; the simplest solu-

tion is to process those two rows separately with multiple blocks performing two parallel

reductions and the rest is processed by the standard algorithm. Results from the standard

algorithm on dc1 are omitted. Performance metrics in table 4.3 clearly indicate that there

is a wider performance gap between the fixed rule and the tuned version, since the fixed

rule itself was trained on the first 15 matrices.

4.5.3 Distributed memory spMV

In most large-scale applications it is necessary to employ distributed memory paral-

lelism because the problem may not fit in the memory of a single machine. The prevalent

programming model and environment is the Message Passing Interface (MPI), which is

used to explicitly communicate between remote processes by means of messages. Depend-

ing on the hardware setup and the topology, communication may have significant latency

and usually a much lower bandwidth compared to intra-node communication. Therefore,

attention has to be given to how computations and communications are coordinated so

that they don’t get in each others way.

The distributed memory parallelisation of the sparse matrix-vector product is concep-

tually simple and well known [68]; following the decomposition of the graph described by

the sparse matrix, I have a number of subgraphs that are connected by edges. The mul-

tiplication of a row of the sparse matrix with the multiplicand vector can be interpreted

as a weighted sum of values on vertices that the current row’s vertex is connected to via

edges. This introduces a data dependency where edges cross from one subgraph to the

other, therefore before the multiplication can be carried out on a boundary vertex, data
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on vertices it is connected to need to be up to date - in the MPI model, values on these

boundary vertices are gathered and sent in a message to other subgraphs where they are

duplicated as halo vertices, so that their values can be updated. Furthermore, each sub-

graph, consisting of the owned vertices, can be partitioned into two classes of vertices;

boundary vertices that have a data dependency from different subgraphs and interior ver-

tices that do not. Thus it is possible to perform the communications and the computations

on the interior at the same time, thereby trying to hide the latency of communications

with computations [69].

When investigating the performance of distributed memory algorithms, strong scaling

is often of interest; how fast can the same problem be solved, given more resources. This

pushes the limits in terms of the latency of communications, because in such a situation

the size of the subgraphs decrease, but the relative number of boundary vertices increases

- computations over the interior are increasingly unable to hide the latency of communi-

cations. This situation also surfaces when considering Multigrid-type techniques to solve

a system of linear equations [70]: on subsequent multigrid levels the graph has fewer and

fewer vertices, and if these are further partitioned into the same number of subgraphs on

each level, then this can be considered a strong scaling problem. Since GPUs are especially

sensitive to latency due to memory copy operations, kernel launches and underutilisation

of the hardware, addressing these issues is paramount to achieving high performance. In

extreme cases of over-partitioning this may result in the distributed computation being

slower than carrying out the same computations on a single device.

To address the negative impact of latency, following the idea of tiling [21] I have

proposed a communication-avoiding algorithm that is capable of reducing the number

of messages at the expense of redundant computations. By carrying out a dependency

analysis, it is possible to map out several halo rings, the first consisting of vertices that

boundary vertices are connected to, the second consists of vertices that are connected the

first ring and do not belong to either the first ring or the boundary, and so on. If only one

ring of halo is updated, then only one sparse matrix-vector multiplication can be carried

out (over the owned vertices) that will still yield globally consistent results. By updating

two rings of halo, it is possible to carry out the two operations, first over the owned

vertices and the first ring and then a second over the owned vertices and still achieve

globally consistent results, but only communicating once. Clearly, this can be extended to

an arbitrary number of rings.

Having implemented this algorithm for GPUs, I carry out a set of benchmarks on a

68

DOI:10.15774/PPKE.ITK.2014.003



CHAPTER 4. THE FEM ON GPUS

10
2

10
3

10
4

10
5

10
6

10
7

10
−4

10
−3

10
−2

10
−1

10
0

10
1

1 GPU: number of nonzeros vs. 80 Jacobi iterations

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Number nonzeros

 

 

Matrix 1

Matrix 2

Matrix 3 (2D)

Matrix 4

Matrix 5

Matrix 6

(a) Performance scaling on a single GPU

10
2

10
3

10
4

10
5

10
6

10
7

0

1

2

3

4

5

6

7

8

9

Speedup over 1GPU with 1 ring 2−8 GPUs

S
p

e
e

d
u

p
 o

f 
1

 r
in

g
 d

is
tr

ib
u

te
d

 o
v
e

r 
1

 G
P

U

Number nonzeros

 

 

2 GPUs

4 GPUs

6 GPUs

8 GPUs

(b) Performance scaling over multiple GPUs

Figure 4.21. Performance on different size sparse matrices on a single GPU and on
multiple GPUs
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Figure 4.22. Improvements by applying the communication-avoiding algorithm
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cluster of 8 NVIDIA K20X GPUs, partitioning a set of 6 sparse matrices, retrieved from

ANSYS Fluent’s CFD simulations, fed into AmgX, and dumped at each multigrid level,

yielding a total of 72 matrices with increasingly smaller sizes. Strong scaling is investigated

when computing 80 iterations of a Jacobi smoother, consisting of an spMV operation and

a vector-vector operation. Figure 4.21a shows performance on a single GPU as a function

of the number of non-zeros in the sparse matrix; it is clear that the GPU does not perform

well below 104 non-zeros due to underutilisation. Figure 4.21b shows the speedup over

the single GPU performance when employing distributed memory parallelism using 2-8

GPUs, the cost of communications is obvious; below 105 non-zeros it is actually slower to

use multiple GPUs.

By employing the communication-avoiding algorithm, it is possible to lower the thresh-

old where multi-GPU computations become excessively slow; Figure 4.22b shows that by

using 4 rings of halo, performance scaling is maintained up to 3× 104, a more than three-

fold improvement over the naive 1 ring approach. Finally, Figure 4.22a shows the speedup

of the 4 ring approach over the 1 ring approach, clearly at high number of non-zeros latency

is sufficiently hidden by a large interior, but as matrices get smaller, the advantage of the

communication avoiding approach becomes clear. Thus, by employing this technique, it is

possible to deliver strong-scalability to general spMV-type operations and scalability to

multigrid solvers.

4.6 Summary and associated theses

In this chapter I provided a brief introduction to GPUs and discussed some of the

architectural specifics than influence implementation and help understand performance.

After describing the experimental setup and the reference CPU implementation, I investi-

gated the performance of the three formulations of FE integration on the GPU, discussing

the effect of trade-offs, showing that the redundant compute approach delivers a sustained

high performance even at high order elements [3]; this completes Thesis I.1: By applying

transformations to the FE integration that trade off computations for communications and

local storage, I have designed and implemented new mappings to the GPU, and shown

that the redundant compute approach delivers high performance, comparable to classical

formulations for first order elements, furthermore, it scales better to higher order elements

without loss in computational throughput.

I have presented an in-depth study of different data structures, their implementation

and performance on the GPU, both in the assembly and the solution phase, discussed how
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data races are resolved and what impact that has on parallel efficiency. I have demon-

strated that near-optimal performance in absolute terms is achieved on the GPU, out-

performing a fully utilised dual-socket server CPU up to 10 times. I have shown that the

LMA delivers superior performance in most cases, especially in single precision where the

atomics are available [3]. This completes Thesis I.2: By applying transformations to the FE

integration that trade off computations for communications and local storage, I have de-

signed and implemented new mappings to the GPU, and shown that the redundant compute

approach delivers high performance, comparable to classical formulations for first order el-

ements, furthermore, it scales better to higher order elements without loss in computational

throughput.

Finally, I have connected my research with the field of sparse linear algebra by investi-

gating the parametrisation and mapping of the sparse matrix-vector product on GPUs; I

have studied the effect of changing the balance of multi-level parallelism and presented a

novel constant-time heuristic for determining near-optimal parameters for execution. Fur-

thermore, I have introduced a run-time parameter tuning algorithm, and I have shown that

these outperform the state-of-the-art by up to 2.3 times. My research on communication-

avoiding algorithms for the sparse matrix-product also resulted in up to 2 times improve-

ment over classical approaches [3, 8, 12]. Thus, as Thesis I.3 states: I have parametrised the

mapping of sparse matrix-vector products (spMV) for GPUs, designed a new heuristic and

a machine learning algorithm in order to improve locality, concurrency and load balancing.

Furthermore, I have introduced a communication-avoiding algorithm for the distributed ex-

ecution of the spMV on a cluster of GPUs. My results improve upon the state of the art, as

demonstrated on a wide range of sparse matrices from mathematics, computational physics

and chemistry.
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Chapter 5

The OP2 Abstraction for

Unstructured Grids

In this chapter I discuss the motivation behind OP2 and the abstraction it defines for

unstructured grid computations [16, 4] to serve as a basis for the next two chapters where

I present my research within the framework of OP2. Furthermore, this chapter introduces

the suite of unstructured grid applications and briefly presents my work translating the

Volna and the Hydra application to the OP2 abstraction.

5.1 The OP2 Domain Specific library

Following the 13 dwarfs [25], researchers began to work on domain specific libraries and

languages, and there are a number of projects involved in structured grid computations [29,

30, 31], unstructured grid computations [27, 16] and a group at Stanford is involved in the

generalisation of these ideas in a meta-DSL framework [26]. The group at the University

of Oxford, led by Prof. Mike Giles is amongst the first ones to publish research on such

DSLs [16, 2], work began in late 2010 in collaboration with Prof. Paul Kelly’s group at

Imperial College, with the main goal of creating a DSL for unstructured grid computations,

eventually to be used by Rolls-Royce plc. for the simulation of turbomachinery. It also

became part of FEniCS, a Finite Element simulation software package, through research

carried out at Imperial College with a python-based variant [71].

I joined the project in its second year (2011), with a functional abstraction and single-

node implementations, and while I have contributed to several areas, in this dissertation

I focus on research that is sufficiently self-contained that it can be called my own. As

such, the contributions in Chapter 6 are mine, but in Chapter 7 I make use of existing
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functionality in OP2, such as the construction of the execution plan for multi-level par-

allelism described in Section 7.1 or the MPI implementation, these serve as a basis for

my own research. One of my over-arching contributions is porting Rolls-Royce Hydra to

OP2, in itself not considered a scientific contribution, but by carrying out this work, I was

able to show that Domain Specific Languages are indeed applicable to large-scale indus-

trial applications, delivering maintainability, performance and future-proofing - something

that to our knowledge has not been demonstrated so far for any DSL targeting scientific

computations.

To provide an introduction to that work, in this chapter I discuss the OP2 domain

specific library, as well as the applications used to assess the library and its performance.

These I do not consider as my scientific contributions in this dissertation, they serve as a

basis for understanding the next two chapters.

The OP2 abstraction involves breaking down the description of the mesh and the

computations into four distinct parts:

1. Sets of elements, such as vertices, edges or cells.

2. Mappings between sets that explicitly describe the connectivity of the mesh, for

example specifying for each edge which vertices it connects.

3. Data on sets, representing coordinates, flow variables etc.

4. Parallel loops over sets, accessing data on the set or via at most one level of indirec-

tion.

An important restriction of the abstraction is that it assumes that the order in which

elements are executed during a parallel loop does not affect the results within machine

precision. This assumption enables it to orchestrate parallelism and resolve data depen-

dencies in a consistent manner.

OP2 was designed from the outset to be a general high-level active library framework

to express and parallelise unstructured mesh based numerical computations. OP2 retains

the OPlus abstraction [72] but provides a more complete high-level API (embedded in

C/C++ and Fortran) to the application programmer which for code development appears

as an API of a classical software library. However, OP2 uses a source-to-source translation

layer to transform the application level source to different parallelisations targeting a

range of parallel hardware. This stage provides the opportunity to provide the necessary

implementation specific optimisations. The code generated for one of the platform-specific
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Figure 5.1. An example unstructured mesh
//define sets 
op_set nodes = op_decl_set(num_nodes,"nodes"); 
op_set edges = op_decl_set(num_edges,"edges"); 
op_set cells = op_decl_set(num_cells,"cells"); 
//define mappings 
int *e2n = ...; int *e2c = ...;  
op_set edge2node= op_decl_map(edges,nodes, 
                              2,e2n,“edge2node"); 
op_set edge2cell= op_decl_map(edges,cells, 
                              2,e2c,“edge2cell"); 
//define datasets 
double *x=...; double *q=...; double *res=...; 
op_dat p_x = op_decl_dat(nodes,2,"double", 
                              x,"coords"); 
op_dat p_q = op_decl_dat(edges,4,"double", 
                              q,“statevars"); 
op_dat p_res=op_decl_dat(cells,4,"double", 
                              res,“residual"); 
 

(a) Declaring sets, maps and datasets

//in main program file 
op_par_loop(res_calc,“res_calc",edges, 
   op_arg_dat(p_x,   0,edge2node, 2,"double",OP_READ), 
   op_arg_dat(p_x,   1,edge2node, 2,"double",OP_READ), 
   op_arg_dat(p_q,  -1,OP_ID,     4,"double",OP_READ), 
   op_arg_dat(p_res, 0,edge2cell, 4,”double”,OP_INC ), 
   op_arg_dat(p_res, 1,edge2cell, 4,”double”,OP_INC)); 

Indirection 
index 

Mapping Data 
arity 

Data 
type 

Access 
type 

//in res_calc.h 
void res_calc(const double *x1, const double *x2, 
              const double *q, 
              double *res1, double *res2 ){ 
  //Computations, such as: 
  res1[0] += q[0]*(x1[0]-x2[0]); 
} 

Dataset 
name 

(b) A parallel loop

Figure 5.2. The OP2 API

parallelisations can be compiled using standard C/C++/Fortran compilers to generate

the platform specific binary executable.

Consider the unstructured mesh illustrated in Figure 5.1. The mesh consists of three

sets - nodes (vertices), edges and triangular cells. There are num_nodes = 14 nodes and

num_cells = 17 cells. The OP2 API allows to declare these sets and connectivity between

the sets together with any data held on the sets (see Figure 5.2a). Note that data may be

“multi-dimensional”; storing multiple state variables for each set element.

Any loop over the sets in the mesh is expressed through the op_par_loop, API call.

OP2 enforces a separation of the per set element computation aiming to de-couple the

declaration of the problem from the implementation [28]. Thus, an example of a compu-

tational loop can be expressed as detailed in Figure 5.2b using the OP2 API.

The res_calc() function is called a user kernel in the OP2 vernacular. Simply put,

the op_par_loop describes the loop over the set edges, detailing the per set element com-

putation as an outlined “kernel” while making explicit indication as to how each argument
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Figure 5.3. OP2 build hierarchy

to that kernel is accessed (OP_READ - read only, OP_INC - increment, OP_WRITE -

write only, OP_RW - read and write) and the mapping, edge2cell, edge2node (edges to

cells and edges to nodes) with the specific indices are used to indirectly accessing the data

(p_x, p_res) held on each cell or node. With this separation the OP2 design gives a sig-

nificantly larger degree of freedom in implementing the loop with different parallelisation

strategies.

An application written with the OP2 API in the above manner can be immediately

debugged and tested for accuracy by including OP2’s “sequential” header file (or its equiv-

alent Fortran module if the application is written in Fortran). This, together with OP2’s

sequential back-end library, implements the API calls for a single threaded CPU and can

be compiled and linked using conventional (platform specific) compilers (e.g. gcc, icc, ifort)

and executed as a serial application. Once the application developer is satisfied with the

validity of the results produced by the sequential application, parallel code can be gener-

ated. The build process to obtain a parallel executable is detailed in Figure 5.3. In this

case the API calls in the application are parsed by the OP2 source-to-source translator

which will produce a modified main program and back-end specific code. These are then

compiled using a conventional compiler (e.g. gcc, icc, nvcc) and linked against platform

specific OP2 back-end libraries to generate the final executable. The mesh data to be

solved is input at runtime. The source-to-source code translator is written in Python and

only needs to recognise OP2 API calls; it does not need to parse the rest of the code.
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Table 5.1. Properties of Airfoil kernels; number of floating point operations and numbers
transfers

Kernel Direct Direct Indirect Indirect FLOP FLOP/byte Description
read write read write DP(SP)

save_soln 4 4 0 0 4 0.04(0.08) Direct copy
adt_calc 4 1 8 0 64 0.57(1.14) Gather, direct write
res_calc 0 0 22 8 73 0.3(0.6) Gather, coloured scatter
bres_calc 1 0 13 4 73 0.5(1.01) Boundary
update 9 8 0 0 17 0.1(0.2) Direct, reduction

Table 5.2. Airfoil mesh sizes and memory footprint in double(single) precision

Mesh cells nodes edges memory
small 720000 721801 1438600 94(47) MB
large 2880000 2883601 5757200 373(186) MB

5.2 The Airfoil benchmark

The basic benchmark that I use throughout my work is Airfoil, a non-linear 2D inviscid

airfoil code that uses an unstructured grid [73]. It is a much simpler application than

the Hydra [74] production CFD application used at Rolls-Royce plc. for the simulation

of turbomachinery, but acts as a forerunner for testing the OP2 library for many core

architectures. The code consists of five parallel loops: save_ soln, adt_calc, res_calc,

bres_calc and update. The number of computations carried out per set element, the

amount of data moved and a short description is shown in Table 5.1. For the domain, I

use two meshes with different resolutions as described on Table 5.2. This is the benchmark I

use to develop and validate code generation techniques and to provide an in-depth analysis

of performance.

5.3 Volna - tsunami simulations

Volna is a finite volume, unstructured grid tsunami-simulation code that was first

presented in [75]. It solves the shallow-water equations using a 2.5D grid - a triangular

meshing of the domain with the bathymetry (distance from the ocean floor) stored as a

state variable. The outline of the code is as shown in Algorithm 8; based on an input

configuration file, during startup the mesh is read in from gmsh files, and state variables,

such as the bathymetry that starts a tsunami, are initialised from text files. For the main

time-marching loop, a variable timestep second-order Runge-Kutta method is used. In

each iteration, events can be triggered; such as applying changes to the bathymetry or

outputting simulation data to VTK files for visualisation.

In a similar way to the description of Airfoil’s computational kernels, Table 5.3 de-
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Algorithm 8 Code structure of Volna
Read and set up mesh
Initialise state variables
while t < tfinal do
Apply pre-iteration events
Second-order Runge-Kutta time stepper
Compute state variables on cell faces, apply boundary conditions
Compute fluxes across cell faces and timestep
Apply fluxes and bathymetric source terms to state variables on cells
Apply post-iteration events

end while

Table 5.3. Properties of Volna kernels; number of floating point operations and numbers
transfers

Kernel Direct Direct Indirect Indirect FLOP FLOP/byte Description
read write read write

RK_1 8 12 0 0 12 0.6 Direct
RK_2 12 8 0 0 16 0.8 Direct
sim_1 4 4 0 0 0 0 Direct copy
compute_flux 4 6 8 0 154 8.5 Gather, direct write
numerical_flux 1 4 6 0 9 0.81 Gather, reduction
space_disc 8 0 10 8 23 0.88 Gather, scatter

scribes the details of Volna’s computational kernels. RK_1, RK_2 and sim_1 are direct

kernels, due to their similarity sim_1 is dropped from further analysis. compute_flux is a

numerically intensive kernel which gathers data, and directly writes data. numerical_flux

indirectly gathers data, and directly writes data as well as carrying out a reduction to find

the minimum timestep. Finally, space_disc does both indirect gathering and scattering

of data.

I ported this code to use the OP2 abstraction, and it is now being used at the University

College London by Serge Guillas’s group for the uncertainty quantification of tsunamis.

During my experiments I use Volna to verify that optimisations tested on Airfoil are

applicable to other applications as well, and whether improvements in performance are

consistent. For Volna, I use a real-world mesh with 2.5M cells, describing the north-western

coast of North America and the strait leading to Vancouver and Seattle, simulating a

hypothetical tsunami originating in the Pacific Ocean.

5.4 Hydra - turbomachinery simulations

The aerodynamic performance of turbomachinery is a critical factor in engine effi-

ciency of an aircraft, and hence is an important target of computer simulations. Signif-

icant computational resources are required for the simulation of these highly detailed

three-dimensional meshes. Usually the solution involves iterating over millions of elements
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Figure 5.4. Mach contours for NASA Rotor 37.

(such as mesh edges and/or nodes) to reach the desired accuracy or resolution.

Rolls Royce’s Hydra CFD application is such a full-scale industrial application devel-

oped for the simulation of turbomachinery. It consists of several components to simulate

various aspects of the design including steady and unsteady flows that occur around ad-

jacent rows of rotating and stationary blades in the engine, the operation of compres-

sors, turbines and exhausts as well as the simulation of behaviour such as the ingestion

of ground vortexes. The guiding equations which are solved are the Reynolds-Averaged

Navier-Stokes (RANS) equations, which are second-order PDEs. By default, Hydra uses a

5-step Runge-Kutta method for time-marching, accelerated by multigrid and block-Jacobi

preconditioning [76, 77, 78, 79]. The usual production meshes are in 3D and consist of tens

of millions of edges, resulting in long execution times on modern CPU supercomputers.

Hydra was originally designed and developed over 15 years ago at the University of

Oxford and has been in continuous development since, it has become one of the main

production codes at Rolls-Royce. Hydra’s design is based on a domain specific abstraction

for unstructured mesh based computations, OPlus [80], a classical software library, which

provided a concrete distributed memory parallel implementation targeting clusters of single

threaded CPUs. OPlus essentially carried out the distribution of the execution set of

the mesh across MPI processes, and was responsible for all data movement while also

taking care of the parallel execution without violating data dependencies. Hydra consists

of over 300 computational loops, and a wide array of functionality that can be enabled and

disabled at runtime. When porting Hydra to OP2 all of these requirements needed to be

taken into account and the results had to be validated. Further details of the deployment

can be found in [4].

78

DOI:10.15774/PPKE.ITK.2014.003



CHAPTER 5. THE OP2 ABSTRACTION FOR UNSTRUCTURED GRIDS

The problem used to benchmark the application is the standard CFD test NASA Rotor

37, which is a transonic axial compressor rotor widely used for validation in CFD. Figure

5.4 shows a representation of the Mach contours for this application on a single blade

passage, the mesh consists of 2.5 million edges.

My main goal in studying Hydra is to demonstrate that Domain Specific Languages,

such as OP2, are indeed applicable to large-scale simulations, delivering maintainability,

portability, performance and future proofing; something that to my knowledge no other

study has done before.
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Chapter 6

High-Level Transformations with

OP2

Having detailed the OP2 abstraction for unstructured grids in Chapter 5, in this Chap-

ter I present my research involving high-level transformations of unstructured grid algo-

rithms that rely on domain-specific knowledge and information provided through the OP2

API to alter execution patterns. Section 6.1 discusses a novel checkpointing algorithm,

Section 6.2 presents a redundant-compute tiling approach to executing unstructured grid

algorithms in order to improve locality, and Section 6.3 demonstrates my research into en-

abling collaborative execution on radically different, heterogeneous hardware at the same

time.

6.1 Checkpointing to improve resiliency

Due to the increasing number of components in modern computer systems, the mean

time for failure is decreasing to the point where it may be smaller than the execution

time of a large scale simulation. More complex systems inherently require more complex

software as well, on all levels; the operating system, parallel libraries and applications,

which increases the probability of software errors. One of the advantages of using Domain

Specific Languages, such as OP2, is that the complexity in orchestrating parallelism is

hidden from the application developer, and relies only on parallel programming experts

developing and maintaining the library; this helps minimise the number of bugs. Regardless

of what level the error occurs at, or whether it is a hard error (causing the application to

crash) or a soft error (that might go unnoticed for a while), it is crucial to provide means

to correct these errors and finish running the application. The detection of soft errors is
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the target of intense research: on the lowest, hardware level, Error Checking & Correcting

(ECC) circuitry is added to memory to detect bit flips due to e.g. cosmic radiation. Errors

occurring during computations are more difficult to detect, hardware redundancy has been

proposed, but duplication of circuitry would be very expensive [81]. Due to the complexity

of detecting soft errors, here I only consider the case where the error was already detected

by some external (to OP2) means.

Traditionally in scientific computing, developers had to manually implement some

sort of checkpointing system, saving the entire state space to disk and in case of failure,

relaunch the application and provide some means of fast-forwarding to the point during

execution where the last checkpoint was. Here, I show that this process can be automated

in its entirety, furthermore that it is possible to find a point during execution where the

state space is minimal and only save the necessary data. I demonstrate three approaches

- one that makes a “locally optimal” decision, one that attempts to make a “globally

optimal” decision by assuming some form of periodic execution pattern, and the third

which given a test-run tells the user where the optimal point during execution is, so that

the checkpointing can be triggered manually.

The basic idea comes from the checkpointing of transactions in database systems [82];

execution using OP2 can be considered as a sequence of parallel loops, each accessing data,

describing the type of access. This information can be used to reason about what data is

required for any given loop; for example if a loop reads A and writes B, then the prior

contents of B are irrelevant, thus if a checkpoint were to be created, B would not have

to be included in it. Such a transactional view of OP2 is valid because once OP2 takes

control of data, the user can only access it via API calls which go through the library,

therefore the checkpointing algorithm can take them into account when working out the

state of different datasets.

To facilitate checkpointing, each dataset has a “dirty” flag to keep track of modifications

to it. A high-level description of the checkpointing algorithm is as follows:

1. If a dataset was never modified (as it might be the case with e.g. coordinates), then

it is not saved at all.

2. Variables passed to loops through op_arg_gbl that are not read-only are saved for

every occurrence of the loop because data returned after a loop is out of the hands

of OP2, and may be used for control decisions.

3. When checkpoint creation is triggered due to a timeout, then start looking for a loop
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with at least one OP_WRITE argument, if found, then enter “checkpointing mode”,

and before executing that loop:

(a) Save datasets used by the loop that are not OP_WRITE.

(b) Drop datasets that are OP_WRITE in the loop from the checkpoint.

(c) Flag datasets that are not used by this loop, but do not save them yet.

4. When already in “checkpointing mode” (previous point), start executing subsequent

loops to determine whether datasets that were not yet saved nor dropped (i.e. are

flagged) would have to be saved:

(a) If a flagged dataset is encountered, save it if it’s not OP_WRITE, otherwise drop

it and remove the flag.

(b) If a flagged dataset is not encountered within a reasonable timeframe allocated

for the “checkpointing mode”, then save it.

The immediate benefit of this algorithm is that a checkpoint does not necessarily

depend on the state of the collection of all datasets at any particular point during the

execution; the “checkpointing mode” can cover several loops and gather information based

on different datasets being accessed by different loops.

The “locally optimal” algorithm starts looking for the first loop to enter “checkpointing

mode” at, based on the criteria that it has at least one OP_WRITE argument, but this may

be a suboptimal decision if for example the next loop would write two other arguments

and read the one written by the first loop. However, OP2 cannot definitively predict

what loops would come next because control flow is in the hands of the user, therefore

this kind of decision will result in a checkpoint that may have a suboptimal size. There

are two possible ways to improve upon this decision; the first is for OP2 to carry out a

“dry run” where it looks for potential places during execution where a globally minimal

checkpoint could have been created, reports this to the user and the user places a call

in the code that will trigger checkpointing in the right place. The other possibility is to

record the sequence of parallel loop calls and carry out a subsequence alignment analysis;

assuming that some periodicity is found, it can determine the optimal location to begin

checkpointing at, therefore entering the “checkpointing mode” can be postponed until that

point is encountered again.

These algorithms were implemented in the OP2 library, available at [83], it currently

supports single-node checkpointing into HDF5. There are some important practical con-
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bounds(1) rms x(2) q(4) q_old(4) adt(1) res(4)

vector scalar vector vector vector vector vector
1 save_soln R W 8
2 adt_calc R R W 12
3 res_calc R R R I 13
4 bres_calc R R R R I 13
5 update I W R RW 8
6 adt_calc R R W 12
7 res_calc R R R I 13
8 bres_calc R R R R I 13
9 update I W R RW 8

10 save_soln R W 8
11 adt_calc R R W 12
12 res_calc R R R I 13
13 bres_calc R R R R I 13
14 update I W R RW 8
15 adt_calc R R W 12
16 res_calc R R R I 13
17 bres_calc R R R R I 13
18 update I W R RW 8

save every 
iteration

not saved 
ever not saved saved

unknown 
yet

units of data saved if 
entering checkpointing 
mode here

Figure 6.1. Example checkpointing scenario on the Airfoil application

siderations that have to be taken into account when implementing this for general unstruc-

tured grid computations; if an indirect write exists in a loop then it has to be checked

whether the mapping includes every element of the target set, therefore the whole of the

target dataset would be written to. I also assume that every field of a multidimensional

dataset is written to when it appears in a parallel loop.

6.1.1 An example on Airfoil
Figure 6.1 shows an example of how the checkpointing algorithm work when applied

to the Airfoil benchmark application. It shows for each loop, which datasets are read

(R), written (W), incremented (I) or read-and-written (RW) as well as the dimensionality,

or number of components, for each dataset. It also indicates how many units of data

would have to be saved if checkpointing mode was entered at the current loop. Colours

are used to indicate when a dataset is saved (green), dropped (yellow) or flagged for

further decision (blue). If checkpointing were to be triggered right before the execution of

adt_calc, then checkpointing mode would be entered upon reaching adt_calc, saving q

and dropping adt immediately, and then subsequently res would be saved when reaching

res_calc and q_old when reaching update. Since bounds and x were never modified, they

are not saved, and the values of rms are saved whenever update has executed. Clearly,

entering checkpointing mode at kernel adt_calc is still better than entering it before either
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res_calc or bres_calc, but it does not give as much data savings as if checkpointing mode

were to be entered before either save_soln or update. Therefore either the user can add

a call to trigger checkpointing before these two loops, or OP2 can apply the “speculative”

algorithm and recognise that there is likely a periodic execution because the sequence

of kernels 1-9 repeats, thus it can wait with entering checkpointing mode until either

save_soln or update are reached.

In the event of a failure, the application is simply restarted, but until reaching the

point in execution where the checkpoint was made, the op_par_loops do not carry out

any computations, only set the value of op_arg_gbl arguments, if any. This ensures that

the same execution path is followed when fast-forwarding, once the checkpoint is reached,

all state is restored from the saved data, and normal execution is resumed.

In summary, this algorithm can deliver checkpointing to any application that uses

OP2 by only relying on domain specific knowledge and the high-level specification of

parallel loops. This is completely opaque to the application programmer, thereby providing

resiliency to unstructured grid computations at no effort from the user.

6.2 Tiling to improve locality

Trends in hardware development show an increasing gap between computational ca-

pacity of a chip and the amount of bandwidth to off-chip memory. To address this issue,

the size of on-chip caches have been growing, in the latest Intel CPUs, there is up to 30MB

last level cache. The purpose of these caches is to improve spatial and temporal locality;

the assumption is that if a memory location is referenced, then with a high probability

adjacent memory locations will also be referenced (spatial locality) and that the same

memory address will be referenced again (temporal locality). This is completely hidden

from the programmer, caching is fully automated by the hardware, but there is only so

much it can do - if the programmer is not conscious of locality in the way code and data

structures are implemented, then performance may even be worse than without caching;

each memory transaction loads an entire cache line, if only part of it is used and the rest

is not, then it’s just wasted bandwidth. In most cases in scientific computations, spatial

locality is given by the structure of the problem: for example structured grid algorithms

tend to utilise the full cache lines, and even in the case of unstructured grid applications

there is usually reasonable spatial locality if the numbering of the mesh is well-behaved -

my research into the effects of mesh reordering are discussed in Section 7.3.

Unstructured grid algorithms tend to be bandwidth-bound: the amount of computa-
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tions carried out per bytes of data moved is relatively low, therefore even if there is good

spatial locality, the computational units are under-utilised. This is closely related to how

PDE discretisations are implemented; computational sweeps over the entire grid, comput-

ing and updating state variables which are read in the next sweep to carry out further

updates. This structure implies that entire datasets are streamed in from memory, com-

puted upon and then streamed out, only to be streamed back in again in the next sweep.

Clearly, if both sweeps were for example on vertices, only accessing data directly, then the

two loops could be fused to carry out both operations right after one another on the same

vertex - this would enable temporal locality as well. However, most computational loops

are not trivial like that, for example if the first sweep is over cells, indirectly updating

vertices, and the next sweep were on edges, accessing values on the vertices previously up-

dated, then there is a data dependency; before an edge of the second sweep could execute,

all cells that include either of the vertices at the two ends of the edge would have had to

have been updated already. Reorganising computations in a way that satisfies these data

dependencies but still provides temporal locality is called tiling.

Tiling has been demonstrated for structured grids [34, 22], but it is quite obvious,

even for such trivial problems, that writing scientific code in a way that would support

tiling would be a very error-prone process and would result in practically unreadable

and unmaintainable code. Thus it is easy to see why tiling has rarely been applied to

anything larger than a proof of concept benchmark. In fact, this is the first known practical

application of tiling to unstructured grid applications, based on our paper [9].

The key observation to be able to reorganise execution and respect data dependencies

is that OP2 makes no assumptions about the order in which set elements in a parallel loop

are executed. Therefore it is possible for OP2 to determine the order in which elements are

executed in a single loop to improve spatial locality, and, as I demonstrate here, to execute

certain parts of subsequent computational loops so that temporal locality is achieved. The

most important component in enabling this is lazy or delayed execution [84]; when an

op_par_loop is encountered computations are not carried out immediately, rather they

are placed in a queue. Having gathered a number of loops, it is possible to reason about

inter-loop data dependencies. By employing this technique I show that it is possible to

support tiling in a way that is completely opaque to the application programmer; only the

implementation of op_par_loop changes; the only requirement is that if an op_arg_gbl

is encountered, the output of which may be used for control, then computations have to

be triggered to ensure correct output and control flow.

85

DOI:10.15774/PPKE.ITK.2014.003



CHAPTER 6. HIGH-LEVEL TRANSFORMATIONS WITH OP2

At a very high level, the tiling algorithm can be described as follows:

1. Collect a number of kernels to be tiled over into kernels[1...N ].

2. Perform multi-set partitioning of the mesh into the desired number of tiles.

3. For each tile, compute the dependency tree by iterating over kernels backwards N...1:

(a) Based on previous data dependencies, determine which set elements have to be

executed in the current loop so that the data dependency is satisfied.

(b) Determine data dependencies required to execute set elements from the previous

step.

4. Execute tiles one by one:

(a) Copy data the tile is dependent upon into scratch memory.

(b) Iterate over kernels 1...N , only executing set elements determined in previous

steps.

(c) Copy final data back from scratch.

This algorithm describes redundant compute tiling for a sequence of general unstructured

grid operations; redundant because the execution of a particular set element may update

data on different set elements that may belong to different tiles, therefore both tiles have

to carry out the computation to satisfy their data dependencies. Figure 6.2 illustrates

one iteration of dependency analysis; given an initial data dependency for a given tile,

highlighted in red, it is necessary to determine which set elements need to be executed

in the current loop so that data is updated, in this example the loop iterates over cells,

updating edges, therefore the highlighted cells need to be executed. However, in order to

execute these cells, it is necessary to read data on the vertices of these cells, thus these

are added to the list of dependencies. This process is repeated for all loops that are being

tiled over, resulting in a list of elements to be executed for each one to satisfy the data

dependencies of the next loop.

The implementation is available at [83], since it consists of several thousand lines of

C++ code, the specifics are omitted here, only a high-level overview is presented. As

usual, the high-level user application does not change, the code generated for each user

kernel enqueues the kernel instead of immediately executing it, the rest of the tiling logic

is implemented within the OP2 framework, as described by Algorithm 9.

Using this structure, it is possible to separate the construction and management of

tiles from the actual execution of individual kernels within the tile, which provides the
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Algorithm 9 Redundant compute tiling in OP2
1: Input: data structure holding description of kernels, along with op_args
2: if tiling plan does not exist for this sequence of kernels then
3: create a new tile plan by first partitioning the set the last loop iterates over into the

desired number of tiles
4: inherit partitioning to all of the other sets, through mapping connections to the

partitioned set
5: for each tile do
6: from each set, add elements that belong to the current tile to the list of depen-

dencies
7: for each kernel, in reverse order do
8: iterate over the non read-only arguments of the kernel and determine for each

element in the kernel’s execution set whether it accesses any set element in the
list of dependencies, if so, add the set element to the list of elements to be
executed for this kernel

9: iterate over the execution set elements and determine what data it reads, read-
writes or increments on which set elements, and if those set elements are not
yet in the list of dependencies, add them

10: end for
11: based on existing global mapping tables, create tile-specific mapping tables that

only include entries from set elements that are in the dependency list of the tile
12: for each dataset, determine the required scratch memory size based on the depen-

dency list and the size of the entries in the dataset
13: perform colouring on the entire tile with respect to the mappings to support

shared-memory parallelism
14: sort tile elements, datasets and mappings by colour and record index ranges for

each colour
15: save tiling plan
16: end for
17: end if
18: load tiling plan
19: for each tile do
20: iterate over kernel descriptors in the current tile and substitute op_dats and

op_maps specific to the tile in all op_args
21: copy data dependencies from global op_dats to scratch memory
22: for each kernel do
23: call kernel
24: for each colour do
25: execute set elements of the same colour with all available OpenMP threads
26: end for
27: end for
28: write back data on set elements that belonged to the initial partitioning to a copy

of the global op_dats
29: end for
30: swap pointers of the original and the copies of global op_dats
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Initial data dependency

Execution dependency

Updated data dependency

Figure 6.2. Dependency analysis required for tiling for a given loop that iterates over cells,
reading vertices and incrementing edges indirectly

modularity that makes it possible to apply this tiling technique to any “front-end” or

target architecture. Since this approach implements redundant compute tiling, the size of

the “halo”, set elements that have to be executed due to data dependencies, is important;

if the tile size is too small, then the ratio of the core part of the tile to the halo is low,

possibly resulting in too many redundant computations. Exact parameters depend heavily

on the target hardware, on factors like the size of the low-latency memory that would hold

the tile, the ratio of computational throughput the bandwidth to low-latency memory and

off-chip memory, and the parallelisation approach used to process the tile.

Currently, only CPU architectures support meaningful tile sizes; GPUs and the Xeon

Phi rely on a high level of parallelism to hide the latency of memory transactions, thus

they have relatively small cache sizes compared to the amount of data parallelism needed

to fully utilise the computational cores. Despite this, even on CPUs the ratio of compu-

tational capacity to memory bandwidth is not yet high enough for this tiling approach

to offset the cost of redundant computations and additional bookkeeping; I haven’t mea-

sured better performance yet, but current trends show memory bandwidth lagging behind

computational performance, therefore tiling approaches are expected to become more im-

portant.
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6.3 Heterogeneous execution

Today’s systems are increasingly heterogeneous; multi-core CPUs are commonly paired

with accelerators such as GPUs or the Xeon Phi, and there is a convergence in architec-

tures; already AMD’s Fusion chips incorporate a general purpose programmable GPU

next to the CPU cores, resulting in what AMD call the Accelerated Programming Unit

(APU) - indeed in some cases more than half the chip is dedicated to graphics processing.

NVIDIA’s mobile chips also have GPU and ARM CPU cores. Future architectures are

expected to follow the same trends, but some degree of separation will remain because it

is the differences in fundamental architecture that make accelerators so energy efficient

at certain tasks. It is a fact that systems are becoming heterogeneous, but it is still the

exception rather than the rule that software use all the available resources; this leads to

underutilisation of the system. Most related work published on many-core acceleration,

and GPU acceleration in particular, focuses on migrating the entire code base to the GPU

and then comparing performance with the CPU. However, modern GPU supercomputers,

such as Titan at Oak Ridge NL National Laboratory, consist of roughly the same number

of GPUs and CPU sockets, and often pricing is only calculated on a per-node basis. Thus,

if an application only exploits the computational resources of the GPUs, then the CPUs

are idling, even though they might have considerable computational power themselves.

It is precisely because of these fundamental architectural differences that different

hardware have different performance characteristics when executing various tasks, and

this is perhaps the reason why heterogeneous execution has rarely been utilised. Several

papers address this issue by employing different techniques, where the CPU and the GPU

either have the same role, such as in the case of shared task-queues [85], or where the GPU

computes on the bulk of the workload and the CPU handles the parts where the GPU

would be under-utilised, such as the boundary in domain decomposition systems [86, 87,

88], but these tend to discuss very specific problems.

In the case of unstructured grid computations this is compounded by having computa-

tions with various degrees of irregularity; the more regular the more efficient architectures

with long vector units are. The goal of my research was to enable heterogeneous execution,

that is the utilisation of different computational resources, and to understand and model

the performance characteristics when carrying out unstructured mesh computations. The

first step in facilitating heterogeneous execution in OP2 is to carry out the domain decom-

position of the unstructured mesh and utilise distributed memory parallelism to assign

resulting partitions to different hardware. In the MPI setting, this means that some ranks
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Figure 6.3. Hybrid scheme with fully synchronous execution

are assigned to one type of hardware, other ranks to a second type of hardware, and so

on. This implies a static load balancing scheme; while it is possible to create partitions of

different sizes, it will not be possible to change it afterwards - this is acceptable because

moving large amounts of data associated with re-balancing would be extremely expen-

sive. The key challenge then is to come up with a partition size balance between different

hardware that reflects their performance differences.

To determine the right load balance, it is important to understand the performance

differences of individual loops on different hardware, and how synchronisation - either

implicit or explicit - is carried out between them. The most simplistic model would assume

that there is synchronisation between each computational loop, thus for a sequence of N

loops with different execution times on K different processes (each may be mapped to

different hardware) k1
1, k

1
2, ...k

1
N , ..., k

K
1 , k

K
2 , ...k

K
N the total runtime would be:

t =
N∑

i=1
max(k1

i , k
2
i , ..., k

K
i ) (6.1)

This essentially describes the scenario where the execution is fully synchronised and

runtime is determined by the slowest hardware in each loop, as illustrated in Figure 6.3.

To satisfy data dependencies in distributed memory parallelism, OP2 uses halo ex-

changes, in combination with a technique called latency hiding; the computational domain

on each MPI process is split into two parts: elements that need data from neighbouring

processes (boundary) and elements that do not (interior). By beginning with the trans-

mission of data, then carrying out computations over the interior, and only then waiting

for communications to finish, followed by the computations on the boundary, it is possible

to hide the latency of communications, assuming the computations on the interior take

longer than communications. This approach results in implicit pairwise synchronisation;

computations over the boundary cannot begin until data from neighbouring partitions are

received, and it does allow for slight performance differences to be hidden through asyn-

chronicity. Some loops however do not require halo exchanges (for example direct loops)

and other loops have global reductions which results in blocking synchronisation with no
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Figure 6.4. Hybrid scheme with latency hiding

possibility of overlap.

To model heterogeneous execution, I study regions between synchronisation points

(such as start, global reductions and finish), since total runtime is simply a sum of these.

Each region is then broken up into groups of loops between ones that need halo exchanges:

take a sequence of N loops, out of which L < N need halo exchanges, at positions 1 ≤

p1, p2, ..., pL ≤ N , and for these loops, let ki,inter
pl

denote the time it takes to execute the

interior of loop pl by process i, and ki,bndry
pl

for the boundary. Thus, to determine tfin
i (l),

the time elapsed until the full execution of loop l (a loop that requires halo exchanges) on

process i since the last synchronisation point, we have:

tsend
i (l) = tfin

i (l − 1) +
pl−1∑

j=pl−1+1
ki

j (6.2)

util the time that process i sends its halo to its neighbours, after which executes the

interior of loop pl and starts receiving data:

trecv
i (l) = tsend

i (l) + ki,inter
pl

(6.3)

and waits until it has received all halo data from its neighbours N(i):

twait
i (l) = trecv

i (l) + f

(
max

k∈N(i)

(
tsend
k (l)

)
− trecv

i

)
(6.4)

where f returns 0 for negative values and the value itself for positive values. This is followed

by the execution of the boundary to yield the total time elapsed:

tfin
i (l) = twait

i (l) + ki,bndry
pl

(6.5)

which simply gives the total time for the current region by taking the maximum execution

time until the completion of the last loop over all K processes:
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Figure 6.5. Hybrid execution of the Airfoil benchmark, using an NVIDIA Tesla K20c card and
an Intel Xeon E5-2640 CPU with 6 cores. The extrapolation is from a balance of 4.2, based on

the stand-alone runtime of the CPU (144 sec) and the GPU (34 sec): 144/34 = 4.2

tregion = max
i∈K

tfin
i (L) +

N∑
j=pL+1

ki
j

 . (6.6)

Figure 6.4 shows a simplified example of a timing region where there is only one loop

that requires a halo exchange, the last one. It highlights the communications between

processes and shows that in case of severe load imbalance, process 3 may spend a lot of

its time waiting for halo exchanges to arrive as well as at the end of timing regions, due

to explicit synchronisation.

6.3.1 Performance evaluation

The hybrid heterogeneous execution scheme was applied to the Airfoil benchmark,

described in 5.2, to utilise the GPU (an NVIDIA Tesla K20c) and the CPU (an Intel

Xeon E5-2640 with 6 cores) in a development system. The former uses CUDA, the lat-

ter OpenMP and the two communicate through MPI - the specifics of how execution is

organised on different hardware is discussed in the Chapter 7.

Figure 6.5 describes the results; running the benchmark on a single GPU gives an

execution time of 34 seconds and running it on the CPU alone gives 144 seconds. When

utilising both hardware, I use standard domain decomposition, facilitated by the ParMetis

[89] graph partitioner, specifying a partition size balance as follows; the CPU partitions

have a weight of 1, and the weight of GPU partitions can be set wgpu. Thus the fraction

of the total problem size that is assigned to the CPU is 1/(1 + wgpu) and to the GPU:

wgpu/(1 + wgpu). Then, I carry out a set of measurements, exhaustively searching for the

best value of wgpu, between 1 and 8; the resulting execution times are shown with the blue
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line on Figure 6.5. The reason for the irregularity of the results is due to the non-linearity

of the partitioner as well as the performance scaling of the CPU and the GPU as the

problem size is changed, not system noise (the results are averaged from 3 runs). The best

performance is achieved at a balance of 3.7, giving an execution time of 27.9 seconds, an

18% reduction over the execution time of the GPU alone (and a 5.2 speedup over the CPU

alone).

Extracting information on the execution times of individual loops (ki
j) that do not need

halo exchanges and on ones that do (ki,inter
pl

, ki,bndry
pl

), I substitute these values back into the

model, giving predictions displayed by the cyan line in Figure 6.5. While these consistently

underestimate the actual execution time, due to the fact that MPI messaging latency is

not accounted for, qualitatively it gives the correct results, following the measurements

curve accurately, taking its minimum at the same partition balance, 3.7.

The model of course can be used to predict the correct partition balance without having

to exhaustively search the parameter space. Thus, a reasonable assumption would be to

first try a partition balance of 144/34 = 4.2, which already gives a good performance

improvement (28.7 sec), but feeding measurements into the model gives the prediction

shown with the green line in Figure 6.5. This prediction shows the region where it is the

CPU that is waiting for the GPU (less than 3.6) and where the GPU is waiting for the CPU

(above 3.6), and gives the point where the least amount of waiting is involved at 3.6, which

is less then 3% from the measured optimum of 3.7. Note that this extrapolation, since it

is based on a single datapoint, assumes linear partitioning and performance behaviour,

hence it gives a smooth prediction.

6.4 Summary and associated theses

In this chapter, I have built upon the OP2 abstraction to carry out my research address-

ing resiliency, locality and the utilisation of heterogeneous systems. My research involves

transformations to execution patterns at a high level; without assuming specifics about

the hardware the algorithm is going to execute on. First, I have presented a novel check-

pointing algorithm, that based on the information provided through the OP2 API, can

automatically create backups of the state space during execution, and in the event of a

failure it can fast-forward and continue execution - all this without the user altering the

application. Furthermore, I have shown that it is possible to find sub-optimal or optimal

points during execution where the state space saved is minimal, using one of three ways;

(1) near-optimal local decision, looking for a loop in which data is written to within a
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timeout, (2) by recording the execution history of loops, finding a repeating pattern and

locating the minimal point in that, and (3) by reporting the minimum points to the user,

after the fact, so that an OP2 API call may be inserted that triggers the checkpoint.

Thus, as Thesis II.1 states: I have designed and implemented a checkpointing method in

the context of OP2 that can automatically locate points during execution where the state

space is minimal, save data and recover in the event of a failure.

I have designed and implemented a novel tiling algorithm for general unstructured grid

computations defined through the OP2 API that concatenates the execution of subsequent

computational loops, carrying out the data dependency analysis and forming an execution

plan over a subset of the computational domain that fits in on-chip cache [9]. Thus, as

Thesis II.2 states: I gave an algorithm for redundant compute tiling in order to provide

cache-blocking for modern architectures executing general unstructured grid algorithms,

and implemented it in OP2, relying on run-time dependency analysis and delayed execution

techniques.

I have also investigated the issue of utilisation in heterogeneous systems, and designed

a model to estimate the performance behaviour when a domain decomposition technique

is used to share work between different architectures. I have implemented this execution

strategy in OP2 and evaluated it on the Airfoil benchmark, showing the accuracy and the

predicting capability of the model [4, 13] . As Thesis II.3 states: I gave a new performance

model for the collaborative, heterogeneous execution of unstructured grid algorithms where

multiple hardware with different performance characteristics are used, and introduced sup-

port in OP2 to address the issues of hardware utilisation and energy efficiency.
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Chapter 7

Mapping to Hardware with OP2

The key challenge addressed by the OP2 domain specific active library is the execution

of unstructured grid algorithms based on high-level specifications on a range of heteroge-

neous architectures. Previous chapters discussed the abstraction defined by OP2 as well

as the high-level transformation, in this chapter I discuss how OP2 facilitates the use

of multiple levels of parallelism in a generic way, and subsequently my own research on

how it maps to different architectures, programming languages and abstractions through

a combination of back-end logic and code generation. By studying performance on both

benchmark and real applications, I show that it is indeed possible to have an applica-

tion code written once that is then easily maintainable and performance portable to a

range of contrasting hardware, thereby delivering future-proofing to these applications -

arguably the most important promise of domain specific languages. In Section 7.1 I briefly

discuss how OP2 facilitates the use of multiple levels of parallelism, based on [16] and

my own research. Section 7.2 presents my research into how execution is mapped to the

GPU hardware, its SIMT programming abstraction, and the CUDA C and CUDA For-

tran languages. Section 7.3 discusses mapping execution to modern CPUs and CPU-like

architectures such as the Xeon Phi, by utilising the SMT and the SIMD programming

abstraction with OpenMP and AVX. The discussion of results on distributed-memory su-

percomputers is postponed to the Appendix, it will analyse performance to demonstrate

the scalability of OP2 when solving large, industrial problems.

7.1 Constructing multi-level parallelism

The basic assumption that OP2 makes is that the order in which elements in any

given loop are iterated over does not affect the result, within machine precision. This
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makes it possible to organise parallelism in any way as long as data dependencies and race

conditions are handled. To enable execution on today’s hardware that support multiple

levels of parallelism, we first create a highly parametrisable execution plan, that is still

independent of the hardware being used. There are three levels of parallelism created and

supported;

1. Distributed memory parallelism based on the Communicating Sequential Processes

(CSP) abstraction.

2. Coarse-grained shared memory parallelism for levels where communication and syn-

chronisation are expensive.

3. Fine-grained shared memory parallelism for levels where communication and syn-

chronisation are cheap.

The first level, distributed memory parallelism, is built entirely into the backend, it is

based on MPI and uses standard graph partitioning techniques (similar to ideas developed

previously in OPlus [72, 80]) in which the domain is partitioned among the compute nodes

of a cluster, and import/export halos are constructed for message-passing. OP2 utilises

either of two well established parallel mesh partitioning libraries, ParMETIS [89] and

PT-Scotch [90] to obtain high quality partitions.

The two-level shared memory design is motivated by several key factors. Firstly a

single node may have different kinds of parallelism depending on the target hardware: on

multi-core CPUs shared memory multi-threading is available with the possibility of each

thread using vectorisation to exploit the capabilities of SSE/AVX vector units. On GPUs,

multiple thread blocks are available with each block having multiple threads. Secondly,

memory bandwidth is a major limitation on both existing and emerging processors. In the

case of CPUs this is the bandwidth between main-memory and the CPU cores, while on

the GPUs this is the bandwidth between the main graphics (global) memory and the GPU

cores. Thus this design is motivated to reduce the data movement between memory and

cores. Based on ideas from FFTW [91], OP2 constructs for each parallel loop an execution

“plan” (op_plan) which breaks up the distributed-memory partition into blocks (or mini-

partitions) for coarse-grained shared memory parallelism, and then works out possible

data races within each of these blocks to enable fine-grained shared memory parallelism.
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MPI boundary
Owner-compute
Halo exchanges

Block 1
Block 2

Figure 7.1. Handling data dependencies in the multi-level parallelism setting of OP2

7.1.1 Data Dependencies

One key design issue in parallelising unstructured mesh computations is managing data

dependencies encountered when using indirectly referenced arrays [16]. For example, in a

mesh with cells and edges, with a loop over edges updating cells a potential problem arises

when multiple edges update the same cell.

At the higher distributed-memory level, we follow the OPlus approach [80, 72] in using

an “owner compute” model in which the partition which “owns” a cell is responsible for

performing the edge computations which will update it. If the computations for a particular

edge will update cells in different partitions, then each of those partitions will need to

carry out the edge computation. This redundant computation is the cost of this approach.

However, we assume that the distributed-memory partitions are very large such that the

proportion of redundant computation becomes very small. It is possible that one partition

may need to access data which belongs to another partition; in that case a copy of the

required data is provided by the other partition. This follows the standard “halo” exchange

mechanism used in distributed memory message passing parallel implementations. These

data dependencies classify set elements as either “interior”, ones that do not depend on

data owned by different processes, or “boundary”, ones that do. OP2 implements latency

hiding; it overlaps the computation over interior set elements with the communication of

boundary data.

Within a shared-memory setting the size of the blocks can be very small, and so the

proportion of redundant computations would be unacceptably large if we used the owner-

compute approach. Instead we use the approach described in [16], in which we adopt the

“colouring” idea used in vector computing [50], illustrated in Figure 7.1. The domain is
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broken up into blocks of elements, the blocks are coloured so that no two blocks of the

same colour will update the same cell. This allows for parallel execution of blocks, with

synchronisation between different colours. Key to the success of this approach is the fact

that the number of blocks is very large and so even if 10-20 colours are required, there are

still enough blocks of each colour to mitigate the cost of synchronisation and to ensure

good load-balancing

On the level of fine-grained shared memory parallelism it is important to have data

reuse during indirect accesses, but there may be conflict when trying to update the same

cell. Here, we again use the colouring approach, assigning colours to individual edges so

that no two edges of the same colour update the same cell, as illustrated in Figure 7.1.

When incrementing data on cells, it is possible to first compute the increments for each

edge, and then loop over the different edge colours applying the increments by colour, with

synchronisation between each colour. This results in a slight loss of parallelism during the

incrementing process, but permits data reuse.

Finally, in order to address the issue of serialisation on the fine level, I have introduced

two additional colouring strategies that mitigate serialisation at the cost of increased

irregularity. These strategies also enable the use of higher-level automatic parallelisation

approaches, such as compiler auto-vectorisation, because execution can be formulated as

a simple loop nest with the innermost loop being over elements of the same colour, which

requires no synchronisation constructs. I present two new colouring approaches: the first

permutes the execution of elements within blocks by colour (referred to as “block permute”

and the second that creates a single level of colouring for all elements, and provides a

permutation to execute them by colour (referred to as “full permute”).

7.2 Mapping to Graphical Processing Units

In order to map execution to GPUs, I use the SIMT programming abstraction, which

to some degree reflects the architectural specifics; execution is grouped into coarse-grained

thread blocks which have practically no way of communicating and synchronising, these

are assigned to different SMX units, and fine-grained threads within each thread block,

they can communicate via the on-chip shared memory and synchronise relatively cheaply,

these are assigned to the execution units within the SMX units. This aligns well with

the multi-level parallelism scheme constructed in op_plan, blocks of the same colour are

assigned to different thread blocks during a kernel launch, and a separate kernel is launched

for each colour. These blocks are sized so that a set element is assigned to each thread,
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Figure 7.2. Organising data movement for GPU execution

increments are applied colour by colour with a block-level synchronisation call in-between.

To program the GPU, I use the CUDA programming language (and its C and Fortran

variants), which defines computations and data movement from the perspective of a single

thread using the SIMT abstraction. Due to the way the OP2 API is constructed, there is a

separation between the iteration over the execution set and the execution of computations -

leaving the responsibility of moving data and handing it to the user-defined kernel function

to the library. Given the deep memory hierarchy and the assumption that the op_plan

is created to give good data reuse, I construct the execution scheme described by Figure

7.2; multi-dimensional datasets may be transposed to a Structure of Arrays (SoA) layout,

read-only data is transferred through the texture cache, data that is written or read-and-

written is accessed directly from global memory, optionally cached in L1, and for datasets

that are incremented, a register array is provided to store the increments in. These pointers

are then handed to the user-defined kernel, once done, increments are applied to global

memory colour by colour.

This mapping integrates seamlessly with OP2’s MPI distributed memory execution;

concurrently to the execution on the interior, I run a kernel that collects data on boundary

vertices and then I asynchronously copy them to the host, handing it to the MPI backend to

be sent off to neighbouring GPUs. The execution of blocks that contain boundary elements

cannot begin until updated halo data from neighbours is received, therefore having queued

the GPU kernels, the CPU does a blocking wait for data, uploads it and launches a GPU

kernel which moves the data to its place, before launching the boundary GPU kernels.

The challenge of course is to fully automate a code generation process which imple-

ments this strategy, based on the high-level specification provided through the OP2 API.

The example from the previous chapter (Figure 5.2b) is used to describe to illustrate the

code generated for execution on the GPU, using CUDA; in Figure 7.3 the original call

to the abstraction is transferred to a loop-specific implementation which constructs an

op_plan and launches GPU kernels, colour by colour. These GPU kernels then arrange
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//in main program file 
op_par_loop_res_calc(res_calc,“res_calc",edges, 
   op_arg_dat(p_x,0,edge2node,  2,"double",OP_READ), 
   op_arg_dat(p_x,1,edge2node,  2,"double",OP_READ), 
   op_arg_dat(p_q,-1,OP_ID,     4,"double",OP_READ), 
   op_arg_dat(p_res,0,edge2cell,4,”double”,OP_INC ), 
   op_arg_dat(p_res,1,edge2cell,4,”double”,OP_INC)); 

Indirection 
index 

Mapping Data 
arity 

Data 
type 

Access 
type 

Dataset 
name 

//in generated stub file 
void op_par_loop_res_calc(op_set set, 
  op_arg arg0, op_arg arg1, op_arg arg2, 
  op_arg arg3, op_arg arg4) { 
   
  op_arg *args={arg0,arg1,arg2,arg3,arg4}; 
  op_halo_exchanges_cuda(args,5);  
  op_plan plan = op_plan_get(args,5,...);  
  for (int col=0;col<plan->ncolors;col++){ 
    if (col == plan->ncolor_interior) 
      op_waitall_cuda(args,5); 
    op_cuda_res_calc<<<...>>>( 
        arg0.data_d, 
        ...); 
  } 
  cudaDeviceSynchronize(); 
  op_set_dirtybit(args,5); 
} 

(a) Host stub

__global__ void op_cuda_res_calc( 
  const double* restrict arg0, 
  const double* restrict arg2, 
        double* restrict arg3, 
  const int* restrict arg0_map, 
  const int* restrict arg2_map,... 
  /*other indexing structures*/){ 
  double arg3_l[4] = {0.0,0.0,0.0,0.0}; 
  double arg4_l[4] = {0.0,0.0,0.0,0.0}; 
  //current index 
  int n=block_offset+get_local_id(0); 
  int map0idx = arg0_map[n+set_size*0]; 
  int map1idx = arg0_map[n+set_size*1]; 
  int map2idx = arg3_map[n+set_size*0]; 
  int map3idx = arg3_map[n+set_size*1]; 
  res_calc( 
    &arg0[2 * map0idx],  
    &arg0[2 * map1idx],  
    &arg2[4 * n],  
    arg3_l, 
    arg4_l); 
  int color = colors[n]; 
  for ( int col=0; col<ncolor; col++ ) 
    if (col2==col) 
      for ( int d=0; d<4; d++ ){ 
        arg3[d+map2idx*4] += arg6_l[d]; 
        arg3[d+map3idx*4] += arg7_l[d]; 
      } 

} 

Pointers to 
datasets, 
mappings, 
index data  

Prepare 
indirect 
accesses 

Set up 
pointers, 
call kernel 

Indirect 
increments 

Colored 
increment 

    __syncthreads(); 

(b) CUDA kernel

Figure 7.3. Code generated for execution on the GPU with CUDA

the data movement and call the user-defined function.

The construction of this code relies on first parsing the call to the OP2 API (in Figure

7.3a); recording information regarding the number of arguments, and for each argument the

name of the dataset accessed, the type of access (direct or indirect), the dimensionality

of the dataset, its datatype and the access descriptor (read, write, increment). This is

stored in a data structure that I then use to generate code similar to what is described in

Figure 7.3 using a combination of string manipulation and pre-defined patterns for different

cases. Figure 7.4 illustrates this parsing process and the data it generates. Once parsing is

completed, the backend-specific code generator is invoked to produce code similar to the

one shown in Figure 7.3, Figure 7.5 describes this process step by step. More details are

available in [83].

7.2.1 Performance and Optimisations

Here, I carry out the performance analysis of the Airfoil benchmark, the Volna tsunami

simulation code and the Hydra application on GPUs, applying optimisations through

changes to the code generator or by using auto-tuning techniques, and showing that near-

optimal performance is indeed achieved. Since the two applications are using different

programming languages (Airfoil and Volna are written in C, Hydra in Fortran), I demon-
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High-level source with op_par_loop calls
airfoil.cpp or airfoil.F90

Parser

List of constants (name, type, dimension)
List of sets (name)

List of op_par_loops:
name of user kernel
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   direct/indirect and the mapping
   type
   dimension
   access type

Backend-specific code generator
(OpenMP, CUDA, AVX, ...)

Generate modified high-level source
airfoil_op.cpp or airfoil_op.F90

Figure 7.4. Parsing the high-level file containing op_par_loop calls

Locate file with user kernel, read text
Perform changes in access patterns (SoA)
Paste user kernel with __device__ qualifier

Create __global__ wrapper, taking args:
unique datasets (if read-only: const, __restrict, type of arg),
unique maps (const __restrict int *), 
thread colours, block infromation

Set up block-specific common data (offset, size)
Create temporaries for increments
Read map values

Call user kernel with arguments:
direct[offset], indirect[map], increment temp

Colored increment of indirectly accessed data Reductions

Host wrapper: op_par_loop_name_host(...) MPI calls, timing and plan construction Colored kernel launch

Reductions Timing, update kernel record

Create CUDA source including all
subsequently generated files and declaring
device constants

For each parallel loop, create:
name_kernel.cu and generate code
as follows:

Other
kernels

left?

No Done

Figure 7.5. Generating CUDA code based on the parsed data for execution on the GPU

strate the applicability of the library and the code generation to both languages. Tests are

carried out on the Ruby development machine which contains two Tesla K20 GPUs and

an SKA test node equipped with a Tesla K40 GPU - hardware specifications are presented

in 7.1.

First, I investigate the performance of the Airfoil benchmark; it was written to be

representative of larger applications, such as Hydra, but it is much smaller so that tests

are easier to carry out. It consists of five parallel loops, two direct, three indirect as de-

tailed in Table 5.1. GPU execution is compared to OP2’s basic MPI backend on the Ruby

development machine, detailed in Table 7.2. The GPU baseline uses the code generated

for Fermi-generation GPUs, published in [2, 16], which used shared memory to stage indi-

rectly accessed data, thereby explicitly improving data reuse. Figure 7.6 shows a moderate

improvement over the old Fermi C2070 card when running the same code on the Kepler
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Table 7.1. GPU benchmark systems specifications

System K20 K40
Architecture Tesla K20c Tesla K40
Clock frequency 0.71 GHz 0.87 GHz
Core count 2496 2880
Last level cache 1,.5MB 1.5MB
Peak bandwidth 208 GB/s 288 GB/s
Peak compute DP(SP) 1.17(3.52) TFLOPS 1.43 (4.29) TFLOPS
Stream bandwidth 172 GB/s 229 GB/s
D(S)GEMM throughput 1100(2610) GFLOPS 1420(3730) GFLOPS
FLOP/byte achieved DP(SP) 6.4(15.1) 6.2(16.3)
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Figure 7.6. Performance of the Airfoil benchmark and the Volna simulation with optimisations
on a Tesla K40 card

K40 card, which in part is because the amount of shared memory available didn’t change

between the two GPU generations, but the required amount of parallelism increased -

therefore we eliminated the staging in shared memory by directly loading the data from

global memory into SMXs, and rely on the increased L2 and texture cache size to speed

up memory accesses that have spatial and temporal locality. The next bar in Figure 7.6

shows the performance of the Kepler-specific code without any further optimisations. By

decorating pointers with const __restrict in C or intent(in) in Fortran, it is possible

to give hints to the compiler that data accessed using those pointers should be brought

through the read-only texture cache; the performance benefits are obvious, as shown by

the fourth bar in Figure 7.6.

Running the generated CUDA code through the NVIDIA Visual Profiler reveals more

opportunities for optimisations. It appears that the switch to directly loading data from

global memory (without staging in shared memory) has made most parallel loops lim-

ited by bandwidth utilisation. Further investigation showed that a high amount of cache
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Table 7.2. Specifications of the Ruby development machine

System Ruby
Node 2×Tesla K20c GPUs+

Architecture 2×6-core Intel Xeon
E5-2640 2.50GHz

Memory/Node 5GB/GPU + 64GB
O/S Red Hat Linux 6.3

Compilers PGI 13.3, ICC 13.0.1,
OpenMPI 1.6.4,

CUDA 5.0 (Hydra), 5.5 (Airfoil, VOLNA)
Compiler -O2 -xAVX

flags -Mcuda=5.0,cc35

contention is caused by the default data layout of op_dats. This layout, called Array-of-

Structs (AoS), was found to be the best layout for indirectly accessed data in my previous

work [5] on Fermi GPUs. However without staging in shared memory it is damaging per-

formance as many of the op_dats have a large number of components (dimensions) for

each set element (typically related to the number of PDEs, in this case 4). Thus, adjacent

threads are accessing memory locations that are far apart, resulting in high numbers of

cache line loads (and evictions, since the cache size is limited). Therefore I have introduced

the ability in OP2 to effectively transpose these datasets and use a Struct-of-Arrays (SoA)

layout, so when adjacent threads are accessing the same data components, they have a high

probability of being accessed from the same cache line. While the OP2 back-end can easily

transpose existing data, it is also important to alter access patterns during the execution

of the user kernel to also use the SoA layout; this is facilitated by parsing its function sig-

nature to determine the names of variables that use SoA, and then subsequently swapping

all array accesses involving those variables with SoA accesses. This optimisation resulted

in an increase of about 20% to the single GPU performance as shown in Figure 7.6.

To improve performance further, two other aspects of GPU performance are investi-

gated. The goal is to allow as many threads to be active simultaneously so as to hide the

latency of memory operations. The first consideration is to limit the number of registers

used per thread. A GPU’s SM can hold at most 2048 threads at the same time, but it

has only a fixed number of registers available (65k 32-bit registers on Kepler K20 GPUs).

Therefore kernels using excessive amounts of registers per thread decrease the number

of threads resident on an SM, thereby reducing parallelism and performance. Limiting

register count (through compiler flags) can be beneficial to occupancy and performance if

the spilled registers can be contained in the L1 cache. Thus for the most time-consuming

loops, I have manually adjusted register count limitations so as to improve occupancy.

The second consideration is to adjust the number of threads per block. Thread block
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Table 7.3. Bandwidth (BW - GB/s) and computational (Comp - GFLOP/s) throughput
of the Airfoil benchmark in double precision on the 2.8M cell mesh and on the Volna

simulation, running on the K40 GPU

Kernel CUDA
Time BW Comp

save_soln 0.80 230 14
adt_calc 2.6 116 133
res_calc 10.8 62 75
bres_calc 0.09 32 5
update 3.22 235 29
RK_1 0.87 198 15
RK_2 0.72 242 24
compute_flux 3.21 101 309
numerical_flux 1.14 120 17
space_disc 1.92 73 31

size not only affects occupancy, but also has non-trivial effects on performance due to

synchronisation overheads, cache locality, etc. that are difficult to predict. I have used

auto-tuning techniques described in a previous work [5] to find the best thread block size

for different parallel loops, and stored them in a look-up table. This optimisation can be

carried out once for different hardware, and performance is unlikely to vary significantly

when solving different problems. Together with the all the other optimisation, switching

from the Fermi architecture to the Kepler architecture and the new K40 GPU gave 3.75×

performance improvement, and it is 4.6× faster than the baseline CPU implementation,

running on Ruby.

Performance breakdowns for each loop in Airfoil and Volna are shown in Table

7.3; given the theoretical computational performance of the K40 card, it is clear that

none of them are bound by the throughput of computations, but the direct loops show

bandwidth utilisation very close to the theoretical maximum. The loops adt_calc and

numerical_flux also show relatively high bandwidth utilisation for a kernel with a large

number of indirect accesses, but the loops res_calc and space_disc are hit by the indirect

updating of data, which causes serialisation and a loss in parallelism.

Since one of the major limiting factors is this kind of serialisation when indirectly

updating data, I have evaluated the performance of the two additional execution and

colouring schemes that I have introduced in Section 7.1.1, and applied them to res_calc

in the Airfoil benchmark. In case of both new approaches, any regularity of execution

is lost, because set elements are listed in a permutation table, therefore any data that

was accessed directly with the “original” execution scheme is now accessed indirectly

(although in case of Airfoil and res_calc this is only the mapping from edges to cells
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Figure 7.7. Performance of different colouring approaches on the GPU, on the Airfoil
benchmark

or nodes, all other data was already indirectly accessed). Another important implication

of these colouring schemes is that no data is shared between set elements of the same

colour (otherwise race conditions would occur) - in case of the “full permute” approach

it is unlikely that any data will remain in cache between the execution of elements of

different colour, therefore the same data will be moved repeatedly, while with the “block

permute” approach it is possible to have data reuse because the number of elements in a

block is much lower. Figure 7.7 presents the results - it is clear that the original two-level

colouring approach is superior, and that neither of the two other approaches achieves good

data reuse. The “block permute” approach is further hit by the increased complexity and

irregularity, despite the fact that race conditions were avoided.

As it can be seen, a range of low-level features had to be taken into account and a

significant re-evaluation of the GPU optimisations had to be done to gain optimal perfor-

mance even when going from one generation of GPUs by the same vendor/designer to the

next. In this case the previous optimisations implemented for the Fermi GPUs had to be

considerably modified to achieve good performance on the next generation Kepler GPUs.

However, as the code was developed under the OP2 framework, radical changes to the

parallel code could be easily implemented. In contrast, a directly hand-ported application

would cause the application programmer significant difficulties to maintain performance

for each new generation of GPUs, not to mention new processor architectures. Given these

results, I am confident that given the irregular nature of these computations and memory

accesses, near-optimal performance is achieved for this benchmark.

The benefit of using a library such as OP2, is that these optimisations can be introduced

and tested on benchmark applications and then immediately transferred to large-scale

production applications, such as Rolls-Royce Hydra, although in this case due to the

105

DOI:10.15774/PPKE.ITK.2014.003



CHAPTER 7. MAPPING TO HARDWARE WITH OP2

0 

5 

10 

15 

20 

25 

30 

CPU O
plu

s (
24

 M
PI) 

CPU O
P2 (

24
 M

PI) 

Kep
ler

 K
20

 (in
itia

l) 
+SoA

 

+Bloc
kO

pt 

Kep
ler

 K
20

 (b
est

) 

Dua
l-K

ep
ler

 K
20

 (b
est

) 

R
un

tim
e 

(s
ec

on
ds

) 

Figure 7.8. OP2 Hydra’s GPU performance (NASA Rotor 37, 2.5M edges, 20 iterations)

change in language (C to Fortran), some keywords had to be altered and some new text

had to be added to the code generator. Since Hydra is such a massive application, in-depth

analysis would be out of scope for this work, I only give a broad overview. For the rest

of this work whenever I reference to the performance of the OPlus version, I refer to the

original implementation of Hydra that uses OPlus and distributed memory parallelisation

[72].

In Hydra, I use Fortran to C bindings to call functions in the OP2 back-end and to

connect C pointers to Fortran pointers. Following the same sequence of optimisations, the

initial code that only uses the texture cache optimisations runs on a single GPU about

45% slower than the best CPU performance on Ruby (2 CPUs, 24 MPI processes) as

shown in Figure 7.8. Since for Hydra, the dimensionality of datasets is even larger than

for Airfoil (up to 25), the importance of transposing the data layout to a Structure of

Arrays format is even greater. Subsequently, by limiting the number of registers that some

of the most time-consuming loops use and by auto-tuning the thread block size, additional

performance can be gained.

In the case of several Hydra loops that are bandwidth-intensive and do little computa-

tion, the thread colouring technique (that avoids write conflicts) introduces a significant

branching overhead, due to adjacent edges (mapped to adjacent threads) having different

colours, and execution over colours getting serialised. The negative effect on performance
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Table 7.4. Hydra single GPU performance:
NASA Rotor 37, 2.5M edges, 20 iterations

Loop Time (sec) GB/sec % runtime
accumedges 2.07 13.87 19.30
edgecon 2.46 33.55 22.87
ifluxedge 1.03 71.90 9.59
invjacs 0.41 25.94 3.85
srck 0.34 108.09 3.20
srcsa 0.34 121.72 3.15
updatek 0.54 115.91 5.01
vfluxedge 2.32 53.82 21.62
volap 0.23 142.85 2.14
wffluxedge 0.11 31.55 1.00
wvfluxwedge 0.08 25.69 0.77

can be mitigated by sorting edges in blocks by colour, ensuring that threads in a warp

have the same colour (or at least fewer colours), which in turn reduces branching within

the warps. However, this solution degrades the access patterns to directly accessed data

in memory, as adjacent threads are no longer processing adjacent set elements. Thus, I

only apply it to the Hydra loops that are limited by branching overhead. The final best

runtime on a single K20 GPU and on both the K20 GPUs on Ruby is presented in the

final two bars of Figure 7.8. A single K20 GPU achieves about 1.8× speedup over the

original OPlus version of Hydra on Ruby and about 1.5× over the MPI version of Hydra

with OP2. However, considering the full capabilities of a node, the best performance on

Ruby with GPUs (2 GPUs with MPI) gives a 2.34× speedup over the best OP2 runtime

with CPUs (2 CPUs, 24 MPI processes) and about 2.89× speedup over the best OPlus

runtime with CPUs (2 CPUs, 24 MPI processes). Table 7.4 notes the achieved memory

bandwidth utilisation of some of the top kernels on a K20 GPU. A majority of the most

time consuming loops achieve 20 - 50 % of the advertised peak bandwidth of 208 GB/s

on the GPU [38]. Bandwidth utilisation is particularly significant during the direct loops

srck, updatek and volapf.

These results show that the mapping to GPU architectures I introduced in this section

indeed yields near-optimal performance on both the Airfoil benchmark and the Hydra

application, and that it is possible to deploy optimisations through the code generation

technique across hundreds of computational loops - without changes to the user applica-

tion.

7.3 Mapping to CPU-like architectures

The most commonly used parallel programming abstractions are the communicating

sequential processes (CSP) and the simultaneous multithreading (SMT); the former com-
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void op_par_loop_res_calc(char const *name,op_set set, 
                     op_arg arg0,op_arg arg1,op_arg arg2, 
                     op_arg arg3,op_arg arg4){ 
   
  int nargs=5;op_arg args[5] = {arg0,arg1,arg2,arg3,arg4}; 
  int exec_size = op_mpi_halo_exchanges(set, nargs, args); 
  op_plan plan = op_plan_get(nargs,args); 
  int block_offset = 0; 
  for ( int col=0; col<plan->ncolors; col++ ){ 
   if (col==plan->ncol_core)op_mpi_wait_all(nargs, args); 
   #pragma omp parallel for 
   for (int bid = 0; bid < plan->nblocks[col]; bid++){ 
    int blockId = plan->blkmap[block_offset+bid]; 
    int nelem   = plan->nelems[blockId]; 
    int offset_b= plan->offset[blockId]; 
    for (int n=offset_b; n < offset_b+nelem;n++) { 
     int map0idx = arg0.map_data[n * arg0.map->dim + 0]; 
     int map1idx = arg0.map_data[n * arg0.map->dim + 1]; 
     int map2idx = arg3.map_data[n * arg3.map->dim + 0]; 
     int map3idx = arg3.map_data[n * arg3.map->dim + 1];    
     res_calc(&((double*)arg0.data)[2 * map0idx], 
              &((double*)arg0.data)[2 * map1idx], 
              &((double*)arg2.data)[4 * n], 
              &((double*)arg0.data)[4 * map2idx], 
              &((double*)arg0.data)[4 * map3idx]); 
    } 
   } 
  block_offset += plan->nblocks[col]; 
  } 
} 

Number of 
arguments 

Static 
code 

Prepare 
indirect 
accesses 

Set up 
pointers, 
call kernel 

Static 
code 

Figure 7.9. Example of code generated for MPI+OpenMP execution

pletely isolates threads effectively simulating a distributed memory environment but the

latter relies on the fact that they share caches and the system memory. In the case of

both abstractions, communication and synchronisation are regarded expensive although

for SMT only the synchronisation is explicit. Thus, I will use MPI, discussed in Section

7.1, for distributed memory parallelism and OpenMP for coarse-grained shared memory

parallelism. For OpenMP, an op_plan is constructed, and blocks of the same colour are

assigned to the available threads in the system, these iterate through the set elements in

their respective blocks sequentially, therefore no fine-grained parallelism is used. Since the

construction of the op_plan and the MPI halo exchanges are implemented in the back-end,

the generated code is fairly simple, Figure 7.9 shows code for MPI+OpenMP, but when

only MPI is used, the code is slightly simplified and no op_plan is required. The process

of code parsing and code generation is very similar to what I described in Section 7.2,

therefore for the OpenMP example I do not go into further details.

Since a detailed study of Airfoil’s MPI and OpenMP performance was already pre-

sented in [16], I immediately proceed to investigating Hydra. Figure 7.10a presents the

performance of Hydra with both OPlus and OP2 on up to 12 cores (and 24 SMT threads)

on the Ruby single node system using the message passing (MPI) parallelisation. This is

a like-for-like comparison where the same mesh is used by both versions. The partitioning

routine used in both cases is a recursive coordinate bisection (RCB) mesh partitioning [92].
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Figure 7.10. Single node performance on Ruby (NASA Rotor 37, 2.5M edges, 20
iterations)

Initial performance was poor, up to 50% slower than the original OPlus version. This

proved to be due to the compiler’s inability to effectively inline the user function as well

as a Fortran-specific issue having to do with how arrays are represented and arguments

are passed internally [93]; this was resolved by first calling a wrapper function that uses

a cheaper and more efficient indexing scheme, which in turn iterates over the execution

set, calling the user kernel. Clearly, doing this by hand would have been infeasible for

an application the size of Hydra, but since I have developed a code generation technique

to produce the code shown in Figure 7.9, applying this workaround was only a matter

of changing the code generator. Results show that the performance of the original hand-

coded Hydra application can be matched; this is hugely important because it shows that a

domain specific language that uses a high-level abstraction does not sacrifice performance

in exchange for generality.

A number of new features implemented in OP2 allow further improvements for the

MPI parallelisation. Firstly, the OP2 design allows the underlying mesh partitioner for

distributing the mesh across MPI processes to be changed to state-of-the-art unstructured

mesh partitioners such as ParMetis [89] or PTScotch [90]. Secondly, I have added the abil-

ity to OP2 to optimise the ordering or numbering of mesh elements in an unstructured

mesh. The renumbering of the execution set and related sets that are accessed through

indirections has an important effect on performance [94]: the efficiency of pre-fetch en-

gines and cache locality can be improved by making sure that data accessed by elements

which are executed consecutively are close, so that data and cache lines are reused. I

have added a multi-set reordering algorithms to OP2 that can be called to convert the

input data meshes based on the Gibbs-Poole-Stockmeyer algorithm in Scotch [90]. The

results in Figure 7.10b show the effect of the above two features. The use of PTScotch re-

sulted in about 8% improvement over the recursive coordinate bisection partitioning, and
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Figure 7.11. OP2 Hydra Multi-core/Many-core performance on Ruby (NASA Rotor 37,
2.5M edges, 20 iterations) with PTScotch partitioning

renumbering resulted in about 17% gains for Hydra solving the NASA Rotor 37 mesh.

Overall, partitioning with PTScotch gave marginally better performance than ParMetis

(not shown here). In the results presented in the rest of this work I make use of OP2’s

mesh renumbering capability, unless stated otherwise.

Figure 7.11 presents the runtime performance of the OpenMP parallel back-end.

The experiments varied from running a fully multi-threaded version of the application

(OpenMP only), to a heterogeneous version using both MPI and OpenMP. We see that

executing Hydra with 24 OpenMP threads (i.e. OpenMP only) resulted in significantly

poorer performance than when using only the MPI parallelisation on this two socket CPU

node. We have observed similar performance with the Airfoil CFD benchmark code [2].

The causes for MPI outperforming OpenMP on SMPs/CMPs have been widely discussed

in literature. These mainly consist of the non-uniform memory access issues (NUMA [95,

36]), and thread creation and tear-down overheads [96]. In my case, an additional cause

may also be the reduced parallelism due to colouring for blocks that avoid data races. The

hybrid MPI+OpenMP parallelisation provided better performance but was still about 10%

slower than the pure MPI version; again the overhead of shared-memory multi-threading

techniques may be causing performance bottlenecks. To explore the causes further, in

Figure 7.12 and Table 7.5 I present the variation in the runtime and the number of

block colours for different block sizes for a number of combinations of MPI processes

and OpenMP threads. The number of colours and blocks per colour are automatically

output by OP2 for each op_par_loop and I have presented here a range of numbers taken

from the most time consuming loops in Hydra.

With the shared memory parallelism execution scheme employed by OP2, I reason

that the size of the block determines the amount of work that a given thread carries
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Figure 7.12. Hydra OpenMP and MPI+OpenMP performance for different block sizes on
Ruby (NASA Rotor 37, 2.5M edges, 20 iterations) with PTScotch partitioning

Table 7.5. Hydra single node performance, Number of blocks (nb) and
number of colours (nc) (K = 1000): 2.5M edges, 20 iterations

OMP × MPI
Block 24 12×2 4×6 2×12
size nb nc nb nc nb nc nb nc

(K) (K) (K) (K)
64 39 14 20 16 6.8 16 3 16
128 20 15 10 17 3.4 17 1.7 15
256 10 14 5 14 1.7 15 0.8 14
512 5 12 2.5 14 0.8 14 0.4 12
1024 2.5 10 1 11 0.4 11 0.2 11
2048 1 9 0.6 11 0.2 11 0.1 10

out uninterrupted. The bigger it is, the higher data reuse within the block with better

cache and prefetch engine utilisation. At the same time, some parallelism is lost due to

the coloured execution. In other words, only those blocks that have the same colour can

be executed at the same time by different threads, with an implicit synchronisation step

between colours. This makes the execution scheme prone to load imbalances, especially

when the number of blocks with a given colour is comparable to the number of threads

that are available to execute them.

The above two causes have given rise to the runtime behaviour seen with each MPI

and OpenMP combination in Figure 7.12. The average number of colours (nc) and the

average number of blocks (nb) in Table 7.5 supports this reasoning where, overall I see a

reduction in runtime as the block size is increased but only until there are enough blocks

per colour (nb/nc) to achieve good load balancing in parallel. I also experimented by

using OpenMP’s static and dynamic load balancing functionality but did not obtain any

significant benefits as all the blocks executed (except for the very last one) have the same

size.

Table 7.6 details the achieved bandwidth for the most time consuming loops of Hy-

dra with OpenMP (6 MPI × 4 OMP). These loops together take up about 90% of the
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Table 7.6. Hydra single node performance, 6 MPI x 4 OMP
with PTScotch on Ruby: 2.5M edges, 20 iterations

Loop Time (sec) GB/sec % runtime
accumedges 1.46 28.57 7.99
edgecon 2.00 58.40 10.95
ifluxedge 1.88 48.88 10.32
invjacs 0.16 67.37 0.90
srck 0.47 81.72 2.57
srcsanode 1.34 31.62 7.38
updatek 0.94 68.67 5.14
vfluxedge 7.05 16.11 38.70
volapf 0.47 72.19 2.57
wffluxedge 0.26 25.24 1.41
wvfluxedge 0.26 16.81 1.41

total runtime. The achieved bandwidths are reported through code generated by OP2 for

recording performance statistics. The bandwidth figure was computed by counting the

useful amount of data bytes transferred from/to global memory during the execution of

a parallel loop and dividing it by the runtime of the loop. The achieved bandwidth by a

majority of the key loops on Ruby is over or close to 60% of the advertised peak band-

width of the Sandy Bridge processors (2×42.6 GB/s). The best performing loops, such as

srck, updatek and volapf, are direct loops that only access datasets defined on the set

being iterated over, hence they achieve a very high fraction of the peak bandwidth, due

to trivial access patterns to memory. Indirect loops use mapping tables to access mem-

ory, and they often require coloured execution in order to avoid data races; both of these

factors contribute to lower bandwidth achieved by loops such as accumedges, ifluxedge

and edgecon. Additionally some loops are also compute and control-intensive, such as

vfluxedge. Finally, loops over boundary sets, such as wvfluxedge, have highly irregular

access patterns to datasets and generally much smaller execution sizes, leading to a lower

utilisation of resources. My experiments also showed that the trends on achieved band-

width utilisation remain very similar to the observed results from previous work [16, 10]

for the Airfoil benchmark application.

7.3.1 Vectorising unstructured grid computations

Intel provides several programming approaches to achieve vectorisation - the use of the

SIMD execution units - the most trivial being the auto-vectorisation features implemented

in the Intel Compilers; this takes loops that iterate over arrays executing a “kernel func-

tion" and vectorises them. However, it has some limitations, for example a kernel function

with a non-trivial execution path, a loop-carried dependency or indirect memory accesses
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//serial code 
for ( int n=0; n<exec_size; n++ ){ 
  int map0idx = arg0.map_data[n * arg0.map->dim + 0]; 
  int map1idx = arg0.map_data[n * arg0.map->dim + 1]; 
  int map2idx = arg3.map_data[n * arg3.map->dim + 0]; 
  int map3idx = arg3.map_data[n * arg3.map->dim + 1];    
  res_calc(&((double*)arg0.data)[2 * map0idx], 
           &((double*)arg0.data)[2 * map1idx], 
           &((double*)arg2.data)[4 * n], 
           &((double*)arg0.data)[4 * map2idx], 
           &((double*)arg0.data)[4 * map3idx]); 
} 
//code with the “full permute” execution scheme 
for ( int col=0; col<plan->ncolors; col++ ){ 
 #pragma omp parallel for 
 #pragma ivdep 
 for ( int e=0; e<plan->nelems[col]; e++ ){ 
  int n = plan->permutation[plan->offset[col]+e]; 
  int map0idx = arg0.map_data[n * arg0.map->dim + 0]; 
  int map1idx = arg0.map_data[n * arg0.map->dim + 1]; 
  int map2idx = arg3.map_data[n * arg3.map->dim + 0]; 
  int map3idx = arg3.map_data[n * arg3.map->dim + 1];    
  res_calc(&((double*)arg0.data)[2 * map0idx], 
           &((double*)arg0.data)[2 * map1idx], 
           &((double*)arg2.data)[4 * n], 
           &((double*)arg0.data)[4 * map2idx], 
           &((double*)arg0.data)[4 * map3idx]); 
 } 
} 
 

(a) Code for serial execution and
auto-vectorisation

... 
for (int n=0;n<(exec_size/VEC)*VEC;n+=VEC) 
  intv map0idx=intv(&arg0.map[n+set_size*0]); 
  intv map1idx=intv(&arg0.map[n+set_size*1]); 
  intv map2idx=intv(&arg3.map[n+set_size*0]); 
  intv map3idx=intv(&arg3.map[n+set_size*1]); 
  doublev arg0_p[2] = { 
    doublev(arg0.data + 0, 2 * map0idx), 
    doublev(arg0.data + 1, 2 * map0idx)}; 
  doublev arg1_p[2] = { 
    doublev(arg0.data + 0, 2 * map1idx), 
    doublev(arg0.data + 1, 2 * map1idx)}; 
  doublev arg2_p[4] = { 
    doublev(&arg2.data[n * 4 + 0, 4), 
    doublev(&arg2.data[n * 4 + 1, 4), 
    doublev(&arg2.data[n * 4 + 2, 4), 
    doublev(&arg2.data[n * 4 + 3, 4)}; 
  doublev arg3_p[4] = {0.0,0.0,0.0,0.0}; 
  doublev arg4_p[4] = {0.0,0.0,0.0,0.0}; 
 
  res_calc_vec(arg0_p,arg1_p, 
               arg2_p,arg3_p,arg4_p); 
 
  scatter(arg3_p[0],arg3.data+0,2*map2idx); 
  scatter(arg3_p[1],arg3.data+1,2*map2idx); 
  scatter(arg3_p[2],arg3.data+2,2*map2idx); 
  scatter(arg3_p[3],arg3.data+3,2*map2idx); 
  scatter(arg4_p[4],arg3.data+0,2*map3idx); 
  scatter(arg4_p[5],arg3.data+1,2*map3idx); 
  scatter(arg4_p[6],arg3.data+2,2*map3idx); 
  scatter(arg4_p[7],arg3.data+3,2*map3idx); 
} 
... 

Read 
indirection 
indices 

Gather 
indirect 
data to  
registers 

Indirect 
increments 

Indirect 
increment 

Gather 
direct 
data to  
registers 

Call user 
kernel 

(b) Code with vector intrinsics

Figure 7.13. Code generated for serial and parallel CPU execution

usually does not get auto-vectorised, because the compiler first and foremost has to pro-

duce correct code. Since access patterns in unstructured grid computations are irregular,

this class of applications does not lend itself well to auto-vectorisation over computations

carried out on different set elements; data races cannot be determined statically. Since

previously I haven’t discussed the use of vector units, in this section I present research

into ways of achieving vectorised execution, giving a special attention to programmability

considerations.

My experiments have shown that the primary obstacle to getting auto-vectorisation

is the scatter-gather nature of memory accesses; for vectorised execution, the values of

adjacent set elements have to be packed next to each other. Figure 7.13a shows a code

snippet with a typical gather-type memory access that occurs when iterating over edges,

accessing data on different sets. Clearly the simple serial code shown in Figure 7.13a cannot

be parallelised due to potential race conflicts. First I evaluated the auto-vectorisation

capabilities of the compiler, by using execution schemes that guarantee the independence

of different loop iterations; the “full permute” and the “block permute” approaches. This

way, it is possible to add a compiler pragma (#pragma ivdep) in front of the innermost for

loop over independent set elements, thereby telling the compiler that it valid to vectorise

the loop. In practise however, this rarely led to vectorisation when compiling for the CPU,
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but when compiling for the Xeon Phi, simpler kernels with no internal control flow did

vectorise (in case of Airfoil, adt_calc and res_calc).

By using vector types, it is possible to explicitly vectorise the user kernel, and this

approach only requires changing scalar types to vector types in the user kernel, which in

most cases is a matter of a simple find-and-replace during code generation. While operators

are not defined for these types, the Intel Compiler includes a header file that defines

container classes for these types, overloading some operators. By extending these classes

it is possible to maintain the original simple arithmetic expressions in the user kernels,

but instead of scalars they will now operate on vectors. Furthermore, using preprocessor

macros, I have shown that it possible to have a single source code generated for different

vector lengths, and select one at compile-time. An important obstacle is the lack of support

for branching in kernels; without a compiler technology I cannot support conditionals

through operator overloading. Therefore the user has to alter conditional code to use

select() instructions instead, which can be supported through function overloading. While

this was easy to apply to the Airfoil benchmark, this is by no means a generic and flexible

solution to this problem.

A range of load and store instructions are implemented that support aligned addresses,

strided gather/scatter or mapping-based gather/scatter operations, which enables us to

utilise different instructions on different hardware - for example the IMCI (Initial Many

Core Instructions - Xeon Phi) has a gather intrinsic. In the case of mapping-based scatter

operations it is necessary to avoid data races; while in case of the GPU I use coloured

updates, this proved to be inefficient on the Xeon Phi (which supports masked scatter

operations), therefore I simply sequentially scatter data from the vector container.

Code resulting from the use of vector containers is rather verbose, and results in a much

higher number of source lines due to explicit packing and unpacking of data. Furthermore,

the iteration range for any given thread where vectorisation can take place must be divisible

by the vector length, in order to support aligned load instructions and fully packed vectors,

which is not always the case (especially in an MPI+OpenMP setting), therefore there are

actually three loops generated; a scalar pre-sweep to get aligned to the vector length, the

main vectorised loop, and a scalar post-sweep to compute set elements left over. Based on

the parsed information from the high-level source, the steps of code generation are shown

in Figure 7.14.

To evaluate performance, I use three different platforms; a mid-range Xeon server CPU

pair (CPU 1, Ruby), a high-end Xeon server CPU pair (CPU 2) and the Intel Xeon Phi;
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Locate file with user kernel, read text
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Figure 7.14. Generating code for vectorised execution on CPUs or the Xeon Phi

Table 7.7. CPU benchmark systems specifications

System CPU 1 (Ruby) CPU 2 Xeon Phi
Architecture 2×Xeon E5-2696-v2 2×Xeon E5-2680 Xeon Phi 5110P
Clock frequency 2.4 GHz 2.7 GHz 1.053 GHz
Core count 2×6 2×12 61 (60 used)
Last level cache 2×15MB 2×30MB 30MB
Peak bandwidth 2×42.6 GB/s 2×59.7 GB/s 320 GB/s
Peak compute DP(SP) 2×120(240) GFLOPS 2×259(518) GFLOPS 1.01 (2.02) TFLOPS
Stream bandwidth 65 GB/s 98.7 GB/s 171 GB/s
D/SGEMM throughput 188(414) GFLOPS 510(944) GFLOPS 833(1729) GFLOPS
FLOP/byte achieved DP(SP) 2.9(6.37) 5.43(9.34) 4.87(10.1)
FLOP/byte w/o vectorisation 0.73(0.79) 1.35(1.16) 0.6(0.63)
Intel Compiler 13.1 (Hydra), 14.0 14.0 14.0

these all have different balances in computational performance, memory bandwidth and

the amount of parallelism supported - specifications are described in Table 7.7. Tests are

carried out on the Airfoil benchmark using two meshes (720k cells, 2.8M cells), the second

being for times bigger as well as Volna. Baseline performance breakdowns are provided in

Table 7.8 for the non-vectorised execution with MPI in double precision on the 2.8M cell

mesh for Airfoil and single precision for Volna.

7.3.2 Vector Intrinsics on CPUs

With many parallel programming abstractions and methods such as MPI, OpenMP

and OpenCL, the programmer does not have direct control over what gets vectorised,
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Table 7.8. Useful bandwidth (BW - GB/s) and computational (Comp - GFLOP/s)
throughput baseline implementations on Airfoil (double precision) and Volna (single

precision) on CPU 1 and CPU 2
Kernel MPI CPU 1 MPI CPU 2

Time BW Comp Time BW Comp
save_soln 4 46 3.2 2.9 63 4
adt_calc 24.6 13 14.6 7.6 43 48
res_calc 25.2 27 32 13.6 50 61
bres_calc 0.09 29 12 0.05 52 16
update 14.05 56 8 9.7 81 10
RK_1 3.24 53 4 2.16 79 6
RK_2 2.88 59 5 1.92 89 9
compute_flux 23.34 14 42 12.1 27 82
numerical_flux 4.68 29 4 2.88 57 6
space_disc 16.86 21 9 4.54 79 33
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Figure 7.15. Vectorisation with explicit vector intrinsics and OpenCL, performance results from
Airfoil in single (SP) and double (DP) precision on the 2.8M cell mesh and from Volna in single

precision on CPU 1 and 2

but when using vector intrinsics, vectorisation is explicit. Figure 7.15 shows performance

results comparing the vectorised and the non-vectorised code on CPU 1 and CPU 2 in

both single and double precision on the mesh with 2.8M cells. The pure MPI versions are

consistently faster than the MPI+OpenMP versions, because at this scale the overhead of

MPI communications is almost completely hidden, while OpenMP has some overhead due

to threading [96] and the coloured execution.

Observe that the improvement on CPU 1 in single precision is 67-97%, but in double

precision it is only 15-37%; this is due to the fact that twice as much data has to be

transferred in double precision, but the length of the vector registers is the same, therefore

only half the number of floating point operations can be carried out at the same time. On

the other hand, on CPU 2 the computational resources are doubled a the clock frequency

is higher, but the available bandwidth only increased by 50%, therefore the performance

difference between the vectorised and the non-vectorised versions is much smaller. Another

important observation is that comparing the runtimes in single and double precision,
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Table 7.9. Timing and bandwidth breakdowns for the Airfoil benchmarks in
double(single) precision on the 2.8M cell mesh and Volna using the vectorised pure MPI

backend on CPU 1 and CPU 2

Kernel CPU 1 CPU 2
Time BW Time BW

save_soln 4.08(2.04) 45(45) 2.9(1.5) 62(61)
adt_calc 12.7(5.2) 25(31) 5.6(3.5) 57(46)
res_calc 19.5(13.5) 35(26) 9.9(7.1) 69(48)
update 14.6(7.1) 53(56) 9.8(4.7) 79(83)
RK_1 3.27 52 2.19 78
RK_2 2.88 59 1.86 92
compute_flux 8.82 37 6 54
numerical_flux 4.59 30 3.18 43
space_disc 7.47 48 4.56 79

there is only a 30-40% difference in the baseline (recall that without vectorisation the

computational throughput is the approximately the same in single and double precision),

while the vectorised version shows an almost perfect 80-110% speedup when going from

double to single precision.

Table 7.9 shows per-loop breakdowns of the vectorised Airfoil and Volna on CPU 1 and

2. Comparing double precision bandwidth values with that of Table 7.8, it is clear that

the direct kernels (save_soln, update, RK_1 and RK_2) were already bandwidth-limited,

therefore their performance remains the same, however, adt_calc and compute_flux al-

most doubled in performance, and res_calc and space_disc also sped up by 30% on

CPU 1 providing further evidence that these kernels were, to some extent, bound by com-

pute throughput on the slower CPU. Switching to single precision should effectively half

the runtime of different loops, because half the amount of data is moved, which matches

the timings of direct loops on the large mesh as shown in Table 7.9. The kernel adt_calc

gains further speedups (2.4 times) by moving to single precision, due to the higher com-

putational throughput, which hints at this kernel still being compute-limited in double

precision on CPU 1, due to the expensive square root operations. The kernels res_calc

and space_disc is affected by a high number of gather and serialised scatter operations,

moving to single precision only improves runtime by 30%, which hints at this kernel being

limited by control and caching behaviour.

7.3.3 Vector Intrinsics on the Xeon Phi

One of Intel’s main arguments in favour of the Xeon Phi is that applications running

on the CPU are trivially ported to the Phi. While this is true to some extent as far as

compilation and execution goes, performance portability is a much more important issue.
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Figure 7.16. Performance of the Xeon Phi on Airfoil (2.8M cell mesh) and on Volna with
non-vectorised, auto-vectorised and vector intrinsic versions

On the higher level, the balance of MPI and/or OpenMP is usually slightly different,

and on a lower level vectorisation is needed more than ever to achieve high performance.

As long as one depends on compiler auto-vectorisation this is automatic to some extent,

but as I will show the performance of auto-vectorised code is poor. Therefore, the use

of intrinsics is necessary, and since the instruction set is not backwards-compatible, they

have to be changed. My approach of wrapping vectors in C++ classes, using constructors

and operator overloading to hide vector intrinsic instructions permits us to generate the

same code for both CPU and Phi vectorisation, and then through compiler preprocessor

macros select classes that are appropriate for the hardware being used. Through this, I

can exploit new features in the Phi, such as gather instructions, vector reduction, etc., and

integrate it seamlessly into the OP2 toolchain. I had to override the malloc, free and

realloc functions to ensure allocations are aligned to a 512 bit boundary (which does not

happen automatically), so the aligned load instructions could be used when appropriate.

To compile for the Phi, I used the -O3 -mmic -fno-alias -mcmodel=medium

-inline-forceinline flags, and executed all applications natively on the device, offload

mode is currently not supported, because it requires extensive changes to the backend in

order to manage halo exchanges. Tests included pure MPI execution and different combi-

nations of MPI processes and OpenMP threads, setting I_MPI_PIN_DOMAIN=auto. Due to

the nature of the OP2 OpenMP parallelisation approach, there is no data reuse between

threads, which is likely why I observed very little (<3%) performance differences between

the settings of KMP_AFFINITY, therefore I only report results with the compact setting.

In all MPI+OpenMP hybrid tests, the total number of OpenMP threads is 240 (60 cores,
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Figure 7.17. Performance on the Xeon Phi when varying OpenMP block size and the
MPI+OpenMP combination on the 2.8M cell mesh in double precision

4 threads each), as the number of MPI processes vary, so does the number of OpenMP

threads per process to give a total of 240.

Figure 7.16 shows performance figures on the Xeon Phi. Similar to the CPU, vectorisa-

tion gives a significant performance boost, but the difference is even higher, up to 3 times

in single and 2.2 times in double precision. Unlike in the case of the CPU, the hybrid

MPI+OpenMP gives better performance than the pure MPI version - which is due to the

MPI messaging overhead becoming significant when the number of processes goes beyond

120. Comparing the runtimes of the small and the large mesh however reveals that the

Xeon Phi is actually quite sensitive to being fully utilised; while the problem size is four

times bigger, it only takes 2.97 times more time in single and 3.25 times more time in

double precision to finish the execution for the vectorised MPI+OpenMP version. As a

comparison, these figures are almost exactly 4 times (or slightly higher due to caching

effects) on the CPU, and 3.85 times on the GPU.

An important factor affecting the performance is the hybrid MPI+OpenMP setup -

how many MPI processes and how many OpenMP threads each. This has non-trivial effects

on the cost of communications, shared cache space, NUMA effects and others. In addition

to this, the size of mini-partitions or blocks formed and assigned to threads by OpenMP

can be modified, trading off the number of blocks (load balancing) with block size (cache

locality). Figure 7.17 shows the effects of varying these parameters on the performance,

observe that as the number of MPI processes increases, a larger block size is preferred, up

to a point where the load imbalance is significant.

Per-loop breakdowns for the Xeon Phi are shown in Table 7.10 for the best combination

of MPI+OpenMP in each case. Performance is generally slightly better compared to CPU

1 (Table 7.9). adt_calc does not show signs of being compute-limited, but the perfor-

mance penalty from gather operations and serialised scatter operations in res_calc and
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Table 7.10. Timing and bandwidth breakdowns for Airfoil (2.8M mesh) in double(single)
precision and Volna using different MPI+OpenMP backends on the Xeon Phi
Kernel Scalar Auto-vectorized Intrinsics

Time BW Time BW Time BW
save_soln 1.95(1.01) 94(92) 1.94(1.02) 95(90) 2.17(1.11) 84(83)
adt_calc 27.7(25.5) 12(6.3) 14.35(13.1) 23(12) 6.86(3.54) 47(45)
res_calc 48.8(36.8) 14(9.4) 84.03(66.5) 8(5) 27.22(18.4) 25(18)
update 11.8(9.59) 66(41) 8.33(8.45) 94(46) 8.77(4.6) 89(85)
RK_1 2.16 79 2.19 78 1.35 128
RK_2 2.37 70 3.24 53 1.32 130
compute_flux 32.1 10 29.3 11 10.95 30
numerical_flux 12.9 11 11.3 12 7.29 19
space_disc 23.6 15 24.5 15 9.93 36

space_disc is more severe, making these loops significantly slower than on the CPU. An

important factor influencing runtime is the time spent in MPI communications, either send-

ing/receiving halo data or performing a global reductions (in update or numerical_fluxes

to compute the residual or the minimum timestep. Both of these operations result in im-

plicit synchronisation; the time spent actually transferring data is negligible compared to

the time spent waiting for data to arrive due to different processes getting slightly out

of sync and then waiting for each other to catch up at a synchronisation point. On the

smaller problem this takes up to 30% of total runtime, but is reduced to 13% on the larger

problem, whereas on the CPU this is only 7% and 4% respectively. This points to load

balancing issues, explaining some of the performance differences between the small and

the large mesh.

7.4 Summary and associated theses

In this chapter I started by giving a short overview of how OP2 architects the multi-

ple levels of parallelism that can be used when mapping to hardware, based on previous

work of our research group [2, 5]. This is followed by my own research on the mapping of

unstructured grid algorithms defined through the OP2 API to the SIMT parallel program-

ming model and GPU architectures in combination with distributed-memory operations

using MPI. I showed that through OP2 it is possible to automatically generate CUDA code

and apply optimisations through the code generator. I demonstrated that near optimal

performance is achieved and that these techniques apply immediately to the large-scale

industrial application Hydra [4, 6, 11, 13]. Thus, as Thesis III.1. states: I have designed and

developed an automated mapping process to GPU hardware that employs a number of data

and execution transformations in order to make the best use of limited hardware resources,

the multiple levels of parallelism and memory hierarchy, which I proved experimentally.

120

DOI:10.15774/PPKE.ITK.2014.003



CHAPTER 7. MAPPING TO HARDWARE WITH OP2

By designing and facilitating the automatic mapping of execution to CPU cores and

vector units, I have shown that there is no performance loss involved in using a high-

level abstraction such as OP2, comparing Hydra’s original implementation with the OP2

implementation, and I demonstrated that by applying techniques I integrated into OP2,

such as mesh reordering, the original can be significantly outperformed. By demonstrating

a fully automatic mapping to the SIMD parallel programming model and to AVX vector

units specifically, I have demonstrated that near-optimal performance can be achieved

on modern CPUs and the Xeon Phi architecture [4, 6, 11, 13]. As Thesis III.2 states: I

have designed and implemented an automated mapping process to multi- and many-core

CPUs, such as Intel Xeon CPUs and the Intel Many Integrated Cores (MIC) platform, to

make efficient use of multiple cores and large vector units in the highly irregular setting of

unstructured grids, which I proved experimentally.

This chapter discussed how my results integrate into a distributed memory environ-

ment, but I do not claim OP2’s MPI backend as my own research, therefore the in-

vestigation of performance scaling on large-scale distributed-memory supercomputers is

postponed to the Appendix, which will serve to show that the results discussed in this

chapter are indeed scalable to 16 GPUs and 4096 CPU cores, completing the claims of

Thesis III.1 and III.2.
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Conclusions

I have set out to address the some of today’s challenges to programmability; parallelism,

locality, load balancing and resilience, in the field of unstructured grid computations.

By first narrowing my focus to the Finite Element Method, I have shown that it is

possible to apply transformations to the high-level algorithm, exposing parallelism and

handling data dependencies in a way that produces different formulations that trade off

computations for communications. By pairing these with established and novel data struc-

tures, I have given descriptions of FE assembly and solution algorithms with very different

characteristics in terms of the inherent spatial and temporal locality in them, how data

dependencies and data races are handled, and others.

Subsequently, I have demonstrated how these algorithms map to GPU hardware, and

what considerations had to be made to maximise performance. By presenting a detailed

analysis of both the assembly and the solution phase I have shown the performance impli-

cations of different algorithmic formulations and data structures, and demonstrated the

viability and the benefits of the Local Matrix Approach that I introduced. I have given

further attention to the sparse matrix-vector operation - a basic building block in many

iterative solvers - and addressed the related field of sparse linear algebra as well. I have

shown how the operation can be parametrised for the GPU architecture and how perfor-

mance is affected by the sparsity patterns, and I introduced novel heuristics and a run-time

tuning algorithm that aims to find the optimal parameters. The resulting implementation

significantly outperform the state of the art on a wide range of general sparse matrices,

and my research into the distributed-memory execution of the operation helps make these

results applicable to a large domain of applications.

As a natural generalisation of the first part of my research, I have shifted focus to gen-

eral unstructured grid algorithms, defined through the OP2 domain specific library. OP2
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defines an abstraction for unstructured grid computations, its goal is to enable an appli-

cation written once at a high level to be easily maintainable and performance portable,

thereby making it future-proof. Thus, my research addressed these challenges to show that

this is indeed achieved; first I studied high-level transformations to execution patterns,

relying on domain-specific information in order to (1) provide resiliency through check-

pointing and recovery, (2) improve spatial and temporal locality by introducing a novel

redundant-compute tiling algorithm and (3) enable execution on heterogeneous systems

with very different architectures and performance characteristics.

I have introduced mappings to different multi- and many-core architectures, such as

CPUs, GPUs and the Xeon Phi that utilise the multi-level parallelism and deep mem-

ory hierarchies present in these hardware, and demonstrated automatic code generation

techniques that are able to produce code in different programming languages and paralleli-

sation approaches from a single high-level specification. Extending this, I have discussed

how execution maps to heterogeneous distributed memory clusters. By analysing perfor-

mance on a range of applications that I adopted to use OP2, including the Hydra, used

by Rolls-Royce for the design of turbomachinery, I have shown that it is indeed possible

to have an abstraction general enough to support a wide range of unstructured grid appli-

cations and achieve near-optimal performance on a wide range of contrasting hardware;

from a single GPU to a 4000 core supercomputer.

While the hardware used and the measurements in this work only represent today’s

state of the art, I believe that the essence of my results will continue to be relevant as

hardware evolves: since trends show hardware architectures becoming more complex and

a further shift towards a bandwidth-scarcity, it is going to be increasingly important to

re-assess numerical algorithms and to apply aggressively hardware-specific optimisations -

something my research addressed by investigating the balance of computations and com-

munications, and by demonstrating that through high-level domain-specific abstractions,

it is possible to achieve near-optimal performance on a wide range of hardware, but still

maintain productivity for the domain scientist, thereby future-proofing the application.
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Theses of the Dissertation

This chapter gives a concise summary of the main scientific contributions of this dis-

sertation as well as the methods and tools used, and briefly discusses the applicability of

the results.

9.1 Methods and Tools

During the course of my research a range of numerical methods and analytical meth-

ods were used in conjunction with different programming languages, programming and

execution models, and hardware. Indeed, one of my goals is to study the interaction of

these in today’s complex systems. The first part of my research (Thesis group I.) is based

on a popular discretisation method for Partial Differential Equations (PDEs); the Finite

Element Method - I used a Poisson problem, implemented loosely based on [45]. During

the study of the solution of sparse linear systems, I used the Conjugate Gradient itera-

tive method preconditioned by the Jacobi and the Symmetric Successive Over-Relaxation

(SSOR) method [44]. The sparse matrix-vector multiplication, as the principal building

block for sparse linear algebra algorithms, is studied in further detail. This initial part of

my research served as an introduction to unstructured grid algorithms, gaining invaluable

experience that would later be applied to the rest of my research.

The second and third parts of my research are based on the OP2 Domain Specific

Language (or “active library”), introduced by Prof. Mike Giles at the University of Ox-

ford [16], its abstraction carried over from OPlus [72]. There is a suite of finite volume

applications that were written using the OP2 abstraction and are used to evaluate the

algorithms presented in this dissertation; a benchmark simulating airflow around the wing

of an aircraft (Airfoil), a tsunami simulation software called Volna [97], and a large-scale
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production application, Hydra [74], used by Rolls-Royce plc. for the design and simula-

tion of turbomachinery. While I do not claim authorship of the original codes, I did do

most of the work transforming the latter two to the OP2 abstraction. OP2 and the Airfoil

benchmark are available at [83]

Computer code was implemented using either the C or the Fortran language, using the

CUDA’s language extensions when programming for GPUs. Python was used to facilitate

text manipulation and code generation. A number of parallel programming models were

employed to support the hierarchical parallelism present in modern computer systems; at

the highest level, message passing for distributed memory parallelism, using MPI libraries.

For coarse-grained shared memory parallelism I used simultaneous multithreading (SMT),

using OpenMP and CUDA thread blocks. Finally for fine-grained shared memory paral-

lelism I used either Single Instruction Multiple Threads (SIMT) using CUDA, or Single

Instruction Multiple Data (SIMD) using Intel vector intrinsics.

A range of contrasting hardware platforms were used to evaluate the performance of

algorithms and software. When benchmarking at a small scale, single workstations were

used, consisting of dual-socket Intel Xeon server processors (Westmere X5650, Sandy-

Bridge E2640 and E2670). The accelerators used were: an Intel Xeon Phi 5110P, and

NVIDIA Tesla cards (C2070, M2090, K20, K20X, K40). For large-scale tests the following

supercomputers were used: HECToR (the UK’s national supercomputing machine, a Cray

XE6, with 90112 AMD Opteron cores), Emerald (the UK’s largest GPU supercomputer,

with 372 NVIDIA M2090 GPUs, 512 cores each) and Jade (Oxford University’s GPU clus-

ter, with 16 NVIDIA K20 GPUs, 2496 cores each). Timings were collected using standard

UNIX system calls, usually ignoring the initial set-up cost (due to e.g. file I/O) because

production runs of the benchmarked applications have an execution time of hours or days,

compared to which, set-up costs are negligible. In most cases, results are collected from

3-5 repeated runs and averaged. Wherever possible, I provide both absolute and relative

performance numbers, such as achieved bandwidth (in GB/s), computational throughput

(109 Floating Operations Per Second - GFLOPS), and speedup over either a reference

implementation on the GPU or a fully utilised CPU, not just a single core.

9.2 New scientific results

Thesis group I. (area: Finite Element Method) - I have introduced algorithmic
transformations, data structures and new implementations of the Finite Element
Method (FEM) and corresponding sparse linear algebra methods to GPUs in order
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to address different aspects of the concurrency, locality, and memory challenges and
quantified the trade-offs.

Related publications: [3, 8, 12, 14].

Thesis I.1. - By applying transformations to the FE integration that trade off com-

putations for communications and local storage, I have designed and implemented new

mappings to the GPU, and shown that the redundant compute approach delivers high per-

formance, comparable to classical formulations for first order elements, furthermore, it

scales better to higher order elements without loss in computational throughput.

Through algorithmic transformations to the Finite Element integration, I gave

per-element formulations that have different characteristics in terms of the amount of

computations, temporary memory usage, and spatial and temporal locality in memory

accesses. The three variants are: (1 - redundant compute), where the outer loop is over

pairs of degrees of freedom and the inner loop over quadrature points recomputing the

Jacobian for each one, (2 - local storage) structured as (1) but Jacobians are pre-computed

and re-used in the innermost loop, effectively halving the number of computations, and

(3 - global memory traffic), that is commonly used in Finite Element codes, where the

outermost loop is over quadrature points, computing the Jacobian once, and then the

inner loop is over pairs of degrees of freedom, adding the contribution from the given

quadrature point to the stiffness values. As illustrated in Figure 9.1a, I have demonstrated

that approach (1) is scalable to high degrees of polynomials because only the number

of computations changes, whereas with (2) the amount of temporary storage, and with

(3) the number of memory transactions also increase. Implementations of these variants

in CUDA applied to a Poisson problem show that for low degree polynomials (1) and

(2) perform almost the same, but at higher degrees (1) is up to 8× faster than (2), and

generally 3× faster than (3). Overall, an NVIDIA C2070 GPU is demonstrated to deliver

up to 400 GFLOPS (66% of the ideal1), it is up to 10× faster than a two-socket Intel

Xeon X5650 processor, and up to 120× faster than a single CPU core.

Thesis I.2. - I introduced a data structure for the FEM on the GPU, derived storage

and communications requirements, shown its applicability to both the integration and the

sparse iterative solution, and demonstrated superior performance due to improved locality.

One of the key challenges to performance in the FEM is the irregularity of the
1The same card delivers 606 Giga Floating Operations per Second (GFLOPS) on a dense matrix-matrix

multiplication benchmark
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Figure 9.1. Performance of Finite Element Method computations mapped to the GPU

problem and therefore of the memory accesses, which is most apparent during the

matrix assembly and the sparse iterative solution phases. By storing stiffness values

on a per-element basis laid out for optimal access on massively parallel architectures,

I have shown that it is possible to regularise memory accesses during integration by

postponing the handling of race conditions until the iterative solution phase, where it can

be addressed more efficiently. This approach, called the Local Matrix Approach (LMA),

consists of a storage format and changes to the FE algorithms in both the assembly

and the solution phases, and is compared to traditional storage formats, such as CSR

and ELLPACK on GPUs. I show that it can be up to 2× faster during both phases of

computations, due to reduced storage costs, as shown in Figure 9.1b, and regularised

memory access patterns. A conjugate gradient iterative solver is implemented, supporting

all three storage formats, using a Jacobi and a Symmetric Successive Over-Relaxation

(SSOR) preconditioner, performance characteristics are analysed, and LMA is shown to

deliver superior performance in most cases.

Thesis I.3. - I have parametrised the mapping of sparse matrix-vector products (spMV)

for GPUs, designed a new heuristic and a machine learning algorithm in order to improve

locality, concurrency and load balancing. Furthermore, I have introduced a communication-

avoiding algorithm for the distributed execution of the spMV on a cluster of GPUs. My

results improve upon the state of the art, as demonstrated on a wide range of sparse

matrices from mathematics, computational physics and chemistry.

The sparse matrix-vector multiplication operation is a key part of sparse linear

algebra; virtually every algorithm uses it in one form or another. The most commonly

used storage format for sparse matrices is the compressed sparse row (CSR) format; it
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Table 9.1. Performance metrics on the test set of 44 matrices.
CUSPARSE Fixed rule Tuned

Throughput single GFLOPS/s 7.0 14.5 15.6
Throughput double GFLOPS/s 6.3 8.8 9.2
Min Bandwidth single GB/s 28.4 58.9 63.7
Min Bandwidth double GB/s 38.7 54.0 56.8
Speedup single over CUSPARSE 1.0 2.14 2.33
Speedup double over CUSPARSE 1.0 1.42 1.50

is supported by a wide range of academic and industrial software, thus I chose it for

the basis for my study. By appropriately parametrising the multiplication operation for

GPUs, using a dynamic number of cooperating threads to carry out the dot product

between a row of the matrix and the multiplicand vector, in addition to adjusting the

thread block size and the granularity of work assigned to thread blocks, it is possible to

outperform the state of the art CUSPARSE library. I have introduced an O(1) heuristic

that gives near-optimal values for these parameters that immediately results in 1.4-2.1×

performance increase. Based on the observation that in iterative solvers, the spMV is

evaluated repeatedly with the same matrix, I have designed and implemented a machine

learning that tunes these parameters and increases performance by another 10-15%

in at most 10 iterations, achieving 98% of the optimum, found by exhaustive search.

Results are detailed in Table 9.1. I have also introduced a communication avoiding

algorithm for the distributed memory execution of the spMV, that uses overlapping graph

partitions to perform redundant computations and decrease the frequency of communica-

tions, thereby mitigating the impact of latency, resulting in up to 2× performance increase.

Thesis group II. (area: High-Level Transformations with OP2) - I address the
challenges of resilience, the expression and exploitation of data locality, and the
utilisation of heterogeneous hardware, by investigating intermediate steps between
the abstract specification of an unstructured grid application with OP2 and its
parallel execution on hardware; I design and implement new algorithms that apply
data transformations and alter execution patterns.

Related publications [2, 5, 4, 9]

Thesis II.1. - I have designed and implemented a checkpointing method in the context of

OP2 that can automatically locate points during execution where the state space is minimal,

save data and recover in the event of a failure.

As the number of components in high performance computing systems increases, the
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mean time between hardware or software failures may become less than the execution

time of a large-scale simulation. I have introduced a checkpointing method in order to

provide means to recover after a failure, that relies on the information provided through

the OP2 API to reason about the state space of the application at any point during the

execution and thereby to (1) find a point where the size of the state space is minimal

and save it to disk and (2) in case of a failure, recover by fast-forwarding to the point

where the last backup happened. This is facilitated by the OP2 library, in a way that is

completely opaque to the user, requiring no intervention except for the re-launch of the

application after the failure. This ensures the resiliency of large-scale simulations.

Thesis II.2. - I gave an algorithm for redundant compute tiling in order to provide

cache-blocking for modern architectures executing general unstructured grid algorithms,

and implemented it in OP2, relying on run-time dependency analysis and delayed execution

techniques.

Expressing and achieving memory locality is one of the key challenges of high perfor-

mance programming; but the vast majority of scientific codes are still being designed and

implemented in a way that only supports very limited locality; it is common practice to

carry out one operation on an entire dataset and then another - as long as the dataset

is larger than the on-chip cache, this will result in repeated data movement. However,

doing one operation after the other on just a part of the dataset is often non-trivial due

to data dependencies. I have devised and implemented a tiling algorithm for general

unstructured grids defined through the OP2 abstraction, that can map out these data de-

pendencies, as illustrated in Figure 9.2a, and enable the concatenation of operations over

a smaller piece of the dataset, ideally resident in cache, thereby improving locality. The

tiling algorithm can be applied to any OP2 application without the intervention of the user.

Thesis II.3. - I gave a new performance model for the collaborative, heterogeneous exe-

cution of unstructured grid algorithms where multiple hardware with different performance

characteristics are used, and introduced support in OP2 to address the issues of hardware

utilisation and energy efficiency.

Modern supercomputers are increasingly designed with many-core accelerators such

as GPUs or the Xeon Phi. Most applications running on these systems tend to only

utilise the accelerators, leaving the CPUs without useful work. In order to make the best

use of these systems, all available resources have to be kept busy, in a way that takes
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Figure 9.2. High-level transformations and models based on the OP2 abstraction

their different performance characteristics into account. I have developed a model for

the hybrid execution of unstructured grid algorithms, giving a lower bound for expected

performance increase and added support for utilising heterogeneous hardware in OP2,

validating the model and evaluating performance, as shown in Figure 9.2b.

Thesis group III. (area: Mapping to Hardware with OP2) - One of the main obsta-

cles in the way of the widespread adoption of domain specific languages is the lack of

evidence that they can indeed deliver performance and future proofing to real-world

codes. Through the Airfoil benchmark, the tsunami-simulation code Volna and the

industrial application Hydra, used by Rolls-Royce plc. for the design of turbomachin-

ery, I provided conclusive evidence that an unstructured grid application, written

once using OP2, can be automatically mapped to a range of heterogeneous and

distributed hardware architectures at near-optimal performance, thereby providing

maintainability and longevity to these codes.

Related publications: [2, 5, 4, 6, 10, 11, 15, 13]

Thesis III.1. - I have designed and developed an automated mapping process to

GPU hardware that employs a number of data and execution transformations in order

to make the best use of limited hardware resources, the multiple levels of parallelism

and memory hierarchy, which I proved experimentally.

Mapping execution to GPUs involves the use of the Single Instruction Multiple
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GPU
CPU Xeon

Phi

Tesla K40 @ 0.87 GHz:
12 GB GDDR5 - 288 GB/s
1.5 MB L2 Cache
16 SMX units
  192 cores
  65k registers
  112 KB cache

Xeon E5-2640 @ 2.5 GHz:
12-64 GB DDR3 - 42 GB/s
20 MB L3 Cache
6 cores
  256 bit vector unit
  256+32 KB cache

Xeon Phi @ 1 GHz:
8GB GDDR5 - 320 GB/s
30 MB L2 Cache
61 cores
  512 bit vector unit
  32 KB cache

PCI-e
8 GB/s

PCI-e

Infiniband
8 GB/s

Unstructured Mesh Computations

Figure 9.3. The challenge of mapping unstructured grid computations to various
hardware architectures and supercomputers

Threads (SIMT) model, and the CUDA language. I have created an automatic

code generation technique that, in combination with run-time data transformation,

facilitates near-optimal execution on NVIDIA Kepler-generation GPUs. I show

how state-of-the-art optimisations can be applied through the code generator,

such as the use of the read-only cache, or data structure transformation from

Array-of-Structures (AoS) to Structure-of-Arrays (SoA), in order to make better

use of the execution mechanisms and the memory hierarchy. These are then

deployed to a number of applications and tested on different hardware, giving

2-5× performance improvement over fully utilised Intel Xeon CPUs. Performance

characteristics are analysed, including compute and bandwidth utilisation, to gain a

deeper understanding of the interaction of software and hardware, and to verify that

near-optimal performance is indeed achieved. I discuss how OP2 is able to utilise su-

percomputers with many GPUs, by automatically handling data dependencies and

data movement using MPI, and I demonstrate strong and weak scalability on Hydra.

Thesis III.2. - I have designed and implemented an automated mapping process to

multi- and many-core CPUs, such as Intel Xeon CPUs and the Intel Many Integrated

Cores (MIC) platform, to make efficient use of multiple cores and large vector units

in the highly irregular setting of unstructured grids, which I proved experimentally.

Modern CPUs feature increasingly longer vector units, their utilisation is essen-

131

DOI:10.15774/PPKE.ITK.2014.003



CHAPTER 9. THESES OF THE DISSERTATION

tial to achieving high performance. However, compilers consistently fail at automat-

ically vectorising irregular codes, such as unstructured grid algorithms, therefore

low-level vector intrinsics have to be used to ascertain the utilisation of vector pro-

cessing capabilities. I have introduced a code generation technique that is used in

conjunction with C++ classes and operator overloading for wrapping vector intrin-

sics and show how vectorised execution can be achieved through OP2, by auto-

matically gathering and scattering data. Performance is evaluated on high-end Intel

Xeon CPUs and the Xeon Phi, and a 1.5-2.5× improvement is demonstrated over

the non-vectorised implementations. In-depth analysis reveals what hardware limi-

tations determine the performance of different stages of computations on different

hardware. I demonstrate that these approaches are naturally scalable to hundreds

or thousands of cores in modern supercomputers, evaluating strong and weak scal-

ability on Hydra.

9.3 Applicability of the results

The applicability of the results related to the Finite Element Method are many-

fold; the practice of designing algorithms that have different characteristics in terms

of computations, memory requirements and memory traffic is useful in different

contexts as well, but the results can be directly used when designing a general-

purpose Finite Element library. There are already some libraries, such as ParaFEM

[98], which take a similar matrix-free approach as LMA, therefore my results are di-

rectly applicable, should GPU support be introduced, or the need for more advanced

sparse linear solvers arise. Results concerning the sparse matrix-vector product are

pertinent to a much wider domain of applications: sparse linear algebra. The heuris-

tic published in [8] was subsequently adopted by the NVIDIA CUSPARSE library

[59], and the run-time auto-tuning of parameters is a strategy that, though few li-

braries have adopted, could become standard practice as hardware becomes even

more diverse and thus performance predictions become more uncertain. During my

internship at NVIDIA, I have developed the distributed memory functionality of the

sparse linear solver software package that became AmgX [99], incorporating many

of the experiences gained working on the FEM, designing it from the outset in a way

so that optimisations such as redundant computations for avoiding communications

could be adopted.
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Results of the research carried out in the context of the OP2 framework are

immediately applicable to scientific codes that use OP2; after converting the Volna

tsunami simulation code [97] to OP2, it was adopted by Serge Guillas’s group at

the University College London and subsequently by the Indian Institute of Science

in Bangalore, and it is currently being used for the simulation of tsunamis in con-

junction with uncertainty quantification, since the exact details of the under-sea

earthquakes are often not known. Similarly, the conversion of Rolls-Royce Hydra

[74] to OP2 is considered a success, performance bests the original, and support for

modern heterogeneous architectures is introduced, thereby future-proofing the appli-

cation; discussions regarding the use of the OP2 version in production are ongoing.

However, many of these results, especially the ones under Thesis II that describe

generic algorithms and procedures, are relevant to other domains in scientific com-

putations as well; our subsequent research into structured grid computations is going

to be employing many of these techniques, and some are already used in research

on molecular dynamics carried out in collaboration with chemical physicists that

resulted in [7].
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Appendix

In this appendix, I discuss the strong and weak scaling performance of the Hy-

dra application, in order to demonstrate OP2’s ability to compose the mapping of

execution to individual hardware, discussed in Chapter 7, with distributed memory

execution capabilities.

10.1 Mapping to distributed, heterogeneous clusters

The industrial problems simulated by Hydra require significantly larger compu-

tational resources than what is available today on single node systems. An example

design simulation such as a multi-blade-row unsteady RANS (Reynolds Averaged

Navier Stokes) computation, would need to operate over a mesh with about 100

million nodes. Currently with OPlus, Hydra can take more than a week on a small

CPU cluster to reach convergence for such a large-scale problem. Future turboma-

chinery design projects aim to carry out such simulations more frequently, such as

on a weekly or on a daily basis, and as such the OP2 based Hydra code needs to

scale well on clusters with thousands to tens of thousands of processor cores. In this

section I explore the performance on such systems. Table 10.1 lists the key spec-

ifications of the two cluster systems I use in my benchmarking. The first system,

HECToR, is a large-scale proprietary Cray XE6 system which I use to investigate

the scalability of the MPI and MPI+OpenMP parallelisations. The second system,

JADE is a small NVIDIA GPU (Tesla K20) cluster that I use to benchmark the

MPI+CUDA execution.
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Table 10.1. Benchmark systems specifications

System HECToR Jade
(Cray XE6) (NVIDIA GPU Cluster)

Node 2×16-core AMD Opteron 2×Tesla K20m GPUs+
Architecture 6276 (Interlagos)2.3GHz Intel Xeon

E5-1650 3.2GHz
Memory/Node 32GB 5GB/GPU
Num of Nodes 128 8
Interconnect Cray Gemini FDR InfiniBand

O/S CLE 3.1.29 Red Hat Linux 6.3
Compilers Cray MPI 8.1.4 PGI 13.3, ICC 13.0.1,

OpenMPI 1.6.4, CUDA 5.0
Compiler -O3 -h fp3 -h ipa5 -O2 -xAVX

flags -Mcuda=5.0,cc35
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Figure 10.1. Scaling performance on HECToR (MPI, MPI+OpenMP) and Jade
(MPI+CUDA) on the NASA Rotor 37 mesh (20 iterations)

10.1.1 Strong Scaling

Figure 10.1a reports the run-times of Hydra at scale, solving the NASA Rotor 37 mesh

with 2.5M edges in a strong-scaling setting. The x-axis represents the number of nodes on

each system tested, where a HECToR node consists of two Interlagos processors, a JADE

node consists of two Tesla K20 GPUs. MPI+OpenMP results were obtained by assigning

four MPI processes per HECToR node, each MPI process consisting of eight OpenMP

threads. This is due to the NUMA architecture of the Interlagos processors which combine

two cores to a “module” and packages 4 modules with a dedicated path to part of the

DRAM. Here I leverage the job scheduler to exactly place and bind one MPI process

per memory region (or die) reducing inter-die communications. Other combinations of

processes and threads were also explored, but the above provided the best performance.

On HECToR, I see that the overall scaling of Hydra with OP2 is significantly better

than that with OPlus. OP2’s MPI-only parallelisation scales well up to 128 nodes (4096

cores). At 32 nodes (1024 cores) the MPI-only parallelisation partitioned with PTScotch
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Table 10.2. Halo sizes : Av = average number of MPI neighbours per process,
Tot. = average number total elements per process, %H = average % of

halo elements per process

nodes MPI PTScotch RCB
procs. Av Tot %H Av Tot %H

1 32 7 111907 5.12 9 117723 9.81
2 64 8 56922 6.74 10 61208 13.27
4 128 9 29175 9.02 11 32138 17.41
8 256 10 14997 11.52 11 17074 22.28

16 512 10 7765 14.55 12 9211 27.97
32 1024 10 4061 18.32 12 4949 32.98
64 2048 10 2130 22.16 13 2656 37.58
128 4096 10 1134 26.98 13 1425 41.89

(a) Strong scaling

nodes MPI PTScotch RCB
procs. Av Tot %H Av Tot %H

1 32 8 70084 6.00 8 73486 10.35
2 64 9 73527 6.69 9 78934 11.07
4 128 10 79009 6.09 10 73794 12.26
8 256 12 73936 7.33 11 78396 12.98
16 512 13 78671 6.94 12 75224 13.76

(b) Weak scaling

gives about 2x speedup over the runtime achieved with OPlus.

As with all message passing based parallelisations, one of the main problems that limits

the scalability is the over-partitioning of the mesh at higher machine scale. This leads to

an increase in redundant computations at the halo regions (compared to the non-halo

elements per partition) and an increase in time spent during halo exchanges. Evidence for

this explanation can be gained by comparing the average number of halo elements and the

average number of neighbours per MPI process reported by OP2 after partitioning with

PTScotch and RCB (see Table 10.2). I noted these results from runs on HECToR, but

the halo sizes and neighbours are only a function of the number of MPI processes (where

one MPI process is assigned to one partition) as the selected partitioner gives the same

quality partitions for a given mesh for the same number of MPI processes on any cluster.

Columns 4 and 7 of Table 10.2(a) detail the average total number of nodes and edges

per MPI process when partitioned with PTScotch and RCB respectively. Columns 5 and

8 (%H) indicate the average proportion of halo nodes and edges out of the total number

of elements per MPI process while Columns 3 and 6 (Av) indicate the average number of

communication neighbours per MPI process. With PTScotch, the proportion of the halo

elements out of the average total number of elements held per MPI process ranged from

about 5% (at 32 MPI processes) to about 27% (at 4096 MPI processes). The average

number of MPI neighbours per MPI process ranged from 7 to 10. The halo sizes with
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Table 10.3. Hydra strong scaling performance on HECToR, Number of blocks (nb) and
number of colours (nc) for MPI+OpenMP and time spent in communications (comm)

and computations (comp) for the hybrid and the pure MPI implementation: 2.5M edges,
20 iterations

Num of MPI+OMP MPI+OMP MPI
nodes nb nc comm comp comm comp

(sec.) (sec.) (sec.) (sec.)
1 9980 17 1.33 16.6 1.2 13.2
2 4950 16 1.04 7.8 0.83 6.5
4 2520 17 0.57 3.3 0.36 3.14
8 1260 15 0.52 1.42 0.23 1.48
16 630 14 0.26 0.81 0.21 0.68
32 325 13 0.28 0.4 0.13 0.38
64 165 10 0.32 0.21 0.12 0.2
128 86 12 0.52 0.11 0.15 0.12

RCB were relatively large, starting at about 10% at 32 MPI processes to about 40% at

4096 processes. Additionally the average number of neighbours per MPI process was also

greater with RCB. These causes point to better scaling with PTScotch which agrees with

the results in Figure 10.1a.

The above reasoning, however, goes contrary to the relative performance difference I see

between OP2’s MPI only and MPI+OpenMP parallelisations. I expected MPI+OpenMP

to perform better at larger machine scales as observed in previous performance studies

using the Airfoil CFD benchmark[2]. The reason was that larger partition sizes per MPI

process gained with MPI+OpenMP in turn resulting in smaller proportionate halo sizes.

But for Hydra, adding OpenMP multi-threading has caused a reduction in performance,

where the gains from better halo sizes at increasing scale have not manifested into an over-

all performance improvement. Thus, it appears that the performance bottlenecks discussed

in Section 7.3 for the single node system are prevalent even at higher machine scales. To

investigate whether this is indeed the case, Table 10.3 presents the number of colours and

blocks for the MPI+OpenMP runs at increasing scale on HECToR.

The size of a block (i.e. a mini-partition) was tuned from 64 to 1024 for each run, but

at higher scale (from upwards of 16 nodes) the best runtimes were obtained by a block size

of 64. As can be seen, the number of blocks (nb) reduces by two orders of magnitude when

scaling from 1 node up to 128 nodes. However within this scale the number of colours

remains between 10 to 20. These numbers provide evidence similar to the ones I observed

on the Ruby single node system in Section 7.3 where a reduced number of blocks per colour

results in poor load balancing. The time spent computing and communicating during each

run at increasing scale shows that although the computation time reduces faster for the

MPI+OpenMP version, its communication times increase significantly, compared to the
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pure MPI implementation. Profiled runs of MPI+OpenMP indicate that the increase in

communications time is in fact due to time spent in MPI_Waitall statements where due

to poor load balancing, MPI processes get limited by their slowest OpenMP thread.

Getting back to Figure 10.1a, comparing the performance on HECToR to that on the

GPU cluster JADE, reveals that for the 2.5M edge mesh problem the CPU system gives

better scalability than the GPU cluster. This comes down to GPU utilisation issues: the

level of parallelism during execution. Since the GPU is more sensitive to these effects

than the CPU (where the former relies on increased throughput for speedups and the

latter depends on reduced latency), the impact on performance is more significant due

to reduced utilisation at increasing scale. Along with the reduction in problem size per

partition, the same fragmentation as I observed with the MPI+OpenMP implementation

due to colouring is present. Colours with only a few blocks have very low GPU utilisation,

leading to a disproportionately large execution time. This is further complemented by

the different number of colours on different partitions for the same loop, leading to faster

execution on some partitions and then the idling at implicit or explicit synchronisation

points waiting for the slower ones to catch up. I further explore these issues and how they

affect performance of different types of loops in Hydra later in Section 10.1.3.

10.1.2 Weak Scaling

Weak scaling of a problem investigates the performance of the application at both

increasing problem and machine size. For Hydra, I generated a series of NASA rotor

37 meshes such that a near-constant mesh size per node (0.5M vertices) is maintained

at increasing machine scale. The results are detailed in Figure 10.1b. The largest mesh

size benchmarked across 16 nodes (512 cores) on HECToR consists of about 8 million

vertices and 25 million edges in total. Further scaling could not be attempted due to the

unavailability of larger meshes at the time of writing.

With OPlus, there is about 8-13% increase in the runtime of Hydra each time the

problem size is doubled. With OP2, the pure MPI version with PTScotch partitioning

shows virtually no increase in runtime, while the RCB partitioning slows down 3-7% every

time the number of processes and problem size is doubled. One reason for this is the near

constant halo sizes resulting from PTScotch, but with RCB giving 7-10% larger halos. The

second reason is the increasing cost of MPI communications at larger scale, especially for

global reductions. Similar to strong scaling, the MPI-only parallelisation performs about

10-15% better than the MPI+OpenMP version. The GPU cluster, JADE, gives the best
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(b) Weak Scaling (0.5M edges per node)

Figure 10.2. Scaling performance per loop runtime breakdowns on HECToR (NASA
Rotor 37, 20 iterations)

runtimes for weak scaling, with a 4-8% loss of performance when doubling problem size and

processes. It roughly maintains a 2× speedup over the CPU implementations at increasing

scale. Adjusting the experiment to compare one HECToR node to one GPU (instead of a

full JADE node with 2 GPUs) still shows a 10-15% performance advantage for the GPU.

The above scaling results show OP2’s ability to give good performance at large machine

sizes even for a complex industrial application such as Hydra. We see that the primary

factor affecting performance is the quality of the partitions: minimising halo sizes and

MPI communication neighbours. These results illustrate that, in conjunction with utilising

state-of-the-art partitioners such as PTScotch, the halo sizes resulting from OP2’s owner-

compute design for distributed memory parallelisation provide excellent scalability. I also

see that GPU clusters are much less scalable for small problem sizes and are best utilised

in weak-scaling executions.

10.1.3 Performance Breakdown at Scale

In this section I delve further into the performance of Hydra in order to identify limiting

factors. The aim is to break down the scaling performance to gain insights into how the

most significant loops in the application scale on each of the two cluster systems.

Figure 10.2a shows the timing breakdowns for a number of key loops when, for the

MPI only version (partitioned with PTScotch). Note how the loops vfluxedge, edgecon

and srcsa at small scale account for most of total runtime. However as they are loops

over either interior vertices or edges, that do not include any global reductions, they have

near-optimal scaling. The loop updatek contains global reductions, and thus at scale, it is

bound by the latency of communications. At 128 nodes (4096 cores) it becomes the single

most expensive loop. Loops over boundary sets, such as period and periodicity scale

relatively worse than loops over interior sets, since fewer partitions carry out operations
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(b) Weak Scaling (0.5M edges per node)

Figure 10.3. Scaling performance per loop runtime breakdowns
on JADE (NASA Rotor 37, 20 iterations)

over elements in those sets.

Per-loop breakdowns when strong scaling on the Jade GPU cluster are shown in Figure

10.3a. Observe how the performance of different loops is much more spread out compared

to those on the CPU cluster scaling (as shown in Figure 10.2a). Also note how boundary

loops such as period and periodicity are not so much faster than loops over interior

sets, which is again due to GPU utilisation. While the loop with reductions (updatek)

was showing good scaling on the CPU up to about 512 cores, performance stagnates

beyond 4 GPUs which is a result of the near-static overhead of on-device reductions

and the transferring of data to the host, all of which are primarily latency-limited. Most

other loops, such as vfluxedge, ifluxedge, accumedges and srcsa, scale with 65-80%

performance gain when the number of GPUs are doubled, however edgecon only shows a

48-60% increase due to the loop being dominated by indirect updates of memory and an

increasingly poor colouring at scale.

Figure 10.2b shows timing breakdowns for the same loops when weak scaling on HEC-

ToR, with very little increase in time for loops over interior sets and a slight reduction

in time for boundary loops, as a result of the boundary (surface) of the problem becom-

ing smaller relative to the interior. Similar results can be observed in Figure 10.3b when

weak scaling on the GPU cluster. Here, some of the bigger loops get relatively slower, due

to the load imbalance between different GPUs. In this case some partitions need more

colours than others for execution, which in turn slows down execution. Boundary loops

such as period and periodicity become slower as more partitions share elements of the

boundary set forcing halo exchanges that are limited by latency.
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