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Structure of the work 

After a short introduction of the field in section 1, I summarize the long-term aims of the 

terahertz research group at the Computational Optical Sensing and Processing Laboratory 

(COSPL) that drove the work during the past years. I continue with describing the utilized setup 

giving also an insight to the process of the project that helps to clearly position my own 

contribution. 

The third section constitutes the core of this thesis starting with the general approach of my 

investigations and an overview of the used methods. Then, I present the scientific results of my 

work. 

In the next part, a collection of some measurements brings the work closer to the reader 

demonstrating the technological problems and challenges of terahertz sensing. I close the work 

by outlining the conclusions and discussing the fields of application. 

For several sections of the document, I utilized the text of my publications word by word as 

concise description of a number of topics (especially [2]). 
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List of Abbreviations and Symbols 

2DEG Two Dimensional Electron Gas 

ADC Analog to Digital Converter 

AMC Amplifier Multiplier Chain 

BP Basis Pursuit 

BPDN Basis Pursuit Denoising 

BSIMv3 A physics based circuit simulation model of a MOSFET developed by the 

UC Berkeley Device Group; version 3.0; first industry-wide standard, 1996 

CCD Charge-coupled Device 

CMOS Complementary Metal Oxide Semiconductor 

CoSa Compressed Sampling 

CoSaMP An optimal CS reconstruction algorithm regarding, the reconstruction error, 

and the number of measurements 

COSPL Computational Optical Sensing and Processing Laboratory of the ICSC 

CS Compressed Sensing 

CV Cross-validation 

CW Continuous Wave 

DAQ Data Acquisition 

DMD Digital Micromirror Device 

FET Field Effect Transistor 

FFT Fast Fourier Transform 

FPA Focal Plane Array 

ICSC – HAS  Institute for Computer Science and Control of the Hungarian Academy of 

Sciences 

IMPATT diode IMPact ionization Avalance Transit-Time diode; high power semiconductor 

diode; oscillator, amplifier in the range 3-100 GHz 

ITU International Telecommunications Union 

LC Liquid crystal 

LNA Low Noise Amplifier 

MOS Metal Oxide Semiconductor 

NA Numerical Aperture 

NEP Noise Equivalent Power 

NF Noise Figure 

OMP Orthogonal Matching Pursuit 

PSD Phase Sensitive Detection 

SLM Spatial Light Modulator 

SNR Signal to Noise Ratio 
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SoC System on Chip 

THF Tremendously High Frequency band (ITU) or THz; 300 GHz – 3 THz 

THz Terahertz; frequency of 1012 Hz 

VLSI Very Large Scale Integration 

YIG Yttrium Iron Garnet 

ρ-Si High resistivity silicon 

--- 

tint It is used if no capacitance is considered inside the pixel, only 
integration after the LNA; therefore, tint = tint2 

tint1 In-pixel integration ratio (referenced to 0.5s – that is the base of NEP 

calculation by definition); also known as the relative integration time; this 

assumes an integrating capacitance inside the pixel (below the antenna) – 

hence, very limited – we assume no in pixel capacitance 

tint2 Relative integration time after the LNA (tint2 = (int. time in sec)/0.5 sec); 
otherwise the same as the in-pixel integration ratio or relative int. time 

𝑀𝑝𝑐 Number of needed CS measurements per cluster (Mpc < Npc) to be able to 

reconstruct all, Npc number of pixel values within the cluster 

𝑁𝑐𝑠 The average number of active pixels in the CS patterns (within the 
integration time) 

𝑁𝑝𝑐  Number of pixels per cluster (pixel cluster size) 

𝑃𝑡𝑜𝑡𝑎𝑙 Total noise power of a detector transistor 

𝑇0 290 K 

𝑓𝑠𝑚𝑎𝑥  The theoretical, summed maximum sampling frequency of all A/D unit 

working as a single unit in an ideal, time interleaved fashion 

𝑓𝑠  Sampling frequency of the A/D converters (we assume the total 
resources available for A/D is limited by the chip area; 𝑓𝑠 = 𝑓𝑠𝑚𝑎𝑥/𝑟) 

𝑓𝑠𝑚 The modulation frequency of the source; it is used for the lock-in 
detection that is the assumed basic measurement scheme 

fps Acquisition speed; frame per second 

L0 norm The “sparsity” of a vector; see section 1.2 for details 

L1 norm The “absolute value norm” of a vector; see section 1.2 for details 

λ Wavelength 

𝐵 Bandwidth of the measurement (usually determined by the lock-in 
amplifier – 𝑓𝑠𝑚) 

𝑀 Number of needed CS measurements to reconstruct the image; at an 

estimated average compression: M ≈ 4s log(N), if the image is s-sparse; it is 

for the whole image in contrast to 𝑀𝑝𝑐 that considers only a small cluster 

𝑁 Number of pixels in the imager 

𝑁𝐹 Noise figure of the LNA 
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𝑆 Sample count (see definition in section 3.3.1) 

𝑘 Number of pixel clusters 

𝑟 Number of A/D converters; we assume ideal resource sharing; 𝑟 = 𝑘 

𝒙  The signal/image to be measured, rearranged in a vector form (column 
wise repacking, where the columns get below each other) 

𝒚  The measurement vector; 𝒚 ∈ ℝ𝐌 – it stores a single value for each 
measurement 

𝛟  Measurement matrix; consisting of the patterns as its rows; 𝛟 ∈ ℝ𝐌×𝐍 

𝜂  Efficiency of summation at the compressed sampling (here ~0.81); 
summing the unity signal of 𝑁 pixels, results in a signal amplitude:  𝑁𝜂 
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1 INTRODUCTION 

1.1 Introduction of the field 

1.1.1 Terahertz sensing 

Terahertz science is a relatively new, fast developing research area that covers the 

electromagnetic spectrum from 0.1 THz to 30 THz. Its main topics cover the info-

communication field and sensing in general. Astronomy was its first application field, where 

imaging started. Since then, surveillance applications came to everyday use to help security 

screening in avionics. The non-destructing imaging capabilities proved its usefulness for 

historians as well, by giving insight to ancient, closed crocks. Surface inspection, material 

characterization and biological observation are also in the forefront. Spectroscopy developed a 

lot since the beginnings; the new techniques provide much more information about molecular 

fine structures. 

Non-invasive inspection of cell cultures and thick excisions of various tissues paved the way for 

the first clinical in-vivo application: breast cancer diagnosis [2]. 

1.1.2 Terahertz spectroscopy 

The 0.1 THz to 30 THz frequency spectrum covers the 0.4∙10-3 – 120∙10-3 eV energy range. 

Thus, the electromagnetic field affects rotational and vibrating modes of the molecules making 

it applicable to gather information about the molecular structure of the objects and to 

characterize compounds via recording such features. 

Investigations in this field started quite early in the 60s and 70s [3]. Since then, the aim has not 

changed much yet: increase accuracy further and further to create ever finer spectral traces and 

determine the observed molecular structure more faithfully. 

With development of the technology many other subfield emerged and lower part of the 

spectrum, the THF band became more easily measurable (for instance the Schottky diode 

sources and detectors of the Bell Labs got widespread accessible). 

Several methods are available to unveil spectral patterns of substances. Complementary or 

alternative approaches might provide the same spectral features (peaks) with different relative 

amplitudes, when the intensity values result from variant underlying processes. By way of 

example Raman spectroscopy, infrared spectroscopy and incoherent inelastic neutron scattering 

based crystallography relay on fundamentally different interactions. 

However, there are many equivalent techniques giving the same results at different speed, 

precision and complexity. 
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1.1.2.1 Time domain spectroscopy (TDS) 

This proven technique is popular in the field of terahertz inspection, where a non-linear crystal 

such as ZnTe or LiNbO3 converts the power of a pulsed laser source to terahertz radiation. The 

laser beam is divided to object and reference beams to allow the reference beam gating the 

detector through a delay line. This fine controlled delayed gating signal makes possible to scan 

the generated THz pulse in an iterative manner. All techniques utilizing such a conversion have 

advantage at in-vivo measurements as the probe consisting only the converter crystal and the 

detector can be “powered” through flexible, fiber cables. This makes the setup compact and 

ergonomic allowing probing arbitrary parts of the body in a diagnostic setup. The head of the 

probe can be relatively small with a silicon lens at its tip that couples the terahertz radiation 

from the crystal into the skin on a short traveling path and vice versa, gathering the backscattered 

signal from a greater solid angle. Then the sources of reflection are differentiated on a time of 

flight basis. 

1.1.2.2 Raman spectroscopy 

Matured forms of Raman spectroscopy use mainly gratings with CCD sensors providing a 

relatively simple and fast way of spectral recording. However, spontaneous inelastic scattering 

used in Raman spectroscopy is generally weak compared to the elastic scattering portion. Thus, 

efficient filtering of the emitted, frequency shifted photons is essential. Several improvements 

exist that increase the ratio of Raman - Rayleigh scattering to enhance the signal that is orders 

of magnitude lower in power than the irradiating beam. 

Even so, the acquisition provides reliable and specific data by its nature: the indirect detection 

with the high frequency filtering lowers the disturbing sources within the signal. Therefore, this 

technology is among the firsts reaching the market with real non-invasive diagnostic 

applications. The Verisante AuraTM can differentiate malignant and premalignant lesions from 

benign tissue at 99 % sensitivity according to the survey of the inventors [4]. The device 

performs single point, in-vivo measurements on the surface of the human tissue ‘in less than a 

second’. The spectral features consist of intensity values at 14 discrete frequencies. Although, 

there are other variants that can create 2D or even 3D images (at a significantly lower speed). 

1.1.3 Terahertz imaging 

Several imaging solution exist in the field; their spectrum ranges from handheld devices to near-

field microscopes. Both continuous wave (CW) and pulsed sources are applicable. Electro-

optical setups relay on pulsed laser sources and non-linear crystals that convert from the range 

of the laser source to the terahertz domain and vice versa. Then, CMOS or CCD detectors 

acquire the pixel information, even at real-time rate. This solution is fast and specific features 

of pulsed sources can be exploited for instance gating with the laser pulse (TDS, time of flight, 
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lock-in detection). However, the achievable SNR is moderate due to the low conversion 

efficiencies. Another point is the needed bulky and expensive laser source. 

Terahertz focal plane arrays consist of bolometers, Schottky diodes and antenna coupled FETs 

among others. Surface plasmon technology just emerges and promises the possibility of wide 

band high sensitivity detection. 

Room temperature bolometers have higher noise equivalent power (NEP) values 10-8–10-9 

W/√Hz and their settling time is in the millisecond range. 

Schottky diodes – developed at the Bell Labs in the late 60s – mean a matured technology 

providing NEP on the order of 10-9 W/√Hz and a settling time of nanoseconds [5]. 

The theory of two dimensional electron gas (2DEG) peaked at the development of antenna 

coupled FETs that can be embedded to standard, silicon based planar technologies as well 

ensuring reliable, simple and cost effective designs with the possibility for high scale 

integration. Antenna coupled FETs achieve 10-11 –10-12 W/√Hz NEP; however, NEP values of 

10-20 W/√Hz are the theoretical lower bounds of the technology utilizing mixing and assuming 

a local oscillator power of 10 µW. As local oscillator technology develops, this branch of 

detector design can be interesting for future THz focal plane array (FPA) research. 

The real importance of we are allowed to use standard MOS technologies is one can omit costly 

post processing steps that are not part of the planar technology (for instance connecting and 

fitting extra metal layers to the chip surface at a given distance). This also means that proof-of-

concept designs may easily turn into mass production and – last, but not least – research groups 

without semiconductor fabricating facilities are able to create terahertz detectors as well. (This 

is how the COSPL could also investigate FET based THz sensing.) 

2D and 3D electron plasma theory predicted the DC response of FET detectors to THz radiation 

and their behavior around instability. However, their in-circuit models failed to explain all the 

experimental results. Földesy gave a sound model in [6] that covers all biasing configurations. 

1.1.3.1 Fourier pattern imaging 

For Fourier pattern imaging (FPI), consider one mirror collimates the THz beam. Then, the 

object diffracts these parallel rays that a second mirror focuses in the end. In this general 

configuration, directly the Fourier transform of the object shows up in the focal plane whose 

acquired, spatially quantized variant will be denoted by "U". The inverse Fourier transform of 

the registered intensity image reconstructs a real picture of the object (V). The resolution of this 

resulting image (∆x, ∆y) depends on the screen size (UdimX, UdimY). (I consider the screen as the 

registered spatial area – now, in the focal plane; unless scanning occurs, it equals the size of the 

sensor.) In ideal case: 

 ∆x = λf/UdimX , (1) 
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where λ is the wavelength and f is the focal length of the focusing mirror. The same relationship 

holds for the other spatial dimension. Aside from the smallest resolvable feature, the size of the 

real image is also a key point. The number of pixels in 𝑉 will equal the number of sample points. 

Therefore, the dimension of the real image (VdimX or VdimY) depends on the sensor pitch (d𝑠): 

 VdimX = ∆x UdimX/d𝑠 . (2) 

Thus, VdimX gives the image size in meteres, whereas UdimX/d𝑠 shows the number of pixels 

along the “x axis”. (If scanning consists of measurements at uniform grid points, then d𝑠 can be 

smaller than the physical distance of the sensor pixels.) 

1.1.3.2 Holographic imaging 

By holographic imaging both the amplitude and phase of the radiation is registered by fixing the 

relative phase with the help of a reference beam. The path difference of the object and reference 

beam should be less than the coherence length of the source. By THz CW sources, the coherence 

length expands to 0.5 m giving freedom in the setup design. 

By holographic imaging, there is no need for a convergent beam to perceive the image of the 

object. The interference pattern is enough to reconstruct the real image; therefore, imaging is 

possible without any optics. 

1.2 Compressed sensing 

The response time of the FET plasma wave detector falls into the nanosecond region, giving an 

equivalent 8-10 bit precision supposing a desktop mW range source and near real time 

operational speed [26]. These properties are competitive regarding other technologies and give 

grounds to apply compressed sensing (CS) [8] that proved its usefulness in several areas for 

instance image acquisition at short wavelengths [12], astronomy [27], and quantum state 

tomography [28] including the terahertz domain as well [29], [30]. However, any non-linear 

reconstruction algorithm could be used as a post-processing framework by dropping the 

acquisition speed from the performance criteria. 

The L0, L1 and Lp norm of the vector 𝒗 refer to the following three definitions throughout the 

work, respectively: 

 ‖𝒗‖𝟎 ={# of 𝑣𝑖-s that are greater than 0} (3) 

 ‖𝒗‖𝟏 = ∑ |𝒗𝒊|
𝒏
𝒊=𝟏  (4) 

 ‖𝒗‖𝑝 = √∑ 𝒗𝒊
𝑝𝒏

𝒊=𝟏

𝑝

 for 𝑝 = 2, 3, 4, … (5) 
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I note that the “L0 norm” is not a true norm from the mathematical sense, as it does not fulfill 

all the axioms of a norm. The smoothed-L0 norms utilize some function f – other than the 

absolute value – in order to make the problem treatable: 

 ‖𝒗‖𝒔𝟎 = ∑ 𝒇(𝒗𝒊)
𝒏
𝒊=𝟏  (6) 

The complex sampling is the inherent part of CS, where a discrete signal is represented as the 

multiplication: 

 𝒚 = 𝚽𝒙 (7) 

where 𝚽 is an M by N special matrix, called the measurement matrix. It can be for instance a 

random matrix containing only binary values with equal distribution. ′𝒙′ is the signal vector and 

𝐲 is the vector of measurements. In Figure 1, one can see a possible realization of such a 

measurement in a stylized form. 

 

Figure 1  Stylized scheme of a complex measurement. A random pattern is set on a small detector array. 

The dark squares represent the active, ‘ON’ pixels that contribute to the summed response 

The signal can be reconstructed, if a proper basis exists, in which the representation of the 

observed signal is sparse: 

 𝚿𝒂 = 𝒙 . (8) 

Here Ψ is the matrix of the special basis and a is the sparse representation of the signal x. 

Exploiting this extra information one can minimize according to the l0 norm, that is finding an 

a vector with the most zero components. Substituting (8) into (7), the problem formulated as: 

 𝒂∗ = 𝐚𝐫𝐠𝐦𝐢𝐧
𝒂
‖𝒂‖𝟎  such that  𝚽 𝚿𝒂 = 𝒚 . (9) 

To solve the combinatorial problem above is too hard, for greater sizes (N>1000) it is actually 

hopeless. However, a few seminal works proved that exact reconstruction can be ensured easily 

in the L1 norm as well: 

 𝒂∗ = 𝐚𝐫𝐠𝐦𝐢𝐧
𝒂
‖𝒂‖𝟏  such that  𝚽 𝚿𝒂 = 𝒚 . (10) 

This problem is much easier to solve, because it fits into the framework of convex optimization. 

Thus, a rigorous mathematical background emerged due to its practical impact. There are several 

One summed 

output (yi) 

One row of the measurement matrix (Φ): 

Projected beam on the 

detector surface 
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algorithms available to solve efficiently this problem. For instance, the ‘state of the art’ basis 

pursuit (BP), the orthogonal matching pursuit (OMP) or the basis pursuit denoising (BPDN) 

algorithm are of this kind. 

Many L1 optimization tool utilizes the L2 solution for an initial guess that is the least-squares 

solution of the problem and comes down to multiplication with the pseudo-inverse ((𝐀T𝐀)
−1
𝐀T, 

where 𝐀 = 𝚽 𝚿). 

In the more important noisy case the measurements are corrupted with noise and (10) is relaxed: 

 𝚽𝐱+ 𝛈 = 𝐲 (11) 

 𝒂∗ = 𝐚𝐫𝐠𝐦𝐢𝐧
𝒂
‖𝒂‖𝟏  such that  ‖𝚽 𝚿𝒂 − 𝒚‖𝟐 < 𝑏 , (12) 

where 𝑏 is the allowed deviation of the projected candidate solution from the measurements. 

The problem unites two goals in itself, the sparsity and the  

We call the signal k-sparse if 𝑎∗ has only k number of non-zero elements. However, this notion 

has practically no importance, because in a real-word problem all components have at least small 

non-zero values. Therefore, it is customary to assume that the rest N-k number of elements are 

less than a given ε. However, often, a power law is required for the proofs: the signal 𝒙 is ‘p-

compressible’ with amplitude R, if the following condition holds at any 𝑝 ∈  (0,1). 

 |𝒙|𝒊 < 𝑹 𝒊
−
𝟏

𝒑 (13) 

However, k-sparse vectors approximate ‘k-compressible’ signals quite good [31]: 

 |𝒙 − 𝒙𝒌|𝟏 < 𝑪𝒑 ∙ 𝑹 ∙ 𝒌
𝟏−

𝟏

𝒑 (14) 

 |𝒙 − 𝒙𝒌|𝟐 < 𝑫𝒑 ∙ 𝑹 ∙ 𝒌
𝟎.𝟓−

𝟏

𝒑 (15) 

where, 𝒙 is the p-compressible signal and 𝑥𝑘 is its k-sparse variant having non-zero elements 

only at the k largest components of 𝒙. 𝐶𝑝 and 𝐷𝑝 ∙are both constants depending on p. 

To calculate the original signal from the sparse reconstructions we have several options; Needle 

gives a comprehensive survey of the available algorithms in [31] as of 2010, whereas [32] gives 

a recent insight to the topic concentrating on impulsive noise. Here, I summarize the basic 

notions behind the regularized reconstruction methods. 

Candes [16] gave a universal condition for 𝛟 with which one can ensure exact reconstruction 

of the signal with high probability in the form of the restricted isometry property (RIP). The 

measurement matrix (𝛟) satisfies the r-RIP, if there exist a 𝛿𝑟 > 0, such that: 

 (1 − 𝛿𝑟)‖𝒙‖2
2 ≤ ‖𝛟𝒙‖2

2 ≤ (1 + 𝛿𝑟)‖𝒙‖2
2, for all 𝑥 that fulfills ‖𝒙‖0 ≤ 𝒓 (16) 

where, the least 𝛿𝑟 is the so called r-th restricted isometry constant. 
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The L1 based convex optimization methods have guaranteed, optimal reconstruction error on s-

sparse signals, assuming that the following – most recent – condition hold for the 2s-th RIP 

constant (𝛿2𝑠) of their measurement matrix: 

 𝛿2𝑠 ≤ 0.4652 (17) 

Interior point variants succeeding within 𝑂(𝑁1.5𝑀2) time. If the vector is s-sparse, then the 

reconstruction of the L1-norm based optimizations is optimal. This means that not only the error, 

but also the needed number of samples is minimal. Hence, the RIP condition is an elegant and 

powerful tool to ensure the quality of reconstruction. However, it needs 𝑂(2𝑁) time to determine 

the RIP constant that involves the calculation of the greatest singular value of all r-column 

submatrices of 𝛟 (NP-hard problem). Therefore, the following general results help much the 

application of RIP. 

Gaussian or Bernoulli random measurement matrices – having elements from i.i.d. Gaussian 

random variables or from uniformly distributed ±1 values – have a 2k-RIP constant: 𝛿2𝑘 < 𝜖, 

if the number of samples fulfills the following condition [33]: 

 𝐌 ≥
𝐬∙𝐥𝐨𝐠(

𝐍

𝐬
)

𝛜𝟐
 (18) 

For subsampled Fourier matrices, the bound is higher having a component raised to a low power 

(𝑙𝑜𝑔5(. )). The conjecture is 𝑀 = 𝑂(𝑠 ∙ log(𝑁)) measurements are enough to have an exact 

reconstruction with high probability. (I note the used expression “high probability” is not 

corresponds to the exact mathematical definition; for the noiseless case the probability is even 

higher (overwhelming probability); however, due to the small practical importance of the 

noiseless case I do not give more detailed description of that – see the essential works of Candes, 

Tao [18] and Donoho [8] for that.) 

These methods are robust and uniform, meaning they have guaranteed error on noisy, non-sparse 

signals as well and they work with a single measurement matrix on arbitrary inputs. 

There are several different algorithms that solve this convex optimization problem. The best 

inner point methods succeed within O(M2*N1.5) running time. 

Iterative greedy methods like the orthogonal matching pursuit (OMP) are faster, but most of 

them have greater guaranteed error and they may need more number of samples. 

The compressed sampling matching pursuit (CoSaMP) algorithm and their variations give an 

optimal solution to the L1 problem – (10) and (12) – considering guaranteed minimal error, 

minimal number of samples, stability, uniformity and computation speed [34] [31]. 

Even faster algorithms are available (sublinear in the signal vector), however they need highly 

structured measurement matrices and a bit more number of measurements (Fourier sampling, 

HSS pursuit). 
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I tried out the state-of-the-art algorithms and used the BP, CoSaMP and a fast alternating 

projection method based on smoothed zero norm functions [35] [36]. According to my 

experience, the different algorithms produced images of similar quality in this application 

setting. (The squared error showed slight differences depending on the size, the content and the 

noise of the images and especially on the sensor noise – that is the total error of data acquisition.) 

1.2.1.1 Complex sampling 

I use the expression ‘complex sampling’ as the capability to perform a somehow aggregated 

sampling that results in appropriate data for a non-linear reconstruction complying with the 

above mentioned notation (equation 7 and 8). Thus, the concept relies on the basic measurement 

and reconstruction scheme of compressed sensing, but covers any non-linear reconstruction 

mechanism e.g. it is not restricted to the M < N case. 

1.3 Related work in the application of CS 

1.3.1 SLMs in the THz domain 

The spatial light modulator (SLM) based compressed sensing cameras promise the fast 

acquisition of large fields of view at high SNR within the THz domain as they can omit the 

slowly raster scanning of single pixel confocal setups. The first experiments were carried out 

with mechanical masks changed manually or fixed on rotating disks. In the recent years, 

electronic and optically controlled metamaterials emerged that can form the core of the SLM. 

At the beginning, the optically controlled THz SLMs relied on a digital micro mirror device 

(DMD). Here, the DMD controls an expanded laser beam that goes through a high resistivity 

silicon (ρ-Si) wafer simultaneously with the THz beam. With enough optical power, the photo 

excited electron plasma changes the transmittance characteristic of the ρ-Si wafer significantly. 

More developed solutions improve on the modulation depth with a metamaterial structure whose 

frequency characteristics (transmittance peaks) can be shifted with photo excited electrons in 

the underlying ρ-Si wafer [20]. This configuration achieved 64-1000 pixel resolution at 0.5 Hz 

and has about 67 % modulation depth with 10-15 % loss and a SNR greater than 100. The 

moving mechanical components limits the modulation frequency to a theoretical maximum of 

20 kHz, however, the lock-in needs about 5 ms to settle in the actual design. 

Full solid-state, electronic SLMs reduce the complexity of the setup by eliminating the need for 

any moving parts. Liquid crystals (LC) are proper birefringent materials whose refractive index 

can be changed with biasing. [13] and [21] shows such setups, demonstrating a 6 by 6 pixel and 

an 8 by 8 pixel reflective SLM, respectively. Their modulation depth is over 75 %, however, 

there are still severe shortcomings of the technique. First, the losses are high: by the actual liquid 

crystal covered metamaterial, the loss is more than 70 % at the highest modulation depth. 

Second, the technology is not matured yet, the manufacturing process includes several costly 
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steps, and the resistivity of the LC compound should be properly controlled (avoiding ion 

trapping at the surfaces). 

1.3.2 CS capable focal plane arrays for viewable light 

Robucci et. al gave a 65 kpixel CS capable CMOS solution for short wavelengths [9]. This 

imager performs the complex sampling via the small pixel blocks of 8 units connected in parallel 

and a separate set of analog multipliers. With this, the IC generates 8 samples from every single 

measurement, however, the sampling consists an additional analog operation. The advantage of 

the array is the potential increase of the speed and the reduction of the power consumption 

according to [9]. 
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2 THE RESEARCH PROJECT 

2.1 Aims of the project 

The goal of the research project was to develop sensor arrays based on standard CMOS 

technology that make possible room temperature terahertz imaging for diagnostic applications. 

For this reason, we contacted with the Department of Dermatology, Dermatooncology and 

Venerology of the Faculty of Medicine at the Semmelweis University. The needed device 

specification for skin cancer diagnostics was determined with the help of the clinical 

professionals there. The obtained data regarding an in-vivo measurement is summarized in 

Table 1. 

Min. lateral resolution 100 μm 

Min. axial resolution 10 μm 

Min. depth of sensing in human tissue 1 mm 

Max. acquisition time 1-3 min. 

Min. field of view 1.5 × 1.5 cm 

Min. water content detectability < 1 % 

Measurement positioning flexible (arbitrary point of the body) 

Cancer indicator features water content, spectral pattern, … 

Min. diagnostic sensitivity rate of a system 
> 99 % (this is the level of a human 

professional) 

Min. diagnostic specificity rate of a system > 85 % (avg. human is between 51-85 %) 

Table 1 Rough requirements of a possible diagnostic device 

The targeted lateral resolution (< λ) can be achieved only with super resolution techniques or at 

a considerably higher frequency (3 THz instead of 460 GHz). The field of view is large (22.5 

kpixel with the given lateral resolution), although the diffraction limit reasons only about 534 

pixels at 460 GHz. 

To calculate an approximate irradiance showing up at the detector I used the following simple 

formula and assumed a homogeneous medium. 

 I =  Iincidente
−αz  [

W

m2] , (19) 

where 𝛼 is the absorption coefficient and z is the traveled distance within the medium. ‘𝛼’ varies 

on a wide range, however, as water absorbs high frequencies, all the wet environments have 

significantly large absorption coefficient:  

 in air at 52 % humidity 𝛼 is about 0.1 m-1 at 0.5-1 THz (except an absorption 

peak at 0.55 THz) 

 in water 𝛼 is around 145-240 cm-1 (0.1-1 THz) 

 in biological tissues 𝛼 can be approximated to be between 100-200 cm-1 
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 in adipose tissue it is only between 25-125 cm-1 (that is why the technology 

already successful in breast cancer diagnosis) 

Figure 2 and Figure 3 give a more comprehensive notion about the absorption coefficient in the 

form of simplified sketches. These figures show only trends and omit the various absorption 

peaks. 

 

Figure 2  Sketch of the absorption coefficient of air at 1.5 THz 

 

Figure 3  Sketch of the simplified absorption spectrum of water and water-lipid solutions 

Of course, the diffraction can also seriously affect the total attenuation, but it has smaller 

significance on the millimeter scale traveling paths. Additionally, diffraction depends much on 

the actual structure of the specimen. 

Here, I give the needed SNR and detectability to meet the specification with the actual setup at 

the COSPL. Because of the required minimum water content detectability of 1 %, there is 

demand for at least 1:100 signal-to-noise ratio that is 40 dB SNR. 1 mm depth means 2 mm 

travel length (the incident plus the reflected path). For this, the irradiance can be calculated in 

the following way in a homogeneous medium: I =  Iincident ∙ e
−200∙0.2 ≈ Iincident ∙ 4.24 ∙
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10−18  [
W

m2] (at 𝛼 = 200 cm−1) and for 0.5 mm depth it is I ≈  Iincident ∙ 2 ∙ 10
−9  [

W

m2] (at 𝛼 =

200 cm−1). 

If I approximate the obtainable SNR (not given in dB) in the following way with the noise floor 

that is the limit of sensitivity: 

  𝑆𝑁𝑅 ≈
I∙A

Pnoise floor
, then (20) 

 Pnoise floor ≈
I∙A

SNR
≈

Psource∙4.24∙10
−18

100
= 4.24 ∙ 10−20 ∙ Psource [W], (21) 

where “I” is the irradiance and “A” stands for the area of the detector. (For simplicity, I assume 

perfect focusing to the detector, that is Iincident ∙ A = Psource). (21) shows how strong 

illumination would be needed to achieve these goals with a noise floor in the pW range, what 

we can get from the noise equivalent power (NEP): 

 NEPsystem ≈
Pnoise floor

√B
 [

W

√Hz
], (22) 

where “B” is the bandwidth of the system. It is obvious that this implies infeasible system NEP 

values even at good frequency filtering regarding the available source power of ~100 µW. Such 

depth is achievable only with high power sources, heterodyne detection and efficient frequency 

filtering. 

However, the 1 mm depth can be achievable in other tissues with lower absorption coefficient 

and sensing is still possible at about 0.25 mm depth in biological tissues assuming a minimum 

NEP of 20
pW

√Hz 
, 10 Hz bandwidth, ensured by the lock-in amplifier and a minmum required 

SNR of 100: 

 𝑧 =
1

2

1

𝛼
ln (

Iincident

Imin
) =

1

400
ln (

Psource
𝐴

Pnoise floor
A

∙SNR
) =

1

400
ln (

100∙10−6

√10∙20∙10−12∙100
) ≈ 241 [μm]  (23) 

See more considerations on the depth of sensing in section 3.4.3. 

I conclude the main bottleneck of applicability is the limited SNR of the sensor. Sensitivity has 

to be improved in order to increase the depth of examination and the acquisition speed. 

Moreover, fulfilling the specification of lateral resolution may require silicon immersive lenses 

or super-resolution techniques. 

Today THz FPAs are still far from their theoretical NEP values. The performance of the 

integrated systems within real application scenarios are often far from the reported best 

achievable NEP values of the devices [7]. Therefore, it is an important task to study the FPA 

architectures to help designers improve on system noise particularly for heterodyne detection, 

where the incoming signal mixes with the signal of a much stronger local oscillator (~10 µW) 

inside the channel improving the sensitivity several orders of magnitude. 
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However, with high power sources (W-mW range) imaging at discrete frequencies is already 

possible in the 0.08-0.2 THz frequency range (see the IMPATT diode powered simple camera 

systems of TeraSense). The versatility of these low frequency setups imply the future power of 

imaging in the 0.2-1.5 THz range and motivates the work of the terahertz research group at the 

COSPL. 

Water content measurements can be seen in Section 4.1.1, but Section 4 contains other related 

experiments as well. 

2.2 The goals of my research work - problems to solve 

The focus of my work was to study the compressed sensing based THz detectors and their forms 

of application. This served the ultimate goal of promoting the application of our FET based 

detectors in the field of THz diagnostics. This emerging research direction raises many basic 

problems. I list here a few big areas out of which I touched several ones during my work: 

 Determine the specification of the sensor array 

 Acquisition speed 

 Weak signals, low SNR, high noise, small response, low penetration depth 

 Low resolution (spatial), low NA optics 

 Small pixel number 

 Low quality images, low sensitivity, low contrast 

 Scanning problem (time, accuracy) 

 Low specificity at sub THz frequencies 

2.3 Setup 

2.3.1 Source 

An yttrium iron garnet (YIG) base oscillator – tunable from 9.5 GHz to 14 GHz – powers the 

source of the quasi-optical setup that is a semiconductor based amplifier-multiplier chain 

(AMC). The AMC multiplies the base frequency with a factor of nine providing approximately 

14 dBm (~0.25 W) typical output power in the frequency range of 82.5-125 GHz. The output of 

the AMC is a waveguide and a horn antenna couples the power to the air. 

However, additional multipliers may connect to the output to cover higher frequency ranges 

with decreasing efficiency. Table 2 summarizes the technical data of the different 

configurations. These are the typical technical parameters of the setup from the datasheets; the 

measured output power at 460 GHz was 102 µW. 
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Table 2 The characteristics of source configurations 

In Figure 4 one can see the output characteristics of the WR2.2 multiplier head. Due to the 

waveguide-based structure, the spectrum has high variance with many narrow peaks. 

The theoretical accuracy of the frequency tuning is on the order of 7 MHz, however any noise 

of the system deteriorates it. Aside from this, the YIG seems to have relatively high offset error 

that decreases the absolute precision of the source. Hence, by recording spectral features one 

has to sweep at higher frequency resolution than the targeted one and average several correlated 

spectra. This way one can create data appropriate for comparison. 

 
Figure 4  Power spectrum of the utilized terahertz source 

The coherence length is around 0.5 m that means great freedom in holographic recordings 

considering the object and reference path difference, but rises severe technical problems by 

making the system very sensitive to any physical effects due to self-interference. This means 

that sub-millimeter (< 100 µm) changes of the optical path can cause over 50% changes in the 

recorded intensity. This issue makes in-vivo measurements a hard task, where the precise 

positioning of the body parts for at least tens of seconds is challenging. However, we had 

problems with in-vitro measurements as well, when solutions of different temperature were 

investigated: the thermal expansion of the plastic sample holder caused significant 

discrepancies. Diffusor plates could partially circumvent the problem of high coherence at the 

cost of decreasing the source intensity. 

Head 
Mult. 

factor 
Configuration 

Typical 

power 
Frequency range 

WR9.0 9 WR9.0AMC + 14 dBm 82.5-125 GHz 

WR4.3 18 WR9.0AMC + WR4.3X2 + 3 dBm 170-250 GHz 

WR2.8 27 WR9.0AMC + WR2.8X3 -1 dBm 250-375 GHz 

WR2.2 36 WR9.0AMC + WR4.3X2 + WR2.2X2 -10 dBm 340-500 GHz 

WR1.5 54 WR9.0AMC + WR4.3X2 + WR1.5X3 -21 dBm 550-750 GHz 
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2.3.2 Quasi optical setups 

Quasi-optical setups may consists of parabolic mirrors, plastic lenses and beam splitters. Figure 

5 presents the schematics of the imaging setups for CS measurements. 

 

Figure 5  A transmissive and a reflective setup is depicted on the left and right side, respectively; the 

main components are: a) Terahertz continuous wave (CW) source: amplifier-multiplier chain (AMC) and 

yttrium iron garnet (YIG) oscillator, b) off-axis parabolic mirrors, c) target object d) detector chip e) 3 

axis moving stage 

The calculation of the sensor and image position is straightforward. For the real image, I used 

the mirror equation: 

 
1

𝑓
=

1

𝑑𝐼
+

1

𝑑𝑂
 , (24) 

where dI and dO means the distance of the object and that of the image, respectively. Figure 6 

gives an overview about the basic configurations and helps to compare them. 

 

Figure 6 The basic image projection methods: a) real image with magnification ratio, 𝑀 = −𝑑𝐼/𝑑𝑂 

(green), b) confocal scanning (orange), c) Fourier imaging; the image is also right in the focal plane 

(purple); lenses are interchangeable with parabolic mirrors; the distances are not proportional 

In the case a), the distances are not proportional in the figure, of course, when 𝑓 < 𝑑𝑂 <  2𝑓, 

then 2𝑓 < 𝑑I. 

To measure the resolution of the system in confocal scanning configuration and all pixel 

activated, I fixed the actual chip on a high precision, 3 axes moving stage. The parabolic mirrors 
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collimated and focused the source beam onto the detector array. The Gaussian like spatial 

intensity distribution was registered with 100µm precision and presented in Figure 7. 

 

 

Figure 7  Raw measurement data of the focused Gaussian beam of the terahertz source 

2.3.3 Antenna coupled FET detectors 

2.3.3.1 Principle of detection 

Here, I summarize the principle of FET based sensing and highlight some problems of such 

detector arrays. These gave additional motivation to make complementary architectural 

investigations. 

 

Figure 8  The scheme of a Si MOS based terahertz sensor element 

In the followings I mean on ‘terahertz sensing’ power intensity measurements in the 125-750 

GHz frequency range. Figure 8 shows the scheme of a single detector element, where detection 

is realized in the channel of an nMOS transistor. The high frequency signal of the antenna arrives 

to the transistor pads. The free electrons behave similarly as a gas or shallow water [23] under 

the gate, because plasma waves obey linear dispersion laws (𝜔 = 𝑠𝑘), where 𝜔, 𝑠, 𝑘 denotes the 

frequency, the wave velocity and the wave vector, respectively. The velocity, 𝑠 = (
𝑈𝑒

𝑚
)
1 2⁄

, 

where 𝑒 and 𝑚 is the charge and mass of the electron, in turn, 𝑈 is the gate to channel voltage. 

Therefore, the Euler equations describe the excitation of the two-dimensional electron gas 

(2DEG) by small amplitude AC signal. The channel has a Reynolds number around 60 
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(regarding HEMTs) as a cavity of the “fluid”. Due to the nonlinearities of the plasma and the 

boundary conditions, a DC voltage emerges in the active zone of the channel. This is the 

“intrinsical” response of the device that is measured through the terminals, presenting a given 

load to the detector. The loading (or change in the boundary conditions) alters the intrinsical 

response. In the same time, the transistor works as a common gate amplifier according to the 

biasing conditions. Therefore, the measured, in-circuit response of the detector depends on the 

connectings of the antennas, the load and the biasing (among other factors) on a complex way 

[6]. 

Noise is another issue that changes on a different way, therefore minimum NEP and maximum 

response do not coincide. 

2.3.3.2 Antenna design 

The chief designer, Péter Földesy considered three main types of antenna arrangement for 

realization: 

I. Aperture coupled variants: 

a) Chip on board (signal comes from the back through the substrate) 

b) Chip with covering (signal comes from the top) 

c) Chip with suspended covering (optionally with Fresnel aperture) 

II. Planar antenna laying directly in the top metal layer of the chip 

a) Patch antenna 

1. Patch with striped, grid structure (to reduce capacitive losses) 

b) Fresnel aperture antenna 

III. Flip –chip –like arrangement with isolating layer – its feasibility is questionable, 

however this way the distance of the patch and the chip surface could be tuned 

accurately with the thickness of the isolating layer. 

These findings were shown to microwave communication specialists (Gergely Károlyi and 

Csaba Füzy) for performance comparison estimation. In the followings, I depict the schematics 

of the different antenna types to reveal the main difficulties of integration (See Fig. 9-13 for 

details; these are modified, extended versions of figures from [24].). I mention only the two 

most important problems: which antenna structure can be the most efficient and how to realize 

the feedline to minimize losses i.e. how to match the antenna to the detector. In the case of 

aperture coupled realizations the electromagnetic field couples through an aperture – practically 

a slot in a metal layer – to a planar feedline. This line is a simple metal wire of about 15 µm 

width with a closing stub at its ends. This stub is an overhang of the wire starting from the 

geometrical center of the aperture that takes place a few layers above the feedline what lays 

generally on the first metal layer. 
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With this, the closing of the feedline can be tuned easily and accurately. Matching of the patch 

to the detector is only the question of proper distances between the feedline, the aperture, and 

the patch antenna. However, the distance of the aperture to the feedline can be set only in discrete 

steps of the metal layers within a very small range relative to the wavelength. The fixing of the 

patch is another problem. It needs a solid supporting surface that can be metalized. The space 

holder can be this carrier material itself or some auxiliary support structure (suspended 

covering). Here, the distance can be set more freely, but the fixing, accurate manufacturing and 

positioning of the patches is a hard and costly post-processing task. These facts make the 

variations in group I. and III. disadvantageous from feasibility point of view. 

The direct planar antennas are easier to manufacture, however one have to be more cautious 

during design. For acceptable matching, one has to estimate the input impedance of the detector 

transistor at frequencies that are above the cut off frequency of the technology and not covered 

by the conventional channel models. 

To steer clear of this problem, that could be solved precisely only with iterative design-

manufacture-measure steps, we used the design strategy suggested by Csaba Füzy. According 

to this, we took the MOS transistor with near threshold gate bias as it was an open circuit from 

the GS and GD points, where G, S, D are the gate, source, drain contact points, respectively. 

Each of us simulated the antenna structures with its feedline and the transistor contacts. The 

antenna design and characterization was not carried out with the conventional antenna design 

methods. In that scheme a proper port configuration, often frequency domain simulation and S-

parameters calculation takes place. Then the S-parameters are used as the key figure of merit. 

In the investigated system, however, the design was driven by the maximal field strength 

between the transistor contacts. 

For this reason, the via stacks that constitute the feedline were not pure vertical columns, but 

they formed a V-shape approaching gradually the two contact point of the transistor from the 

opposite sites. 

Details with schematics about the antenna connecting can be seen later in chapter 2.4.1.2. 
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Figure 9  The schema of version I. a) chip on board with reflector. 

 

Figure 10  The schema of version I. b) chip with aperture coupled antennas and a covering with patch 

antennas and optional etched cavities for reducing dielectric losses. 
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Figure 11  The schema of version I. c) chip with suspended covering. It can be combined with aperture 

coupled antennas or simple planar structures. 

 

Figure 12  The schema of version II. b) The schematics of a more sophisticated aperture coupled antenna 

with polarization insensitive Fresnel aperture (without ordinary patch). In the case of version II. a), there 

is a simple or striped patch on the top and feed lines are formed from via stacks (see later in details). 
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Figure 13  Version III. Flip-chip-like configuration with an isolating layer. 

 

Figure 14  The envisioned striped, grid-like structure of the patches 

I have considered several antenna types within the main categories. For instance, the striped 

patch antenna (see Figure 14). Patch antennas are broadband, simple to design and easy to 

manufacture. Their capacitive losses can be reduced if the patch has a grid like structure. If 

polarization sensitivity is not a problem that is only one receiving direction is used, stripes in 

only that single direction (no intermediate crossing) or clustered dipole structures can be more 

advantageous. Yet, it provides the possibility for heterogeneous detection. However, one has to 

keep in mind the manufacturing antenna rules (this notion is not related to the antenna design) 

and metallization restrictions during the design. 

I have simulated special variants of quad antennas as well as possible compact and high gain 

solutions. These, antennas were generated by scripts and were easy to modify and optimize them 

on automated ways. 
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2.3.3.3 Manufactured chips - premises 

The first antenna coupled detector – made at the Intstitute for Computer Science and Constrol 

of the Hungarian Academy of Sciences (ICSC – HAS) by Földesy [12] – was a proof-of-concept 

chip manufactured at 180 nm feature size technology with photoconductive antennas on it. 

Several detector-antenna connectings and antenna types were tested, but the simplest 

arrangements provided the highest responsivity; these were used in the later designs. 

A 90 nm SoC like monolithic detector array meant the second step, where both single-band and 

broadband antennas showed up with linear and circular polarization sensitivity. These designs 

paved the way for a compressed sensing based detector array. Péter Földesy proposed the idea 

that complex sampling capable THz detectors can be formed from serially connected arrays with 

individually controllable gate biases. I could also participate in the process and performed the 

sizing of the antennas according to the methodology determined by our RF experts. I used this 

chip as a starting point for my investigations and to validate the results with measurements. 

2.3.1 A/D conversion 

The A/D conversion must be an integrated part of a compact imager; however, experimental use 

and the need for easier prototyping may waive this requirement. Despite the COSPL had such 

an SoC-like design, in the experiments we used a commercial external data acquisition card 

(NI6343) to digitalize the output of the integrated LNA. 

The absolute accuracy is usually much lower than that of the pure random noise would allow: 

AbsoluteAccuracy = Reading (GainError) + Range (OffsetError) + NoiseUncertainty. 

This NI DAQ card had an absolute accuracy of 2190 µV, 1130 µV and 240 µV in the (-10 V, 

10 V), (-5 V, 5 V) and (-1 V, 1 V) operating range, respectively – concerning only the applicable 

opportunities. The belonging RMS random noise (𝜎) was 270 µV, 135 µV and 28 µV, 

respectively that resulted in a noise uncertainty of 5.7 µV, 2.86 µV and 0.59 µV with 3𝜎 

coverage and 20000 samples. In the first two case, the given 16 bit precision (301 µV and 150 

µV) is above the limit of the absolute accuracy, however, for the highest absolute precision (30 

µV) at least 640 kSamples would be needed at maximal, 1 V readings. After all, the used lock-

in amplification relied only on the relative accuracy of the A/D. In a typical operation 

configuration – (-5 V, 5 V) range, 2,5 V peak reading, relative measurements, 20 kSample – the 

‘gain error noise’ is 163 µV whereas the random noise is 2.86 µV, therefore the system 

approaches the precision of the quantization (153 µV). 

It follows that the A/D conversion meant no bottleneck in the read-out circuit. 

2.4 180 nm Serially connected sensor array 

The subject of my work links closely to the manufactured detector; therefore, I describe it in 

details in this separate section [2]. 
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To create images from the aggregated response we perform multiple complex measurements 

and optimization based reconstruction. In order to reduce also the acquisition time we can utilize 

the sampling scheme of compressed sensing. For this, one has to control the contribution of the 

individual detector elements to realize the complex measurements (represented by the matrix, 

Φ). 

The solution of the COSPL at the ICSC – HAS allows complex sampling by exploiting the 

specialties of FET plasma wave detectors in the THz region. The two domains have significant 

implementation differences as orders of magnitude lower source power and plasma wave 

detection challenge actual analogue VLSI techniques. 

The proposed solution reduces the noise of the created images in the following ways: 

 A common practice to increase the signal level of voltage-based detectors is to bind 

multiple ones in series [13]. Elkhatib et al proved in [14] and [15] that the response of 

FET plasma wave detectors also adds up and scales linearly with the number of involved 

devices. (The thermal noise also increases, but only with the square root of the number 

of detectors.) 

Of course, the per pixel SNR remains the same, but this increase of the sensor SNR 

means higher, shifted signal level that is advantageous by the amplifier implementation. 

 Compressed sensing reduces the needed sample count and decreases noise directly as 

well as the non-linear reconstruction can suppress Gaussian noise to certain extent [16].  

 As the pixel cluster is serially connected, only one low noise amplifier (LNA) 

contributes to the output noise per cluster. 

2.4.1.1 The working principle 

In the case of FET based terahertz sensing, it is possible electronically controlling the 

photoresponse of each serially connected sensor elements. Figure 15 shows the typical response 

of a detector against UGS that we measured on the  proof-of-concept chip of the COSPL in open 

circuit mode. This indicates that we can significantly reduce the photoresponse and resistance 

contribution (i.e. thermal noise) of a given detector to the output by fully opening the detector 

transistor (“OFF” state). The created detectors are 1.8V standard transistors on a 180 nm CMOS 

technology. Worth to note, that the optimal gate bias voltage for the “ON state” depends on the 

number of active pixels. Moreover, they not necessary coincide with the maximum responsivity 

gate bias [15]. However, even a single, general bias voltage can provide acceptable performance 

(see measurements in section 4). This allows utilizing only simple, binary pattern generator 

circuitry with only two constant reference voltages (e.g. 0.35V and 1.8V). The exponentially 

increasing current induced flicker noise becomes dominant in subthreshold operation region, 

thus NEP minimum turns up at higher gate voltage regions. 
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Figure 15  A measured, typical response of the detector array at different gate-source voltages 

The frequency characteristics of the array is showed in Figure 16. This measurement was carried 

out with all pixels activated by uniform gate bias. 

 

Figure 16  Average frequency characteristics of the detector array in the 330-480 GHz range 

The originally targeted frequency was 470GHz to accommodate the specific power spectrum of 

the given AMC source. Because of the computational burden of precision, the simulations were 

done in two rounds: first with simplified structures and afterwards with the precise model of the 

chip including the dielectric layers, passivation and exact copy of the 3D structure exerted from 

the output of the layout program. 

Comparing the simulation results of isolated, standalone versions and densely populated arrays 

of several pixels showed that frequency shifts upwards if more detectors are arranged near to 

each other. Figure 17 Part B and Part C is an example that shows that besides the reduction of 

gain a frequency shift with a factor of about 1.0187 occurs. 

Thus, optimizations can be done on simplified models of isolated antennas by decreasing the 

target frequency to 460GHz. In the second round, the corresponding precise, isolated structures 

have a resonance frequency of 450 GHz (see an example in Fig. 10 Part A). Hence, the expected 

frequency peak for the array was about 458 GHz. On the chance that several other, non-

simulated effect can increase the resonance frequency, we have kept this configuration. 
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Figure 17  Resonance frequencies of different simulated structures 

 

2.4.1.2 Details of the prototype detector array 

 
Figure 18  The scheme of a MOS based terahertz sensor element (figure repeated from section 2.3.3.1) 

The detector array performs power intensity measurements at a single frequency of 460 GHz. 

Figure 18 shows the scheme of a single detector element, where detection is realized on an 

nMOS transistor by self-mixing. Considering the 125-750 GHz source frequency range and the 

Si MOSFET detector of 180 × 300 nm2 size the non-resonant, long channel approximation 

applies [8]. Manufacturing came off at standard CMOS 180 nm technology sparing any extra 

post-processing. The antenna arms connect directly to the gate and source terminals of the 

detector transistor with the 𝛾-shaped vertical structure built from via arrays and metal layers; 

see Figure 20 Part C. Thin, high inductivity wire connections ensure the proper biasing of the 

FET. Their placing is a crucial design step, especially at not nodal regions, because these 

contacts can fundamentally change the resonance of the antenna. 

a) 

b)     c) 
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The detectors run in both open-circuit and injected current configuration. Enforced drain current 

increases both the response and the noise [9] [5]. Because of the increased detector noise, the 

achievable SNR is lower than in open-circuit case, but the higher signal level can reduce the 

requirements of the auxiliary electronics and make scalable integration easier. This agrees with 

the results of Lisauskas [10], who deduced a theoretical upper limit of current mode gain that is 

about 1.35. In the actual measurements, I do not use induced current mode. 

The gate bias is near to the open threshold voltage (0.2-0.5 V) and its optimal value depends on 

the load and the sampling scheme among others. Thus, the input impedance of the read-out 

circuit and the modulation frequency have large influence over the operating point [11]. Földesy 

[6] gave a unified model for all working conditions that explains all of the knnown measurments 

within the non-resonant frequency region. A single, two-component LNA conditions the signal 

of the pixel cluster with 100 times amplification. The lower and upper -3 dB cut-off frequencies 

are 10 Hz and 330 KHz, respectively. See Figure 19 for the schematics. 

 

Figure 19  Schematics of the low noise amplifier a) shows the band pass amplifier filter and b) shows the 

telescopic OPA (This figure is from Földesy [6].) 

The maximum system SNR appears at 1 kHz modulation frequency; over this value the response 

decays (roll-off effect). This is in accordance with the measurements of Sakowicz on single Si 

MOSFETs in [11]. The works, [8] and [11] give thorough analysis on the roll-off. 

The transmission line between the detector transistor gate and the antenna feed point should be 

minimized to avoid losses. Therefore, the detectors got right below the feed point in every case. 

For experimental reasons, all the gates have direct terminals on output pads. However, our 

measurements prove capturing is still acceptable with uniform gate biases as well. This way it 

is enough to add a binary switching circuitry with two analog reference signals to realize a 

compact imager. Besides, several pixel clusters can share the same pattern generator. 

ViN+ ViN- 
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Figure 20  The image shows the physical design of the sensor array: a) microphoto of the chip, b) close-

ups of four sensors with their designed dimensions, and c) illustrative figure of the antenna and detector 

MOSFET coupling (This figure is from Földesy [6].) 

In Figure 20 Part A, one can see the microphoto of the detector array. We used H-shaped, single 

band, dipole antennas whose main dimensions are presented in Part B. The chosen 220 µm pitch 

is not optimal; the available small chip area restricted us in this decision. Simulations showed 

that under a given pitch value the antenna gain decreases slowly. Hence, we decided to create a 

4×4-pixel array that can demonstrate the idea of CS more faithfully. 

The antennas are sensitive to surrounding metal structures that makes the placement of the front-

end circuitry difficult. One solution is to put the belonging wiring and possible additional 

electronics under a ground plane (GP) as shown in Figure 20 Part C. This shield affects the 

antenna behavior seriously. It shifts the resonance frequency and increases the theoretical Q-

factor. 

The 3 dB bandwidth of these planar structures spans 1.5 GHz based on our 3D simulations. 

However, any process variation defect and environmental part (e.g. wiring, bonding, and 

packaging) degrades the performance by shifting the resonance frequency or altering the 

radiation pattern. 

Figure 21 shows the measured frequency characteristics of the array in open-circuit mode with 

all pixels activated by a uniform gate bias and compensated with the power spectrum of the 

source. The simulated resonance characteristics of a single detector also appears in Figure 21 

with scale on the right side; the inlet helps to compare the 3dB bandwidth of the real construction 

to that of the simulated one, where the excitation signal was a Gaussian chirp. 

 

focused beam 
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Figure 21  Measured and simulated frequency characteristics of the detector array in the 330-500 GHz 

range (left and right scale, respectively) 

We utilized the BSIMv3 MOSFET model of the actual manufacturing technology to get the 

drain current characteristics of the detector transistor (see Figure 22). 

 
Figure 22  The simulated drain current of the used detector transistor: 180 nm nMOS of size 180 × 300 

nm2 

 

 
Figure 23  The stylistic schematics of a CS capable detector array 

Figure 23 shows the schematic sketch of the proposed detector arrangement. The antenna and 

detector pairs are connected in series, consecutively chaining the MOS transistors at their source 

and drain respectively. Inside the pixel cluster, it is possible to tune the gate bias voltages 

independently. With that, we can control the contribution of each single detector independently. 
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However, I used only two uniform gate biases for the ‘ON’ and ‘OFF’ state during my 

measurements with CS patterns. The serially connected functional blocks are placed in a 

meander style to form regular arrays on the chip. When doing so, one has to be careful with the 

connectional wiring. 

To create imagers one can combine the proposed serially connected “pixel clusters” with 

standard read-out architectures. 

2.4.1.3 Characteristics of the proof-of-concept detector array 

We compared the performance to a standalone sensor with H-shaped antenna fabricated at 90 

nm technology. This had the same detector structure as the sensors of the actual array only the 

resonant antenna sizes and planes differed. Both chip parts were thoroughly studied in a 3D, 

finite element, physical simulator, where the serial array was represented with six detectors at 

different densities (pitch values). The real and the targeted resonance frequency differed by 

roughly 1.5% (7 GHz uncertainty). The individual response of the detectors was about 23.5% 

of our best H-shaped standalone antenna, which worked at 360 GHz. This difference had two 

reasons. On one hand, the denser array arrangement and the higher frequency cause a loss of 

about 55% and 39%, respectively. On the other hand, due to the features of the 180 nm 

technology, the antennas got on a thinner metal layer (1.45 µm). Within the actual microstrip 

structure, this also lowered the antenna gain, but there is no simple trend as in the case of the 

ground plane distance. 

Efficient utilization of the chip area requires minimal pitch, while preserving disjunctive 

effective areas of the antennas. Concerning this and the sensitivity of the antennas to the 

additional metal structures, placement of the front-end circuitry can be problematic. One 

solution is to put the belonging electronics under a ground plane (GP). This restricts the number 

of metal layers for routing, but it confines the antenna behavior more seriously. It shifts the 

resonance frequency and increases the theoretical Q-factor to an unwanted level that decreases 

the resonance amplitude of the real device due to the distortions. 

Figure 24 shows this effect and summarizes the simulated behavior of our H-shaped antenna at 

different GP positions. 
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Figure 24  The effect of ground plane distance on the antenna characteristics 

To get an insight into the relative radiation patterns of the individual detectors, I have done beam 

scans with the detector array. For this, I used the configuration presented in right part of Figure 

5, Part A. The step size of the 2D scan was 0.1 mm in both directions. First, I have done 

measurements with single sensors by activating only one detector transistor at a time. In Figure 

25 Part A, the radiation patterns – convolved with the Gaussian beam of the source – can be 

compared. Here, each small picture is a full raster scan of the Gaussian beam with the belonging 

detector.  

Figure 25, Part B shows an additional measurement with all pixels activated at 0.3 V uniform 

gate bias. The scanned field of view is the same in every case (2.5 × 2.4 mm2). The distortions 

come mainly from the metal layers of the pads and the wiring of the detectors that are invisible 

on the microphotograph (Figure 20). 

 

Figure 25  Beam scans with individual antennas to check proper pixel separation 

Figure 26 explains the cumulative answer relative to the single detector responses. For an 

optimal summation, each detector should have a separate bias voltage to work at an ideal 

a) b) 
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operating point as measured in [19-20]. Every bias would compensate the summed response of 

the preceding detectors, as well. By unbiased detection, if responses are small relative to the 

gate dependence, these effects are small. Since the individual signal levels were below 0.5 mV, 

a uniform gate bias is theoretically appropriate. The ‘inter die’ process variation of the pixels 

was around 9.1 % based on three measured chips. Thus, the transistor mismatch was significant 

and the distortion of the antenna radiation patterns added to this as well. However, not these, 

but the loading effects determine mainly the responsivity of the detectors; see [35]. Therefore, 

by open-circuit mode, consecutively connected detectors always have some responsivity loss. 

With the length of the continuous serial chains, this loss increases. Therefore, by switching on 

all detectors with the optimal, uniform gate bias the fused response approaches only 43 % of the 

sum of the individual responses; see also the subfigure at the top right corner of Figure 26 as an 

overview. 

However, the random activation patterns break up the long serial chains and decrease the losses. 

Eighteen measured random patterns containing 3 to 11 active pixels confirm this in Figure 27; 

the patterns were randomly generated and presented without any selection. On the average, the 

responses of the random patterns are 80.7 % of the theoretical sum of the individual pixel 

responses that constitute the patterns. 

 
Figure 26  The measured characteristics of the individual detector responses (blue lines) and the fused 

response – all detectors switched on (red line) 

In Figure 27 Part A, the two continuous lines point out the mean of the 18 corresponding values 

(the higher for the theoretical and the lower for the measured response). The CS pattern 

responses show high correlation with the theoretical sum of the individual detector responses: 

the mean, normalized error is 2.9 % that can be compensated likewise the fix pattern noise. I 

present this in Figure 27 Part B, where both groups of values were normalized to their mean. 

The CS images presented in section 4 were made with the first 14 of these patterns. However, I 

suggest using selected patterns that contain only 11 or more active pixels. 
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Figure 27  Performance comparison of the CS patterns (blue circle) to the theoretical sums (red square) 

a) b) 
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3 NOISE PERFORMANCE OF COMPRESSED SENSING BASED 

DETECTORS 

3.1 Motivation 

My aim was to study the noise characteristics of the measurement system and perform a kind of 

‘holistic’ analysis on that. The holistic nature means that the selected figure of merit represents 

not a component wise, but a system level requirement: maximizing the resulting image SNR of 

the terahertz measurement system. That is, the study includes both the hardware components 

(detector, LNA, readout-circuitry) and the post-processing. Hence, the work involves the 

heuristic combination of these two different aspects: 

First, I investigate the non-linear reconstruction framework of CS to create images. The CS 

framework makes possible to increase acquisition speed and to add any additional information 

to the data that is available at the time of the post-processing about the imaged object: e.g. 

statistical properties of the noise and the imaged scene or more reliable measurement data about 

specific parts (pixels) of the scene. (Some of this information is available a priori, while the rest 

need additional measurement or the analysis of the previous images. Besides, conventional noise 

filtering and noise suppression techniques may also fit to this process.) 

In the end, this makes possible to increase the SNR of the acquired image by reducing the error 

of the reconstructions at the expense of more intense post-processing on the measured data set. 

Second, I investigated the performance of CS capable imaging devices (serially connected 

sensor arrays and SLMs) comparing them to conventional sensor arrays. 

In the following section, I have to enlighten the relation between the sensor architecture and the 

main problems of system integration, implementation regarding the overall system performance 

(the SNR of the application specific output images). 

3.1.1 The aspect of implementation and system integration 

Utilizing standard CMOS technology to form terahertz imagers can be a crucial step to make 

room temperature terahertz investigation became a ubiquitous modality in biology and 

medicine. However, very-large-scale integration (VLSI) implementations may limit the 

resulting image SNR of such integrated devices. The read-out circuitry is a key point that has a 

great impact on the overall performance of the imager. It determines the sample count (𝑆), the 

maximal integration time (𝑡𝑖𝑛𝑡), and most of the additional noise sources. 

The majority of the implementations multiplex the read-out; the number of low noise amplifiers 

(LNAs) is smaller or equal than the number of columns in the array and the number of A/D 

converters (𝑟) is even more restricted: 𝑟 ≪ 𝑁, where 𝑁 is the total number of pixels in the array. 

This confines the sample count (𝑆) in any case: 
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 𝑆 <
r fs

N fps
 (25) 

where 𝑟, 𝑓𝑠 and ‘𝑓𝑝𝑠’ stand for the number of A/D converters, the sampling frequency and the 

acquisition speed (frame per second), respectively. 

The small area available for one pixel restricts the size of the integrating in-pixel capacitance, 

therefore also the integration time. Near-continuous integration would mitigate this problem 

with correlated double sampling (CDS) or correlated multiple sampling differential averaging 

(CMSDA) techniques by sampling at higher rates and averaging [17]. The noise suppression 

can be as high as 40% according to a paper on CMSDA [18] considering 1/f noise and fixed 

pattern noise. 

However, the switching noise of the direct path still remains a significant, additional noise 

source of this solution, according to [17]. Moreover, I do not know yet working terahertz 

implementations of the CMSDA technique that could provide measurement data on that. 

Due to the relatively high 1/f noise and the weak THz sources, frequency filtering is advisable 

that increases SNR with orders of magnitude. If lock-in amplification is assumed by digital 

phase-sensitive detection (PSD) in the post-processing, then the source modulation frequency 

(𝑓𝑠𝑚) gives an upper bound for the in-pixel integration time either way:  

 tint ≤
1

2fsm 
. (26) 

Because of (1) and (2), the total noise power (Ptotal) shall depend on (N fps). Hence, the SNR 

will degrade by scaling-up and as N ≫ fps, it will be easier to produce low SNR, real-time video 

than high sensitivity images in several seconds. (The NEP value of sensor pixels refers to an 

ideal, 0.5s long integration.) 

3.1.2 Considerations on the setup 

Today terahertz applications are still SNR critical, but need higher resolutions and increased 

speed. The size of the integrated antenna coupled detectors has shrunk relative to the free air 

wavelength, enough to consider only 𝜆/4 structures: dipoles, spirals, and bowties. The enclosing 

dielectrics also strengthen this effect increasing the effective length of the antenna compared to 

corresponding free air version. However, their responsivity and provided SNR also drops with 

their size. To meet the contrary requirements of lowering optical noise equivalent power (NEP) 

and increasing resolution is an active research topic [19]. 

In many optical setups, a natural oversampling takes place and the resulting image could be 

spatially averaged without significant loss of information. Images limited in spatial frequency 

are more likely compressible, that is, they can be represented more efficiently in a proper base 

(e.g. discrete cosine transform). Thus, they can be acquired by compressed sensing more 

efficiently. For instance, one can utilize aggregated architectures in the following cases: 

DOI:10.15774/PPKE.ITK.2015.006



- 42 - 

 

 Diffraction limited optical setups 

 Setups with small sized, integrated focal plane arrays (FPA), where planar antennas are 

embedded in dielectrics with εeff > 1 (increase in effective length) 

 The promising, slightly magnified, lens free holographic imaging belongs to these as 

well [20] [21] [22] [23] [24]. In appropriate setups, holographic coherent diffraction 

imaging (HCDI) also could benefit from averaging as it makes spatial oversampling of 

diffraction patterns unnecessary [25]. 

An exemplary problem: Reflective imaging of soft tissue, cell culture or thick excision, 

where the scattered beam is highly diffuse and it is hard efficiently focusing it – In this 

case, additional optics, such as silicon solid immersion lens, can only partly mitigate 

the problem, but they decrease the source intensity and introduce further frequency 

dependent distortions, aberrations. 

3.2 Methods 

3.2.1 General approach 

My goal was to evaluate the design decisions concerning their effects on the overall system 

performance, where the starting point of all investigations was the presented 180 nm sensor 

array of the research group at the ICSC (Section 2.3.1). The main task was to give a quantitative 

analysis on the effect of a serial sensor architecture considering also the needed post-processing. 

For this, a kind of “holistic” system modeling was utilized that covered every essential 

component of the imaging system. That is, I measured and calculated the change of the resulting 

image SNR (a system level indicator) concerning a change in one or more components (e.g. 

induced current of the detector, array size, and achieved compression).  

This can be seen as a basic approach for a heuristic system level optimization: do not evaluating 

the design choices one by one, but mitigating the sensing problem as a whole. Figure 28 depicts 

partly the causation of the 4 targeted problems assuming room temperature, FET based detection 

with a tunable CW source. These notions can be divided further as going in to the details. Such 

diagrams are exemplary tools of concept sorting and determining the relationships between them 

in order to determine the most appropriate solutions for the problems at hand. 

I assessed that the right choice of the sensor architecture, the optical setup, the measurement 

scheme and the post-processing can significantly improve the overall performance of THz 

imaging systems that involve CW source and FET based integrated detectors. 
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Figure 28  The diagram summarizes several touched notions connecting to the sensing problem and partly 

reveals the roots of the main problems; 

The architecture can help to approach the theoretical performance of the detectors (LNA noise 

contribution, resource allocation within the read-out circuit) and it must suit to the inseparable 

triad of the optical setup, measurement scheme and post-processing framework that support 

noise filtering (and by any chance super resolution). 
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3.2.2 Cross validation for increasing SNR 

Cross validation (CV) has several applications within CS and has rigorous mathematical 

background. However, related works like [17] and [43] focus mainly on the approximation error 

estimation, and aiding the choice of parameters like the number of measurements or the assumed 

sparsity. 

On the one hand, I investigate cross validation as a tool for reducing the noise of the 

reconstruction. In the end, this increases the SNR of the resulting images. 

On the other hand, the low incident radiation implies we have to consider over sampling as well. 

I suggest, cross validation as an efficient way to integrate oversampling data with the 

compressed sensing based reconstruction framework. This way we can improve on the standard 

L2 minimization (or least squares solution) results. 

By usual compressed sensing imaging thorough cross validation is too expensive. Yet, in our 

case N is relatively small, meaning that the arising computational burden is tractable despite of 

the O(L·N·log(N) ) or in best case O(L·N) algorithms (here L is the order of CV). 

By the suggested cross validation I divide the measured data set, D into two subsets D1 and D2. 

I perform the reconstruction using only D1 (ignoring the elements of D2) and may estimate the 

error of the candidate solution based on D2, then I repeat the process with a different subset of 

another division. These iterations result in several ‘candidate’ solutions that can be combined 

on various ways to create the final image e.g. substitute the median of pixels or sum them 

weighted by their calculated error. The described technique belongs to thesis 1.2. 

The proposed meta-algorithm connects to and extends the works [33] and [40]. Ward depicts 

the idea of using cross validation (CV) for the reconstruction in [33]. She mentions the main CV 

techniques and gives bounds on the L2 error of the simple, incremental CV based on the Johnson-

Lindenstrauss (JL) lemma [44]. 

Malioutov presents the idea of adaptive, sequential CS in [40], where, he gave the sufficient 

number of measurements for the reconstruction depending on the distance between the 

candidate reconstruction vector, xM (after M measurements) and HM+T, the M+T dimensional 

affine subspace, where T denotes the number of spared, unused measurements. HM+T is the 

subspace of ℝ𝑁 confined by all the acquired measurements. This technique builds upon the 

estimation of the error based on the T additional measurements. 

3.2.3 Figure of merit 

The performance of terahertz detectors is characterized by the noise equivalent power (NEP), 

since it is a source power independent performance indicator of the sensory system. It 

incorporates both the noise power level of the detector and its responsivity as well. By definition, 

NEP is the input power that produces a signal to noise ratio of unity at the output of an optical 

detector: 
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 NEPdetector = 
noise voltage

responsivity
= 

Unoise
Ux
Pin

|
x=0

 (27) 

where 𝑈𝑥 is the voltage response of the detector at 𝑥 input power. NEP assumes 1 Hz detection 

bandwidth (or 1 Hz sampling frequency) that means 0.5s integration time unless otherwise 

specified. NEP often defined also as the minimum detectable power per square root bandwidth 

changing the noise voltage (Unoise) to the square root of the power spectral density (Sxx) given in 

[V/√Hz]. 

 NEPdetector = 
√noise power spectrum

responsivity
= 

√Sxx
Ux
Pin

|
x=0

=
Sxx
′

Ux
Pin

|
x=0

 (28) 

In eq. 28, the dimension of the NEP also changes to [W/√Hz]. The responsivity characteristics 

of these detectors is usually not linear and less steep at the initial phase. Yet, such a measurement 

can be cumbersome without an appropriate equipment. Thus, often the mean responsivity of the 

full utilized dynamical range is used to calculate the NEP (so did I): 

 NEPdetector = 
Unoise

𝑈𝑚𝑎𝑥−𝑈𝑚𝑖𝑛
𝑃𝑚𝑎𝑥

 . (29) 

This a good and practical approximation of the real performance of the detector. In this work I 

concentrate on the noise part of this performance indicator, thus it is easier to handle the different 

components by their noise figure (NF) providing ground for comparison independently from the 

amplifier gain: 

  𝑁𝐹 = 10 log
𝑆𝑁𝑅𝑖𝑛

𝑆𝑁𝑅𝑜𝑢𝑡
= 10 log

𝑇𝑜𝑓𝑓+ 𝑇𝑜𝑛

𝑇0
 (30) 

 𝑇 =
𝑃𝑛𝑜𝑖𝑠𝑒

𝐵𝑘𝐵
 (31) 

The noise figure is dependent on the load presented to the given component and this formula 

applies to the matched case. 𝑇𝑜𝑓𝑓, 𝑇𝑜𝑛 are the noise temperature of the component in OFF and 

ON state respectively, where as 𝑇0 = 290𝐾 is the reference noise temperature. 𝐵 stands for the 

bandwidth at which the noise figure measurement is carried out and 𝑘𝐵 is the Boltzmann 

constant. The noise temperature (𝑇) assumes an additive, white noise source distribution. In this 

case, it is an acceptable estimation to handle the noises in a lumped form, if the measured 

bandwidth is restricted to a narrow portion of the frequency range, because flicker and shot noise 

can be also significant. To make easy comparisons to other indicators (e.g. NEP), one can use 

the approximation Toff ≈ T0, to calculate the absolute mean square noise power: 

 𝑃𝑛𝑜𝑖𝑠𝑒 ≈ 𝑇0 ( 10
𝑁𝐹

10 − 1)𝐵𝑘𝐵 . (32) 

However, in an application environment the specification of the imaging system is usually 

DOI:10.15774/PPKE.ITK.2015.006



- 46 - 

 

described at a higher level, controlling only the quality of the results. Noise temperature means 

an easy, intuitive comparison among components with different impedances. 

The resulting image SNR is taken as the main figure of merit regarding image quality. It is 

calculated according to the standard form: 

 SNRresult = 10 𝑙𝑜𝑔10  
‖𝐱1‖2

‖𝐱𝟏−𝐱𝐫𝐞𝐬‖2
  (33) 

where 𝐱1 is the original image (represented as a column vector) and 𝐱res is the result of the 

processing. However, we calculated in every case the L1 distance as well, which is proved to 

approximate the image quality better: 

 𝐿1 errorresult = 20 𝑙𝑜𝑔10  
∑|𝐱1|

∑ |𝐱𝟏−𝐱𝐫𝐞𝐬|
 (34) 

3.2.4 Noise reduction basics 

This part describes the profound basics of the noise reduction. I represent both the signal and 

the noise with a random variable drawn from normal distributions, N(µsig, σsig
2) and N(µ0, σ0

2), 

respectively. 

Due to the central limit theorem, the sum of N identical distributions with expected value µ and 

variance σ2 converges to a normal distribution N(Nµ, Nσ2). This convergence in practice is fast, 

even the sum of 3 random variable can follow the rule well. Hence, their average goes to 

𝑁(μ, N(σ N⁄ )2) = 𝑁(μ, (σ/√N)2 ) . 

If we see σ2 as the physical correspondence of noise power, then the average noise amplitude of 

N samples becomes √N times lower and the noise power reduces with a factor of N. Due to the 

conventions in the definitions of different noise representations (e.g. NEP), often altered units 

are used (V/√Hz or A/√Hz). Since these do not conform to the last statement, I use altered 

factors for the noise calculations. 

Thus, a √N times reduction in σ0 results in a reduction of only √N times in NEP as well. 

We measure noise as voltage fluctuations at the detector output, and represent it by a random 

variable 𝑋 from a normal distribution N(µ0, σ0). Then ‘σ0
2’ should correspond to the average 

noise power amplitude. However, in measurements one often uses the power spectrum to 

indicate noise: 

 Sxx(ω) =
∆t2

T
|∑ xne

−iωnN
n=1 | 2 =

∆t

N
|∑ xne

−iωnN
n=1 | 2 , (35) 

where xn with 𝑛 ∈ (1, N) stands for the measured photoresponse in Volts; ∆t, and T = N∆t are 

the sampling period and the total measurement period, respectively. 

I connect the notions of probability theory and statistics with the physical values through the 

following approximation: 
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 σ2 ≈
1

M
∑ Sxx(ωi)∆ω
M
i=1  , (36) 

where M is the number of frequency bins within the frequency range under investigation and 

∆𝜔 is the frequency resolution. 

If the power spectral density is given in V/√Hz or A/√Hz (Sxx
′ (ωi)) , then (36) modifies to 

 σ2 ≈
1

M
∑ (Sxx

′ (ωi))
2∆ωM

i=1   (37) 

3.2.5 Assumptions 

By the calculation of the mean instantaneous noise power of the detector and that of the LNA, I 

assume several conditions. At first, I take the input as a pure sinusoid. Since the lock-in 

amplification demands source modulation the YIG is driven by a square-wave signal at a distinct 

frequency therefore this is an acceptable approximation. 

I assume that the impedance of the detector transistor (the source) matches the input impedance 

of the LNA. 

I distinct between the three main types of noise sources with belonging spectral characteristic, 

but I assume the underlying processes to be Gaussian and I handle them together in the power 

calculations. 

The output consists of several identifiable noise sources (or artefacts) that can be easily removed 

like the 50 Hz noise of the electrical network or the typical build-up phase of the signal at the 

beginning of the transitions in the “on-off-off+on” measurement scheme. 

The windowing function plays an important role by the measurements. Both constant offset and 

linear drift have to be canceled. Considering white, 1/f and 1/f2 noise power spectral densities 

(PSD) the used “on-off-off+on” measurement scheme seems to be a standard in the field, see 

[37]. 

3.2.6 Noise model of terahertz FET detectors 

The applied noise model provides the power spectral density of the detector and consists of the 

three usual additive components: flicker noise, shot noise and thermal noise. 

I preferred to use the unified model of Hung to represent the flicker noise [38]. Thus, the model 

gives reliable noise values both for NMOS and PMOS devices in all operational domains. The 

input referred flicker noise power is given in [
V2

Hz
]: 

 SVg
flicker(f) =

kT

γfWL
Nt(Efn) (

q

Cox
)
2−p

[αμ(Vg − Vth)]
p
, where (38) 

𝑝 = {

0, if N ≪ (αμ)−1

1, if (αμ)−1 ≤  N < Nsat
2, if N is close to Nsat
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𝛼 ≈ 10−15 [Vs] for scattering of electrons by oxide charge at the Si-SiO2 interface  

𝜇 ≈ 500 [
cm2

Vs
] electron mobility 

γ ≈ 2 ∙ 108 [cm−1] attenuation coefficient of the electron wave function in the oxide 

𝐶𝑜𝑥 bulk to gate capacitance 

𝑁 is the charge carrier density in the channel 

𝑁t(𝐸𝑓𝑛)  ≈  2 ∙ 10
8 [cm−3eV−1] is the effective oxide trap density at the quasi Fermi 

level 

Shot noise is covered with the following classical approximation regarding the spectrum and the 

root mean square voltage fluctuations (𝜎𝑣): 

 S(f) = 2q|I|  and σv = √2qI∆fR, where (39) 

𝑞 the elementary charge 

𝐼 is the DC current through the transistor channel 

∆𝑓 is the considered bandwidth (here it comes from the minimal integration time: < 1 µs) 

𝑅 = ∑ 𝑅𝑁
𝑖=1 𝑐ℎ𝑖

+ 𝑅𝑙𝑜𝑎𝑑 is the total resistive load (detector transistor channels and readout 

circuitry load, respectively) 

Although, under the current working conditions (room temperature, low frequency) its 

contribution would be significant only in the < 100 nA drain current range, thus it can be 

neglected. For the thermal noise we simply use the white noise approximation: 

 SV
thermal(f) = 4kBTR.  (40) 

3.2.7 Detector response 

For calculating the detector response, I have used the non-resonant approximation concerning 

the 100-460GHz working range. According to Lisauskas [10], this can be written as: 

 𝑉𝑝ℎ𝑜𝑡𝑜 =
𝑉𝑎
2

4𝜂2𝑉𝑇
2

𝐼0𝑅𝑑

1+2𝑒

𝑉𝑔−𝑉𝑡ℎ
𝜂𝑉𝑇

  .  (41) 

where the meaning of 𝑉𝑎, 𝑉𝑇, 𝜂, 𝐼0, 𝑅𝑑, 𝑉𝑔 and 𝑉𝑡ℎ, are listed in Table 3. 

Table 3  Summary of the notations regarding the photo response 

𝑉𝑎 THz signal at the terminals of the detector transistor 𝑅𝑑 channel resistance 

𝑉𝑇 thermal voltage 𝑉𝑔 gate voltage 

𝜂 ideality factor 𝑉𝑡ℎ threshold voltage 

𝐼0 initial current   
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3.2.8 Modeling of the system 

The combined noise factor, 𝐹 of an amplifier chain (or cascade of devices in the readout 

circuitry) is given as: 

 F = F1 +
F2−1

G1
+
F3−1

G1G2
+⋯+

Fn−1

G1G2…Gn−1
 (42) 

Where 𝐹𝑖 is the noise figure of the ith stage and 𝐺𝑖 is the belonging gain. Due to the usually high 

initial amplification, the first element would be the principal in general. Therefore, in the 

followings we indicate the post-processing noise only with the noise power of the LNA. Hence, 

the signature is simpler and the significance of the LNA noise is more intuitive. 

According to this the noise power of the LNA on its input (𝑃𝐿𝑁𝐴) and the output noise of the 

LNA (𝑃𝑛𝑜𝑖𝑠𝑒) can be written as: 

 

 𝑃𝐿𝑁𝐴 = ( 10
𝑁𝐹

10 − 1)𝑃𝑑𝑒𝑡 ,  𝑃𝑛𝑜𝑖𝑠𝑒 = G110
𝑁𝐹

10𝑃𝑑𝑒𝑡 (43) 

Where G1 is the gain of the amplifier; this factor falls out by the SNR calculations. 

3.3 Results and conclusions 

The CS acquisition is more than just a sampling scheme and belonging reconstruction algorithm 

as it means a flexible framework to process the measurement data in the form of a non-linear 

mapping between the measurement data and the resulting image. It inherently suppresses high 

frequency noises and helps sensitivity limited recordings to exploit the dynamical range of the 

sensors. 

In the case of serial detectors, where the frequency of the pixel activation control is limited the 

reconstruction becomes an important question. 

Thesis 1 [SNR enhancement of imaging systems with 
compressed sensing] 

I have showed that the application of compressed sensing (CS) as a measurement scheme and 

a post-processing framework can increase the overall signal to noise ratio (SNR) of field effect 

transistor (FET) based terahertz imaging systems. [39] 

Using CS in such an environment, where the theoretical conditions of the CS reconstruction 

(like sparsity) do not hold is not self-evident. This involves the acquisition of moderately 

structured (not sparse), small and noisy images. The guaranteed reconstruction error bounds do 

not hold or are so loose that makes them impractical for this scenario. (Determining the constants 

of some bounds is also unreliable for such small images.) 
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To prove that the reconstruction works under these harsh conditions I have tested the 

performance of CS reconstruction algorithms whether they are capable to outperform the least-

square solution of the problems or not. 

I have given an actual example in the form of numerical simulations, where the CS measurement 

scheme yields SNR gain over the L2 reconstruction technique in a specific parameter region. 

This result gave grounds to investigate some of the latent possibilities of the reconstruction and 

consider the use of CS as a measurement and reconstruction framework at serial detector arrays. 

CS algorithms tolerate noise relatively good. However, if the problem size is small (16 × 16 

pixels), the measurements are noisy, and the imaged scene is less clearly structured then the 

problem became harder to solve. Figure 29 and Figure 30 demonstrate this phenomenon. 

These figures summarize the outcome of numerous simulated CS measurements and image 

reconstructions, which mimic sensors with various signal-to-noise ratio and reconstructions 

involving different amount of measurement data relative to the total pixel count. The colorbar 

shows the resulting image SNR in dB. If we compare the output images to the original one, then 

the yellow part of the field indicates the region, which already has visually acceptable quality 

in these executions. 

I have generated the used test images from natural, high resolution ones by cropping small 

regions of them. With this, I got moderately structured images (noisy, low contrast, slightly 

under sampled – “diffraction limited”) that resemble real THz measurements. Figure 30 

illustrates the effect of increasing high frequency components in the sample image. On the left 

part, one can see the outcome of another assembly of simulations producing a similar image as 

Figure 29, but here, visualized as a surface. In the right part of the figure: the same simulation 

executed on an input image having higher entropy. The two objects have similar maxima, but 

the right one is much sharper indicating that the CS framework tolerates noise much less in this 

case. 
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I investigated the parameter space determined by the noise variance, the size of the image, the 

M/N ratio and the entropy of the target texture and I found that there exist a small space where 

computationally more intensive methods yield considerable gain against L2 minimization. This 

is visualized on Fig. 3. Here, an obvious case is shown of a less structured object. This example 

was performed with a smoothed-L0 minimization algorithm. 

 
Figure 29  It shows the usual performance (SNR in dB) of a CS algorithm on a structured target. On the 

vertical axis, the standard deviation of the sensor noise is given relative to a fixed maximum that represents 

the mean maximal signal value in the measurement vector, “Y” based on several randommeasurements 

(to avoid referencing to an outlier). The horizontal axis shows the number of measurements relative to the 

total number of pixels. 

 

 
Figure 30  These example CS reconstructions give an insight to the effect of low sparsity. On the left 

one can see the image SNR as a surface over the image size and image noise axes. On the right I 

depicted the resulting SNR of the same algorithm, but sampling an image with higher entropy – 

indicating a richer surface texture. Their maximums are close to each other, but the latter became much 

sharper that is, it tolerates noise much less. 
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Based on these results I sentence the following thesis: 

The potential of the CS technique for reconstruction serially connected sensors 

Thesis 1.1 I have shown that even a general smoothed L0-norm based algorithm can achieve 

gain over least-square reconstruction in case of small (0.25-3 kpixel), moderately 

structured (sparsity around 0.75N) images if the sensor noise deviation is below 

0.01 and the compression ratio is between 0.1 and 0.3. 

With this, I conclude that a holistic optimization of a FET based, serial THz imaging system, 

where small images are acquired at relatively low SNR can incorporate the CS measurement 

scheme as well albeit the compression ratio of the L1-norm based CS techniques depend 

logarithmically from the image size and is proportional to the sparsity. This point does not justify 

the use of the CS technique in any actual application, but proves the existence of an 

advantageous parameter region regarding image size, sparsity, compression ratio and sensor 

noise. Thesis group two deals with the closer relation of the CS technique to the physical 

implementations. 

I have to emphasize that in typical applications of terahertz imaging the scene consists of mainly 

moderately structured features. The SNR of the investigated system is approximately 40 dB at 

free space (given the SNR as a voltage ratio). However, it drops rapidly either in transmissive 

or reflective configuration by scanning a specimen that has greater spatial extension or includes 

dispersive layers. 

 

Figure 31  SNR gain of an alternate projecting algorithm over L2 minimization. (The colorbar shows the 

gain in dB). On the vertical axis the sensor noise deviation is given relative to a fixed maximal signal 

value of Y. The horizontal axis shows the number of measurements relative to the total number of pixels. 

This test was performed on moderately structured images (sparsity around 0.75N) that are more close to 

the real measurements in tissues. This example makes obvious that for this type of application, the 

classical CS based algorithms have exploitable advances in a restricted region. 
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The numerical simulations indicate that a system SNR between 31-36 dB is the practical lower 

limit of applying classical CS at 16 by 16 pixel images. However, under these extreme 

circumstances it provides practically no gain over L2 minimization. 

Therefore, I studied these measurement schemes and I have given application specific methods 

that help to exploit their intrinsical power: enhancing the image SNR by optimization driven 

reconstructions in the belonging post-processing. 

Constructive algorithm to help exploiting the gain from the CS post-processing: 

Thesis 1.2 I have given a general post-processing algorithm for terahertz measurements 

involving cross validation (CV) and maximal entropy driven filtering that increases 

the overall SNR of the CS reconstruction in the presence of noise. 

Image noise cancels out by the addition of the pixel values, but sensor noise is a challenge for 

the sparsity driven reconstruction. 

According to this, I have proposed to take more measurements than M by the acquisition. Then 

one has the chance to create different datasets of the same size (described in section 3.2.2). 

Assuming independent measurements, the new collection should induce the same stopping 

condition from [40]. Therefore, the candidate solutions 𝑥𝑀1 and 𝑥𝑀2 should be within the proven 

error of the reconstruction (an L2 ball). 

In the case of M+ T samples, we could make a maximum of (
𝑀 + 𝑇
𝑀

) number of different data 

sets of size M. Then, if we take candidate solutions 𝑥𝑀𝑖
, all should be within the range of the 

depicted error. Assuming that reconstruction error has Gaussian like noise components then 

averaging of appropriate candidates should decrease the error of the final result. 

However, we have to be careful by choosing the right candidates, as adding up 𝑘 dependent 

Gaussian or non-Gaussian random variables increases 𝜎2 proportional to 𝑘2 and raise the offset 

error of pixels with their mean. Therefore, one has to create as ‘distinct’ datasets as possible. 

(The combinatorial nature of the original reconstruction problem does not imply such selections, 

but the L1 problem may require this.) 

The noise tolerance of the CV based post-processing and the relative performance of the 

proposed maximum entropy based filtering can be seen in Figure 32 and Figure 33, respectively. 

The averaging of the candidate solutions coming from the CV rounds result in an image that is 

low pass filtered too heavily. Therefore, I suggest maximum entropy based filtering or weighting 

to increase the entropy of the image to a more natural level with those pixels that have enough 

support among the results increasing the SNR of the outcome. According to this, we choose 

from the different candidate solutions those having the greatest entropy or rather weight them 

proportional to their entropy at the averaging. 
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Figure 33 compares the normalized SNR of the proposed extensions regarding a reweighting 

algorithm that works optimally, selecting the weights of the candidate solutions based on the 

original picture. 

 

Figure 32  Comparison of the different optimizations used for the reconstruction of moderately structured 

images. On the horizontal axis the standard deviation of the additive noise can be seen assuming 

normalized pixel values. The vertical axis shows the achieved image SNR relative to the noise free case. 

 

 

Figure 33  The comparison of the different reconstruction algorithms: L1, CV and the CV + entropy based 

filtering at σ = 0.015. The vertical bars represent the normalized image SNR regarding an ‘ideal’ 

algorithm knowing the ground truth – the original image. The proposed algorithm increases the robustness 

of the CV based reconstructions. 

The source of the gain is the intrinsical nature of the non-linear reconstruction. Giving emphasis 

to the application specific characteristics, I asses its advantage is it filters high frequency image 

noise efficiently and adds additional a priori information e.g. the input is structured or based on 

a given model. That is, given an appropriate base or library, the n-dimensional signal vector can 

be approximated more accurately with a candidate solution that has small L0 or L1 norm. 
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Thesis 2  [Relation of CS to physical implementations of 
terahertz imaging systems – holistic approach] 

I have shown, that in practical implementations of integrated FET based terahertz imagers, 

holistic optimization (system level, including both hardware structures and post-processing) 

results in SNR gain over the conventional component based optimization. Thus, otherwise 

deprecated solutions like serial connection of multiple detectors or induced current can be 

rational design choices. [1] 

(The actual theses, 2.1 and 2.2 follow in the next sections.) 

3.3.1 Passive gain of a CS architecture 

Here I describe the passive gain of the architecture without considering the noise suppression of 

CS post-processing. This also means that I assume ideal reconstruction, because existing 

theoretical upper bounds do not reflect the real performance of actual CS algorithms (see more 

remarks on this in the discussion). 

I define ‘sample count’ (𝑆) as the maximum number of digitized samples, the imaging system 

acquires each frame to calculate a single pixel value (oversampling rate). Every frame assumes 

the reconstruction of all pixels. 

Both the maximum integration time (𝑡𝑖𝑛𝑡) and the frame rate (𝑓𝑝𝑠) are taken as a dimensionless 

ratio, where the point of reference is 0.5 s and 1 Hz, respectively – conforming to the definition 

of NEP. 

Most of the implementations multiplex the read-out; the number of LNAs is smaller than or 

equal to the number of columns in the array and the number of A/D converters (𝑟) is even more 

restricted: 𝑟 ≪ 𝑁, where 𝑁 is the total number of pixels in the array. This confines the sample 

count (𝑆) in any case: 

 S ≤
r fs

N fps
  , (44) 

where 𝑓𝑠 and ‘𝑓𝑝𝑠’ stand for the sampling frequency of the A/D converters and the acquisition 

speed (frame per second), respectively. 

The small area available for one pixel restricts the size of the integrating in-pixel capacitance, 

therefore also the integration time. Near-continuous integration would mitigate this problem 

with correlated double sampling (CDS) or correlated multiple sampling differential averaging 

(CMSDA) techniques by sampling at higher rates and averaging [17]. The noise suppression 

can be as high as 40% according to a paper on CMSDA [18] considering 1/f noise and fixed 

pattern noise. Although, the switching noise of the direct path still remains a significant, 

additional noise source, according to [17]. 
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However, due to the high noise level and the weak THz sources, frequency filtering is advisable 

that increases SNR with orders of magnitude. For this, I assume lock-in amplification with 

digital phase-sensitive detection (PSD) in the post-processing, so the source modulation 

frequency (𝑓𝑠𝑚) gives an upper bound for the integration time either way:  

 𝑡𝑖𝑛𝑡 ≤
1

2𝑓𝑠𝑚 
. (48) 

I compare the serial, CS capable architecture to the non-serial, uniform array in Table 4. 𝑃𝑑𝑒𝑡 =

√𝐵 𝑁𝐸𝑃 and 𝑃𝐿𝑁𝐴 ≈ 𝑇0𝑘𝐵𝐵 (10
𝑁𝐹

10 − 1) stand for the noise power of a single detector and the LNA 

noise power, respectively. All the other notations are indicated in Table 4. I do not recommend 

in-pixel integration because of the limited space and the antenna clearance; furthermore, VLSI 

implementations prefer oversampling to in-pixel integration [17], [18] and loading effects also 

justify integration after the LNA. Thus, I consider integration only after the amplifier with an 

integration ratio (tint) referenced to 0.5 s as I have mentioned above. 

Our analysis assumes ideal signal transmission and multiplexing on both the CS and non-CS 

case. Hence, the sample count equals its upper limit: 

𝑡𝑖𝑛𝑡 
We assume no capacitance inside the pixel; this is the 

relative integration time (referenced to 0.5s – the base of 

NEP); means integration after the LNA (𝑡𝑖𝑛𝑡 = (int. time 

in sec)/0.5 sec; actually this is around 0.6 µs 

𝜂   
efficiency of summation (here 

~0.81) 

 𝐵 
bandwidth of the 

measurement 

𝑓𝑠  sampling frequency of the A/D converters 𝑇0 290 K 

𝑃𝑡𝑜𝑡𝑎𝑙   total noise power 𝑘𝐵 Boltzmann constant 

𝑁  number of pixels in the array 𝑁𝐹 noise figure of the LNA 

𝑀  
number of needed CS measurements; M ≈ 4s log(N),if the 

image is s-sparse (value for the whole image) 
𝑆 

sample count (see def. in the 

text) 

𝑓𝑝𝑠  image acquisition speed (frame per second) 𝑘 number of pixel clusters 

𝑀𝑝𝑐    
number of needed CS measurements per cluster (Mpc < 

Npc) 
𝑟 number of A/D converters 

𝑁𝑝𝑐 number of  pixels per cluster (pixel cluster size) 𝑁𝑐𝑠 
the average number of active 

pixels in CS patterns within 

 𝑡𝑖𝑛𝑡 

non-CS architecture CS architecture 

Sensor SNR 

𝑆𝑁𝑅𝑠𝑒𝑛𝑠𝑜𝑟 = 
1

(𝑃𝑑𝑒𝑡+𝑃𝐿𝑁𝐴)  
1

𝑡𝑖𝑛𝑡
  
𝑁 𝑓𝑝𝑠

𝑟 𝑓𝑠

  
𝑆𝑁𝑅𝑐𝑠

𝑠𝑒𝑛𝑠𝑜𝑟 = 
(𝑁𝑐𝑠𝜂)

2

(𝑁𝑝𝑐𝑃𝑑𝑒𝑡+𝑃𝐿𝑁𝐴) 
1

𝑡𝑖𝑛𝑡
  
𝑀𝑝𝑐

𝑁𝑝𝑐
 
 𝑁𝑓𝑝𝑠

𝑟 𝑓𝑠

 (45) 

Pixel SNR 

𝑆𝑁𝑅
𝑝𝑥
= 𝑆𝑁𝑅𝑠𝑒𝑛𝑠𝑜𝑟   

𝑆𝑁𝑅𝑐𝑠
𝑝𝑥
= 

(
𝑁𝑐𝑠𝜂

𝑁𝑝𝑐
)
2

(𝑃𝑑𝑒𝑡+
1

𝑁𝑝𝑐
𝑃𝐿𝑁𝐴) 

1

𝑡𝑖𝑛𝑡𝑆

 (46) 

Relative total noise power 

𝑃𝑡𝑜𝑡𝑎𝑙 = (𝑃𝑑𝑒𝑡 + 𝑃𝐿𝑁𝐴)
1

 𝑡𝑖𝑛𝑡𝑆
  𝑃𝑡𝑜𝑡𝑎𝑙 = (𝑃𝑑𝑒𝑡 +

1

𝑁𝑝𝑐
𝑃𝐿𝑁𝐴)

𝑁𝑝𝑐𝑀𝑝𝑐𝑁 𝑓𝑝𝑠

 𝑡𝑖𝑛𝑡 𝑟 𝑓𝑠 (𝑁𝑐𝑠𝜂)
2 (47) 

Table 4  The performance comparison of a serial and a uniform detector architecture 
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 𝑆 =
𝑟 𝑓𝑠 

𝑀𝑝𝑐

𝑁𝑝𝑐
𝑁 𝑓𝑝𝑠

 , (49) 

where 𝑀𝑝𝑐 and 𝑁𝑝𝑐 are the number of pixels and needed measurements per cluster, respectively. 

By the non-CS architecture, these parameters equal to one. Considering averaging 𝑆 has a direct 

effect on the SNR, likewise tint and the gain of the Fast Fourier Transform (FFT) from the PSD 

depends similarly on the sample count: 

 𝐹𝐹𝑇𝑔𝑎𝑖𝑛 = 10 log (
S

2
) [dB], (50) 

This approximation assumes a flat noise spectrum; however, the actual gain of the frequency 

filtering can be higher, due to the low frequency flicker noise terms and several artefacts at 

discrete frequencies. 

In the first two rows of Table 4, the SNR of the measurement and the resulting pixels show up 

as ‘sensor SNR’ and ‘pixel SNR’, respectively. In the third row of Table 4, I give the general 

formula of the total noise power (Ptotal) considering all the losses by referencing it to unity signal 

power. Comparing the pixel SNRs, (46) involves the following inequality should hold to keep 

the pixel SNR of the serial array higher than that of a uniform array. 

 (𝑃𝑑𝑒𝑡 + 𝑃𝐿𝑁𝐴)(𝑁𝑐𝑠𝜂)
2 ≥ (𝑃𝑑𝑒𝑡 +

1

𝑁𝑝𝑐
𝑃𝐿𝑁𝐴)𝑀𝑝𝑐𝑁𝑝𝑐   (51) 

Since our prototype fulfills the following condition,  

 (𝑁𝑐𝑠𝜂)
2 ≥ 𝑀𝑝𝑐𝑁𝑝𝑐 (52) 

the advantage of the CS architecture is obvious: it tolerates the LNA noise much better giving 

the same SNR even at an order of magnitude higher LNA noise power. Therefore, the achieved 

performance of our sensor would be greater than or equal that of a non-CS array with arbitrary 

Pdet, PLNA,  𝑡𝑖𝑛𝑡, 𝑁, 𝑓𝑝𝑠, 𝑓𝑠 and 𝑟 < 𝑁/𝑁𝑝𝑐.  

Equation 47 shows that Ptotal is proportional to (N fps). Since N ≫ fps, N affects the most the 

performance of the read-out circuit at large array sizes. The proposed CS array has just a single 

output per a pixel bunch, thus it reduces the number of analog signals by a factor of 𝑁𝑝𝑐 = 16 

facilitating the resource allocation. 

If (52) does not hold than the CS architecture has advantage only if the ratio of 𝑃𝑑𝑒𝑡 and 𝑃𝐿𝑁𝐴 

fulfills the inequality: 

 
𝑃𝐿𝑁𝐴

𝑃𝑑𝑒𝑡
>

(𝑁𝑐𝑠𝜂)
2 − 𝑁𝑝𝑐𝑀𝑝𝑐

 𝑀𝑝𝑐 − (𝑁𝑐𝑠𝜂)
2  .  (53) 

This assessment can be reformulated regarding the noise figure of the LNA: 
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 𝑁𝐹 ≥ 10 log (
𝑀𝑝𝑐(𝑁𝑝𝑐−1)

(𝑁𝑐𝑠𝜂)
2−𝑀𝑝𝑐

) . (54) 

The development of local oscillators promises heterodyne detection in a monolithic form. The 

much lower theoretical NEP values – on the order of 10-20 W/√Hz assuming a local oscillator 

power of 10 µW – will need new low noise solutions. The CS coarse grain architecture could 

be ideal for these scenarios. From this viewpoint, the above criterion has also much practical 

importance. 

Not represented in the table, but the non-linear reconstruction also filters Gaussian noise to 

certain extent. Mainly the high frequency noise terms fall out during the sparsity driven 

optimization. Yet, by up-scaling and proper preconditioning, the gain of the non-linear 

reconstruction also increases with natural, structured images [41]. The signal is ‘s-sparse’ if a 

basis exist in which all component of the signal vector is close to zero, but s element. Then, only 

s∙log(N/s) measurement is enough to reconstruct the signal [16] (see details in section 1.2). 

These facts give the scalable nature of the architecture. 

The SNR advantage of the CS solution takes the following form (in dB): 

 10 log(
1+ 𝐾

1+ 
𝐾

𝑁𝑝𝑐
 

(𝑁𝑐𝑠𝜂)
2

   𝑀𝑝𝑐𝑁𝑝𝑐
) , where  𝐾 = 

𝑃𝐿𝑁𝐴

𝑃𝑑𝑒𝑡
 . (55) 

For the specification of the LNA it is important to express the relation of the architecture to the 

noise factor of the LNA (FLNA). 

 𝐾 = 
𝑃𝐿𝑁𝐴

𝑃𝑑𝑒𝑡
= 𝐹𝐿𝑁𝐴 − 1 (56) 

The advance can turned into SNR increase as depicted above; however, loosing the specification 

of the LNA or allowing greater detector noise could be also of practical importance. Therefore, 

I give also the other two extreme cases where the CS architecture would still provide the same 

performance as a uniform array: the advance in terms of the detector noise or the noise factor of 

the LNA. 

 𝑃det_max =
(𝑁𝑐𝑠𝜂)

2

𝑀𝑝𝑐∙(
𝑁𝑝𝑐−1

𝐹
 + 1)

 𝑃𝑑𝑒𝑡 (57) 

 𝐹LNA_max = (𝐹𝐿𝑁𝐴 − 1) ∙ 𝑁𝑝𝑐 + 1 (58) 

According to the above results (especially Table 4, (51), (52) and (55) I conclude to the 

following assessment: 
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Serial, CS based THz FET detectors have advantage over uniform arrays 

Thesis 2.1 I have proved, that serially connected sensors are advantageous in VLSI 

implementations of FET based, integrated terahertz imagers if special conditions 

hold for the detector NEP and the noise figure of the integrated LNA. 

To exploit the statistical advantages of a greater image size, it is not necessary to increase further 

the size of the pixel cluster. The samples from the clusters can be summed up in different 

combinations during the post-processing to create greater data units for the reconstruction. 

Hence, the serial clusters can be inserted into conventional read-out organizations forming 

coarse-grain arrays and still preserving the potential statistical advantages. 

An additional column of the table above can be the single pixel camera with a spatial light 

modulator (SLM). This is a promising approach, combining highly focused beam with multi-

pixel sensing. It preserves the single pixel area and one can utilize a more bulky single detector 

with lower NEP. However, today state off the art SLMs suffer from cross talk, power loss, and 

frequency sensitivity. 

The condition (52) means the actual performance of the array highly depends on the 

compression ratio and the accuracy of the algorithm that is the efficiency of the used 

reconstruction mechanism. Therefore, the evaluation of the CS solutions should include both 

the hardware and post-processing part and handle them as a whole. 

3.3.1.1 Discussion 

Serially connected architectures are not seem to be advantageous by themselves. However, if 

one combines this approach with the existing read-out organizations, it forms a coarse grain 

architecture that extend the possibilities of implementation: building larger arrays or increasing 

the image SNR. 

This solution organizes the pixels of a regular array in serially connected, but individually 

controllable ‘clusters’ that provide a single, summed response of the constituting pixels. Hence, 

one performs a sequence of measurements with different pixel activation patterns to reconstruct 

the individual pixels of each cluster. This reduces the size and noise of the pixel level electronics 

and needed readout circuitry, whereas makes available the CS post-processing toolset. Table 5 

presents the advantages and disadvantages of the solution in an outlined form (concerning our 

proof-of-concept chip specifics to match with the presented measurements in section 0). 

If the compression ratio is above a given threshold, this coarse grain, CS architecture provides 

better performance regarding both speed and SNR – measurements in section 4.2 achieved this 

limit presented in section 3.3.1. 
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Advantage Disadvantage 

Complex measurements can be done that 

can reduce the overall number of needed 

measurements (CS) and increase SNR 

through the noise suppression of the non-

linear optimization based reconstruction. 

These advantages increase by scaling up. 

At small size arrays (< 100 pixels), the 

advantage is smaller; the sample count 

reduction is 62.5% in the case of our 

prove-of-concept chip with one pixel 

cluster (16 pixels). 

Only one low noise amplifier (LNA) 

needed per pixel cluster. Thus, the LNA 

noise contribution is far less than in the 

case of non-serial architectures and the 

needed area decreases significantly. 

Additional binary switching circuitry 

needed for pattern generation (e.g. a shift 

register (SR) and a buffer on each bit to 

select between the two global reference 

voltages (on/off); but switches can be 

shared among several clusters) 

It forms a coarse grain architecture that 

reduces spatial multiplexing 16 times 

and improves antenna clearance. 

The additional serialization limits the 

maximal theoretical in-pixel integration 

time. 
Table 5  Outline of the main properties of the complex sampling capable architecture 

To achieve these ideal results one has to apply the “best” reconstruction algorithms. Since the 

image size is small, we have much more freedom in performing computationally intensive post-

processing (like the proposed meta-algorithm in 0). However, solving the combinatorial 

problem is still too expensive with brute-force even for 8-bit four by four pixel images. 

Therefore, I suggest to reverse the problem: build application specific library from the images 

and apply a 2D, model based reconstruction. These problems are hard to solve, but tractable. 

Yet, the CS sensor can solve easily the library building task, because it is capable for normal 

single-pixel measurements at a lower speed. Hence, the initialization of the system would only 

require measurements with the very same configuration at a low speed. This enables high 

quality, low noise library data that is the essential prerequisite of good reconstruction 

performance. 

3.3.2 Considerations on the implementation 

Lisauskas in [10] investigated the effect of induced current on the detector noise and gave a 

theoretical upper bound on the achievable sensor SNR that increases at most to 1.35 times 

relative to the unbiased detector transistor. This advance should show up at subthreshold biasing 

and above the corner frequency of the excess noise. Nevertheless, there is no reported solution 

above 1 (attributing the effect to implementation losses (load) and altered noise sources). To 

summarize the effect: the signal level may grow significantly, but the noise increases at an even 

greater rate. (Resonant detection is also achievable in special cases; see [42] for a concise 

review.) 

Later on, Földesy gave a new model for the in-circuit behavior of FET detectors [6] and proved 

that finite isolation between source and drain cause cross talk between the source-side and drain-

side small signal response. Therefore, the measured value can be only smaller than that of the 
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intrinsic open drain response and induced current does not affect this DC photoresponse (see 

(16) and (21) in [6]). 

In spite of these facts, I have studied the characteristics of biased detection at CS based 

architectures and I have given general estimations on the current loss. 

According to Földesy [6], the non-resonant FET detector works as a common-gate amplifier 

with a theoretical minimum noise factor (𝐹det) between 1.6 and 3 depending on the technology 

and the transistor parameters. That is, the bias current does not change the photoresponse at all, 

but additional current noise turns up resulting the reduced SNR of the amplified output. This 

enables to handle the detector on a similar way as the LNA and incorporate it in the previous 

model of CS based detectors. Hence, the SNR loss of the unchanged system (given in dB) will 

have the following form: 

 𝐿(𝐾,𝑁𝑝𝑐 , 𝐹𝑑𝑒𝑡) = 10 log(
(
1

𝐾
𝐹𝑑𝑒𝑡+𝐹𝑑𝑒𝑡)∙𝑁𝑝𝑐+𝐾+1

(
1

𝐾
𝐹𝑑𝑒𝑡+1)∙𝑁𝑝𝑐+𝐾+𝐹𝑑𝑒𝑡

∙ (1 +
log 𝑘

log𝑁𝑝𝑐
)) , where 𝐾 = 

𝑃𝐿𝑁𝐴

𝑃𝑑𝑒𝑡
 (59) 

If the noise figure is given, substitute 𝐹𝑑𝑒𝑡 = 10
𝑁𝐹𝑑𝑒𝑡
10  in the above equation. Assuming 𝑁𝐹𝑑𝑒𝑡 =

10 log(𝐹det) = 10 log(3) = 4.77 the SNR loss of current mode is: 

 𝐿(𝐾,𝑁𝑝𝑐 , 3) =  10 log (
3Npc+1+𝐾2

Npc+3+𝐾2
 ) , where  𝐾2 = 

𝑃𝐿𝑁𝐴

𝑃𝑑𝑒𝑡
+
(3𝑁𝑝𝑐∙𝑃𝑑𝑒𝑡)

𝑃𝐿𝑁𝐴
 (60) 

The left side of Figure 34 visualize this 2D function to have some notion about its characteristic. 

The relevant part is 𝐾 ∈ (0,10) and 𝑁𝑝𝑐 ∈ (10,10
2), where the loss is relatively small – see the 

right side of the figure, where the 𝑁𝑝𝑐 = 16 case is depicted.  

 

Figure 34  The SNR loss caused by the current mode in CS sensor arrays; without heterodyne detection 

K < 1 
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The upper bound of the loss is 

 𝐿(𝑁𝑝𝑐 , 𝐹𝑑𝑒𝑡) ≤ 10 log (
𝐹𝑑𝑒𝑡∙𝑁𝑝𝑐+1+2√𝐹𝑑𝑒𝑡∙𝑁𝑝𝑐

𝑁𝑝𝑐+𝐹𝑑𝑒𝑡+2√𝐹𝑑𝑒𝑡∙𝑁𝑝𝑐
 ) (61) 

This bound gives a maximal loss of 2.79 dB for 𝐹𝑑𝑒𝑡 = 3 and  𝑁𝑝𝑐 = 16. 

The corner frequency of the flicker noise shifts to the MHz region in current mode. However, 

induced current allows higher modulation frequencies and can compensate for it. As proposed 

above, current mode reduces the losses of long serial chains, thus increases the efficiency of 

summation and allows greater CS arrays. (Increase of the array raises the current loss.) 

Consider a CS array of greater size (𝑁𝑝𝑐2) assuming that 𝑀𝑝𝑐 = s ∙ log(𝑁𝑝𝑐), then the general 

formula modifies to the following expression: 

 𝐿(𝐾,𝑁𝑝𝑐 , 𝐹, 𝑘) = 10 log(
(
1

𝐾
𝐹+𝐹)∙𝑁𝑝𝑐1+

𝐾+1

𝑘

(
1

𝐾
𝐹+1)∙𝑁𝑝𝑐1+𝐾+𝐹

∙ (1 +
log𝑘

log𝑁𝑝𝑐1
)) ,  

 where 𝐾 = 
𝑃𝐿𝑁𝐴

𝑃𝑑𝑒𝑡
 and 𝑘 =  

𝑁𝑝𝑐2
𝑁𝑝𝑐1

 (62) 

If we substitute 𝐾 with (𝐹𝐿𝑁𝐴 − 1) we get a more pronounced formula.  

 𝐿(𝐹𝐿𝑁𝐴, 𝐹𝑑𝑒𝑡 , 𝑁𝑝𝑐 , 𝑘) = 10 log(
(

1

𝐹𝐿𝑁𝐴−1
+1)∙𝐹𝑑𝑒𝑡𝑁𝑝𝑐1+

𝐹𝐿𝑁𝐴
𝑘

(
𝐹𝑑𝑒𝑡

𝐹𝐿𝑁𝐴−1
+1)∙𝑁𝑝𝑐1+𝐹𝑑𝑒𝑡+𝐹𝐿𝑁𝐴−1

∙ (1 +
log𝑘

log𝑁𝑝𝑐1
)) ,  

 where 𝑘 =  
𝑁𝑝𝑐2
𝑁𝑝𝑐1

 (63) 

Equation 63 gives the exact SNR loss caused by the induced current, considering a k-times 

increase of the array size and could be used for evaluating an actual configuration. Increasing 

the size of the array do not imply an obvious SNR increase (the second term within the logarithm 

is slightly greater than one). It is also obvious that most of the cases the 𝐹𝑑𝑒𝑡𝑁𝑝𝑐1 term will 

dominate the loss, but the relative tolerance of the LNA noise increases. 

DOI:10.15774/PPKE.ITK.2015.006



- 63 - 

 

 

Figure 35  Equation 63 at low 𝐹𝐿𝑁𝐴 values; 𝐹𝐿𝑁𝐴 = 3, 𝑁𝑝𝑐 = 16; the current loss can be less than 15 %  

The interesting case is when the low noise amplifier is very efficient for instance if 𝐹𝐿𝑁𝐴 = 1.2 

the loss is less than 13 %. The open drain efficiency of the summation (𝜂) is only 0.8 and its 

expected improvement can balance the caused loss. According to the measurements of Elkhatib 

[30] summation efficiencies over 0.9 are achievable at appropriate gate-bias and load. 

Based on these facts I conclude to the following thesis: 

Induced current in integrated systems 

Thesis 2.2 I have proved that induced current can enhance overall system SNR in application 

oriented implementations of FET based FPAs. 

To give a sound picture, I also describe the simple, non-CS case, where induced current can 

result absolute SNR gain, if the performance of the integrated LNA is limited. We can get a 

practical lower bound on the detector gain 𝐺1 by the noise factor of the system using (42). 

 𝐹𝑠𝑦𝑠 = 𝐹𝑑𝑒𝑡 +
𝐹𝐿𝑁𝐴−1

𝐺𝑑𝑒𝑡
 (64) 

Hence, the degradation of the system SNR can be balanced by the gain of the detector – working 

as a common gate amplifier – if the gain fulfills the following inequality: 

 𝐺𝑑𝑒𝑡
′ > 

𝐹𝐿𝑁𝐴−1

𝐹𝐿𝑁𝐴−𝐹det
′  , and assuming (65) 

 𝐹det
′ <

𝐹𝐿𝑁𝐴−1

𝐺𝑑𝑒𝑡
+ 𝐹𝑑𝑒𝑡 , (66) 

that means cases, where the LNA is high relative to the detector noise: 

 𝐺𝑑𝑒𝑡
′ (𝐹det

′ − 𝐹det )  + 1 < 𝐹𝐿𝑁𝐴 . (67) 
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where 𝐹det
′  is the noise factor of the detector in current mode. Actually, if 𝐹det 

′ = 3, then 𝐺det
′  

should obey the rule to achieve an absolute SNR increase: 

 𝐺det
′ >

𝐹𝐿𝑁𝐴−1

𝐹𝐿𝑁𝐴−3
 assuming that 𝐹𝐿𝑁𝐴 > 2𝐺det

′ + 1. (68) 

The lower bound of the gain, where current mode results an absolute SNR increase shows up in 

Figure 36 without considering condition (66). 

 

Figure 36  The lower bound of the detector gain, where current mode yields increase of the SNR, without 

condition (66); this advantage depends on 𝐹𝐿𝑁𝐴 and of course, on 𝐹𝑑𝑒𝑡
′  itself; 𝐹𝑑𝑒𝑡

′ = 𝐹𝑑𝑒𝑡
𝑐𝑢𝑟𝑟 in the figure; 

Note: 1) a common gate amplification around thirteen is plausible 2) there is another linear criterion 

I repeat the small signal amplification of a terahertz detector in common gate amplifier 

configuration from [6]: 

 𝐺𝑑𝑒𝑡
′ = −

(𝑔𝑑𝑠+𝑔𝑚)𝑍𝑙𝑜𝑎𝑑

1+𝑔𝑑𝑠𝑍𝑙𝑜𝑎𝑑
. (69) 

The irradiation that couples to the drain will slightly decrease the response, but we can use the 

following simple lower bound to incorporate this effect. 

 𝐺𝑑𝑒𝑡
′ ≥ 

(𝑔𝑑𝑠+𝑔𝑚)𝑍𝑙𝑜𝑎𝑑

1+𝑔𝑑𝑠𝑍𝑙𝑜𝑎𝑑
− 1 , (70) 

where the channel conductance, transconductance, and the total load of the read-out circuit are 

treatable design parameters. 

In the end, we arrive to the fact that current mode can result higher SNR in the non-CS case in 

special cases dependent on design choices like 𝐹𝐿𝑁𝐴 and 𝐺𝑑𝑒𝑡
′ . The condition of the SNR gain 

is the following: 
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{
 
 

 
 𝑖𝑓 0 < 𝐺𝑑𝑒𝑡

′ < 1 (𝑙𝑜𝑠𝑠𝑦 𝑐𝑜𝑛𝑓. ) 𝑎𝑛𝑑 3 +
2

𝐺𝑑𝑒𝑡
′ −1

< 𝐹𝐿𝑁𝐴 < 𝐹det
′

𝑖𝑓 1 < 𝐺𝑑𝑒𝑡
′ < 2 𝑎𝑛𝑑 3 +

2

𝐺𝑑𝑒𝑡
′ −1

< 𝐹𝐿𝑁𝐴

𝑖𝑓 2 < 𝐺𝑑𝑒𝑡
′  𝑎𝑛𝑑 2𝐺𝑑𝑒𝑡

′ + 1 < 𝐹𝐿𝑁𝐴

 (71) 

In addition, current mode helps the system integration of the THz FET based FPAs. Greater 

drain current strengthens the driving capability of the detector allowing higher input load from 

the read-out circuitry. Eventually, it enables higher modulation frequency and increases the 

signal level, what can make the LNA implementation easier. The current mode sensor tolerates 

the environmental noises better, although, the corner frequency of its own flicker noise rises 

from a few kHz towards the MHz region. 

Biased serial pixel blocks promise to cancel the losses caused by the loading effects and enable 

greater pixel clusters. With this, current mode can further reduce the number of LNAs, the LNA 

noise contribution and enhance the compression ratio. 

Since, design and manufacturing costs restrict the area, technology, and design complexity there 

could be several suboptimal design choice from the viewpoint of the final performance. In these 

cases, induced current may also enhance the output SNR. Parameter sweeps with our detector 

support these findings. 

Anyway, there is strong dependency among these parameters: gate voltages, modulation 

frequency, induced current, array size and pitch, minimal step of raster scanning. Thus, they 

cannot be tuned independently. This is why I suggest optimizing these values on a holistic way, 

starting at the design phase of the detector array. 

Since different design goals (cost, time, easy system integration and reliability) enforce several 

suboptimal design choice from the point of the final performance, induced current may enhance 

the output SNR. Parameter sweeps with our detector support these findings. 

 
Fig. 6  SNR of the detector [dB] at Ugs = 0.75 V gate voltage 

Fig 6 shows the dependence of the SNR on the modulation frequency and the injected current 

at a constant Ugs = 0.75 V and Us connected to ground. It shows that in the given setup (single 

antenna coupled Si MOS FET with antenna connections on the source and the gate irradiated at 

360 GHz frequency, LNA with a noise figure of about 3) the injected current increase the overall 

SNR of the system. This figure is based on the raw data, acquired by the DAQ card. 
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3.3.2.1 Reconstruction on extremely small images 

By the proposed realization of CS measurements, the size of the pattern generator block is 

limited. Restricting the number of the different patterns per pixel cluster is also desirable to 

decrease the complexity of the auxiliary electronics. The effect can be enhanced, if the reduced 

set of patterns can be used uniformly on the entire array. 

3.3.2.2 The effect of the CS measurement scheme on the A/D conversion 

To evaluate the effect of the CS architecture on the bit depth of the A/D converters, I assumed 

that at most √𝑁 A/D converters gather samples in a time multiplexed fashion on the chip. 

A drawback of the CS measurements from digitalization point of view they require 𝑁𝑐𝑠𝜂 times 

higher dynamical range. Therefore, maintaining the same precision would need with log2(𝑁𝑐𝑠𝜂) 

bits higher bit-depth A/D converters. (However, the minimal received signal level also increases 

shrinking the actually utilized dynamical range.) 

For instance, an 8 bit pixel representation on a uniform array would demand 𝐷𝑏𝑖𝑡 ≈

8 + log2(𝑁𝑐𝑠𝜂)  bits on the CS array (𝜂 ≈ 0.8, 
𝑁𝑐𝑠

𝑁
≈ 0.75). 

Since 𝑁𝑐𝑠 is small in the proposed coarse grain arrays (~12) extreme bit depths are not needed; 

actually the 8 bit depth grows to 11 bits. The fix measurement patterns can only slightly improve 

on this. 

Simulations on natural images support the viability of simple approximations, like a test set 

based average dynamical range that provides acceptable performance. 

In practice, the real dynamical range of the sensors is not utilized, as the problem is the weak 

signal. That is, the biological and diagnostic targets are quite similar in having high attenuation 

factor at these frequencies. Therefore, sensing little changes in refractive index (in attenuation 

factor) is even harder and the bottleneck of the system will be the detectivity and sensitivity of 

the sensors. Thus, both reflective and transmissive THz images have usually low contrast, hardly 

utilizing 8-10 bits. This can be interpreted as the CS measurement scheme helps to exploit more 

the dynamical range of the sensors and utilizes the “spare bits of the A/Ds” if any left in the 

architecture or it needs only moderately higher A/Ds. 

3.3.2.3 Information stream of the sensors 

The efficiency of the sensors regarding the total received information per second depends on 

the SNR of the sensors and on the relation of the image and the measurement scheme. The SNR 

determines the amount of information that a single measurement could provide, however this 

value is affected by the correlation among the pixels within a frame and between consecutive 

frames. That is, finally, the entropy of the gathered sample set (𝐸𝑛𝑡(𝐷)) – considering multiple 

images or a set of linear measurements belonging to a single frame – will determine the gathered 

information (𝐼). This involves the SNR (not given in dB) of the single measurements in the 
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constituting probabilities (𝑃𝑖) by guiding the quantization – increased dynamical range with the 

maintained precision; 𝑖 = 1,… , ⌊𝑆𝑁𝑅⌋. 

 𝐼 =  𝐸𝑛𝑡(𝐷) ∙ |𝐷| (72) 

 𝐸𝑛𝑡(𝐷) = −∑ −𝑝𝑖 ∙ log 𝑝𝑖
⌊𝑆𝑁𝑅⌋
𝑖=1  (73) 

where 𝐷 is the data set and |𝐷| indicates the cardinality of this set. 𝑃𝑖 is approximated with the 

frequency of an item (𝑥) in the set (𝐷). Here, the SNR is given as a pure intensity ratio or the 

square root of a power ratio. 

At this point, I consider entropy only within single images; however, entropy decreases 

significantly in video recording. If the change is small on consecutive images (that is the 

difference image is sparse), the CS-framework is inherently capable to efficiently handle the 

stream – even providing a new frame at every single measurement. Therefore, this scenario 

increases the advantages much. 

Nevertheless, at real applications, the emphasis is on improving the quality of still pictures (and 

depth of sensing), therefore I investigated the entropy of bit streams resulting from a single 

frame. 

Due to the increased dynamical range and the spatially distributed measurements, the entropy 

of the CS measurements is usually higher than that of a uniform array. My simulations showed 

(14 test images in more than 100 different variations, in sizes from 16 to 2.5∙103 pixels) that the 

CS measurements had approximately 25-30 % higher entropy, although, at the smallest size this 

advantage doesn’t show up (See Figure 37 to have an insight of the characteristics). 

 

Figure 37  The entropy of normal and compressed sampling based measurements at different image size 

and test image; size is given in 10x pixels; the z-axis gives the entropy of a single measurement in bits; 

the y-axis lists the indexes of the 8-bit, gray scale images: 1-10 natural images; 11-13 sparse images; 14 

random image; the higher surfaces belong to the linear measurements at different pixel correlation levels 
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– small, but consistent difference; as expected the CS measurements have much higher entropy by 

“sparse” images 

I expect a further, significant increase of relative entropy by video recording at fixed 

background. 

The limit of CS reconstructions whose optimization is driven by relaxed goal functions: they 

are only effective, when applied to images that have only comparable amount of information to 

the entropy of the measurement data stream or less. 

I also note here, that I prefer the use of entropy to characterize the target scene from the 

viewpoint of sparsity, because it is independent from the chosen basis (𝛙). However, the entropy 

depends on the quantization. Thus, one has to pay attention to be consequent by its usage. 

3.4 Related problems 

3.4.1 The problem of the optical setup 

The optical setup also has great impact on the performance. My conclusion is shortening of the 

optical path and reducing the number of constituting elements may be advantageous. For this, 

lens free configurations (Fourier imaging, holography) are also worth to consider. Although, 

this technique would need the extension of the sensitive area to several square centimeters that 

significantly reduce the signal power intensity. One should consider scanning or utilizing 

multiple detector chips. As the mass production of such chips is not expensive, the latter solution 

is viable. 

3.4.2 Raster scanning on non-uniform grids 

There is often need to investigate a greater area of several square centimeters with the maximum 

achievable resolution e.g. inspection of human tissue. Keeping this example, at least a 1.5 cm × 

1.5 cm2 screen size has to be considered to unveil the penetration margins of a melanoma under 

the surface. For this, one has to perform a 2D scan with the available detector. As the resolution 

and frequency increases, the relative efficiency of the embedded antennas decreases (see the 

beginning of section 3.1.2). One option is to use oversized pixels (antennas with greater effective 

length). If scanning is an inherent part of the system, we can use greater pixels of size 0.5𝑘𝜆,

𝑘 = 1,2,3,…. With that, we can avoid the low efficiency of small antennas at frequencies in the 

0.5-1 THz range. (For instance, antennas working at 460 GHz with 2.2 mm pitch size.) 

For this, I suggest the idea of converting the multi-pixel sensing of the detectors into resolution 

increasing with overlapping scanning. According to this, we use imperfect grids with near-

optimal step sizes for determining the measurement locations. With this, one can have greater 

resolution at the cost of overlapping scan positions, but still maximizing the step size to reduce 

the acquisition time. 
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I give here three conditions for determining a near-optimal step size (s), given an actual detector 

(number of detector pixels (kx, ky), pitch size (px, py) both in the horizontal and vertical direction). 

1. Ensuring there is no redundant measurement: 

 𝑚𝑜𝑑( 𝑝, 𝑠) > 0 (74) 

2. Sampling precision within a step size is smaller than 𝑎 

 𝑚𝑜𝑑( 𝑠,𝑚𝑜𝑑(𝑝, 𝑠)) < 𝑎 (75) 

3. (Virtually) extended detector with 𝑏 more rows (y) or columns (x) 

 |
𝑠

𝑚𝑜𝑑(𝑝,𝑠)
− 𝑘𝑥| < 𝑏 (76) 

Then, finding a near-optimal step size is easy by choosing the appropriate additional conditions. 

For instance to get a near-optimal maximal lateral resolution at 2200 μ𝑚 pitch size for a four by 

four pixel array – maximizing also the step size to maintain speed: 

 max
𝑠
(𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 max( 𝑠) , 𝑎 = 1 𝑎𝑛𝑑 𝑏 = 0 (77) 

We get 1760 μm for the near-optimal step size that will provide 240 µm resolution with only a 

few tens of µm error. 

If the needed precision is beyond the full width at half maximum (FWHM) of the focused beam, 

then the result should be deconvolved with the point spread function (PSF) of the optical system. 

With this, we can get a kind of ‘superresolution’ image. Of course, oversampling the image with 

smaller resolution than half the wavelength is not advantageous. 

By reflective imaging of greater, cylindrical objects (e.g. parts of the body) silicon lenses may 

be inappropriate to collect the reflected signal. Utilizing a great, flexible THz array with 

oversized, efficient antennas could be a cost effective alternative. The array of several 

centimeter size could be assembled easily from individual chips placed on a flexible printed 

circuit board (PCB) resulting in a huge pitch. In this case, the scanning of the great area would 

need only the small displacement of the whole array around its center position to increase the 

resolution to the level of a single chip, dense FPA. The scanning time also could be reduced 

with the proposed optimization. 

3.4.3 Depth of sensing 

I continue the considerations from section 2.1 and analyze the depth of sensing in relation with 

the imaging system. 

 𝑧 =
1

2𝛼
ln (

𝑃𝑠𝑜𝑢𝑟𝑐𝑒

√𝐵∙𝑁𝐸𝑃∙𝑆𝑁𝑅
), (78) 
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where the required SNR is approximated with the inverse of the normalized detectability of the 

system. Hence, in our case it takes the form 

 𝑧 =
1

2

1

200
ln (

100∙10−6

√10∙20∙10−12∙100
) ≈ 241 [μm], (79) 

Based on measurements of the noise floor we got comparable results. The actual source output 

power is 102 μW at 460 GHz (and the sensor array has 200 kV/W responsivity); the limit of 

detectability showed up around 6 nW per pixel at 0.1 s integration (serial structure). This enables 

only 

 𝑧 =
1

2

1

200
ln (

100∙10−6

6∙10−9∙100
) ≈ 128 [μm], (80) 

inspection depth with approximately 84 dB SNR, if the beam is perfectly focused on a single 

pixel. The depth takes the following form, when expressed with the noise power of the detector 

and noise figure of the LNA: 

 𝑧 =
1

2𝛼
ln (

𝑃𝑠𝑜𝑢𝑟𝑐𝑒

𝑃𝑑𝑒𝑡∙10
𝑁𝐹
10 ∙𝑆𝑁𝑅

) , (81) 
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4 EXPERIMENTAL VALIDATION - MEASUREMENTS 

To determine the radiation pattern of the antennas the measurement data should be deconvolved 

with an estimated source beam. For the beam estimation I used simple sphere model concerning 

the utilized horn antenna on the AMC. The operation is performed as customary in the frequency 

domain. 

4.1 Targeted diagnostic usage 

Used frequencies (GHz): 325.2, 354.8, 393.8 (depicted on Figure 38.) 

Measurement configuration: intensity registration on a reflective way. 

 

Figure 38  Frequency response of the used detector in a reflective setup. Only three measurement 

frequencies were selected for scanning to reduce acquisition time. 

Water has very high absorption at specific frequencies. The lowest absorption peak is around 

550GHz. Hence, in reflective setup water concentration changes can be registered confidently. 

We used frequencies below 500GHz, with much smaller absorption coefficient that allowed 

registering concentration changes in thicker samples. Cancerous skin areas often show increased 

water concentration (e.g. in the case of superficial basal cell carcinoma or squamous cell 

carcinoma [1]). 

In vivo skin water concentration changes person by person: according to skin type, sustained 

stress and actual status (daily biorhythm). Moreover skin structure (thickness of different layers) 

changes according to skin area (placement on the body) as well. For that reason local contrast 

of absorption intensity can be used to distinguish between healthy and diseased skin areas [2]. 

To this end in vivo measurements should be carried out involving both diseased tissue and its 

broader surroundings. (As a compromise, measurements can be done on animals or on slightly 

affected in vitro skin samples as well.) 
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4.1.1 Water concentration 

The achievable sensitivity in water concentration directly indicates the suitability of the setup 

for water content based classification of tissues. I carried out direct water content measurements 

on paper samples of different thickness. Such results can be seen in Figure 39. Here, the 

thickness of the wet paper sheet provided the ground for comparison. This way approximate 

accuracy could be determined. 

 

Figure 39  Direct water ‘concentration’ measurements on paper samples; The concentrations are the 

followings from the left: moderate (1 unit), low (dry sheet), high (2 unit); indicated in discrete units: 

number of paper sheets on top of each other. These samples were covered with plastic 1 mm thick plastic 

plate to ensure flat surface. At certain points of the plate and at the edges of the different specimens 

distortions can be observed (slight bending of the plate, changes in depth and contaminations); the figure 

shows raw sensor data. 

4.1.2 Ex-vivo investigation of human tissue 

We performed measurements on samples that differ from the original target of the above 

mentioned examination. Three cancerous tissue samples were examined, that were cut out from 

patients 3-4 days before the examination. These columnar structures consist of an overgrown 

tumorous skin tissue and several deeper layers of the skin. 

The specimens were conserved in formalin that changed their natural water concentration. 

However, after cut-out the inter- and intracellular water concentration ratio changes fast and 

shriveling starts by all means. 

The samples were placed in a coplanar plastic structure to ensure smoothed surface. Raster 

scanning was performed with 0.2, 0.3, and 0.5 mm precision respectively. Due to the course of 

the measurement, differentiation among the tissue types was not possible. However, 

inhomogeneities caused by the sponging of the specimens and irregular depletion of water were 

detected. These results can be seen in Fig. 2. Tissue specificity of the different frequencies were 

not significant in the actual range. 
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Figure 40  a) Gray color photo of the sample; b) Normalized intensity image at 354.8 GHz with 0.2 mm 

precision along “x” and “y” dimensions; c) and d) Normalizations within the range of the specimen. 

We concluded that additional trials should be carried out in order to prove the applicability of 

the current sensor and measurement configuration for such diagnostic classification. Those tests 

should be performed on samples that have greater lateral extension, and on which local contrast 

changes of both healthy and diseased tissue can be registered. 

4.1.2.1 Conclusions 

As the main result of these measurements, I could identify the most important technical 

problems: 

 The surface roughness of the observed objects should be handled at reflective 

measurements, because it makes the measurements unreliable. – Continuous 

repositioning of the target to find the maximal reflected signal at every point partly 

mitigates the problem in the case of point scanning. 

 The coherence of the source should be eliminated, because subtle changes in the setup 

can alter the recorded intensity by more than 50%. For instance, the changing of the 

sample to another one or the slight excursions during in-vivo measurements cause 

disturbances. – One solution is the application of a diffusor plate (a moving or rotating 

diffusor plate is significantly better due to the smoother time average of the samples - 

suggested by Péter Földesy). 

a) 

d) c) 

b) 
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 The waveguide based source has sharp peaks in its frequency spectrum and the device 

has considerable frequency offset error that must be canceled in order to produce 

comparable measurements. Péter Földesy supported this uncertainty of the recorded 

spectra with several frequency sweeps utilizing the Ericsson power meter. 

4.2 Imaging of phantoms and test objects 

In Fig. 11 and in Fig. 12 two CS measurements can be seen. The first image shows a part of 

phantom: the edge of a metal coin between two gummed paper sheets. The size of the captured 

image is 36x68 pixels (7.92 × 14.96 mm). It covers the central part of the coin that takes place 

on the right side of the scene. 

The image was created with the 4x4-pixel serially connected array fixed on a moving stage. This 

way, we have simulated a ‘virtual’ detector of size 36x68 pixels. The pitch is 220µm in both 

dimensions, thus the chip had to be moved with a raster step size of 880 µm. In each position 

six measurements was made with different random patterns. From this data of the 4x4-pixel tiles 

a full frame image was reconstructed. Then, we have removed the fix pattern noise of the array 

and that of the reconstruction algorithm itself. However, increasing the image size the quality 

also improves without the need for increasing cluster size further. 

We calculated the incident source power based on a beam scan at 10 cm distance. Assuming 

ideal positioning of the object, we have selected the area that equals the image size by 

thresholding the intensity recording. Then, the incident power is the integral of the intensity on 

the scanned area over that on the full recording (2 cm × 2 cm) multiplied by the total output 

power of the source. 

Hence, the illuminating total source power was less than 46 µW at 459.9 GHz that spread over 

the surface of the phantom object. The noise floor was about 0.2 mV; the two paper sheets were 

not straight and the glue has strengthened the dispersion (the average attenuation was 36.5%). 

This caused low contrast at some parts on the left part of the image at the resulting average 

incident power of 11.9 nW per pixel (0.048 mm2). The total integration time was 0.6 s for 

reconstructing the 16 pixels (performing a single measurement with one random pattern took 

0.1 s). The contrast is still enough to notice the edge of the coin inside the phantom. 
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Figure 41  36x68 pixels image of a phantom acquired with CS technique 

 

Figure 42  32x60 pixels CS image of the tip of a bedpan 

The second image was created on the same way; it shows the tip of a bedpan (Fig. 12). The 

image size changed to 32x60 pixels (7.04x12.32mm). The metal tip of the bedpan was 2.2mm 

thick around which the diffraction patterns are also clearly visible. 

 
Figure 43  2D raster scanned image with full averaging (a) and cross-section (d) of a felt-tip pen 

(belonging photo (b) and sinogram (c) are also included) 

Imaging of plastics and composite materials is a promising application area of terahertz 

technology [38]. Hence, we have selected a felt-tip pen for non-CS, raster scan imaging test at 

459.2 GHz frequency. The step size was 100 µm; all detectors were active and no post-

processing was applied on the image except the intensity normalization. Fig. 13 presents these 

results. The pen was rotated nearly 15 degrees about its longitudinal axis and tilted with 50 

1mm 

21 mm 

imaged part of the phantom 

gummed 

paper sheets 
  

1mm 
  

10 mm 

a) 
b) 

d) 

c) 
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degrees relative to the vertical axis. We have also captured a cross sectional image in the same 

way (all detectors on, no sub-image reconstruction). The object was rotated by 3.6-degree steps; 

the dotted line in Fig. 13 Part A shows the cutting plane. 
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5 FIELDS OF APPLICATION 

The results of thesis one can be applied for any CS based post-processing scheme, where small 

size, moderately structured, noisy images are to be reconstructed. Integrated FET based terahertz 

imaging is of this kind, especially, because the sensing is SNR critical and computationally 

expensive post-processing is acceptable. 

Thesis two focuses on the overall performance of integrated arrays and helps the design of CS 

based terahertz focal plane arrays. It gives a guideline to determine the specifics of the built in 

LNA, exhibits the effect of a chosen read-out organization, and makes easier to calculate the 

achievable image SNR with a given configuration. It reveals the advantages of CS architectures 

and delimit the parameter region, where it is applicable. 

The main bottleneck of today FET based systems is the SNR. With the development of local 

oscillators, the SNR of the detection is going to increase orders of magnitude. Therefore, the 

low noise system integration becomes an unavoidable question in the near future. 

Another area where the results can be directly used is the evaluation of SLMs. Several 

approaches are developing (see section 1.3.1) and these emerging technologies promise the 

capability for single pixel imaging. 

The results implies that the application of the CS technique on a higher level of the detection 

system would be another interesting point that would have applications in other frequency 

domains as well. 
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6 SUMMARY 

Terahertz sensing is a relatively new modality in medicine. Its clinical usage started in July 2012 

by inspecting specific cancer diseases of dermal origin [1]. Terahertz imaging still has a long 

way to go to become an accepted technique in diagnostics. The possible applications require the 

fast observation of large areas with high sensitivity. For this, the large-scale integration and the 

overall noise suppression of the measurement system are indispensable. 

In the Institute for Computer Science and Control of the HAS, research on CMOS based 

terahertz sensors has been carried out since 2008. Room temperature, antenna coupled, FET 

plasma wave detectors were in the focus of the research project I got the chance to join in 2009. 

With my work, I target the above-mentioned questions – scalability and overall system 

performance – by studying sensing in a holistic, application oriented manner: I consider the 

integrated focal plane antenna array, the detectors, the read-out circuitry and the post-processing 

as a whole. 

 

Figure 44 The study covers some parts of both the hardware (architecture of the antenna array, read-out 

organization) and the software (post-processing, image reconstruction); a) focal plane antenna array with 

the detectors; b) top view of a single antenna; c) cross section of the chip (antenna at the top and the MOS 

FET detector in the middle); d) the scheme of the studied system (considering a single detector element) 

– the components are represented with appropriate noise models to be able to handle them together, in a 

holistic way to evaluate design choices on a quantitative base 

Fig 1 shows two simple experimental measurement setup and Fig 2 depicts the main components 

of the system that were modeled together primarily from the aspect of their noise performance. 

On the immature field of terahertz VLSI sensors, many design choices are being made according 

to intuitive considerations, starting from individually optimized components. However, several 

design choices have an indirect effect on the overall system performance; therefore, a kind of 

global, system wide optimization would be advantageous. In most of the systems, it is still 

impossible, because there is too much freedom in design choices and parameters. 

In the presented holistic approach, I restricted the modeling according to the demands of the 

target applications. The figure of merit of the system was the SNR (and L1 norm) of the resulting 

image. My primary aim was to investigate the performance of compressed sensing based 
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detector organizations against the regular ones. For this, I utilized the simplest models of the 

touched components in order to tackle the problem quantitatively. 

In the end, my answers help to find optimal solutions within the modeled framework and help 

the VLSI designers to evaluate their decisions directly from the aspect of the resulting image 

SNR of the system. 
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