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“Because I am always interested in faces. I just want you to sit down 

and look at the human face. But if there is too much going on in the 

background, if the face moves too much, if you can’t see the eyes, if 

the lighting is too artistic, the face is lost.” 

(Ingmar Bergman) 

[1]; [2];  

[3]; [4]; 

;[5]; [6]; [7];  

[8]; [9]; [10]; [11]; [12]; [13]; [14]; [15] 
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1. Introduction 

Face perception is one of the most important functions of the human 

visual system. Faces convey the majority of socially relevant 

information, therefore the ability to process faces is essential for 

normal social functioning. Extensive experimental and modelling 

research has made significant progress in identifying the neural basis 

of the remarkably efficient and seemingly effortless face perception 

in humans. However, the majority of these results might have limited 

interpretability since they are based on research involving faces that 

were clear and isolated. On the contrary, in the natural environment, 

faces occur often under low visibility conditions and/or in rapid 

succession, thus well-functioning, optimized processing system is 

needed to enable successful face perception. Uncovering the neural 

mechanisms underlying face perception in a more realistic context is 

not only invaluable for a better insight into how the visual system 

works but also could facilitate the development of more efficient 

training programs on face perception. Furthermore, it could form the 

basis of more reliable machine-based face recognition algorithms 

which is a key issue in computer vision. 

The very rich information that is crucial for intact social 

interaction such as a person’s identity, age, gender, expression is 

conveyed by the face rendering it as a stimulus of exquisite 

importance. Converging behavioral, neuropsychological, and 

neuroimaging evidence suggests that faces constitute a special class 

of visual stimuli with dedicated processing mechanisms that differ 

from that of other non-face objects (for reviews see [16, 17]). Face-

selective areas that were found in the human extrastriate cortex (for 

reviews, see [16, 18]) might provide the neural substrate for such 

processes. Neuroimaging studies demonstrated that faces elicit 

robust and selective responses in regions of the human occipital and 

temporal cortex [19–26] with considerably high reproducibility and 

reliability in the fusiform gyrus [27]. The region in the mid-fusiform 

gyrus that consistently shows significantly greater response to faces 
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than to non-face objects has become known as fusiform face area 

(FFA) [20]. The FFA is thought to subserve face perception, since its 

activity measured with BOLD fMRI was found to be strongly 

correlated with detection and identification of face images [28–30]. 

However, in these studies face perception was investigated using 

intact face images, presented without any contextual information. On 

the contrary, faces that we encounter in real life are often poorly 

visible due to suboptimal viewing conditions such as insufficient 

illumination, odd poses etc., and thus their recognition becomes 

more effortful. In addition, in the majority of social interactions more 

than two people are engaged and thus it can dynamically change 

whose face is in the focus of our attention. To provide efficient 

communication flow through reacting rapidly and accurately, the 

visual system must optimize its processing mechanisms under these 

challenging conditions. 

It has been suggested [31, 32] that under low visibility 

conditions the visual system must recruit additional resources to 

handle the noisy and deteriorated visual image via re-entrant 

processing mechanisms involving the shape-sensitive lateral 

occipital cortex (LOC, [33]). Furthermore, when the visual system is 

put into a continuously changing environment where faces occur in a 

temporal context, based on short-term prior experience, iterative 

recurrent mechanisms might help re-estimate and update predictions 

about sensory input (the same or a different face will be seen), 

maximizing the efficiency of neural processing, which is supported 

by the predictive coding model of perception [34–37]. Such 

processes were suggested to be involved within the core face-

processing network composed of the FFA and the occipital face area 

(OFA, [38]) of the inferior occipital cortex in a study by Ewbank et 

al. [39]. In sum, the visual system is able to adapt to the challenging 

conditions of the current environment and provide an accurate 

perception by optimizing its function, presumably engaging a re-

entrant processing loop between higher- and lower-level visual 
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cortical areas. However, the exact neural mechanisms and their 

relationship to behavior are not yet understood. 

The dissertation focuses on how visual cortical processing of 

faces is affected by the deterioration of image quality and prior 

perceptual experience. In particular, the research was aimed at: 

 uncovering the re-entrant neural processes that enable the 

extraction of identity information under challenging 

conditions when face images are deteriorated and noisy. 

 revealing the contribution of short-term face adaptation 

processes mediating the effect of prior experience to face 

perception. 

2. Methods 

Throughout the course of my work, I have used the following 

experimental methods applicable in cognitive neuroscience research: 

psychophysics, traditional task-based, and resting-state functional 

connectivity fMRI methods. For writing experimental presentation 

scripts and codes for data analysis, I used MATLAB R2010a and 

R2013b (The MathWorks Inc., Natick, MA, USA) with various 

toolboxes. For stimulus presentation, I applied Psychophysics 

Toolbox Version 3 (PTB-3) [40, 41] (http://psychtoolbox.org/), for 

fMRI preprocessing and statistical analysis, SPM8 and SPM12 

(Wellcome Trust Centre for Neuroimaging, London, UK), and for 

correlation analysis, Robust Correlation Toolbox [42]. Further 

statistical analyses were performed in STATISTICA 12 (StatSoft, 

Tulsa, OK, USA). We have implemented the seed-based intrinsic 

functional connectivity fMRI analysis in MATLAB based on 

directions in the literature [43–46]. For data visualization, I adopted 

the BrainNet Viewer [47] (http://www.nitrc.org/projects/bnv/). The 

fMRI experiments were conducted at the MR Research Center of 

Szentágothai Knowledge Center (Semmelweis University, Budapest, 

Hungary) on a 3 T Philips Achieva scanner (Philips Healthcare, Best, 

http://psychtoolbox.org/
http://www.nitrc.org/projects/bnv/
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The Netherlands) equipped with an 8-channel SENSE head coil and 

at the Friedrich-Schiller-University Jena (Jena, Germany) on a 3 T 

Siemens Magnetom Trio scanner (Siemens Healthineers, Erlangen, 

Germany) equipped with 20-channel head coil. 

3. New scientific results 

1. Thesis: I have shown that perception of facial identity in the 

case of noisy face images is subserved by neural 

computations within the right FFA as well as a re-entrant 

processing loop involving bilateral FFA and LOC. 

Published in [1], [3]. 

Previous research has made significant progress in identifying 

the neural basis of the remarkably efficient and seemingly effortless 

face perception in humans. However, the neural processes that 

enable the extraction of facial information under challenging 

conditions when face images are noisy and deteriorated remains 

poorly understood. Here we investigated the neural processes 

underlying the extraction of identity information from noisy face 

images using fMRI. For each participant, we measured (1) face 

identity discrimination performance outside the scanner, (2) visual 

cortical fMRI responses for intact and phase-randomized face 

stimuli, and (3) intrinsic functional connectivity using resting-state 

fMRI. 

1.1. I have shown that noisy face discrimination is also based 

on face-specific processes as opposed to discrimination 

based on low-level stimulus features. 

Combined behavioral and neuroimaging results provided strong 

evidence for specialized face-processing (for reviews see [16, 17]) 

linked to FFA mechanisms [28, 30, 48]. Yovel and Kanwisher [49] 

has revealed that the most reliable marker of face-specific 

processing, namely the behavioral face-inversion effect (FIE, [50])— 
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i.e. the significant drop in discrimination of upside-down (inverted) 

relative to upright faces—is closely associated with the fMRI 

response in the FFA. Therefore, we reasoned that if FFA is the 

primary neural substrate also for noisy face perception, face 

inversion would impair behavioral responses in the case of noisy 

face stimuli as well. We found robust face inversion effects (i.e. 

decreased accuracy for inverted faces) in the case of both intact and 

noisy face conditions, which did not differ significantly in magnitude 

(Fig. 1). These behavioral findings suggest that the neural 

mechanisms involved in the processing of noisy faces might be 

similar to those of faces without noise, presumably mediated by the 

FFA. 

 

Figure 1. Behavioral results. Identity discrimination performance was 

significantly higher for intact as compared to noisy faces, however the face 

inversion equally impaired accuracy in both cases. Provided data are mean 

correct response ratio ± SEM across participants (N = 26). Black bars 

represent data for upright faces; gray bars represent data for inverted faces. 

IF, intact faces; NF, noisy faces (***p < 0.001). 
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1.2. Based on whole-brain analysis, I found that the presence of 

noise led to reduced and increased fMRI responses in the 

mid-fusiform gyrus and the lateral occipital cortex, 

respectively. Furthermore, the noise-induced modulation 

of the fMRI responses in the right face-selective fusiform 

face area (FFA) was closely associated with individual 

differences in the identity discrimination performance of 

noisy faces: smaller decrease of the fMRI responses was 

accompanied by better identity discrimination. 

It has been suggested [31, 32] that in the case of phase-

randomized face images the increased processing demand due to the 

distorted spatial localization of the facial features might lead to the 

engagement of a re-entrant processing loop involving the FFA and a 

region of the lateral occipital cortex (LOC), which represents shape 

information within a spatial coordinate system [33, 51] and shows 

increased fMRI responses to noisy face images [31]. However, an 

important question that remains to be explored is whether it is the 

FFA or the LOC on whose neural representations the perception of 

deteriorated and noisy face images is based. Even though combined 

behavioral and neuroimaging results provided strong evidence for a 

close link between face perception and the neural processes in the 

FFA in the case of intact face images [28, 30, 48, 49], it has not been 

investigated whether this holds true also for faces that are noisy and 

poorly visible. 

We have found that adding phase noise to face images leads to 

reduced and increased fMRI responses to faces in bilateral mid-

fusiform gyrus (Fig. 2A) and bilateral LOC (Fig. 2B), respectively, 

which is in agreement with previous results [31, 52].  
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Figure 2. Results of the whole-brain random-effects analysis. Bilateral areas 

of the fusiform gyrus showed significantly lower activation for noisy relative 

to intact faces (A), while larger responses to noisy than intact faces were 

found bilaterally in the middle occipital gyrus (B). Statistical maps are 

displayed with pFDR < 0.05 on the smoothed ICBM152 brain [53–55]. IF, 

intact faces; NF, noisy faces; lFG, left fusiform gyrus; rFG, right fusiform 

gyrus; lMOG, left middle occipital gyrus; rMOG, right middle occipital 

gyrus. 

Importantly, our results provide the first evidence that only in 

the right face-selective FFA did noise-induced modulation of the 

fMRI responses show a close association with the individual 

differences in face identity discrimination performance of noisy 

faces (Fig. 3B): smaller decrease of the fMRI responses was 

associated with better identity discrimination. This relationship was 

not driven by the overall face perception ability of the participants, 

because performance for intact faces was regressed out from that for 

noisy faces. Our results imply that the perception of noisy face 

images is based on the neural representations extracted from the right 

FFA. 
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Figure 3. Results of the ROI-based correlation analysis. A, Probability 

density map illustrating the spatial distribution of the highest noise-effect 

voxels across participants in bilateral FFA and LOC. Color scales reflect 

probability density estimates (cool colors, FFA; warm colors, LOC). B, 

Relationship between the noise-induced modulation of the fMRI responses 

and the behavioral accuracy in discriminating noisy faces: smaller decrease 
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of the fMRI responses in the right FFA indicated better identity 

discrimination. Due to the semipartial correlation procedure, correlation 

scatter plots depict residual values on the y-axis. The y-axis values denote 

behavioral accuracy for noisy faces indexed by the residual correct response 

ratio. The x-axis values denote noise effect on the fMRI responses indexed 

by the beta difference in the IF versus NF contrast. Circles represent 

individual participants and bivariate outliers are marked with open circles. 

Diagonal line indicates linear least-squares fit. IF, intact faces; NF, noisy 

faces. 

1.3. I found that the strength of the intrinsic functional 

connectivity within the visual cortical network composed of 

bilateral FFA and bilateral object-selective lateral 

occipital cortex (LOC) predicted the participants’ ability 

to discriminate the identity of noisy face images. 

Based on the suggested role of the re-entrant neural mechanisms 

in the processing of noisy faces, we predicted that the individual 

ability to handle stimulus noise might depend on the strength of 

functional interactions between FFA and LOC. To test this 

prediction, we estimated the strength of intrinsic functional 

connectivity between bilateral FFA and LOC (Fig. 4A) using resting-

state fMRI [43] (for review see [56]) and computed correlations 

between these measures and the face identity discrimination 

performance for noisy faces. In the correlation analysis the intact 

face performance was used as a covariate to control for the 

confounding effect of the overall face perception ability of the 

participants. Our correlation analysis revealed that the functional 

connectivity strength between bilateral FFA and bilateral LOC 

correlated positively with the behavioral accuracy for noisy faces 

(Fig. 4B): the stronger the functional connectivity between these 

regions during rest, the better the face identity discrimination 

performance in the noisy condition. These results suggest that face 

identity perception in the case of noisy faces is based on functional 

interactions between bilateral FFA and LOC. 
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Figure 4. Results of the intrinsic functional connectivity analysis. A, 

Connections between the pairs of ROIs displayed as edges and overlaid on 

the probability density map from Figure 3. The thickness of an edge 

represents the strength of the connection (correlation coefficients (r) 

averaged across subjects); significant correlations were found between all 

ROI pairs investigated. B, Scatter plots indicating the relationship between 

the intrinsic functional connectivity and the behavioral accuracy for noisy 

faces. The strength of the functional connectivity between bilateral FFA and 

LOC, as well as between the right and left FFA, correlated positively with 

the identity-discrimination performance in the case of noisy faces. Due to 

the partial correlation procedure, correlation scatter plots depict residual 

values on both axes. The y-axis values denote the behavioral accuracy for 

noisy faces indexed by the residual correct response ratio. The x-axis values 

denote the connection strength between a ROI pair indexed by the residual 

correlation coefficient. Circles represent individual participants and bivariate 

outliers are marked with open circles. Diagonal line indicates linear least-

squares fit. NF, noisy faces; FC, functional connectivity (**p < 0.01, ***p < 

0.001). 

2. Thesis: I have shown that there is a face-selective repetition-

induced fMRIa within the core face-processing network 

composed of the FFA and OFA which reflects functionally 

relevant adaptation processes involved in face identity 

perception. 

Published in [2], [4]. 
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It has been shown that sensory information processing is highly 

affected by the short-term prior perceptual experience. When a 

sensory stimulus is repeated, the evoked neural signal is invariably 

smaller than the one observed for its first presentation, an effect 

termed as repetition suppression (RS) [57]. Similarly, in functional 

magnetic resonance imaging (fMRI) experiments stimulus 

repetitions elicit the reduction of the blood oxygenation level-

dependent (BOLD) signal when compared to non-repeating stimuli 

(for review see [58]), a phenomenon called fMRI adaptation 

(fMRIa). It has been shown that repetition of identical face stimuli 

leads to fMRIa in the core face-selective occipitotemporal visual 

cortical network, involving the bilateral fusiform face area (FFA) 

and the occipital face area (OFA) [39, 59, 60]. Extensive previous 

experimental and modeling research has made significant progress in 

revealing the neural processes involved in RS (for reviews see [61, 

62]). However, surprisingly little is known about its behavioral 

relevance. Therefore, here we aimed at investigating the relationship 

between fMRIa and face perception ability by measuring in the same 

human participants both the repetition-induced reduction of fMRI 

responses in these regions and face identity discrimination 

performance outside the scanner for upright and inverted face 

stimuli.  

2.1. I found a significant fMRIa, i.e. reduced BOLD signal for 

repeated as compared to alternating faces in the fusiform 

face area (FFA) and a moderate fMRIa in the occipital 

face area (OFA). Furthermore, the magnitude of the face-

selective fMRIa measured in these face-processing areas 

was closely associated. 

In agreement with previous results [39, 59, 60], the repetition of 

identical face stimuli led to significant fMRIa, i.e. reduced BOLD 

signal in the FFA, and a moderate fMRIa in the OFA, and we also 

found fMRIa in the extrastriate body area (EBA) for both upright 

(Fig. 5A) and inverted (Fig. 5B) faces. 
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Figure 5. Average activation (± SEM) profiles for the left and right FFA 

(left), OFA (middle), and EBA (right) when faces were presented upright 

(A) and inverted (B). We found fMRIa, i.e. reduced fMRI responses for 

repeated (RepT) as compared to alternating faces (AltT) for all ROIs 

investigated in the case of both upright and inverted conditions. Black bars 

represent AltT; gray bars represent RepT. UF, upright faces; IF, inverted 

faces (*p < 0.05, **p < 0.01, ***p < 0.001). 

However, it is not known whether fMRIa reflects common or 

different underlying mechanisms in the tested visual cortical areas. 

To test this, we calculated pairwise correlations of fMRIa 

magnitudes among the three regions. In the correlation analysis, the 

fMRIa for the inverted faces was used as a covariate to control for 

the individual differences in low-level visual feature adaptation 

processes. We found a strong correlation of the face-selective fMRIa 

between OFA and FFA (Fig. 6A) and also between OFA and EBA 

(Fig. 6C), but not between FFA and EBA (Fig. 6B). These findings 

imply that fMRIa might involve different components: one is 

mediated by neural mechanisms that are specific to the core face-
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processing network and another which affects the fMRI responses in 

the OFA and EBA, but not in FFA.  

 

Figure 6. Correlation between fMRIa observed in the FFA and OFA (A), in 

the FFA and EBA (B) and in the OFA and EBA (C). Significant correlation 

was found between the magnitude of fMRIa measured in the FFA and OFA, 

as well as in the OFA and EBA, but not in the FFA and EBA. Due to the 

regression-based approach, correlation scatter plots depict residual values on 

both axes. y- and x-axis values denote the fMRIa indexed by the residual 

beta difference in the AltT vs. RepT contrast. Circles represent individual 

participants and bivariate outliers are marked with open circles. Diagonal 

line indicates linear least squares fit. 

2.2. I have shown that the face-selective fMRIa in the two 

regions of the core face-processing network, namely in the 

fusiform face area (FFA) and occipital face area (OFA) 

predicts individual differences in face-selective perceptual 

ability. 

The visual system as an inference machine actively generates 

and optimizes predictions about the incoming sensory input to make 

the information processing more efficient as suggested by the 

predictive coding model of perception [34–37]. From this 

perspective, RS is a manifestation of minimizing prediction error 

through adaptive changes in predictions. At the neuronal level, RS is 

generally believed to reflect short-term plastic processes of the 

neurons, as they adapt to the temporal context of the current 

environment, presumably as a consequence of dynamic synaptic 
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change within recurrent neural networks [58, 63–65]). Thereby, RS 

reflects the flexibility of the neural system and its ability to adjust to 

continuously changing requirements, optimizing the performance of 

the individual. We reasoned that if RS (and the consequent fMRIa) 

indeed reflects the better predictive ability of the neural system then 

this should manifest on the perceptual level as well: a good 

generative model of faces can produce better predictions of 

subsequent stimulation, which leads to better performance and 

reduced concomitant prediction error unit activity, i.e. fMRIa. To 

test this prediction, we correlated the individual fMRIa magnitudes 

measured in the core face-processing areas, namely the FFA and 

OFA, as well as in the body-selective EBA with the participants’ 

face identity discrimination performance. In the correlation analysis 

the behavioral and fMRI results for the inverted faces were used as 

covariates to control for the individual differences in overall object 

perception ability and low-level visual feature adaptation processes, 

respectively.  

 

Figure 7. Correlation between behavioral accuracy and fMRIa for the FFA 

(A), OFA (B), and EBA (C). Significant correlation was found in the case of 

the FFA and OFA, but not for the EBA. Due to the regression-based 

approach correlation scatter plots depict residual values on both axes. y-axis 

values denote behavioral accuracy in the face identity discrimination task 

indexed by the residual correct response ratio. x-axis values denote the 

fMRIa indexed by the residual beta difference in the AltT vs. RepT contrast. 

Circles represent individual participants and bivariate outliers are marked 

with open circles. Diagonal line indicates linear least squares fit. 
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Our correlation analysis revealed that the magnitude of the 

fMRIa measured in the FFA (Fig. 7A) and OFA (Fig. 7B), but not in 

the EBA (Fig. 7C) correlated positively with the behavioral 

accuracy: the higher the magnitude of the fMRIa for repeated faces, 

the better the face identity discrimination performance. These results 

suggest that RS in the core face-processing areas predicts face-

selective perceptual ability and thus reflects functionally relevant 

adaptation processes involved in face identity perception. 

4. Conclusions and possible applications 

Our results provide important new insights into the adaptive 

information coding processes within the extensive visual cortical 

face-processing network, especially regarding the recurrent neural 

mechanisms that enable efficient and robust human face perception 

even under suboptimal viewing conditions. 

Understanding the strategies that the visual system employs in 

natural unconstrained settings could be the first step translating them 

into machine-based face recognition algorithms which have a huge 

impact in computer vision (see [66] for a review). 

Furthermore, advancing the knowledge of neural mechanisms 

underlying face perception at both regional and network level is a 

key issue to develop training programs including fMRI-based 

neurofeedback techniques (see [67, 68] for reviews) which could 

help to improve the efficacy of visual cortical processing of facial 

information, especially in prosopagnosia.  
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