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The truth isn’t flashy.

Flashy words aren’t true.

Educated people aren’t always smart.

Smart people don’t always have an education.

The virtuous do not bandy arguments.

Those who bandy arguments are not virtuous.

The Masters don’t hang on to things.

They’re always doing something for other people,

so they always have more to give.

They give away whatever they have,

so what they have is worth more.

If you want to get right with the Way,

help other people, don’t hurt them.

The Masters always work with people,

never against them.

(Lao-Ce: Tao Te Ching, 81)
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Abstract

The cellular neural-nonlinear network (CNN) and the Cellular Wave

Computing paradigm was applied to solve a wide range of challenging

problems in the last decade. The first problem I have been working on

is the real-time three dimensional reconstruction of human heart cav-

ities from ultrasound recordings. Reliable medical diagnosis requires

the accurate estimation of cardiac measures like ejection fraction, cav-

ity volume and wall thickening. Currently, medical experts manually

measure these indexes prone to subjective bias and error. I developed

a computational method providing on-line, automated 3D reconstruc-

tion of the right atrium together with the visualization of the atrial

septal defect (ASD). I evaluated the accuracy of the method via com-

paring algorithm results with phantom and clinical echocardiographic

data sets manually traced by independent cardiologist experts. Error

of the algorithm proved to be comparable to the inter-observer vari-

ability between independent experts. Interactive planning of surgical

interventions in pediatric cardiology was presented as an illustrative

example demonstrating the clinical potential of the method.

The second problem I addressed was the quantification of the dendritic

morphology of retinal ganglion cells (RGC). A fundamental paradigm

of neuroscience is that neural structure is related to neural function.

At the cellular level it was shown in many studies that neurons with

different shapes have different function. At a higher organizational

level it was shown that the dendrites and axonal arborization of neu-

rons in several brain regions are organized in thin strata and neural

function varies across strata. A striking example is the mammalian

retina where the inner plexiform layer (IPL) consists of about ten



different, well-defined strata and each strata extracts a different fea-

ture from the visual scene forming a stack of image representations

in the retina. In brain regions where different functions are encoded

in different strata, a powerful morphological approach would be to

quantitatively define the strata which are formed by dendritic and

axonal arborization of neurons. Then from simply knowing the depth

of stratification of a stained neuron one could deduce its function. I

developed an automated algorithm that can scan a large number of

cells from a retina and quantify the ramification depth of their den-

drites.

One candidate mechanism that can play a role in efficient informa-

tion processing is synchronization. The main problem in analyzing

synchronization phenomena in oscillatory networks is that models are

non-linear, high dimensional systems. I developed an algorithm that

can teach dynamical behavior to a network of oscillators. Using this

algorithm, I uncovered two exciting new phenomena. First, I showed

examples where switching on coupling between oscillators modified

the qualitative behavior of the cells, i.e. proper coupling settings can

transform chaotic behavior to periodic or vice versa. Second, I demon-

strated for the first time that highly asymmetric interaction weights

can synchronize multiple, coexisting cell groups. Despite the asymme-

try in the interaction pattern, the spatial layout of the synchronized

cell groups followed the topological symmetries of the network.
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Chapter 1

Introduction

The need to increase quality of life and the life expectancy of people induced a re-

markable research activity in biology since many decades. Although personalized

medicine is the ultimate aim, human expertise will never be sufficient to provide

equal, perfect treatement to everyone. The reasons are simple: humans have

different expertise and experience and their performance varies in time making

fault-less diagnosis and treatment impossible. Research in biology involves a huge

amount of manual work. Here too, variations in the performance of humans doing

the experiment or the measurement introduces errors in the analysis. Moreover,

without proper quantitative methods and statistics, the human brain is prone to

misinterpret data.

Both in biology and in medicine, the most fruitful but also the most difficult

way of getting insight into mechanisms of living organisms is by simple observa-

tion of the subject in its original environment and living conditions. There are

relatively few methods that provide information about living organisms without

severely interfering with their normal behavior. Non-invasive biological imaging

methods are of the most widely applied observation strategies. Both in research

and in clinical pratice, X-ray, magnetic resonance and ultrasound based imaging

have a history of several decades.

Details of living organisms below around 1mm resolution cannot be imaged

with these modalities. Before the advent of medical imaging, microscopes were

already used widely to observe and analyze functions at low spatial scale. Micro-

scope based methods are almost always invasive and one must be very cautious
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1. INTRODUCTION

in infering high level behavioral conclusions from microscope based observations.

The gap between low-level and high-level analysis appears to be shrinking due to

recent advances in both microscope technology and in molecular biology. Com-

bining high-resolution microscopy with image processing and molecular biology

techniques can open the way to functional analysis of mechanisms even at molec-

ular scale.

Morphology of living organisms is extremely variable. Therefore long training

and extensive experience is required for human observers to be able to interpret

recordings from living organisms.

In the recent years imaging modalities started to evolve into the third spatial

dimension. After the first enthusiasm, it became clear that the extra amount of

data poses two serious problems. First, data storage requires more resources -

this issue falls out of the scope of my work. Second, it is much more difficult to

visualize, manipulate and interpret 3D recordings efficiently. Handling 3D data is

very difficult to our mind that is traditionally trained on visual information seen

in books and on flat screens. The ultimate aim of the analysis is always to make

some decisions like ”does this image show a healthy heart or not?” or ”is this

recording showing cell type A or B?”. Both questions reveal that quantification

has to be performed based on our observations. Stepping into the third spatial

dimension provides more information for our decisions but humans actually have

less processing ability for three dimensional data.

Our lack of processing ability can be complemented by computers. However,

image processing and user interface technologies did not follow innovations in im-

age acquisition technologies. The main reason for this delay is the constant short-

age of processing power in computers with respect to the tasks to be solved. The

required processing power can be provided by computing architectures based on

the Cellular Nonlinear Network (CNN) paradigm ([12, 13, 14, 15, 16, 17]). CNNs

are regular, single or multi-layer, parallel processing structures with analog non-

linear computing units (base cells). The state value of the individual processors

is continuous in time and their connectivity is local in space. The program of

these networks is completely determined by the pattern of the local interactions,

the so-called template. The time-evolution of the analog transient, ”driven” by

the template operator and the processor dynamics, represents the computation

12



in CNN (results can be defined in equlibrium or non-equilibrium states of the

network). Completing the base cells of CNN with local sensors, local data mem-

ories, arithmetical and logical units, furthermore with global program memories

and control units results in the Cellular Nonlinear Network Universal Machine

(CNN-UM) architecture [16]. The CNN-UM is an analogic (analog and logic) su-

percomputer, it is universal in Turing sense [18]. Most algorithms were designed

for the two main physical implementations of this architecture: the ACE4k [19]

and its successor, the ACE16k [20].

In this dissertation, the focus is put on solving near-sensor reconstruction

problems relying on parallel image processing operators. Parallel algorithmic so-

lutions are shown for 3D echocardiography related problems where the demand for

an extremely high computing power and the requirement for real-time processing

make fully sequential approaches inconvenient. The algorithms were implemented

on several processor architectures and it will be shown that the most convincing

gain in efficiency occurs when spatio-temporal dynamics of diffusion and wave

phenomena are used and executed on a parallel processing array.

The first problem I have been working on is the real-time three dimensional

reconstruction of human heart cavities from ultrasound recordings. Reliable med-

ical diagnosis requires the accurate estimation of cardiac measures like ejection

fraction, cavity volume and wall thickening. Currently, medical experts manually

measure these indexes prone to subjective bias and error. In many cases, analysis

of the cavity morphologies is required. In lack of 3D probes and visualization

tools, the clinician has to spend considerable amount of time to reconstruct the

morphology of the heart in his mind using several 2D views. Reliability of such a

reconstruction is questionable due to the high variability of possible morphologies

and to the fast moving nature of the heart.

The second problem I addressed was the quantification of the dendritic mor-

phology of retinal ganglion cells. A fundamental paradigm of neuroscience is that

neural structure is related to neural function. At the cellular level it was shown

in many studies that neurons with different shapes have different function. At a

higher organizational level it was shown that the dendrites and axonal arboriza-

tion of neurons in several brain regions are organized in thin strata and neural

function varies across strata. A striking example is the mammalian retina where

13



1. INTRODUCTION

the Inner Plexiform Layer (IPL) consists of about ten different, well-defined strata

and each strata extracts a different feature from the visual scene forming a stack

of image representations in the retina.

In brain regions where different function is encoded in different strata a pow-

erful morphological approach would be to quantitatively define the strata which

are formed by dendritic and axonal arborization of neurons. Then from simply

knowing the depth of stratification of a stained neuron one could deduce its func-

tion. I developed an automated algorithm that can scan a large number of cells

from a retina and quantify the ramifications depth of their dendrites.

I acquired experience in solving demanding 3D image processing via solving

the two above mentioned problems. During my work, I realized that experienced

human observers can extract relevant information about 3D structures quickly.

The same task is very challenging for computers. I attended neurobiology courses

during my doctoral studies and realized that the massively parallel CNN chip

I worked on was similar to living neural structures. Discussions with biologists

about retinal architecture raised my interest in understanding how neural circuits

process information.

One candidate mechanism that can play a role in efficient information pro-

cessing is synchronization. Synchronization phenomena are apparent in many

field of physics and biology but we do not know what synchronization does and

how it might play a role in information processing. The main problem in analyz-

ing oscillatory networks is that models are non-linear, high dimensional systems.

First of all, the state of the art mathematical toolset can analyse very simplified

models only that are quite far from oscillator networks observed in nature. Even

for simple models it is very difficult to get closed form expressions on conditions

for synchronization.

The desire to explore cooperating behavior in oscillatory networks motivated

me to overcome the barrier that our mathematical toolset is very limited to study

synchronization phenomena in realistic networks. I developed an algorithm that

can teach dynamical behavior to a network of oscillators. Using this algorithm, I

uncovered two exciting new phenomena. The first phenomenon is counter intu-

itive and gave counter examples to existing theory. In [21] Liu et al. claim that

14



when coupling is added to a network of chaotic oscillators with double- or multi-

scroll attractor, Lyapunov exponents being zero in the uncoupled system become

positive as coupling is increased. They suggest that this rule is general, how-

ever, the case when the coupling makes the qualitative behavior of cells simpler

indicates that this may not always be true.

The second phenomenon is related to [22] where it was shown that symme-

tries of the network topology with nearest neighbor connections and uniform

interaction weights lead to synchronization in multiple, coexisting cell groups. I

demonstrated for the first time, that highly asymmetric interaction weights can

also synchronize multiple, coexisting cell groups. In addition, despite the asym-

metry in the interaction pattern, the spatial layout of the synchronized cell groups

followed the topological symmetries of the network.

Cellular Nonlinear Networks composed of oscillators are high dimensional and

non-linear dynamical systems. Developing constructive approaches that can un-

fold new phenomena is therefore very difficult. My results represent a step to-

ward bridging the gap in our understanding between systems that are simple

thus mathematically tractable and systems that are physically more realistic but

require large efforts to be analyzed.

The dissertation is organized as follows. Chapter 2 develops Thesis 1, [1] [4] [5]

[6] [7] [8], and describes the on-line reconstruction method that extracts the right

atrium from 3D ultrasound recordings and quantifies the cavity volumes and the

size of the atrial septal defect. In Chapter 3 (Thesis 2) [2] [9] a cell morphology

based method is presented that can automatically quantify the ramification depth

of ganglion cells in the mammalian retina from 3D confocal microscope scans.

Chapter 4 (Thesis 3) [3] [10] [11] explores new forms of cooperative behavior

in oscillator arrays. Synchronization is one of the most promising candidate

mechanisms that could play a role in efficient information processing in living

networks of neurons. Understanding synchronization phenomena could also open

a way to design more efficient processor architectures. Chapter 5 summarizes the

main results and highlights further potential applications where the contributions

of this dissertation could be efficiently exploited.
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Chapter 2

On-line 3D echocardiography

2.1 Introduction

Echocardiography is a widely available diagnostic technique allowing direct anal-

ysis of the heart in motion in a noninvasive and relatively cheap procedure.

For decades, analysis of echocardiograms were evaluated in a qualitative man-

ner where the reliability of diagnoses depended on the level of experience and

skill of the cardiologist expert.

Quantitative measurements of classical cardiac indexes - like ejection fraction

and the volume of the left ventricle (LV) - were done by tedious manual work

prone to subjective bias and error. In addition, in lack of three dimensional (3D)

probes and visualization tools, considerable amount of skill and time was needed

for the clinician to reconstruct the morphology of the heart in his mind using

several 2D views. Reliability of such a reconstruction is questionable due to the

fast moving nature of the heart.

In the past decade, many efforts have been made in the medical imaging com-

munity to develop automated algorithms in order to assist cardiologists in im-

proving the speed and reliability of daily clinical routine. Although 2D echocar-

diography is still largely dominant, 3D visualization and quantitative analysis

of heart morphology and dynamics have a huge potential in early diagnosis of

diseases and in reducing risks of surgical interventions.

A computational method providing on-line, automated 3D reconstruction of

the right atrium together with the visualization of the atrial septal defect (ASD)

17



2. ON-LINE 3D ECHOCARDIOGRAPHY

is presented. Massively parallel topographic 1 cellular computational approaches

proposed for contour localization and tracking are described. When implemented

on a focal plane cellular array microprocessor, these algorithms offer real-time

object contour localization and tracking – even at very high frame rates. Three

specific methods (Constrained Wave Computing (CWC) continuous time version,

CWC discrete time version and Pixel Level Snakes (PLS)) will be described and

compared along with their associated hardware-software architectures. Computa-

tional complexity, implementation, and performance related issues are discussed

on a common platform (ACE-BOX with the ACEx CNN-UM chips). A novel

architecture is proposed incorporating the best solutions learned from the com-

parison.

Endocardial boundaries are extracted from the raw ultrasound data in real-

time by topographic cellular active contour (TCAC) algorithms implemented on

a massively parallel processor. Extracted boundary point sets corresponding to

the endocardium are rendered into a 3D mesh enabling the quantification of the

volume of the right atrium and the visualization of the ASD.

Accuracy of the boundary tracking was assessed by comparison with phantom

and clinical echocardiographic data sets manually traced by independent cardiol-

ogist experts. Accuracy of volume quantification was validated on 6 in-vitro static

phantoms and 6 clinical volumes. A new aspect of the validation is the application

of nonlinear wave metric for contour comparison. For selected clinical examples,

error of the algorithms proved to be comparable to the inter-observer variabil-

ity between independent experts. Interactive planning of surgical interventions

in pediatric cardiology is presented as an illustrative example that demonstrates

the clinical potential of the method.

I describe an experimental study and the underlying automated, high speed

computational method that is able to extract the right atrium and the ASD from

3D ultrasound data. The method provides quantitative measurements in order

to assist diagnosis and 3D on-line virtual surgery planning. Fig. 2.1 shows the

main processing steps from data acquisition to the virtual surgery planning scene.

1The notion ”topographic” is used in our context as the description of a structured entity
showing and preserving the relations among its components. To be specific, the massively
parallel hardware we used is topographic with respect to the 2D data flowing from the ultrasound
sensor.
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2.1 Introduction

3D data was acquired at 720 × 512 pixels and 90 frames per volume resolution

using a Philips Sonos 5500 with fast rotating transducer. Endocardial boundary

detection was performed on the right and left atria using a real-time topographic

contour tracking algorithm running at 25−500 frames per second (fps) depending

on the hardware used for implementation. Endocardial boundary detection and

high resolution mesh construction of the right and left atrium was done in one

minute.

Figure 2.1: Processing steps from ultrasound data acquisition to the interactive
virtual surgery planning scene. a) Full resolution images are acquired using a
fast rotating transducer. b) Real-time TCAC method extracts the endocardial
boundaries from the 128× 128 pixels resolution subflows. Next, and a smoothing
spline is fitted to each sampled contour to eliminate noise and outlier points.
c) Contours are rotated and translated into their appropriate 3D position d) A
mesh is constructed from each of the equally spaced point clouds using an implicit
surface rendering (metaball) technique. e) The reconstructed atria are merged,
the volume of the RA and the size of the ASD is calculated f) In a virtual reality
scene, the model of the atria can be opened from a desired viewpoint so that the
morphology can be inspected. Observe the atrial septal defect appearing as a red
spot. Heart model: courtesy to zygote.com

To avoid confusion, the terms ”3D real-time” and ”3D on-line” are clarified.

On commercial echo machines, volumes acquired with a 3D transducer are dis-
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2. ON-LINE 3D ECHOCARDIOGRAPHY

played right after data is collected, i.e. data acquisition and voxel based display

is performed in ”3D real-time”. In contrast, quantitative diagnosis requires a

geometrical model based reconstruction of the examined cavity that requires ad-

ditional computation time and is currently done semi-automatically for the LV

on state-of-the-art systems. I introduce an approach that provides the clinician

quantitative measurements on-line, i.e. in at most 1 minute after data acquisition.

2.2 Related works

A prerequisite for quantitative analysis and model based 3D reconstruction is the

accurate segmentation of the raw ultrasound (US) data. This is a notoriously

difficult task that has been addressed by many research groups. Related studies

were so far focusing on the LV. Recently, work on data sets acquired using a

matrix array transducer referred to as real-time 3D (RT3D) probe was reported,

see [23] for a review. A review of the whole field of cardiac modeling can be found

in [24].

Early approaches aiming to solve the boundary segmentation problem of 3D

echocardiographic images included approaches based on mathematical morphol-

ogy [25], Markov random fields [26], fuzzy logic [27], neural networks [28] and

active contours [29]. In recent years some more complete studies have been pub-

lished. In [30] Bosch et al. introduced a fully automated segmentation method of

the LV based on active appearance models (AAM). Their algorithm, validated on

a large number of unselected clinical examples, showed high accuracy. Mitchell

et al. [31] extended the AAM approach into 3D and applied it to 3D magnetic

resonance imaging (MRI) and 2D+T (time sequence of 2D slices from the same

view) echocardiographic data. In [32] Beichel et al. extended the active appear-

ance method to cope with gross disturbances caused by pathological cases.

Corsi et al in [33] used a level-set based method applied directly in 3D space

to segment the LV from real-time 3D acquisitions. Paragios [34] constructed a

level-set framework combining a priori spatio-temporal shape knowledge and local

variability information to track the boundary of the LV. Yang et al [35] applied

level-sets combined with interobject constraints to segment medical images in a

multi-object, maximum a posteriori estimation framework.
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2.2 Related works

Wolf et al. in [36] presented a system that extracts points belonging to en-

docardium using a multi-scale edge criterion. These points are first locally then

globally connected via optimal path search yielding to a closed contour. Abol-

maesumi et al. [37] introduced an algorithm to interactively segment cavities from

US images using multimodel probabilistic data association filters. Song et al. [38]

used a Bayesian framework to infer a correct surface model of the LV adapted to

both image derived information and high-level a priori shape knowledge.

Rekeczky et al. [39] used optimal non-linear filtering combined with wave

computing [40] to detect the endocardium of the LV in real-time. Montagnat et

al. [41] used anisotropic diffusion as preprocessing filter to fit a deformable sur-

face to image data. Later [42], they used 3D deformable models with constrained

deformations to segment cylindrical echocardiograms. In [43] Angelini et al. used

4D directional space-frequency analysis to reduce speckle noise and to enhance

anatomical structures on RT3D recordings. Deformable model based segmenta-

tion performed on the denoised data in 2D was used to extract the endocardial

boundary of the LV.

Gérard et al. [44] fitted a discrete closed surface model of the LV to image

gradient derived information constrained by a simple biomechanical motion model

they obtained from MRI recordings. Their approach worked for both 2D slices

rotated into 3D and for RT3D data, however the spatial resolution was low to keep

processing time within an acceptable boundary. Zagrodsky et al. [45] presented a

similar but fully automated approach for RT3D data segmentation and analysis.

Jacob et al. [46] developed a semi-automatic method to track the myocar-

dial boundaries of the LV using a fusion of snakes and Kalman filters. In their

work, the borders are decomposed into regional parameters to quantitatively as-

sess wall movements and myocardial thickening. Sanchez-Ortiz et al. in [47]

combined phase-based local boundary detection with global image information

extracted by multiscale fuzzy clustering. The segmentation result is fitted to

the spatiotemporal model of the LV. Their approach is fully automatic and it

can be adapted to RT3D data but the algorithm is computationally expensive.

Comaniciu et al. in [48] presented a robust, real-time information fusion frame-

work to track the myocardium of the LV. Applying strongly adapted principal

component analysis model that incorporates information from system dynamics,
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measurement noise, subspace shape model and from the initial contour they show

outstanding results with high processing speed.

For the right atrium, very few computer aided tools were proposed. In [49]

multiple cardiac chambers including the right ventricle of the fetal heart were

segmented from a 3D US volume. Their method improved on the level-set based

approach of [50] by introducing a collision detection term to avoid adjacent cham-

bers be invaded by the neighbor snake.

Regarding related works summarized above, I contributed in

• providing the first study on the geometry based 3D reconstruction of the

right atrium and the ASD. Compared to the LV, this task is more difficult

since atria have more complex geometric properties. Contrary to LV studies,

simple geometric assumptions do not hold that motivated the use of implicit

methods.

• the application of very fast boundary tracking methods implemented on a

massively parallel processor.

• measuring the volume of the right atrium (RA), the size of the ASD, and

providing support for planning surgical interventions.

• application of a new type of metric when comparing contours for algorithm

control and validation.

2.3 Theory of topographic cellular active con-

tour (TCAC) methods

Active contours have become a popular tool in multiple image processing tasks like

segmentation, tracking and modeling during the last decade. An active contour

(AC) is a parametric curve u(s) = [x(s), y(s)]T , s ∈ [0, 1] with u(0) = u(1) and

u′(0) = u′(1), evolving from its initial shape and position under the influence of

internal and external forces. The AC evolves until it reaches a local minimum of

the total energy:

E(u) =

∫ 1

0

[
α ·
∣∣∣∣∂u(s)

∂s

∣∣∣∣2 + β ·
∣∣∣∣∂2u(s)

∂s2

∣∣∣∣2 + Pcontrol(u(s))

]
ds (2.1)

22



2.3 Theory of TCAC methods

where the first two terms of the right-hand side represent the internal energy, i.e.

the first factor is the membrane energy incorporating the resistance of the AC

to stretching, the second is the thin-plate energy accounting for the resistance to

bending. The internal energy is balanced with the energy defined by an external

potential field (Pcontrol) derived from the image features. Usual terms may include

the gradient of the image convolved with a Gaussian in order to reduce noise

γ · |∇(Gσ(u(s)) ∗ I(u(s)))|, the image intensity ζ · I(u(s)) or the distance to the

nearest boundary (target) point obtained by an edge detector η · exp−d(u(s))2 .

Constants α, β, γ, ζ, η balance the influence of internal and external force terms

and are chosen depending on the particular application.

An admissible contour function u(s) minimizing Eq. (2.1) must satisfy Euler’s

differential equation [51]:

− ∂

∂s

(
α · ∂u(s)

∂s

)
+

∂2

∂s2

(
β · ∂

2u(s)

∂s2

)
+∇PControl(u(s)) = 0 (2.2)

In order to numerically compute a minimal energy solution, the curve u(s)

is approximated with linear combinations of basis functions. The most used

methods are representations based on local-support basis functions like the finite

differences method [52], the finite elements method [53] and the B-splines [54].

Minimization of the functional E(u) requires high computational efforts that

limits the application of traditional AC techniques in real-time applications.

Image segmentation can also be formulated in implicit models. Motivated

by [55], [56], [40] a propagating active contour can be defined by a geometric

flow. The propagation velocity is made up of two terms, the regularity of the

contour and image derived information. The model of CWC is given by a reaction-

diffusion type partial differential equation (PDE):

∂IP (x, y, t)

∂t
= div grad(IP (x, y, t)) + F1(IControl(x, y, t0)) + F2(IP (x, y, t)) (2.3)

where F1 and F2 are nonlinear functions, I(x, y, t) : [0, N ]2 × [0, T ]→ [0,M ].

The solution of the PDE can be approximated using spatial discretization

made in equidistant steps in both directions, ∆x = ∆y = h. This way, IP (x, y, t)

is mapped onto a CNN array such that the state value of a CNN cell at a grid point

i, j is associated with IP (ih, jh, t). Using Taylor-series expansion of IP (x, y, t) the
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CNN template corresponding to the second spatial derivative can be obtained [57].

The image derived spatial constraint term F1(.) is replaced by the linear combina-

tion of the values stored in IControl(i, j, t0) and F2(.) is replaced by the nonlinear

function g. The ordinary differential equation approximating the solution of Eq.

(2.3) at the grid point i, j can be formulated as:

dIX(i, j, t)

dt
=− IX(i, j, t) + g(IP (i, j, t)) +

c1

4
[IP (i− 1, j, t)+

+ IP (i+ 1, j, t) + IP (i, j − 1, t) + IP (i, j + 1, t)] + z(i, j) (2.4)

where IX(i, j, t) represents the state variable at each grid point; IP (i, j, t) =

f(IX(i, j, t)) and g(.) = c0 ·f(.); the nonlinear, sigmoid-type function f is defined

as f(IX(i, j, t)) = 0.5 · (|IX(i, j, t) + 1| − |IX(i, j, t)− 1|). Velocity of the propa-

gating front is depending on the actual content of the image formulated in the

term z(i, j) = zconst +
∑

k,l∈S1(i,j) b(k,l)IControl(k, l, t0) where S1(i, j) represents the

3×3 neighborhood of the cell i, j, contributions of the neighbors are weighted by

the values of b(k,l).

Compared to existing AC techniques (see e.g. [52] [29]) TCAC methods dis-

cretize the contours at the same order as the spatial variable in the image space

and performs parallel computational operations on each contour pixel. The con-

tour is represented as sets of eight-connected black pixels in a binary image IP .

This binary image has the same dimensions as the original image containing the

objects or regions to be detected.

2.4 Implementation of topographic cellular ac-

tive contour (TCAC) methods

To avoid confusion, note that contrary to classical image processing conventions,

in our CNN based approach, darker pixels have higher grayscale intensity value.

Input data is a discretized, grayscale image IControl(i, j, k): [1,M ] × [1, N ] ×
[1, F rnum] taken from an US video flow (or ”3D data cube”) at the kth frame.

This grayscale image contains the image features that represent the region to be

detected. The algorithms provide the result either as a black contour (IC(i, j, k)),

or as a black patch (IP (i, j, k)) on white background. In the following, spatial
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2.4 Implementation of TCAC methods

Figure 2.2: The algorithm kernel computes the evolution of curve pixels under
the influence of internal and external driving forces. The initial contour can be
obtained by either defining it a priori or by extracting an initial feature map
obtained from the input image.

index i and j and temporal index t will many times be omitted for better read-

ability.

The evolution of discrete curve points can be implemented either by iterative

or by dynamic methods (see Fig. 2.2).

The main difficulties to be overcome reside in the initialization of the contour

tracking and the handling of false or missing features on the input image. Initial-

ization is a twofold problem. At the beginning of the contour tracking process the

algorithm has to find the approximate position of the target object in the input

image - this will be referred to as ”system-level calibration”. Then the parameters

of the tracking algorithm have to be tuned to actual image characteristics like

changing illumination level - this will be referred to as ”sensor-level calibration”.

Once the contour has been initialized the quality and speed of subsequent contour

detections can be substantially improved by exploiting the correlation between
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Figure 2.3: System-level view of TCAC techniques. Contour localization is per-
formed together with calibration, error measurement and parameter tuning. Note
that ”sensor-level” calibration might not be performed in each iteration.

consecutive frames. Topographic active contour techniques make use of the re-

sult from the previous iteration which is used to initialize the current contour

detection. This concept is illustrated in Fig. 2.3.

2.4.1 Preprocessing and Calibration

In the initial stage, preprocessing may be needed to eliminate speckle noise from

the input images. Various filter algorithms (mode, mean, median, truncated

median, globally and locally adaptive truncated median) were implemented on

digital platforms (personal computer (PC) and digital signal processor (DSP))

and their performance were evaluated using signal to noise ratio (SNR) histograms

and diagrams. Our results showed that the highest SNR increase can indeed be

achieved by the mode filter, in accordance with ultrasound speckle models, (see
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for example [58] and [37]), but it has its payoff in destroying many delicate image

features, most notably the thin segments of cardiac walls.

The mean filter is functionally similar to the simple diffusion operator imple-

mented on the CNN architecture. The SNR enhancement is comparable to the

result of the mode filter, but the feature distortion is much less severe. Since the

implementation is readily available on the CNN platform, using only 160ns time -

equal to six convolutions with Gaussian kernel - on the ACE16k chip, the current

TCAC implementations can use this method of filtering as a preprocessor. The

best image improvement results were achieved by the various truncated median

methods. The averaged SNR improvement is less than that of the mode and mean

filters, but the feature conservation is much superior. This has a price in imple-

mentation complexity, which currently does not make a hardware supported CNN

implementation possible, and this in turn results in high computational cost.

Two kinds of calibration modules are implemented. The role of the system-

level calibration module is to keep the target object in focus with optimal scaling

settings to fit the given size of our topographic computational platform (e.g.

64 × 64 cells in the case of the ACE4k architecture or 128 × 128 cells for the

ACE16k). We have also made efforts to develop a fully automated way to detect

the position of the target object on the first frame of processing, but the results

are not yet satisfactory. The system-level calibration module still requires a very

simple input from the user, who has to position a window on the target object at

the beginning of processing.

The sensor-level calibration module provides the algorithm with initial pa-

rameters adapted to the input image under processing. It cuts out 1D samples

from the image in radial directions, and uses a Sobel-like 1D edge detection op-

erator (1D version of the Dir Gradient operator described in the Appendix) on

each to find the point where the sampling line intersects the cardiac contour. For

more robustness, the sample pixels are calculated from the input image using a

9-neighborhood convolution mask which weights the neighbors lying orthogonally

to the sampling line with greater weight. That is basically an averaging parallel

to the supposed cardiac wall. The resulting approximate cardiac contour points

are checked against some confidence criteria and the admitted points are fed into

a L2-norm ellipse-fitting algorithm (Fig. 2.4). This whole algorithm takes only 20
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ms on the Texas Instruments C6020 DSP and outputs the approximate position

and size of the target object with the average illumination level of the cardiac

chamber and wall.

Figure 2.4: Sensor-level calibration provides the algorithm with initial parameters
adapted to the input image under processing. 1D samples from the image are
extracted in radial directions. A Sobel-like 1D edge detection operator is applied
to each sample to find the point where the sampling line intersects the cardiac
contour. The resulting approximate cardiac contour points (marked with white
X) are checked against some confidence criteria and the admitted points are fed
into a L2-norm ellipse-fitting algorithm.

The sensor-level calibration module can be run for each frame before the main

algorithm. This scenario follows accurately the changing illumination and size

parameters of the chamber to be tracked at the expense of using 20 ms processing

time for each frame. In a different scenario, the sensor-level calibration can only

be run for the first frame. In this case, if the difference measuring module (see

Fig. 2.3) signals the violation of a priori shape and motion assumptions, the

algorithm will be re-initialized by re-running the sensor-level calibration module.

This scenario saves processing time by running the calibration module only when

really needed. For more details on preprocessing and calibration see [59].
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2.4.2 Massively Parallel Processor Architectures

Low-level image processing operators like filtering, edge detection, binary hole

filling, feature extraction, etc. are computationally intensive. These operations

are inherently pixel-parallel, i.e. identical, localized operations are performed on

every pixel. Efficient image processing systems can be designed by associating

each image pixel with an image processing circuitry and allowing local connections

between neighboring processing cells (Fig. 2.5). Each cell can have local memories

and can perform basic arithmetic and logic operations on pixel values of their

local neighborhood. CNN [60] represent a powerful framework for this concept.

In many CNN implementations, each individual cell circuitry is a realisation

of Eq. (2.4), i.e. CNNs can be used to approximate solutions of PDEs. A

number of different CNN processor implementations are available for parallel

image processing [61] [62] on which various difficult image processing problems

were solved at high speed [63].

2.4.3 Constrained Wave Computing

CWC (see preliminary work in [40]) is a TCAC method that can extract endo-

cardial boundaries from a series of discretized, grayscale images taken from an

US 3D data set at a specific time instance at high speed. The only a priori in-

formation used is that the contour evolution is initialized inside the target object

and the boundary to be detected is composed of locally bright regions with pos-

sible holes. The contour to be detected is the steady contour of a dynamic wave

initiated from patches called sources. The evolution of the dynamic wave can be

stopped using a grayscale spatial constraint calculated from the input image(s).

Where wall segments are missing on the US image, proper spatial constraint or

external force cannot be generated to stop the wave propagation. However, a

properly chosen time-constraint can always be applied and thus a solution will

be obtained in a non-equilibrium state of the network. In summary, in the case

of CWC the task to be solved should be converted into adequate spatio-temporal

constraints.

US signal attenuation and dropout make endocardial boundary detection a

very challenging problem. Near inter-cavity holes or near wall segments missing
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Figure 2.5: Computational framework for pixel-parallel topographic active con-
tour algorithm. Ultrasound data flowing from the transducer is mapped onto a
processor array. Each cell on the array has local connections to its neighbors and
contains local memories. A cell computes its current state value by performing
basic arithmetic and logic operations on pixel values of their local neighborhood
and its own previous state value.

due to signal dropout, nearby parts of the AC could lock onto false image features

located outside the cardiac wall. Traditional AC approaches try to overcome such

problems via embedding some kind of higher knowledge into Eq. (2.1) in order

to find u(s) corresponding to the desired minimum of Eq. (2.1). TCAC methods

achieve high speed detection of the inner boundary of the cardiac cavity by pixel-

parallel algorithms using only local operations. Operations working on the 3× 3

neighborhood detect edges locally and thus cannot be aware of whether that edge

corresponds to the inner or to the outer side of the cardiac wall.

Higher level knowledge of ”approaching edges from inside” is embedded into

CWC to minimize the attraction force of false features in the raw grayscale image

IControl(i, j, t). Deforming a filled patch instead of a one pixel wide contour to de-

tect the target region makes the inner and outer side of the contour unambiguous

even if only operations working on the local neighborhood of the pixels are used.
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In CWC a filled black ”patch” IP (i, j, t) in a binary image is propagating

controlled by the raw ultrasound data IControl(i, j, t) to fit the cardiac cavity

to be segmented. The functions of internal and control energy terms of Eq.

(2.1) are represented as constraints applied to the local neighborhood of each

pixel. Internal constraints ensure the proper shape of the patch whereas control

constraints ensure that the boundary pixels of the patch in IP (i, j, t) correspond

to the locally bright regions in IControl(i, j, t).

Choosing constants c0 = 3 and c1 = 1 and b0,0 = −2 and zconst = 3.75 in Eq.

(2.4) a propagating binary wave process is generated. When IControl is the raw

ultrasound data taken from the input data set at a specific time instant and IP

is a small black patch inside the cavity, this constrained wave process can extract

the endocardium from the raw ultrasound data in a single instruction on [20].

Using explicit Euler discretization with h = 1, Eq. (2.4) can also be solved in

the discrete time domain. In that case Eq. (2.4) becomes:

IX(i, j, t+ 1) =g[IX(i, j, t)]− IP (i, j, t) +
c1

4
[IP (i− 1, j, t)+

+ IP (i+ 1, j, t) + IP (i, j − 1, t) + IP (i, j + 1, t)] + z(i, j) (2.5)

where IP (i, j, t) = f [IX(i, j, t)]; g[.] and f [.] remain as defined in Eq. 2.4. The

result contours obtained via iterating Eq. (2.5) in time on the same processor [20]

gives the same result as in the continuous time case. The discrete time solution is

obviously much slower but it can be solved on a much wider range of processors.

To achieve fast computing time, the discrete time model was decomposed into

a series of operations that exploit digital processor architectures better. The

performance gain is achieved by using simple, pixel parallel, rule-based operators

and perform costly grayscale calculations only at the local neighborhood of the

contour. These optimizations were added during the development of the Moving

Path Method by Viktor Binzberger.

The contour pixels evolve under the influence of local statistics computations

and morphological operations in order to obtain well-defined contours fitting to

the endocardial boundaries. For every pixel in IP (i, j, t), constraints are checked

in a properly defined sequence to find the new value of IP (i, j, t), i.e. to fit

IP (i, j, t) to image features in IControl(i, j, t) corresponding to the endocardium
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(see Fig. 2.6). The internal constraints can be represented by hit-and-miss masks.

Hit-and-miss is a general binary morphological operation that can be used to look

for particular masks (patterns) of foreground and background pixels in an image.

Internal constraints ensure that the patch will not contain singular white pixels,

and fill up the deeper concavities along the boundary of the patch. ”Must be

black” mask checking (see Fig. 2.6) sets pixels of the patch image black that

have a neighborhood of more than four black pixels. ”Valid black” masks select

pixels having exactly three neighboring black pixels that are adjacent to each

other. The selected pixels correspond to the edge of the patch that is deformed

under the guidance of control constraints to fit image features corresponding

to a cardiac cavity. Pixels in IP (i, j) selected neither by the ”must be black”

nor by ”valid black” masks are turned to white eliminating singular black pixels

disconnected from the main patch.

Control constraints are applied only to the result of internal constraint check-

ing, i.e. to the current edge pixels of IP (i, j, t). Two types of external constraints

are applied to IControl(i, j, t): global thresholds and a threshold imposed on inten-

sity differences in the local neighborhood. Pixels of IControl(i, j, t) corresponding

to pixels of IP (i, j, t) that were selected in the internal constraint checking phase

are checked whether they fall below or above a lower and higher global threshold

level (LowThresh, StopThresh), and they are set to black or to white respectively.

These thresholds are responsible for the unconditional expansion or shrinking of

the contour in regions belonging unequivocally to chambers or myocardium.

For the remaining pixels, the algorithm calculates the average grayscale level

of the neighboring pixels on the control image corresponding to the black and

white pixels in the patch image, respectively. If the difference between these

”white” and ”black” average values is below a local difference threshold, it sets

the pixel to white, otherwise to black.

This last step is the essential contour detection step. By computing the in-

tensity difference between the inner and outer side of the contour, the algorithm

approximates the component of the local gradient orthogonal to the boundary of

the patch. The patch is expanding if the intensity gradient is greater than a local

difference threshold, and shrinking when it is less. In other words, if the cardiac

wall is approached from the inside a gradual increase can be seen in the average
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Figure 2.6: Flowchart of the real-time boundary tracking algorithm. On all
pixels of the eroded version of the result detected in the previous frame, ”must
be black” masks (rotated masks with 90 180 and 270 are not shown) sets pixels of
the patch image black that have a neighborhood of more than four black pixels.
”Valid black” masks (rotated versions not shown) select pixels having exactly
three neighboring black pixels that are adjacent to each other. The selected
pixels correspond to the edge of the patch that is deformed under the guidance of
control constraints to fit image features corresponding to a cardiac cavity. Pixels
in IP (i, j) selected neither by the ”must be black” nor by ”valid black” masks
are turned to white eliminating singular black pixels disconnected from the main
patch. External constraints are applied to the grayscale ultrasound image in
form of global thresholds and a threshold imposed on intensity differences of the
local neighborhood of a pixel. The pixels of the grayscale image corresponding
to pixels of the patch image selected in the internal constraint checking phase
are checked whether they fall below or above a lower and higher global threshold
level (LowThresh, StopThresh), and they are set to black or to white respectively.
These thresholds are responsible for the unconditional expansion or shrinking of
the contour in regions belonging unequivocally to chambers or myocardium. For
the remaining edge pixels of the patch image, the average grayscale level of the
neighboring pixels on the control image corresponding to the black and white
pixels in the patch image are calculated. If the difference between the ”white”
and ”black” average (AverWhite, AverBlack) values is below a local difference
threshold, the pixel is set to white, otherwise to black.
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intensity until the intensity plateau of the cardiac wall is reached. This change

of gradient amplitude is detected by this method.

In summary, expansion and shrinkage of the patch is coarsely regulated via

fast global threshold checking. Computationally more expensive, fine regulation

calculates the orthogonal component of the local gradient.

The pseudo-code description of the CWC algorithm is listed in Algorithm 1.

Algorithm 1 Pseudocode of the CWC method in the recursive state

1: function ICWC(IP (k − 1), IControl(k), err(k − 1), τ)
2: [w, td, tc] = TuneParams(err(k − 1))
3: ISF (k) = SpeckleF ilt(IControl(k))
4: IMIM(k) = MotionEst(ISF (k + 1), ISF (k − 1), τ)
5: IExt(k) = Combine(IMIM(k), IControl(k), w)
6: IBWMask(k) = CalcBWMask(IP (k − 1), IFixmask, td)
7: IKernel(k) = TrWErosion(IP (k − 1), td)
8: IY (k) = TrWConstrDilation(IExt(k), IBWMask(k), IKernel(k), tc)
9: err(k) = dW (IP (k), IP (k − 1))

10: end function

Both for the initial frame and in the recursive processing phase the spatial

constraints are calculated in the following way. The slightly diffused version of the

raw image and the motion intensity map, IMIM(k) are generated from the filtered

images. These images reflect spatial information about the intensity around the

boundaries and the boundary motion. Motion intensity map is estimated from the

difference of the previous and the current frame. More robust motion information

could be estimated, if we added the difference of the next frame and the current

frame to the difference of the current and the previous frame. If this is the case,

we have to read a frame ahead.

These maps are normalized and then combined to form the external driv-

ing forces for the wave propagation. This image will be the grayscale spatial

constraint that will stop the contour evolution.

Hard limit for wave propagation can be imposed by exploiting a priori informa-

tion concerning the maximum boundary displacement (td) between consecutive

frames. Inflating IP (k) using a wave-type operation with time td defines a black

and white (BW) mask image to limit the contour evolution. This mask image is
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Figure 2.7: A sample, square-sized ultrasound image. The region that falls outside
the ultrasound beam is marked by the square pattern.

added to another mask image that disables computation on cells that fall outside

of the span of the ultrasound beam (see Fig. 2.7).

In the continuous time version of CWC, the evolution of the active contour

is expanding by nature. However the kernel or source for CWC is obtained by

deflating IP (k) with td time constant, thus image features moving inwards can

also be tracked. Time constant td is currently a manual parameter but could also

be estimated during calibration. Note that maximum boundary displacement is

the same inwards and outwards from the previous result thus this time constant

is the same for inflation and deflation. The actual contour evolution is performed

by the TrW Constr Dilation operation (TrW stands for Trigger Wave). Time

constant tc is the same as td during recursive processing, but for the first frame

it has to be be set by the sensor-level calibration module.

In the recursive state, the CWC algorithm first evaluates the error from the

previous iteration - this is performed in the TuneParams module - then compares

it to a cumulated error measure and tunes the weights w and the time parameters

td and tc. If the shape or size change is higher than the a priori defined value

then a reinitialization will occur. In such a case the recursive processing will

be interrupted and re-calibration will be performed. In our framework we used

both Hamming-type metric and Hausdorff-type metric for error estimation but

non-linear Wave-type metric proved to be the most reliable and robust. This
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Figure 2.8: Block diagram of the CWC algorithm as implemented on the ACE16k
platform.

error is calculated in the Metrics module. Details concerning the functionalities

implemented in the Metrics module can be found in [64].

The algorithm was implemented on the ACE16k platform [20]. Fig. 2.8 shows

the block diagram of this implementation.

2.4.4 Initialization of the CWC algorithm

The behavior of Algorithm 1 when processing the first frame of a video flow is

discussed (initialization or re-initialization). Assume that the system-level cal-

ibration module cuts and scales properly the window containing the region of
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interest. The grayscale external force map is computed exactly as in the recur-

sive processing state. However - in the absence of a result from the previous frame

- the wave source or kernel is a small, synthesized black rectangle in the center

of the ellipse estimated by the sensor-level calibration module. Without a previ-

ous detection, the BW mask limiting the wave propagation cannot be calculated

either. The region that falls outside the span of the ultrasound beam is known

a priori. Thus this region is used as the BW mask image for the first frame (see

square-pattern covered region on Fig. 2.7).

As originally presented in [40] [39], the dynamic wave propagates in an isotropic

manner from the kernel. This method gives inaccurate results in the quite fre-

quent case when the region to be detected is not approximately circular or di-

amond shaped. In the case of echocardiography, we can assume that the shape

of the chamber to be tracked can be approximated by an ellipse (this is a quite

common approximation in the medical literature for the left ventricle). To make

the wave reach the cardiac walls at roughly the same time in each direction, the

propagation speed must be proportional to the ratio of the major and the mi-

nor axis of the estimated ellipse. This can be done by distorting the feed-back

template of the dynamic wave propagation so that the wave travels proportion-

ally faster in the direction of the major axis. The result of the distorted wave

propagation is that the evolving wave front will reach the spatial constraint at

about the same time in each direction. Thus we prevent the wave from flow-

ing out in the direction of the minor axis at the time it has not yet approached

the cardiac wall in the direction of the major axis. This concept is called non-

isotropic dynamic wave computation and is illustrated in Fig. 2.9. The distorted

”A” template still has to fulfill the conditions described in [40] in order to ensure

global propagation. In addition to distorting the feed-back template we also have

to set a proper time constraint to stop the propagation. The major and minor

axis estimated by sensor-level calibration module provide a first estimation. Since

wave propagation starting from a square kernel and using a distorted feed-back

template travels in an elongated but still diamond shape, using the minor axis

as time constraint ensures that the wave front reaches the spatial constraint in

every direction.
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Figure 2.9: Isotropic and anisotropic wave propagation and their feed-back tem-
plates. Left side: ”A” template values for isotropic propagation. Left image:
result of the isotropic propagation starting from the central, square kernel. Right
image: result of the non-isotropic propagation starting from the central, square
kernel. Right side: ”A” template values distorted corresponding the estimated
ellipse. The parameters of the ellipse: Major: 36.8 pixels, minor: 21.7 pixels,
theta: 0.32 radians.

2.4.5 Method for determining proper time constraint for
wave propagation

The lack of spatial constraint at some wall-segments on most ultrasound video-

flows requires further considerations. We have to determine a proper time con-

straint that will stop the wave propagation where wall segments are missing.

Assume a trigger wave operator that counts the number of currently active

pixels during propagation. By active pixel we mean the number of pixels that

became black in the current ”iteration” during wave-propagation, equivalent to

the number of pixels with state variables in the transition region in the continuous

time case. The number of active pixels is measured as the Hamming distance

between the patches of the previous and the current time step. In the first frame

we can run the wave propagation for a long time constant. This will create a
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signature curve as shown in Fig. 2.10. The first valley of the curve signals that

the wave arrives to the walls. This is where we have to stop the wave propagation

to avoid outflows. If the spatial constraints were complete, the curve would fall

to 0 meaning that no active pixels are present despite any further propagation

steps. In the example shown in Fig. 2.10, the suggested time constraint with

added time for filling concavities is 22 that falls very close to the minor axis of

the ellipse estimated by the sensor-level calibration module (21.7).

To estimate td, we have to zoom at the first peak in the signature. This was

done by re-launching the wave propagation from a deflated version of the previ-

ous result. As shown in Fig. 2.11, the exact time constraint can be fine tuned

depending on how many time steps we make the wave propagate after reaching

the maximum number of active pixels. This can be defined as the percentage of

the kernel area (e.g. 5%). Like other parameters it can also be tuned to cardiolo-

gist traced contours by comparing algorithm calculated results with cardiologist

traced contours.

The method described can only be solved in an iterative way on current hard-

ware platforms. Later in the dissertation I shall suggest architectural changes

that could enable this method to be implemented on future CNN architectures.

2.4.6 Method to counteract the effect of an inexactly cho-
sen time constraint

Working with presently available DSP - CNN architectures we can measure the

parameters of an ellipse using the sensor-level calibration module. Using the

minor axis as time constraint can be fine in those cases where the target region

does not deviate too much from the ellipse-like shape. This is however not true

in many cases. Almost all cardiac ultrasound video-flows contain wall segments

where the spatial constraint disappears for a few frames and then reappears again.

At such places the dynamic wave will flow out of the target region. I developed

a way to counteract this artefact.

From the previous detection, the contour can expand in two steps. First

expand the eroded version of the detected cavity shape from the previous frame

with the time constraint tc, chosen with the algorithmic steps presented above.
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Figure 2.10: Signature created from the number of active pixels during wave-
propagation. The position of the cross shows the suggested time constraint for the
first frame with added time ensuring the contour arrives into eventual concavities
of the cavity. Horizontal axis: time steps, Vertical axis: number of active pixels.

Figure 2.11: Signature created from the number of active pixels during wave-
propagation. The position of the cross and the circle show suggested time con-
straints during the recursive state. Horizontal axis: time steps, Vertical axis:
number of active pixels.
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Then the expanded contour is further propagating with the same time constraint

again. The second expansion results in heavy outflows where wall segments are

missing. The difference between the results from the first expansion and from the

second is a contour with outward protrusions where wall segments are missing.

Applying the skeletonization and the pruning operators on this object corrects

outflows and smoothes the result.

This method does not suppress outflows but helps the algorithm to recover

when spatial constraint is reappearing. This is an important improvement since

in the case of a specific cardiac disease (ASD), there is a hole on the cardiac wall

where the contour must really flow out. Also, since the calibrated value of wall

displacement (the value of tb) can change during the recursive processing state,

this method can also refine the result of the wave propagation to fit the spatial

constraint better.

2.4.7 Pixel Level Snakes

In contrast to CWC, the Pixel Level Snakes (see the original work on PLS in [65])

method solves the contour tracking task in an iterative fashion using topographic

cellular operations. The contour evolution is based on binary and local morpho-

logical operations which perform a directional contour expansion (DCE) of the

active contour followed by a directional contour thinning (DCT) along the four

cardinal directions. These operations are driven by guiding information extracted

from the image being processed as external forces and from the contour itself as

internal and balloon forces.

The external potential is derived from the input image features to establish

a map of external forces. The contour will evolve in those directions where the

potential field decreases. This external potential should be defined in such a

way that its valleys coincide with the boundaries of the region of interest. This

step is strongly dependent on the particular application PLS is used to solve and

therefore represents an external input to the algorithm.

The internal potential is derived directly from the active contour itself. It

represents a curvature dependent control over the evolution of the active contour

to ensure its appropriate, application dependent smoothness level. The internal
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Figure 2.12: Internal Potential estimation module. It performs a diffusion oper-
ation that will originate positive internal forces that reduces local curvature

potential estimation module reaches this aim by performing recursive low-pass

filtering or diffusion operation on the contour image.

In the GFE module, a directional gradient operation on the resulting image

will then originate positive internal forces that will reduce local curvature or - in

other words - smooth the contour shape. The effect of IPE is illustrated on Fig.

2.12.

Due to the inherent nature of curvature driven internal forces the contour

has a shrinking tendency. To counteract this effect along with the necessity to

trespass spurious isolated weak image edges, an additional inflating force field

called balloon force is introduced. The pixel-level snakes can effectively inflate or

deflate the contours by the definition of a new potential field and the consequent

balloon forces. Balloon forces are calculated using a hole-filling operation on the

contour image. The pixel-level snakes can effectively inflate (deflate) the contours

by adding higher (lower) potential terms to those locations inside the closed curves

with respect to those situated outside. See Fig. 2.13 for an illustrative definition

of these notions.

In the end, by summing the weighted external, internal and inflating poten-

tials we obtain the global potential field on which a directional gradient operation
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Figure 2.13: Balloon forces are calculated using a hole-filling operation on the
contour image. The pixel-level snakes can effectively inflate (deflate) the contours
by adding higher (lower) potential terms to those locations inside the closed curves
with respect to those situated outside.

is performed providing input to the GFE module. In a pixel-level iterative tech-

nique, only the sign of the guiding forces along the direction under exploration

is actually needed. The guiding force extraction module (GFE) creates a binary

map with activated pixels in those locations where the potential is decreasing

along the direction under study. Thus the contour evolution is allowed where

this map contains activated pixels. Fig. 2.14 illustrates the operations in the

GFE module.

The DCE module expands the contour in the four cardinal directions where

the guiding forces are positive. The expanded contour image is processed in the

DCT module to deactivate pixels that belong to locally decreasing potential and

do not entail a rupture of the contour connectivity. In other words DCT makes

the contour one pixel wide and well-defined.

The full featured PLS method is able to avoid uncontrolled collisions between

contours. It also handles contour splits and merges during evolution. Although

this can be a powerful feature in some applications, in the case of cardiographic

image processing this module is not needed and is not covered here, for a detailed

description of this feature see [66].

The PLS method detecting contours in cardiac ultrasound images as follows.

When processing frame k, an external energy field (IExt(k)) is combined from two

differently processed versions of the raw image (see the pseudo-code description in
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Figure 2.14: Guiding force extraction (GFE) from an external potential field.
Lower potential is represented by lower intensity. By means of directional gradi-
ents the component of the guiding forces for each direction is obtained. The sign
of these forces will indicate the correct direction to move the active contour.

Algorithm 2 Pseudocode of the PLS method

1: function IPLS(IC(k − 1), IControl(k), w)
2: IExt(k) = ExtEnergyEst(IControl(k))
3: for each cardinal direction do
4: IInt1(k) = IntEnergyEst(IC(k − 1))
5: IInt2(k) = BalloonForceEst(IC(k − 1))
6: IEnergyMap(k) = DirGradient(Combine(IExt(k), IInt1(k), IInt2(k), w))
7: IC(k) = DirContourExp(IC(k − 1), IEnergyMap(k))
8: IC(k) = DirContourThin(IC(k))
9: end for

10: end function
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Algorithm 2). Internal energy field is obtained by applying a DirGradient opera-

tion (approximation of the Sobel operator, see Appendix for details) on IC(k−1)

which will originate positive internal forces, reducing local curvature to smooth

the contour shape (IEE module). To trespass spurious isolated weak image edges

and to counteract the shrinking tendency of the contour, an additional inflating

force field is estimated by applying a DirGradient operation on IC(k − 1). The

resulting force field will put the active contour closer to the boundaries of in-

terest from locations where the external forces are too weak. Finally, the GFE

module will combine the IExt(k), the IInt1(k) and the IInt2(k) using user chosen

weights. Then a directional gradient operation is applied to the resulting image.

The sign of the gradient will indicate the direction to which the active contour

has to move. GFF will be a black and white map where black pixels indicate

a decreasing gradient towards the valleys of the guiding forces where the image

feature to be detected is supposed to be. The DCE module is an iterative shift

operation of the contour pixels detected in frame k − 1. The shift is performed

into the four cardinal directions driven by the guiding information, i.e. by the

black pixels in GFF. DCE is followed by a directional contour thinning operation

(DCT) deactivating the pixels in locations which do not entail a rupture of the

contour connectivity.

2.5 Validation

2.5.1 Validation methods and Comparison Metrics

There is no crystallized validation protocol to assess the performance of medical

image analysis algorithms. Chalana and Kim in [67] introduced a protocol for

validation procedures relying on multiple observers, but debated issues persist in

defining proper methods for validation [68].

Other studies compared only either the area (e.g. [37]) enclosed by algorithm

and by expert traced contours or the averaged Euclidean distance between closest

contour points ([36]) for validation. Another approach is to compute the distances

between corresponding landmark and reference points [30]. In the present study,

morphological precision was of primary importance in order to assess how our
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algorithm can capture the complex geometries that arise especially when the left

and right atrium of a diseased heart is analyzed. Therefore as novel approach, the

nonlinear wave type metric [64] was applied to measure the difference between

manually and automatically extracted endocardial boundaries.

2.5.2 Metric for comparing contours

Meaningful evaluation of image segmentation requires a properly defined metric

and some reference data sets. The choice of a robust metric is an intricate task.

The most obvious criterion of the degree of coincidence of point sets is a measure

of symmetrical difference, i.e. the area difference. This is a natural choice and

it is the well-known Hamming distance which is the result of a pixel-wise XOR

operation on two given finite binary point set A and B:

dHm =
∑

(A ∪B\A ∩B) (2.6)

Another often-used distance is the Hausdorff distance. The Hausdorff distance is

defined as

dHs = max(h(A,B), h(B,A)) (2.7)

where h(A,B) = max
a∈A

min
b∈B
‖a− b‖ and ‖.‖ is some norm on the points of A and

B. The function h(A,B) identifies the point a ∈ A that is farthest from any

point of B and measures the distance from a to its nearest neighbor in B using

the given norm ‖.‖.
Although the Hamming and Hausdorff distances are commonly used in image

processing applications for object comparison and classification, they have several

disadvantages. Hamming distance measures the area difference, but does not

reveal anything about shape difference. In addition, it is sensitive to object shift

and noise. Hausdorff metric measures shape difference but cannot tell anything

about shape properties, like average distance between two objects, e.g. a one pixel

sized noisy spot can drastically modify the Hausdorff distance. In [64] the non-

linear wave metric was introduced that measures both area and shape differences

between two binary objects. Let a binary wave - very similar to the constrained

wave operator used in CWC - be started from A ∩ B and propagating till it

matches the points of A ∪ B. The time required for the wave to occupy A ∪ B

46



2.6 3D reconstruction

measures the difference between the shapes A and B. During wave evolution a

grayscale image dlHS is created in which a pixel value corresponds to the time

required for the wave to reach that pixel from A ∩ B. The sum of these local

Hausdorff distances gives the wave-type metric dW =
∑
dlHS. In addition to

capture both area and shape differences, this metric has parallel implementation

with about 10 µs running time on [19] or [20].

2.5.3 Manually traced reference data sets

Gold standard for comparison is not available thus manual segmentations done by

two independent experts were used. Human experts manually traced endocardial

boundaries of 6 3D data sets. For all frames in a volume a mean patch was derived

from the two reference contours IC1 and IC2 manually traced for the same US

frame by two independent experts. Filling the contours into patches and taking

the pixel-wise XOR relation of the two reference patches IP1 and IP2 only those

parts that are not belonging to their intersection are kept. The result is a closed

shape with thickened regions where the original patches had shape differences.

A thinning operator shrunk these thickened regions into a one pixel wide mean

contour IM :

IM = Shrink [(IP1 XOR IP2) OR IC1] (2.8)

Manually traced contours by the two experts were compared to IM using the

nonlinear wave-type metric to assess inter-observer variability:

εio =
1

2 · F

2∑
r=1

F∑
f=1

dW (Cr(f), CPS(f)) (2.9)

where f = [1, ..., F ], f ∈ N and F is the number of frames in the dataset. In the

same way, the error of CWC εCWC was computed for each frame in a volume, i.e.

the mean reference contour was compared to the endocardial contour extracted

by the CWC algorithm.

2.6 3D reconstruction

The result endocardial boundary coordinate set detected by the TCAC algorithm

is transformed into the space of the raw 3D data set. A mesh is reconstructed
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from the point set in 3D via the metaballs method that is an implicit surface

modeling technique popular in modeling organic objects like the surface of the

endocardium. Contour coordinates properly translated and rotated into their

position in 3D space act as centers of force fields. This set of points are the

centers of the metaballs. Around each metaball a force field is defined that is

decreasing proportionally with the distance from the metaball. If the force field

of all metaballs is summed, then the object surface F can be defined as the

isosurface of all spatial locations belonging to the same value (T ) in the summed

force field:

F (x, y, z) = −T +
∑
i

bi · e−ai·ri (2.10)

where ri is the Euclidean distance from a reference point in space to the center

of the ith metaball, ai and bi are parameters that define the range of influence of

individual points.

The number of triangles in the smooth 3D mesh of the endocardial surface gen-

erated by metaballs is far too high for real-time interactive manipulation purposes.

Despite the performance of modern graphics hardware, real-time visualization of

complex meshes cannot be realized without special techniques to reduce the num-

ber of triangles that are rendered. A Mesh Reduction Method (MRM) was used

to simplify the complex meshes by seeking a trade-off between preservation of

original topology, high simplification speed and low number final triangles.

Endocardial boundary extraction and 3D surface reconstruction was per-

formed for each cavity (right atrium, and part of left atrium) separately. The

two atria are merged into compound mesh and any points inside the compound

are deleted. The points connecting the right and left atria in the compound de-

fine the ASD surface. The area of this surface is measured and presented to the

clinician on the interactive surgery planning interface.

2.7 Experiments and Results

2.7.1 Hardware-software elements

The system-level overview of the proposed method is shown on Fig. 2.15. Echocar-

diographic data was acquired using a Philips Sonos 5500 equipped with Omni-
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Figure 2.15: System-level overview showing the data-flow processing diagram of
the on-line 3D echocardiographic system. US data acquisition is done by the clin-
ician. Real-time multi-chamber contour tracking is performed on the topographic
multi-processor unit, contour sampling and 3D operations are done on the non-
topographic processor. The clinician can watch a coarse 3D reconstruction of the
object in 3D real-time speed. Fine details can be inspected for diagnosis and
surgical planning on-line. ACE-BOX stands for Analogic Computing Engine.

plane II transesophageal probe for 3D acquisition. Acquired volumes were pro-

cessed on a stand-alone visual processor (Bi-i, Analogic Ltd., Budapest, Hungary)

connected to a PC that provided the user interface and ran the 3D mesh gener-

ation algorithm.

To track the endocardium of a cavity, the user has to define the regions of the

cavities to be processed by drawing rectangles around each cavity. The selected

subregions are extracted from the 720×540 resolution raw data and the boundary

of the enclosed cavities are tracked by the TCAC method in a time multiplexed

way at 128× 128 resolution each. A series of segmented endocardial boundaries

of the RA and the LV is shown on Fig. 2.16.

After a full volume has been acquired, a coarse 3D reconstruction of the

processed cavity is immediately presented to the user to give a general feedback

about the quality of the acquisition. The fine 3D mesh of each cavity is rendered
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Figure 2.16: Representative snapshots of the boundary tracking of two atria,
tracked by the discrete time version of CWC. Other methods provide similar
results. Upper row: Boundary of the left atrium. Lower row: boundary of the
right atrium. Observe in the first column how the contours flow into the other
atrium through the pathological hole. The hole is most apparent in the second
column and disappears as the probe rotates further in space.

to produce the virtual reality scene and accurate volume estimation in one minute

after acquisition.

The continuous time version of CWC was implemented on the 128 × 128

pixels resolution, massively parallel processor (ACE16k [20]). The discrete time

version of CWC was implemented in C language and processed 64 × 64 pixel

sized subframes on a DSP (Texas 6202 at 250 MHz) in the Bi-i stand-alone visual

computing environment. The same code was also executed on a PC (Pentium 4

3GHz with 1Gb RAM). The steps from converting the boundary coordinates into

an interactive scene and calculating quantitative measurements were programmed

in a commercial 3D modeling package running on a PC (3D Studio Max, Autodesk

Inc., San Rafael, CA).

2.7.2 Data

6 3D data sets of in-vitro static phantoms and 3D transesophageal data sets from

6 children, mildly anesthesized and being affected by ASD were acquired with

one volume per patient each containing 90 frames.

Two human experts trained to evaluate echocardiographic recordings but un-

familiar with the result of boundary tracking algorithms have traced for all frames

50



2.7 Experiments and Results

the endocardial boundaries of the 3D data sets. To assist this work I developed

a custom software tool based on the initial version developed by György Cserey.

An expert had to manually delineate the first frame with as many points as he

judged necessary. Since consecutive frames have a roughly similar shape, the car-

diologist had the option to adapt the contour points from the previous frame to

fit the current. To assess inter-observer variability, the 3D data sets were traced

by two independent experts.

2.7.3 Validation of volume quantification

Volume and morphology of the RA in newborn individuals affected by ASD can

vary in a relatively wide range. In lack of in vivo gold standard, validation of

volume estimation on in vitro phantoms with known volumes can be a reliable

alternative to in vivo validation. The volume estimation accuracy of the proposed

method was evaluated on 6 in-vitro static balloons with various shapes and known

volumes. Balloon objects were sealed to prevent water flowing out and immersed

in a water solution. On each balloon, acquisition, boundary tracking, 3D recon-

struction and volume estimation was performed.

2.7.4 Clinical case study

Pediatric cardiology is a field where 3D echocardiography has the potential to sig-

nificantly improve the efficiency and reliability of diagnosis and thus may greatly

improve the planning of surgical procedures. The clinical value of the on-line 3D

method reconstructing the RA and the ASD was assessed in a prototype system

installed in a clinical pediatric department. Fig. 2.17 shows a specific case we pur-

sued. In the case of pediatric cardiology, an important number of children have

an abnormality called atrial septal defect (ASD), i.e. a hole between the atria

where oxygenated blood from the lungs is mixed with used blood coming from

the main veins. Since a few years, a common practice is to introduce an implant

(i.e. an occluder), that closes the abnormal hole permanently giving the patient a

considerably better and longer life. The main problem is that 2D transesophageal

echocardiography (TEE) echocardiography is unable to give appropriate geomet-

rical information in many cases, i.e. the size, the morphology and the location of
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the defect can only be estimated with limited reliability. Therefore in some cases

the type and size of the occluder is selected in an iterative fashion. Fig. 2.17

illustrates that after acquisition and reconstruction of the atria, the clinician can

try a set of occluders modeled in 3D virtual reality into the heart of the patient.

Figure 2.17: Reconstructed right and left atria in the virtual reality environment.
Upper left: Occluders of commercially available sizes were modeled so that the
appropriate type and size (e.g. illustrated by the yellow highlight) can be probed
into the 3D model of the heart cavities. Lower row: snapshots of the process
demonstrating how the selected occluder is opened in the virtual reality scene to
simulate the surgical procedure. Upper right side: Quantitative measurements
are shown to the user, as well as the size of the ASD. The shape of the abnormality
is shown under the text in the figure. The right atrium is opened from the user’s
viewpoint to enable inspection of inner surfaces.

After 3D reconstruction the clinician can inspect the morphology of the se-

lected cavities at the desired time instance and can manipulate the cavities in-

teractively to plan the surgery (see Fig. 2.17 and Fig. 2.18).

2.7.5 Accuracy

We validated the accuracy of the on-line 3D echocardiography system using static

in vitro dummy objects. To simulate a heart cavity, 6 rubber balloons with

diverse geometry have been filled with water, sealed and placed in water bath.

Boundary detection of each object was performed. The volume of the algorithm

reconstructed object deviated from the manual reference with 12% (average across
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a) b) c) d)

Figure 2.18: Four reconstructed clinical cases. First two rows show a healthy
case, last two rows show the pathological interaction between atria. Columns:
a) A sample source frame, result splines are superimposed. b) Result contours
rotated and translated into 3D space. c) Result of metaball 3D surface rendering
after mesh reduction d) Sample virtual reality view.

the 6 recordings). A sample dummy object, the intermediate steps of boundary

tracking and 3D reconstruction can be seen on Fig. 2.19.

For 6 clinical recordings where two independent, manually traced references

were available, interobserver variability of volume quantification was compared to

the error between algorithm results and the mean reference. Mean error between

the 6 recordings and the mean of the reference volumes was 10% whereas the

mean error between individual references and their mean was 3%.
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a) b) c) d) e)

Figure 2.19: Sample case of validating the volume estimation accuracy of the
system. 6 balloons with various shapes and sizes were acquired and processed. a)
Original object b) above:raw US frame, below: raw 3D reconstruction c) above:
sample result contour below: result contours rotated into prober position in 3D
space d) above: result contours on raw 3D reconstruction, below: roughly ren-
dered 3D reconstruction of contours on raw 3D reconstruction e) final reconstruc-
tion in the virtual reality scene.

2.7.6 Computational Performance

2.7.6.1 Comparison of topographic cellular active contour (TCAC)
methods

Topographic algorithms implemented on massively parallel cellular processors

outperform digital, non-topographic approaches when fast processing of image

flows is needed. In the continuous time version of CWC, the so-called constrained

trigger wave operator [40] is a dynamic operator that solves the contour detection

problem in a single instruction. The continuous time version of CWC was imple-

mented on the ACE16k platform and uses only 1.3 ms per frame for boundary

detection.

Table 2.1 shows major theoretical aspects of the topographic active contour

algorithms. Note that a priori motion information not used in PLS. This infor-

mation could be important in several cases when false edges appear in the frame

sequence. PLS differs from CWC representing the active contour explicitly. PLS

has an inherent capability to deflate the contour or let parts of the contour move

inwards. In contrast, the trigger wave operator in CWC is expansive but CWC
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Property /
Method

CWC continu-
ous time

PLS CWC discrete
time

Data representa-
tion

topographic topographic topographic

Information ex-
change in space

acausal cellular
nearest neighbor

acausal cellular
nearest neighbor

acausal cellular
nearest neighbor

Information ex-
change in time

read ahead re-
cursive nearest
frame

causal recursive
nearest frame

causal recursive
nearest frame

Contour represen-
tation

implicit (region
propagation)

explicit (curve
propagation)

implicit (region
propagation)

Contour localiza-
tion technique

expansive expansive / con-
tractive

expansive / con-
tractive

Computational
method

PDE related energy related rule based

Table 2.1: Comparison table of major theoretical aspects of our topographic
active contour methods

can handle inward moving contour segments by shrinking the previous result to

obtain the kernel for the current frame.

Table 2.2 presents important implementation aspects of the TCAC algorithms.

When speaking about performance and quality issues, we have to keep in mind

that it is extremely difficult to quantitatively compare two different active con-

tour algorithms. A new aspect of this study is that the three types of TCAC

algorithms were implemented in a common framework. Analogic architectures

(i.e the ACE4k and the ACE16k chip embedded within the ACE-BOX or Bi-i

environment) provide a fixed complexity reproducible CNN computing (nearest

neighbor computing with linear CNN templates).

The PLS core is using linear uncoupled CNN templates and showed detection

speed of 25 fps on the ACE4k.

The discrete time version of CWC was implemented using non-linear uncou-

pled operations running on the DSP platform of the ACE-BOX architecture,

and the simplified version of the discrete time CWC was implemented on the

ACE16k. Note that PLS is a general technique whereas CWC exploits the

echocardiography-specific prior of approaching the boundary from the center.
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Property /
Method

CWC continu-
ous time

PLS CWC discrete
time

Implementation dynamic iterative iterative
Algorithm
parametrization

kernel operator
level (template
entries)

computing block
level (weights)

computing block
level (threshold
levels)

Minimal complex-
ity of CNN formu-
lation

linear coupled linear coupled linear uncoupled

ACE4k implemen-
tation

partial complete -

ACE16k imple-
mentation

complete - complete

ACE-BOX/Bi-i
implementation

complete complete complete

Development mo-
tivations

echocardiography general tech-
nique

echocardiography

Table 2.2: Comparison of implementation aspects of our active contour methods

The continuous time version of CWC is a dynamic method using linear coupled

CNN templates.

This comparison shows the outstanding capabilities of using propagating tem-

plates for image processing tasks. Earlier, the extremely high performance of

CWC was tempered by occasional hardware instability when running coupled

templates on the ACE16k. I developed a Matlab toolbox based on the CNN tem-

plate tuning method of [69]. Using the toolbox, the coupled constrained trigger

wave was shown to run robustly on the ACE16k [4].

2.7.6.2 Comparison with other Approaches

Table 2.3 summarizes the speed and spatial resolution of some reviewed works

together with the proposed methods. The integer performance measurements exe-

cuted in a standardized test environment (SPEC R©, SPECint2000, www.spec.org)

were used to bring processor performances to a common ground. Content of this

comparison table should be taken with great caution and it is not intended as a

rigorous performance analysis. 2D and 3D methods were brought to a common
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First au-
thor and
reference

Keyword de-
scription of
the underlying
algorithm

Microprocessor CINT
2000

Spatial reso-
lution of in-
put (x*y(*z))

Fps

Bosch [30] Active appear-
ance models

Pentium III
800 MHz

365 768*576(*16) 2,67

Mitchell
[31]

3D active ap-
pearance models

Pentium III
1GHz

423 96*72 6.25

Wolf [36] Multi-scale edge
detection

Pentium III 1
GHz

423 768*576 1

Montagnat
[41]

deformable sur-
faces

Digital PWS
500

161 256*256(*9) 0,21

Montagnat
[42]

anisotropic
diffusion, de-
formable sur-
faces

Pentium 4
2GHz

640 256*256(*17) 0.04†

Gérard
[44]

3D deformable
models

AMD Athlon
1.2 GHz

443 256*256(*40) 0,17
†

Zagrodsky
[45]

3D deformable
models

Dual Pentium
4 1.7 GHz

1200 128*128(*128) 0.186

Comaniciu
[48]

Fusion, SA-PCA Pentium 4 2
GHz

640 640*480 20

Proposed
method

topographic,
discrete time

Texas 6202
250 MHz

315 64*64(*90) 22

Proposed
method

topographic,
discrete time

Pentium 4 3
GHz

1149 64*64(*90) 170

Proposed
method

topographic,
discrete time

Pentium 4 3
GHz

1149 128*128(*90) 40

Proposed
method

topographic,
continuous time

Parallel
(ACE16k)

Analog
proc

128*128(*90) 500

Table 2.3: Computing performance comparison. Common ground for comparison
is the number of processed frames per second (fps), derived from published data.
Processing power of processors on which the given method was implemented were
brought to a common ground using measurements from Standard Performance
Evaluation Corporation (CINT2000 www.spec.org). Spatial resolution is given
for reference, third number in parenthesis denotes resolution in the third spatial
dimension. The reader should take this comparison with great caution and is
referred to the text for further comments. Related studies where no performance
figures were published were not included. †: Processor speed and type is estimated
based on chips released one year before the manuscript was submitted.
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ground via calculating the number of processed frames per second (fps). For

3D methods, if the published performance result was in volumes per second, the

volume per second value was multiplied by the lowest spatial resolution to get

fps. We are aware that even after this transformation, fps gives slightly distorted

information about the performance of the original algorithm. Therefore I did not

go further in transforming results to a common measure, because further spatial

scale changes would not have taken into account the unknown ”slow down” ratio

specific to each different algorithmic approach when processing data sets with

different resolutions.

Also, the reader should keep in mind, that TCAC methods were applied to

extract the right atrium whereas other methods were applied to the much simpler

problem of extracting the left atrium. An early version of the CWC algorithm was

already applied to segment the left atrium from 2D echocardiographic recordings,

see [39] for details.

Development of an on-line 3D reconstruction algorithm that balances realistic

hardware constraints with enough level of detail is an intricate task involving

manual experimentations. The mesh reduction method (MRM) implemented

in the Autodesk 3d Studio Max software package gave efficient support for this

process, typically reducing mesh size by 1.5 order of magnitude in about a minute

processing on a Pentium 4 2.4 GHz PC without noticeable topological distortions.

The result is a mesh that can be explored in virtual reality on a common computer

without expensive specialized hardware.

2.8 Discussion

An on-line, highly automated method reconstructing the RA and providing quan-

titative measurements and the size of the ASD was presented. To my best knowl-

edge this is the first report on automated boundary extraction and 3D recon-

struction of the right atrium. Quality of boundary tracking was compared to

interobserver variability on 6 in-vitro static objects and 6 clinical datasets.

When comparing results of boundary detection methods (for a series of exam-

ple contours see Fig. 2.16) to the interobserver variability between hand-traced

contours produced by different cardiologist experts, one can hardly draw a clear
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conclusion. The error being noticeably higher than the interobserver variability

might be explained by the ill posed nature of the problem. The atria of ASD

affected patients have extremely irregular shapes that ruled out statistical shape

modeling approaches. Statistical modeling are heavily used in other studies work-

ing on the LV.

Computational complexity was so far hardly mentioned in the literature as a

problem. The increasing need for computer assisted, quantitative tools in med-

ical diagnosis requires extra processing power but state-of-the-art ultrasound

machines already suffer from heat issues. The advantage of using TCAC al-

gorithms implemented on state-of-the-art topographic processors (Eye-Ris 2.0

www.anafocus.com, [62] [70]) becomes apparent when power dissipation is also

taken into account.

It is extremely difficult to quantitatively compare the quality and performance

of two different boundary tracking algorithms. These issues underline the need

for a standardized test recording set in order to eliminate variations in algorithm

performance due to variance in image quality and spatio-temporal resolution be-

tween recordings. Together with manual boundary tracings, such a set could also

give solid ground to quality comparisons between various boundary detection

algorithms.

Regarding TCAC methods, we went as far as possible in implementing the

three boundary tracking algorithms in a common framework. Current topo-

graphic parallel cellular architectures provide a fixed complexity reproducible

computing, i.e. nearest neighbor, linear interactions between cells. Performance

of real-time TCAC methods ranges currently between 22 and 500 fps. At the

time this dissertation was written, new generation topographic processors as well

as much faster DSPs are already available indicating that the lower boundary

of these figures can be improved by about one order of magnitude. This extra

processing power could be used to increase spatial and temporal resolution of our

approach, i.e. to move from on-line towards truly real-time operation. In addi-

tion to increased resolution, more performance could give space to quantitative

measurements based on wall motion analysis. Note that the performance bottle-

neck is currently a major obstacle that hampers the on-line, clinically powerful

implementation of other promising methods, like strain rate imaging.
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In this perspective, the figures in Table 2.3 suggest that traditional comput-

ing architectures used in today’s PCs have little chance to provide the computing

power needed for 3D real-time echocardiography. Note that high-end echocardio-

graphy machines actually perform computations on embedded PCs. Recently the

IBM-Sony-Toshiba consortium published their first-generation CELL processor,

capable to run 10 threads simultaneously [71]. Although the power efficiency of

the CELL processor is low, in my opinion only methods ready to be implemented

on parallel hardware have the perspective to realize 3D real-time operation in

echocardiography.

2.8.1 Limitations and possible extensions of the current
system

The unprecedented speed of TCAC algorithms is due to the massively parallel

platform they are implemented on. Availability of the chips I used is limited

and their price is currently higher than that of high-end, off-the-shelf DSPs.

However next generation chips, like the parallel architecture implemented on field

programmable gate array (FPGA) [72], or the next versions of [73] will solve this

issue.

During the experiments, I had no access to RT3D probes, therefore further

efforts are needed to adapt our method to this emerging technology. Together

with the MRI validation, we plan to achieve this goal in the future.

2.8.2 Novel Analogic Cellular Architecture Motivated by
TCAC Techniques

There has been a number of initiatives to suggest modifications to the current

ACE-BOX architecture (see e.g. [74] and references therein). I presented TCAC

methods within the frame of a specific case study proposing three different algo-

rithms running on the current ACE-BOX architecture. The aspects I add here

are the condensation of this work. Three main elements - global operations, en-

hanced templates and more complex synaptic non-linearity - and some general

system-level considerations of current CNN architecture will be discussed. My
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propositions aim to further enhance the power of topographic signal processing in

order to improve the applicability of CNN architectures to engineering problems.

When looking at the ensemble of possible enhancements I acknowledge that

factors like power dissipation and chip surface constraints do limit the freedom of

hardware designers. However, exploiting the vertical dimension would be a way

to alleviate the interconnect related problems inherent to high complexity CNN

chips. The suggested modifications can be implemented by dividing the planar

chip into separate blocks, each occupying a separate physical level interconnected

by short and vertical interlayer interconnects. This would result in significant

improvement in performance and reduction in wire-limited chip area, although 3D

integration of transistors also faces design difficulties related to power dissipation

and the associated thermal effects [75]. Unfortunately, fabrication technology

of 3D integrated circuits is still quite complex and its availability is extremely

restricted.

2.8.2.1 Global operations

The capability of counting the number of black pixels on the CNN chip could

be a highly useful feature (see paragraphs on choosing proper time constraint for

CWC). At this time this can only be done by stopping the wave propagation,

sending up the full image to the DSP, and waiting for the result from the DSP.

This takes far too much time. A ”global count” feature would open the space to

control wave-propagation not only by the spatial constraint but also by measur-

ing the output of the evolution. For example, a propagating template could be

stopped by continuously compare its ”area” to a predefined maximum number of

black pixels to be reached.

The advantage is that the global count feature does not need specific extra

wiring on chip thus its hardware implementation does not eat up much of the

chip surface. This feature is the same as the ”global line” idea suggested in [16],

but extended with a ”continuous” read-out feature. The address event detection

scheme introduced in the ACE16k processor can be considered as a first step

towards the global count functionality.

61



2. ON-LINE 3D ECHOCARDIOGRAPHY

2.8.2.2 Enhanced template handling support

In the case of the simplified version of the discrete time CWC or the PLS, the

bottleneck is template memory. The algorithms use only a low number of tem-

plate types, and some of them have 8-8 different versions corresponding to each

cardinal direction. These 8-8 versions differ only in their orientation: they can be

derived from a prototype (e.g. the North-facing template) by consecutive rota-

tions. Support for rotatable and mirrorable templates could be added with only

slight software modifications on the ACE-BOX driver architecture. This might

also speed up the development and execution time of other iterative algorithms.

The experiments show that there is a need for a modified CNN cell structure

that supports locally masked template operations. This idea can be considered

as a simplified version of spatially variant templates where the source of variation

comes from the grayscale image data. The transformation of grayscale levels to

template levels would require level-shifting circuits with about four times the

transistors per CNN cell compared to current CNN chips. In addition, for each

cell some extra wiring would also be needed. In contrast, this idea is a trade-off

with simpler functional capabilities but also lower hardware complexity compared

to spatially variant templates.

To implement locally maskable templates on hardware, transformation of

grayscale image data to local binary masks via thresholding circuits would be

needed. This would only need about double as many transistors per cell com-

pared to current implementations. Eight on-chip memories would store the re-

sult, i.e. the images determining which cells in the local neighborhood should be

masked. We can think of these eight source images for local template masking as

an analogy to the grayscale and binary spatial constraints in CWC guiding and

limiting a global operation.

2.8.2.3 More complex synaptic nonlinearities

Median filtering, non-linear sorting and fuzzy mean level estimation are useful

functionalities not supported by current hardware implementations. Advanced

synapses that support radial basis function with adjustable membership function

parameters would open the way for these advanced functionalities. In this study,
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the hardware implementation of CWC worked around fuzzy mean level estimation

by iteratively thresholding the input image around the calibrated wall intensity

level and summing the grayscale values under the resulted mask images. This

took however more processing time and introduced instability in the system.

Therefore complex non-linear synapses or even adaptive synapses implemented

in hardware would highly improve the applicability of CNN architectures to a

wide range of image processing tasks.

2.8.2.4 Benefits of improved data transfer rate between the CNN and
the DSP platform

Experiments also suggest that combined DSP-CNN (non-topographic, topographic)

algorithms could be designed that make an optimal use of the ACE-BOX type

computational infrastructures. However the slow up/download transfer rate of

images between the DSP and the CNN platform hampers the design of effi-

cient combined DSP-CNN algorithms. With the use of optimal signal resolution,

highest-speed state-of-the-art ADCs, the data transfer rate could be high enough

to make the CNN chip be seen from the DSP platform as a memory range. To-

day, data transfer rate over 1 Gbit/second is quite a realistic objective. Therefore

it is highly advised to care about eliminating performance bottlenecks, e.g. on

the ACE16k, binary data can only be read out as a grayscale image that clearly

causes a useless waste of time.

High data transfer rate would simplify algorithm implementation and would

greatly improve the overall performance of the ACE-BOX architecture. In order

to maximize the use of processing power in both platforms, at least a two-threaded

system would be needed to enable calculations running concurrently on the CNN

and the DSP platform.

Having smooth data transfer between the CNN and the DSP would also solve

problems due to the limited amount of on-chip memory. In addition, this system

would need less on-chip memory that would free up valuable chip surface that

could be used for other valuable functionalities like enhanced synaptic complexity

or template structure. Therefore in order to further improve the competitiveness

of CNN platforms, it would be highly preferable to address these issues in next

generation chip designs.
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2.8.2.5 Remarks on some issues of the ACE-BOX architecture

Both CWC and PLS rely heavily on thresholding operations. Since the current

on-chip implementation of thresholding has a not compensable noise of ±10%, it

means that satisfactory results can be achieved only by using the thresholding

operator implemented on the DSP that results in high transfer overhead.

I have experimented with the non-isotropic wave propagation on the ACE

16k chip. At the moment, it cannot really be used to process the first frame in

CWC to ensure continuously smooth fitting to spatial constraints. The problem

is that small distortions in the A template values cause no or very small amount

of non-isotropy in wave propagation.

As a slightly related issue, I have tried to compensate the inevitably uneven

surface properties of different chip instances. Due to hardware implementation

issues, the bias map could not be used for this purpose on the ACE16k. Therefore

I applied a massively distorted A template that could actually drive the wave

evolution in an anisotropic way. On a more finely tunable next generation chip

this idea may also be useful.

Current CNN chips suffer from the ”long-term” instability of on-chip analog

memory. By ”long-term” we mean the time longer than one or two template

operations. Although basic propagating operators can be run in a robust and

reproducible way on the ACE16k platform, complex algorithms can hardly be

designed due to this memory fading effect. Analog memories become noisy and

unreliable after a few template operations - even if the actual template operation

has not touched the memory. The introduction of special calibrating circuits

[20] represents a considerable improvement in analog memory stability over the

last chip versions. For those analog memories not used in the current template

operation, a continuous charge-refreshing circuit could be useful to ensure their

long-term stability. In summary, the exploration of topographic wave-computing

on the ACEx (e.g. the slightly modified version of the ACE 16k) architectures

enhanced by the above mentioned features still has great potential to improve

the speed of current topographic active contour techniques.

Note that using the CNN template tuning toolbox, algorithms can be tuned

to specific chip instances and [4] reported highly robust operation of complex
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algorithms on the ACE16k.

2.8.3 Real-time, quantitative assessment of cardiac wall
dynamics

There is a growing research activity in developing sophisticated, clinically rele-

vant quantitative echocardiographic methods. When combined with informative

visualization techniques - e.g. color coding of the raw ultrasound image - these

methods promise advances in helping early diagnosis of cardiovascular diseases.

Methods analyzing 2D video-flows like strain rate imaging [76] have already found

their way to clinical testing, although in many cases imaging artefacts still chal-

lenge clinicians in interpreting strain rate recordings [77]. In addition, analysis

of strain rate recordings is still done off-line that lowers clinical throughput.

Papademetris et al. in [78] used biomechanical models to segment in-vitro

dog hearts and estimate 3D regional deformation of the LV. Their model is nu-

merically solved by finite element method that is computationally very expensive.

Nevertheless, their approach and results set a desirable target for future research

in quantitating cardiac wall deformations and dynamics.

Although virtual surgery is in itself an intriguing application of real-time

echocardiography, we believe that real-time or near real-time techniques assessing

wall motion and tissue deformations would cause a breakthrough in both the

deeper understanding of heart dynamics and in early diagnosis of abnormalities.

Therefore we started to analyze spatio-temporal characteristics of the cardiac

wall. Results of this work are preliminary and will be presented elsewhere [5].

2.8.4 Future directions in real-time 3D echocardiography

Cardiovascular diseases account for the greatest share of mortality in developed

countries. Early diagnosis, i.e. regular population screening is of primary im-

portance in improving life expectancy. Screening is a viable approach only if

the selected technique has high clinical throughput and reliable diagnostic power.

Therefore the ultimate aim of research in medical image processing is to maximize

clinical throughput and minimize false diagnoses. I believe that this study could

represent an important step towards this aim by introducing a system that is able
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to monitor quantitatively the evolution of the morphology of the ASD and the

volume of the RA in patients in order to assess the development of the disease.

Real-time methods are indispensable when examination time is an issue. With

the advent of fast scanners the amount of data acquired is just too much to be

analyzed by humans. The approach of being able to ”go back” to a patient’s

data in the case when more profound inspection is needed is not available today.

It takes time and the archive space is limited given the huge amount of data

to be stored. Reliable model based 3D reconstruction gives both the advantage

of short examination time and small data amount to be stored (a two chamber

reconstruction like shown on Fig. 2.18 occupies only 0.5 Mb disk space).

Diagnostic value of a modality is a very intricate question. Today, it is a

widely accepted view, that - especially in emergency situations - ultrasound is

highly suitable to set up initial diagnosis giving quick qualitative information

about the patient’s condition. Reliable interpretation of echocardiograms however

needs highly trained cardiologist experts. In addition, for complicated situations,

artifacts inherent to US modality calls for verification by more reliable but more

expensive and/or invasive techniques.

Hao et al [79] segmented normal, ischemic and infarcted tissue regions from

intracardiac echocardiography images using seeded region growing method. The

segmentation is performed in a multifeature vector space that is constructed from

texture and gray-level information. Although their approach is invasive and off-

line, their study is a good example to show the power of automatic, thoroughly

validated segmentation techniques.

The advantages of real-time quantitative 3D echocardiography is far from be-

ing accepted by the wide community of clinicians. In fact, most experts still

exclusively use hands on analysis of 2D echocardiograms regarding the advanced

3D techniques as nice but valueless approaches. This may be due to the lack

of very thorough comparisons between reconstruction methods working on car-

diac MRI and on cardiac US. A very attractive work to follow was presented in

[80] where ejection fraction was estimated using three modalities and their per-

formance were compared. A similar work on 3D reconstruction methods could

provide strong evidence for the clinical value of 3D real-time US reconstruction

methods.
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RT3D recordings have the advantage of high temporal resolution, portability

and affordability. computer tomography (CT) or MRI I offer high resolution

anatomical recordings. The fusion of these, i.e. acquisition of RT3D images

registered to a couple of anatomical slices could reveal the dynamics of the heart

at quality and speed that could reveal clinically valuable findings. The solution

of this issue falls out of the scope of our current work but needs more attention

and investigation.

2.9 Conclusion

My work reports for the first time a complete 3D echocardiographic diagnostic

system that exploits the processing power of scalable, pixel-level parallel TCAC

algorithms. The system is capable of multi-chamber reconstruction and tracking

that enables to study the interaction of cardiac cavities. The ability to visualize

the interaction of multiple chambers is a unique, novel aspect of this study. The

clinical value of this approach was demonstrated in a unique clinical case study

assessing the morphologies, volume and quantifying the interaction of the left and

right atria.

Validation of our method was done on 6 in-vitro static objects and 6 clinical

samples where each volume contained 90 frames. Though six recordings does not

seem too much, we have to take into account that analysis of the right atrium

in 3D echocardiography is quite an unexplored field. Actually, the systematic

collection of these data together with other recordings not directly used in the

development (all in all 60 patients with two recordings per patient) can also be

considered as a very important outcome of our efforts.

An additional novel aspect of the study was to apply non-linear wave metric to

evaluate the performance of boundary tracking methods that measure both area

and shape difference between expert traced and algorithm computed endocardial

boundaries.

Based on the results of this work I conclude that the 3D echocardiography -

even when using relatively low-cost, electronically rotated 2D transducers - with

high temporal resolution can be combined with specialized hardware solutions and

3D tools that have great potential in clinical practice. RT3D systems promise a
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significant step forward assuming that the spatial resolution of these probes will

improve in the near future.

One of the main reasons why 3D echocardiography struggles in finding its way

into clinical practice is the lack of an acceptable compromise between quality and

processing speed. Parallel algorithmic solutions relying on multi-core hardware

architectures described in this study could help improving both:

• close sensor image processing can provide real-time feedback in order to

enhance the image acquisition process through local adaptation and

• hardware supported topographic flow processing methods can easily allevi-

ate the processing bottleneck even in case of sophisticated methods.
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Chapter 3

Morphology based method for
the classification of ganglion cells
in the mammalian retina

Neural morphology is an important predictor of function in living neural net-

works. Many parts of the nervous system are organized in multiple laminae, each

incorporating a unique set of cell types with unique functionality. The IPL of the

mammalian retina is comprised of about ten different strata [81], formed by the

dendritic arborization of a dozen different functional classes of ganglion cells. So

far, tedious manual analysis was needed to estimate the depth of ramification of

a Retinal Ganglion Cell (RGC). Automated quantification of biological features

is very difficult due to the high variance in the morphology of biological features

and artefacts caused by the acquisition procedure.

I developed a novel method for automated, quantitative estimation of the

depth of dendritic ramification of RGCs from confocal image stacks.

3.1 Acquisition protocol

Dual channel confocal stacks from mice retina were analyzed where three sub-

types of ganglion cells were labeled with green fluorescent protein (GFP) through

retrograde trans-synaptic viral labeling (GFP channel) by collaborating biolo-

gists.
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The 405, 488 and 633nm laser lines of a Zeiss laser scanning microscope (LSM)

510 Meta confocal microscope were used to scan 170 GFP labeled ganglion cells.

All cell nuclei were counterstained with 4’,6-diamidino-2-phenylindole (DAPI)

stain to label the border of the IPL (DAPI channel).

The improvement on previous scanning protocols was twofold: an automatic

stage control algorithm [82] was applied that can automatically scan a set of

stacks at manually marked positions. In each imaging session, the positions of

20− 30 ganglion cells per retina were marked manually in about 30 minutes and

then all confocal stacks were acquired unattended. This improvement created a

workflow with much higher throughput than manually performing each scan.

Second, based on the observations during the development of the quantifica-

tion method, the scanning parameters of the protocol were modified so that the

retina is scanned above the GCL and well into the photoreceptor layer. Before,

many scanned cells could not be quantified automatically because the extrac-

tion of the ganglion cell layer (GCL) and/or inner nuclear layer (INL) landmark

features was not feasible in a robust way.

3.2 Method

The task was to develop a fully automated algorithm that quantifies the depth

of dendritic ramification for each labeled ganglion cell from the DAPI and GFP

stained cells recorded by a confocal microscope. In a scan containing the target,

GFP stained ganglion cell, robust quantification is achieved by extracting four

types of landmark features:

• from the fluorescence signal of the GFP stained ganglion cell

– the ganglion cell soma

– the local dendrite feature

• from the fluorescence signal of DAPI stained cells

– the ganglion cell layer (GCL) border

– inner plexiform layer (INL) border
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The depths of dendrites in the stack are determined relative to the GCL border

and the INL border. Fig. 3.1 shows that the GCL border (0% depth) is defined

as the depth of the peak DAPI fluorescence intensity in the GCL and the INL

border (100% depth) is defined as the depth where the DAPI florescence was

66% of the maximum measured in the INL (a robust feature across various scan

settings). Dendritic depths are calculated locally near each dendritic segment to

eliminate spatial misalignment artifacts caused by the fact that the retina is not

entirely flat.

The problem is not trivial as the scanned retina is not entirely flat, so simple

projections would provide no information about the depth (see illustration in Fig.

3.1). Moreover the images have noise and other types of artifacts and the GCL

border extracted from DAPI signal is only present in cell nuclei.

To overcome these limitations an algorithm was designed based on the follow-

ing considerations:

• Dendrites are elongated thin image features. A steerable convolution filter

can exploit this shape prior to enhance dendrite like features and suppress

artefacts with different shape.

• In the ramification layer of the IPL, mostly the distal branches of the den-

dritic tree can be found. Neuronal function was found to correlate with the

depth of the ramification layer(s). The proposed algorithm differentiates

between proximal and distal dendrites. The idea is that proximal dendrites

run rather vertically so their length in a given z section is shorter than that

of the distal dendrites running mostly laterally. Thus extracting dendritic

lengths in each z section and then collecting detections in a histogram can

provide a solid method that discards proximal dendrites and keeps those

that form the ramified end of the dendritic tree.

• The non-flat nature of the retina can be corrected. The x, y, z position of

each ganglion cell nucleus in the GCL can be extracted from the DAPI

channel. ”Drilling” a virtual hole along the depth (z) direction in the

recording around reference x, y positions extracted from GCL ganglion cell

nuclei is used to find dendrites locally under each nucleus. In this way the

waviness problem is solved as we detect depths locally.
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Figure 3.1: Left: A drawing of the retina. GCL: ganglion cell layer, IPL: inner
plexiform layer, INL: inner nuclear layer, ONL: outer nuclear layer. Middle: Side
projection of a GFP labeled ganglion cell in mouse retinal optical slice counter-
stained with DAPI. Right: Fluorescent profile of the GFP and DAPI stain along
the z direction. Note that due to the many artifacts (cell body, retina is not flat,
etc...), one cannot see the dendritic stratification on the GFP plot. This is the
reason the proposed algorithm was developed.

• Reducing the effect of artefacts at each local detection step, statistics of

many local detections will provide reliable global detection, i.e. the rami-

fication depth. Having a number of localized DAPI fluorescence intensity

projections along the z direction and a number of dendrite depth values,

the mean and standard deviation of the ratio of INL border distance and

dendrite distances can be calculated. This ratio quantifies the ramification

depth(s) of the GFP stained ganglion cell.

I conceived a 3D image processing method and implemented it to quantify

the relative depth positions of the four landmark types.

High variance in the morphology of biological features and artefacts caused

by the acquisition procedure make the extraction of the landmarks difficult. Ro-

bust landmark extraction method was conceived via careful analysis of depth

neighborhood relations of the landmark features. The most reliable feature - the

ganglion cell soma - is extracted first together with initial guesses for the GCL

and INL depths.
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3.3 Implementation

3.3 Implementation

A detailed description of the method follows. Algorithmic solutions are summa-

rized in pseudocodes where subroutines either have a ready implementation in

most image processing software packages or are straightforward to implement. A

short description of these subroutines are included in the Appendix and the in-

terested reader is encouraged to contact the author (hillier@digitus.itk.ppke.hu)

to obtain the Matlab source code of the algorithm.

The flowchart of the proposed algorithm is shown in Fig. 3.2. Detailed algo-

rithm description of each box follows in the next section. In summary, processing

of a confocal recording starts with a calibration step that gives a rough estimate

of the cell soma position in the GFP channel and of the GCL and INL layer bor-

ders of the DAPI channel. The x, y coordinates of GCL cell nuclei are extracted

and subregions around the nuclei (GCLwindows) will be processed further. In

the subregions the waviness of the retina is negligible thus the z coordinate of

each nucleus can be used as a local reference for ramification measurement. The

individual GCL cell z positions (GCL) are used to restrict the z range of possible

INL detections. GCL positions also serve as a reference for dendrite position

detections. The final ramification depth is determined from the histogram of two

distance sets: the distance of the local INL z position to the local GCL z position

and the distance of the local dendrite position(s) to the local GCL position.

3.3.1 Data

A number of confocal stack data are processed by the algorithm. Each stack is

composed of a number of plane images with resolution of 512×512 pixels. About

100 of such frames were acquired along the third dimension. The planar images

will be referred to as frames in the x, y plane and the third dimension will be

referred to as z position. The IPL has a total depth of 20− 30 microns.

3.3.2 Algorithm

A fully automatic algorithm is presented. The algorithm starts with giving a

rough estimate to the position of the ganglion cell soma, the INL and the GCL.
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3. CLASSIFICATION OF RETINAL GANGLION CELLS

Figure 3.2: Flowchart of the proposed algorithm. Each box has a detailed al-
gorithm description in the text. The variable storing the results of a processing
step is shown close to the arrows. Calibration first gives a rough estimate of the
cell soma position in the GFP channel and of the GCL and INL layer borders
of the DAPI channel. The x, y coordinates of GCL cell nuclei are extracted and
subregions around the nuclei (GCLwindows) will be processed further. In the
subregions the waviness of the retina is negligible thus the z coordinate of each
nucleus can be used as a local reference for ramification measurement. The in-
dividual GCL cell z positions (GCL) are used to restrict the z range of possible
INL detections. GCL positions also serve as a reference for dendrite position
detections. The final ramification depth is determined from the histogram of two
distance sets: the distance of the local INL z position to the local GCL z position
and the distance of the local dendrite position(s) to the local GCL position.

The first step is to detect which channel contains the stained cell and which the

surrounding cells as detailed in Algorithm 3.

The first channel of the stack is thresholded to keep the 1% brightest pixels.

Spot noise is eliminated using morphological opening. A lower bound on the size

of the soma (minsize) in a frame was obtained from the database of recordings.

The apriori knowledge that the soma shape is close to a circle is exploited. The

size of an object in a frame is calculated as the area of the object weighted by

its eccentricity. This way axons and proximal dendrites having high area are not

extracted with the soma. Also, objects smaller than minsize are not processed

further.

The soma of the cell in the GFP channel spans several frames. Artefacts

introduced by the LSM or by the staining process may introduce e.g. lower
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Algorithm 3 Calibrate soma, GCL, INL

1: function Calibration(STACK)
2: binSTACK = Threshold(STACK, 0.01)
3: for f = 1 : framenum do
4: binSTACK(f) = bwmorph(binSTACK(f), 1,′ open′) . eliminate

noise pixels
5: if GlobalSum(binSTACK(f)) > minsize then . few pixels in a

frame means no soma here
6: ms = regionprops(bwlabel(binSTACK(f)))
7: keeplist = ms.area/ms.eccentricity > minsize
8: if keeplist is not empty then
9: maskSTACK(f) = pixels of binSTACK where keeplist is
TRUE

10: else
11: next f
12: end if
13: else next f
14: end if
15: for o = 1 : objects in keeplist do
16: if centroid3D is not empty then
17: existingobj = distance(ms.centroid(o), centroid3D) <

minsize
18: else
19: centroid3D = ms.centroid(o)
20: end if
21: if existingobj is not empty then
22: centroid3D(existingobj) =

= mean(ms.centroid(o), centroid3D(existingobj))
23: else
24: add ms.centroid(o) to centroid3D
25: end if
26: keep track that this object in centroid3D was detected in frame f
27: end for
28: end for
29: for o = 1 : objects in centroid3D do
30: for f = 1 : framenum− 2 do
31: if centroid3D(o) is in f but not in f+1 or f+2 then
32: seedpoint = mean(centroid3D(o))
33: limits = max(boundingbox(centroid3D(o)))
34: maskSTACK(f:f+1) = imreconstruct(BinStack, seedpoint, lim-

its)
35: set f,f+1 of this object to the track record in centroid3D
36: end if
37: end for
38: end for
39: end function 75
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intensity frames in the middle of the soma. Applying fixed threshold and size

constraints is fast but may fail to extract the soma where LSM artefacts occur in

a stack. The position of the soma in the z direction is modeled as the mean of

a Gaussian fitted to the sum of pixel intensities in a frame along the z direction.

This projection curve was extracted by Algorithm 3.

In frames where the fixed threshold extracted a soma object smaller than

minsize, the centroids of neighboring frames are used to complete the soma

object. As the algorithm goes down frame by frame in z direction, centroid

positions of newly extracted objects in the current x, y plane are compared to the

x, y positions of already extracted centroid positions from the previous frames. If

the current centroid is inside the area of a previously detected object, the current

object is registered as the continuation of that object. Else, it is registered as

a new object. Note that this method attributes objects to existing ones even if

there is a gap in z direction between them. If the number of missing frames in a

3D object is smaller than 3, a seed point is placed at the centroid position and

the object is reconstructed from the original stack.

Algorithm 3 extracts data corresponding to large, circular objects and in-

creases its smoothness in z direction, i.e the projection curve in the z direction is

corrected to resemble more to a Gaussian that in turn will increase the precision

of subsequent detection steps. The detection of the cell soma is at the beginning

of the classification algorithm, loss of precision here would propagate down the

algorithm.

Algorithm 3 assumed the GFP channel is the first in the stack. If for any

reason the GFP data is in the second channel, the soma detection algorithm will

not find any object. In such a case the channels are swapped and soma extraction

algorithm is rerun.

The z coordinate of the center of the soma is obtained by taking the global

sum of each frame in mSTACK along z direction. The result is a curve from

which the most prominent maximum is extracted via Algorithm 4. The important

parameter in Algorithm 4 is nmax, the number of maxima to be found. In

projection curves, the underlying biological data can be noisy thus a lot more

local maxima can be present than defined in the model. The number of detected

maxima is reduced via smoothing the curve by the local regression using weighted
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Algorithm 4 Max/min point extraction

1: function ExtractMaxMin(curve, nmax,maxiter, α)
2: for i = 1 : maxiter do
3: curve = smooth(curve, α)
4: [maxvals,maxinds] = peakdetect(curve)
5: if elements of maxinds <= nmax then
6: [minvals,mininds] = peakdetect(−curve)
7: return
8: end if
9: α = elements of maxinds− nmax

10: end for
11: end function

linear least squares and a 2nd degree polynomial model (LOESS) method [83].

The value of α defines the proportion of data used in each fit. It is called the

smoothing parameter because it controls the flexibility of the LOESS regression

function. Large values of α produce the smoothest functions that wiggle the least

in response to fluctuations in the data. The smaller α is, the closer the regression

function will conform to the data. Using too small a value of the smoothing

parameter is not desirable, since the regression function will eventually start to

capture the random error in the data.

An initial guess for α can be made from the z dimension of the raw stack.

Depending on the noisiness of the data more than nmax maxima might be found.

In such cases α is automatically increased by the algorithm till the number of

maxima found equals nmax.

The position of the soma and its size in z direction is determined by fitting

a Gaussian on the filtered data of Algorithm 4. The position of the soma is a

reliable marker to separate the GCL and INL borders landmark features in the

DAPI channel.

The soma is assumed being a unique object in the 3D stack. In contrast, the z

positions of the other landmark features are determined locally at many data sites

dispersed in the 3D stack. The problem is that in the worst case, the z position

of the GCL at one extremity in the x, y plane of the mounted retina can be equal

to the z position of the INL at the other extremity of the retina. Therefore the
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GCL and INL positions cannot be determined from just one z projection of the

DAPI channel.

The solution could be to detect landmark features at local x, y regions but

reliable local reference points have to be defined. Cell nuclei in the GCL could be

candidate reference features and convolving the stack with a spherical kernel could

extract their positions. Convolving the whole stack would be a time consuming

step. Instead, a calibration step was conceived that provides the same information

without 3D operators.

The whole stack is divided into four square regions in the x, y plane and the

first estimation of the GCL and INL positions is calculated from projections made

from these substacks.

Image features corresponding to the INL cover the whole retina thus have

to be detected before GCL features that are much sparser. However, after a

rough estimate of INL and GCL border positions is obtained, the detection order

changes. The reason is that GCL position is based on finding the z position of

cell nuclei that are sparse but robust image features. In contrast, INL position is

extracted from intensities averaged frame by frame around detected cell nuclei of

the GCL. Again, landmark feature detection order is determined by the quality

of the image features. In the beginning, we do not know where to look for

reliable local information (GCL cell nuclei), thus the globally available but less

reliable INL position must be determined first. Algorithms 5 and 6 summarize

the detection steps.

Algorithm 5 INL position detection

1: function INLdetect(curve, thr)
2: [locmaxv, locmaxi, locminv, locmini] = ExtractMaxMin(curve, 3, 10)
3: [locmaxi, locmaxv] =drop locmaxi falling right to global max
4: if exist(locmaxi < globmaxi) then
5: calculate difference between all locmaxv and locminv
6: keep those that are higher than the average difference
7: [locmaxi locmaxv] = rightmost locmaxi
8: end if
9: INLpos = crossing(curve, locmaxv ∗ thr,′ ascent′)

10: INLpos = max(INLpos)
11: end function
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Algorithm 6 GCL position detection

1: function GCLdetect(curve, thr)
2: [curve, locmaxv, locmaxi, locminv, locmini] =
ExtractMaxMin(curve, 3, 10)

3: [dcurve, dlocmaxv, dlocmaxi, dlocminv, dlocmini] =
ExtractMaxMin(d/dz · curve, 3, 10)

4: dlocmini = max(dlocmini < INLpos)
5: dlocmaxi = max(dlocmaxi < dlocmini)
6: GCLmaxi = locmaxi(locmaxi > dlocmaxiANDlocmaxi < dlocmini)
7: GCLstarti = GCLmaxi− 2 · (GCLmaxi− dlocmaxi)
8: GCLstopi = GCLmaxi+ 2 · (dlocmini−GCLmaxi)
9: end function

Algorithms 5 and 6 provide initial estimations on landmark positions. Initial

estimations are used to define regions in the 3D space where precise landmark de-

tection will be performed. Subregion based processing has two advantages: faster

processing and lower number of artefacts occurring in the extraction process. In

the end, the dendrite ramification can only be quantified at those regions of the

x, y plane, where all the landmarks are present at their own z position.

First, the GCL landmark features are located locally. GCL cell nuclei have

the most clearly detectable x, y, z positions. Algorithm 7 shows the overview of

how the x, y positions of cell nuclei are detected. The last line indicates that

a square window is defined around each nucleus with an a priori defined size.

This size was defined so that regions remain non-overlapping but large enough to

provide enough data sites with all landmark features present. The DAPI channel

will be further processed only along the subregions defined by the windows.

Algorithm 7 GCL cell nuclei detection

1: function GCLCellDetect(DAPISTACK,GCLstart, GCLend, wwidth)
2: GCLplane = normalize(sum(DAPISTACK(GCLstart:GCLend)))
3: GCLplane = convolve(GCLplane, 2DGaussiankernel)
4: GCLcenters = regionalmaxima(GCLplane)
5: GCLwindows = fitwin(GCLcenters, wwidth)
6: end function

The GCL border and INL border landmark features are extracted from the

projection curves made along the z dimension in each subregion as illustrated in
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Fig. 3.3. This step is detailed in Algorithm 8 and 10.

Algorithm 8 GCL landmark position detection

1: function GCLPosDetect(DAPISTACK,GCLstart, GCLend,GCLwindows)
2: GCLCURVES = sum in each frame(DAPISTACK(GCLstart:GCLend,:,:),

GCLwindows)
3: for i = 1 :number of curves ∈ GCLCURVES do
4: [curve,maxv,maxi,minv,mini] = ExtractMaxMin(GCLCURV ES(i), 1, 10)
5: calculate difference between all maxv and minv
6: keep those that are higher than the average difference
7: maxi = leftmost maxi
8: GCLpos(i) = GCLstart+maxi
9: GCLend(i) = min(mini(find(mini > maxi)))

10: end for
11: [gcgx] = hist(GCLpos,max(GCLpos)−min(GCLpos))
12: [maxvmaxiccminvmini] = ExtractMaxMin(gc, 3, 3)
13: [GCL] = DropOutliers(GCLpos,maxv,maxi, cc,minv,mini)
14: [gce gx] = hist(GCLend,max(GCLend)-min(GCLend))
15: [maxv maxi cc minv mini] = ExtractMaxMin(gce,3,15);
16: [GCLEND] = DropOutliers(GCLend, maxv, maxi, cc, minv, mini)
17: end function

Algorithm 9 assumes a histogram can be modeled as a main Gaussian sepa-

rated by local minima from noise contributions. In the case of GCL detection, the

true GCL cell nuclei form the main Gaussian and the much less densely detected

cells in the IPL form the smaller Gaussian.

Why is such a step needed? We never cannot be sure from the absolute z

position of a cell nucleus that it belongs to the GCL. Subsequent INL and dendrite

position detections also contain variabilities and artefacts that introduces noise in

their detected z positions. The quantification of ramification uses local reference

points, the GCL cell nuclei. If artefacts of reference point extractions are not

handled, the error will smear the distribution of subsequent INL and dendrite

detections.

The border of the GCL has just been extracted for each subregion, now the

locally less reliable INL border landmark positions can be extracted in each sub-

window. Algorithm 10 details the process, rather similar to the GCL border

landmark detection. The intensity curve of the INL border in each subregion is
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Algorithm 9 Clean point set from outliers

1: function DropOutliers(dhist,maxv,maxi, chist,minv,mini)
2: calculate difference between all maxv and minv
3: [maxv maxi minv mini] = keep prominent maxv minv (higher than mean

difference)
4: lmini = max(mini < maxi)
5: rmini = min(maxi < mini)
6: dhist(dhist < lmini OR dist > rmini) = 0
7: end function

Algorithm 10 INL landmark position detection

1: function INLPosDetect(DAPISTACK,GCLEND,GCLwindows)
2: INLCURVES = sum in each frame(DAPISTACK(GCLEND:frnum,:,:),

GCLwindows)
3: for i = 1 :number of curves ∈ INLCURVES do
4: [inl globmax] = INLDetect(INLCURVES(i), 0.66)
5: INLPOS(i) = GCLEND(i) + inl
6: PHOT(i) = GCLEND(i) + globmax
7: bdist(i) = inl - GCLEND(i)
8: end for
9: [bc bx] = hist(bdist,max(bdist)-min(bdist))

10: [maxv maxi cc minv mini] = ExtractMaxMin(bc,2);
11: calculate difference between all maxv and minv
12: [maxv maxi minv mini] = keep prominent maxv minv (higher than mean

difference)
13: INLc = min(maxi)
14: [pc px] = hist(PHOT,max(PHOT)-min(PHOT))
15: [maxv maxi cc minv mini] = ExtractMaxMin(pc,2);
16: calculate difference between all maxv and minv
17: [maxv maxi minv mini] = keep prominent maxv minv (higher than mean

difference)
18: PHOTc = mean(maxi)
19: bip = mean(INLc, PHOTc)
20: INLPOS = INLPOS < bip
21: end function
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Figure 3.3: Upper Left: Detection of a ganglion cell nucleus in the DAPI stained
sections. Note that the algorithm automatically finds the correct sections in the
stack that contain the ganglion cell nuclei. Upper Right: a processed GFP section
under the nucleus. Lower Left: we ”drill” a virtual hole in the retina (red box)
under each nucleus and plot the fluorescence for both channels as a function of
depth (Lower Right). We calculate the depth of dendritic ramifications from these
curves by detecting the peaks in the black (dendritic) curve and the borders in
the blue curve.

modeled as the mixture of a Gaussian - the INL - and a plateau like region - the

photoreceptor layer. The difference of subregion based processing compared to

the earlier rough detection is that here we cannot be sure that the INL peak is

clearly detectable in all subregions. Therefore, the photoreceptor layer is also de-

tected. The mean position of the INL is determined by calculating the histogram

of relative INL positions. This is either a single Gaussian or a two Gaussian mix-

ture like histogram, and in both cases the Gaussian with the lowest z position is

the INL. The photoreceptor layer appears as a plateau, thus cannot be detected

with similar precision. Lower precision is tolerable since the aim is to exclude

false INL detections. INL detections are kept that have lower z position than the

mean of the INL-Photoreceptor layer border.
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Having a good estimate of the GCL border and the INL border, the range of

frames along the z direction is limited for dendrite segmentation and z position

detection.

Thinking of each frame as a gray-level landscape, dendrite structures appear

as ridges. Following the ideas and using the implementation of [84], dendrites are

enhanced in each frame as follows. Ridge-like image structures are well detected

by means of second-order differential operators. Specifically, the local principal

ridge directions at any point in an image are given by the eigenvectors of the

second-derivative matrix computed from the intensity values around that point.

Because of the symmetry of this matrix, the eigenvectors are orthogonal, with

the eigenvector corresponding to the smaller absolute eigenvalue pointing in the

longitudinal direction of the ridge. Comparing the eigenvalue magnitudes, the

GaborFilter step computes for each pixel in a frame a measure of ”dendriteness”.

The output of this detector, when applied to the image on the left in Fig. 3.4, is

shown on the image on the right in Fig. 3.4.

Figure 3.4: Left: an original unprocessed image from the stack. Note the low
signal to noise ratio. Right: the detected dendrite after Gabor filtering and ap-
plying nonlinear mathematical morphology operators. Importantly unlike in most
imaging software the detection of the dendrites is fully automatic requiring no
parameter adjustments or user input. This makes it possible to process hundreds
of stacks automatically.
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The result of the steerable convolution filter is a normalized image with maxi-

mum intensity values attributed to regions with perfect match to a filter direction.

The result image can be thresholded with a rough, fixed threshold that separates

clearly dendrite-like structures from smeared dendrites or other features. After

every frame were filtered and thresholded, the whole 3D subregion is skeletonized.

Skeletonization also emphasizes that the exact threshold value does not affect the

precision of z position detection.

Objects that have a 3D pixel count lower than a threshold (areathr) are

discarded. The x, y plane - each frame - is subdivided into a number of overlapping

square subregions. The number of subregions was obtained via experimentation

taking into account the following aspects. First, when the subregion size is larger

than the length of distal dendrites in a frame then no direct relation between

subregion size and dendrite length in a subregion can be defined. Such a relation

is required to define the size threshold areathr used to differentiate between

distal and proximal dendrites or artefacts. Second, when the subregion size is too

small, dendrites and artefacts cannot be separated using the skeleton pixel count

measure. Third, subregion based processing is required to prevent the smearing

effect caused by the waviness of the retina.

In each frame of the remaining stack, the pixel count of each object is stored.

This process builds a histogram of dendrite lengths along the z direction. The

segmentation and dendrite histogram calculation is shown in Algorithm 11.

Ramification is quantified using the z position of a GCL cell nucleus as ref-

erence. Thus the extraction of dendrite z position is performed in each of the

GCLwindows as detailed in Algorithm 12. The size of subregions around GCL

cell nuclei are smaller than the size of subregions defined for dendrite segmenta-

tion. This algorithm corrects the waviness of the retina at each GCLwindow via

aligning dendrite length histogram to each individual GCL cell nucleus’ z posi-

tion. Where GCLwindows intersect more than one dendrite region, alignment is

performed for each affected dendrite region.

As a final step, the local measurements are statistically evaluated to estimate

the relative depth of dendrite arborization, see Fig. 3.5 and Algorithm 13. Here,

we do not know the number of strata where the dendritic arbor ramifies. The

model is a mixture of an unknown number of Gaussians. Maxima and minima
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Algorithm 11 Dendrite segmentation

1: function DendriteSegment(GFPSTACK,GCL, regionlims)
2: for r = 1 : numberofregions do
3: for f = mean(GCL) : max(INLPOS) do
4: frame = GaborFilter(GFPSTACK(f,regionlims(r)))
5: bGFPSTACK(f,regionlims(r)) = Threshold(frame, 200)
6: end for
7: sGFPSTACK = bwmorph(bGFPSTACK,’skeleton’)
8: ms = regionprops(bwlabel(sGFPSTACK))
9: dGFPSTACK = sGFPSTACK(ms.Area > areathr)

10: for f = mean(GCL) : max(INLPOS) do
11: areah(f,r) = sum(dGFPSTACK(f,regionlims(r)))
12: end for
13: end for
14: end function

are extracted from the dendrite histogram. If the number of maxima does not

correspond to the assumed number of ramification strata, the estimation is redone

with an increased number of strata in the model.ation, see Fig. 3.5 and Algorithm

13. Here, we do not know the number of strata where the dendritic arbor ramifies.

The model is a mixture of an unknown number of Gaussians. Maxima and minima

are extracted from the dendrite histogram. If the number of maxima does not

correspond to the assumed number of ramification strata, the estimation is redone

with an increased number of strata in the model.

Figure 3.5: Left: Obtaining the average depth of dendritic ramification from
individually ”drilled” holes in the retina (marked by vertical red rectangles) under
each nucleus in the GCL. The depth of dendritic ramification is calculated in
each subregion by detecting peaks in the intensity profile of the fluorescent stain.
Right: the distribution of normalized dendritic depth curves.
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Algorithm 12 Dendrite position extraction

1: function DendriteExtract(areah,GCL,GCLwindows, regionlims)
2: pad = max(GCL) - min(GCL)
3: for g = 1 : numberofGCLwindows do
4: for r = 1 : numberofregionlims do
5: if GCLwindows(g) is fully in regionlims(r) then
6: dhist(g) = LocalizeDendriteHist(areah(:,r), GCL)
7: else if GCLwindows(g) is partly in regionlims(r) then
8: for n = regionlims intersected by GCLwindows(g) do
9: temphist(n) = LocalizeDendriteHist(areah(:,n), GCL)

10: end for
11: dhist(g) = mean(temphist)
12: end if
13: end for
14: end for
15: end function
16: function LocalizeDendriteHist(areah,GCL)
17: offs = GCL(g) - mean(GCL)
18: if offs < 0 then
19: dhist = cat(zeros(-offs), areah, zeros(pad + offs))
20: else if offs > 0 then
21: dhist = cat(areah(offs:end), zeros(pad + offs))
22: else
23: dhist = cat(areah, zeros(pad))
24: end if
25: end function

Algorithm 13 Ramification estimation

1: function RamificationEst(dhist, bdist)
2: dhist = sum(dhist)
3: for i = 1 : maxstrat do
4: [maxvi maxii cci minvi Rminii] = ExtractMinMax(dhist,i,5);
5: if elements of fmaxii <> i then
6: strati = -1*ones(i)
7: else
8: strati = maxii / mean(bdist)
9: end if

10: end for
11: end function
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3.4 Results and Discussion

The 405, 488, and 633 nm laser lines of a Zeiss LSM 510 Meta confocal microscope

were used to excite DAPI, Alexa 488, and Alexa 633 stains respectively. To

determine the dendritic depths of ganglion cells, confocal stacks of 170 ganglion

cells were acquired with an automatic stage controlled by Auto Time Series Macro

software [82]. In each imaging session, 20 − 30 ganglion cells per retina were

marked manually, and confocal stacks were acquired at each location. A 63x

1.4 numerical-aperture oil-immersion lens (Zeiss) was used. The z steps were

0.2 − 0.35 mm. The scan started at the ganglion-cell layer and continued until

the photoreceptor layer. Landmark features for dendritic depth quantification

were extracted locally to eliminate artifacts caused by the fact that the retina is

not entirely flat.

All of 170 analyzed GFP-expressing ganglion cells in the left retina were found

to have dendrites in only two IPL strata at depths of 30% (±4%) and 89% (±6%).

Could this result be achieved with other methods? A few other studies (see e.g.

[85], [84], [86], [87]) already approached the problem of automated segmentation

and analysis of dendrite (vascular) structures. Many of them are available in

free or commercial image analysis packages. Similar to the validation problem in

echocardiography, these approaches have not been validated on a public database

built using a well reproducible data acquisition protocol.

As this study shows, the quality of the underlying data is an obvious limit

of the applicability of a method. Samples from our dataset were analyzed with

an automated 3D neuron tracing method [85]. It seems, that automated tracing

methods are designed to process stacks acquired with well established protocol

and high contrast. The tracing method could only find proximal dendrites indi-

cating that our problem was more difficult than the capabilities of the tracing

method. This issue was also addressed in [84] where the aim of fully automated

segmentation was found too ambitious. There, initial dendrite detections were

connected manually assisted by a shortest path finding algorithm.

The contributions of my method are as follows. The problem was difficult

since

• the acquisition protocol was not well established
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• in the recordings, dendrites have low contrast including gaps

• the retina is not flat.

My solution provides an automatic method that quantifies dendritic ramification

of retinal ganglion cells at high throughput via

• exploiting local shape and intensity priors

• defining the detection order of landmark features

– data sites were located based on global information

– high contrast detections limited the detection regions of lower contrast

landmark features

• outlier rejection in each landmark detection step

– kept the precision of region limits high

– increased the precision of final ramification depth quantification.

3.5 Conclusion

A fully automatic algorithm has been developed that can detect the depth of den-

dritic ramifications for retinal ganglion cells from confocal stacks. This algorithm

can be used [2] as a tool to quantitatively analyze the morphology of genetically

labeled neural subtypes in the retina and correlate structure with function.
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Chapter 4

Synchronization in oscillator
arrays

4.1 Introduction

Synchronization of oscillator networks is a prevalent phenomenon in nature. De-

spite its widespread presence, synchronization is used only in a few specific fields

of engineering, e.g. communication with chaotic lasers.

In arrays of coupled dynamical systems, full (or total) synchronization usually

denotes the phenomenon when all individual systems synchronize. Cluster syn-

chronization means that the network breaks down into several coexisting groups

of cells and each cell in a group synchronizes with each other cell in the group

but not with any other cell in the array. The term partial synchronization is

sometimes used as a synonym to cluster synchronization but more often the term

partial synchronization refers to the situation when not all state variables syn-

chronize or there is some kind of coherence between cells but their state vectors

are not identical. We shall use the term single cluster synchronization to denote

the case when only one group of cells synchronize in the network and the rest

exhibits desynchronized behavior.

Understanding the principles of synchronization phenomena occurring in net-

works of coupled chaotic oscillators is very difficult due to the non-linear, high-

dimensional nature of these systems. Studies mainly focusing on deriving con-

ditions for synchronization include [88], where global symmetries of a network

of identical, diffusively coupled oscillators were used to classify linear invariant
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manifolds corresponding to cluster synchronization regimes. In [89] and [90] the

link between graph topology and stability of global synchronization was clarified.

In [22] it was shown that stability of cluster synchronization regimes depends on

the individual oscillator dynamics and on the choice of state variables used in

the coupling. However the existence of synchronized clusters depends only on the

coupling topology, boundary conditions and the number of oscillators.

Another issue is the dependence of the stability of synchronization manifolds

on the mismatch of individual oscillator parameters. Cluster synchronization

regimes were reported to persist with 10-15% mismatch between parameters of

individual oscillators [22]. A common aspect of the above mentioned studies is

that the coupling was the same for all oscillators.

For networks with asymmetric connectivity - i.e. where coupling varies from

cell to cell - methods based on calculating the eigenvalues of the connectivity

matrix [91] for determining coupling values needed for synchronization may be

difficult to apply. In [89] a graph theory based method was introduced to esti-

mate the value of the coupling coefficient needed for global synchronization of

a network. This was further elaborated for asymmetrically coupled networks in

[92] with the restriction that every node has the same input and output weight

sum. In [93] a method for constructing a coupling scheme for arbitrarily selected

n-cluster synchronization was presented for networks with non-nearest neighbor

connections.

The above mentioned studies focused on providing a means to estimate cou-

pling coefficients of the network in order to ensure complete synchronization of

the cells. However, synchronization can be exhibited in a variety of additional

forms including phase-[94], lag-[95] and generalized [96] synchronization. In ad-

dition, perfect and imperfect synchronization can also be differentiated within

these forms of synchronization. This high complexity motivated the development

of new methods that can measure synchronization in a wide variety of forms.

One such measure of synchronization was proposed in [97], where a normalized

coherence function based on the cross Fourier spectrum of two chaotic oscillators

were calculated from time series. This metric has direct physical meaning and

highly mature spectrum evaluation methods exist for its efficient and robust cal-
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4.2 Array of oscillatory cells

culation. However, extending it to describe synchronization phenomena between

more than two oscillators may be a complex task.

In [98] it was shown that two Lur’e systems which may even have different

qualitative behaviour (e.g. limit cycle versus chaos or stable points versus chaos)

can be synchronized to each other up to a small synchronization error. Chua’s

circuits, multi-scroll circuits and networks consisting of such cells with linear

coupling belong to this class of Lur’e systems.

I reported a new kind of synchronization in oscillator networks with local,

diffusive coupling where the coupling can be different for each cell. The reason to

allow any interaction pattern - restricted to contain non-negative weight values -

is that new kinds of cooperative behavior may be possible that were not observed

in previous studies when coupling was kept identical for all cells.

This chapter is organized as follows. In Section 2 the oscillator network model

is specified. In Section 3, methods used to find cluster synchronization regimes are

presented. In Section 4 a new phenomenon is presented where highly asymmetric

interaction weights can give rise to multi- or single cluster synchronization regimes

with partial synchronization. Conclusions are given in Section 5.

4.2 Array of oscillatory cells

Consider an array composed of autonomous nonlinear oscillators:

ẋr,c = F(xr,c; Θr,c) +
∑

k,l∈Sρ(r,c)

Ar,cP (xk,l − xr,c), r, c = 1, ...,M ∈ N0 (4.1)

where xr,c ∈ Rd represents the state vector of the r, cth oscillator; F : Rd×Rq → Rd

is a nonlinear function depending on parameters Θr,c ∈ Rq that define the cells;

A ∈ RM×M is the spatially varying coupling weight matrix that defines the inter-

action pattern of the array; P = (pi,j) ∈ Rd×d with pi,j ∈ {0, 1} determines which

state variables couple the oscillators and Sρ(r, c) defines a fixed neighborhood

topology with neighborhood radius ρ.

In the experiments shown, individual cells were modified Chua’s oscillators

generating n-scroll attractors. N-scroll generating chaotic oscillators were intro-

duced in [99] generalizing the original Chua’s circuit by introducing additional
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breakpoints in the nonlinear resistor. In the current experiments hyperbolic tan-

gent non-linearity was used [100], with state equations :

d

dt

 x1

x2

x3

 =

 0 1 0
0 0 1
0 −Θr,c −Θr,c

 x1

x2

x3

+

 0
0

−Θr,cf(x1)

 (4.2)

where f(x1) =
∑W

j=−V (−1)j−1 tanh q(x1 − 2j), V = 1,W = 3, q = 2. The quali-

tative behavior of an oscillator cell is show on Fig. 4.1.

The phenomena of multi- and single cluster synchronization are studied on

square arrays with nearest neighbor connectivity (ρ = 1) and zero-flux boundary

conditions. Time evolution of each array configuration was simulated in Matlab

with time horizon large enough to analyze its long-term stationary behavior (T =

9000 with relative error tolerance 10−6). Bifurcation parameter Θr,c may be

different for each cell in an array. Variable x1
k,l was coupled to x3

r,c, i.e. P =

[0 0 0; 0 0 0; 1 0 0] in Eq. (4.1).

4.3 Global Optimization Framework

Inspired by [101] and [98] the problem of finding cluster synchronization regimes

was cast into an optimization problem:

min
A,Θ

U({Xstac(t0),Xstac(t1), ...,Xstac(tn)}) (4.3)

where U(·) denotes the cost function and Xstac = (x1(t),x2(t), ...,xd(t)) : R →
RM2d is a stationary solution of Eq. (4.1) for a given initial condition and t0 <

t1 < ... < tn < ∞. Additional inequality constraints may apply to A and

Θ. U(·) is constructed in such a way that dynamical properties of individual

cells or cell populations fulfill the desired requirements. These requirements may

include different types of synchronization and stability criteria, desired Lyapunov

spectrum or embedding dimension of the attractor, etc. We assume that Fr,c can

provide a rich enough set of dynamical behaviors.

An important advantage of the proposed approach compared to other studies

is that the only requirement on the vector field defining individual oscillators

is that they permit the solution to exist and be unique. In this study we used
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(a)

(b)

Figure 4.1: Figure 4.1(a) shows the attractor of cell (2, 1) corresponding to the
configuration of Fig. 4.5(a). Figure 4.1(b) shows the attractor of the same cell
when coupling is removed from the network. All cells in all experiments exhibit
similar qualitative behavior.
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oscillators with continuous vectors fields. On the other hand, in some cases

this liberty may result in an optimization problem that is very hard to solve if

it is possible at all. The global optimization framework used to learn network

configurations corresponding to cluster synchronization regimes is generic, i.e. no

assumption was made about network size or topology.

The choice of optimization algorithm is an intricate task. In this study the

time evolution of the network was used to drive the learning process. Integrating

the network for a given parameter set lasts long, thus a key issue is to choose

an optimization algorithm that requires a low number of function evaluations to

find the global optimum corresponding to the desired behavior. In [102] a new

global optimization algorithm called Coupled Simulated Annealing (CSA) was

introduced. In CSA the annealing temperatures of several Simulated Anneal-

ing processes are interconnected in order to improve performance in convergence

speed and to increase the probability of exploring all basins of attraction in a

given number of cost function evaluations. The number of cost function eval-

uations per individual optimizers decreases exponentially when the number of

optimizers is increased linearly. This makes CSA a good candidate for the cur-

rent problem since interactions between solutions decrease the number of cost

function evaluations to reach a given energy threshold.

In order to learn cluster synchronization regimes, a task of primary importance

is to define a proper cost function which assigns the desired behavior of the

network to the global optimum. The system-level diagram of the framework is

shown on Figure 4.2.

4.3.1 Synchronization Metric

The cost function has to embed a metric that

• is able to capture different forms of synchronization (complete-, phase-, lag-,

generalized),

• provides a measure in a way that does not need any human interpretation,

i.e. can be embedded in the cost function,

• is computationally feasible.
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4.3 Global Optimization Framework

Figure 4.2: Overview of the investigated global optimization framework that
teaches a network of chaotic oscillators to match qualitative behavior require-
ments formulated in the cost function.

The following metric that fulfills these requirements was proposed and used in

our study:

Ustd =
n∑

tj=1

d∑
i=1

log

(
1
NS

∑
k∈ΠS

(
xik(tj)− xiS(tj)

)2

) 1
2

(
1
NR

∑
k∈ΠR

(
xik(tj)− xiR(tj)

)2

) 1
2

(4.4)

where xiS(tj) ∈ ΠS represents a number of snapshots taken from the time evolution

of cells to be synchronized, xiR(tj) ∈ ΠR represents those that are not to be

synchronized. ΠS,ΠR ⊂ {1, ...,M} × {1, ...,M} denote cell populations with NS

standing for the total number of cells to be synchronized and NR for the number

of cells to be desynchronized and ΠS

⋂
ΠR = ∅. xS(tj) is the spatial average for

each time instance of the target population of cells to be synchronized and xS(tj)

is the average for the rest of the cells.

The numerator of Eq. (4.4) is the distance of state variables of all cells to be

synchronized with respect to the mean of their individual state variables, eval-

uated in corresponding time instances. Minimizing Eq. (4.4) leads to complete
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synchronization of cells to be synchronized. However, to achieve partial synchro-

nization, the rest of the cells must be as desynchronized as possible from each

other and from the synchronizing cells. The denominator stands for the same kind

of distance as the numerator, but it is calculated for the cells to be desynchro-

nized. The role of the denominator is to make state variables of desynchronizing

cells as uncorrelated as possible with any other cell.

Given a specific cluster synchronization regime to be learnt, Eq. (4.4) assigns

the full and all cluster synchronization regimes to local optima. The cost value

corresponding to these local optima decreases as the position of synchronizing and

desynchronizing cells better correspond with the imposed cluster synchronization

regime. On Fig. 4.3 and Fig. 4.5, cells imposed to synchronize in the cost function

are marked with dashed rectangles. However, synchronized behavior also appears

within other cell clusters for the same array configuration.

4.3.2 Cost function imposing qualitative behavior

We consider chaotic, limit cycle and equilibrium point qualitative behavior. Lya-

punov exponents are widely used to measure qualitative properties of a dynamical

system. The cost function used to impose any of these modes on either the pop-

ulation required to be in sync or on the rest is:

Ulyap =
∑
j∈Ωc

e−λmax(Xj ;A,Θ) +
∑
j∈Ωe

eλmax(Xj ;A,Θ)+∑
j∈Ωl

|λmax(Xj;A,Θ)|
(4.5)

where λmax is the maximum Lyapunov exponent estimated from the time series of

an oscillator (for a fast implementation see [103]). Cells are also partitioned into

mutually exclusive sets according to the qualitative behavior we want to impose

on them after initial transients lapsed during the evolution of the array. Chaotic

behavior is imposed on cells denoted by Ωc convergence to one of the equilibria is

imposed on cells denoted by Ωe and limit cycle behavior on cells denoted by Ωl.
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4.4 Experiments

In all experiments presented, learning was performed as follows. Time evolu-

tion of the array was calculated using adaptive step-size solver ode45 in Matlab

with relative error tolerance 10−3 on a time horizon T = 600. Time instants

t ∈ [450, 600] were used in calculating the cost value for each probed array con-

figuration. Initial condition was set to the same value for all variables, with value

0.1 for all cells, except for one of the cells in the pair on which synchronization

was imposed in the cost function where it was set to 0.5. The reason for such

initial conditions was to ensure that the resulting synchronization is not due to

the identical value of initial conditions.

Note that the relationship of behaviors found using our numerical simulation

framework to the behavior occurring in the physical system is not clearly de-

fined. However, the shadowing theorem [104] guarantees the existence of a true

trajectory that remains close to the numerically produced trajectory (called the

pseudo-trajectory) for very long times, i.e. the real system exhibits qualitatively

the same behavior as our numerical simulations.

4.4.1 Cluster synchronization in arrays with unorganized
interaction pattern

A new form of cluster synchronization is explored in cellular arrays of chaotic

oscillators. Previously it was shown in the literature that symmetries of the cou-

pling topology with uniform interaction weights lead to several coexisting clusters

of synchronized cells. A new phenomenon is presented here where highly asym-

metric interaction weights can give rise to cluster synchronization regimes with

partial synchronization. In addition, cluster or partial synchronization regimes

corresponding to asymmetric interaction patterns can limit the effect of the un-

derlying symmetries of the network topology and boundary conditions at the

expense of some residual synchronization error.

Ten mutually exclusive, coexisting cluster synchronization regimes can be ob-

served in Fig. 4.3. Pairs of cells synchronize with respect to the principal diagonal

of the square array but cells on the diagonal remain desynchronized. No straight-

forward spatial relationship can be noticed in the interaction pattern A that could
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Figure 4.3: Ten mutually exclusive, coexisting cluster synchronization regimes in
a 5 × 5 array of chaotic oscillators. Cells belonging to the same synchronizing
cluster are marked with the same grayscale level. White cells marked with X do
not synchronize to any other cell. Pairs of cells synchronize with respect to the
principal diagonal of the array. However, no straightforward spatial relationship
can be noticed in the interaction pattern A that could explain the symmetry
in the spatial layout of cluster synchronization regimes. The clusters are not
synchronized to each other despite the non-zero couplings between them. A
cell is influenced by its nearest neighbors (four connected local topology) with
coupling weight value Ar,c shown in each cell, where index r denotes the row, c
denotes the column of a cell.

explain the symmetry in the spatial layout of synchronizing cell clusters. The clus-

ters are not synchronized to each other despite the non-zero couplings between

them. This is a surprising phenomenon that may be related to the findings of [22]

where a similar phenomenon was presented for an array where all coupling coef-

ficients were identical. According to [22], topological products of synchronization

regimes possible in a 1D chain of oscillators define all possible set of synchro-

nization regimes in a 2D array. E.g. a possible regime is that cells synchronize

in vertical stripes, i.e. a regime defined as the product of global synchronization

in the vertical direction and global desynchronization in the horizontal direction.

Cluster synchronization regimes in a 1D chain with zero flux boundary conditions
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(a) (b) (c) (d)

(e) (f) (g)

Figure 4.4: Stubs of possible cluster synchronization regimes in a 3× 3 array, not
including situations that can be obtained by rotating these stubs with 90◦, 180◦

or 270◦. Interaction patterns learned using our global optimization framework
may synchronize either just these pairs or larger cell clusters that contain these
stubs. All stubs may be part of a synchronization regime following an appropriate
combination of axial symmetries as reported in [22]. The sole exception is the
pair of cells shown in Fig. 4.4(g). These two cells can never synchronize in the
same cluster if we assume the clusters must follow some combination of axial
symmetries.

are symmetric to the middle of the chain. In a similar manner, in a 2D array,

spatial layout of cluster synchronization regimes can arise from symmetries along

the principal or secondary diagonal, the middle of the rows or columns or any

combination of these axes. Putting no restriction on the interaction pattern, the

possible spatial layouts of cluster synchronization regimes in a square array was

investigated. Fig. 4.4 shows all stubs of possible cluster synchronization regimes

in a 3× 3 array, not including situations that can be obtained by rotating these

stubs with 90◦, 180◦ or 270◦. Interaction patterns learned using our global opti-

mization framework may synchronize either just these pairs or larger cell clusters

that contain these stubs. Stubs of Fig. 4.4 may be part of a larger cluster syn-

chronization regime following the spatial symmetry related rules outlined above.
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(a) (b) (c)

(d) (e) (f)

Figure 4.5: Six different cluster synchronization regimes learnt using Eq. (4.4).
Cells belonging to the same synchronizing cluster are marked with the same
grayscale level. White cells marked with X do not synchronize to any other
cell. Dashed rectangles indicate the cells that were learnt to synchronize during
optimization. A cell is influenced by its nearest neighbors (four connected local
topology) with coupling weight value Ar,c shown in each cell.

The sole exception is the pair of cells shown in Fig. 4.4(g) that is not symmetric

to any axis.

Fig. 4.5 shows array configurations giving rise to cluster synchronization

regimes that contain the specified stubs as specified in Fig.4.4(a) - 4.4(f). Also,

in Fig. 4.3 the stub used in the learning process was symmetric with respect to the

principal diagonal and it is contained in the cluster synchronization regime shown

in Fig. 4.3. However, for the stub shown in Fig. 4.4(g), the only synchronization

regime we found was when all cells in the array synchronized.

The cluster synchronization regimes shown in this section are persistent for
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random perturbations up to 20% of both the coupling and the bifurcation pa-

rameters. Persistence of the results were also confirmed for each experiment for

a large number of random initial conditions.

The coupling matrix A was included in the learning process with inequality

constraints 0 6 Ar,c 6 30. Bifurcation parameters Θr,c were fixed, chosen from a

normal distribution with mean 0.25 (the nominal value that produces the n-scroll

attractor) and standard deviation 0.01. To obtain the configuration shown in

Fig. 4.3 CSA with initial temperature 2.0 and 150 individual optimizers with

15000 population iterations was used. To obtain the configurations shown in

Fig. 4.5 CSA with initial temperature 1.4 and 36 individual optimizers with 2500

population iterations was used.

4.4.2 Imposing qualitative behavior on cells

We performed learning for 2 × 2 and 3 × 3 on arrays of Chua’s oscillators with

hyperbolic tangent non-linearity, with eight-connected local topology, zero-flux

boundary conditions. Both the coupling matrix and the matrix Θ of bifurcation

parameters of each cell were included in the learning process. In Fig. 4.6 we

show illustrative results for the 2 × 2 case where the target population to be

synchronized was the bottom-left and upper-right cells. CSA with 16 individual

optimizers and 200 population iterations ran for 20 minutes using ode45 with

relative tolerance 10−3 on a Linux machine powered by an AMD Opteron 250.

Similar qualitative effects can be observed for 3× 3 arrays.

An important result of this study is that we showed that it is possible to learn

partial synchronization regimes on arrays having different qualitative behavior.

Figure 4.6 shows two examples for partial synchronization: chaotic dynamics

emerges when limit cycle and convergent oscillators are coupled, but the same

cells can synchronize also when coupling makes chaotic oscillators become limit-

cycle oscillators.

4.4.3 Partial synchronization

Figure 4.7(a) and 4.7(b) show that the error between synchronizing cells is not

zero. Such type of synchronization was already studied extensively in [98] where
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it was shown that qualitatively different dynamical systems can synchronize with

some small residual error. Examples shown in this chapter confirm this phe-

nomenon extending it into the more complex context of cluster synchronization

occurring in networks defined in Eq. (4.1).

4.5 A link to living oscillator networks

Coupled oscillators are widely used to model neural dynamics in living organ-

isms. One hot issue to be solved is to prove whether synchronization plays a

role in processing information. A closely related, more fundamental issue is to

determine the level of complexity of individual oscillators, i.e. what complexity

is necessary to solve problems that biological systems solve in an efficient way.

A widely adopted conjecture is that chaotic dynamics of individual oscillators is

a necessary ingredient to solve tasks in the brain. However I only know of one

published evidence that could confirm this conjecture. I give here some links

between synchronization and neurobiology, and explore options for a framework

that can be used to analyze the information processing capabilities of rectangular

arrays of oscillators. The ultimate aim is to add application motivated aspects

to existing results that so far focused on conditions for synchronization.

The binding problem first introduced by Rosenblatt et al. [105] is one of the

most debated issues in neurobiology. It can be summarized as the task of under-

standing how the brain associates fragments of perceptual information belonging

to the same object. These fragments can come from the same modality (e.g.

Rosenblatt’s example, see below) or from different ones like when one sees a stick

hitting the ball and hears the sound of hitting and binds these sensory inputs to

identify the single action of hitting the ball.

Rosenblatt’s example can be seen in Fig. 4.8. A simple neural network is

presented with a triangle or a square which can be in either the top or the

bottom of a display. The network has four output neurons which fire to represent

”square”, ”triangle”, ”top” and ”bottom” respectively. Part B shows however

that the network fails to separate cases when different inputs are present at the

same time. This model cannot bind the information ”triangle” to ”top” and

”square” to ”bottom” when both parts of the figure has an input.
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Although the brain usually does not appear to have a problem in correctly

binding signals, as this simple example reveals, we still lack an understanding

of how information variously distributed in patterns of neural firing results in

coherent representations. In her review paper Treisman [106] decomposes the

process of binding into three problems:

1. Parsing: what steps are involved in separating the single elements or events

that need to be grouped from those not belonging to the object of interest.

Attentional mechanisms are believed to play a role here, this falls not into

the scope of our study.

2. Encoding : how is the binding encoded so that it can be signaled to other

brain systems and used? Here, binding must have a role (see below).

3. Structural description: how are the correct relations specified between the

bound elements within the same object? Here again, binding is a key issue

to be understood in the process of how to connect objects after completing

step 1 (see [106] for details).

Regarding the encoding problem, a number of mechanisms are believed to

play a role, each having strong experimental cases for and against. One of the

possible mechanisms is the binding by synchrony hypothesis proposed by Milner

[107] and von der Malsburg [108].

Regarding the structural description problem, many studies confirming the

role of synchrony in binding objects or events deduce their findings mostly from

electroencephalography (EEG) data. In EEG, one measures voltage variations on

an array of electrodes connected to the scalp. However each electrode reflects only

an integrated version of the underlying activity of several neurons organized in

cortical columns. Therefore synchronization phenomena observed in brain wave

dynamics do not reveal how the underlying network processes information.

The fundamental aim of my investigations is to shed light on this last issue,

i.e. to the question of how synchronization can play a role in information pro-

cessing. My approach tries to exploit the advantage of being free from the issues

common in neurobiology, like the inherent variability of cells that in itself makes

the exploration of fundamental mechanisms very difficult.
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In the engineering community, study of synchronization of chaotic oscillators

has been a very active area for the last couple of years. Studies are focusing

on deriving conditions for synchronization but we only have very limited knowl-

edge why chaotic dynamics is beneficial in neural networks. Although these are

fascinating questions from a purely scientific approach, it would be highly ben-

eficial to justify the extra efforts needed to deal with such systems, i.e. having

some clear application possibilities confirmed. So far only speculations and con-

jectures have come to surface suggesting that specific topological configurations

and chaotic dynamics are advantageous without pointing out exactly why and in

what situations chaotic dynamics is essential.

In [109] one step was made by showing how chaotic dynamics can solve the

binding problem. It is known, that fixed-point attractors can only be used to

retrieve one memory pattern at the same time. Multiple reinstantiation allows

the retrieval of several memory patterns simultaneously, something that fixed-

point attractors cannot realize. This is similar to the binding problem, since

the multiple reinstantiation mechanism must connect multiple memory patterns

during retrieval. Referring to Fig. 4.8, the recall process must connect square-up

and triangle-down for the rightmost image. The solution could be synchronizing

the firing pattern of the neurons sensitive for square with up and those of triangle

with down. However, if two squares appear on the same figure, simple spike-

train synchrony could not correctly interpret the situation: synchrony of both up

and down with square would relate unrelated features (up and down are distinct,

inherently non-overlapping features). This problem has a solution as show in Fig.

4.9. The gray spike trains form a so-called itinerant attractor, that is composed

of attractor ruins. In the case depicted on Fig. 4.9, two ruins are present in the

gray spike train from the upper and lower black spike trains. One ruin - that

is a destabilized attractor - is connected to the other via dynamical, itinerant

orbit. This way the property of being square is synchronized to both up and

down without making those two mutually exclusive features collapse.

Given this constructive evidence (see details in [109]) for the role chaotic

dynamics plays in pattern retrieval from associative memory sets, a number of

questions remain unanswered.

104



4.5 A link to living oscillator networks

One interesting issue is related to the so-called physiological moment, T , a

short period of time ranging from 50 to 200 ms [110]. At time scale greater than

T one can see a succession of conscious states. In the encoding phase (step 2)

the binding problem must be solved at a time scale shorter than T since it is not

a conscious process, however the structural description (step 3) goes above T .

The difference between oscillators operating in limit cycle, chaotic or maybe even

hyperchaotic mode could be reflected in the time needed to accomplish a specific

task. From physiological data we have hints on the time scale a biological neurons

processes information. Assuming we also know the length of the physiological

moment, it would be interesting to show what kind of tasks can be accomplished

using chaotic oscillator arrays in the given time-frames.

In [111] Belykh et al. showed for spiking neurons that only the number of

inputs to a neuron is important as a condition for synchronization and not the

network topology. In contrast, in [112] and in many other papers discussion is

limited to non-spiking neurons. There seems to be a gap between papers dealing

with spiking neuron models (e.g. Hindmarsh-Rose) and non-spiking ones (Chua,

Lorenz, Rössler). As mentioned by János Neumann and also summarized in [113],

the efficiency of the brain compared to computers comes from its optimized struc-

ture, i.e. it uses both analog and digital representations to process information.

How is this related to the binding problem?

A number of models have been constructed to mimic the computational capa-

bilities of the retina, known as essentially analog processing device. In [114] Bálya

et al. qualitatively reproduced the computations the retina performs to extract

the feature channels in response to a flashed square input. The model was imple-

mented using a CNN-type analog Very Large Scale Integration (VLSI) processor,

that represented a major step compared to the complexity and programmability

to other models. Here, the fundamental question is whether there exists a rule

of how to separate tasks that are more efficiently solved by non-spiking (purely

analog) neurons (oscillators)? A solution to this question would be extremely

revealing, also to circuit designers in motivating directions of their efforts.

A number of questions would be relevant to deal with:

1. Understand what does chaotic dynamics add to types of transformations

a CNN can accomplish. Show examples where ”classical” operators fail
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and chaotic dynamics is essential (or it is more efficient). A candidate

problem to solve is the binding problem. To be more specific, the question is

whether the mechanisms revealed in [109] have a corresponding phenomenon

in analog oscillators?

2. Recently conditions for cluster synchronization have been investigated by

multiple studies. We know that cluster synchronization regimes are hyper-

planes [112] (linear invariant manifolds). In the case of non-identical oscil-

lators, these hyperplanes become non-linear manifolds. It was shown, that

partial or cluster synchronization in diffusively coupled continuous chaotic

oscillator networks is caused by symmetries in the network [112] [88]. How-

ever these results show only complete, asymptotic synchronization, that was

not yet confirmed to play a role in biological systems. It seems to be too

restrictive, as the work in [109] illustrates.

3. This underlines another issue, i.e. the lack of a good measure for syn-

chronization. Although a number of methods appeared in the literature

(see [115] for an overview) they do not solve the ”accurate resolution -

programmability - computationally effective” tri-requisite. Again, at the

moment we just can admire how biological systems excel in solving the

synchronization detection problem.

4. Find a good compromise between complexity and programmability, like it

was the case for the retina model in [114]. Three candidate architectures

can be named:

(a) CNN array of Chua’s oscillators. Programmable initial state vector,

coupling matrix and parameter for the non-linearity = 3+1+1×w×h
(w is the width of the array, i.e. the number of cells in horizontal

dimension, h is the height of the array).

(b) Multi-layer CNN. If we want to extend the already existing complex-

cell VLSI CNN implementation [116], at least one layer should possess

parameterizable, non-linear self-feedback. Implementing spatially in-

variant templates, this realization would need 2 time constants relative
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to the one fixed time-constant layer + 3 interlayer coupling coefficients

+ 3×9 intra-layer feed-back + 3×9 intra-layer feed-forward coefficients

= 59 parameters for any array size.

(c) FPGA implementation of the first two possibilities. [72] reported an

emulated digital implementation of a multi-layer CNN on FPGA. Ac-

cording to the results, only three CNN cores (three layer, nearest-

neighbor interactions, 24 bit precision) could be implemented on the

Xilinx XC2V8000. Despite some possible simplifications in the Chua’s

oscillator, FPGA implementation might not be a good candidate to

boost simulations of chaotic CNNs.

The optimization framework used to study synchronization phenomena in

this study - in the first time - was implemented as a computer simulation. I

did not want to restrict possible synchronization regimes by symmetric coupling

matrix and allowed different cells to be in different mode (limit-cyle, double scroll,

multiple-scrolls). Therefore optimization techniques were used to search for array

configurations that solve the desired tasks according to some measure.

Chaos and chaotic synchronization are believed to posses computational ad-

vantages but to my best knowledge there are only few evidences supporting this

conjecture. A future goal can be to find further evidence and find the proper

architecture that can serve as a hardware accelerator for this computationally

expensive research topic.

4.6 Conclusions

In [22] symmetries of the coupling topology were exploited to find cluster synchro-

nization regimes of identical oscillators with identical coupling weights. In our

study, the oscillators were not identical and the coupling coefficients were highly

asymmetric, still the symmetries similar to those shown in [22] can be observed

in the resulting cluster synchronization regimes. However, at the expense of some

residual synchronization error, the asymmetry of the interaction pattern between

cells can give rise to cluster synchronization regimes that constrain the effect
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of the underlying symmetries of the network topology and boundary conditions.

This is a new phenomenon to be analyzed more in detail in future studies.

Global optimization techniques were successfully applied to find cluster syn-

chronization regimes in chaotic oscillator arrays. A drawback of this approach

is the high computational cost for large arrays that strongly motivates VLSI im-

plementation of chaotic oscillator arrays. Hardware implementation could speed

up experimentation and rule out the potential errors numerical simulations can

introduce.

It was shown that with large enough number of iterations the global optimum

is always reached using simulated annealing. However using optimization much

caution is needed to make sure that the desired network behavior is properly

translated into a cost function. Also, the fact that the desired behavior is not

exhibited can be due to the insufficient number of optimization steps. The pro-

posed synchronization metric has the advantage of requiring low computational

effort compared to correlation based metrics.

The proposed metric for synchronization attributes −∞ cost value to the

complete synchronization of the selected cells, i.e. the difference between their

state vectors becomes zero after some transition time interval but at the same time

the difference between the remaining cells in the array is as high as possible. We

think that the actual cost value can be used as an indicator that synchronization

is happening, but this issue needs more rigorous investigations.

In future studies, it would be interesting to see what are the ingredients in a

highly asymmetric coupling configuration that are essential in order to give rise to

a specific cluster synchronization regime. A more involved question is to see how

cluster synchronization is related to information processing in oscillator networks

of living organisms.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Trajectories showing the stationary behavior from time T to 2T
of two qualitative behavior types of Chua’s oscillator arrays. For both types,
cells enclosed with solid lines were learned to synchronize. For a),b),e) positive
maximum Lyapunov exponents (λmax) were imposed on all cells. For c),d),f):
zero λmax were imposed on all cells. In a)-d) cells with continuous border are
learnt to synchronize, dotted line enclosing denotes desynchronization. In a)
and c) trajectories of the array without coupling are shown (no connecting lines
between cells). b) and d) illustrate the behavior when coupling is added to array
a) and c) respectively. e,f) Synchronization errors shown as ‖XREF‖2 versus
‖Xr,c‖2 between a chosen reference cell and all other cells. Errors of array b) and
d) are shown in e) and f) respectively. The coupling and bifurcation parameters
Ar,c and Θr,c are shown below each oscillator.
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(a)

(b)

Figure 4.7: In Fig. 4.7(a) the magnitude of state vector of a cell is denoted by |x|.
Magnitude of state vector of cell (2, 1) was plotted against the same quantity of
all other cells. Cells in the cluster marked with the darkest shade in Fig. 4.5(a)
- i.e. cells (2, 1) and (1, 2) - synchronize as the 45◦ lines indicate. Fig. 4.7(b)
shows the magnitude of the difference between the state vector of cell (2, 1) and
the others er,c = ‖x2,1− xr,c‖2. All synchronizing clusters in all experiments have
qualitatively similar error plot.
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Figure 4.8: Rosenblatt’s basic illustration to the binding problem. In the A case,
the input can be coded with distinct neuron patterns. In case B, although the
input is different, the activated neurons are the same, i.e. the network of neurons
cannot distinguish between these cases. Taken from [105]
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Figure 4.9: Itinerant synchronization of four neurons (the four gray spike-series
in the middle) with two neuron populations. One population is formed by the
first six lines with two grays included, the other population is the last six lines.
Observe how the gray neurons synchronize alternating with the upper and lower
six. The two populations are unsynchronized and compete for synchronization
with the gray ones. Taken from [109].
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Chapter 5

Application of the results

The results of Chapter 2 and Chapter 3 are in their current stage already very

application oriented. Although the problems and the methods are different, at

a higher abstraction level, these problems can be unified. A common lesson I

learned is that the development of a good medical image processing method relies

heavily on how much data is available of the target biological organ or feature

and how strictly the data acquisition protocol is defined.

Results formulated in Chapter 4 are much more theoretical. I illustrated with

case studies that my proposed approach can be a useful tool to test hypotheses

made on coupled networks of chaotic oscillators. Rules (either theoretical or

empirical) believed as generic can be transformed into a cost function. Then

a global optimization process can maximize the cost function, i.e. it looks for

solutions that violate the rule formulated as a cost function. Finding no such

solution can be a strong evidence supporting the validity of the original rule.

Confirming generic (theoretical) rules via global optimization might seem im-

proper. However, deriving sound theoretical results is extremely difficult when

dealing with coupled networks of chaotic oscillators. Therefore the method showed

in this dissertation can provide valuable feedback. This study showed that by us-

ing a global optimization framework it is possible to get insight into the complex

interactions of coupled chaotic oscillators. Our method can be useful in guiding

investigations and confirming results from theoretical analysis.

My motivation for investigating synchronization phenomena stemmed from

the insight I gained into high speed image processing problems. I realized that
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despite the very good operation per joule figure of CNN processors, performance

of machine vision algorithms is still very low compared to the ease of living crea-

tures tackling complicated scenarios. Actually, we still lack the understanding of

what mechanisms should be exploited to construct high speed, highly robust, low

power vision algorithms. On the other hand, in neurobiology, the same problem

arises when trying to understand how neurons actually perform computation.

In the engineering community, study of synchronization of chaotic oscillators

became a very active area since a couple of years. Studies are focusing on deriv-

ing conditions for synchronization but we only have very limited knowledge why

chaotic dynamics is beneficial in neural networks. So far only speculations and

conjectures have come to surface suggesting that specific topological configura-

tions and chaotic dynamics are advantageous without pointing out exactly why

and in what situations chaotic dynamics is essential. Although synchronization

and chaotic dynamics are fascinating topics from a purely scientific approach, it

would be highly beneficial to justify the extra efforts needed to deal with such

systems. My method could represent a step in this direction.
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Appendix A

Appendix

The appendix aims to provide the reader with details on the implementation of

the routines used in the pseudocodes of Chapter 2 and Chapter 3. Widely known

CNN templates and Matlab commands are however not discussed here and the

interested reader is referred to [117][118][119]. Details on CNN implementation

aspects were added where necessary.

A.1 General terms, notations and conventions

If not stated otherwise the following notation is used in operator, subroutine and

algorithm descriptions:

• I - denotes an image (2D array of pixel values)

• ∗ - denotes convolution

• k - time index

• i, j - spatial indices

• σ - spatial convolution parameter

• φ - spatial directional parameter

• θ - threshold parameter
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A.2 Basic operators

Threshold – thresholds a gray-scale input image at a given gray-scale level. The

output is a binary image defined as follows:

Thr(I(i, j), θ) =

{
1 if I(i, j) > θ
0 otherwise

CNN implementation: by using the Thresh template.

ACE16k implementation: available (stable).

Normalize - calculates a normalized version of a gray-scale input image.

The formulation of the operation is as follows (Dmin and Dmax stand for the

minimum and maximum of the available dynamic range; Imin and Imax stand for

the minimum and maximum of the input image, respectively):

Norm(I(i, j)) = Dmin+
Dmax −Dmin

Imax − Imin
(I(i, j)−Imin) = Dmin+

∆D

∆I
(I(i, j)−Imin)

CNN implementation: first Imin and Imax is calculated by using the Thresh tem-

plate and global logic. Since ∆D is known a priori, the implementation of the

above formula leads to an analogic algorithm based on template Scale and simple

arithmetics. Remark: the constant b0 = ∆D/∆I that is the central element of

the B term in Scale is image dependent, thus interaction with the digital envi-

ronment is needed.

ACE16k implementation: -.

Diffuse - calculates a linear low-pass filtered version of a gray-scale input

image. The formulation of the operation is as follows:

Diffus(I, σ) = I ∗G(σ)

CNN implementation: the above equation describes a linear convolution by a

Gaussian kernel. Under fairly mild conditions at some time t this corresponds

to the solution of a diffusion type partial differential equation. After spatial dis-

cretization, the PDE can be mapped to a CNN structure programmed by template

Diffus. In this form the the transient length is explicitly related to G(t ≈
√
σ).
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ACE16k implementation: iterated convolution - available (stable), continuous

diffusion - available (resistive grid solution - stable).

Dir Gradient - calculates the directional gradient along the specified cardi-

nal direction. Directionality is represented by the actual mask image used for the

operation. CNN implementation: by using the direction specific variants of the

Sobel template as follows (example is given for the North direction):

B =

 0.25 0.5 0.25
0 0 0

−0.25 −0.5 −0.25

 z = −0.001

ACE16k implementation: available (stable).

A.3 Subroutines

A.3.1 Subroutines for the CWC algorithm

Trigger Wave Dilation - dynamic dilation of a wave-front initiated from patch-

like sources. The IMark image contains the marker image that contains the seed

locations of reconstruction. The mask image IMask contains binary constraints to

the reconstruction. τ is the number of iterations allowed (temporal constraint).

Trigger Wave Erosion works in a similar manner but the role of black and white

colors are interchanged.

CNN implementation: A linear CNN template T = [a0 β d] is a trigger-wave

generator if a0 > 1 and θL < d < θH is satisfied; where a0 is the central element

and β are the surrounding elements of the feed-back template, d represents the

control term with θL = 1− α−N1 · β and θH = −1 + α+N1 · β. Typical values

for trigger wave generator are T = [3 0.25 3.75]. A contains the elements of the

feedback matrix. Properly changing the values of the A template can make the

propagation anisotropic. The value of d controls the wave between expanding

and shrinking mode. The PATCHM template performs binary mask constrained

wave propagation.
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1: function TrW Dilation(IMark, IMask, τ)
2: ICore = IMark

3: for iter = 1 : τ do
4: for i = 1 : M do
5: for j = 1 : N do
6: c = ICore(i, j)
7: if c == BLACK then
8: ICWP (i, j) = BLACK
9: continue

10: end if
11: n = CountNeighbors(c)
12: if n < 2 then
13: ICWP (i, j) = WHITE
14: continue
15: end if
16: if IMask(i, j) == WHITE then
17: ICWP (i, j) = WHITE
18: continue
19: end if
20: ICWP (i, j) = BLACK
21: end for
22: end for
23: ICore = ICWP

24: end for
25: end function
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ACE16k implementation: available (stable).

Constrained Trigger Wave Dilation - calculates the steady contour of

a wave-front initiated from patch-like sources. An evolving wave-front can be

controlled through a grayscale valued spatial constraint, i.e. by the input image

IGS. The IMark image contains the marker image that contains the seed locations

of reconstruction. The mask image IMask contains binary constraints to the re-

construction. θ is a grayscale threshold that identifies regions in IGS where the

propagation should be stopped. τ is the number of iterations allowed (temporal

constraint). Constrained Trigger Wave Erosion works in a similar manner but

the role of black and white colors are interchanged.

CNN implementation: The PATCHMC template performs grayscale constrained

trigger wave propagation. The difference between PATCHM and PATCHMC is

the presence of the central element in the B matrix, i.e. in PATCHMC, b0 is the

central element of the feed-forward matrix that weighs the input mask IGS.

ACE16k implementation: available (stable).

MotionEstimation - calculates a smooth motion intensity map. Smooth-

ness is ensured by applying a diffusion operator on the input images. This could

be interpreted as the application of a temporal DoG (difference of Gaussians)

operator. If the target image feature moves a lot between two frames, IpreprocC

should be used instead of IpreprocN . The use of the ”next” or read-ahead frame

is justified when the time resolution of the input flow is fine. In such cases, the

wall motion constituent of the spatial constraint may be too small.

CalcBWMask - calculates a BW mask that poses a hard limit on trigger

wave propagation. IFixmask is a binary image where white pixels cover the region

that falls outside the ultrasound beam, i.e. outside of the apriori known region

of interest.

Combine - normalizes and calculates the weighted sum of two input images.
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1: function TrW Dilation(IMark, IMask, τ)
2: ICore = IMark

3: for iter = 1 : τ do
4: for i = 1 : M do
5: for j = 1 : N do
6: c = ICore(i, j)
7: if c == BLACK then
8: ICWP (i, j) = BLACK
9: continue

10: end if
11: n = CountNeighbors(c)
12: if n < 2 then
13: ICWP (i, j) = WHITE
14: continue
15: end if
16: if IMask(i, j) == WHITE then
17: ICWP (i, j) = WHITE
18: continue
19: end if
20: s = AverNeighbors(IGS(i, j))
21: if s < θ then
22: ICWP (i, j) = BLACK
23: else
24: ICWP (i, j) = WHITE
25: end if
26: end for
27: end for
28: ICore = ICWP

29: end for
30: end function

1: function MotionEstimation(IpreprocN , IpreprocP , σ1, σ2)
2: IDN = Diffus(IpreprocN , σ1)
3: IDP = Diffus(IpreprocP , σ2)
4: IMIM = IDN − IDP
5: end function

1: function CalcBWMask(IPrevResult, IFixmask, td)
2: ID = TrW Dilation(IPrevResult, td)
3: IBWMask = ID AND IFixmask
4: end function
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1: function Combine(I1, I2,w)
2: I1n = Norm(I1)
3: I2n = Norm(I2)
4: IOut = I1n ∗w(1) + I2n ∗w(2)
5: end function

A.3.2 Subroutines for Pixel Level Snakes

Balloon Force Estimation - returns an internal inflating potential where input

is the contour image, w gives the real potential value weight, cf is a flag that

switches between compresion/dilation potential (1 = compression) and the out-

put is the inflating potential image.

1: function BalloonForceEst(Iin, w, cf)
2: IP = HoleF illing(Iin)
3: if cf == 1 then
4: IP = NOT (Iin) AND IP
5: IP = NOT (IP )
6: end if
7: IOut = IP ∗ w
8: end function

Directional Contour Expansion (DCE) - Performs a directional expan-

sion of the contour along the desired direction driven by binary external informa-

tion.

1: function DCE(dir, IAC , IGFF )
2: IShifted = Shift(IAC , dir)
3: IExp = IShifted AND IAC
4: IOut = IExp OR IAC
5: end function

Directional Contour Thinning (DCT) - Performs a directional thinning

of the contour along the desired direction driven by binary external information.

Directionality is represented by the actual mask image used for the operation.
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1: function DCT(IAC , IMask)
2: IExp = HitAndMiss(IAC , IMask)
3: IOut = NOT IExp AND IAC
4: end function

Guiding Force Estimation (GFE) - Performs a ”binary” directional gra-

dient on the potential image along the desired direction. The output is a binary

map with black pixels where the guiding forces are positive along the direction

being processed.

1: function GFE(dir, IExt, IInt, IBalloon)
2: ISumPot = IExt + IInt + IBalloon
3: IGF = Dir Gradient(dir, ISumPot
4: IOut = Threshold(IGF , 0)
5: end function

Internal Potential Estimation (IPE) - Performs the internal potential

estimation for the current active contour.

1: function IPE(IAC , iter, w)
2: IDiff = Diffuse(IAC , iter)
3: IOut = IDiff ∗ w
4: end function

A.3.3 Subroutine descriptions for retinal ganglion cell clas-
sification

yy = smooth(y) smooths the data in the vector y using the LOESS method.

[pospeakind, negpeakind] = peakdetect(signal) generates the positive/negative

polarity (concave down/convex) peak index vectors from the signal vector.

[ind] = crossing(S, level, slope) returns an index vector ind containing the

indexes where the signal S crosses the value set in level. Specifying ’ascent’ or
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’descent’ in slope can restrict the search to rising or falling slopes.

[counts, x] = hist(I) returns the histogram counts in counts and the bin lo-

cations in x. For indexed images, hist returns the histogram counts for each

colormap entry; the length of counts is the same as the length of the colormap.

BW2 = bwmorph(BW, operation) applies a specific morphological operation

to the binary image BW .

Erosion: take the 3 × 3 neighborhood of each pixel in BW . Set a pixel white if

at least one of its neighbors is white.

Dilation: set a pixel black if at least one of its neighbors is black.

Opening: erosion followed by dilation.

Closing: dilation followed by erosion.

Skeleton: the skeleton of a filled black object consists of the set of points that are

equally distant from two closest points of the object’s boundary.

IM = imreconstruct(marker,mask) performs morphological reconstruction

of the image marker under the image mask. marker and mask can be two inten-

sity images or two binary images with the same size. The returned image IM is

an intensity or binary image, respectively. marker must be the same size as mask,

and its elements must be less than or equal to the corresponding elements of mask.

L = bwlabel(BW,n) returns a matrix L, of the same size as BW , containing

labels for the connected objects in BW . The elements of L are integer values

greater than or equal to 0. The pixels labeled 0 are the background. The pixels

labeled 1 make up one object, the pixels labeled 2 make up a second object, and

so on.

STATS = regionprops(L, properties) measures a set of properties for each

labeled region in the label matrix L. Positive integer elements of L correspond to

different regions. For example, the set of elements of L equal to 1 corresponds to

region 1; the set of elements of L equal to 2 corresponds to region 2; and so on.

The return value STATS is a structure array of length max(L(:)). The fields of
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the structure array denote different measurements for each region, as specified by

properties.

Eccentricity: a scalar corresponding to the eccentricity of the ellipse that has the

same second-moments as the region. The eccentricity is the ratio of the distance

between the foci of the ellipse and its major axis length. The value is between 0

and 1, 0 and 1 are degenerate cases; an ellipse whose eccentricity is 0 is actually

a circle, while an ellipse whose eccentricity is 1 is a line segment.

Centroid: the ratios in every spatial direction of the first and zero order moments

of the object define its centroid

BoundingBox: the smallest rectangle that encompasses the object and is oriented

along the major axis of the object.

regionalmaxima(I): points in the image where all neighbor pixel value is

smaller.

fitwin(centers, width): returns the upper left coordinates of square windows

with specified width and centers.

cat: concatenate.
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Acronyms

3D

Three dimensional. Háromdimenziós. 17, 18, 20, 29, 47, 66, 72, 76

AC

Active contour. Akt́ıv kontúr. 22–24, 29

ACE

Analogic Computing Environment. Analogikai számı́tási környezet. 49, 55,

60, 61, 63, 64

ADC

Analog to Digital Converter. Analóg-digitális átalaḱıtó. 63

ASD

Atrial septal defect. Atrio-szeptális defektus. A pathology, important in

pediatric cardiology. In patients with ASD, the wall between the atria

contains a hole through which the used blood coming from the veins can

mix with the refreshed blood coming from the lung. 17, 18, 22, 41, 50, 51,

58

BW

Black and white. Fekete-fehér. 34, 36, 119

CNN

Cellular Nonlinear Network, a space-time computing paradigm introduced

by Leon O. Chua 12, 14, 23, 24, 27, 28, 39, 60–64, 105–107, 115
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Acronyms

CNN-UM

Cellular Nonlinear Network Universal Machine, an algorithmically pro-

grammable array processor architecture 12, 17

CSA

Coupled Simulated Annealing. Csatolt szimulált lehűtés. 94, 101

CT

Computer Tomography. Számı́tógépes tomográfia. 66

CWC

Constrained Wave Computing. Kényszeŕıtett Hullámszámı́tás. 17, 23, 29,

30, 34, 35, 50, 55, 61, 62

DAPI

DAPI or 4’,6-diamidino-2-phenylindole is a fluorescent stain that binds

strongly to DNA. It is used extensively in fluorescence microscopy. DAPI

is excited with ultraviolet light. When bound to double-stranded DNA its

absorption maximum is at 358 nm and its emission maximum is at 461 nm.

This emission is fairly broad, and appears bluecyan. DAPI will also bind

to RNA, though it is not as strongly fluorescent. 69–71, 77, 79, 85

DSP

Digital Signal Processor. Digitális jelfeldolgozó processzor. 26, 27, 39, 50,

59–61, 63

FPGA

Field Programmable Gate Array. A field-programmable gate array is a

semiconductor device containing programmable logic components called

”logic blocks”, and programmable interconnects. Logic blocks can be pro-

grammed to perform the function of basic logic gates such as AND, and

XOR, or more complex combinational functions such as decoders or sim-

ple mathematical functions. In most FPGAs, the logic blocks also include

memory elements, which may be simple flip-flops or more complete blocks

of memories. 60, 107
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Acronyms

fps

Frames per second. Másodpercenként feldolgozott képek száma. 18, 59

GCL

Ganglion Cell Layer. Ganglionsejtes réteg. 70–73, 77–80, 82, 84

GFP

Green Fluorescent Protein. Zölden fluoreszkáló protein. 69, 70, 73, 74, 76,

87

INL

Inner Nuclear Layer. Belső sejtmagos réteg. 70, 72, 73, 77–80, 82

IPL

Belső rostos réteg. A well defined layer in the retina containing the synaptic

connections between the ganglion cells and the amacrine or bipolar cells.

13, 69, 71, 73, 80, 87

LOESS

Local regression using weighted linear least squares and a 2nd degree poly-

nomial model. 76, 122

LSM

Laser Scanning Microscope. Lézerrel pásztázó mikroszkóp. 69, 74, 85

LV

Left ventricle. Bal kamra. The left ventricle is the most muscular cavity of

the heart pumping oxygenated blood into the main arteries. 17, 19–22, 49,

58, 65

MRI

Magnetic Resonance Imaging. Mágneses rezonancia alapú képalkotás. 20,

21, 60, 66

PC

Personal Computer. Személyi számı́tógép. 26, 50, 59
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Acronyms

PDE

Partial Differential Equation. Parciális differenciálegyenlet. 23, 28

PLS

Pixel Level Snakes, Képelem szintű ḱıgyó 17, 41, 43, 55, 61

RA

Right atrium. Jobb pitvar. 22, 49, 51, 58

RGC

A group cell types that process visual information processed by the outer

retina and the amacrine cells and transmit information via the optical nerve

toward higher level centres. 69

RT3D

Real-Time 3D. Valósidejű 3D. 20, 21, 60, 66

SNR

Signal to Noise Ratio. Jel-zaj arány. 26, 27

TCAC

Topographic cellular active contour. Topografikus celluláris akt́ıv kontúr.

A family of algorithms that solve some image segmentation task using to-

pographic and cellular image processing operators. 18, 24, 27, 29, 47, 49,

59, 60, 67

TEE

Transesophageal echocardiography. Nyelőcsövi echokardiográfia. 51

US

Ultrasound. Ultrahang. 20, 22, 24, 29, 49, 52, 66

VLSI

Very Large Scale Integration. Nagyon nagyfokú integráltság. 105, 106
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