
Design and Implementation of
High-Performance Computing Algorithms

for Wireless MIMO Communications

Thesis submitted for the degree of Doctor of Philosophy

Csaba Máté Józsa, M.Sc.

Supervisors

Géza Kolumbán, D.Sc.

Doctor of the Hungarian Academy of Sciences

and

Péter Szolgay, D.Sc.

Doctor of the Hungarian Academy of Sciences

Pázmány Péter Catholic University

Faculty of Information Technology and Bionics

Multidisciplinary Doctoral School of Sciences and Technology

Budapest, 2015

DOI:10.15774/PPKE.ITK.2015.010



DOI:10.15774/PPKE.ITK.2015.010



I would like to dedicate this work to my loving family.

DOI:10.15774/PPKE.ITK.2015.010



Acknowledgements

First of all, I am most grateful to my supervisors, Profs. Géza Kolumbán and Péter

Szolgay for their motivation, guidance, patience and support.

I owe my deepest gratitude to Prof. Tamás Roska for the inspiring and thought-

provoking discussions and for opening up new horizons. I deeply thank Prof. Árpád

Csurgay and Dr. András Oláh for the motivation and encouragement, giving me the

strength to go on.

I am immensely grateful to Prof. Antonio M. Vidal for inviting me to his research

group at the Institute of Telecommunications and Multimedia Applications (iTEAM)

of the Polytechnic University of Valencia and sharing with me his wide experience in

computational mathematics every time I needed it. I am very grateful to Prof. Alberto

González, Dr. Gema Piñero and Dr. Francisco J. Martínez-Zaldívar for their generous

advice and help in the field of wireless communications and showing me the strength of

the team work.

I would like to thank all my friends and colleagues with whom I spent these past few

years Dóra Bihary, Bence Borbély, Zsolt Gelencsér, Antal Hiba, Balázs Jákli, András

Laki, Endre László, Norbert Sárkány, István Reguly, János Rudán, Zoltán Tuza, Tamás

Fülöp, András Horváth, Miklós Koller, Mihály Radványi, Ádám Rák, Attila Stubendek,

Gábor Tornai, Tamás Zsedrovits, Ádám Balogh, Ádám Fekete, László Füredi, Kálmán

Tornai, Ákos Tar, Dávid Tisza, Gergely Treplán, József Veres, András Bojárszky, Balázs

Karlócai, Tamás Krébesz. Special thanks go to István Reguly for more than a decade of

friendship and of continuous collaboration.

Thanks also to my colleagues at the iTEAM: Emanuel Aguilera, Jose A. Belloch,

Fernando Domene, Laura Fuster Pablo Gutiérrez, Jorge Lorente, Luis Maciá, Amparo

Martí, Carla Ramiro for all the good moments spent together while working at the lab.

I thank the Pázmány Péter Catholic University, Faculty of Information Technology

and Bionics, for accepting me as a doctoral student and supporting me throughout grants

TÁMOP-4.2.1/B-11/2/KMR-2011-0002 and TÁMOP-4.2.2/B-10/1-2010-0014.

iv

DOI:10.15774/PPKE.ITK.2015.010



Finally, I will be forever indebted to my parents Enikő and Máté, brother István,

and grandparents Böbe, Éva, Márton for enduring my presence and my absence, and for

being supportive all the while, helping me in every way imaginable.

Last, but not least, I would like to express my sincere gratitude to my wife Ildikó,

who offered me unconditional love and support throughout the course of this thesis.

v

DOI:10.15774/PPKE.ITK.2015.010



Kivonat

A vezeték nélküli kommunikációban a többantennás (MIMO) rendszerek azzal kerül-

tek a figyelem középpontjába, hogy jelentős adatátviteli sebesség növekedést és jobb

lefedettséget tudnak elérni a sávszélesség és az adóteljesítmény növelése nélkül. A jobb

teljesítmény ára a hardverelemek és a jelfeldolgozó algoritmusok megnövekedett kom-

plexitása. A legújabb kutatási eredmények azt igazolják, hogy a masszívan párhuzamos

architektúrák (MPA-k) számos számításigényes feladatot képesek hatékonyan megoldani.

Kutatásom célja, hogy a többantennás vezeték nélküli kommunikáció területén meg-

jelenő magas komplexitású jelfeldolgozási feladatokat a modern MPA-k segítségével,

mint például az általános célú grafikus feldolgozó egységek (GP-GPU-k) vagy sokma-

gos központi egységek (CPU), hatékonyan megoldjak.

MIMO rendszerekben az optimális Maximum Likelihood (ML) becslésen alapuló

detekció komplexitása exponenciálisan növekszik az antennák számával és a modulá-

ció rendjével. A szférikus detektor (SD) jelentősen csökkentve a lehetséges megoldások

keresési terét hatékonyan oldja meg az ML detekciós problémát. Az SD algoritmus fő

hátránya a szekvenciális jellegében rejlik, ezért futtatása MPA-kon nem hatékony.

Kutatásom első részében bemutatom a párhuzamos szférikus detekciós (PSD) algo-

ritmust, mely kiküszöböli az SD algoritmus hátrányait. A PSD algoritmus egy új fake-

resési algoritmust valósít meg, ahol a párhuzamosságot egy hibrid, szélességi és mélységi

fakeresés hatékony kombinációja biztosítja. Az algoritmus minden keresési szinten egy

út metrikán alapuló párhuzamos rendezést hajt végre. A PSD algoritmus paraméterei

segítségével képes meghatározni a memória igényét és párhuzamosságának mértékét ah-

hoz, hogy hatékonyan ki tudja használni számos párhuzamos architektúra erőforrásait.

A PSD algoritmus MPA-ra való leképezését a rendelkezésre álló szálak számától függő,

párhuzamos építőelemek segítségével valósítom meg. Továbbá, a párhuzamos építőele-

mek alapján a PSD algoritmus egy GP-GPU architektúrán kerül implementálásra. A

csúcsteljesítmény eléréséhez több párhuzamossági szint meghatározására és különböző

ütemezési stratégiákra van szükség.

vi

DOI:10.15774/PPKE.ITK.2015.010



Többfelhasználós kommunikációs rendszerek esetén, ha a bázisállomás több anten-

nával rendelkezik a térbeli diverzitás akkor is kihasználható, ha a mobil állomásoknak

csak egy antennájuk van. Mivel a mobil állomások számára nem minden kommunikációs

csatorna ismert, az összes jelfeldolgozási feladat a bázisállomásra hárul, ilyen például a

szimbólumok előkódolása, mely a felhasználok közötti interferenciát szünteti meg. Ha a

bázisállomás számára a mobil állomások visszacsatolják a csatorna paramétereit, akkor a

lineáris és nemlineáris előkódolási technikák teljesítménye tovább javítható rácsredukciós

algoritmusok alkalmazásával. Több kutatás is bizonyította, hogy a rácsredukcióval tá-

mogatott lineáris és nemlineáris előkódolás jelentősen csökkenti a bithibaarányt a rácsre-

dukcióval nem támogatott előkódoláshoz képest. Továbbá számos kutatás megmutatta,

hogy a rácsredukció a lineáris és nemlineáris detekció teljesítményét is tudja fokozni. A

rácsredukció során létrejövő új bázis kondíciószáma és az ortogonalitási hiba mérséklése

lehetővé teszi, hogy a kevésbé komplex lineáris detekciós algoritmusok is teljes rendű

diverzitást érjenek el.

A rácsredukciós algoritmusok komplexitása a bázis méretétől függ. Mivel a rácsreduk-

ciót a MIMO rendszerek csatorna mátrixán kell végrehajtani, a rácsredukció komplexitása

és ezzel együtt a feldolgozási idő kritikussá válhat nagy MIMO rendszerek esetén. Mivel a

rácsredukció, pontosabban a polinomrendű Lenstra-Lenstra-Lovász (LLL) rácsredukciós

algoritmus fontos szerepet játszik a vezeték nélküli kommunikáció területén, a kutatásom

második részében az LLL algoritmus teljesítményének további fokozása a célom.

A párhuzamos All-Swap LLL (AS-LLL) algoritmus esetén a Gram-Schmidt együtt-

hatók minden mátrix oszlopcsere és méret csökkentési procedúra után aktualizálásra

kerülnek. Mivel a gyakori oszlopcsere és méret csökkentés több alkalommal módosítja

a Gram-Schmidt együtthatók értékét, ezért egyes együtthatók aktualizálása feleslegessé

válik. A költségcsökkentett AS-LLL (CR-AS-LLL) algoritmus megtervezésével megmu-

tattam, hogy jelentős komplexitás csökkenés érhető el, ha csak azok a Gram-Schmidt

együtthatók kerülnek aktualizálásra, melyek az LLL feltételek kiértékelésében vesznek

részt. Ha már nincs végrehajtandó oszlopcsere és méret csökkentési procedúra a fennma-

radó együtthatók aktualizálásra kerülnek. Bemutatom egy GP-GPU architektúrára való

hatékony leképezését a CR-AS-LLL algoritmusnak, ahol egy kétdimenziós CUDA blokk

szálai hajtják végre a redukciót.

Nagyobb méretű mátrixok esetén a párhuzamosság több szintje is kiaknázható. A

módosított blokk LLL (MB-LLL) algoritmus egy kétszintű párhuzamosságot valósít meg.

A magasabb párhuzamossági szinten a blokk redukciós koncepciót alkalmazom, míg az

vii

DOI:10.15774/PPKE.ITK.2015.010



alacsonyabb szinten az egyes blokkok párhuzamos feldolgozását a CR-AS-LLL algoritmus

valósítja meg.

A költség csökkentett MB-LLL algoritmusban a számítási komplexitás tovább

csökkenthető, ha engedélyezett az első LLL feltétel lazítása az almátrixok rácsreduk-

ciója során. A CR-MB-LLL algoritmust leképeztem egy heterogén architektúrára és a

teljesítőképességet összehasonlítottam egy dinamikus párhuzamosságot támogató GP-

GPU és többmagos CPU leképezéssel. A heterogén architektúra alkalmazása lehetővé

teszi a kernelek dinamikus ütemezését és lehetővé válik több CUDA folyam párhuzamos

használata.

Az elért kutatási eredményeim azt mutatják, hogy a MPA-k fontos szerepet fognak

játszani a jövőbeli jelfeldolgozó algoritmusok esetén és az aktuális jelfeldolgozó algoritmu-

sok szekvenciális összetevőinek korlátozásai sok esetben megszüntethetők az algoritmusok

teljes újratervezésével, ezáltal jelentős teljesítmény növekedés érhető el.

viii

DOI:10.15774/PPKE.ITK.2015.010



Abstract

Multiple–input multiple-output (MIMO) systems have attracted considerable atten-

tion in wireless communications because they offer a significant increase in data through-

put and link coverage without additional bandwidth requirement or increased transmit

power. The price that has to be paid is the increased complexity of hardware components

and algorithms. Recent results have proved that massively parallel architectures (MPAs)

are able to solve computationally intensive tasks in a very efficient manner. The goal of

my research was to solve computationally demanding signal processing problems in the

field of wireless communications with modern MPAs, such as General-Purpose Graphics

Processing Units (GP-GPUs), and multi-core Central Processing Units (CPUs).

The complexity of the optimal hard-output Maximum Likelihood (ML) detection in

MIMO systems increases exponentially with the number of antennas and modulation

order. The Sphere Detector (SD) algorithm solves the problem of ML detection by sig-

nificantly reducing the search space of possible solutions. The main drawback of the SD

algorithm is in its sequential nature, consequently, running it MPAs is very inefficient.

In the first part of my research I present the Parallel Sphere Detector (PSD) algorithm

that overcomes the drawbacks of the SD algorithm. The PSD implements a novel tree

search, where the algorithm parallelism is assured by a hybrid tree search based on the

efficient combination of depth-first search and breadth-first search algorithms. A path

metric based parallel sorting is employed at each intermediate stage. The PSD algorithm

is able to adjust its memory requirements and extent of parallelism to fit a wide range

of parallel architectures. Mapping details for MPAs are presented by giving the details

of thread dependent, highly parallel building blocks of the algorithm. I show how it is

possible to give a GP-GPU mapping of the PSD algorithm based on the parallel building

blocks. In order to achieve high-throughput, several levels of parallelism are introduced,

and different scheduling strategies are considered.

When a multiple-antenna base station (BS) is applied to multi-user communication,

spatial diversity can be achieved even if the mobile stations (MSs) are not equipped

ix

DOI:10.15774/PPKE.ITK.2015.010



with multiple antennas. However, since the MSs do not know other users’ channels, the

entire processing task must be done at the BS, especially symbol precoding to cancel

multi-user interference. Assuming channel information is sent back by all the MSs to the

BS, a promising technique that can be applied for both linear and non-linear precoding

techniques is the lattice reduction (LR) of the channel matrix. It was shown that the bit

error rate (BER) performance of LR-aided precoding is significantly decreased compared

to non-LR-aided precoding. Recent research shows that the performance of linear and

non-linear detectors can be improved when used in conjuction with LR techniques. The

improved condition number and orthogonality defect of the reduced lattice basis achieves

full diversity order even with less-complex linear detection methods.

However, the computational cost of LR algorithms depending on the matrix dimen-

sions could be high, and can become critical for large MIMO arrays. Since LR, and more

explicitly the polynomial-time Lenstra-Lenstra-Lovász (LLL) lattice reduction algorithm

plays an important role in the field of wireless communications, in the second part of my

research the focus is to further improve the performance of the LLL algorithm.

In the original parallel All-Swap LLL (AS-LLL) algorithm after every size reduction

or column swap the Gram-Schmidt coefficients are updated. However, a lot of unneces-

sary computations are performed because the frequent size reductions and column swaps

change the value of the Gram-Schmidt coefficients several times. With the Cost-Reduced

AS-LLL (CR-AS-LLL) algorithm I showed that by updating only those Gram-Schmidt

coefficients that are involved in the evaluation of the LLL conditions, a significant com-

plexity reduction is achieved. The remaining coefficients are updated after no more swaps

and size reductions have to be performed. I present a GP-GPU mapping of the CR-AS-

LLL algorithm where the work is distributed among the threads of a two-dimensional

thread block, resulting in the coalesced access of the high-latency global memory, and

the elimination of shared memory bank conflicts.

For larger matrices it is possible to exploit several levels of parallelism. The Modified-

Block LLL (MB-LLL) implements a two-level parallelism: a higher-level, coarse-grained

parallelism by applying a block-reduction concept, and a lower-level, fine-grained paral-

lelism is implemented with the CR-AS-LLL algorithm.

The computational complexity of the MB-LLL is further reduced in the Cost-Reduced

MB-LLL (CR-MB-LLL) algorithm by allowing the relaxation of the first LLL condition

while executing the LR of sub-matrices, resulting in the delay of the Gram-Schmidt

coefficients update and by using less costly procedures during the boundary checks. A

x

DOI:10.15774/PPKE.ITK.2015.010



mapping of the CR-MB-LLL on a heterogeneous platform is given and it is compared

with mappings on a dynamic parallelism enabled GP-GPU and a multi-core CPU. The

mapping on the heterogeneous architecture allows a dynamic scheduling of kernels where

the overhead introduced by host-device communication is hidden by the use of several

Compute Unified Device Architecture (CUDA) streams.

The achieved results of my research show that MPAs will play an important role in

future signal processing tasks and limitations imposed by the sequential components of

existing signal processing algorithms can be eliminated with the complete redesign of

these algorithms achieving significant performance improvement.

xi

DOI:10.15774/PPKE.ITK.2015.010



Abbreviations

APP A Posteriori Probability

ARBF Adapting Reduced Breadth-First search

AS-LLL All-Swap LLL algorithm

ASD Automatic Sphere Detector

ASIC Application-Specific Integrated Circuit

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BFS Breadth-First Search

BLAST Bell Laboratories Layered Space-Time architecture

BS Base Station

CDF Cumulative Distribution Function

CDI Channel Distribution Information

CLPS Closest Lattice Point Search

CPU Central Processing Unit

CR-AS-LLL Cost-Reduced AS-LLL algorithm

CR-MB-LLL Cost-Reduced MB-LLL algorithm

CSI Channel State Information

CSIR CSI at the Receiver

CSIT CSI at the Transmitter

CUDA Compute Unified Device Architecture

DFS Depth-First Search

DP Dynamic Parallelism

DSP Digital Signal Processor

EEP Expand and Evaluate Pipeline

FBF Full-Blown Breadth-First search

FLOP/s Floating-Point Operations per Second

FP Fincke-Phost
xii

DOI:10.15774/PPKE.ITK.2015.010



FPGA Field Programmable Gate Array

FSD Fixed-Complexity Sphere Detector

GP-GPU General-Purpose Graphics Processing Unit

HKZ Hermite-Korkine-Zolotareff algorithm

ILS Integer Least Squares

LDPC Low-Density Parity-Check Codes

LLL Lenstra-Lenstra-Lovász algorithm

LORD Layered Orthogonal Lattice Detector

LR Lattice Reduction

LRAP Lattice-Reduction-Aided Precoding

MB-LLL Modified-Block LLL algorithm

MIMD Multiple Instruction, Multiple Data

MIMO Multiple-Input Multiple-Output

MISD Multiple Instruction, Single Data

MISO Multiple-Input Single-Output

ML Maximum Likelihood

MMSE Minimum Mean Square Error

MPA Massively Parallel Architecture

MPI Message Passing Interface

MS Mobile Station

NUMA Non-Uniform Memory Access

OFDM Orthogonal Frequency-Division Multiplexing

OpenMP Open Multi-Processing

PE Processing Element

PER Packet Error Rate

PSD Parallel Sphere Detector

QAM Quadrature Amplitude Modulation

SD Sphere Detector

SE Schnorr-Euchner

SIC Successive Interference Cancellation

SIMD Single Instruction, Multiple Data

SIMT Single Instruction, Multiple Threads

SINR Signal-to-Interference plus Noise Ratio

SISD Single Instruction, Single Data

xiii

DOI:10.15774/PPKE.ITK.2015.010



SISO Single-Input Single-Output

SM(X) Streaming Multiprocessor

SMP Symmetric Multiprocessor

SNR Signal-to-Noise Ratio

SSFE Selective Spanning Fast Enumeration

STC Space-Time Coding

SVD Singular Value Decomposition

TB Thread Block

THP Tomlinson-Harashima Precoding

UMA Uniform Memory Access

VLSI Very Large Scale Integration

ZF Zero-Forcing

xiv

DOI:10.15774/PPKE.ITK.2015.010



Contents

1 Introduction 1

1.1 Motivation and scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 High-performance computing architectures and programming models 6

2.1 Flynn’s taxonomy of parallel architectures . . . . . . . . . . . . . . . . . . 6

2.2 Overview of parallel programming models . . . . . . . . . . . . . . . . . . 11

2.2.1 The CUDA programming model . . . . . . . . . . . . . . . . . . . 12

3 Overview of MIMO communications 14

3.1 Benefits of MIMO systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 MIMO system model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 MIMO capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 MIMO detection methods and algorithms 20

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 MIMO detectors classification . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Linear detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3.1 Zero-forcing detection . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3.2 Minimum mean square error detection . . . . . . . . . . . . . . . . 25

4.4 Successive interference cancellation detectors . . . . . . . . . . . . . . . . 28

4.4.1 Successive interference cancellation detection concept . . . . . . . 28

4.4.2 The Vertical Bell Laboratories Layered Space-Time architecture . 29

4.5 Maximum likelihood detection . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.6 Maximum likelihood tree-search based detectors . . . . . . . . . . . . . . . 33

4.6.1 The Sphere Detector algorithm . . . . . . . . . . . . . . . . . . . . 33

4.6.1.1 General description of the Sphere Detector algorithm . . 33

xv

DOI:10.15774/PPKE.ITK.2015.010



CONTENTS

4.6.1.2 The Fincke-Phost and Schnorr-Euchner enumeration

strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.6.1.3 Complexity analysis of the Sphere Detector algorithm . . 39

4.6.2 The Automatic Sphere Detector algorithm . . . . . . . . . . . . . . 43

4.7 Non-maximum likelihood tree-search based detectors . . . . . . . . . . . . 44

4.7.1 K-Best Sphere Detector algorithm . . . . . . . . . . . . . . . . . . 45

4.7.2 Hybrid tree-search detectors . . . . . . . . . . . . . . . . . . . . . . 45

4.7.2.1 The Adaptive Reduced Breadth-First Search algorithm . 48

4.7.2.2 The Fixed-Complexity Sphere Detector algorithm . . . . 50

4.8 The Parallel Sphere Detector algorithm . . . . . . . . . . . . . . . . . . . 51

4.8.1 Design objectives of the Parallel Sphere Detector algorithm . . . . 52

4.8.2 General description of the Parallel Sphere Detector algorithm . . . 52

4.8.3 The main building blocks of the Expand and Evaluate pipeline . . 59

4.8.3.1 Preparatory block . . . . . . . . . . . . . . . . . . . . . . 60

4.8.3.2 Selecting, mapping and merging block . . . . . . . . . . . 62

4.8.3.3 Path metric evaluation block . . . . . . . . . . . . . . . . 63

4.8.3.4 Searching or sorting block . . . . . . . . . . . . . . . . . . 63

4.8.3.5 Application of the Expand and Evaluate pipeline . . . . . 63

4.8.4 Levels of parallelism and CUDA mapping details . . . . . . . . . . 65

4.8.5 Performance evaluation of the Parallel Sphere Detector algorithm . 68

4.8.5.1 Average detection throughput and scalability . . . . . . . 69

4.8.5.2 Preprocessing of the channel matrix . . . . . . . . . . . . 72

4.8.5.3 Average complexity per thread . . . . . . . . . . . . . . . 74

4.8.5.4 Comparison of detection throughput and bit error rate

performance . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Lattice reduction and its applicability to MIMO systems 82

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Lattice reduction preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Lattice reduction algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.1 Hermite-Korkine-Zolotareff and Minkowski lattice basis reduction . 91

5.3.2 The Lenstra-Lenstra-Lovász lattice basis reduction . . . . . . . . . 93

5.3.3 Seysen’s lattice basis reduction . . . . . . . . . . . . . . . . . . . . 96

5.4 Lattice reduction aided signal processing . . . . . . . . . . . . . . . . . . . 98

xvi

DOI:10.15774/PPKE.ITK.2015.010



CONTENTS

5.4.1 Lattice reduction aided MIMO detection . . . . . . . . . . . . . . . 98

5.4.2 Lattice reduction aided MISO precoding . . . . . . . . . . . . . . . 101

5.5 Lattice reduction parallelization strategies . . . . . . . . . . . . . . . . . . 104

5.5.1 The All-Swap lattice reduction algorithm . . . . . . . . . . . . . . 105

5.5.2 The parallel block reduction concept . . . . . . . . . . . . . . . . . 105

5.6 Parallel lattice reduction algorithms and their mapping to parallel archi-

tectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.6.1 The Cost-Reduced All-Swap LLL lattice reduction algorithm . . . 106

5.6.2 The Modified-Block LLL lattice reduction algorithm . . . . . . . . 112

5.6.3 The Cost-Reduced Modified-Block LLL lattice reduction algorithm 114

5.6.4 Evaluation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6 Theses of the Dissertation 124

6.1 Methods and tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.2 New scientific results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.3 Applicability of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

xvii

DOI:10.15774/PPKE.ITK.2015.010



List of Figures

2.1 The block diagram of the GK110 Kepler architecture. . . . . . . . . . . . 8

2.2 The GK110/GK210 Kepler streaming multiprocessor (SMX) unit archi-

tecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 The evolution of theoretical floating-point operations per second

(FLOP/s) for CPU and GP-GPU architectures. . . . . . . . . . . . . . . . 10

3.1 MIMO system architecture with n transmitter and m receiver antennas. . 15

4.1 Classification of spatial multiplexing MIMO detection methods. . . . . . . 22

4.2 Bit error rate performance comparison of linear detectors for 4×4 MIMO

systems with 16 and 64-QAM symbol constellations. . . . . . . . . . . . . 27

4.3 Vertical BLAST detection bit error rate performance comparison for 4×4

MIMO with 16-QAM symbol constellation considering (i) SINR, (ii) SNR

and (iii) column norm based ordering. . . . . . . . . . . . . . . . . . . . . 31

4.4 Branch and bound search with the Sphere Detector algorithm. . . . . . . 37

4.5 The radius size of the bounding sphere for different ε and σ2 parameters. 40

4.6 The expected number Ep of nodes visited for a 4× 4 MIMO with |Ω| = 4

and ε = 0.01, 0.06, 0.11, 0.16, 0.21 parameter values. . . . . . . . . . . . . . 42

4.7 Bit error rate performance of the K-Best detector for K = 1, 2, 4, 8, 12, 16

in a 4× 4 MIMO system with 16-QAM symbol constellation. . . . . . . . 47

4.8 Bit error rate performance of the K-Best detector for K = 1, 2, 4, 8, 16, 32

in a 4× 4 MIMO system with 64-QAM symbol constellation. . . . . . . . 47

4.9 The hybrid tree traversal of the Parallel Sphere Detector algorithm for a

4× 4 MIMO system with |Ω| = 4. . . . . . . . . . . . . . . . . . . . . . . . 55

4.10 The block diagram of the Expand and Evaluate pipeline. . . . . . . . . . . 61

4.11 The iterative application of the Expand and Evaluate pipeline implement-

ing the Parallel Sphere Detector algorithm. . . . . . . . . . . . . . . . . . 64

xviii

DOI:10.15774/PPKE.ITK.2015.010



LIST OF FIGURES

4.12 Equally distributed computing load with the direct biding of the thread

blocks and symbol vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.13 Dynamically distributed computing load with the dynamic biding of the

thread blocks and symbol vectors. . . . . . . . . . . . . . . . . . . . . . . 66

4.14 A simplified thread block scheduling model on a streaming multiprocessor. 67

4.15 The scheduling of kernels using the single stream and multiple stream

execution models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.16 The Parallel Sphere Detector average detection throughput for 2×2 MIMO

obtained with single stream and multiple stream kernel executions. . . . . 70

4.17 The Parallel Sphere Detector average detection throughput for 4×4 MIMO

obtained with single stream and multiple stream kernel executions. . . . . 71

4.18 The comparison of the average detection throughput of (i) the Parallel

Sphere Detector algorithm implemented on a GP-GPU architecture and

(ii) the sequential Sphere Detector executed on every thread of a multi-

core CPU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.19 The Parallel Sphere Detector average detection throughput for 4×4 MIMO

obtained at 20 dB SNR with single stream kernel execution and multiple

thread block configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.20 Comparison of the average number of expanded nodes per thread for (a)

2×2, (b) 4×4 MIMO and |Ω| = 2 for the sequential, parallel and automatic

Sphere Detector algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.21 Comparison of the average number of expanded nodes per thread for (a)

2×2, (b) 4×4 MIMO and |Ω| = 4 for the sequential, parallel and automatic

Sphere Detector algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.22 Comparison of the average number of expanded nodes per thread for (a)

2×2, (b) 4×4 MIMO and |Ω| = 8 for the sequential, parallel and automatic

Sphere Detector algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 Square, rhombic and hexagonal lattices with the fundamental parallelo-

tope structures (blue) and the Voronoi regions (red). . . . . . . . . . . . . 87

5.2 The cumulative distribution function of the condition number κ(B̃) and

orthogonality defect ξ(B̃) after Lenstra-Lenstra-Lovász and Seysen lattice

reduction for 16× 16 zero-mean, unit variance Gaussian random matrices. 98

5.3 Equivalent system model of lattice reduction aided MIMO detection. . . . 99

xix

DOI:10.15774/PPKE.ITK.2015.010



LIST OF FIGURES

5.4 Bit error rate of lattice reduction aided linear detectors for 4 × 4 MIMO

systems with 16-QAM symbol constellation. . . . . . . . . . . . . . . . . . 101

5.5 Average uncoded bit error rate per subcarrier for 64× 64 MIMO systems

with 4-QAM symbol constellation. . . . . . . . . . . . . . . . . . . . . . . 104

5.6 Average uncoded bit error rate per subcarrier for 128×128 MIMO systems

with 4-QAM symbol constellation. . . . . . . . . . . . . . . . . . . . . . . 104

5.7 The high-level work distribution among the GP-GPU threads and the

mapping of the size reduction, inner product and column swap operations

for the Cost-Reduced All-Swap LLL lattice reduction algorithm. . . . . . 110

5.8 Kernels scheduling on a dynamic parallelism enabled GP-GPU for the

Modified-Block LLL lattice reduction algorithm. . . . . . . . . . . . . . . 114

5.9 Kernels scheduling on the heterogeneous platform for the Cost-Reduced

Modified-Block LLL lattice reduction algorithm. . . . . . . . . . . . . . . 116

5.10 Computational time of Cost-Reduced All-Swap LLL and Modified-Block

LLL lattice reduction algorithms with different block sizes ranging from

2− 29 for square matrices of dimensions 23 − 210. . . . . . . . . . . . . . . 117

5.11 Computational time of the Modified-Block LLL lattice reduction algo-

rithm with optimal block size l on different architectures. . . . . . . . . . 118

5.12 Computational time of Cost-Reduced All-Swap LLL lattice reduction al-

gorithm for matrix dimensions 23 − 26 on 1 and 2 × Tesla K20, GeForce

GTX690 and 2 × Tesla C2075 GP-GPU configurations. . . . . . . . . . . 119

5.13 Computational time of Cost-Reduced All-Swap LLL lattice reduction al-

gorithm for matrix dimensions 27 − 210 on 1 and 2 × Tesla K20, GeForce

GTX690 and 2 × Tesla C2075 GP-GPU configurations. . . . . . . . . . . 119

5.14 Computational time of the LLL, Cost-Reduced All-Swap LLL, Modified-

Block LLL and Cost-Reduced Modified-Block LLL algorithms for matrix

dimensions 23 − 26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.15 Computational time of the LLL, Cost-Reduced All-Swap LLL, Modified-

Block LLL and Cost-Reduced Modified-Block LLL algorithms for matrix

dimensions 27 − 210. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

xx

DOI:10.15774/PPKE.ITK.2015.010



List of Tables

4.1 Definition of parameters used in the Parallel Sphere Detector algorithm. . 53

4.2 Valid Parallel Sphere Detector algorithm parameter configurations. . . . . 56

4.3 Algorithmic comparison of the Parallel Sphere Detector with the sequen-

tial Sphere Detector algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Main characteristics of the GK104 Kepler architecture. . . . . . . . . . . . 68

4.5 Parallel Sphere Detector algorithm parameter configurations achieving

highest detection throughput with multiple stream kernel executions for

2× 2 and 4× 4 MIMO systems at 20 dB SNR. . . . . . . . . . . . . . . . 69

4.6 Parallel Sphere Detector algorithm parameter configurations achieving

highest detection throughput for different number of CUDA threads and

single stream kernel execution for 4× 4 MIMO systems at 20 dB SNR. . . 73

4.7 Throughput comparison of existing MIMO detector algorithms. . . . . . . 77

5.1 Lattice reduction aided precoding algorithms. . . . . . . . . . . . . . . . . 103

5.2 The comparison of the GTX690, K20 and C2075 GP-GPU architectures. . 118

5.3 Performance comparison of the Cost-Reduced All-Swap LLL and the Cost-

Reduced Modified-Block LLL algorithms with existing lattice reduction

implementations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

xxi

DOI:10.15774/PPKE.ITK.2015.010



List of Algorithms

1 Zero-Forcing Vertical BLAST detection algorithm . . . . . . . . . . . . . . 31

2 Sphere Detector algorithm for estimating sML = (s1, s2, · · · , sN ) . . . . . 36

3 The Automatic Sphere Detector algorithm . . . . . . . . . . . . . . . . . . 44

4 K-Best SD algorithm for estimating s = (s1, s2, · · · , sN ) . . . . . . . . . . 46

5 High-level overview of the Parallel Sphere Detector algorithm . . . . . . . 54

6 Parallel Sphere Detector algorithm for estimating sML = (s1, s2, · · · , sN ) . 58

7 Hermite-Korkin-Zolotareff lattice reduction algorithm . . . . . . . . . . . 94

8 The Lenstra-Lenstra-Lovász lattice reduction algorithm . . . . . . . . . . 95

9 Seysen’s lattice reduction algorithm . . . . . . . . . . . . . . . . . . . . . 97

10 The Cost-Reduced All-Swap LLL lattice reduction algorithm . . . . . . . 108

11 The pseudocode of the Cost-Reduced All-Swap LLL CUDA kernel - pro-

cessing of one lattice basis Bi with a two dimensional thread block con-

figuration TB(Tx, Ty) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

12 The OpenMP pseudocode of the Cost-Reduced All-Swap LLL lattice re-

duction algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

13 The Modified-Block LLL lattice reduction algorithm . . . . . . . . . . . . 113

14 The mapping of the Cost-Reduced Modified-Block LLL lattice reduction

algorithm to a heterogeneous platform . . . . . . . . . . . . . . . . . . . . 115

xxii

DOI:10.15774/PPKE.ITK.2015.010



Chapter 1

Introduction

1.1 Motivation and scope

The most important driving forces in the development of wireless communications are

the need for higher link throughput, higher network capacity and improved reliability.

The limiting factors of such systems are equipment cost, radio propagation conditions

and frequency spectrum availability. The ever increasing need for higher transmission

rates motivated researchers to develop new methods and algorithms to reach the Shan-

non capacity limit of single transmit and receive antenna wireless systems. Research in

information theory [8] has revealed that important improvements can be achieved in

data rate and reliability when multiple antennas are applied at both the transmitter and

receiver sides, referred to as MIMO systems [9]. The performance of wireless systems is

improved by orders of magnitude at no cost of extra spectrum use.

The complexity of MIMO detectors used over different receiver structures depends on

many factors, such as antenna configuration, modulation order, channel, coding, etc. In

order to achieve optimal BER for Additive White Gaussian Noise (AWGN) channels ML

detection has to be performed. The exhaustive search implementation of ML detection

has a complexity that grows exponentially with both the number of elements in the

signal set and the number of antennas, thus, this technique is not feasible in real systems.

The SD seems to be a promising solution to significantly reduce the search space. The

fundamental aim of the SD algorithm is to restrict the search to lattice points that lie

within a certain sphere around a given received symbol vector. Reducing the search space

will not affect the detection quality, because the closest lattice point inside the sphere

will also be the closest lattice point for the whole lattice. The drawbacks of the SD

algorithm are: (i) the complexity still suffers of an exponential growth, when increasing

1

DOI:10.15774/PPKE.ITK.2015.010



1.1. MOTIVATION AND SCOPE

the number of antennas or the modulation order, (ii) the SD detection transforms the

MIMO detection problem into a depth-first tree search that is highly sequential, and (iii)

during every tree search several different paths have to be explored leading to a variable

processing time.

When a multiple-antenna BS is applied to multi-user communication systems, spatial

diversity can be achieved even if the MSs are not equipped with multiple antennas. How-

ever, since the MSs do not know other users’ channels, the entire processing task must be

done at the BS, especially symbol precoding to cancel multi-user interference. Assuming

channel information is sent back by all the MSs to the BS, a promising technique that

can be applied for both linear and non-linear precoding is the LR of the channel matrix

[10], [11], [12], [13]. Furthermore, recent research [14], [15], [16], [17], [18] shows that

the performance of linear and non-linear MIMO detectors can be improved when used

in conjunction with LR techniques. The improved condition number and orthogonality

defect of the reduced lattice basis achieves full diversity order even with less complex

linear detection methods. However, the computational cost of LR algorithms depending

on the lattice basis dimensions could be high, and can become critical for large MIMO

arrays.

The computational complexity can grow extremely high when the optimal solution

is required either for detection or precoding. However, during the research of different

modulation schemes, channel models, precoding, detection and decoding techniques it

might happen that the theoretical performance can be determined only by simulations.

Another approach is to precondition or preprocess the problem, and afterwards, lower

complexity signal processing algorithms (i.e. linear detection, precoding) can be per-

formed. In this case, the complexity or the processing time is mostly influenced by the

preprocessing algorithms. The conclusion of the above is that the price that has to be

paid when using MIMO systems is the increased complexity of hardware components and

signal processing algorithms and most of these algorithms can not be efficiently mapped

to modern parallel architectures because of their sequential components.

Due to the major advances in the field of computing architectures and programming

models the production of relatively low-cost, high-performance, MPAs such as GP-GPUs

or Field Programmable Gate Arrays (FPGAs) was enabled. Research conducted in sev-

eral scientific areas has shown that the GP-GPU approach is very powerful and offers a

considerable improvement in system performance at a low cost [19]. Furthermore, mar-

ket leading smartphones have sophisticated GP-GPUs, and high-performance GP-GPU

2

DOI:10.15774/PPKE.ITK.2015.010



1.2. THESIS OUTLINE

clusters are already available. Consequently, complex signal processing tasks can be of-

floaded to these devices. With these powerful MPAs the relatively high and variable

computational complexity algorithms could be solved for real-time applications or they

could speed-up the time of critical simulations.

The trend of using MPAs in several heavy signal processing tasks is visible. Compu-

tationally heavy signal processing algorithms like detection [20], [21], [22], [23], [24], [25],

[26], decoding [27], [28] and precoding [29] are efficiently mapped on to GP-GPUs. More-

over, several GP-GPU based communication systems have been proposed in [30, 31]. An

FPGA implementation of a variant of the LLL algorithm, the Clarkson’s algorithm, is

presented in [32]. In [33], a hardware-efficient Very Large Scale Integration (VLSI) archi-

tecture of the LLL algorithm is implemented, which is used for channel equalization in

MIMO wireless communications. In [34], Xilinx FPGA is used for implementing LR-aided

detectors, whereas [35] uses an efficient VLSI design based on a pipelined architecture.

The underlying architecture is seriously influencing the processing time and the qual-

ity of the results. Since the existing algorithms are mostly sequential, it is necessary to

fundamentally redesign the existing algorithms in order to achieve peak performance with

the new MPAs. By using these powerful devices new limits are reached, so in this thesis

my goal is twofold: (i) to design efficient and highly parallel algorithms that solve the

high complexity ML detection problem and (ii) to design and implement highly parallel

preconditioning algorithms, such as lattice reduction algorithms, that enable afterwards

the use of low complexity signal processing algorithms, achieving a near-optimal system

performance.

1.2 Thesis outline

The thesis is organized as follows. Chapter 2 discusses the Flynn’s taxonomy of

parallel architectures and gives a brief overview of the most important parallel program-

ming models. Chapter 3 introduces the MIMO system model considered throughout

the thesis and shows how MIMO can increase the spectral efficiency. Chapter 4 gives a

comprehensive overview of MIMO detection methods and presents the newly introduced

detection algorithm. Section 4.2 gives a classification of the MIMO detectors. Section

4.3 presents two fundamental low-complexity linear detectors and their performance is

compared. Section 4.4 discusses the successive interference detection concept and gives a

brief overview on the importance of detection ordering based on several metrics. Section

4.5 gives a theoretical investigation on the optimal ML detection. Section 4.5 describes

3

DOI:10.15774/PPKE.ITK.2015.010



1.2. THESIS OUTLINE

the SD algorithm together with a complexity analysis based on statistical methods, and

the automatic SD is presented that gives the lower bound of node expansions during

detection. Section 4.7 presents the most important non-ML tree-search based detectors.

The presented algorithms served as a good basis to start the design of the PSD algorithm.

Section 4.8 introduces the new PSD algorithm. The precise details of Thesis group

I. and II. are found in this section. The key concepts of the PSD algorithm are given

in Sec. 4.8.1, its general description, together with an algorithmic comparison with the

SD algorithm, is provided in Sec. 4.8.2, forming Thesis I.a. Parallel building blocks are

designed in Sec. 4.8.3 for every stage of the PSD algorithm which facilitates the map-

ping to different parallel architectures, forming Thesis I.b. In Sec. 4.8.4 several levels of

parallelism are identified and it is showed how CUDA kernels detect several symbol vec-

tors simultaneously. Two computing load distribution strategies are presented and their

application to a multi-stream GP-GPU environment is discussed. The achieved results

in this section define Thesis I.c. Section 4.8.5 evaluates the performance of the PSD

algorithm proposed by giving simulation results on the average detection throughput

achieved, showing the distribution of work over the threads available and gives a com-

prehensive comparison with the results published in the literature. In Sec. 4.8.5.2 the

effects of symbol ordering on the PSD algorithm are analyzed and the achieved perfor-

mance enhancement is presented, forming Thesis II.a. Finally, Sec. 4.9 concludes the

main results of this chapter.

Chapter 5 introduces LR and its applicability to MIMO systems, and new LR algo-

rithms and their efficient mapping to parallel architectures are discussed. After giving

the most important definitions, structures and limits in Sec. 5.2, the three fundamen-

tal LR algorithms are presented in Sec. 5.3. Section 5.4 shows how LR is applied to

MIMO detection and multiple-input single-output (MISO) precoding, and the BER per-

formance of low-complexity methods used in conjunction with LR is presented. Section

5.5 presents two parallelization strategies. The redesigned LR algorithms heavily rely on

these methods.

Section 5.6 introduces my research in the field of parallel LR algorithms and their

mapping to multi-core and many-core architectures. The precise details of Thesis group

III. are found in this section. Section 5.6.1 presents the CR-AS-LLL algorithm and its

mapping on to a GP-GPU architecture is given, forming Thesis III.a. In Sec. 5.6.2 it is

shown how the block concept is applied in the case of large matrices and the resulting MB-

LLL algorithm mapping is also discussed, Thesis III.b. is defined based on these results.

4

DOI:10.15774/PPKE.ITK.2015.010



1.2. THESIS OUTLINE

In Sec. 5.6.3 the complexity of the MB-LLL is further reduced, and the CR-MB-LLL is

mapped to a heterogeneous platform where the efficient work scheduling of the CPU and

GP-GPU is also discussed, Thesis III.c. is defined based on these results. Section 5.6.4

evaluates the performance of the new parallel algorithms on different architectures.

Finally, Chapter 6 presents the summary of the main results of my thesis.

5

DOI:10.15774/PPKE.ITK.2015.010



Chapter 2

High-performance computing

architectures and programming

models

2.1 Flynn’s taxonomy of parallel architectures

Parallel architectures are playing a prominent role in nowadays computing challenges.

Modern supercomputers are built on various parallel processing units, thus, the classifica-

tion of these architectures helps to get a better insight into the similarities and differences

of the parallel architectures. When mapping an algorithm to a parallel architecture, or

designing an application for a cluster, several levels of parallelism have to be identi-

fied and exploited. Instruction level parallelism is available when multiple operations

can be executed concurrently. Loop level parallelism can be achieved when there is no

data dependency between consecutive loop iterations. Procedure level parallelism can be

achieved with the domain decomposition or the functional decomposition of the com-

putational work. High-level parallelism is available when running multiple independent

programs concurrently.

Flynn in [36], [37], [38] developed a methodology to classify general forms of paral-

lel architectures along the two independent dimensions of instruction stream and data

stream. Stream is defined as a sequence of instructions or data operated on by the com-

puting architecture. The flow of instructions from the main memory to the CPU is the

instruction stream, while the bidirectional flow of operands from the main memory, I/O

ports to the CPU registers is the data stream. Flynn’s taxonomy is a categorization of

forms of parallel computer architectures. The most familiar parallel architectures are

6

DOI:10.15774/PPKE.ITK.2015.010



2.1. FLYNN’S TAXONOMY OF PARALLEL ARCHITECTURES

categorized in four classes: (i) single instruction, single data (SISD) stream, (ii) single

instruction, multiple data (SIMD) stream, (iii) multiple instruction, single data (MISD)

stream and (iv) multiple instruction, multiple data (MIMD) stream.

The SISD class is implemented by traditional uniprocessors, i.e., CPUs containing

only a single processing element (PE). During one clock cycle only one instruction stream

is being processed and the input is provided by a single data stream. The concurrency

achieved in these processors is achieved with the pipelining technique. The processing

of an instruction is composed of different phases: (i) instruction fetch, (ii) decoding

of the instruction, (iii) data or register access, (iv) execution of the operation, and (v)

result storage. Since these phases are independent, the pipelining enables the overlapping

of the different operations. However, the correct result is achieved if each instruction is

completed in sequence. Scalar processors process a maximum of one instruction per cycle

and execute a maximum of one operation per cycle. The next instruction is processed

only after the previous instruction is completed and its results are stored. Superscalar

processors decode multiple instructions in a cycle and use multiple functional units and a

dynamic scheduler to process multiple instructions per cycle. This is done transparently

to the user by analyzing multiple instructions from the instruction stream.

In the SIMD class the same instruction is executed by multiple PEs at every clock

cycle, but each PE operates on a different data element. This is realized by broadcast-

ing the same instruction from the control unit to every PE. The next instruction is

only processed after every PE completed its work. This simultaneous execution is re-

ferred to as lock-stepping execution. The efficient data transfer from the main memory

is achieved by dividing the main memory into several modules. Problems with a high

degree of regularity, such as different matrix, vector operations, are best suited for these

type of architectures. The common use of regular structures in many scientific problems

makes SIMD architectures very effective in solving these problems. The SIMD class is

implemented by array and vector processors.

An array processor consists of interconnected PEs with each having its own local

memory space. There is possibility to access the global memory or the local memory of

another PE, however, this has a high latency. By creating local interconnections of the

PEs, a new level of shared memory can be defined that has a reduced latency, but its

efficient use is implemented by simple and regular memory access patterns. Individual

PEs could conditionally disable instructions in case of branching, entering in idle state.

A vector processor consists of a single processor that references a single global memory

7

DOI:10.15774/PPKE.ITK.2015.010



2.1. FLYNN’S TAXONOMY OF PARALLEL ARCHITECTURES

Figure 2.1: The block diagram of the GK110 Kepler architecture.

Reprinted from [39].

space and has special functional units that operate specifically on vectors. The vector

processor shows high similarities with SISD processors except that vector processors

can treat data sequences, referred to as vectors, through their function units as a single

entity. The sophisticated pipelining techniques, the high clock rate, and the efficient data

transition to the input vector of these functional units achieve a significant throughput

increase compared to scalar function units. An efficient algorithm mapping can hide the

latency of the data loads and stores between the vector registers and main memory with

computations on values loaded in the registers.

GP-GPUs employ the single instruction, multiple threads (SIMT) multi-threaded

model. An application launches a number of threads that all enter the same program

together, and those threads get dynamically scheduled onto a SIMD datapath such that

threads that are executing the same instruction get scheduled concurrently. Figure 2.2

shows the Kepler GK110 architecture block diagram. The Kepler GK110 and GK210

implementations include 15 streaming multiprocessor (SMX) units and six 64-bit memory

controllers.

Figure 2.2 shows the block diagram of the GK110 SMX architecture. Based on [39]

the following components and features are available in the GK110/GK210 SMX units:

• each of the Kepler GK110/210 SMX has 192 single-precision, 64 double-precision

CUDA cores, 32 special function units, and 32 load/store units;

8

DOI:10.15774/PPKE.ITK.2015.010



2.1. FLYNN’S TAXONOMY OF PARALLEL ARCHITECTURES

Figure 2.2: The GK110/GK210 Kepler streaming multiprocessor (SMX) unit
architecture.

Reprinted from [39].

• the SMX schedules threads in groups of 32 parallel threads called warps;

• each SMX has four warp schedulers and eight instruction dispatch units, allowing

four warps to be issued and executed concurrently;

• Kepler’s quad warp scheduler selects four warps, and two independent instructions

per warp can be dispatched each cycle.

In the MISD class a single data stream is fed into multiple processing units and

each PE has its own instruction stream. Thus, the number of control units is equal to

the number of PEs. Only a few implementations of this class of parallel computer have

ever existed. Problems that could be efficiently solved on these architectures are filter

banks, i.e., multiple frequency filters operating on a single signal stream, or cryptography

algorithms attempting to crack a single coded message.

Processors implementing the MIMD stream are said to be the parallel computers.

Every PE has the possibility of executing a different instruction stream that is handled

by a separate control unit and a data stream is available for every PE. The execution

9

DOI:10.15774/PPKE.ITK.2015.010



2.1. FLYNN’S TAXONOMY OF PARALLEL ARCHITECTURES

Figure 2.3: The evolution of theoretical floating-point operations per second (FLOP/s)
for CPU and GP-GPU architectures.

Reprinted from [40].

of different tasks can be synchronous or asynchronous (they are not lock-stepped as in

SIMD processors), they can start or finish at different times. Usually, the solution of a

problem requires the cooperation of the independently running processors, and this co-

operation is realized through the existing memory hierarchy. By using shared memory or

distributed shared memory the problem of memory consistency and cache coherency has

to be solved. With the use of thread synchronization, atomic operations, critical sections

the programmer can overcome these problems, however, there are problems that can

be solved exclusively through hardware techniques. Todays multi-threaded processors,

multi-core and multiple multi-core processor systems implement the MIMD class.

The above discussion showed that modern CPUs fall in the MIMD class, while the

GP-GPUs implement a more flexible SIMD stream. Figure 2.3 gives an overview of

the theoretical floating-point operations per second (FLOP/s) for different CPU and

GP-GPU architectures. It can be seen that there is a huge potential in the GP-GPU

architecture because the achievable theoretical FLOP/s is many times higher compared

to the CPU architecture. However, in order to exploit this huge potential, the algorithm

design has to take in consideration the limitations imposed by the SIMT architecture

that is often a challenging task.

10

DOI:10.15774/PPKE.ITK.2015.010



2.2. OVERVIEW OF PARALLEL PROGRAMMING MODELS

2.2 Overview of parallel programming models

A parallel programming model can be regarded as an abstraction of a system ar-

chitecture. Thus, the program written based on a parallel programming model can be

compiled and executed for the underlying parallel architecture. Because of the wide

range of existing parallel systems and architectures different parallel programming mod-

els were created. A parallel programming model is general if the mapping of a wide range

of problems for a variety of different architectures is efficient. The underlying memory

architecture highly influences what parallel programming model is going to give a good

abstraction. The three most fundamental parallel computer memory architectures are:

shared memory, distributed memory and hybrid distributed-shared memory.

In shared memory parallel computers the processors share the same memory re-

sources, thus, there is only a single memory address space. Cache coherency is available,

meaning that every memory update is visible to every processor. Shared memory com-

puters can be further classified as: uniform memory access (UMA) and non-uniform

memory access (NUMA) computers. The UMA model is implemented by symmetric

multiprocessor (SMP) computers, where identical processors are placed near the shared

memory, thus, the memory access time is equal to every processor. The NUMA model

is implemented by linking several SMPs and every SMP can directly access the memory

of another SMP. However, in this case the memory access time is different for processors

lying in different SMPs. The advantages of this model are the global address space and

fast data-sharing. The main disadvantages are the lack of scalability and the need of

synchronization in order to ensure data correctness.

The distributed memory architecture model is encountered in networked or dis-

tributed environments such as clusters or grids of computers. In this case every processor

operates independently and has its own local memory, thus, there is no global memory

address space. No cache coherency is present, so the memory change of one processor

does not effect the memory of other processors. The programmer’s task is to manage the

data communication and the synchronization of different tasks. The advantage of this

approach is that each processor can rapidly access its own memory because no overhead

is required to assure global cache coherency, and the memory can easily scale with the

number of processors. Among the disadvantages of this model is the non-uniform memory

access time and the burden to manage the data communication between processors.

Nowadays, systems implementing the hybrid distributed-shared memory model are

the largest and fastest computers. In this model multiple shared memory processors are

11

DOI:10.15774/PPKE.ITK.2015.010



2.2. OVERVIEW OF PARALLEL PROGRAMMING MODELS

connected through a network resulting in a distributed architecture. The hybrid model

can be further improved by adding GP-GPUs to the shared memory architecture. This is

a very powerful model, however, the programming complexity is significantly increased.

Thus, in order to exploit the benefits of this hybrid model efficient algorithm mapping,

computational load balancing and communication organization has to be designed.

The two predominant parallel programming models using pure shared or distributed

memory approach are the Open Multi-Processing (OpenMP) [41] for shared memory and

the Message Passing Interface (MPI) [42] for distributed memory systems. In addition,

with the advent of the massively parallel many-core GP-GPUs new programming models

like CUDA [40] and Open Computing Language (OpenCL) [43] were introduced.

OpenMP is a high-level abstraction of shared memory systems. OpenMP is imple-

mented as a combination of a set of compiler directives, pragmas, and a runtime providing

both management of the thread pool and a set of library routines. With the help of the

directives the compiler is instructed to spawn new threads, to perform shared memory

operations, to perform synchronization operations, etc. The fork-join threading model is

used to switch between sequential and parallel operation modes. During a fork operation

a thread splits into several threads, thus, the execution branches off in parallel, and after

their task is completed they are joined resuming to sequential execution.

MPI is a parallel programming model for distributed memory systems and facilitates

the communication between processes by interchanging messages. The communication

is cooperative and occurs only when the first process executes a send operation and the

second process executes a receive operation. The task of the programmer is to manage

the workload by defining what tasks are to be performed by each process.

Since massively parallel many-core GP-GPUs are playing an important role in this

thesis, in Sec. 2.2.1 the most important definitions and components of CUDA are pre-

sented.

2.2.1 The CUDA programming model

The programming of GP-GPU devices has became popular since Nvidia published

the CUDA parallel programming model. Traditional CPUs are able to execute only a

few threads, but with relatively high clock rate. In contrast, GP-GPUs have a parallel

architecture that support the execution of thousands of threads with a lower clock-rate.

An extensive description of CUDA programming and optimization techniques can be

found in [40]. The main entry points of GP-GPU programs are referred to as kernels.

12

DOI:10.15774/PPKE.ITK.2015.010



2.2. OVERVIEW OF PARALLEL PROGRAMMING MODELS

These kernels are executed N times in parallel by N different CUDA threads. CUDA

threads are grouped in thread blocks (TBs). The number of threads in a TB is limited,

however, multiple equally-shaped TBs can be launched simultaneously. A grid is a col-

lection of TBs. The threads in the TB or the TBs in the grid can have a one-dimensional,

two-dimensional or three-dimensional ordering.

The cooperation between the threads is realized with the help of multiple memory

spaces that differ in size, latency and visibility. In CUDA the following hierarchy of

memory levels are defined: (i) private, (ii) shared, (iii) global, (iv) constant and (v) texture

memory.

In some cases specific threads have to wait for the results generated by other threads.

Therefore, threads within a TB can be synchronized. In order to continue the execution,

each thread has to reach the synchronization point. There is no similar mechanism to

synchronize TBs in a grid. When a kernel finishes its execution it can be regarded as a

global synchronization of the TBs.

The Nvidia GP-GPU architecture is built around a scalable array of multithreaded

streaming multiprocessors (SMs). The TBs of the grid are distributed to the SMs with

available execution capacity by the grid management unit. An important metric of the

SMs usage is occupancy. The occupancy metric of each SM is defined as the number of

active threads divided by the maximum number of threads. Groups of 32 threads, called

warps, are executed together. The maximum number of TBs running simultaneously on

a multiprocessor is limited by the maximum number of warps or registers, or by the

amount of shared memory used by the kernel.

In order to concurrently execute hundreds of threads, the SMs employ a SIMT archi-

tecture. A warp executes one common instruction at a time. In the case of branching, the

warp will serially execute each branch path. In order to achieve full efficiency, divergence

should be avoided. Applications manage concurrency through streams. A stream is a

sequence of commands that are executed in order. Different streams may execute their

commands out of order with respect to one another or concurrently. Thus, launching

multiple kernels on different streams is also possible. This can be very efficient when

kernels can be launched independently from each other.

13

DOI:10.15774/PPKE.ITK.2015.010



Chapter 3

Overview of MIMO

communications

3.1 Benefits of MIMO systems

The key feature of MIMO systems is the ability to turn multipath propagation,

traditionally a pitfall of wireless transmissions, into a benefit for the user, thus, the

performance of wireless systems is improved by orders of magnitude at no cost of extra

spectrum use. The performance enhancements of MIMO systems are achieved through

array gain, spatial diversity gain, and spatial multiplexing gain.

Array gain is defined as the efficient combination of the transmitted or received

signals that result in the increase of the signal-to-noise ratio (SNR). As a result the noise

resistance and the coverage of a wireless network is improved. Array gain is exploited

by methods like: selection combining, maximal-ratio combining, equal-gain combining as

discussed in [44].

In case of spatial diversity different representations of the same data stream (by

means of coding) is transmitted on different parallel transmit branches, i.e., it introduces

controlled redundancy in both space and time. At the receiver side independent copies of

the same transmitted signal are encountered because of the rich scattering environment.

If a signal path experiences a deep fade the original signal still can be restored, thus,

the probability of error is minimized. The number of copies received is referred to as

the diversity order. A MIMO channel with n transmit antennas and m receive antennas

potentially offers n ·m independent fading links, and hence a spatial diversity order of

n · m. Space-time coding (STC) was introduced to support transmit diversity in [45],

[46], [47], [48].

14

DOI:10.15774/PPKE.ITK.2015.010



3.2. MIMO SYSTEM MODEL

+

+

+

+

+

+

Figure 3.1: MIMO system architecture with n transmitter and m receiver antennas.

Spatial multiplexing focuses on maximizing the capacity of a radio link by transmit-

ting independent data streams on different transmit branches simultaneously and within

the same frequency band. In a rich scattering environment, the receiver can separate

the data streams and since each data stream experiences the same channel quality as a

single-input single-output (SISO) system, the capacity is increased by a multiplicative

factor equal to the number of streams. Spatial multiplexing was exploited in the following

works [129], [49], [8].

In hybrid MIMO configurations the benefits of spatial multiplexing and space-time

coding schemes are combined. This is achieved by dividing the transmit antennas into

sub-groups where each sub-group is space-time coded independently. At the receiver

group spatial filters are used followed by space-time decoding. For a few good examples

refer to [50], [51] and [52].

3.2 MIMO system model

A MIMO system consists of n transmit and m receive antennas as shown in Fig. 3.1.

The transmit antennas are sending a complex signal vector s̃t of size n during one symbol

period. The received complex symbol vector ỹ = (ỹ1, ỹ2, ..., ỹm)T is expressed as

ỹ = H̃s̃t + ṽ (3.1)

where ṽ = (ṽ1, ṽ2, ..., ṽm)T is the additive channel noise and the superposition of the

transmitted symbols is modeled by the channel matrix H̃ ∈ Cm×n. The statistical prop-

15

DOI:10.15774/PPKE.ITK.2015.010



3.2. MIMO SYSTEM MODEL

erties of the MIMO system model are summarized as follows:

• the noise vector is modeled as ṽ ∼ CN (0,K) zero-mean, circularly-symmetric

jointly-Gaussian complex random vector, with covariance matrix K = σ2Im and

uncorrelated components are assumed,

• the elements h̃ij ∼ CN (0, 1) of the channel matrix H̃ are assumed to be i.i.d.

zero-mean, complex circularly-symmetric Gaussian variables with unit variance,

• the transmitted symbols are modeled as independent and identically distributed

(i.i.d.) random variables which are uniformly distributed over a symbol set Ω̃,

moreover it is assumed that the symbol set is centered at zero E {s̃t} = 0 and the

average transmit power of each antenna is normalized to one, i.e. E
{
s̃ts̃Ht

}
= In.

The elements of the symbol set Ω̃ are drawn from an Mc-ary Quadrature Amplitude

Modulation (M-QAM) constellation usually employed in MIMO communications, where

Mc stands for the number of constellation points and typically Mc = 4, 16, 64. As a result

the elements of the symbol set are defined as

Ω̃ = {a+ bi, a, b ∈ D}, (3.2)

where

D =
{
±1

2a,±
3
2a, . . . ,±

√
Mc − 1

2 a

}
and a =

√
6

Mc − 1 . (3.3)

The parameter a is used for normalizing the power of the transmit signals to 1. The

components of s̃t = (s̃1, s̃2, ..., s̃n)T are drawn from Ω̃, i.e. s̃t ∈ Ω̃n, and carry log2 Mc

Gray-encoded bits each. Block-fading channel is assumed where the channel matrix re-

mains quasi-static within a fading block, but it is independent between successive fading

blocks. Furthermore, it is assumed that the channel matrix is known by the receiver, it

has been estimated before without errors.

The original complex representation of the system model, presented in Eq. 3.1, can be

transformed into an equivalent real-valued model at the cost of increasing its dimension,

as follows:

y = Hst + v, (3.4)

16

DOI:10.15774/PPKE.ITK.2015.010



3.3. MIMO CAPACITY

where

y =

<(ỹ)

=(ỹ)


M×1

, st =

<(̃st)

=(̃st)


N×1

,v =

<(ṽ)

=(ṽ)


M×1

,H =

<(H̃) −=(H̃)

=(H̃) <(H̃)


M×N
(3.5)

and where M = 2m and N = 2n. In the transformed MIMO system model y,H, st are

all real-valued quantities and Ω = D is a real-valued signal set.

3.3 MIMO capacity

The notion of channel capacity was introduced by Shannon in [53]. The capacity of

a channel, denoted by C, is the maximum rate at which reliable communication can be

performed, and is equal to the maximum mutual information between the channel input

and output vectors. Shannon proved two fundamental theorems: (i) for any rate R < C

and any desired non-zero probability of error Pe there exists a rate R code that achieves

Pe and (ii) the error probability of rates R > C higher then the channel capacity is

bounded away from zero. As a result, the channel capacity is a fundamental limit of

communication systems.

Several channel capacity definitions are available in the literature depending on: (i)

what is known about the state of the channel, referred to as channel state information

(CSI), or the distribution of the channel, referred to as channel distribution information

(CDI), and the time scale of the fading process. For a time-varying channel where CSI is

available at both the transmitter and receiver, namely the channel matrix H̃ is known, the

transmitter can adapt its rate or power based on the CSI. In this case the ergodic capacity

is defined as the maximum mutual information averaged over all the channel states.

Ergodic capacity is a relevant metric for quickly varying channels, since the channel

experiences all possible channel states over the duration of a codeword. In case of perfect

CSI at both the transmitter and receiver the outage capacity is defined as the maximum

rate of reliable communication at a certain outage probability. Outage capacity requires

a fixed data rate in all non-outage channel states and no data is transmitted when the

channel is in outage since the transmitter knows this information. Outage capacity is

the appropriate capacity metric in slowly varying channels, where the channel coherence

time exceeds the duration of a codeword, thus each codeword is affected by only one

channel realization.

In the following the capacity of single-user MIMO channel is considered for the case

17

DOI:10.15774/PPKE.ITK.2015.010



3.3. MIMO CAPACITY

when: (i) CSI is available at the transmitter (CSIT) and receiver (CSIR) and the channel

is constant, and (ii) CDIT and CSIR is available and fading channel is assumed.

When CSIT is available the estimated distribution or channel state is sent to the

transmitter through a feedback channel. If the transmitter adapts to these time-varying

short-term channel statistics then capacity is increased relative to the transmission strat-

egy associated with just the long-term channel statistics. The average transmit power is

constrained across all transmit antennas as E [̃sHt s̃t] ≤ P . When the channel is constant,

and CSIT, CSIR is available, the capacity is defined as

C = max
Q̃:tr(Q̃)=P

log det(Im + H̃Q̃H̃H) (3.6)

where Q̃ is the input covariance matrix, which is n × n positive semi-definite complex

matrix.

With the help of the singular value decomposition (SVD) the channel matrix can be

factorized as

H̃ = ŨΣṼH , (3.7)

where Ũ is Cm×m unitary matrix, Σ is Rm×n diagonal matrix with real non-negative

entries, and Ṽ is Cn×n unitary matrix. The diagonal elements of matrix Σ, denoted by σi,

are the singular values of H̃ and a descending order is assumed σ1 ≥ σ2 ≥ · · · ≥ σmin(n,m).

The matrix H̃ has exactly r positive singular values, where r is the rank of H̃, and

r ≤ min(n,m). In [44], [8] it was shown that the SVD can convert channel H̃ into

min(n,m) parallel, noninterfering SISO channels after precoding the input, i.e. st = Ṽs̃t,

and the received vector is multiplied by matrix ŨH , resulting in y = ŨH ỹ. The system

model is transformed as

y = ŨH(H̃st + ñ)

= ŨH(ŨΣṼH(Ṽs̃t) + ñ)

= Σs̃t + ŨH ñ

= Σs̃t + n

(3.8)

where n = ŨH ñ. Since Ũ and Ṽ are unitary ñ and n have the same distribution, and

the transformations are power preserving E[‖s̃t‖2] = E[‖st‖2]. Since Σ is diagonal and

the singular values σi are strictly positive, the non-interfering channels are described as

yi = σis̃ti + ni, for i = 1, . . . ,min(n,m). (3.9)

18

DOI:10.15774/PPKE.ITK.2015.010



3.3. MIMO CAPACITY

Note, that the above is possible only if the transmitter knows the channel, because

the precoding requires the exact channel matrix state information. The water-filling

algorithm [54] can be used to optimally allocate power over the different quality parallel

channels, leading to the following allocation:

Pi = max
(
µ− 1

σ2
i

, 0
)
, 1 ≤ i ≤ r, (3.10)

where Pi is the power of s̃ti , and the waterfill level µ is chosen such that
∑r
i=1 Pi = P .

Thus, the covariance that achieves the maximum capacity defined in Eq. 3.6 is

Q̃ = ṼPṼH , where P ∈ Rn×n and P = diag(P1, . . . , Pr, 0, . . . , 0). The resulting capacity

is given by

C =
r∑
i=1

max(log(µσ2
i ), 0). (3.11)

The constant channel model is easy to analyze from a mathematical point of view,

however, wireless channels are time-varying. In this case a more common assumption is

that the receiver is able to correctly estimate the channel state, but only the CDI is fed

back to the transmitter. The perfect CSIR and CDIT model is motivated by the scenario

where the channel state can be accurately tracked at the receiver and the statistical

channel model at the transmitter is based on channel distribution information fed back

from the receiver. The channel coefficients are typically assumed to be jointly Gaussian,

so the channel distribution is specified by the channel mean and covariance matrices.

When the transmitter has knowledge only on the channel distribution the precoding is

not possible, thus an optimal strategy is to maintain a fixed-rate transmission that is

optimized with the respect to the CDI. In [8] and [55] it was shown that the optimal

transmit strategy is to allocate equal power in every spatial direction, thus the optimum

input covariance matrix that maximizes the ergodic capacity is Q = P
n In. As a result,

the ergodic capacity is defined as

C = EH

[
log det

(
Im + P

n
H̃H̃H

)]
. (3.12)

A useful approach to get insight of the multiplexing gain of MIMO systems is to

analyze the asymptotic behavior of the ergodic capacity as either the SNR or the number

of antennas are increasing. If n and m are fixed and SNR is taken to infinity, the capacity

grows as C ≈ min(n,m) log2 P + O(1). Consequently, a 3 dB increase in the SNR leads

to an increase of min(n,m) bps/Hz in spectral efficiency, thus the multiplexing gain of a

MIMO system is min(n,m) times better compared to the SISO case.
19

DOI:10.15774/PPKE.ITK.2015.010



Chapter 4

MIMO detection methods and

algorithms

4.1 Introduction

In this chapter the focus is on detection methods applied on MIMO systems when

spatial multiplexing is used. The complexity of detection algorithms depends on many

factors, such as antenna configuration, modulation order, channel, coding, etc. Several

detection techniques are investigated such as: (i) the linear detectors, (ii) non-linear de-

tectors based on the successive interference cancellation, (iii) tree-search based detectors

and (iv) the ML detector offering the best BER performance.

The ML detector offers the best BER performance, however, its exponential com-

plexity is not suitable for real-time applications. The SD algorithm, discussed in Sec.

4.6.1, was proposed to significantly reduce the search space without degrading the BER

performance of the ML detector. The main disadvantage of the ML detector is the ex-

ponentially growing complexity with both the number of elements in the signal set and

the number of antennas.

In non-optimal detectors the complexity of the SD algorithm is reduced by intro-

ducing some approximations such as (i) early termination of the search, (ii) introducing

constraints on the maximum number of nodes that the detector algorithm is allowed

to visit or (iii) on the run-time of the detector. Each of these strategies introduces

some approximations which prevents these detectors from achieving ML performance.

For non-optimal detectors a trade-off has to be made between computational complexity

and the quality of detection. Papers [56], [20], [57], [58], [59] and [60] focus on finding

a near-ML solution with a significant decrease in the computational complexity. These

20

DOI:10.15774/PPKE.ITK.2015.010



4.2. MIMO DETECTORS CLASSIFICATION

detectors usually are used together with error correcting coding schemes or different pre-

processing techniques in order to enhance the BER performance. Linear detectors based

on Zero-Forcing, Minimum Mean Squared Error and Successive Interference Cancellation

offer a low computational complexity. However, the BER performance achieved by these

detectors is significantly worse than that of the ML and near-ML solutions.

The main results of this chapter are detailed in Sec. 4.8. The computationally in-

tensive hard-output ML detection problem of spatial multiplexing MIMO systems is

efficiently solved in the upcoming sections. The solution is a completely redesigned SD

algorithm. The new PSD algorithm implements a novel hybrid tree search method where

(i) the algorithm parallelism is assured by the efficient combination of depth-first search

(DFS) and breadth-first search (BFS) algorithms and (ii) a path metric based parallel

sorting is employed at each intermediate stage. The main advantages of the PSD al-

gorithm are the ability to adjust both its memory requirements and the extent of its

parallelism in order to fit a wide range of parallel architectures.

With the PSD algorithm the sequentiality of the SD is eliminated, thus, it can ex-

ploit the parallelism of the MPA platforms. In Sec. 4.8.3 mapping details for MPAs

are provided by giving the schematics of the thread dependent, highly parallel building

blocks of the algorithm. In order to achieve high-throughput, in Sec. 4.8.4 several levels

of parallelism are introduced and different scheduling strategies are considered. More-

over, based on the building blocks a mapping of the PSD algorithm to a GP-GPU is

performed. The performance of the proposed PSD algorithm is evaluated in Sec. 4.8.5

by giving simulation results on the average detection throughput achieved, showing the

distribution of work over the available threads and a comprehensive comparison with the

results published in the literature.

4.2 MIMO detectors classification

In Sec. 4.1 a brief overview was given on how MIMO can improve the overall perfor-

mance of a radio link. In this section the most important detection methods are sorted

based on (i) BER performance and (ii) algorithm family when spatial multiplexing is

used as shown in Fig. 4.1.

The BER performance of the hard-output detector algorithms can be roughly catego-

rized as ML and non-ML detectors. The exhaustive ML detector offers the best BER per-

formance, however, its exponential complexity is not suitable for real-time applications.

In case of the non-ML detectors a trade-off has to be made between the computational

21

DOI:10.15774/PPKE.ITK.2015.010



4.2. MIMO DETECTORS CLASSIFICATION

MIMO 

detection

techniques

Non-ML

detectors

ML

detectors

Successive

Intereference

Cancellation

Linear algebra

based

methods

Tree-Search

based

methods

Matched

Filter

Zero

Forcing

Minimum

Mean Square

Error

V-BLAST

K-Best

Sphere

Decoding

Fixed Complexity

Sphere

Decoding

Sphere

Decoding

Automatic

Sphere

Decoding

ML

exhaustive

Tree-Search

based

methods

Figure 4.1: Classification of spatial multiplexing MIMO detection methods.

complexity and the quality of detection.

The methods used for detection are grouped as follows: (i) linear algebra, (ii) Suc-

cessive Interference Cancellation (SIC) and (iii) tree-search based methods.

1. Methods based on linear algebra are usually computationally less complex, how-

ever, the BER performance is significantly reduced compared to optimal ML per-

formance. In case of the linear methods the general approach is to find a weight

matrix that is the solution of a minimization problem. After the weight matrix is

found, a multiplication with the received symbol vector is performed followed by the

clipping of the result. In Sec. 4.3 a brief overview is given on two fundametal linear

detectors: the Zero-Forcing (ZF) and the Minimum Mean Square Error (MMSE)

detector.

2. Methods based on SIC involve increased complexity computations resulting in the

improvement of the BER performance. The increase in the computational complex-

ity is motivated by finding the optimal ordering of the symbol detection, because

in every iteration the Moore-Penrose pseudoinverse of the modified channel matrix

has to be computed and a sorting has to be performed. Different ordering metrics

are available throughout the literature. The rule of thumb is similar in this case as

well, the higher the complexity a better performance is achieved. In Sec. 4.4 the

concept of SIC is introduced and the ZF based ordering Vertical Bell Labs Layered

Space-Time (V-BLAST) architecture is discussed.

3. As stated previously, the ML methods provide optimal ML performance, however,

the complexity of the exhaustive ML search grows exponentially by increasing the

22

DOI:10.15774/PPKE.ITK.2015.010



4.3. LINEAR DETECTORS

number of antennas. To solve the problem the SD algorithm has been proposed that

reduces significantly the search space of possible solutions while still providing

the ML solution. For a few good examples refer to [61], [62] and [63]. The SD

algorithm gives an efficient solution to the Integer Least Squares (ILS) problem and

it turns out that there is an analogy between the search for the optimal solution

and the bounded tree search methods. In Sec. 4.6 a detailed overview is given on

the SD algorithm and it is discussed how the solution of the ILS problem can be

transformed to a tree-search problem.

4. The complexity of SD algorithm can be further reduced by introducing some ap-

proximations such as (i) early termination of the tree-search, (ii) introducing con-

straints on the maximum number of nodes that the SD algorithm is allowed to visit

or (iii) on the run-time of the detector. Each of these strategies introduces some ap-

proximations which prevents these detectors from achieving the ML performance.

In case of the non-ML detectors a trade-off has to be made between the computa-

tional complexity and the quality of detection. Usually, when approximations are

introduced some preprocessing methods are applied such as: matrix regularization,

lattice reduction, ordering, improved decompositions. These methods increase the

overall computational complexity, however, the benefit is significant and near-ML

BER is achieved. Papers [20], [57], [56], [58], [59] and [60] focus on finding a near-

ML solution with a significant decrease in computational complexity. In Sec. 4.7

the most effective non-ML tree-search based methods are discussed.

4.3 Linear detectors

4.3.1 Zero-forcing detection

The ZF detector aims to find the least-squares solution, i.e., it searches for the un-

constrained vector s̃ ∈ Cn that minimizes the squared Euclidean distance to the received

symbol vector ỹ according to

s̃ZF = arg min
s̃∈Cn

‖ỹ− H̃s̃‖2 (4.1)

The problem looks very similar to the ML solution, however in this case the search space

is not restricted to a finite alphabet. Consequently, in order to arrive to the final solution

a clipping of the unconstrained solution ŝ = Q{s̃ZF } to a valid symbol vector is required.

23

DOI:10.15774/PPKE.ITK.2015.010



4.3. LINEAR DETECTORS

The optimization problem is solved by setting the derivative of the squared Euclidean

distance to zero, as follows

∂

∂s̃‖ỹ− H̃s̃‖2 = 0

∂

∂s̃(ỹ− H̃s̃)H(ỹ− H̃s̃) = 0

∂

∂s̃(ỹH ỹ− s̃HH̃Hỹ− ỹHH̃s̃ + s̃HH̃HH̃s̃) = 0

−H̃Hỹ + H̃HH̃s̃ = 0

s̃ = (H̃HH̃)−1H̃Hỹ

(4.2)

Applying weight matrix W̃ZF = (H̃HH̃)−1H̃H the channel interference is canceled

as follows

s̃ZF = W̃ZF · ỹ = (H̃HH̃)−1H̃H(H̃s̃t + ṽ) =

= s̃t + (H̃HH̃)−1H̃Hṽ = s̃t + ˆ̃vZF
(4.3)

The BER performance is proportional to the power of ˆ̃vZF , i.e., ‖ˆ̃vZF ‖22. By factorizing

the channel matrix based on the SVD the expected value of post-detection noise power

can be evaluated as

E
[
‖ˆ̃vZF ‖22

]
= E

[
‖(H̃HH̃)−1H̃Hv‖2

]
= E

[
‖(ṼΣ2ṼH)−1ṼΣŨHv‖2

]
= E

[
‖ṼΣ−2ṼHṼΣŨHv‖2

]
= E

[
‖ṼΣ−1ŨHv‖2

]
= E

[
vHŨΣ−1ṼHṼΣ−1ŨHv

]
= E

[
‖Σ−1ŨHv‖2

]
= E

[
tr(Σ−1ŨHvvHŨΣ−1)

]
= tr(Σ−1ŨHE

[
vvH

]
ŨΣ

−1
)

= σ2tr(Σ−1ŨHŨΣ−1) = σ2tr(Σ−2)

=
n∑
i=1

σ2

σ2
i

(4.4)

Eq. 4.4 shows that linear detection suffers from a significant noise enhancement when the

condition number of the channel matrix is large, because this means that the minimum

singular value is small. As a result, the post-detection noise power E
[
‖ˆ̃vZF ‖22

]
, i.e., the

BER, is mainly determined by the minimum singular value of the channel matrix

E
[
‖ˆ̃vZF ‖22

]
=

n∑
i=1

σ2

σ2
i

≈ σ2

σ2
min

(4.5)

As a conclusion the advantage of the ZF detection is that it completely eliminates the

24

DOI:10.15774/PPKE.ITK.2015.010



4.3. LINEAR DETECTORS

interference with low complexity computations, however, the BER degradation caused by

the noise enhancement of the inverse channel matrix multiplication is the main drawback

of this approach.

4.3.2 Minimum mean square error detection

It was shown in Sec. 4.3.1 that ZF detection completely eliminates interference, how-

ever, the noise power is enhanced significantly. The aim of MMSE detection is to maxi-

mize post-detection signal-to-interference plus noise (SINR) ratio, namely, MMSE tries

to find a weight matrix W̃MMSE that minimizes the following criteria

W̃MMSE = arg min
W̃∈RM×N

E
[
‖W̃Hỹ− s̃t‖2

]
. (4.6)

The solution is found by setting the partial derivative to zero as follows

∂

∂W̃
E
[
‖W̃Hỹ− s̃t‖2

]
= 0

∂

∂W̃
E
[
W̃HỹỹHW̃− s̃tỹHW̃− W̃Hỹs̃H

t + s̃ts̃H
t

]
= 0

∂

∂W̃
(W̃HRyyW̃−RsyW̃− W̃HRys + Rss) = 0

W̃HRyy −Rsy = 0

W̃H = RsyR−1
yy

(4.7)

where Rys is the cross-covariance matrix of the received symbol vector ỹ and the symbol

vector sent s̃t, and Ryy is the covariance matrix of the received symbol vectors. As a

result, the MMSE weight matrix is equal to

W̃H
MMSE = RsyR−1

yy . (4.8)

In order to determine the covariance matrices several assumptions are made that are

common in the most of the communication systems:

• successive noise samples are uncorrelated and AWGN channel is assumed, thus,

the noise covariance is Rnn = σ2Im;

• the symbols of the transmitted symbol vector st are statistically independent, thus,

the symbol vectors covariance is Rss = σ2
sIn;

• the noise samples are independent of the symbols in the symbol vector sent, thus,

the covariance of the symbols and noise is Rsn = 0.

25

DOI:10.15774/PPKE.ITK.2015.010



4.3. LINEAR DETECTORS

With the above assumption covariance matrices Rsy and Ryy are determined as follows:

Ryy = E
[
ỹỹH

]
= E

[
(H̃s̃t + ñ)(H̃s̃t + ñ)H

]
= E

[
H̃s̃ts̃H

t H̃H + H̃s̃tñH + ñs̃H
t H̃H + ññH

]
= σ2

sH̃H̃H + σ2Im

(4.9)

Rsy = E
[
s̃tỹH

]
= E

[
s̃t(H̃s̃t + ñ)H

]
= E

[
s̃ts̃H

t H̃H + s̃tñH
]

= σ2
sH̃H

(4.10)

Based on the above results the MMSE weight matrix is defined as follows:

W̃H
MMSE = σ2

sH̃H(σ2
sH̃H̃H + σ2Im)−1 = H̃H(H̃H̃H + σ2

σ2
s

Im)−1 (4.11)

Complexity reduction is achieved with the following equivalent transformation

W̃H
MMSE = (H̃HH̃ + σ2

σ2
s

In)−1H̃H. (4.12)

s̃MMSE = W̃H
MMSE · ỹ

= ˆ̃st + (H̃HH̃ + σ2

σ2
s

In)−1H̃Hṽ

= ˆ̃st + ˆ̃vMMSE

(4.13)

In Eq. 4.13 weight matrix W̃MMSE is applied for detection. Unlike ZF detection it is

shown that in ˆ̃st the interference is not perfectly suppressed, however, the post-detection

noise power can be much lower in certain situations. In order to compare the average

post-detection noise power of MMSE detection E
[
‖ˆ̃vMMSE‖

]
with the ZF post-detection

noise power, unit signal power is assumed σ2
s = 1, thus E

[
‖ˆ̃vMMSE‖

]
is evaluated as

follows:

26

DOI:10.15774/PPKE.ITK.2015.010



4.3. LINEAR DETECTORS

5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
it 

E
rr

or
 R

at
e

 

 

ZF 16-QAM

MMSE 16-QAM

ML 16-QAM

ZF 64-QAM

MMSE 64-QAM

ML 64-QAM

Figure 4.2: Bit error rate performance comparison of linear detectors for 4× 4 MIMO
systems with 16 and 64-QAM symbol constellations.

E
[
‖ˆ̃vMMSE‖22

]
= E

[
‖(H̃HH̃ + σ2In)−1H̃Hṽ‖2

]
= E

[
‖(ṼΣ2ṼH + σ2In)−1(Σ−1ṼH)−1ŨHṽ‖2

]
= E

[
‖(ΣṼH + σ2Σ−1ṼH)−1ŨHṽ‖2

]
= E

[
‖Ṽ(Σ + σ2Σ−1)−1ŨHṽ‖2

]
= tr((Σ + σ2Σ−1)−1ŨHE

[
ṽṽH

]
Ũ(Σ + σ2Σ−1)−1)

= tr(σ2(Σ + σ2Σ−1)−2)

=
Nt∑
i=1

σ2
i σ

2

(σ2
i + σ2)2

(4.14)

The noise enhancement caused by the minimum singular value in case of MMSE

detection is given as follows

E
[
‖ˆ̃vMMSE‖22

]
=

n∑
i=1

σ2
i σ

2

(σ2
i + σ2)2 ≈

σ2
minσ

2

(σ2
min + σ2)2 (4.15)

Comparing the noise enhancement of the MMSE and ZF detection based on Eq. 4.15

and Eq. 4.5 when σ2
min � σ2 it is visible that MMSE detection is less critical. In case

when σ2 � σ2
min the performance of the two detectors becomes the same.

27

DOI:10.15774/PPKE.ITK.2015.010



4.4. SUCCESSIVE INTERFERENCE CANCELLATION DETECTORS

In Fig. 4.2 the performance of the linear detectors are compared against the ML

detector. It is visible that the MMSE performs slightly better compared to the ZF detec-

tor, however, the optimal ML detector is orders of magnitude better in the higher SNR

regions.

4.4 Successive interference cancellation detectors

4.4.1 Successive interference cancellation detection concept

SIC is a non-linear technique that performs linear combinatorial nulling and symbol

cancellation for each transmitted substream. This is somewhat analogous to decision-

feedback equalization. During SIC detection in every iteration a different substream is

considered the desired signal and the remainder substreams are the interferers. In order

to extract the original symbol sent a weight vector has to be defined such that

w̃i(H̃j) = δij (4.16)

where (H̃j) is the j-th column of the channel matrix H̃, and δ is the Kronecker delta.

As discussed in Sections 4.3.1 and 4.3.2, the ZF weight matrix completely eliminates the

interference, however, the MMSE weight matrix achieves a better BER. As a result, the

nulling weight vector w̃i can be computed based on the above techniques. In the following

the ZF method is used to compute the nulling weight vector. Thus, the detected symbol

on the i-th substream is ˆ̃si = Q (w̃iỹ), where Q slices the unconstrained result of the

linear nulling to a valid symbol.

After a symbol is detected, based on linear nulling, symbol cancellation is performed

in order to extract the interference from the received symbol vector. As a result, the

modified received symbol vector contains fewer interferers and it is formulated as follows

ỹi+1 = ỹi − ˆ̃si · (H̃)i. (4.17)

The last step of this process is the modification of the channel matrix. Since in the

i-th iteration the interference of the detected symbol is canceled out from the received

symbol vector the new channel matrix H̃i is obtained by zeroing column i. In order to

continuously fulfill the condition imposed by Eq. 4.16, the Moore-Penrose pseudoinverse

H̃†
i
of the modified channel matrix H̃i is computed, and the detection process continues

by repeating these three steps: (i) linear nulling, (ii) symbol cancellation and (iii) the

28

DOI:10.15774/PPKE.ITK.2015.010



4.4. SUCCESSIVE INTERFERENCE CANCELLATION DETECTORS

pseudoinverse computation of the modified channel matrix. This method ends when every

symbol is detected.

4.4.2 The Vertical Bell Laboratories Layered Space-Time architecture

Foschini et al. in [49] introduced the Diagonal Bell Laboratories Layered Space-Time

(D-BLAST) architecture. This architecture is able to exploit the capacity increase of

the rich scattering multipath channels. During transmission space-time block coding is

implemented, namely redundancy is introduced between the substreams with the help

of inter-substream block coding. The main drawback of this approach is the increased

complexity of the space-time coding process.

In order to overcome the implementation complexities of D-BLAST, Wolniansky

et al. in [64] proposed a simplified Vertical BLAST (V-BLAST) architecture. The V-

BLAST implements the spatial multiplexing approach where, instead of a sophisticated

inter-stream coding and decoding, the vector encoding process is implemented by demul-

tiplexing the bitstream followed by a bit-to-symbol mapping for every substream. The

elimination of the complex coding scheme results in a reduced complexity V-BLAST

architecture that enables high spectral efficiencies.

The V-BLAST builds on the SIC technique discussed in Sec. 4.4.1. When symbol can-

cellation is used the overall system performance, namely the achieved BER, is seriously

influenced by the order of detected symbols. For example, in case if the detected symbol

is different from the symbol sent ˆ̃si 6= s̃i when subtracting its effect from the received

symbol vector, noise is introduced instead of lowering the number of interferers. Sev-

eral metrics can be defined to determine the order of detection. The main contribution

of Wolniansky et al. in [64] was the proposed optimal detection ordering based on the

post-detection SNR. The following enumeration presents the most important ordering

metrics:

1. SINR based ordering. SINR is calculated when MMSE weight matrix is used. The

ordering metric is calculated as follows:

SINRi = σ2
s | w̃ih̃i |2

σ2
s

∑
l 6=i | w̃lh̃l |2 +σ2‖w̃l‖2

(4.18)

where in the denominator the effects of interference and noise are summed. The

ordering based on the post-detection SINR metric achieves the best performance,

however, the computational complexity is slightly increased.

29

DOI:10.15774/PPKE.ITK.2015.010



4.4. SUCCESSIVE INTERFERENCE CANCELLATION DETECTORS

2. SNR based ordering. SNR is calculated with the ZF weight matrix. In this case,

the interference is completely eliminated thus the ordering metric is computed as

follows:

SNRi = σ2
s

σ2‖w̃i‖2
. (4.19)

The computational complexity is reduced since there is no need to compute the

effects of the interference, however, the achieved performance is inferior compared

to the SINR ordering.

3. Column Norm based ordering. The metrics presented above involve complex com-

putations, thus, a simpler metric based on the column norms of the channel matrix

can be defined. Based on the system model shown in Eq. 3.1 the received symbol

vector can be represented as follows:

ỹ = H̃s̃t + ṽ = h̃1s̃1 + h̃2s̃2 + · · ·+ h̃ns̃n + ṽ (4.20)

where h̃i represents the i-th column of the channel matrix H̃. The ordering metric

is based on the norms of the column vectors ‖h̃i‖, as a result, the received signal

strength is proportional with the ordering metric. The order of detection depends

on the implemented algorithm. Algorithms based on SIC require to detect the

strongest symbols first, however, the PSD presented in Sec. 4.8 starts the detection

process with the lowest metric symbols.

In [64] Wolniansky et al. presented the full ZF V-BLAST algorithm where the or-

dering used was based on the post-detection SNR. Based on Eq. 4.19 the maximum

post-detection SNR is achieved when ‖w̃i‖2 is minimal. As a result, in every iteration

of the detection process the stream with the highest post-detection SNR is identified by

recalculating the Moore-Penrose pseudoinverse of the modified channel matrix, and by

identifying the minimum norm row of the resulting inverse. A brief overview of the ZF

V-BLAST detection algorithm is given Alg. 1.

In Fig. 4.3 the V-BLAST detection BER performance is compared when (i) SINR, (ii)

SNR and (iii) column norm based orderings are considered. As expected the SINR based

ordering is performing better than the other two methods. Although, the above presented

V-BLAST versions are interesting due to their low complexity, their BER performance

is still far from the optimal ML performance.

30

DOI:10.15774/PPKE.ITK.2015.010



4.4. SUCCESSIVE INTERFERENCE CANCELLATION DETECTORS

Algorithm 1 Zero-Forcing Vertical BLAST detection algorithm

Require: ỹ, H̃
1: for i = 1 to n do
2: W̃i = H̃†i
3: ki = argmin

j 6ε{k1,k2,...,ki−1}
‖(W̃i)j‖2 . (W̃i)j denotes the j-th row of matrix W̃i

4: w̃ki = (W̃i)ki
5: ˆ̃ski = Q (w̃ki · ỹi)
6: ỹi+1 = ỹi − ˆ̃ski · (H̃)ki . (H̃)ki denotes the ki-th column of matrix H̃
7: H̃i+1 = H̃k1,k2,...,ki

. H̃ki
denotes the modified channel matrix where

column ki is zeroed.
8: end for

5 10 15 20 25 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
it 

E
rr

or
 R

at
e

 

 

OSIC - SINR based ordering

OSIC - SNR based ordering

OSIC - Column norm based ordering

ML

Figure 4.3: Vertical BLAST detection bit error rate performance comparison for 4× 4
MIMO with 16-QAM symbol constellation considering (i) SINR, (ii) SNR and (iii)

column norm based ordering.

31

DOI:10.15774/PPKE.ITK.2015.010



4.5. MAXIMUM LIKELIHOOD DETECTION

4.5 Maximum likelihood detection

The ML detector under the statistical assumptions given in Sec. 4.1 minimizes the

probability of error

Pe = P (̃st 6= ˆ̃s)

that is equivalent to maximizing the probability of the correct estimation of the trans-

mitted symbol vector s̃t from the given ỹ and H̃ as

P (̃st = ˆ̃s|ỹ, H̃). (4.21)

Applying Bayes’s theorem the posterior probability can be given by multiplying the

prior probability distribution with the likelihood and then dividing by the normalizing

constant, as follows:

P (̃st = ˆ̃s|ỹ) = f(ỹ|̃st = ˆ̃s)P (̃st = ˆ̃s)
f(ỹ) , (4.22)

where P (̃st) is the a priori probability of the transmitted symbol vector s̃t, f(ỹ|̃st = ˆ̃s)

is the conditional probability density function of the random observation symbol vector

ỹ given the transmission of symbol vector ˆ̃s, and f(ỹ) is the unconditional probability

density function of ỹ. Since f(ỹ) does not depend on ˆ̃s and assuming a priori equally

likely symbols, namely P (̃s) is constant, the maximization of the a posteriori probability

reduces to the maximization of the likelihood. As a result the ML detector is defined as:

ˆ̃sML = arg max
ˆ̃s∈Ω̃n

f(ỹ|̃st = ˆ̃s). (4.23)

By assuming the conditions presented in Sec. 3.2 and applying the model given in

Eq. 3.1 the conditional probability density function f(ỹ|̃st = ˆ̃s) equals

f(ỹ|̃st = ˆ̃s) = 1
det(πK)e

−(ỹ−H̃ˆ̃s)HK−1(ỹ−H̃ˆ̃s)

= 1
det(πσ2)m e

− 1
σ2 (ỹ−H̃ˆ̃s)H(ỹ−H̃ˆ̃s)

(4.24)

The maximization of the ML metric implies the minimization of the exponent. The

optimal ML solution ignoring the constant terms is:

ˆ̃sML = arg min
ˆ̃s∈Ω̃n

‖ỹ− H̃ˆ̃s‖2. (4.25)

A similar proof is possible for the real-valued model, given in Eq. 3.4. For the real-

32

DOI:10.15774/PPKE.ITK.2015.010



4.6. MAXIMUM LIKELIHOOD TREE-SEARCH BASED DETECTORS

valued system the ML solution is

ŝML = arg min
ŝ∈ΩN

‖y−Hŝ‖2 (4.26)

where y,H, st, ŝML are all real-valued quantities and Ω is a real-valued signal set.

The exhaustive search implementation of ML detection has a complexity that grows

exponentially with both the number of elements in the signal set Ω and the number of

antennas. Consequently, the required computational performance becomes unattainable.

For general lattices the problem has been shown to be NP-hard [65]. However, significant

complexity reduction can be achieved by exploiting the structure of the lattice as shown

in [66], [67]. In Sec. 4.6.1 the SD algorithm is discussed in details, showing how the

significant complexity reduction can be achieved.

From a different perspective Eq. 4.26 shows that the ML estimate of the transmitted

symbol vector is found by solving an ILS problem that is analogous to finding the closest

lattice point of lattice Λ = {Hs|s ∈ ΩN} to a given point y [62], [68]. In lattice theory

this problem is often referred to as the closest lattice point search (CLPS) [63], [61].

4.6 Maximum likelihood tree-search based detectors

4.6.1 The Sphere Detector algorithm

The fundamental aim of the SD algorithm is to restrict the search to lattice points that

lie within a certain sphere of radius d around a given received symbol vector. Reducing

the search space will not affect the detection quality because the closest lattice point

inside the sphere will also be the closest lattice point for the whole lattice. The reduction

of the search space is necessary in order to reduce the high computational complexity

required by the ML detection.

4.6.1.1 General description of the Sphere Detector algorithm

In the following it is assumed that (i) N ≤ M , i.e., the number of receive antennas

is greater or equal to the number of transmit antennas, and (ii) the channel matrix has

full rank. Furthermore, it is assumed that perfect CSI is available at the receiver. The

unconstrained least-squares solution of the equivalent real-valued system is defined as

ŝ = H†y (4.27)

33

DOI:10.15774/PPKE.ITK.2015.010



4.6. MAXIMUM LIKELIHOOD TREE-SEARCH BASED DETECTORS

where H† = (HHH)−1HH is the Moore–Penrose pseudoinverse of the channel matrix.

Applying QR factorization to the real channel matrix H = QR, the ML solution

from Eq. 4.26 can be rearranged as

sML = arg min
s∈ΩN

‖y−Hs‖2

= arg min
s∈ΩN

(s− ŝ)THTH(s− ŝ)

= arg min
s∈ΩN

(s− ŝ)T(QR)T(QR)(s− ŝ)

= arg min
s∈ΩN

‖R(s− ŝ)‖2

(4.28)

where matrix Q is orthogonal and matrix R upper triangular. In order to arrive to Eq.

4.28 the following expansion has to be considered

‖y−Hs‖2 = ‖y−Hs−Hŝ + Hŝ‖2

= (y−Hs−Hŝ + Hŝ)T (y−Hs−Hŝ + Hŝ)

= {(y−Hŝ)T + (Hŝ−Hs)T}{(y−Hŝ) + (Hŝ−Hs)}

= (y−Hŝ)T(y−Hŝ) + (Hŝ−Hs)T(Hŝ−Hs)+

+ (Hŝ−Hs)T(y−Hŝ) + (y−Hŝ)T(Hŝ−Hs)

(4.29)

Since ŝ is the unconstrained least-squares solution (y−Hŝ) = 0, consequently, Eq.4.29

reduces to

‖y−Hs‖2 = (Hŝ−Hs)T(Hŝ−Hs)

= (s− ŝ)THTH(s− ŝ)
(4.30)

The lattice point Hs is included by the sphere S(y, d) with center point y and radius

d if the following inequality is satisfied

‖R(s− ŝ)‖2 6 d2 (4.31)

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣



r11 r12 · · · r1N

0 r22 · · · r2N
...

... . . . ...

0 0 · · · rNN





s1 − ŝ1

s2 − ŝ2
...

sN − ŝN



∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

6 d2.

Instead of evaluating all possible symbol combinations the upper triangular property

of matrix R is exploited and a recursion is defined based on the dependency hierarchy
34

DOI:10.15774/PPKE.ITK.2015.010



4.6. MAXIMUM LIKELIHOOD TREE-SEARCH BASED DETECTORS

of the terms.

In order to obtain a deeper insight, let sNi , (si, si+1, · · · , sN )T , referred to as partial

symbol vector, denote the last N − i+ 1 components of the vector s and let

M(sNi ) =
N∑
j=i

∣∣∣∣∣∣
N∑
k=j

rjk(sk − ŝk)

∣∣∣∣∣∣
2

(4.32)

define the path metric of sNi . The recursion starts at level N and a solution candidate

is found when the first level is reached. In every iteration a partial symbol vector sNi is

expanded. During the expansion one symbol si−1 ∈ Ω is selected from the symbol set and

it is added to the partial symbol vector as follows sNi−1 = (si−1, si, · · · , sN ) = (si−1, sNi ).

The evaluation of the new partial symbol vector sNi−1 is the computation of the path

metric M(sNi−1). If the conditions are met, namely, when M(sNi−1) < d2, a new symbol

si−2 ∈ Ω has to be selected for the next dimension. If not, then the previously chosen

symbol si−1 is discarded and a new symbol for the same level is chosen from the signal

set.

A possible solution is found if a complete symbol vector sN1 satisfies the condition

M(sN1 ) < d2. The solution with the smallest metric is the ML solution. If a too small

initial radius is chosen so that a solution is not found, the process has to be restarted

with a higher radius.

Based on the above description of the SD algorithm an analogy with bounded tree

search can be found. The partial symbol vectors sNi can be regarded as tree nodes at

level i. The symbol vectors sN1 are the leaves of the tree and the weight of each node is

defined by the symbol vector metricM(sNi ). The continuous change of the partial symbol

vector sNi is analogous to a DFS. The condition given in Eq. 4.31 can be regarded as the

bounding criteria.

In Alg. 2 the pseudo-code of a SD algorithm is presented where a DFS is implemented

with a simplified enumeration strategy which is similar to the Fincke-Phost enumeration

presented in [66]. The main difference is that while the bounding interval is updated after

every node expansion in [66], in Alg. 2 the bounding parameter is the radius of the sphere

and it is updated only when a new leaf with lower path metric is found. The variables

and the three main procedures implement the same functionality in both sequential and

parallel algorithms.

Fig. 4.4 shows a possible traversal of the tree, where the size of the symbol set |Ω| = 4

and the depth of the tree is 4. This configuration belongs to a system where two receive

35

DOI:10.15774/PPKE.ITK.2015.010



4.6. MAXIMUM LIKELIHOOD TREE-SEARCH BASED DETECTORS

Algorithm 2 Sphere Detector algorithm for estimating sML = (s1, s2, · · · , sN )
Require: ŝ,R,|Ω|
1: procedure Definition and Initialization of Variables
2: for j = 1 to N do
3: evalj ← |Ω| . Number of partial symbol vector evaluations on level j after a node expansion
4: bufj [evalj ] = {} . Denotes an empty buffer of size evalj for level j
5: offj ← 0 . Offset of processing on level j for buffer bufj
6: end for
7: bufN ← expand and evaluate(()) . Expand the root () of the tree and update bufN
8: Traversal Process(i← N − 1)
9: end procedure
10: procedure Traversal Process(i)
11: while i < N do
12: if offi+1 < evali+1 then
13: sNi+1 ← bufi+1(offi+1)
14: if M(sNi+1) < d2 then . Evaluate M(sNi+1) and check if sNi+1 is inside the sphere S(y, d)
15: bufi ← Expand and Evaluate(sNi+1) . Expand partial symbol vector sNi+1 of the

tree and update bufi
16: if i = 1 then
17: Find symbol vector s

′
ML in buf1 with minimum path metric

18: d2
temp ← ‖R(s

′

ML − ŝ)‖2

19: if d2
temp < d2 then d2 ← d2

temp and sML ← s
′
ML end if

20: offi+1 ← offi+1 + 1
21: else
22: offi+1 ← offi+1 + 1, i← i− 1
23: end if
24: else
25: offi+1 ← offi+1 + 1
26: end if
27: else
28: offi+1 ← 0, i← i+ 1
29: end if
30: end while
31: end procedure
32: procedure Expand and Evaluate(sNi ) . The input is the partial symbol vector to be expanded
33: for j = 0 to |Ω| − 1 do
34: if sNi = () then . When expanding the root node the partial symbol vector is empty
35: sNN ← Ω[j]
36: bufN [j]← sNN
37: else
38: si−1 ← Ω[j]
39: sNi−1 ← (si−1, sNi )
40: bufi−1[j]← sNi−1
41: end if
42: end for
43: end procedure

36

DOI:10.15774/PPKE.ITK.2015.010



4.6. MAXIMUM LIKELIHOOD TREE-SEARCH BASED DETECTORS

Figure 4.4: Branch and bound search with the Sphere Detector algorithm.

antennas were used. The crosses denote invalid partial symbol vectors, because their

metric is higher than the radius.

4.6.1.2 The Fincke-Phost and Schnorr-Euchner enumeration strategies

In order to exploit the advantage of the search space reduction, a good enumeration

strategy is needed. In [61] the main enumeration strategies are presented and compared

in a unified framework. In [69] Pohst proposed an efficient way of enumerating lattice

points inside a sphere. Pohst’s method was first implemented in digital communications

by Viterbo and Biglieri [70]. Important speedups have been achieved by Schnorr and

Euchner [67] by refining the Pohst method. Agrel et al. in [61] showed that the Schnorr-

Euchner (SE) strategy can be efficiently used for CLPS. The main difference of these

methods is the enumeration of the lattice points and the validity interval definition for

every dimension. In the followings the two widely used techniques: (i) the Fincke-Phost

(FP) and the SE enumerations are presented.

Fincke-Phost enumeration In case of the FP enumeration a validity interval I is

calculated for every dimension based on the previously chosen symbols. The symbols

S = I ∩ Ω are expanded and evaluated starting from the lower bound of the interval.

Based on Eq. 4.31 it is possible to write

d2 ≥ |rNN (sN − ŝN )|2 + |rN−1,N−1(sN−1 − ŝN−1) + rN−1,N (sN − ŝN )|2 + · · · (4.33)

Thus, in the first interation the following inequality holds

ŝN −
d2

rNN
≤ sN ≤ ŝN + d2

rNN
. (4.34)

37

DOI:10.15774/PPKE.ITK.2015.010



4.6. MAXIMUM LIKELIHOOD TREE-SEARCH BASED DETECTORS

The validity interval IN of the first iteration is defined as

IN =
[⌈
ŝN −

d2

rNN

⌉
,

⌊
ŝN + d2

rNN

⌋]
. (4.35)

The first symbol that is evaluated is the smallest element of the intesection SN = IN ∩Ω.

After selecting sN ∈ SN the next interval IN−1 is further reduced because in the N − 1

dimension there are two non-zero terms and the new symbol sN−1 has to satisfy the

following inequality

ŝN−1 −
2
√
d2 − |rNN (sN − ŝN )|2 − rN−1,N (sN − ŝN )

rN−1,N−1
≤ sN−1

≤ ŝN−1 +
2
√
d2 − |rNN (sN − ŝN )|2 − rN−1,N (sN − ŝN )

rN−1,N−1
.

(4.36)

Once again based on the above inequality interval IN−1 is defined and SN−1 = IN−1 ∩Ω

is computed. In case if SN−1 is not empty the expansion and evaluation continues with

the enumeration of the elements from the smallest to the biggest, contrary the next s̃N
element is evaluated. Note, the validity interval is constantly changing depending on the

chosen symbols and dimension.

Schnorr-Euchner enumeration The SE enumeration builds on the Babai estimate.

The Babai estimate ŝB is found by computing the unconstrained least-squares solution

ŝ = H†y and applying the slicing operator to it ŝB = bŝe. The slicing operator slices every

element of ŝ to the nearest valid symbol. As a result, the search starts with the elements

of the Babai estimate. Assuming that the Euclidean distance between the symbols is one,

the enumeration strategy is defined as follows:

• if ŝk ≤ bŝke the enumeration order is

sk = bŝke, bŝke − 1, bŝke+ 1, bŝke − 2, · · ·

• if ŝk > bŝke the enumeration order is

sk = bŝke, bŝke+ 1, bŝke − 1, bŝke+ 2, · · ·

The conclusion of the above discussion is that the SE zigzag enumeration has several

advantages over the FP enumeration.

• No initial radius is required to start the algorithm. The first leaf node found will be

38

DOI:10.15774/PPKE.ITK.2015.010



4.6. MAXIMUM LIKELIHOOD TREE-SEARCH BASED DETECTORS

the Babai estimate and the radius can be updated to d2 = ‖y−HŝB‖2. Afterwards,

if a better solution is found the radius is further reduced.

• There is no need to define validity intervals after every node expansion. If the se-

lected symbol is outside the sphere the following symbols can be discarded because

the difference of the selected symbol sk and ŝk will constantly increase with the SE

enumeration.

• The zigzag enumeration assures that the chance of finding the correct symbol early

is maximized.

4.6.1.3 Complexity analysis of the Sphere Detector algorithm

The complexity analysis of the SD algorithm has been thoroughly investigated by

researchers. For a few good examples refer to [71], [72], [73], [74], [75]. Finding the solution

of the ILS problem or that of the CLPS problem is known to be NP-hard. A general

conclusion is that the complexity of the SD algorithm is directly proportional to the

number of lattice points explored. Furthermore, the number of lattice points examined

throughout the SD algorithm is highly influenced by the sphere radius. The optimal

radius, i.e., the covering radius, requires a number of steps that grows exponentially [76]

with the dimension of the lattice. Thus, finding the optimal radius is not feasible for real

systems.

The goal of this section is to give a brief overview on the work presented by Hassibi

et al. in [71] where the expected complexity of the ILS problem averaged over the noise

and over the lattice is studied. Moreover, in [72] it is demonstrated that the expected

complexity is polynomial for a wide range of SNRs and number of antennas. By quanti-

fying their results it is shown that the expected number of lattice points for a wide range

of SNRs can be handled in real-time with modern computing architectures.

The first problem that has to be solved is the choice of the radius. As stated above,

finding the covering radius based on the lattice generator matrix H is an NP hard

problem. One solution is to set the sphere’s radius based on the noise statistics. A χ2

random variable with M degrees of freedom is defined by scaling the noise vector as

follows:
1
σ2 · ‖v‖

2 = 1
σ2 ‖y−Hst‖. (4.37)

In order to find a lattice point inside the sphere the integration of the probability density

39

DOI:10.15774/PPKE.ITK.2015.010



4.6. MAXIMUM LIKELIHOOD TREE-SEARCH BASED DETECTORS

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

5

10

15

20

25

30

35

40

ǫ

d
2

 

 

σ
2
= 0.3162

σ
2
= 0.5623

σ
2
= 0.7079

σ
2
= 1

Figure 4.5: The radius size of the bounding sphere for different ε and σ2 parameters.

function of χ2 random variable with M degrees has to be close to one

∫ α·M
2

0

λ
M
2 −1

2
M
2 Γ(M2 )

e
−λ
2 dλ = 1− ε (4.38)

where Γ(x) is the gamma function, 0 < ε� 1 and α is a scaling parameter used to define

the sphere radius as follows:

d2 = αMσ2. (4.39)

If no lattice point is found 1 − ε can be further increased by lowering the value of ε

that results in the increase of the α parameter, as a result the sphere radius d2 is also

increased. Figure 4.5 shows the change of the radius for various ε and σ2 parameter

configurations.

After determining the radius, the next question is the number of visited nodes on the

tree for dimensions k = 1, . . . , N . Figure 4.4 shows a possible tree traversal, where on

the k = 1, 2 dimension two nodes and on k = 3 only a single node fullfills the conditions

of Eq. 4.31. As a result, the complexity of the SD algorithm equals the number of nodes

visited on every dimension times the floating point operations required to expand and

evaluate a node on the specific dimension. The following formula gives a more precise

40

DOI:10.15774/PPKE.ITK.2015.010



4.6. MAXIMUM LIKELIHOOD TREE-SEARCH BASED DETECTORS

definition of the compelxity:

C(N, σ2, d2) =
N∑
k=1

(expected # of nodes in k-dim sphere of radius d) · (flops/node)

=
N∑
k=1

Ep(k, d2 = αMσ2) · fp(k).

(4.40)

The floating point operations performed for every visited node required by the SD algo-

rithm based on the FP enumeration in [71] is defined as fp(k) = 2k+11. In the following

the focus is on the derivation of Ep(k, d2).

The first step of determining the expected number of points inside the sphere is

to determine how many lattice points lie within the sphere in every dimension. More

formally, if st was transmitted and y = Hst + v was received what is the number of sa
arbitrary lattice points that satisfy

‖y−Hsa‖ ≤ d2

‖v + H(st − sa)‖ ≤ d2.
(4.41)

The resulting vector w = v + H(st − sa) is an M-dimensional zero-mean

Gaussian random vector where the (i, j) entry of the covariance matrix is

E{wiwj} = δij(σ2 + ‖st − sa‖2). This implies that ‖w‖2/2(σ2 + ‖st − sa‖2) is a χ2 ran-

dom variable with M degrees of freedom. As a result, the probability that sa lies within

a sphere of radius d around y is given by its cumulative distribution function (CDF)

F

(
M,

d2

(σ2 + ‖st − sa‖2)

)
=
γ
(

d2

2(σ2+‖st−sa‖2) ,
M
2

)
Γ
(
M
2

) (4.42)

where γ(x, k) is the lower incomplete Gamma function defined as

γ

(
d2

2(σ2 + ‖st − sa‖2) ,
M

2

)
=
∫ d2

2(σ2+‖st−sa‖2)

0
λ
M
2 −1e−λdλ. (4.43)

In Eq. 4.42 the CDF is determined for N dimensional lattice points. However, the CDF

has to be determined for smaller dimensions as well. The derivation of the probability

for partial symbol vectors is shown in [71] and the resulting formula is:

F

(
M −N + k,

d2

(σ2 + ‖skt − ska‖2)

)
=
γ

(
d2

2(σ2+‖skt−ska‖2) ,
M−N+k

2

)
Γ
(
M−N+k

2

) (4.44)

41

DOI:10.15774/PPKE.ITK.2015.010



4.6. MAXIMUM LIKELIHOOD TREE-SEARCH BASED DETECTORS

20 21 22 23 24 25 26 27 28 29 30
0

1000

2000

3000

4000

5000

6000

7000

SNR(db)

E
p

 

 

ǫ = 0.21
ǫ = 0.16
ǫ = 0.11
ǫ = 0.06
ǫ = 0.01

Figure 4.6: The expected number Ep of nodes visited for a 4× 4 MIMO with |Ω| = 4
and ε = 0.01, 0.06, 0.11, 0.16, 0.21 parameter values.

In order to find the estimated number of points in every dimension the CDFs presented

in Eqs. 4.42 and 4.44 have to be evaluated for each pair of points

{(st, sa)|st, sa ∈ Ωk, ‖skt − ska‖2 = l} (4.45)

that is a computationally very intensive task. Instead of enumerating every pair of points,

it is enough to count the number of points with the same argument of the gamma

function. A modification of Euler’s generating function technique was proposed, so with

the appropiate combination of well defined generating polynomials the number of point

pairs belonging to the same signal set Ω and having the same Euclidean distance l can

be counted easily. The generating polynomials for a four element signal set |Ω| = 4 are:

θ0 = 1 + x+ x4 + x9 and θ1 = 1 + 2x+ x4. (4.46)

The closed form expression for the expected complexity is given as follows:

C(N, σ2, d2) =
N∑
k=1

fp(k) · Ep(k, d2 = αMσ2)

=
N∑
k=1

fp(k)
∑
q

1
2k

k∑
l=0

(
k

l

)
· gkl(q) · F

(
M −N + k,

d2

(σ2 + l)

) (4.47)

where gkl(q) is the coefficient of xq in the polynomial (1 + x+ x4 + x9)l(1 + 2x+ x4)k−l.

In Fig. 4.6 the expected number of nodes for a 4×4 MIMO system with a four element
42

DOI:10.15774/PPKE.ITK.2015.010



4.6. MAXIMUM LIKELIHOOD TREE-SEARCH BASED DETECTORS

signal set are shown. Note, that the solution might not be found, thus the search has to

be restarted by increasing the size of the radius, however, the effects of possible further

iterations are not accumulated. If ε = 0.01 is chosen, which means that the probability of

finding a lattice point inside the sphere is 99%, and at 20 dB SNR the expected number

of visited nodes is ∼ 6500 while at 30 dB SNR is less than 1000 nodes. This result is

achieved with a SD using the FP enumeration. Algorithms with a lower complexity exist,

i.e., algorithms based on the SE enumeration that achieve ML performance by visiting

less nodes. Thus, the complexity formula shown in Eq. 4.47 can be regarded as an upper

bound.

In many communication problems finding the ML solution reduces to solving an ILS

problem. However, in the context of communication systems these problems are more

operable because the given vector is not arbitrary but rather is an unknown lattice

point that has been perturbed by an additive noise vector whose statistical properties

are known. Therefore, the complexity of the algorithm has to be treated as a random

variable as well. Based on these results it is possible to state that in case of high SNRs

ML performance can be achieved for smaller sized MIMO configurations in real-time if

the SD algorithm is suitable mapped on modern many-core architectures.

4.6.2 The Automatic Sphere Detector algorithm

Tha Automatic Sphere Detector (ASD) algorithm was introduced in [77] and the

importance of this algorithm is that it expands the minimum number of nodes as the

number of antennas and the modulation order is increasing. However, this does not

necessarily imply that the overall computation time of the ASD is lower than that of all

known decoders.

Usually, a SD algorithm during its execution performs node expansions and node

evaluations, this is why the number of nodes visited in the tree is proportional with

the computational complexity of the algorithm. However, existing algorithms improve

their performance by implementing preprocessing techniques or by improving the search

with ordering strategies, improved mathematical methods and sorting algorithms, con-

sequently, the computational complexity together with the execution time are increased.

The ASD is a globally greedy algorithm, because in every iteration the best path

metric partial symbol vector is expanded and evaluated. A detailed algorithm description

is given in Alg. 3.

The conclusion is that the ASD algorithm has the following advantages: (i) it achieves

43

DOI:10.15774/PPKE.ITK.2015.010



4.7. NON-MAXIMUM LIKELIHOOD TREE-SEARCH BASED DETECTORS

Algorithm 3 The Automatic Sphere Detector algorithm
Require: ỹ, H̃
1: Initialize variable size buffer buf
2: expand and evaluate(()) . Expand the root () of the tree and update buf
3: s ← find and set the minimum metric partial symbol vector sNN and delete it from
buf

4: while s is not a leaf do
5: expand and evaluate(s)
6: s ← find and set the minimum metric partial symbol vector and delete it from
buf

7: end while
8: procedure Expand and Evaluate(sNi ) . The input is the partial symbol vector

to be expanded
9: for j = 0 to |Ω| − 1 do
10: if sNi = () then . When expanding the root node the partial symbol vector

is empty
11: sNN ← Ω[j]
12: Insert sNN in buffer buf
13: else
14: si−1 ← Ω[j]
15: sNi−1 ← (si−1, sNi )
16: Insert sNi−1 in buffer buf
17: end if
18: end for
19: end procedure

ML performance, (ii) it always expands and evaluates the minimum number of nodes as

the number of antennas and modulation order is increasing and (iii) there is no need

to set an initial radius. However, the main drawback of this algorithm is that in every

iteration of the algorithm the minimum metric partial symbol vector has to be found

and the size of storage buffer might increase significantly. The underlying architecture

determines what is the best way to store and search for the minimum element. By using

tree-based data structures or frequency tables sublinear time can be achieved. However,

in case of parallel architectures a faster solution would be to store the data in arrays and

perform parallel search on them.

4.7 Non-maximum likelihood tree-search based detectors

Non-ML tree-search based detectors show a very similar tree-traversal to the SD

algorithm, however, restrictions and constraints are introduced in order to reduce or

to make constant the number nodes visited, i.e., computational complexity. With the

introduced constraints the BER performance of the detection is clearly degraded, thus,

the ML performance is not achieved. In order to enhance the BER performance different
44

DOI:10.15774/PPKE.ITK.2015.010



4.7. NON-MAXIMUM LIKELIHOOD TREE-SEARCH BASED DETECTORS

preprocessing methods are applied, such as: lattice reduction, detection ordering, matrix

regulariztion, improved decompositions. With these techniques significant improvements

can be achieved with a slight increase in the computational complexity.

In the following sections some fundamental techniques are presented that will serve

as a good basis for the PSD algorithm.

4.7.1 K-Best Sphere Detector algorithm

The K-Best SD algorithm is a widely used detector algorithm, because of its fixed

complexity, constant memory usage and highly parallel possibilities. However, this ap-

proach is not exactly an SD because the symbol vectors are not discarded based on their

path metrics. Instead there is a limit K of how many survivor symbol vectors per level

will be expanded in the following iterations.

Algorithm 4 gives a detailed overview of the K-Best SD algorithm. It can be seen

that this algorithm is based on a breadth-first traversal approach, however, only the

K best path metric symbol vectors are kept and expanded on every level. One K and

a K × |Ω| element buffer satisfies the memory needs of this algorithm. The constant

memory needs and highly parallel behaviour of the K-Best algorithm makes possible its

efficient implementation on parallel architectures. In the following papers [78], [79], [80],

[81] efficient mappings and implementations are presented for VLSI architectures. Some

versions of the K-Best SD algorithm further reduce the resource requirements and the

computational complexity by introducing different K values for different levels or by

introducing the radius constraint. Radius dependent K-Best algorithms were proposed

in [82], [83].

In Figs. 4.7 and 4.8 the BER performance of the K-Best detector for different values

of K in 4 × 4 MIMO system with 16 and 64-QAM modulation are shown. For a 4 × 4

MIMO system with 16-QAM modulation the K-Best algorithm with K = 16 performs

close to the ML detector until 25 dB SNR, however, at 30 dB there is a slight difference

between the two detectors. In case of 64-QAM modulation the K-Best with K = 32

performs similar to the ML detector, however, in case of higher SNRs the BER of the

ML detector is slightly better.

4.7.2 Hybrid tree-search detectors

Hybrid tree search detectors try to further reduce the computational complexity by

defining two search stages: a BFS stage and a DFS stage. Usually, the search starts

45

DOI:10.15774/PPKE.ITK.2015.010



4.7. NON-MAXIMUM LIKELIHOOD TREE-SEARCH BASED DETECTORS

Algorithm 4 K-Best SD algorithm for estimating s = (s1, s2, · · · , sN )
Require: ŝ,R,Ω, K
1: bufexp . The size of bufexp buffer is K × |Ω| and the result of the K-best node

expansion is stored here for every level.
2: bufkbest . The size of bufkbest buffer is K and the K-best results are stored here in

every iteration.
3: bufexp ← expand and evaluate((),0) . Expand the root () of the tree and

update bufexp
4: Sort in ascending order the symbol vectors in bufexp based on their path metric.
5: Copy the first K-best symbol vectors from bufexp to bufkbest
6: for i = N − 1 to 2 do
7: for k = 0 to K − 1 do
8: sNi ← bufkbest[k]
9: bufexp ← expand and evaluate(sNi ,k)

10: end for
11: Sort in ascending order the symbol vectors in bufexp based on their M(sNi ) path

metric.
12: for k = 0 to K − 1 do
13: bufkbest[k]← bufexp[k]
14: end for
15: end for
16: s = bufkbest[0] . The lowest path metric result is at index 0 in bufkbest.
17: procedure Expand and Evaluate(sNi ,k) . The input is the partial symbol

vector to be expanded
18: for j = 0 to |Ω| − 1 do
19: if sNi = () then . When expanding the root node the partial symbol vector

is empty
20: sNN ← Ω[j]
21: bufexp[k · |Ω|+ j]← sNN
22: else
23: si−1 ← Ω[j]
24: sNi−1 ← (si−1, sNi )
25: bufexp[k · |Ω|+ j]← sNi−1
26: end if
27: end for
28: end procedure

46

DOI:10.15774/PPKE.ITK.2015.010



4.7. NON-MAXIMUM LIKELIHOOD TREE-SEARCH BASED DETECTORS

5 10 15 20 25 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
it 

E
rr

or
 R

at
e

 

 

K-Best K = 1

K-Best K = 2

K-Best K = 4

K-Best K = 8

K-Best K = 12

K-Best K = 16

ML

Figure 4.7: Bit error rate performance of the K-Best detector for K = 1, 2, 4, 8, 12, 16 in
a 4× 4 MIMO system with 16-QAM symbol constellation.

5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
it

E
rr
or

R
at
e

 

 

K-Best K = 1
K-Best K = 2
K-Best K = 4
K-Best K = 8
K-Best K = 16
K-Best K = 32
ML

Figure 4.8: Bit error rate performance of the K-Best detector for K = 1, 2, 4, 8, 16, 32 in
a 4× 4 MIMO system with 64-QAM symbol constellation.

47

DOI:10.15774/PPKE.ITK.2015.010



4.7. NON-MAXIMUM LIKELIHOOD TREE-SEARCH BASED DETECTORS

with a BFS followed by the evaluation of different metrics or probabilities based on

the expanded nodes in order to determine the most likely paths that lead to the ML

solution. Once the best nodes are found the search is continued with the DFS strategy

on the resulting subtrees.

The main drawback of this hybrid search is that while the BFS can be implemented

in a highly parallel manner, the sequential nature of the DFS is limiting the performance

on a parallel architecture. In the following two different algorithms based on the hybrid

tree search are discussed.

4.7.2.1 The Adaptive Reduced Breadth-First Search algorithm

Lai et al. in [84] have examined the possibility of the hybrid tree search. A two

stage search was proposed. In the first stage a full-blown breadth-first (FBF) search is

performed for NBF levels followed by the sequential DFS tree traversal for every subtree.

After the FBF search the symbol vectors sNNBF representing the nodes on level NBF are

sorted based on the path metric M(sNNBF ) of the symbol vectors. The sorted symbol

vectors are denoted as sN<0>
NBF

, sN<1>
NBF

, · · · , sN<|Ω|
NBF>

NBF
, where the lowest path metric is

achieved by sN<0>
NBF

. For every expanded node sN<j>NBF
a subtree of depth N − NBF is

associated, referred to as subtree j. Every subtree is traversed using the DFS similar as

in the SD algorithm. The traversal starts on the subtree associated to the best path metric

node. Whenever the traversal of subtree j is completed, subtree j + 1 is selected. The

DFS search is terminated ifM(sN<j+1>
NBF

) > d2 or all the subtrees have been searched. At

this point the FBF-DFS algorithm finds the ML solution, the only difference compared

to the SD algorithm is that there is a sorting on level NBF and the DFS is performed in

the ascending order of the path metrics.

In [84] the FBF-DFS algorithm was extended and further computational complexity

reduction was achieved in the Adapting Reduced BF-DFS (ARBF-DFS) algorithm. The

extensions of the ARBF-DFS algorithm are: (i) the channel dependent FBF level NBF

and (ii) the reliability index based tree pruning.

In the ARBF-DFS algorithm NBF is allowed to vary indepently 1 ≤ NBF ≤ NBF,max,

where Nmax denotes the maximum number of levels allowed for the BF stage. If the

channel condition number is favorable NBF is closer to one, thus, NBF becomes a random

variable. The worst case memory requirement is proportional to ∼ |Ω|NBF,max .

The second enhancement was the introduction of the reliability index. The aim of

the reliability index is to help in the pruning of the tree, thus, the DFS stage is not

48

DOI:10.15774/PPKE.ITK.2015.010



4.7. NON-MAXIMUM LIKELIHOOD TREE-SEARCH BASED DETECTORS

performed on every subtree resulting in complexity reduction. In order to give a deeper

insight, the partial ML solution is defined as skML = (sk, sk+1, · · · , sN ). The reliability

index is defined as P (sN<j+1>
k = skML|nk,R), namely the probability of sN<j+1>

k being

the correct path given the noise realization nk and R. A straightforward way to determine

when to stop the FBF stage is to define a threshold T and evaluate if

P (sN<1>
k = skML|nk,R) > T. (4.48)

Furthermore L<j>k is define as follows:

L<j>k = ln
(
P (sN<1>

k = skML|nk,R)
P (sN<j>k = skML|nk,R)

)
= M(sN<j>k )−M(sN<1>

k )
σ2 (4.49)

where the final result is achieved by using the path metric formula and the Gaussian

probability density function. Suming the probabilities leads to a different form of the

reliability index as follows:

|Ω|k∑
j=1

P (sN<j>k = skML|nk,R) = 1

P (sN<1>
k = skML|nk,R) = 1∑|Ω|k

j=1 e
−L<j>

k

(4.50)

The computation of Eq. 4.50 could be very expensive if k is large, thus, it can be simplified

by computing only the first two terms of the sum. In this case the approximation of Eq.

4.50 becomes

P (sN<1>
k = skML|nk,R) = 1∑|Ω|k

j=1 e
−L<j>

k

≈
1

1 + e−L
<2>
k

(4.51)

By substituting Eq. 4.49 in 4.51 and rewriting Eq. 4.48 the resulting inequality is

M(sN<2>
k ) > M(sN<1>

k ) + σ2 ln
(

T

1− T

)
. (4.52)

This result can be further generalized, namely every partial symbol vector on levels

1 < k < NBF whose path metric exceed the best path metric with threshold σ2 ln
(

T
1−T

)
are pruned.

The introduced pruning reduces the average floating point operations by 2-5 times

compared to the SD algorithm. The BER performance is highly influenced by the chosen

threshold T . BER simulations with T = 0.9 achieved near-ML performance.

49

DOI:10.15774/PPKE.ITK.2015.010



4.7. NON-MAXIMUM LIKELIHOOD TREE-SEARCH BASED DETECTORS

4.7.2.2 The Fixed-Complexity Sphere Detector algorithm

The Fixed-Complexity Sphere Detector (FSD) was introduced by Barbero et al. in

[56]. The FSD algorithm tree traversal is built on a hybrid scheme as well. However,

several important differences are introduced compared to the ARBF-DFS algorithm. The

main features of the FSD: (i) a channel independent tree traversal process consisting of

full BFS on several levels followed by a single DFS path based on the SE enumeration

and (ii) a novel channel matrix ordering method.

A conjecture was presented about the number of nodes that have to be visited in an

uncoded MIMO system in order to achieve near-ML performance. The result is that two

stages are defined: (i) in the FBF stage the maximum number of nodes are considered for

NBF levels and (ii) in the single path DFS stage only one child node is further expanded

forNSE levels and the selected child is based on the SE enumeration. The levels sum of the

two stages NBF +NSE = N equals the depth of the tree. The above configuration implies

that the number of predefined paths is fixed and is equal |P | = |Ω|NBF ·1NSE . In [85] it was

shown that FSD achieves the same diversity as the ML detection if NBF ≥
√
M −1. The

advantage of the predefined paths is the resulting rigid structure that enables the parallel

implementation of the FSD algorithm and has the same computational complexity for

every SNR value.

Another important part of this algorithm is the channel matrix ordering method. It

determines the order of the symbols detection based on the stages of the algorithm. The

aim is to detect symbols with the highest post-detection noise amplification in the FBF

stage and symbols with the smallest post-detection noise amplification in the DFS stage.

The motivation behind this strategy is to keep all the paths where the error probability

is high and after that it is enough to follow only a single path from every expanded node

because the probability of making a bad decision with the SE enumeration is low. The

symbol sk to be detected is selected according to

k =


arg max

j
‖(Hi

†)j‖2 , if i is a FBF level

arg min
j
‖(Hi

†)j‖2 , if i is a DF level

where (Hi
†)j denotes the j-th row of Hi

† and the calculation of matrix Hi
† is detailed

in Alg. 1 Sec. 4.4.2.

The FSD achieved near-ML BER performance for smaller systems, however, the dif-

ference of the BER is getting bigger as the number of antennas are increasing or channel

50

DOI:10.15774/PPKE.ITK.2015.010



4.8. THE PARALLEL SPHERE DETECTOR ALGORITHM

correlation is introduced. The FSD was mapped for different parallel architectures. Map-

ping details and throughput measurements are presented in papers [22] ,[86] and [87].

4.8 The Parallel Sphere Detector algorithm

Section 4.6.1 concluded that the SD algorithm can be regarded as a branch and bound

tree search problem. Thus, the ideas presented in Sections 4.6.2, 4.7.1 and 4.7.2 can serve

as a good starting point in order to eliminate the drawbacks of the SD algorithm.

Khairy et al. showed in [57] that significant speed-up can be achieved by executing

multiple sequential SDs simultaneously. However, to achieve even better performance it

is mandatory to redesign the sequential algorithm using several effective parallel design

patterns in order to exploit all advantages of parallel computing capabilities of multi-core

and many-core architectures.

In Sec 4.7.2 the ARBF-DFS and the FSD algorithms were presented. The ARBF-

DFS algorithm was introduced by Lai et al. in [84]. They have examined the possibility

of the hybrid tree search. A two stage search was proposed, in the first stage a full BFS

has been performed, followed by a DFS on every subtree. The main drawback of this

hybrid search is that while the BFS can be implemented in a highly parallel manner,

the sequential nature of the DFS is limiting the performance of a parallel architecture.

However, it was shown, that starting the DFS subtree traversal from the best metric

node the overall number of visited nodes is smaller compared to the SD algorithm.

The FSD algorithm also implements a two stage tree search method. In the first

stage a full BFS is performed, followed by the SE enumeration on the previously ex-

panded nodes. The benefit of this approach is the rigid structure that can be parallelized,

however, the ML BER performance is not achieved.

The K-BEST algorithm discussed in Sec. 4.7.1 is based on the combination of BFS

stages combined with sorting the nodes based on their path metric. The advantages of

this approach are the fixed memory requirements that can be adapted to the architecture

used and the parallel implementation possibilities. However, it might happen that the

number of visited nodes is higher compared to the case of the SD algorithm.

The tasks during the design process of the new PSD algorithm are to apply the com-

plexity reduction techniques discussed in the previous sections, to eliminate the limiting

sequential parts of the SD algorithm and to make the algorithm customization possible

so it can satisfy the requirements and to fully utilize the resources of different parallel

architectures. The results of this Section form Thesis group I and II.

51

DOI:10.15774/PPKE.ITK.2015.010



4.8. THE PARALLEL SPHERE DETECTOR ALGORITHM

4.8.1 Design objectives of the Parallel Sphere Detector algorithm

The key concepts of the PSD algorithm design process are as follows:

1. Consider an arbitrary lattice Λ. The search of the optimal (covering) radius requires

a number of steps that grows exponentially [76] with the dimension of the lattice,

thus, its use is not practical. A possible solution to the initial radius problem is the

ZF radius, since this radius guarantees the existence of at least one lattice point.

However, it may happen that this choice of radius will yield too many lattice points

lying inside the sphere. The ZF radius is defined as follows d = ‖y−HŝB‖ where

ŝB = bŝe is the Babai estimate and operator b·e slices each element of the input

vector to the closest symbol in the symbol set Ω.

However, one of the design objectives is to make the detection completely indepen-

dent of the initial radius size and to ensure that the detection process does not have

to be restarted with an increased radius. By defining the initial radius as d =∞ the

above condition is fulfilled, but the SD algorithm becomes an exhaustive search.

Consequently, the algorithm has to find a small path metric leaf node as fast as

possible, in order to adjust the radius to the path metric of the leaf node.

2. The redesigned SD algorithm has to support parallel architectures. This can be

achieved by introducing a new work generation and distribution mechanism that is

able to keep all the processing elements busy continuously. By expanding and eval-

uating multiple symbol vectors simultaneously the above goal could be reached.

However, the extent of parallelism should be controlled by well defined parame-

ters so that the new algorithm can adjust itself to any multi-core or many-core

architecture.

3. Parallel architectures may have different memory hierarchies. In order to make use

of faster but usually smaller sized memories possible, the algorithm should have

different parameter configuration in order to assure the efficient use of memory.

4.8.2 General description of the Parallel Sphere Detector algorithm

The parallelism of the SD algorithm is achieved by a hybrid tree search. The branching

factor of the tree is equal to |Ω|. The depth of the tree depends on the number N of

transmit antennas.

Algorithm 5 gives a high-level overview of the PSD algorithm. The definitions of

the parameters used to describe the PSD algorithm are given in Table 4.1. The key
52

DOI:10.15774/PPKE.ITK.2015.010



4.8. THE PARALLEL SPHERE DETECTOR ALGORITHM

Ta
bl
e
4.
1:

D
efi
ni
tio

n
of

pa
ra
m
et
er
s
us
ed

in
th
e
Pa

ra
lle

lS
ph

er
e
D
et
ec
to
r
al
go

rit
hm

.

Tr
ee

tr
av
er
sa
lp

ar
am

et
er
s

l v
l n
r

th
e
to
ta
ln

um
be

r
of

tr
ee

le
ve
ls

w
he

re
pa

rt
ia
ls

ym
bo

l
0

<
lv

l n
r
≤

N
ve
ct
or
s
ar
e
ev
al
ua

te
d

l v
l x

le
v e
ls

as
sig

ne
d
fo
r
pa

rt
ia
ls

ym
bo

lv
ec
to
r
ev
al
ua

tio
n

lv
l 0

=
N

+
1,

lv
l l
v
l n
r

=
1

l v
l x

>
lv

l x
+

1

ex
p l
v
l x

nu
m
be

r
of

pa
rt
ia
ls

ym
bo

lv
ec
to
rs

ex
pa

nd
ed

ex
p l
v
l 0

=
1

sim
ul
ta
ne

ou
sly

on
le
ve
ll

v
l x

ex
p l
v
l x
≤

ev
a
l l
v
l x

ev
a
l l
v
l x

nu
m
be

r
of

pa
rt
ia
ls

ym
bo

lv
ec
to
rs

ne
ed

ed
to

be
ev
al
ua

te
d

ev
a
l l
v
l x

=
ex

p l
v
l x
−

1
|Ω
|(l
v
l x
−

1
−
lv
l x

)
on

le
ve
ll

v
l x

af
te
r
th
e
ex
pa

ns
io
n
of

pa
rt
ia
ls

ym
bo

lv
ec
to
rs

on
le
ve
ll

v
l x
−

1
m

a
x
lv
l x

m
ax

im
um

nu
m
be

r
of

pa
rt
ia
ls

ym
bo

lv
ec
to
rs

on
le
ve
ll

v
l x

m
a
x
lv
l x

=
|Ω
|(l
v
l 0
−
lv
l x

)

A
lg
or
ith

m
pa

ra
m
et
er
s

tt
to
ta
l n

um
be

r
of

th
re
ad

s
as
sig

ne
d
fo
r
de

te
ct
io
n

tk i
d

th
re
ad

w
ith

id
en
tifi

er
k

bu
f l
v
l x

bu
ffe

r
fo
r
th
e
ev
al
ua

te
d
pa

rt
ia
ls

ym
bo

lv
ec
to
rs

sN lv
l x

si
z e

(b
u
f l
v
l x

)=
ev

a
l l
v
l x

on
le
ve
ll

v
l x

of
f l
v
l x

off
se
t
of

pr
oc
es
sin

g
on

le
ve
ll

v
l x

fo
r

bu
f l
v
l x

0
≤

of
f l
v
l x
≤

ev
a
l l
v
l x

sN
<
j>

lv
l x

pa
rt
ia
ls

ym
bo

lv
ec
to
r
on

le
ve
ll

v
l x

w
he

re
j
is

th
e
in
de

x
of

0
≤

j
<

ev
a
l l
v
l x

th
e
pa

rt
ia
ls

ym
bo

lv
ec
to
r
in

bu
ffe

r
bu

f l
v
l x

v
t l
v
l x

vi
rt
ua

lt
hr
ea
d
id
en
tifi

er
ca
lc
ul
at
ed

fro
m

lv
l x
,t

k id
an

d
tt

Ba
se
d
on

Eq
.4

.5
4

v
b l
v
l x

vi
rt
ua

l b
lo
ck

id
en
tifi

er
ca
lc
ul
at
ed

fro
m

lv
l x
,t

k id
an

d
tt

Ba
se
d
on

Eq
.4

.5
5

53

DOI:10.15774/PPKE.ITK.2015.010



4.8. THE PARALLEL SPHERE DETECTOR ALGORITHM

parameters that determine the overall performance of the algorithm are: lvlnr, lvlx and

explvlx . These parameters define the tree traversal process, determine the memory usage

and, consequently, influence (i) the speed of reaching a leaf node, (ii) the metric of the

first leaf node and (iii) the number of iterations required to find the optimal solution.

To get a better insight Table 4.2 shows a few valid parameter sets for different system

configurations. Parameters lvlx and explvlx are similar for configurations 1, 2 and 3.

However, the size of the symbol set is different resulting in a significant change in the

memory requirements. Note, that different parameters have to be used for the various

system configurations and symbol sets.

Algorithm 5 High-level overview of the Parallel Sphere Detector algorithm
1: Expand and evaluate several nodes simultaneously for distinct levels. . This

ensures enough computational load to keep the cores active.
2: Repeat steps 1-6 until a leaf level is reached:

1. Sort the previously expanded nodes by their path metric.
2. if the path metric of the first node in the sorted list is smaller than the sphere

radius then
3. Expand nodes further from a subset of nodes sorted previously for the fol-

lowing distinct level.
4. else
5. Step back to the previous level and continue the expansion of the next subset

of previously sorted nodes.
6. end if

3: When a leaf level is reached:
1. Find the leaf with minimum metric and update the sphere radius.
2. Proceed with the rest of the nodes evaluated at the previous level.

Figure 4.9 shows the PSD schematic for configuration 4 defined in Table 4.2. The

levels referred to below are identified on the left side of the figure. The detection process

starts from the root of the tree on level lvl0 = 9. The partial symbol vector is empty on

this level.

One of the key features of the PSD algorithm is the tree traversal process. That

means that instead of evaluating the path metrics M(s8<j>
8 ) of partial symbol vectors

s8<j>
8 on level 8, as done in the SD algorithm, the first node evaluation takes place at

lvl1 = 6. By expanding the root node of the tree, evallvl1 = 64 partial symbol vectors

are generated and evaluated on level lvl1 = 6. Note, levels 8 and 7 are skipped. Thus,

there is no symbol vector expansion and evaluation on those levels.

After evaluating the obtained partial symbol vectors s8<j>
6 , a sorting is applied based

on their path metrics M(s8<j>
6 ). The sorted symbol vectors are denoted as s8<j>′

6 with

s8<0>′
6 as the partial symbol vector with the lowest metric. When moving towards to the

54

DOI:10.15774/PPKE.ITK.2015.010



4.8. THE PARALLEL SPHERE DETECTOR ALGORITHM

Figure 4.9: The hybrid tree traversal of the Parallel Sphere Detector algorithm for a
4× 4 MIMO system with |Ω| = 4.

55

DOI:10.15774/PPKE.ITK.2015.010



4.8. THE PARALLEL SPHERE DETECTOR ALGORITHM

Table 4.2: Valid Parallel Sphere Detector algorithm parameter configurations.

Configuration 1 2 3 4 5 6
Antennas 2× 2 2× 2 2× 2 4× 4 4× 4 4× 4

Symbol set size 2 4 8 4 8 8
lvlnr 2 2 2 3 4 4
lvl0 5 5 5 9 9 9
lvl1 2 2 2 6 7 7
lvl2 1 1 1 4 6 6
lvl3 0 0 0 1 3 2
lvl4 0 0 0 0 1 1
explvl0 1 1 1 1 1 1
explvl1 4 4 4 4 2 2
explvl2 0 0 0 2 3 3
explvl3 0 0 0 0 4 4
evallvl1 8 64 512 64 64 64
evallvl2 8 16 32 64 16 16
evallvl3 0 0 0 128 1536 12288
evallvl4 0 0 0 0 256 32∑lvlnr
x=1 evallvlx 16 80 544 256 1872 12400

next level lvl2 = 4, the explvl1 = 4 best metric partial symbol vectors are selected and

expanded from the previous level lvl1 = 6. As a result, the partial symbol vectors s8<j>
4

are generated.

Note that a hybrid search is realized at this point. On level lvl1 = 6 a full BFS is

performed with a DFS continued with explvl1 = 4 partial symbol vectors having the best

metric. Until lvl2 = 4 every possible symbol combination is evaluated and this process can

be regarded as a BFS. This is how the two searching strategies are combined, resulting

in no latency, delay or bottleneck.

If the inequality M(sN<offlvlx>lvlx
) < d2 does not hold, instead of increasing the cor-

responding offset offlvlx , the search is stopped on that level and the offset’s value is

updated to 0 with the search continued on lvlx−1. The search can be stopped at a spe-

cific level because the partial symbol vectors are sorted by their path metric. Thus, if

M(sN<j>lvlx
) > d2 then the remaining partial symbol vectors will have a higher path metric.

The selection, expansion, evaluation and sorting steps discussed above are repeated

until the last level lvl3 = 1 is reached. Upon reaching the last level, the symbol vector

with the lowest metric has to be found. At level lvl3 = 1, instead of sorting, a minimum

search is performed. If a symbol vector s8
1 with the lowest metric satisfies the condition

M(s8
1) < d2, then a new ML candidate has been found. If an ML candidate already

exists from a previous iteration then it is compared with the new candidate and the one

56

DOI:10.15774/PPKE.ITK.2015.010



4.8. THE PARALLEL SPHERE DETECTOR ALGORITHM

with the smaller metric will become the new solution sML = s8
1 and the sphere radius

is adjusted. The further flow of the detection process is similar to the flow of the SD

algorithm.

By sorting on each level the lowest path metric partial symbol vectors are found and

the search is continued by expanding them. With this greedy strategy, where on each

processed level locally optimal choices are made, a near-ML solution is found in a few

iterations and the updated radius metric reduces the search space significantly. This is

why the initial condition d2 =∞ is admissible.

The SE method first enumerates the symbols that are closer to the unconstrained least

squares solution. Consequently, on every level the search is started with the corresponding

symbol in the Babai estimate and it is continued in a zig-zag enumeration with the

rest of the symbols in the symbol set. However, the locally optimal choice does not

necessarily lead to the optimal ML solution. In case of the PSD algorithm the distance

between consecutive levels can be greater than one and the search is always continued

with the lowest path metric nodes. As a result, the effect of previously chosen symbols is

propagated through several levels and the optimum is reached with a higher probability

compared to the SE enumeration.

Algorithm 6 gives a detailed and precise description of the PSD algorithm. To make

a comparison of the SD and PSD algorithms as easy as possible, the same notation is

used in Algorithms 2 and 6. Both algorithms are divided into three main procedures: (i)

Definition and Initialization of Variables, (ii) control of the tree Traversal Process and

(iii) the Expansion and Evaluation of the tree nodes. The main differences between the

SD and PSD algorithms are highlighted in Table 4.3.

In the Definition and Initialization of Variables procedure the main steps are as

follows: (i) memory allocation for buffers on different levels, (ii) generating data for the

first buffer and (iii) starting the tree traversal process. As shown in Table 4.3, the number

of buffers is equal to the number of processed tree levels. In the SD algorithm, each buffer

has a constant size that is equal to the number of symbols in the symbol set. In the PSD

algorithm, the number of buffers is equal to lvlnr where the size of buffers depends on

both the lvlx and explvlx parameters.

The Traversal Process procedure controls the tree traversal. In the case of finding a

leaf node with a smaller path metric than found previously it updates the radius. The

traversal process is implemented in a very different manner in the PSD and SD algo-

rithms. While the breadth traversal of the tree, controlled by the offset variables offlvlx , is

57

DOI:10.15774/PPKE.ITK.2015.010



4.8. THE PARALLEL SPHERE DETECTOR ALGORITHM

Algorithm 6 Parallel Sphere Detector algorithm for estimating sML = (s1, s2, · · · , sN )
Require: ŝ,R, |Ω|, lvlnr, lvl0,1,2,··· ,lvlnr , explvl0,lvl1,··· ,lvlnr−1 , tt
1: procedure Definition and Initialization of Variables
2: for j = 1 to lvlnr do
3: evallvlj ← explvlj−1 · |Ω|lvlj−1−lvlj . Number of partial symbol vector evaluations on level
lvlj

4: Let buflvlj [evallvlj ] = {} . Denote an empty buffer of size evallvlj for level lvlj
5: offlvlj ← 0 . Offset of processing on level lvlj for buffer buflvlj
6: end for
7: buflvl1 ← Expand and Evaluate({()}) . Expand the root node () of the tree and update
buflvl1

8: Traversal Process(i← 2)
9: end procedure
10: procedure Traversal Process(i)
11: while i > 1 do
12: if offlvli−1 < evallvli−1 then
13: if M(s

N<offlvli−1>

lvli−1
) < d2 then . Where s

N<offlvli−1>

lvli−1
is the element of buflvli−1 at

index offlvli−1

14: if i = lvlnr then
15: s

′
ML ← Expand and Evaluate({s

N<offlvli−1>

lvli−1
, · · · , s

N<offlvli−1 +(explvli−1−1)>
lvli−1

})
16: d2

temp ← ‖R(s
′

ML − ŝ)‖2

17: If d2
temp < d2 then d2 ← d2

temp and sML ← s
′
ML end if

18: offlvli−1 ← offlvli−1 + explvli−1

19: else
20: buflvli ← Expand and Evaluate({s

N<offlvli−1>

lvli−1
, · · · , s

N<offlvli−1 +(explvli−1−1)>
lvli−1

})
21: offlvli−1 ← offlvli−1 + explvli−1 , i← i+ 1
22: end if
23: else
24: offlvli−1 ← 0, i← i− 1
25: end if
26: else
27: offlvli−1 ← 0, i← i− 1
28: end if
29: end while
30: end procedure
31: procedure Expand and Evaluate({s

N<offlvli−1>

lvli−1
, s
N<offlvli−1 +1>
lvli−1

, · · · , s
N<offlvli−1 +(explvli−1−1)>
lvli−1

})
. The input is the array of partial symbol vectors to be expanded

32: for n = 0 to devallvli/tte − 1 do
33: ind← tkid + n · tt
34: vtlvli ← (tkid + n · tt) mod |Ω|(lvli−1−lvli) . Virtual thread identifier based on Eq. 4.54
35: vblvli ← b(tkid + n · tt)/|Ω|(lvli−1−lvli)c . Virtual block identifiers based on Eq. 4.55
36: sNlvli−1 = s

N<offlvli−1 +vblvli
>

lvli−1
← vblvli . Select partial symbol vector sNlvli−1 from the input

array based on vblvli
37: s(lvli−1−1)

lvli
= (slvli , · · · , s(lvli−1−2), s(lvli−1−1))← vtlvli . Create partial symbol vector

s(lvli−1−1)
lvli

based on vtlvli
38: sNlvli ← (slvli , · · · , s(lvli−1−2), s(lvli−1−1), sNlvli−1 ) = (s(lvli−1−1)

lvli
, sNlvli−1 ) . Merge sNlvli−1 and

s(lvli−1−1)
lvli

39: buflvli [ind] = sNlvli
40: end for
41: if lvli = 1 then
42: return s

′
ML, which is the minimum path metric symbol vector in buflvli

43: else
44: return buflvli , where the partial symbol vectors are sorted based on the path metricM(sNlvli )
45: end if
46: end procedure

58

DOI:10.15774/PPKE.ITK.2015.010



4.8. THE PARALLEL SPHERE DETECTOR ALGORITHM

Table 4.3: Algorithmic comparison of the Parallel Sphere Detector with the sequential
Sphere Detector algorithm.

Definition and Initialization of Variables
Number of buffers used Accumulated buffer size

SD N N · |Ω|
PSD 0 < lvlnr ≤ N

∑lvlnr
x=1 explvlx−1 · |Ω|(lvlx−1−lvlx)

Traversal process
Horizontal traversal Vertical traversal

SD offx ← offx + 1 lvlx − lvlx+1 = 1
PSD offlvlx ← offlvlx + explvlx 1 ≤ lvlx − lvlx+1 ≤ N

Expand and Evaluate
Newly evaluated partial symbol vectors in one iteration

SD |Ω|
PSD explvlx−1 · |Ω|(lvlx−1−lvlx)

always one in the SD algorithm, the PSD algorithm changes the offset variables based on

the number of paths chosen on a specific level as follows from offlvlx ← offlvlx + explvlx .

The depth traversal of the tree is controlled by the parameters lvlx. While in the SD

algorithm the difference between consecutive levels is always one, i.e., lvlx − lvlx+1 = 1,

the PSD can skip levels if lvlx − lvlx+1 > 1. Using this technique the leaf nodes can be

reached faster.

The Expand and Evaluate procedure is responsible for generating the new partial

symbol vectors and to evaluate their metrics. During the expansion of a tree node its

child nodes are defined, i.e., the partial symbol vector denoting the tree node is updated

with new symbols that are representing the child nodes. The evaluation of a partial

symbol vector is the calculation of its path metric. A detailed description of this process

is given in Sec. 4.8.3. Depending on the parameters chosen, the amount of newly expanded

and evaluated partial symbol vectors can be significantly higher in the PSD algorithm

than that in the SD one. More details are given in Table 4.3. Since different nodes can be

expanded and evaluated independently from each other, this can be done in parallel. As

the generated work can be controlled with well defined parameters, the PSD algorithm

can be adjusted to several computing platforms.

4.8.3 The main building blocks of the Expand and Evaluate pipeline

The operating principle and structure of the PSD algorithm was discussed in the

previous section. All computations done on one level in the PSD algorithm shown in Fig.

4.9 are performed by the Expand and Evaluate Pipeline (EEP) depicted in Fig. 4.10.

First a detailed description of EEP is given. Then, the iterative implementation of the

59

DOI:10.15774/PPKE.ITK.2015.010



4.8. THE PARALLEL SPHERE DETECTOR ALGORITHM

PSD algorithm with EEP blocks is discussed. For a detailed description of variables used

by EEP refer to Table 4.1.

The stages of the EEP are as follows: (i) preparation of data sets for the partial sym-

bol vectors, referred to as Preparatory Block, (ii) preparation of partial symbol vectors,

referred to as Selecting, Mapping and Merging Block, (iii) metric calculation for each

partial symbol vector, referred to as Path Metric Evaluation Block, (iv) sorting based on

the calculated path metrics or finding the symbol vector with the smallest path metric,

referred to as Searching or Sorting Block.

The operation principle of the EEP is given in the following subsections.

4.8.3.1 Preparatory block

In order to form a symbol vector sN<j>lvlx
on level lvlx parameters such as vtlvlx and

vblvlx have to be defined. The work assigned for one thread depends on the number of

symbol vectors needed to be evaluated on a given level and on the number of the threads

launched. If the condition

evallvlx ≤ tt (4.53)

is met then one symbol vector has to be evaluated by one thread. Otherwise one thread

has to be assigned to process at most devallvlx/tte number of symbol vectors. A full BFS

will take place on level lvlx in the case when the condition explvlx−1 = maxlvlx−1 holds

because all the symbol vectors on level lvlx are expanded simultaneously. Assuming that

evallvlx is divisible by tt, two sets are defined for each thread tkid: (i) set V T klvlx containing

the virtual thread identifiers and (ii) set V Bk
lvlx

containing the virtual block identifiers.

The virtual identifiers are computed in the following manner:

V T klvlx = {vtlvlx |vtlvlx = (tkid + n · tt) mod |Ω|(lvlx−1−lvlx),

n = 0 : devallvlx/tte − 1},
(4.54)

V Bk
lvlx = {vblvlx |vblvlx = b(tkid + n · tt)/|Ω|(lvlx−1−lvlx)c,

n = 0 : devallvlx/tte − 1}
(4.55)

where bxc is the largest integer not greater than x and dxe is the smallest integer not

less than x.

Each thread has to compute its own set of identifiers for every level. This first block,
60

DOI:10.15774/PPKE.ITK.2015.010



4.8. THE PARALLEL SPHERE DETECTOR ALGORITHM

Figure 4.10: The block diagram of the Expand and Evaluate pipeline.

61

DOI:10.15774/PPKE.ITK.2015.010



4.8. THE PARALLEL SPHERE DETECTOR ALGORITHM

referred to as Preparatory Block, is completed when each thread has finished computing

the virtual identifiers.

4.8.3.2 Selecting, mapping and merging block

In the Selecting, Mapping and Merging block the task is to generate symbol vectors

sN<j>lvlx
for level lvlx.

In the Selecting phase, explvlx−1 number of previously evaluated symbol vectors sNlvlx−1

are selected from buflvlx−1 serving as inputs to this process. The selection is performed

based on the virtual block identifiers and the corresponding offset offlvlx−1 . The virtual

block identifiers vblvlx are computed based on (4.55). Each vblvlx ∈ V Bk
lvlx

serves as an

index of the input partial symbol vector array. The selected partial symbol vector sN<j>lvlx−1

is the element at index j in the input buffer buflvlx−1 and j = offlvlx−1 + vblvlx .

In the Mapping phase the goal is to create partial symbol vectors slvlx−1−1<j>
lvlx

based

on the vtlvlx ∈ V T klvlx virtual thread identifiers. In order to achieve this, each vtlvlx

is transformed to a binary vector of length log2 |Ω| · (lvlx−1 − lvlx). Let B denote the

transformation of a natural number to a binary vector of size l

B : (N, l ∈ N)→ Bl = {0, 1}l. (4.56)

Let the binary vector bl denote the result of transformation B with inputs vtlvlx and

log2 |Ω| · (lvlx−1 − lvlx):

bl = B(vtlvlx , log2 |Ω| · (lvlx−1 − lvlx)). (4.57)

In vector bl, (lvlx−1 − lvlx) number of binary groups of size log2 |Ω| are available. A

one-to-one mapping between the binary groups and the symbol set elements is defined

based on Gray mapping. Therefore, while iterating over the groups of binary elements,

b(i·log2 |Ω|):((i+1)·log2 |Ω|−1) → si ∈ Ω are selected and the partial symbol vector slvlx−1−1
lvlx

=

(slvlx , slvlx+1, · · · , slvlx−1−1) is formed.

In the Merging phase the result of the selection and mapping is merged, namely, each

selected vector sN<j>lvlx−1
and mapped symbol vector slvlx−1−1<j>

lvlx
is merged as

sN<j>lvlx
= (slvlx−1−1<j>

lvlx
, sN<j>lvlx−1

)

= (slvlx , · · · slvlx−1−1, slvlx−1 , · · · , sN ).
(4.58)

62

DOI:10.15774/PPKE.ITK.2015.010



4.8. THE PARALLEL SPHERE DETECTOR ALGORITHM

4.8.3.3 Path metric evaluation block

In the Path Metric Evaluation block, the metric of created partial symbol vectors

is computed. This is one of the most time-consuming steps, but the path metric is

computed in parallel by several threads. Consequently, a significant speed-up can be

achieved. Further speed-up can be achieved if the path metric of partial symbol vectors

M(sNlvlx−1
) computed previously are stored and only the contribution of the newly created

partial symbol vectors M(slvlx−1−1
lvlx

) to the overall metric is computed.

4.8.3.4 Searching or sorting block

The last block of the EEP is one of the most important stages during the detection.

Depending on the level of processing, either sorting or a minimum search is performed.

The minimum search is applied only when the detection has reached the last process-

ing level, while sorting is applied on all other levels. The use of the two algorithms is

motivated by the lower complexity required by the minimum search algorithm. Recall,

when the last level of the tree is reached, the task is to find the symbol vector with the

smallest path metric.

As discussed in Sec. 4.8.2, the complexity of the algorithm can be reduced by adjusting

the radius of the sphere after finding a leaf node of the tree. Sorting the buffers based

on the path metric of symbol vectors and applying the hybrid searching strategy makes

the finding of a leaf node possible after a few iterations. Several parallel algorithms exist

in the literature that can exploit the parallel architectures in order to sort and search

arrays [88], thus, the high computational power of these devices can be also exploited at

this stage.

4.8.3.5 Application of the Expand and Evaluate pipeline

The EEP depicted in Fig. 4.10 implements one level of PSD algorithm. To implement

the entire PSD algorithm, the EEP is used in an iterative manner as shown in Fig. 4.11.

Depending on the processing level the EEP outputs are (i) the sorted partial symbol

vectors placed in buflvlx or (ii) the symbol vector with the smallest path metric. The

inputs for this process are (i) the number of threads tt available for the processing and (ii)

explvlx−1 number of previously computed partial symbol vectors retrieved from buflvlx−1 .

In the last stage of the EEP a candidate ML solution might be returned.

63

DOI:10.15774/PPKE.ITK.2015.010



4.8. THE PARALLEL SPHERE DETECTOR ALGORITHM

Figure 4.11: The iterative application of the Expand and Evaluate pipeline
implementing the Parallel Sphere Detector algorithm.

64

DOI:10.15774/PPKE.ITK.2015.010



4.8. THE PARALLEL SPHERE DETECTOR ALGORITHM

4.8.4 Levels of parallelism and CUDA mapping details

As described in Sec. 2.2.1, a grid is defined before launching a CUDA kernel. A grid

may contain several TBs and each TB may contain several threads. Concurrent kernel

executions are also possible for some devices using multiple streams. Hence, multiple

levels of parallelism are available. The main challenge during the implementation is to

well define the parallel possibilities of the system model, the parallel architecture and to

make the correct bounding of these.

Algorithm level parallelism is the effective distribution of the work among the threads

in a TB. The computationally intensive parts of the algorithm are the expansion and

evaluation of the symbol vectors and the sorting. The Expand and Evaluate procedure

is highly parallel. Every thread in the thread block is working at this point. The PSD

algorithm through its parameters is able to adjust the generated work, thus, the algorithm

can be easily adapted to different architectures.

For the sorting stage several parallel sorting algorithms can be used. In the PSD

algorithm the sorting is done with the use of sorting networks [89], [88], [90]. Due to their

data-independent structure, their operation sequence is completely rigid. This property

makes this algorithm parallelizable for the GP-GPU architecture. The minimum search

algorithm relies on the parallel scan algorithm [91].

Each TB launched is a one dimensional block with tt number of threads. In order to

get fast detection, access time to global memory has to be minimized. A good solution

is to store the heavily used buflvlx arrays in the shared memory. If all buflvlx buffers

are stored in the shared memory, then a more severe limitation may be imposed on the

parameters lvlx and explvlx . This is because the size of the shared memory is significantly

smaller than that of the global memory. The shared memory used by a TB is proportional

to the sum
∑lvlnr
x=1 evallvlx of the evaluated nodes at different levels. The excessive use of

shared memory can lead to occupancy degradation, consequently, one SM can execute

only a lower number of TBs at the same time. In case of GP-GPUs a good trade-

off has to be found among the algorithm parameters and the resources of the SMs.

Since different GP-GPUs have different memory configurations, the optimal algorithm

parameters depend on the device used.

The model, presented in Sec. 3.2, assumes block-fading channel where the fading

process is constant for a block of symbols and changing independently from one block to

another. The block of symbol vectors for which the fading process is constant is called

a fading block. A transmitted frame of length L symbols is affected by F independent

65

DOI:10.15774/PPKE.ITK.2015.010



4.8. THE PARALLEL SPHERE DETECTOR ALGORITHM

Figure 4.12: Equally distributed computing load with the direct biding of the thread
blocks and symbol vectors.

Figure 4.13: Dynamically distributed computing load with the dynamic biding of the
thread blocks and symbol vectors.

channel realizations, resulting in a block of length l = dL/F e symbols being affected by

the same channel realization. It can be seen that multiple symbol vectors have to be

processed simultaneously for one received frame.

The system level parallelism is implemented by the parallel processing of fading blocks

of a received frame. Consequently, the number of kernels launched is equal to the number

of independent channel realizations. Every grid assigned to a kernel launches several TBs

and the PSD algorithm is executed by the threads of every TB. The configuration of the

grids, namely the binding of the TBs and symbol vectors, is critical since this influences

the concurrent execution of the kernels. For further details, refer to the discussion of the

device level parallelism below.

Different binding strategies among the TBs of one grid and symbol vectors of a

fading block are shown in Figs. 4.12 and 4.13. In the first case the number of TBs in

one grid is equal to the number of symbol vectors belonging to the same channel matrix.

The drawback of this straightforward binding is the high number of TBs because the

resources of the GP-GPU will be available for a long time duration only for one kernel.

Consequently, the overlapping execution of concurrent kernels is limited. In the second

case the number of TBs in a grid is significantly smaller than the number of symbol
66

DOI:10.15774/PPKE.ITK.2015.010



4.8. THE PARALLEL SPHERE DETECTOR ALGORITHM

Figure 4.14: A simplified thread block scheduling model on a streaming multiprocessor.

Figure 4.15: The scheduling of kernels using the single stream and multiple stream
execution models.

vectors in one group. The work for a TB is dynamically distributed, namely, when the

detection of one symbol vector is finished, the PSD algorithm executed by the threads of

the TB evaluates the next unprocessed symbol vector. As the detection time of different

symbol vectors may differ significantly, the number of symbol vectors to be processed by

one TB is also different. Having a lower number of TBs in one grid makes the execution

of TBs from other grids possible if there are free GP-GPU resources. The drawback

of this approach is the increased complexity of the algorithm caused by the dynamic

distribution of the work among the TBs.

The device level parallelism in GP-GPUs is achieved by launching multiple kernels

simultaneously on different streams. By exploiting the advantage of device level paral-

lelism, a significant decrease in the computational time can be achieved. To demonstrate

the importance of overlapping execution of multiple kernels, a simplified TB scheduling

is shown in the following. Consider a GP-GPU with only one SM and assume that it is

capable of running only four TBs simultaneously as shown in Fig. 4.14. Consider a kernel

with a grid configuration of four TBs. The kernel is finished when every TB has com-

pleted its task. In this example, the execution of TB1 is finished at time t1, upon which

25% of the cores are idle. The worst case is when the execution of TB2 is finished because

67

DOI:10.15774/PPKE.ITK.2015.010



4.8. THE PARALLEL SPHERE DETECTOR ALGORITHM

Table 4.4: Main characteristics of the GK104 Kepler architecture.

CUDA Threads Max warps Max threads Max TBs Max registers Max threads Max shared
cores / Warp / SMX / SMX / SMX / thread / TB memory / SMX
1536 32 64 2048 16 63 1024 48 Kbytes

75% of the available cores in the SM are idle. Because of the wasted resources, the overall

performance is degraded. If a new TB from a different kernel could be launched after the

execution of TB1 is finished, the resources of the GP-GPU would be fully exploited.

The idle time of the cores can be minimized by exploiting the multi-stream features

of the selected GP-GPUs. Figure 4.15 shows the scheduling for single stream and multi-

ple streams execution. The single stream strategy launches the kernels in succession and

avoids overlapping execution. As shown in Fig. 4.15, multiple stream exploits the over-

lapping execution of kernels and minimizes the idle time of the cores. Note, the amount

of overlap depends on the occupancy of the kernels and the number of TBs launched in

each kernel. In Sec. 4.8.5 the performance of single and multiple-stream strategies are

compared and evaluated.

4.8.5 Performance evaluation of the Parallel Sphere Detector algo-

rithm

One of the most important performance metrics of a detector is the BER achieved.

The PSD algorithm implements the ML detector and the BER performance of the ML

detector was compared with linear, SIC, and tree-search based methods in Figs. 4.2, 4.3,

4.7 and 4.8. Thus, in the following sections the focus is on the detection throughput,

scalability and the complexity of the PSD algorithm.

A major challenge in ML detection is handling its varying complexity. Channel ma-

trices with high condition numbers or low SNRs may increase the complexity of the

algorithm. Consequently, the running time of different kernels may differ significantly. In

order to evaluate the average detection throughput of the PSD algorithm F = 8000 in-

dependent channel realizations with l = 1200 symbol vectors for each channel realization

were generated and evaluated. The average throughput is determined based on 9.6× 106

processed symbol vectors. The performance of the PSD algorithm was evaluated on a

GeForce GTX690 GP-GPU built on the Kepler GK104 [92] architecture and compiled

with CUDA 5.5. The main parameters of the GK104 architecture are given in Table 4.4.

68

DOI:10.15774/PPKE.ITK.2015.010



4.8. THE PARALLEL SPHERE DETECTOR ALGORITHM

Table 4.5: Parallel Sphere Detector algorithm parameter configurations achieving
highest detection throughput with multiple stream kernel executions for 2× 2 and 4× 4

MIMO systems at 20 dB SNR.

n m |Ω| lvlnr lvl0 lvl1 lvl2 lvl3 lvl4 explvl0 explvl1 explvl2 explvl3 tt Mbit/s

2 2 2 1 5 1 0 0 0 1 0 0 0 16 290
2 2 4 1 5 1 0 0 0 1 0 0 0 128 350
2 2 8 2 5 3 1 0 0 1 1 0 0 32 191
4 4 2 2 9 7 1 0 0 1 1 0 0 64 225
4 4 4 3 9 6 4 1 0 1 4 1 0 64 161
4 4 8 4 9 7 5 3 1 1 4 4 4 128 32

4.8.5.1 Average detection throughput and scalability

Another important metric of a MIMO detector is the average detection throughput.

The achieved detection throughput by the PSD algorithm is influenced by many factors

such as the antenna configuration, modulation order, the realized signal to noise ratio,

the parallel architecture, and the algorithm’s parameter configuration. In Sec. 4.8 the

memory requirements of the PSD algorithm were presented. It was shown that the chosen

parameters clearly define the memory requirements. During the parameter optimization

for a GP-GPU architecture it is worth choosing the parameters such that the size of the

symbol vector buffers do not exceed the shared memory available.

One of the most important quality measures of a communication link is its SNR.

The realized SNR at the receiver highly influences the optimal parameter configuration.

The following concept lies behind the relationship of the realized SNR and the parameter

configuration used: at low SNRs it is more likely that several iterations will be performed

by the algorithm on the selected levels lvlx. The overall algorithm complexity is composed

by the expansion and evaluation of the symbol vectors and the path metric based sorting.

Since the sorting stage has to be performed more frequently at low SNRs, a better

strategy is to perform the sorting with more symbol vectors. This can be carried out

by increasing either the value of explvlx or the difference of the adjacent level lvlx −

lvlx+1 parameters. With the above modifications more symbol vectors are expanded

and evaluated, thus, the probability of finding the ML solution in the first iterations is

increased.

At higher SNRs, even with lower explvlx parameters, there is a relatively high prob-

ability that the first leaf node found by the PSD algorithm is the ML solution. Con-

sequently, the optimal sphere radius is found, thus, the other symbol vectors can be

discarded. The reduced number of iterations results in a reduced number of sortings

with fewer elements to sort. This is why the throughput is higher when the SNR is high.

Usually, 20 dB SNR is advisable for a reliable communication for |Ω| ≤ 8. Consequently,

69

DOI:10.15774/PPKE.ITK.2015.010



4.8. THE PARALLEL SPHERE DETECTOR ALGORITHM

5 10 15 20 25 30
0

50

100

150

200

250

300

350

SNR (dB)

T
hr

ou
gh

pu
t (

M
bi

t/s
)

 

 

2x2, |Ω| = 2, Single Stream

2x2, |Ω| = 2, Multi Stream

2x2, |Ω| = 2, Multi Stream with Ordering

2x2, |Ω| = 4, Single Stream

2x2, |Ω| = 4, Multi Stream

2x2, |Ω| = 4, Multi Stream with Ordering

2x2, |Ω| = 8, Single Stream

2x2, |Ω| = 8, Multi Stream

2x2, |Ω| = 8, Multi Stream with Ordering

Figure 4.16: The Parallel Sphere Detector average detection throughput for 2× 2
MIMO obtained with single stream and multiple stream kernel executions.

the PSD algorithm parameters were optimized for 20 dB SNR.

Because the parameter optimization process depends on many factors, it is performed

offline and only once. Table 4.5 summarizes the result of the parameter optimization

which were used for the throughput evaluation here for the different MIMO systems.

Average detection throughput was evaluated for 2× 2 and 4× 4 MIMO systems with

symbol sets |Ω| = 2, 4 and 8. In order to measure the effects of device level parallelism

• single stream execution with direct TB binding shown in Fig. 4.12 and

• multiple stream execution with dynamic TB binding depicted in Fig. 4.13

were compared. In the case of direct binding, the number of TBs in a grid was equal to

the number of symbol vectors associated to one channel matrix, i.e., TB = l = 1200. In

the case of dynamic TB binding load distribution grids with 128 TBs were launched on

32 streams.

Figure 4.16 shows that the average detection throughputs do not depend on SNR for

2×2 MIMO systems with |Ω| = 2 and 4. This is due to the low number of symbol vectors

to be evaluated on the last tree level. The low number of symbol vectors can be processed

simultaneously without computing any partial symbol vector. The throughput is higher

for |Ω| = 4 because the number of transmitted bits is doubled compared to the case of
70

DOI:10.15774/PPKE.ITK.2015.010



4.8. THE PARALLEL SPHERE DETECTOR ALGORITHM

5 10 15 20 25 30
0

50

100

150

200

250

300

350

SNR (dB)

T
hr

ou
gh

pu
t (

M
bi

t/s
)

 

 
4x4, |Ω| = 2, Single Stream

4x4, |Ω| = 2, Multi Stream

4x4, |Ω| = 2, Multi Stream with Ordering

4x4, |Ω| = 4, Single Stream

4x4, |Ω| = 4, Multi Stream

4x4, |Ω| = 4, Multi Stream with Ordering

4x4, |Ω| = 8, Single Stream

4x4, |Ω| = 8, Multi Stream

4x4, |Ω| = 8, Multi Stream with Ordering

Figure 4.17: The Parallel Sphere Detector average detection throughput for 4× 4
MIMO obtained with single stream and multiple stream kernel executions.

|Ω| = 2, but the processing time required is not significantly higher. Multiple stream

execution results in an increase of 45% and 25% in the average detection throughput for

|Ω| = 2 and |Ω| = 4, respectively. By further increasing the number of antennas or the

symbol set size the total number of nodes are exponentially increasing, thus, the detection

throughput decreases. The effect of overlapping execution of kernels on multiple streams

is shown in Fig. 4.17 for a 4 × 4 MIMO system with symbol sets |Ω| = 2, 4 and 8. The

average detection throughput is increased by 15%− 30% for |Ω| = 2, 4 and 38%− 64%

for |Ω| = 8.

Furthermore, the average detection throughput achieved with (i) the PSD algorithm

implemented on the GTX690 GP-GPU and (ii) the sequential SD executed simultane-

ously on every thread of an Intel Xeon CPU E5-2650 v3 was compared. The E5-2650

CPU has 10 cores and it is able to run 20 threads. In order to fully exploit the CPU

the sequential SD algorithm was simultaneously executed on every single thread of the

CPU. Figure 4.18 shows the results of the average detection throughput comparison. In

case of smaller search space, i.e., 4 × 4 MIMO and |Ω| = 2, the speed-up achieved by

the GP-GPU is about a factor of two. As the size of the symbol set is increasing the

GP-GPU speed-up is also higher. For a 4× 4 MIMO system and |Ω| = 4 the throughput

71

DOI:10.15774/PPKE.ITK.2015.010



4.8. THE PARALLEL SPHERE DETECTOR ALGORITHM

5 10 15 20 25 30

10
1

10
2

SNR (dB)

T
hr

ou
gh

pu
t (

M
bi

t/s
)

 

 

4x4 MIMO, |Ω| = 2, CPU

4x4 MIMO, |Ω| = 2, GPU

4x4 MIMO, |Ω| = 4, CPU

4x4 MIMO, |Ω| = 4, GPU

4x4 MIMO, |Ω| = 8, CPU

4x4 MIMO, |Ω| = 8, GPU

Figure 4.18: The comparison of the average detection throughput of (i) the Parallel
Sphere Detector algorithm implemented on a GP-GPU architecture and (ii) the

sequential Sphere Detector executed on every thread of a multi-core CPU.

is increased 2− 6 times, and for |Ω| = 8 the throughput is increased 2− 50 times by the

GP-GPU.

The scalability of the PSD algorithm on the GTX690 GP-GPU is presented in Fig.

4.19. For the different number of threads a different parameter configuration has to

be found in order to achieve maximal throughput. Table 4.6 shows the PSD algorithm

parameter configurations achieving highest detection throughput for different number of

CUDA threads for 4× 4 MIMO systems at 20 dB SNR. The kernels were launched on a

single stream and direct TB binding was used. For 4×4 MIMO systems with symbol sets

|Ω| = 2, 4 the highest throughput is achieved with a TB configuration of 64 threads and

for |Ω| = 8 the highest throughput is achieved with a TB configuration of 128 threads. By

further increasing the thread numbers the occupancy of the kernels is degraded resulting

in a lower detection throughput.

4.8.5.2 Preprocessing of the channel matrix

Different channel matrix preprocessing algorithms have been proposed in [64], [93]

and [56] to improve the performance of MIMO systems. A common preprocessing ap-

proach is to adapt the detection order of the spatial streams to the instantaneous channel

realization.

In symbol cancellation, the interference generated by the detected components of

72

DOI:10.15774/PPKE.ITK.2015.010



4.8. THE PARALLEL SPHERE DETECTOR ALGORITHM

Table 4.6: Parallel Sphere Detector algorithm parameter configurations achieving
highest detection throughput for different number of CUDA threads and single stream

kernel execution for 4× 4 MIMO systems at 20 dB SNR.

n m |Ω| tt lvlnr lvl0 lvl1 lvl2 lvl3 lvl4 explvl0 explvl1 explvl2 explvl3 Mbit/s

4 4 2 8 2 9 5 1 0 0 1 1 0 0 120
4 4 2 16 2 9 5 1 0 0 1 1 0 0 143
4 4 2 32 2 9 6 1 0 0 1 1 0 0 161
4 4 2 64 2 9 7 1 0 0 1 1 0 0 169
4 4 2 128 1 9 1 0 0 0 1 0 0 0 158
4 4 4 32 3 9 6 4 1 0 1 4 1 0 118
4 4 4 64 3 9 6 4 1 0 1 4 1 0 121
4 4 4 128 2 9 5 1 0 0 1 1 0 0 68
4 4 4 256 2 9 5 1 0 0 1 1 0 0 40
4 4 8 32 4 9 7 5 3 1 1 1 1 1 11
4 4 8 64 4 9 7 5 3 1 1 1 1 1 13
4 4 8 128 4 9 7 5 3 1 1 4 4 4 24
4 4 8 256 4 9 7 5 3 1 1 8 8 4 15

8 16 32 64 128 256
0

20

40

60

80

100

120

140

160

180

CUDA threads/thread block

T
hr

ou
gh

pu
t (

M
bi

t/s
)

 

 

4 × 4 MIMO, |Ω| = 2

4 × 4 MIMO, |Ω| = 4

4 × 4 MIMO, |Ω| = 8

Figure 4.19: The Parallel Sphere Detector average detection throughput for 4× 4
MIMO obtained at 20 dB SNR with single stream kernel execution and multiple thread

block configurations.

73

DOI:10.15774/PPKE.ITK.2015.010



4.8. THE PARALLEL SPHERE DETECTOR ALGORITHM

st is subtracted from the received symbol vector y, in order to reduce the number of

interferers. The best result is achieved if symbols with high post-detection SNR are

considered first as discussed in [64]. The FSD introduced in [56] applies an ordering

based on the norms of row vectors of the inverse channel matrix.

Channel matrix preprocessing can be used to improve the throughput of the PSD

algorithm. The effect of matrix preprocessing based on decreasing ordering of the norms

of the row vectors of the inverse channel matrix was evaluated. By applying channel

preprocessing an extra increase of 5−10% in average throughput was achieved, as shown

in Figs. 4.16 and 4.17.

4.8.5.3 Average complexity per thread

5 10 15 20 25 30
0

2

4

6

8

10

12

SNR (dB)

A
vg

. N
um

be
r 

of
 E

xp
an

de
d 

N
od

es
 / 

T
hr

ea
d

 

 

2x2, |Ω| = 2, SD
2x2, |Ω| = 2, PSD
2x2, |Ω| = 2, PSD with Ordering
2x2, |Ω| = 2, ASD

5 10 15 20 25 30

10
1

10
2

SNR(dB)

A
vg

. N
um

be
r 

of
 E

xp
an

de
d 

N
od

es
 / 

T
hr

ea
d

 

 

4x4, |Ω| = 2, SD
4x4, |Ω| = 2, PSD
4x4, |Ω| = 2, PSD with Ordering
4x4, |Ω| = 2, ASD

Figure 4.20: Comparison of the average number of expanded nodes per thread for (a)
2× 2, (b) 4× 4 MIMO and |Ω| = 2 for the sequential, parallel and automatic Sphere

Detector algorithms.

Another important metric of SD algorithms is the average number of expanded nodes.

Figures 4.20, 4.21 and 4.22 compare the average number of visited nodes in each thread

for the SD, PSD and ASD algorithms. The achieved results are compared with that of the

ASD algorithm because it has been shown in [77] that ASD expands just the minimum

number of nodes as the number of antennas or size of symbol set are increased. Recall,

the SD and ASD algorithms are sequential algorithms. Consequently, the tree search can

be performed by only a single thread and there is no possibility to expand and evaluate

multiple nodes simultaneously. In contrast, the PSD algorithm is able to distribute the

work among multiple threads, but the total number of symbol vectors to be expanded

74

DOI:10.15774/PPKE.ITK.2015.010



4.8. THE PARALLEL SPHERE DETECTOR ALGORITHM

5 10 15 20 25 30
0

5

10

15

20

25

30

35

SNR(dB)

A
vg

. N
um

be
r 

of
 E

xp
an

de
d 

N
od

es
 / 

T
hr

ea
d

 

 

2x2, |Ω| = 4, SD
2x2, |Ω| = 4, PSD
2x2, |Ω| = 4, PSD with Ordering
2x2, |Ω| = 4, ASD

5 10 15 20 25 30

10
1

10
2

10
3

SNR(dB)

A
vg

. N
um

be
r 

of
 E

xp
an

de
d 

N
od

es
 / 

T
hr

ea
d

 

 

4x4, |Ω| = 4, SD
4x4, |Ω| = 4, PSD
4x4, |Ω| = 4, PSD with Ordering
4x4, |Ω| = 4, ASD

Figure 4.21: Comparison of the average number of expanded nodes per thread for (a)
2× 2, (b) 4× 4 MIMO and |Ω| = 4 for the sequential, parallel and automatic Sphere

Detector algorithms.

5 10 15 20 25 30

10
1

10
2

SNR(dB)

A
vg

. N
um

be
r 

of
 E

xp
an

de
d 

N
od

es
 / 

T
hr

ea
d

 

 

2x2, |Ω| = 8, SD
2x2, |Ω| = 8, PSD
2x2, |Ω| = 8, PSD with Ordering
2x2, |Ω| = 8, ASD

5 10 15 20 25 30

10
1

10
2

10
3

10
4

10
5

SNR(dB)

A
vg

. N
um

be
r 

of
 E

xp
an

de
d 

N
od

es
 / 

T
hr

ea
d

 

 

4x4, |Ω| = 8, SD
4x4, |Ω| = 8, PSD
4x4, |Ω| = 8, PSD with Ordering
4x4, |Ω| = 8, ASD

Figure 4.22: Comparison of the average number of expanded nodes per thread for (a)
2× 2, (b) 4× 4 MIMO and |Ω| = 8 for the sequential, parallel and automatic Sphere

Detector algorithms.

and evaluated becomes higher. Table 4.5 shows the number tt of total threads used

for different MIMO systems. It is very interesting to compare the achieved results with

the theoretical average complexity results discussed in Sec. 4.6.1.3. It can be seen that

even the total number of nodes expanded by all of the threads is less than the average

complexity for several ε values.

Figures 4.20, 4.21 and 4.22 show that the PSD algorithm requires a significantly

lower average number of symbol vectors to be processed by one thread in every MIMO

75

DOI:10.15774/PPKE.ITK.2015.010



4.8. THE PARALLEL SPHERE DETECTOR ALGORITHM

configuration. The signal space of the real-equivalent 4×4 MIMO with symbol set size of

|Ω̃| = 64 symbols has 1.6×107 symbol vectors. For an SNR of 5 dB the PSD expands into

about 310 nodes per thread while the ASD expands into about 7500 nodes per thread.

Consequently, the total workload of a thread running the PSD algorithm is reduced

by 96%. For an SNR of 20 dB, the workload of a thread running the PSD algorithm is

reduced by 95%. The distribution of work makes the PSD algorithm very efficient despite

the fact that the total number of nodes to be processed is higher than that of the SD and

ASD algorithms. The increase in the number of nodes is the price to be paid for using a

many-core architecture.

4.8.5.4 Comparison of detection throughput and bit error rate performance

As mentioned in the earlier sections a significant trade-off exists between the BER

achieved and the computational complexity of the detection algorithm. Many non-

optimal detection schemes involve the use of error control coding. Thus, the resulting

BER usually is better than in uncoded MIMO systems. This makes a BER performance

comparison of uncoded optimal and coded non-optimal detection algorithms difficult.

Guo et al. in [78] presented the BER performance of coded and uncoded hard and soft-

output MIMO systems. BER simulations for hard-output 4× 4 MIMO system detectors

with |Ω| = 4 were presented using a four state rate 1/2 convolutional code and a four state

rate 1/2 turbo code. It was shown that the uncoded MIMO system was outperformed by

5 dB at BER = 10−5 by the convolutionally coded MIMO system and by 11 dB at BER

= 10−5 by the turbo coded MIMO system. Turbo coded max-log a posteriori probability

(APP) soft-output MIMO detection improves the performance by an additional 2 dB

compared to turbo-coded hard-output MIMO detection. Soft-output detection and error

control coding schemes are outside scope of the thesis. In [94], [78], [95], [20], [87] further

details are available on coded soft-output MIMO detection methods. In summary, the

use of error control coding significantly improves the BER which can be further improved

by ∼ 2 dB with the higher complexity, optimal soft-output detection.

In order to make a fair comparison of the PSD algorithm with its alternatives pub-

lished in the literature, three groups are compared in Table 4.7.

Performance of ML detection algorithms The first group of implementations com-

pares the performance of hard-output true-ML solutions published in [24], [96], [25], [26]

with that of the PSD algorithm. During the development of the PSD algorithm the main

objective was to design a parallel algorithm that can exploit the resources of massively
76

DOI:10.15774/PPKE.ITK.2015.010



4.8. THE PARALLEL SPHERE DETECTOR ALGORITHM

Table 4.7: Throughput comparison of existing MIMO detector algorithms.

Reference BER Detection Antenna Symbol Throughput
Technology

Detector

perf. output config. set size [Mbit/s] algorithm
type (SNR [dB]) type

[24] ML hard 4× 4 |Ω| = 4 38.4 ASIC sequential SD
[96] ML hard 4× 4 |Ω| = 2 50 ASIC exhaustive ML

[25] ML hard 4× 4 |Ω| = 4 73.5 - 145 ASIC sequential SD(20-30 dB) 250 nm

[26] ML hard 4× 4 |Ω| = 4 81.5 XC2VP30 multi-level
FPGA parallel SD

This

ML hard 2× 2

|Ω| = 2 290
Geforce multi-level

work

|Ω| = 4 351
GTX 690 parallel SD|Ω| = 8 191-223 (PSD)(20-30 dB)

ML hard 4× 4

|Ω| = 2 225-228
Geforce multi-level|Ω| = 4 162-197
GTX 690 parallel SD|Ω| = 8 32-114 (PSD)(20-30 dB)

[22] near-ML hard 4× 4 |Ω| = 8 3.05 GeForce 210 parallel FSD

[97] near-ML hard 4× 4 |Ω| = 8 9.6 GeForce sequential FSDs
GTX 285 on several threads

[23]

near max- soft 2× 2 |Ω| = 4 16.86 Quadro FX layered orthogonal
log APP 1700 lattice detector

approx. max- soft 2× 2 |Ω| = 4 36 Quadro FX selective spanning
log APP 1700 fast enumeration

[20]
near

soft 4× 4
|Ω| = 2 211.99 Tesla parallel FSDmax-log |Ω| = 4 92.31 C2070APP |Ω| = 8 16.6

[21]

approx.
soft 2× 2

|Ω| = 2 663 Tesla multi-pass
max-log |Ω| = 4 269 C1060 trellis
APP |Ω| = 8 43 traversal

approx.
soft 4× 4

|Ω| = 2 284 Tesla multi-pass
max-log |Ω| = 4 120 C1060 trellis
APP |Ω| = 8 12 traversal

[98] non-ML hard 4× 4 |Ω| = 8 37-125 TMS320C6416 selective spanning
DSP fast enumeration

[81] non-ML hard 4× 4 |Ω| = 8 100-732 XC2VP30
K-best SD

K=64-5 FPGA

[87]
approx.

soft 4× 4
|Ω| = 2 400 Xilinx

parallel FSDmax-log |Ω| = 4 200 XC4VLX160
APP |Ω| = 8 75 FPGA

[86] near-ML hard 4× 4 |Ω| = 4 800 EP2S60F672C3 parallel FSDFPGA

[99] non-ML hard 1x1 |Ω| = 2 672-2143 VLSI multiple SD
to 4× 4 to |Ω| = 8 130 nm CMOS based cores

77

DOI:10.15774/PPKE.ITK.2015.010



4.8. THE PARALLEL SPHERE DETECTOR ALGORITHM

parallel architectures while implementing hard-output true-ML detection.

In the first group, only the algorithm presented in [26] exploits two levels of parallelism

such as: (i) a system level parallelism that implements the concurrent execution of the

preprocessing, decoding and the simultaneous detection of symbol vectors, and (ii) a

data dependency based low-level parallel structure. In the first group, the PSD algorithm

proposed here outperforms all the other parallel and sequential algorithms.

Performance of non-optimal detection algorithms mapped on GP-GPUs In

the second group the performance of non-optimal algorithms implemented on GP-GPUs

are compared. The approximations used in these algorithms offer significant improve-

ments in detection throughput because the average number of nodes visited during de-

tection is considerably reduced. Note that these algorithms do not implement optimal

detection. Consequently, they cannot achieve the theoretically attainable BER perfor-

mance.

The FSD algorithm overcomes the two main drawbacks of the SD approach: (i) inde-

pendently of the noise level and the channel condition, the search is performed over only

a fixed number of symbol vectors and (ii) it follows predetermined paths down the tree.

Consequently, all the paths can be searched in parallel. Furthermore, the BER achieved

by the FSD algorithm, depending on the MIMO system size and spatial correlation,

differs from the optimal by 0.5 - 1.5 dB.

GP-GPU implementations of the FSD algorithm are given in [22], [97], [20]. In [97]

parallelism was achieved by launching several sequential FSDs simultaneously. However,

the low detection throughput shows that the sequential algorithm does not benefit from

the highly parallel architecture. In [20] a soft-output fully-parallel FSD (FP-FSD) was

presented. The BER performance achieved is approximately 1 dB away from the max-log

APP reference. The achieved throughput of these implementations is lower than that of

the GP-GPU mapping of the PSD algorithm.

In [23] a GPU mapping was proposed for the Selective Spanning Fast Enumeration

(SSFE) detector and the Layered Orthogonal Lattice Detector (LORD), but the through-

put offered by them was significantly lower compared to the PSD algorithm. By applying

rate 1/2 turbo decoding to a 2× 2 MIMO system with |Ω| = 4, the achieved Packet Er-

ror Rate (PER) of the LORD algorithm was near max-log APP. However, for a PER =

5× 10−3 the SSFE was 2.5 dB away from the reference max-log APP algorithm.

In [21] a multi-pass trellis traversal detector was proposed. Parallelism is achieved

because the edge reductions and path extensions can be done simultaneously for every
78

DOI:10.15774/PPKE.ITK.2015.010



4.8. THE PARALLEL SPHERE DETECTOR ALGORITHM

vertex at each stage. It achieves higher throughputs for 2× 2 and 4× 4 MIMO systems

with symbol set |Ω| = 2. However, in the other cases the PSD outperforms it. The soft-

output of the detector is fed to a rate 1/2 low-density parity-check (LDPC) decoder. The

achieved BER is 1-1.5 dB away from optimal detection.

Performance of non-optimal detection algorithms mapped on FPGA, VLSI

and DSP platforms The performance of non-ML algorithms implemented on FPGA,

digital signal processor (DSP) and application-specific integrated circuit (ASIC) archi-

tectures are surveyed in group three. In [98], the SSFE algorithm is mapped to a digital

signal DSP architecture. The mapping presented is highly parallel. The highest through-

put of 125 Mbit/s is achieved with a parameter configuration that is 6 dB away from

the optimal ML performance at BER = 10−5 and 37 Mbit/s is achieved at 28.5 dB SNR

for a BER = 10−5 that is 1.5 dB away from the optimal ML performance. The PSD

algorithm is three times better when compared with the SSFE mapping achieving the

best BER performance.

In [81] an FPGA implementation of an enhanced K-best SD algorithm is given. The

achieved throughput and BER performance depends highly on the chosen K parameter.

For parameter K = 64, the achieved throughput was 100 Mbit/s. However, the achieved

BER was 6 dB away from optimal ML detection. For lower K values, the BER perfor-

mance was significantly degraded. This implementation achieved similar speeds to the

PSD algorithm. However, the BER was significantly degraded.

Recently, an FPGA implementation of a parallel soft-output FSD algorithm was pre-

sented in [87]. Rate 1/2 turbo decoding was applied and the achieved BER performance

was similar to the K-best detector with K = 16. It provides similar throughput to the

PSD for |Ω| = 4. However, PSD is better for |Ω| = 8 for higher SNR values.

The best implementations were published in [99]. Significant speed-ups were achieved

by executing several SD cores in parallel. Each SD core provides a very efficient imple-

mentation of the sequential SD algorithm. The variable throughput of the algorithm was

fixed by introducing run-time constraints. Consequently, this leads to a constraint on the

maximum number of nodes that the SD is allowed to visit, which will clearly prevent the

detector from achieving ML performance.

The comparison presented in Table 4.7 shows that the mapping of the PSD algo-

rithm on the GP-GPU achieves the best throughput among the true-ML algorithms and

outperforms many of the non-optimal GP-GPU implementations. The detection through-

put of the GP-GPU mapping is similar to the non-optimal implementations presented
79

DOI:10.15774/PPKE.ITK.2015.010



4.9. CONCLUSION

in [98] and [87] but is outperformed by the FPGA implementation presented in [86]

and the VLSI implementations published in [99]. However, those solutions implement

non-optimal detection.

4.9 Conclusion

This chapter aimed to present several detector methods for MIMO systems using

spatial multiplexing. Through the presentation of these methods several mathematical

and algorithmical aspects of MIMO detectors were presented and their advantages and

drawbacks were discussed. The main result of this chapter was to show how it is possible

to enable the efficient usage of multi-core and many-core architectures in wireless MIMO

communications systems by solving the hard-output true-ML detection problem. As the

complexity of ML detection grows exponentially with both the size of the signal set

and the number of antennas, modern MPAs were used to solve this problem. The main

drawback of the original SD algorithm is its sequential nature. Thus, running it on MPAs

is very inefficient. In order to overcome the limitation of the SD algorithm, the parallel

SD algorithm was designed and implemented by exploiting the knowledge present in the

literature.

The PSD algorithm is based on a novel hybrid tree traversal where algorithm paral-

lelism is achieved by the efficient combination of DFS and BFS strategies, referred to as

hybrid tree search, combined with path metric based parallel sorting at the intermediate

stages. The most important feature of the new PSD algorithm is that it assures a good

balance between the total number of processed symbol vectors and the extent of par-

allelism by adjusting its parameters. In modern MPAs complex memory hierarchies are

available, enabling the use of smaller but faster memories. The PSD algorithm is able

to adjust its memory requirements by the algorithm parameters and the allocated mem-

ory is kept constant during the processing. The above mentioned properties of the PSD

algorithm make it suitable for a wide range of parallel computing devices. In contrast,

the sequential SD algorithm can not fully exploit the resources of a parallel architecture

because the generated computational load is always constant.

A higher system level parallelism and a GP-GPU specific device level parallelism

have been identified. System level parallelism is implemented by parallel processing of the

fading blocks in each received frame. The equal and dynamic computing load distribution

strategies have been designed and it has been shown that a 15 − 64% boost in average

detection throughput can be achieved by applying the dynamic distribution of computing

80

DOI:10.15774/PPKE.ITK.2015.010



4.9. CONCLUSION

load in a multi-stream environment.

Parallel building blocks have been proposed for every stage of the PSD algorithm

which facilitates the mapping to different parallel architectures. Based on these building

blocks, an efficient implementation on a GeForce GTX 690 GP-GPU has been elaborated.

The MIMO detectors published in the literature were classified in three groups (i)

true ML detectors, (ii) GP-GPU based non-optimal detectors and (iii) DSP, ASIC or

FPGA based non-optimal detectors. In the latter two solutions some approximations,

restrictions are introduced in order to increase the data throughput at the expense of

some BER degradation. The performance of the PSD algorithm has been compared

against that of the published solutions.

In the first group the average detection throughput of ML implementations, known

from the literature, with the GP-GPU mapping of the PSD algorithm were compared.

The new PSD algorithm outperformed each of them. In group two, the performance of

existing non-optimal GP-GPU implementations have been compared with that of the GP-

GPU implementation of the PSD. The PSD outperformed almost every non-optimal GP-

GPU implementation. The average detection throughput of the GP-GPU mapping was

similar to that of the non-optimal FPGA, DSP and ASIC implementations. Although,

the throughput performance of some FPGA and VLSI based non-optimal detectors are

better, those solutions suffer from a loss in BER performance.

The average number of expanded nodes per thread was also analyzed. It was shown

that the PSD algorithm is doing much less processing in one thread compared to the SD

and ASD algorithms. For 4× 4 MIMO systems, the work of a thread, i.e., the number of

expanded nodes, has been reduced by 90−96%. Furthermore, the overall node expansion

performed by all of the threads is less compared to the theoretical average complexity

for several ε values. Consequently, the goal of efficient work distribution was achieved.

81

DOI:10.15774/PPKE.ITK.2015.010



Chapter 5

Lattice reduction and its

applicability to MIMO systems

5.1 Introduction

The application of LR as a preconditioner of various signal processing algorithms

plays a key role in several fields. Lattice reduction consists of finding a different basis

whose vectors are more orthogonal and shorter, in the sense of Euclidean norm, than

the original ones. The Minkowski or Hermite-Korkine-Zolotareff reductions are the tech-

niques that obtain the best performance in terms of reduction, but also the ones with a

higher computational cost. Both techniques require the calculation of the shortest lattice

vector, which has been proved to be NP-hard (see [100] and references therein).

In order to reduce the computational complexity of LR techniques Lenstra, Lenstra

and Lovász (LLL) in [101] proposed the polynomial time LLL algorithm. This algorithm

can be seen as a relaxation of Hermite-Korkine-Zolotareff conditions [102] or an extension

of Gauss reduction [100] and obtains the reduced basis by applying two different oper-

ations over the original basis: size-reduction (linear combination between columns) and

column swap. A different structure than that of the LLL algorithm was introduced by

Seysen in [103]. While the LLL algorithm concentrates on local optimizations, Seysen’s

reduction algorithm simultaneously produces a reduced basis and a reduced dual basis

for the lattice. Although further reduction techniques have been proposed afterwards,

the LLL algorithm is the most used due to the good trade-off between performance and

computational complexity.

Regarding the hardware implementation of the LLL algorithm, several solutions can

be found in the literature. Implementations that make use of LR to improve the detection

82

DOI:10.15774/PPKE.ITK.2015.010



5.1. INTRODUCTION

performance of multiple antenna systems can be found in [104, 32, 34, 35]. In [104],

an LR-aided symbol detector for MIMO and orthogonal frequency division multiple

access is implemented using 65 nm ASIC technologies. An FPGA implementation of a

variant of the LLL algorithm, Clarkson’s algorithm, is presented in [32], main benefit of

which is the computational complexity reduction without significant performance loss in

MIMO detection. In [33], a hardware-efficient VLSI architecture of the LLL algorithm

is implemented, which is used for channel equalization in MIMO communications. More

recently, [34] makes use of a Xilinx XC4VLX80-12 FPGA for implementing LR-aided

detectors, whereas [35] uses an efficient VLSI design based on a pipelined architecture.

Józsa et al. in [4] proposed the CR-AS-LLL algorithm. The algorithm made an ef-

ficient mapping of the algorithm for many-core massively parallel SIMD architectures

possible. The mapping exploited low level fine-grained parallelism that was combined

with efficient distribution of the work among the processing cores, resulting in mini-

mized idle time of the threads launched.

Based on the parallel block-reduction concept presented in [105], a higher level,

coarse-grained parallelism can be applied as an extra level of parallelism. The idea is

to subdivide the original lattice basis matrix in several smaller submatrices and perform

an independent LR on them followed by a boundary check between adjacent submatrices.

Based on the above block-reduction concept Józsa et al. further extended the parallelism

in [4] by introducing the MB-LLL algorithm. MB-LLL implements a parallel processing

of the submatrices by using the parallel CR-AS-LLL algorithm for the LR of every sub-

matrix. A performance comparison of the CR-AS-LLL and the MB-LLL algorithms on

various GP-GPU architectures was presented in [5].

The implementations of the previous references make use of only one architecture

to calculate the LR of a basis. A better performance can be obtained by combining

different architectures, known as heterogeneous computing [106]. Among the different

combinations, the use of CPU and GP-GPU is probably the most popular since they can

be found in most of the computers.

The CR-MB-LLL algorithm introduced by Józsa et al. in [4] further reduces the

computational complexity of the MB-LLL algorithm. The main idea behind the CR-

MB-LLL algorithm is the relaxation of the first LLL condition while executing the LR

for the submatrices, resulting in the delay of the Gram-Schmidt coefficients update and

by using less costly procedures when performing the boundary checks. The effects of this

complexity reduction are evaluated on different architectures.

83

DOI:10.15774/PPKE.ITK.2015.010



5.2. LATTICE REDUCTION PRELIMINARIES

A mapping of the CR-MB-LLL algorithm on a heterogeneous platform consisting of

a CPU and a GP-GPU is shown and it is compared with implementations running on a

GP-GPU with dynamic parallelism (DP) capability and a multi-core CPU architecture.

The proposed architecture allows the dynamic scheduling of kernels where the overhead

introduced by host-device communication is hidden by the use of CUDA streams. Results

show that the CR-MB-LLL algorithm executed on the heterogeneous platform outper-

forms the DP-based GP-GPU and multi-core CPU implementations. The mapping of

algorithms on different parallel architectures is very challenging, since the number of

processing cores, latency and size of different memories available and cache size signifi-

cantly differ.

In this section after a short overview of LR preliminaries, a brief overview of the

most important LR algorithms is given and the mapping details of the CR-AS-LLL

and CR-MB-LLL algorithms to different parallel architectures is also presented with a

special emphasis on the work distribution among the threads and the efficient memory

utilization.

5.2 Lattice reduction preliminaries

An m-dimensional lattice is the set of all integer combinations of n linearly indepen-

dent vectors b1, . . . ,bn ∈ Rm (m ≥ n). A compact representation of a lattice basis is

to set the basis vectors as columns to a lattice basis matrix B = (b1, . . . ,bn) ∈ Rm×n.

The integer n = dim(span(B)) is called the rank or dimension of the lattice. If the rank

n equals the dimension m, then the lattice is called full rank or full dimensional. The

real-valued lattice generated by matrix B is defined as

L(B) =
{

x
∣∣∣∣∣x =

n∑
i=1

zi · bi, zi ∈ Z,bi ∈ Rm
}
, (5.1)

Similarly L(B) = {Bz|z ∈ Zn} can be defined with the matrix-vector multiplication of

the lattice basis and the integer input vectors.

In the following the most important transformations, metrics and structures are pre-

sented.

1. Unimodular transformations. Generally, the columns of any matrix B̃ can form a

basis for L(B) if and only if a unimodular matrix T exists that satisfies B̃ = BT.

A unimodular matrix T ∈ Zn×n is a square integer matrix with det(T) = ±1.

Elementary matrix column operations such as reflection, swap and translation can
84

DOI:10.15774/PPKE.ITK.2015.010



5.2. LATTICE REDUCTION PRELIMINARIES

be performed with the help of unimodular matrices.

In case of reflection b̃l = −bl a specific column is multiplied by −1. The unimodular

matrix that carries out the reflection is defined as

Tl = In − 2eleTl , (5.2)

where el is an n-dimensional unit vector and the unit value is on dimension l.

Swap is defined as the interchange of two column vectors. The swap of columns k

and l according to b̃l = bk and b̃k = bl is achieved with the postmultiplication of

the unimodular matrix

T(k,l) = In − ekeTk − eleTl + ekeTl + eleTk . (5.3)

During translation b̃l = bl + bk one column is added to another column. The

unimodular matrix required for this operation is defined as

T(k,l) = In + ekeTl . (5.4)

In case if the translation operation has to be performed µ ∈ Z times, such as

b̃l = bl + µbk, the associated unimodular transformation is

Tµ
(k,l) = In + µekeTl . (5.5)

During lattice reduction the above mentioned operations are performed until the

lattice basis achieves the requirements of the reduction algorithm.

2. Fundamental structures. One fundamental region defined by the lattice basis is the

parallelotope that is defined as

P(B) =
{

x
∣∣∣∣∣x =

n∑
i=1

φi · bi, 0 ≤ φi < 1
}
. (5.6)

By shifting the parallelotope P(B) to every lattice point the span of B is completely

covered.

Another important fundamental region is the Voronoi region. Given a discrete set

85

DOI:10.15774/PPKE.ITK.2015.010



5.2. LATTICE REDUCTION PRELIMINARIES

of points Σ ∈ Rm the Voronoi region of a point yi ∈ Σ is the closed convex set

V(yi) =
{

x
∣∣∣∣∣‖x− yi‖ ≤ ‖x− yj‖, for all i 6= j

}
. (5.7)

By considering sets of points which form lattices due to the translation symmetry

of the lattice the Voronoi regions of all lattice points are congruent. Hence, the

Voronoi region of the lattice L around the origin is defined as

V(L) =
{

x
∣∣∣∣∣‖x‖ ≤ ‖x− y‖, for all y ∈ L

}
(5.8)

In contrast to the fundamental parallelotope P(B), the Voronoi region is a lattice

invariant structure meaning that it is independent of the actual lattice basis. In Fig.

5.1 a square, rhombic and hexagonal lattice is shown together with their fundametal

parallelotope and the Voronoi region.

3. Lattice Determinant. Given lattice L with basis matrix B the lattice volume or the

lattice determinant is defined as

d(L) =
√
det(BTB). (5.9)

The lattice determinant is independent of the basis. Given a unimodular matrix T ∈

Rn and a lattice basis matrix B ∈ Rm×n it can be shown that the postmultiplication

with the unimodular matrix does not change the lattice determinant

det(BTB) = det((BT)T (BT))

= det(TT )det(BTB)det(T)

= det(BTB)

(5.10)

4. Orthogonality Defect. The orthogonality defect ξ(B) of lattice basis B is defined as

ξ(B) = 1
d(L)

n∏
i=1
‖bi‖ (5.11)

The orthogonality defect measures the degree of orthogonality for a given lattice

basis matrix. Given a positive-semidefinite matrix P = BTB then Hadamard’s

86

DOI:10.15774/PPKE.ITK.2015.010



5.2. LATTICE REDUCTION PRELIMINARIES

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Figure 5.1: Square, rhombic and hexagonal lattices with the fundamental parallelotope
structures (blue) and the Voronoi regions (red).

87

DOI:10.15774/PPKE.ITK.2015.010



5.2. LATTICE REDUCTION PRELIMINARIES

inequality can be written as

det(P) = det(BTB) ≤
n∏
i=1
‖bi‖2. (5.12)

Based on Hadamard’s inequality an upper bound can be defined for the orthogo-

nality defect ξ(B) ≥ 1, with equality if and only if the columns of B are orthogonal

to each other.

5. Successive Minima. Given an n-dimensional lattice L, the i-th successive minima

for 1 ≤ i ≤ n is defined as the radius of the smallest closed ball centered at the

origin containing at least i linearly independent lattice vectors. More formally, for

any lattice L let λi(L) be the i-th successive minimum defined by:

λi(L) = inf
{
λ ≥ 0

∣∣∣∣∣L contains at least i linearly independent vectors

bj for j = 1, . . . , i such that |bj | ≤ λ
}
.

(5.13)

The shortest nonzero lattice vector of L (with respect to the Euclidean norm) is

denoted as λ1(L).

6. Dual lattice basis. If a lattice L is defined by basis vectors (b1, . . . ,bn) then the

dual lattice Ld of L is defined by basis vectors (bd1, . . . ,bdn), where

(bi,bdi ) = 1,

(bi,bdj ) = 0, for i 6= j.
(5.14)

The (·, ·) operator denotes the ordinary inner product on Rn. The above conditions

can be satisfied with the help of the right Moore-Penrose pseudoinverse, thus, the

dual lattice basis is defined as

Bd = B(BTB)−1. (5.15)

Geometrically, this means that the dual basis vector bdk is orthogonal to the sub-

space spanned by the primal basis vectors b1, · · · ,bk−1,bk+1, · · · ,bn. The deter-

minant of the dual lattice is easily seen to be given by d(Ld) = 1/d(L).

7. Associated orthogonal basis. Let B∗ = (b∗1, . . . ,b∗n) ∈ Rn×n denote the associated

orthogonal basis of B, calculated by the Gram-Schmidt orthogonalization process

88

DOI:10.15774/PPKE.ITK.2015.010



5.2. LATTICE REDUCTION PRELIMINARIES

as follows:

b∗1 = b1

b∗i = bi −
i−1∑
j=1

µi,j · b∗j for 2 ≤ i ≤ n,
(5.16)

where µi,j are the Gram-Schmidt coefficients and they are defined as

µi,j = (bi,b∗j )/(b∗j ,b∗j ) for 1 ≤ j < i ≤ n. (5.17)

With µi,i = 1 for 1 ≤ i ≤ n and µi,j = 0 for i < j the following equation holds

B = B∗ ·U

(b1, . . . ,bn) = (b∗1, . . . ,b∗n) ·



1 µ2,1 µ3,1 · · · µn,1

0 1 µ3,2 · · · µn,2
... . . . ...

0 0 0 0 1


,

(5.18)

where matrix U is upper triangular with unit diagonal and elements above the

diagonal are the Gram-Schmidt coefficients µi,j .

Some papers apply the QR factorization instead of the Gram-Schmidt orthogonal-

ization, because it is numerically more stable. In the following it is showed how

the resulting orthogonal matrix B? and the upper triangular matrix U with unit

diagonal can be transformed to matrices Q and R that are the results of the QR

factorization. By defining the diagonal matrix D = diag(di), where di = ‖b?i ‖, a

further decomposition of B? = QD is possible. As a result, matrix R = DU is

defined with the help of diagonal matrix D. As a conclusion the following relations

will hold:

• qi = b?i /‖b?i ‖,

• ri,i = di = ‖b?i ‖,

• ri,j = ri,iui,j = diui,j .

8. Complex-valued lattices. The previous discussion of real-valued point lattices can

be generalized to the complex case. Specifically, a complex-valued lattice in the

89

DOI:10.15774/PPKE.ITK.2015.010



5.3. LATTICE REDUCTION ALGORITHMS

complex space Cn is defined as

L(Bc) =
{

xc
∣∣∣∣∣xc =

n∑
i=1

zci · bci , zci ∈ Zj

}
, (5.19)

where bi ∈ Cn denotes the complex basis vectors and Zj = Z + jZ denotes the

set of complex integers. The transformation of the complex mapping to real-valued

lattice basis and points can be carried out as follows

x =

<(xc)

=(xc)


M×1

, z =

<(zc)

=(zc)


N×1

,B =

<(Bc) −=(Bc)

=(Bc) <(Bc)


M×N

. (5.20)

The above technique is similar to the transformation of the complex-valued MIMO

system model to the real-valued MIMO system model as shown in Eq. 3.5. The

transformations from complex to real can make the computations more treatable

for specific computing architectures, however, in this case the problem dimension

is doubled that can lead to an increase in the complexity as well.

The goal of lattice basis reduction is to find, for a given lattice, a basis matrix with

favorable properties. The reduction process performs a sequence of unimodular transfor-

mations until the proposed reduction criteria is achieved. Depending on the reduction

criteria, the result of the lattice reduction process can significantly differ. A favorable

basis B̃ has vectors that are more orthogonal and shorter, in the sense of Euclidean norm,

than the original ones. In the following B̃ will denote an already reduced basis.

The possible metrics that measure the quality of a lattice basis are the condition

number κ(B̃), the orthogonality defect ξ(B̃) and the Seysen criterion S(B̃). The condition

number of an arbitrary lattice basis B is defined as

κ(B) = σmax(B)/σmin(B), (5.21)

where σmax(B) and σmin(B) are the maximal and minimal singular values of B, respec-

tively.

5.3 Lattice reduction algorithms

In this section a brief overview on the most important lattice reduction criteria and

algorithms are given. The lattice reduction introduced by Hermite, Korkine, and Zolotar-

eff, and Minkowski suffer from an exponential complexity with respect to the lattice
90

DOI:10.15774/PPKE.ITK.2015.010



5.3. LATTICE REDUCTION ALGORITHMS

dimension, however, they provide the best quality reduction. With the relaxation of the

proposed conditions more practical reductions were defined in the LLL algorithm, and a

lattice reduction concept based on the dual of the lattice was introduced by Seysen.

The aim of lattice reduction is to construct reduced bases where the basis vectors are

shorter and have an improved orthogonality. The main differences between the various

lattice reduction algorithms are the imposed conditions, that will influence the achieved

orthogonality, the norm of the lattice basis and the computational cost.

5.3.1 Hermite-Korkine-Zolotareff and Minkowski lattice basis reduc-

tion

The first algorithm for constructing Hermite-Korkine-Zolotareff (HKZ) reduced lat-

tice basis was introduced by Kannan in [107]. Because of its exponential complexity

its use in practical systems is not possible, however, it can serve as a theoretical upper

bound. A complexity analysis of HKZ reduction in the context of decoding was presented

in [108]. Further improvements of the Kanaan’s algorithm were presented in [109], [110],

[111]. In the following a brief overview is given on Kanaan’s HKZ-reduced basis finding

algorithm.

The notion of weak reduction for lattices was introduced by Hermite in the context

of quadratic forms. The weak reduction states that a lattice basis B = (b1,b2, . . . ,bn)

is called size-reduced if the Gram-Schmidt coefficients µi,j satisfy

|µi,j | ≤ 1/2, for 1 ≤ i < j ≤ n, (5.22)

or the ri,j elements of its B = QR decomposition satisfy

|ri,j | ≤ 1/2|ri,i|, for 1 ≤ i < j ≤ n. (5.23)

This form of the reduction is referred to as the size reduction. A compact overview of

lattice reduction criteria and algorithms is given in [112].

Later, Korkine and Zolotareff further strengthened the reduction criteria. Before

defining the reduction criteria the notion of orthogonal complement and orthogonal pro-

jection are defined.

Definition Let W be a subspace of Rn with (u1, . . . ,uk) being an orthogonal basis for

91

DOI:10.15774/PPKE.ITK.2015.010



5.3. LATTICE REDUCTION ALGORITHMS

W . For any vector v ∈ Rn the orthogonal projection of v onto W is defined as

projW (v) = (u1,v)
(u1,u1)u1 + . . .+ (uk,v)

(uk,uk)
uk. (5.24)

Definition Let W be a subspace of Rn, v ∈ Rn is orthogonal to W if v is orthogonal to

every vector inW . The set of all vectors that are orthogonal toW is called the orthogonal

complement of W denoted by � · · · �⊥ and defined as

W⊥ =
{

v ∈ Rn
∣∣∣∣∣(v,w) = 0 for all w ∈W

}
. (5.25)

Let (b1, . . . ,bn) denote a fixed lattice basis. The projection of a ∈ Rm on

� b1, . . . ,bk �⊥ is denoted by a(k). Similarly, let the projection of L(b1, . . . ,bn) on

� b1, . . . ,bk �⊥ be denoted as Lk(b1, . . . ,bn). Vectors bk(i) can be computed with the

Gram-Schmidt orthogonalization process as follows:

bk(i) = bk −
i−1∑
j=1

µk,jbj(j), for 1 ≤ k ≤ i ≤ n, (5.26)

where µk,j = (bk,bj(j))/(bj(j),bj(j)).

Definition A basis B = (b1, . . . ,bn) is HKZ-reduced if it satisfies the following recursive

set of conditions:

• b1 is a shortest non-zero vector of L in the Euclidean norm,

• |µi, 1| ≤ 1/2 for 2 ≤ i ≤ n,

• if L2(b2(2), . . . ,bn(2)) denotes the projection of L1 on the orthogonal complement

� b1 �⊥, then the projections b2(2), . . . ,bn(2) yield a Korkin-Zolotarev basis of

L2.

Later, Minkowski introduced a stronger reduction criteria, which is now known as

Minkowski-reduction. After performing Minkowski-reduction the first vector b̃1 of the

reduced basis B̃ is the shortest non-zero vector of the lattice L(B̃). Furthermore, every

b̃j for 2 ≤ j ≤ n has to be a shortest vector in L(B̃) that is linearly independent of

b̃1, . . . , b̃j−1.

Definition An ordered basis (b1, . . . ,bn) is reduced in the sense of Minkowski, or that

is a Minkowski reduced basis, if it satisfies the following conditions:

92

DOI:10.15774/PPKE.ITK.2015.010



5.3. LATTICE REDUCTION ALGORITHMS

• b1 is a shortest non-zero vector of L in the Euclidean norm,

• bi is a shortest vector among lattice vectors not in the span(b1, . . . ,bi−1), for

i = 2, 3, . . . , n.

Algorithms that construct Minkowksi-reduced basis were presented in [109], [113],

[114]. These algorithms, similar to the algorithms mentioned in the context of HKZ

reduction, suffer from an exponential complexity with respect to the lattice dimension.

Thus, their use in practical systems is not feasible.

Before giving the details of the HKZ algorithm the notion of lifting has to be intro-

duced. The lifting is the procedure when a vector given in Lk+1 is determined with the

basis of Lk. Equally, lifting is the search of a vector in v(k) ∈ Lk whose projection on

Lk+1 is v(k + 1). Let v(k + 1) =
∑n
i=k+1 vibi(k + 1) ∈ Lk+1 denote the vector that has

to be lifted to Lk. Let v̄(k) ∈ Lk denote a vector with the same coordinates as v(k + 1)

but with the basis vectors of Lk+1 defined as

v̄(k) =
n∑

i=k+1
vibi(k). (5.27)

In order to get a shortest vector v(k) ∈ Lk whose projection on Lk+1 is v(k + 1) the

subtraction of the common parts is done as

v(k) = v̄(k)− bk(k)(v̄(k),bk(k))
bk(k),bk(k) . (5.28)

Algorithm 7 constructs a HKZ reduced basis. This algorithm was originally intro-

duced by Kanaan in [107] and refined by Helfrich in [109].

5.3.2 The Lenstra-Lenstra-Lovász lattice basis reduction

In [101] Lenstra et al. proposed a polynomial time lattice reduction algorithm. In

the literature, this algorithm is referred to as the LLL reduction algorithm. Because the

algorithm performs well in practice it is an extensively used technique.

Definition Given a lattice L with basis B = (b1, · · · ,bn) ∈ Rn×n, associated orthogonal

basis B∗ = (b∗1, . . . ,b∗n) ∈ Rn×n, and Gram-Schmidt coefficients µi,j , B is called LLL-

reduced if the following conditions are satisfied:

|µi,j | ≤
1
2 for 1 ≤ j < i ≤ n (5.29)

‖b∗i + µi,i−1b∗i−1‖2 ≥ δ‖b∗i−1‖2 for 1 < i ≤ n, 3
4 ≤ δ < 1. (5.30)

93

DOI:10.15774/PPKE.ITK.2015.010



5.3. LATTICE REDUCTION ALGORITHMS

Algorithm 7 Hermite-Korkin-Zolotareff lattice reduction algorithm
1: Input: (n,b1,b2, . . . ,bn)
2: Output: (b1,b2, . . . ,bn) as HKZ reduced basis
3: if n = 1 then b1 is HKZ reduced return
4: (b1, . . . ,bn)← perform LLL lattice reduction on L(b1, . . . ,bn) and replace basis .

The details of LLL lattice reduction are presented in Sec. 5.3.2
5: (b′2, . . . ,b′n)← HKZ(n− 1,b2(2), . . . ,bn(2))
6: for i = 2→ n do
7: bi ← a shortest lattice element whose projection on � b1 �⊥ is b′i . b′i is lifted

to Ln as discussed in Eqs. 5.27 and 5.28
8: end for
9: if |b1|2 > 4

3 |b2|2 then (b1,b2)← HKZ(2,b1,b2) end if . With this call the LLL
reduction will swap b1 and b2

10: Find the shortest lattice vector v . One possible solution is to launch the SD
algorithm to find the closest vector to the origin

11: Construct a lattice basis (v,b1, . . . ,bn) with v being the first column .
The Selectbasis procedure introduced by Kanaan in [107] constructs the basis in
polynomial time

12: (b′2, . . . ,b′n)← HKZ(n− 1,b2(2), . . . ,bn(2))
13: for i = 2→ n do
14: bi ← a shortest lattice element whose projection on � b1 �⊥ is b′i
15: end for

During the reduction process, local changes are made based on the conditions pre-

sented in Eqs. 5.29 and 5.30 in order to achieve a reduced basis. Algorithm 8 gives a

detailed overview of the LLL algorithm. Practically, two types of unimodular transforma-

tions are performed repeatedly, namely the swap and the repeated translation. Equations

5.3 and 5.5 show how unimodular matrices can be constructed for these type of transfor-

mations. After a size reduction or swap the Gram-Schmidt coefficients and the associated

orthogonal basis have to be updated.

If a lattice basis satisfies the above conditions with δ = 3/4 then the following bounds

can be defined

|bj |2 ≤ 2i−1|b∗i | for 1 ≤ j ≤ i ≤ n,

d(L) ≤
n∏
i=1
|bi| ≤ 2n(n−1)/4d(L),

|b1| ≤ 2(n−1)/4d(L)1/n.

(5.31)

Based on the above the first vector in the reduced lattice basis b1 satisfies |b2
1| ≤

2n−1|x|2 for every x ∈ L,x 6= 0. Theoretically, the length of b1 is at most an exponential

multiple of the length of the shortest nonzero vector in the lattice. The proof is given in

[101].

94

DOI:10.15774/PPKE.ITK.2015.010



5.3. LATTICE REDUCTION ALGORITHMS

Algorithm 8 The Lenstra-Lenstra-Lovász lattice reduction algorithm
1: Input: B, δ
2: Output: LLL-reduced basis
3: Compute B∗ and U with the Gram-Schmidt algorithm
4: k = 2
5: while k ≤ n do
6: SizeReduce(k,k − 1)
7: if ‖b∗

k‖2 < (δ − µ2
k,k−1)‖b∗

k−1‖2 then
8: Swap(k)
9: k = max(k − 1, 2)

10: else
11: for l = k − 2→ 1 do
12: SizeReduce(k,l)
13: end for
14: k = k + 1
15: end if
16: end while
17: procedure SizeReduce(k,l)
18: if |µk,l| > 1

2 then
19: µ = dµk,lc, µk,l = µk,l − µ, bk = bk − µ · bl

20: for j = 1→ l − 1 do
21: µk,j = µk,j − µ · µl,j

22: end for
23: end if
24: end procedure
25: procedure Swap(k)
26: Swap bk with bk−1
27: b∗p

k−1 = b∗
k + µk,k−1b∗

k−1
28: µp

k,k−1 = (b∗
k−1,b

∗p
k−1)/‖b∗p

k−1‖2

29: b∗p
k = b∗

k−1 − µ
p
k,k−1b∗p

k−1
30: for j = 1→ k − 2 do
31: Swap µk,j with µk−1,j

32: end for
33: for i = k + 1→ n do
34: µp

i,k−1 = µi,k−1 · µp
k,k−1 + µi,k · ‖b∗

k‖2/‖b∗p
k−1‖2

35: µp
i,k = µi,k−1 − µi,k · µk,k−1

36: µi,k = µp
i,k, µi,k−1 = µp

i,k−1
37: end for
38: b∗

k−1 = b∗p
k−1,b∗

k = b∗p
k ,µk,k−1 = µp

k,k−1
39: end procedure

95

DOI:10.15774/PPKE.ITK.2015.010



5.3. LATTICE REDUCTION ALGORITHMS

5.3.3 Seysen’s lattice basis reduction

In Sec. 5.3.2 it was shown that the LLL algorithm achieves reduced basis by local

operations such as swap and size reductions. The reduction concept introduced by Seysen

in [103] attempts to globally reduce a lattice basis by performing reduction operations

on the lattice basis and its dual basis, respectively. Furthermore, Seysen’s reduction

algorithm can be successfully applied to solve subset sum problems as well.

Since Seysen’s algorithm tries to find a good basis for the dual lattice as well, it is

important to see how translation will effect the dual lattice. The definition of the dual

lattice basis was given in Eq. 5.14. Recall that during translation a constant multiple of

one lattice basis vector is added to another basis vector b̃l = bl + µbk. For j 6= k no

further operations are required since

(b̃l,b∗j ) = (bl + µbk,b∗j )

= (bl,b∗j ) + µ(bk,b∗j ) = 0.
(5.32)

However, when j = k, a change must occur in the dual lattice as well, otherwise Eq. 5.14

will not hold. In this case a negative translation is required, thus b̃∗k = b∗k − µb∗l . It can

be seen that with the negative translation the dual basis satisfies the condition

(b̃l, b̃∗k) = (bl,b∗k − µb∗l ) + µ(bk,b∗k − µb∗l )

= (bl,b∗k)− µ(bl,b∗l ) + µ(bk,b∗k)− µ2(bk,b∗l )

= 0− µ+ µ+ 0 = 0.

(5.33)

For each lattice basis B the associated positive definite quadratic form is defined

as A = BTB. Let A−1 denote the symmetric positive definite inverse of A and let a∗i,j
denote the element of matrix A−1 at row i and column j. A basis transformation B̃ = BT

with unimodular matrix T transforms the associated quadratic form as Ã = TTAT.

Definition For any quadratic form A with inverse A−1 the Seysen measure S(A) is

defined as

S(A) =
n∑
i=1

ai,i · a∗i,i =
n∑
i=1
‖bi‖2‖b∗i ‖2. (5.34)

Definition A lattice basis and its associated quadratic form A is called S-reduced if

S(A) ≤ S(TTAT) holds for all T ∈ Zn×n unimodular matrices.

96

DOI:10.15774/PPKE.ITK.2015.010



5.3. LATTICE REDUCTION ALGORITHMS

Based on the above definition Seysen in [103] proved the following bounds

λi(A)2 ≤ ai,i ≤ S(A)2 · λi(A)2,

1
S(A) · λi(A)2 ≤ a

∗
i,i ≤

S(A)
λi(A)2 .

(5.35)

Since the computation of S-reduced basis is computationally difficult, Seysen intro-

duced the notion of S2-reduction that is a relaxed version of the S-reduction. Instead of

searching for a general unimodular matrix T, the reduction process is implemented with

the repeated translation operator Tµ
k,l.

Definition A quadratic form is called S2-reduced if

S(A) ≤ S(Tµ
k,lATµ

l,k) (5.36)

holds for all k, l, µ ∈ Z with 1 ≤ i 6= j ≤ n.

Algorithm 9 Seysen’s lattice reduction algorithm
1: Input: The associated quadratic form A of the lattice basis
2: Output: S2-reduced lattice basis
3: while A is not S2-reduced do
4: Choose k, l such that ∃µ ∈ Z with
5: S(Tµ

(l,k)ATµ
(k,l)) ≤ S(A)

6: let µ = d1
2( a

∗
i,j

a∗j,j
− a(i,j)

a(i,i)
)c

7: let A = Tµ
(l,k)ATµ

(k,l).
8: end while

In Alg. 9 it is not specified how i and j is selected. The easiest way is to implement

two for loops and enumerate all the (i, j) pairs and then repeat the process until S(A)

cannot be reduced anymore. There are no known bounds for the Seysen measure of an

S2-reduced basis nor on the length of the shortest nonzero vector in the basis.

In Fig. 5.2 the performance of the LLL and Seysen’s lattice reduction is presented.

The elements of the lattice basis are assumed to be i.i.d. zero-mean, complex circularly

symmetric Gaussian variables with unit variance. The size of the lattice basis is 8 × 8,

however, it is transformed to a real-valued basis based on Eq. 5.20, consequently, 16×16

real-valued basis are reduced. The reduction algorithms significantly decrease the size of

the condition number κ(B̃) and the orthogonality defect ξ(B̃).

97

DOI:10.15774/PPKE.ITK.2015.010



5.4. LATTICE REDUCTION AIDED SIGNAL PROCESSING

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ln κ(B̃)

C
D
F

 

 

None
LLL
Seysen

2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ln ξ(B̃)

C
D
F

 

 

None
LLL
Seysen

Figure 5.2: The cumulative distribution function of the condition number κ(B̃) and
orthogonality defect ξ(B̃) after Lenstra-Lenstra-Lovász and Seysen lattice reduction for

16× 16 zero-mean, unit variance Gaussian random matrices.

5.4 Lattice reduction aided signal processing

In this section application of lattice reduction to MIMO detection and MISO precod-

ing is considered. The equivalent system models are given and the improvement in the

BER is shown.

5.4.1 Lattice reduction aided MIMO detection

In [14] Yao et. al discussed how the performance of linear and non-linear detectors

can be improved when used in conjuction with LR techniques. The detection techniques

discussed in Sec. 4.2 assume that the channel is known by the receiver. Moreover, these

techniques heavily rely on the channel matrix. The condition of the channel matrix highly

influences the achieved BER. Thus, it is straightforward to regard the channel matrix

as a lattice generator basis. Consequently, the condition number and the orthogonality

defect of the channel matrix are improved. In [16], [18] it was shown that linear and
98

DOI:10.15774/PPKE.ITK.2015.010



5.4. LATTICE REDUCTION AIDED SIGNAL PROCESSING

Figure 5.3: Equivalent system model of lattice reduction aided MIMO detection.

non-linear detection based on the reduced basis H̃ achieves full diversity order, which

is a significant performance improvement. Instead of using the channel matrix, when

computing the detector’s weight matrix, it is better to work with the reduced channel

matrix. For complex-valued systems, either the corresponding lattice reduction algorithm

has to be adapted to the complex-valued case or the equivalent real-valued system model

has to be used. In the following the real-valued system is considered.

In the context of the fundamental lattice structures it is straightforward that the

Voronoi regions and the ML detection regions are equal and independent from the lattice

basis. The ZF decision regions correspond to parallelotope P(H). After lattice reduction

the basis vectors are shorter and more orthogonal, thus, parallelotope P(H̃) will be more

similar to the Voronoi region V(L) than P(H), resulting in a better detector performance.

In Fig. 5.1 different lattices were shown. In case of square lattices the Voronoi region

and the paralellotopes are similar. Consequently, if the channel matrix happens to be

orthogonal ZF detection will provide ML performance.

The equivalent lattice reduced model is shown in Fig. 5.3 and is described as follows

y = HTT−1s + n = H̃z + n. (5.37)

If at the receiver side a linear ZF detector based on the reduced channel is implemented,

the detection process is defined as follows

z̃ZF = H̃†y = z + H̃†n. (5.38)

Because H̃ is more orthogonal the noise enhancement is reduced. Consequently, a quan-

tization based on z̃ZF is more reliable than that of s̃ZF . After the quantization of

ẑZF = Q(z̃ZF ), transformation ŝ = TẑZF is required to return to the original signal

99

DOI:10.15774/PPKE.ITK.2015.010



5.4. LATTICE REDUCTION AIDED SIGNAL PROCESSING

space.

The transformation also affects the original constellation. Thus, the decision regions

of the transformed constellation differ from the original and the computation of these is

very expensive. A suboptimal alternative was presented in [17] with the following steps

• quantize z̃ with respect to Zn;

• return to the original symbol space by multiplying with T,

• clip the result with respect to D.

Another problem is related to the quantization of z̃ with respect to Zn. As presented

in Eq. 3.3 the elements of the M-QAM constellation are normalized and D 6⊂ Z. Since

T is a unimodular matrix it follows that z = T−1s /∈ Zn. Recall, two basis H and H̃

describe the same lattice L(H) = L(H̃) if H̃ = HT, where T is unimodular, and if the

input symbols are elements of the infinite integer space Zn.

A scaling and shifting transformation method of D was presented in [15]. The point

is to decompose D to an integer subset DnZ ⊂ Zn and a constant shifting element that

are scaled as follows

Dn = a(DnZ + 1
21n), (5.39)

where 1n denotes an n-dimensional vector with unity elements and parameter a was

defined in Eq. 3.3. Thus, the transmit signal vector s ∈ Dn can be rewritten as

s = a(s + 1
21n) with s ∈ DnZ. Consequently, the transformed signal vector z can be rep-

resented by

z = T−1s = aT−1
(

s + 1
21n

)
= a

(
z + 1

2T−11n
)
, (5.40)

where z = T−1s ∈ T−1DnZ ⊂ Zn.

In case of LR-aided linear ZF detection z̃ is determined as

z̃ = z + H̃†n = a(z + 1
2T−11n) + H̃†n. (5.41)

Thus, before the quantization process z is scaled and shifted

ẑ = a

(
QZn

{1
a
z̃− 1

2T−11n
}

+ 1
2T−11n

)
. (5.42)

The estimation for the transmit signal is ŝ = Tẑ and can be rewritten as

ŝ = aTQZn
{1
a
z̃− 1

2T−11n
}

+ a

21n. (5.43)

100

DOI:10.15774/PPKE.ITK.2015.010



5.4. LATTICE REDUCTION AIDED SIGNAL PROCESSING

5 10 15 20 25 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

 

 

ZF
LLL-ZF
Seysen-ZF

MMSE
LLL-MMSE
Seysen-MMSE

ML

Figure 5.4: Bit error rate of lattice reduction aided linear detectors for 4× 4 MIMO
systems with 16-QAM symbol constellation.

In Fig. 5.4 it is shown how the LLL and Seysen’s LR techniques improve the per-

formance of ZF and MMSE detectors. It is visible that after LR full diversity order is

achieved and Seysen’s method is slightly better.

5.4.2 Lattice reduction aided MISO precoding

The downlink of an orthogonal frequency-division multiplexing (OFDM) multi-user

MISO wireless communication system with a BS equipped with n antennas that serves

m MSs equipped with one antenna each is considered in this section. The MSs share

the same set of K OFDM subcarriers through spatial multiplexing. The received signal

at the MSs on the k-th subcarrier is expressed as yc[k] = Hc[k]xc[k] + nc[k], where

yc[k] ∈ Cm×1 contains the received symbols for all the MSs, the element hcij [k] of the

channel matrix Hc[k] ∈ Cm×n represents the complex fading gain from the j-th transmit

antenna to the i-th MS. Vector xc[k] ∈ Cn×1 contains the precoded symbols transmitted

by the BS and nc[k] ∈ Cm×1 is the noise vector on the k-th subcarrier. It is common

to use the M = 2m and N = 2n dimensional real-valued equivalent system model as

presented in Eq. 3.5.

The multi-user interference must be cancelled at the transmitter. ZF is the simplest

precoding technique, but it performs poorly when the channel matrix is badly conditioned

101

DOI:10.15774/PPKE.ITK.2015.010



5.4. LATTICE REDUCTION AIDED SIGNAL PROCESSING

[11]. Other non-linear methods have been proposed in the literature to reduce the power

of the precoded signal resulting in an increased SNR at the receiver compared to ZF

precoding. Since the precoding must be performed for all the subcarriers in the following

subcarrier index k is omitted.

Lattice reduction aided Tomlinson-Harashima precoding

Tomlinson-Harashima precoding (THP) is a technique that uses the modulo operation

to limit the power of every transmitted symbol [10]. THP can also be used together with

lattice reduction. Performing a lattice reduction over the channel matrix, H̃ = TLH with

unimodular matrix TL results in the reduced basis H̃. The LQ-factorization is performed

on the reduced basis H̃ = L0Q0 = (L0G−1)(GQ0) = LQ, where L0 is a lower triangular

matrix, Q0 is an orthogonal matrix and G is a diagonal matrix containing the diagonal

of L0. Transforming the original real-valued vector of data symbols s ∈ RM×1 with TL

(step A2.1 in Table 5.1) allows to perform the THP on the reduced matrix H̃, which

shows better orthogonality properties. The different steps of the algorithm are shown in

Table 5.1, section A, although a more detailed description can be found in [13], [115]. A

possible value of parameter A could be set as A = 2
√
|Ω̃|.

Lattice reductiona aided Vector Perturbation precoding

The vector perturbation technique consists of perturbing the original data to reduce

the power of the precoded signal [12]. The optimal vector perturbation can be expressed

as

p = arg min
p′∈AZM

‖H†(s + p′)‖2. (5.44)

The calculation of the optimal perturbation is a very computationally demanding task

and sub-optimal techniques are usually employed. A brief overview of two different tech-

niques is given in Table 5.1, subsections B and C, respectively. A detailed description of

both algorithms can be found in [116], [115]. As shown in [115],the lattice-reduction-aided

precoding (LRAP) V-BLAST algorithm shows a better performance but also a higher

computational complexity than LRAP linear precoders. Similarly to LR-THP, the step

C2.2 in Table 5.1 shows a sequential calculation of the different elements of vector q̃.

The achieved BER performance for very large multi-user MISO systems with antenna

configurations (a) N = M = 64 and (b) N = M = 128 are shown in Figs. 5.5 and 5.6,

where the following algorithms were evaluated: (i) ZF precoding [11], (ii) THP precoding

[10] and (iii) the LRAP techniques presented above. The LRAP techniques significantly

reduce the BER compared to ZF and THP showing a higher diversity order. Similar
102

DOI:10.15774/PPKE.ITK.2015.010



5.4. LATTICE REDUCTION AIDED SIGNAL PROCESSING

Table 5.1: Lattice reduction aided precoding algorithms.

A. LR-THP algorithm [13]
A1.- Preprocessing stage:
1.- H̃ = TLH
2.- H̃ = L0Q0 = (L0G−1)(GQ0) = LQ
3.- Q† = (GQ0)† = QT

0 G−1

A2.- Per-symbol-vector processing stage:
1.- ŝ = TLs
2.- for k = 1, . . . ,M

x̂k = ŝk −
∑k−1
l=1 lk,lx̃l

x̃k = x̂k mod A = x̂k −A
⌊
x̂k
A + 0.5

⌋
end

3.- x = Q†x̃
B. LRAP-LIN algorithm [116]

B1.- Preprocessing stage:
1.- H† = H̃†TR

B2.- Per-symbol-vector processing stage:
1.- papp = −AT−1

R d
TRs
A c

2.- x = H†(s + papp)
C. LRAP V-BLAST algorithm [116]

C1.- Preprocessing stage:
1.- H† = H̃†TR
2.- QH̃† = L
C2.- Per-symbol-vector processing stage:
1.- q = −QH†s
2.- for k = 1, . . . ,M

q̃k = Ad qk−
∑k−1

l=1 lk,lq̃l
A c

end
3.- papp = TRq̃
4.- x = H†(s + papp)

103

DOI:10.15774/PPKE.ITK.2015.010



5.5. LATTICE REDUCTION PARALLELIZATION STRATEGIES

0 5 10 15 20 25 30 35

10−4

10−3

10−2

10−1

100

SNR (dB)

A
ve

ra
ge

 u
nc

od
ed

 B
E

R
 

 

ZF
THP
LRAP−Lin
LRAP−VB
LRA−THP

Figure 5.5: Average uncoded bit error rate per subcarrier for 64× 64 MIMO systems
with 4-QAM symbol constellation.

 

 

ZF
THP
LRAP−Lin
LRAP−VB
LRA−THP

0 5 10 15 20 25 30 35
SNR (dB)

 

10−4

10−3

10−2

10−1

100

A
ve

ra
ge

 u
nc

od
ed

 B
E

R

Figure 5.6: Average uncoded bit error rate per subcarrier for 128× 128 MIMO systems
with 4-QAM symbol constellation.

results for smaller systems were presented in [116], [100] where LR-aided techniques also

achieved full diversity. Thus, LR has proved to be a decisive technique for improving

BER performance also in very large MISO systems.

5.5 Lattice reduction parallelization strategies

In this section the fundamental parallelization possibilities of the LLL algorithm are

discussed. Since the LLL algorithm shows a highly sequential behavior, multiple levels

of parallelism have to be identified and exploited in order to efficiently parallelize this

algorithm. Extensive research of LR techniques has led to important improvements in

computational cost, as those achieved thanks to the parallelization of the sequential LLL

algorithm. During the design of the parallel LLL algorithm, multiple levels of parallelism

were identified.

104

DOI:10.15774/PPKE.ITK.2015.010



5.5. LATTICE REDUCTION PARALLELIZATION STRATEGIES

Villard in [117] introduced the concept of the all swap reduction, that enables simul-

taneous basis swaps and served as a basis for future parallel implementations.

In [105] Wetzel introduced the block reduction concept. It enables to perform one

iteration of the LLL algorithm in parallel by creating non-overlapping sub-groups. This

can be regarded as a higher level parallelization possibility. In the following a brief

overview of these techniques is given.

5.5.1 The All-Swap lattice reduction algorithm

Basically, LR consists of a succession of swaps between vectors of the basis and some

operations to decrease their norms. The order in which the swaps are applied in the

LLL algorithm is limiting in a parallel framework. Thus, in [117] first the any swap

reduction concept was introduced. The LLL algorithm is modified such that there is no

restriction in the order in which the swaps are applied. This means that for any k where

‖b∗k‖2 < (δ − µ2
k,k−1)‖b∗k−1‖2 is true, basis vectors bk and bk−1 are swapped. The order

in which the swaps are performed does not affect the final result.

The concept of any swap reduction was further improved and the all-swap reduction

strategy was introduced. The basic idea is to use several swaps simultaneously at each

step of reduction. In order to avoid concurrency issues, the (i) even and (ii) the odd

phases are defined. In the odd phase all vectors bk and bk+1 are swapped where k is odd

and inequality ‖b∗k‖2 < (δ − µ2
k,k−1)‖b∗k−1‖2 is fulfilled and in the even phase the same

is done for the even k values. At this point n/2 processors could work simultaneously.

As a conclusion, the all swap strategy enabled simultaneous basis swaps and served

as a good basis for future parallel implementations.

5.5.2 The parallel block reduction concept

In [105] the parallel block reduction concept was introduced. Recall, in the LLL algo-

rithm the lattice basis reduction is performed globally at once. However, the main goal

of the block reduction is to define m disjoint blocks of size l and perform LLL reduc-

tion locally on these blocks. In a lattice basis B = (b1, . . . ,bn) of size n, m = dn/le

number of blocks of size l are defined. Let B[k] = (bl·(k−1)+1, . . . ,bl·k) denote the k-th

lattice basis block, let B∗[k] = (b∗l·(k−1)+1, . . . ,b
∗
l·k) denote the k-th associated orthog-

onal lattice basis and the corresponding Gram-Schmidt coefficients are represented by

U[k] = U(l·(k−1)+1,...,l·k)×(l·(k−1)+1,...,l·k) an l × l submatrix of U. After every block is

reduced the Gram-Schmidt coefficients are updated and size reduction is performed. Fi-

105

DOI:10.15774/PPKE.ITK.2015.010



5.6. PARALLEL LATTICE REDUCTION ALGORITHMS AND THEIR MAPPING
TO PARALLEL ARCHITECTURES

nally, the swap condition is checked at every boundary of the adjacent blocks. In case of

a swap the involved blocks have to restart the local LLL reduction.

This approach enables a higher level, coarse grained parallelism, because no frequent

synchronization is required. A detailed complexity analysis of the parallel block reduction

algorithm was given in [105].

5.6 Parallel lattice reduction algorithms and their mapping

to parallel architectures

This section aims to give a description of the newly introduced parallel LR algorithms

and concepts by Józsa et al. in [2], [4] and [5]. The results of this section form Thesis

group III. Three algorithms are presented: (i) the CR-AS-LLL algorithm, (ii) the MB-

LLL algorithm and (iii) the CR-MB-LLL algorithm. Mappings to multi-core, many-core

architectures and a heterogeneous platform are discussed.

In the CR-AS-LLL algorithm the size reduction delay concept is further refined, thus,

an efficient mapping to multi-core and many-core becomes possible. With the improved

delay concept the computational complexity is further reduced.

The MB-LLL algorithm allows to split a large matrix in several smaller-sized sub-

matrices where parallel LR is performed in a block-wise manner with the CR-AS-LLL

parallel LR algorithm. It is shown how dynamic parallelism can be applied to reduce

communication with the CPU.

The CR-MB-LLL further reduces the computational complexity of the MB-LLL al-

gorithm, by relaxing the first LLL condition in the submatrices and with the use of a

simplified swap procedure in case of a block boundary swap. A heterogeneous platform

is designed in order to achieve better performance.

Finally, the presented algorithms are evaluated and their performance is compared.

5.6.1 The Cost-Reduced All-Swap LLL lattice reduction algorithm

In [118], the concept of delaying the size reductions was introduced. In the CR-AS-

LLL algorithm, further computational cost is saved by rearranging and delaying the

frequently used size reduction procedure.

Procedures SimpleSizeReduce, SimpleSwap and Swap are defined in order to

give an accurate description of the CR-AS-LLL algorithm.

106

DOI:10.15774/PPKE.ITK.2015.010



5.6. PARALLEL LATTICE REDUCTION ALGORITHMS AND THEIR MAPPING
TO PARALLEL ARCHITECTURES

Procedure 1 (SimpleSizeReduce(B, k, l)) Given a lattice generator matrix B and

the associated Gram-Schmidt coefficients matrix U, if condition (5.29) is not satisfied,

i.e. |µk,l| > 1
2 , the following updates are applied:

• µ = dµk,lc, µk,l = µk,l − µ, bk = bk − µbl.

Procedure 2 (SimpleSwap(B, k)) Given a lattice generator matrix B, the associated

orthogonal basis B∗ and Gram-Schmidt coefficients matrix U, if condition (5.30) is not

satisfied, or equivalently ‖b∗k‖2 < (δ−µ2
k,k−1)‖b∗k−1‖2, the following updates are applied:

• swap bk with bk−1,

• b∗pk−1 = b∗k+µk,k−1b∗k−1, µ
p
k,k−1 = (b∗k−1,b

∗p
k−1)/‖b∗pk−1‖2, b∗pk = b∗k−1−µ

p
k,k−1b

∗p
k−1,

• b∗k−1 = b∗pk−1,b∗k = b∗pk ,µk,k−1 = µpk,k−1.

Procedure 3 (Swap(B, k)) Given a lattice generator matrix B, the associated orthogo-

nal basis B∗ and Gram-Schmidt coefficients matrix U, if condition (5.30) is not satisfied,

or equivalently ‖b∗k‖2 < (δ − µ2
k,k−1)‖b∗k−1‖2, the following updates are applied:

• perform SimpleSwap(k),

• swap µk,j with µk−1,j, for 1 ≤ j < k − 1,

•

 µi,k−1

µi,k

 =

 µi,k−1µ
p
k,k−1 + µi,k‖b∗k‖2/‖b

∗p
k−1‖2

µi,k−1 − µi,kµk,k−1

 for k + 1 ≤ i < n.

In Alg. 10 a detailed description of the CR-AS-LLL algorithm is given. In this case

the extent of the parallelism depends on the size of the lattice basis. Note that synchro-

nization is frequently required, however, an efficient distribution of the work among the

threads leads to significant decrease in the execution time.

When mapped to GP-GPU the performance of the CR-AS-LLL algorithm depends

on the efficiency of the work distribution among the available GP-GPU threads and

the implementation of the most frequently used operations, such as dot products, size

reductions and column swaps. In Alg. 11 the CUDA pseudo-code is presented and Fig.

5.7 presents a possible mapping for the main parts of the CR-AS-LLL algorithm. The

kernel is launched with a one dimensional grid whose size is determined by the number

of lattice basis processed simultaneously. The thread blocks TB(Tx, Ty) launched have a

two dimensional configuration, where Tx and Ty denote the number of threads in the x

and y dimension. The number of threads Ty is defined based on the size of the original

107

DOI:10.15774/PPKE.ITK.2015.010



5.6. PARALLEL LATTICE REDUCTION ALGORITHMS AND THEIR MAPPING
TO PARALLEL ARCHITECTURES

Algorithm 10 The Cost-Reduced All-Swap LLL lattice reduction algorithm
1: Input: B, δ
2: Output: LLL reduced basis
3: Compute B∗ and U with the Gram-Schmidt algorithm
4: oddSwap = true, evenSwap = true, i = 1
5: while oddSwap or evenSwap do
6: if i mod 2 == 1 then
7: oddSwap = false, off = 1
8: else
9: evenSwap = false, off = 0

10: end if
11: for k = 2 + off to n step 2 do . Embarrassingly parallel for all k
12: Update µk,k−1
13: SimpleSizeReduce(k,k − 1) . Only µk,k−1 is reduced
14: if ‖b∗

k‖2 < (δ − µ2
k,k−1)‖b∗

k−1‖2 then
15: SimpleSwap(k) . No GS coefficients are updated
16: if i mod 2 == 1 then
17: oddSwap = true
18: else
19: evenSwap = true
20: end if
21: end if
22: end for
23: UpdateGSCoefficients . Highly parallel
24: i = i+ 1
25: end while
26: procedure SimpleSizeReduce(k,l)
27: if |µk,l| > 1

2 then
28: µ = dµk,lc, µk,l = µk,l − µ, bk = bk − µ · bl

29: end if
30: end procedure
31: procedure SimpleSwap(k)
32: Swap bk with bk−1
33: b∗p

k−1 = b∗
k + µk,k−1b∗

k−1
34: µp

k,k−1 = (b∗
k−1,b

∗p
k−1)/‖b∗p

k−1‖2

35: b∗p
k = b∗

k−1 − µ
p
k,k−1b∗p

k−1
36: b∗

k−1 = b∗p
k−1,b∗

k = b∗p
k ,µk,k−1 = µp

k,k−1
37: end procedure
38: procedure UpdateGSCoefficients
39: for i = n− 1→ 1 do
40: for j = n→ i+ 2 do
41: µj,i = (bj ,b∗

i )/‖b∗
i ‖2

42: SimpleSizeReduce(j,i)
43: end for
44: end for
45: end procedure

108

DOI:10.15774/PPKE.ITK.2015.010



5.6. PARALLEL LATTICE REDUCTION ALGORITHMS AND THEIR MAPPING
TO PARALLEL ARCHITECTURES

Algorithm 11 The pseudocode of the Cost-Reduced All-Swap LLL CUDA kernel -
processing of one lattice basis Bi with a two dimensional thread block configuration
TB(Tx, Ty)
1: Input: Bi,B∗i,U, δ and thread identifiers idx, idy
2: Output: Bi as a LLL reduced basis
3: Definition of shared arrays buf1[Ty][Tx], buf2[Ty][Tx], µ[Ty]
4: Definition of shared variables odd = true, even = true and private variable off
5: Copy the elements above the diagonal from U to shared array U\[n− 1]
6: while odd or even do . Tx · Ty threads are working on the while loop
7: off = (off + 1) mod 2
8: for k = idy ∗ 2 + 1 + off to n step k += Ty ∗ 2 do
9: Call DotProduct(b∗k−1,b∗k−1,buf1[idy][]), DotProduct(bk,b∗k−1,buf2[idy][])
10: Threads with (idx == 0) set U\[k − 1] = buf2[idy][0]/buf1[idy][0]
11: if |U\[k − 1]| > 0.5 then . Check reduction criteria
12: Threads with (idx == 0) set µ[idy] = dU\[k − 1]c
13: Call SimpleSizeReduce(bk,bk,bk−1, µ[idy])
14: end if
15: Call DotProduct(b∗k,b∗k,buf2[idy][])
16: if buf2[idy][0] < (δ − U\[k − 1]2) · buf1[idy][0] then
17: Call SimpleSwap(bk,bk−1, buf1[idy][])
18: Call SimpleSizeReduce(b∗p,b∗k,b∗(k−1), U\[k − 1])
19: Call DotProduct(b∗p,b∗p,buf1[idy][]), DotProduct(b∗k−1,b∗p,buf2[idy][])
20: Threads with (idx == 0) set U\[k − 1] = buf2[idy][0]/buf1[idy][0] and set odd or even to

true depending on the off variable
21: Call SimpleSizeReduce(b∗k,b∗(k−1),b∗p, U\[k − 1]) and update b∗(k−1) = b∗p
22: end if
23: end for
24: Synchronize threads
25: end while
26: Copy the U\ to the diagonal elements of U
27: Update the rest of GS coefficients based on the procedures and methods presented above
28: procedure DotProduct(v1, v2, buf [Tx]) . The result is stored in buf at index 0
29: buf [idx] = 0
30: for i = idx to n step i += Tx do buf [idx] += v1i · v2i end for
31: for stride = Tx/2 to stride > 0 step stride >>= 1 do
32: if idx < stride then buf [idx] += buf [idy][stride+ idx] end if
33: end for
34: end procedure
35: procedure SimpleSizeReduce(v1, v2, v3, µ)
36: for i = idx to n step i += Tx do v1i = v2i − µ · v3i end for
37: end procedure
38: procedure SimpleSwap(v1, v2, buf [Tx])
39: for i = idx to n step i += Tx do
40: (i.) buf [idx] = v1i, (ii.) v1i = v2i, (iii.) v2i = buf [idx]
41: end for
42: end procedure

109

DOI:10.15774/PPKE.ITK.2015.010



5.6. PARALLEL LATTICE REDUCTION ALGORITHMS AND THEIR MAPPING
TO PARALLEL ARCHITECTURES

{ {

{ { { {{ { {
{

Figure 5.7: The high-level work distribution among the GP-GPU threads and the
mapping of the size reduction, inner product and column swap operations for the

Cost-Reduced All-Swap LLL lattice reduction algorithm.

basis, i.e., Ty = min (n/2, 32). By enabling the usage of Tx = min (n, 32) threads in the

x dimension the threads that belong to the same y dimension will form a warp. The

maximum of 32 threads in each direction is limited by both the GP-GPU architecture

and code optimization. Consequently, the global memory loads and stores issued by

the threads of the warp will be coalesced. The y dimension also defines the extent of

paralellism. The iteration variable of the for loop is increased in every iteration by Ty · 2.

In other words, in every phase the threads with the same idy have to reduce and swap

at most n/(Ty · 2) vectors.

The elements of matrices B,B∗,U are stored in the global memory of the GP-GPU.

This memory has high latency, but with coalesced access pattern, optimal memory usage

can be achieved. Using low latency shared memory is also possible, but the size is limited.

Because of the limited size it is not possible to load the entire matrices in this low latency

memory. Furthermore, the excessive use of shared memory is decreasing the occupancy,

resulting in performance degradation. Shared memory is used to store the Gram-Schmidt

110

DOI:10.15774/PPKE.ITK.2015.010



5.6. PARALLEL LATTICE REDUCTION ALGORITHMS AND THEIR MAPPING
TO PARALLEL ARCHITECTURES

coefficients µi,i−1 for 2 ≤ i ≤ n and two shared buffer arrays buf1[Ty][Tx] and buf2[Ty][Tx]

are allocated in order to efficiently compute the dot products and the vector norms.

When computing the inner product the elements of bk are read in a coalesced pattern

and each thread will sum the corresponding elements in the shared memory buffer. After

the sum, the parallel prefix sum pattern is applied to the buffer resulting in the inner

product value. In case of the size reduction the corresponding elements are reached in a

coalesced pattern and the corresponding µk,k−1 is read from the shared memory. Because

the threads belonging to the same ytid will access the same µk,k−1 in the shared memory,

this will result in a memory broadcast instead of a bank conflict.

Algorithm 12 The OpenMP pseudocode of the Cost-Reduced All-Swap LLL lattice
reduction algorithm
1: Input: [B1,B2, . . . ,Bm], [B∗1,B∗2, . . . ,B∗m], [U1,U2, . . . ,Um], δ
2: Output: [B1,B2, . . . ,Bm] as LLL reduced basis
3: maxT ← set the maximum number of available OpenMP threads
4: simMat← set the number of matrices processed simultaneously
5: TPM = maxT/simMat . The number of threads for parallel processing one matrix
6: #pragma omp parallel numthreads(simMat) {
7: grp← set current thread id
8: odd = true, even = true, off = 0, i = grp · (m/simMat)
9: #pragma omp parallel numthreads(TPM) shared(odd, even, off) firstprivate(grp)

{
10: while (i < (grp+ 1) ·MPG) do
11: while (odd or even) do
12: #pragma omp single {
13: if off == 0 then odd = false, off = 1 else even = false, off = 0 end

if
14: }
15: #pragma omp for reduction(‖:odd,even)
16: for k = 2 + off to n step 2 . Embarrassingly parallel for all k
17: Update GS coefficient µk,k−1 and SimpleSizeReduce(Bi,k,k − 1)
18: if ‖b∗k‖2 < (δ − µ2

k,k−1)‖b∗k−1‖2 then
19: Perform SimpleSwap(Bi,k)
20: if(off == 0) then even = true else odd = true end if
21: end if
22: end for
23: end while
24: #pragma omp barrier
25: Update all of the GS coefficients of Bi and perform SimpleSizeReduce if

necessary . Highly parallel
26: #pragma omp single {i← i+ 1, odd = true, even = true}
27: end while
28: }
29: }

The OpenMP implementation of the CR-AS-LLL is presented in Alg. 12. Two-level

111

DOI:10.15774/PPKE.ITK.2015.010



5.6. PARALLEL LATTICE REDUCTION ALGORITHMS AND THEIR MAPPING
TO PARALLEL ARCHITECTURES

parallelism is implemented based on a nested parallel construct. The outer level paral-

lelism starts the concurrent processing of simMat number of lattice basis and the inner

parallel construct is responsible for the parallel LR of a basis with TPM number of

threads. As the outer level parallelism is expanded, namely simMat is increased, the

number of slave threads for the parallel CR-AS-LLL algorithm that could be forked by

the master threads are decreased. In this case the very limited number of CPU threads

restrict the exploitation of several levels of parallelism.

Another major difference between the CUDA and OpenMP mapping lies in the imple-

mentation of the size reductions, dot products and swaps. In the CUDA implementation,

because of the two dimensional TB configuration, Tx number of threads are working

in every procedure. For example, in the dot product calculation every thread has to

do n/Tx number of multiplications and the result of the multiplication is added to the

shared memory buffer. When the execution of all threads finishes, a parallel prefix sum

is applied to the buffer in order to compute the dot product. In case of the OpenMP

implementation, only one thread is working in the computation of a dot product since

the number of threads are limited.

5.6.2 The Modified-Block LLL lattice reduction algorithm

The problem division to several sub-problems that can be executed concurrently

can be regarded as one level of parallelism. In addition, if a sub-problem could benefit

from a multi-threaded environment it can be regarded as a second level of parallelism.

Previous parallel LR implementations, such as the ones presented in [118], [119], [120]

have focused only on multi-core architectures. The main drawback of the low number of

threads offered by modern CPUs (compared to GP-GPUs) is that low level parallelism

can not be efficiently exploited. During an algorithm design, low level parallelism is

usually omitted and the levels of parallelism are also restricted. In case of GP-GPUs, the

high number of CUDA cores makes the parallel execution of a high number of threads

possible leading to significant performance improvements.

The MB-LLL algorithm is designed to take advantage of a highly multi-threaded

environment. The MB-LLL algorithm splits the original basis into several sub-problems

of lower dimension and performs parallel LLL reduction on them. Because the LLL

reduction of the subgroups and the boundaries check can be done independently, no

frequent synchronization is required. Thus, coarse grained parallelism is achieved by

creating the sub-problems. A detailed description of the MB-LLL algorithm is given in

112

DOI:10.15774/PPKE.ITK.2015.010



5.6. PARALLEL LATTICE REDUCTION ALGORITHMS AND THEIR MAPPING
TO PARALLEL ARCHITECTURES

Alg. 13.

Algorithm 13 The Modified-Block LLL lattice reduction algorithm
1: Input: B, δ, block-size l
2: Output: LLL reduced basis
3: Compute B∗ and U with the Gram-Schmidt algorithm
4: m = dn/le . m denotes the number of blocks
5: for k = 1→ m do . Create the subgroups B[k],B∗[k],U[k]
6: B[k] = (bl·(k−1)+1, . . . ,bl·k)
7: B∗[k] = (b∗l·(k−1)+1, . . . ,b

∗
l·k)

8: U[k] = U(l·(k−1)+1,...,l·k)×(l·(k−1)+1,...,l·k) . U[k] is the l × l submatrix of U
9: echange[k] = true
10: end for
11: while ∃k such that exchange[k] is true do
12: for k = 1→ m do . Embarrassingly parallel
13: if exchange[k] is true then
14: LLL(B[k],B∗[k],U[k]) . Call CRAS-LLL without performing GS

orthogonalization
15: group[k] = true
16: end if
17: end for
18: for k = 1→ m− 1 do . Checking the boundaries of the groups, embarrassingly

parallel
19: if group[k] or group[k + 1] is true then
20: Update µk·l,k·l−1
21: SimpleSizeReduce(k · l,k · l − 1)
22: if ‖b∗k·l+1‖2 < (δ − µ2

k·l,k·l−1)‖b∗k·l‖2 then
23: for j = k · l − 1→ k · l − l + 1 do . Prepare the GS coefficients

outside the groups
24: µk·l+1,j = (bk·l+1,b∗j )/‖b∗j‖2
25: end for
26: for i = k · l + 2→ k · l + l do
27: µi,k·l = (bi,b∗k·l)/‖b∗k·l‖2
28: end for
29: Swap(k · l + 1) . Update only the GS coef. inside the groups
30: echange[k] = true, echange[k + 1] = true
31: end if
32: end if
33: end for
34: end while
35: UpdateGSCoefficients . Only update the GS coefficients outside the groups

The GP-GPU mapping of the MB-LLL algorithm is similar to the one presented

in case of the CR-AS-LLL algorithm in Sec. 5.6.1, because the used procedures are

performed with a two dimensional TB configuration even in the case of a boundary

check. The main difference is that DP [40] enables the launch of new kernels from the

GP-GPU without returning the program flow control to the CPU.

The schematic of the kernels scheduling implementing DP is shown in Fig. 5.8. The

113

DOI:10.15774/PPKE.ITK.2015.010



5.6. PARALLEL LATTICE REDUCTION ALGORITHMS AND THEIR MAPPING
TO PARALLEL ARCHITECTURES

Figure 5.8: Kernels scheduling on a dynamic parallelism enabled GP-GPU for the
Modified-Block LLL lattice reduction algorithm.

CPU launches the Block-LLL kernel. The size of the grid is equal to the number of

matrices that are simultaneously processed and the number of threads in one TB is

equal to the number of submatrices. In this case, every thread has to prepare the data

for the corresponding submatrices and launch the CR-AS-LLL kernel. The CR-AS-LLL

kernel has to be relaunched if the LLL conditions were broken by a boundary swap,

which can be solved by tracking state variables placed in the global memory. When the

reduction of the submatrices is over, the Boundaries Check kernel is launched. Since

the operations performed in this section are dot products and column swaps the thread

configuration of the TB is the same as in case of the CR-AS-LLL kernel. The CR-AS-LLL

and Boundary Check kernels are repeated until there are no swaps on the boundaries.

Because one matrix is assigned to one TB in the parent Block kernel, the processing

of the different matrices can be done simultaneously despite the variable number of

iterations. Finally, the Gram-Schmidt coefficients outside the blocks are updated with

the GSC-Update kernel and the size-reduction is performed wherever is needed. Note,

synchronization of the threads is required only after finishing the LR of the submatrices

and after the boundary checks.

5.6.3 The Cost-Reduced Modified-Block LLL lattice reduction algo-

rithm

As stated in the previous sections the MB-LLL algorithm allows to split a large matrix

in several smaller submatrices where parallel LR is performed in a block-wise manner

114

DOI:10.15774/PPKE.ITK.2015.010



5.6. PARALLEL LATTICE REDUCTION ALGORITHMS AND THEIR MAPPING
TO PARALLEL ARCHITECTURES

with the parallel LR algorithm CR-AS-LLL. Once the LR of the submatrices is finished,

the boundaries between adjacent submatrices are checked and finally the Gram-Schmidt

coefficients outside the initial groups are updated. The main condition is to keep every

submatrix as an LLL-reduced matrix throughout the processing.

The CR-MB-LLL algorithm further reduces the computational complexity of the

MB-LLL algorithm. In the MB-LLL algorithm, the submatrices affected by a boundary

swap have to be LLL reduced and the Gram-Schmidt coefficients have to be updated.

Moreover, in order to fulfill the LLL conditions in the submatrices affected by a boundary

swap, the Swap procedure has to be performed.

The complexity reduction is achieved by eliminating the GS coefficients update in

the submatrices after the execution of the CR-AS-LLL, and with the usage of the

SimpleSwap procedure instead of Swap in case of a boundary swap. Since the GS

coefficients are updated only when the ordering condition (5.30) is met for every column

vector, the processing time can be considerably reduced.

Algorithm 14 The mapping of the Cost-Reduced Modified-Block LLL lattice reduction
algorithm to a heterogeneous platform
1: Input: [B1,B2, . . . ,Bm], δ, block-size l, T number of OpenMP threads
2: Output: [B1,B2, . . . ,Bm] as LLL reduced basis
3: #pragma omp parallel {
4: mpt = m/T . The number of matrices that have to processed by one thread
5: bpm = n/l . The number of blocks per matrix
6: Assign a CUDA streamid to the current CPU thread with identifier id
7: Define arrays matIndD[mpt] on the GP-GPU and matIndH[mpt] on the host . The

indexes of the unprocessed matrices are stored in these arrays
8: for i = 0 to mpt step i++ do matIndH[i] = id ·mpt+ i end for
9: Define arrays boundaryExchD[mpt · bpm] and boundaryExchH[mpt · bpm]

10: while mpt > 0 do
11: Asynchronously copy matIndH to matIndD on streamid

12: Launch CR − AS − LLL kernel on streamid with grid size gridlll = mpt · bpm and
TB(Tx, Ty) . The CR-AS-LLL is performed on the submatrices, without updating the GS
coefficients

13: Launch the BoundaryCheck kernel on streamid with grid size gridbc = mpt · (bpm − 1)
and TB(Bx, By) . The LLL conditions (5.29) and (5.30) are
checked on the boundary of two adjacent submatrices. In case if the conditions are not met
the SimpleSwap is executed instead of the Swap procedure.

14: Asynchronously copy boundaryExchD to boundaryExchH on stream id
15: Synchronize CPU thread with streamid

16: if There was no boundary exchange for one matrix then
17: Remove the matrix index from matIndH and mpt← mpt− 1 . The CPU threads

have to process the result of the boundary exchange
18: end if
19: end while
20: Launch the GSC − Update kernel on streamid . In this kernel all the GS coefficients are

updated and size reduction is performed where necessary.
21: }

The mapping of the CR-MB-LLL algorithm to a heterogeneous platform is presented
115

DOI:10.15774/PPKE.ITK.2015.010



5.6. PARALLEL LATTICE REDUCTION ALGORITHMS AND THEIR MAPPING
TO PARALLEL ARCHITECTURES

Figure 5.9: Kernels scheduling on the heterogeneous platform for the Cost-Reduced
Modified-Block LLL lattice reduction algorithm.

in Alg. 14. The schematic of the heterogeneous platform is shown in Fig. 5.9. The CPU

threads launch (i) the CR-AS-LLL kernels in order to LLL reduce the submatrices, (ii)

launch the Boundary Check kernels for checking the LLL conditions at the boundaries

of the sub-groups and (iii) launch the GSC-Update kernel to update the Gram-Schmidt

coefficients and to perform the size reductions wherever it is required. Furthermore, the

control logic of the dynamic scheduling is implemented by the CPU threads.

A different CUDA stream is assigned for every CPU thread, making the concurrent

kernel execution possible and reducing the idle time of the CUDA cores. Before launching

the CR-AS-LLL and Boundary Check kernels, the CPU thread updates the matIndD

array placed in the GP-GPU’s global memory to specify which matrices need further

processing. The size of the grid is dynamically adjusted according to the number of non-

processed matrices in every iteration. After the Boundary Check kernel is executed, the

boundaryExchH is updated on the host. Afterwards, the CPU thread checks if the LR

of any matrix is finished. If LLL reduced matrices are found the matIndH is updated.

Consequently, the size of the grids assigned to CR-AS-LLL and Boundary Check kernels

is decreased. The GSC-Update kernel starts after all the matrices assigned to one CPU

thread are completely processed.

5.6.4 Evaluation results

In this section the performance comparison of the proposed parallel LR algorithms

is presented. The computations were done in single-precision floating point arithmetic

116

DOI:10.15774/PPKE.ITK.2015.010



5.6. PARALLEL LATTICE REDUCTION ALGORITHMS AND THEIR MAPPING
TO PARALLEL ARCHITECTURES

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Matrix size

T
im

e 
(s

)

 

 

CRAS-LLL
MB-LLL l=2
MB-LLL l=22

MB-LLL l=23

MB-LLL l=24

MB-LLL l=25

MB-LLL l=26

MB-LLL l=27

MB-LLL l=28

MB-LLL l=29

23 24 25 26 27 28 29 210

Figure 5.10: Computational time of Cost-Reduced All-Swap LLL and Modified-Block
LLL lattice reduction algorithms with different block sizes ranging from 2− 29 for

square matrices of dimensions 23 − 210.

and parameter δ = 0.75 was used for the LLL condition (5.30). Block-Toeplitz matrices

have been considered to evaluate the performance of different implementations. The use

of Block-Toeplitz type matrices is motivated by their extensive use in wireless commu-

nications [100]. Throughout the simulations the equivalent real-valued lattice basis of

size N = M is used. Thus, the different matrix sizes correspond to systems with n = m

ranging from 4 to 512.

Figure 5.10 shows the computational time of the CR-AS-LLL and the MB-LLL al-

gorithms launched on a Tesla K20 GP-GPU. In case of MB-LLL different block-size

configurations are evaluated. It is observed when comparing CR-AS-LLL with MB-LLL

that the block concept used in MB-LLL allows to reduce the computational time for

systems with N > 28. It is interesting to see that starting from 26 − 27 the slope of the

MB-LLL curves is slightly increased. The reasons are twofold: (i) the size of the matrix

and the coalesced memory access makes possible to fully exploit the memory bandwidth,

and (ii) the number of blocks that are not processed in the distinct iterations is getting

higher, resulting in the decrease of the processing time.

Figure 5.11 shows the computational times of the MB-LLL algorithm based on three

different architectures for different matrix dimensions, where l denotes the size of the

processed blocks. The performance measurements were evaluated with all the possible

block sizes and the best configuration is shown. The architectures used for the compu-

tational time measurements are the Tesla K20 (with DP capability) and an Intel Core

i7-3820 processor. The heterogeneous platform clearly outperforms the solutions based

117

DOI:10.15774/PPKE.ITK.2015.010



5.6. PARALLEL LATTICE REDUCTION ALGORITHMS AND THEIR MAPPING
TO PARALLEL ARCHITECTURES

 

 
MB−LLL GPU with DP
MB−LLL GPU+CPU
MB−LLL CPU

Matrix dimension
23 24 25 26 27 28 29 21010-6

10-5

10-4

10-3

T
im

e 
(s

)

10-2

10-1

l = 4
l = 8

l = 16

l = 32

l = 8

l = 4

l = 8

l = 32

l = 4
l = 8

l = 16

l = 32
l = 64

l = 128

l = 256

l = 512

l = 4

l = 8

l = 16

l = 32
l = 8

l = 16

l = 16

l = 32

Figure 5.11: Computational time of the Modified-Block LLL lattice reduction algorithm
with optimal block size l on different architectures.

Model
Die Memory SM CUDA Shaders GFLOP/s TDP

Architecture Count (MB) count cores clock rate (FMA) (W) Price
(MHz)

GeForce GTX 690 2xGK104 2 2 × 2048 2 × 8 2 × 1536 915 2 × 2810 300 ∼ $1100
Tesla K20 GK110 1 5120 13 2496 705 3519 225 ∼ $3000
Tesla C2075 GF100 1 6144 14 448 1150 1030 238 ∼ $2100

Table 5.2: The comparison of the GTX690, K20 and C2075 GP-GPU architectures.

on DP in the case of small matrices and the CPU for all the cases. The processing times

show similar performance for large matrices when the GP-GPU is involved. This gap is

caused by the overhead required when launching kernels from kernels with DP and the

limited overlapping execution of kernels on different streams. The conclusion is that the

data transfer between CPU and GP-GPU required by the heterogeneous system is less

time consuming than the overhead of the kernel launch with DP and the limitation of

the concurrent execution of kernels on different streams.

The average computational time of the proposed CR-AS-LLL algorithm with the

following GP-GPU configurations: (i) 1 × K20, (ii) 2 × K20, (iii) 2 × C2075s and

(iv) 1 × GTX690 are compared in Figs. 5.12 and 5.13. A comparison of the hardware

components of these GP-GPUs is available in Table 5.2. The GTX690 has the highest

number of CUDA cores and achievable FLOP/s. In the case of the C2075, the clock

rate of the cores is slightly higher, however, the number of CUDA cores is significantly

lower. The multi GP-GPU configurations are used to balance the die number of the K20

and C2075 GP-GPUs with the GTX690 GP-GPU. The average computational time was

computed by averaging the processing time of 8000 lattice basis, thus, the same number

of thread blocks were defined for the grid. The best results are achieved by the 2 ×

118

DOI:10.15774/PPKE.ITK.2015.010



5.6. PARALLEL LATTICE REDUCTION ALGORITHMS AND THEIR MAPPING
TO PARALLEL ARCHITECTURES

 

 

GTX690

K20

2 x K20

2 x C2075

Matrix size
23 24 25 2610−7

10−6

10−5

10−4

T
im

e 
(s

)

Figure 5.12: Computational time of Cost-Reduced All-Swap LLL lattice reduction
algorithm for matrix dimensions 23 − 26 on 1 and 2 × Tesla K20, GeForce GTX690 and

2 × Tesla C2075 GP-GPU configurations.

 

10−4

10−3

10−2

T
im

e 
(s

)

GTX690

K20

2 x K20

2 x C2075

 

Matrix size
27 28 29 210

Figure 5.13: Computational time of Cost-Reduced All-Swap LLL lattice reduction
algorithm for matrix dimensions 27 − 210 on 1 and 2 × Tesla K20, GeForce GTX690

and 2 × Tesla C2075 GP-GPU configurations.

119

DOI:10.15774/PPKE.ITK.2015.010



5.6. PARALLEL LATTICE REDUCTION ALGORITHMS AND THEIR MAPPING
TO PARALLEL ARCHITECTURES

Figure 5.14: Computational time of the LLL, Cost-Reduced All-Swap LLL,
Modified-Block LLL and Cost-Reduced Modified-Block LLL algorithms for matrix

dimensions 23 − 26.

K20 GP-GPU configuration, however, the GTX690 performs better than 1 × K20. The

result achieved with the 2 × C2075 outperforms the 1 × K20. This is a surprising result

since the FLOP/s achieved by the 2 × C2075 GP-GPUs are significantly lower compared

to the K20 GP-GPU. The reason is the different usage of the L1 cache in the Kepler

architecture.

Figures 5.14 and 5.15 compare the average computational time of the LLL, CR-

AS-LLL, MB-LLL and CR-MB-LLL algorithms for different matrix dimensions. The

algorithms were evaluated on the Intel Core i7-3820 CPU and the GeForce GTX 690

GP-GPU. In [5], it was shown that the GTX 690 has a better performance than the K20

GP-GPU, thus, the DP performance is omitted. The summary of the computational time

comparison in case of the GP-GPU is given as follows: (i) the computational time of the

CR-MB-LLL is 25 − 40% lower in case of small and medium-sized matrices compared

to the MB-LLL algorithm and the performance is similar in case of larger matrices,

(ii) the CR-AS-LLL performs better than the CR-MB-LLL in case of small matrices,

however, for large matrices the block concept implemented in the CR-MB-LLL achieves

30% speed-up compared to the CR-AS-LLL and (iii) the LR implemented on the GP-

GPU architecture outperforms the CPU implementations for every matrix dimension

with speed-ups ranging from 6 to 15.

The summary of the computational time comparison in case of the CPU is given as

follows: (i) the CR-MB-LLL always outperforms the MB-LLL algorithm with speed-ups

ranging from 2 to 7, (ii) the CR-AS-LLL algorithm performs better than the MB-LLL

120

DOI:10.15774/PPKE.ITK.2015.010



5.6. PARALLEL LATTICE REDUCTION ALGORITHMS AND THEIR MAPPING
TO PARALLEL ARCHITECTURES

Figure 5.15: Computational time of the LLL, Cost-Reduced All-Swap LLL,
Modified-Block LLL and Cost-Reduced Modified-Block LLL algorithms for matrix

dimensions 27 − 210.

and CR-MB-LLL for matrices with low dimensions (23 − 26), (iii) the computational

time of the CR-MB-LLL is 10 − 20% lower in case of larger matrices compared to the

CR-AS-LLL and (iv) for smaller matrices the sequential LLL algorithm performed on

every thread of the CPU is better than the parallel algorithms. However, for higher

dimensions, despite the overhead introduced by the cache coherency, thread management

and synchronization, the parallel CR-AS-LLL and CR-MB-LLL algorithms achieve a

smaller computational time.

A surprising result is while the CR-MB-LLL achieves a significant speed-up compared

to the MB-LLL for the CPU architecture, the same is not true for GP-GPU architecture.

This is due to several reasons. The computational complexity reductions for the CR-MB-

LLL affect only the CR-AS-LLL and Boundary Check kernels. However, in case of large

matrices the GSC-Update kernel is taking the major part of the processing time. This

kernel has to access the global memory frequently and these accesses have a high latency.

In case of the CPU, this problem is alleviated by the high speed memory access and the

large amount of available cache.

The performance of LR mostly depends on the precision of the computation, the

size and type of the basis matrix and the architecture used. In Table 5.3 performance

of existing implementations are presented. Previous research mostly focused on small

matrices. In [119] performance measures for higher dimension matrices are presented as

well, however, the total runtime of the algorithm is not specified. The parallelization and

efficient implementation of the parallel algorithms allow to reduce the computational

121

DOI:10.15774/PPKE.ITK.2015.010



5.7. CONCLUSION

Ref Algorithm Architecture 4× 4 8× 8 64× 64 1024× 1024
[32] Clarkson’s Algorithm Virtex-II-Pro FPGA 4.2× 10−6 x x x
[33] Complex LLL Virtex-5 FPGA 0.79× 10−6 x x x
[121] Brun’s Algorithm ASIC 250 nM 0.07× 10−6 x x x
[122] Reverse Siegel LLL Virtex-4 FPGA 0.18× 10−6 x x x
[122] Reverse Siegel LLL ASIC 130 nM 0.04× 10−6 x x x
[120] SB-LLL ADRES 0.17× 10−6 x x x

This work CR-AS-LLL GTX690 GP-GPU x 0.33× 10−6 1.37× 10−5 1.67× 10−2

This work CR-MB-LLL GTX690 GP-GPU + x 0.77× 10−6 1.30× 10−5 1.28× 10−2
Intel i7-3820 CPU

Table 5.3: Performance comparison of the Cost-Reduced All-Swap LLL and the
Cost-Reduced Modified-Block LLL algorithms with existing lattice reduction

implementations.

time compared to other schemes in the literature [122], [32].

5.7 Conclusion

In this chapter the importance of LR and its applicability to MIMO systems was

discussed. After a brief overview of the fundamental definitions, the most important

lattice reduction algorithms were discussed. The performance of two polynomial time

lattice reduction algorithms the LLL and Seysen’s algorithm were evaluated in terms

of condition number and orthogonality defect. It was shown that improving the lattice

basis, by constructing a shorter and more orthogonal basis, significant BER performance

improvement is achieved in detection and precoding. It was shown that full diversity

order is achieved even for linear detection when lattice reduction is applied. Different

precoding techniques that make use of lattice reduction have also been evaluated for a

very large multi-user MISO system. Lattice reduction aided precoding techniques were

shown to obtain a significantly higher performance in terms of BER with respect to non

LRAP techniques.

Because the LLL algorithm is widely used in several fields, the goal was to design

parallel LR algorithms that could benefit from highly parallel architectures such as GP-

GPUs and can exploit the possibilities of heterogeneous platforms that consist in the

cooperation of modern CPUs and GP-GPUs. Efficient algorithm design and implemen-

tations of the parallel LLL algorithm for many-core architectures were presented.

First, the CR-AS-LLL algorithm was introduced, which is built on the all-swap con-

cept. The delay of size reductions was further improved, thus, the complexity of the

algorithm was reduced by omitting unnecessary size reduction operations.

The high number of threads available in the GP-GPU enabled the exploitation of sev-

eral levels of parallelism. As a result, the combination of the parallel block concept with
122

DOI:10.15774/PPKE.ITK.2015.010



5.7. CONCLUSION

the parallel LLL processing of the blocks, implemented by the CR-AS-LLL algorithm,

resulted in the MB-LLL algorithm. The MB-LLL slightly outperformed the CR-AS-LLL

algorithm for large matrices. The MB-LLL mapping exploited the dynamic parallelism

capability of the GP-GPU.

Finally, the CR-MB-LLL was discussed. The idea behind the CR-MB-LLL algorithm

is the relaxation of the first LLL condition for the submatrices, resulting in the de-

lay of the Gram-Schmidt coefficients update when executing LR, and a simplified, less

costly swap procedure when performing the boundary checks. The CR-MB-LLL algo-

rithm has been evaluated on several architectures: a multi-core architecture, a GP-GPU

with dynamic parallelism capability and a heterogeneous platform based on a CPU and

GP-GPU. Results show that mapping the CR-MB-LLL algorithm on the heterogeneous

architecture reduces the computational time by 30% compared to the CR-AS-LLL in

case of large matrices, whereas implementations involving GP-GPUs achieve speed-up

factors from 6 − 15 compared to the multi-core CPU architecture. The MB-LLL algo-

rithm achieves speed-up factors ranging from 5 − 25 when launched on the proposed

heterogeneous platform compared to the DP-based GP-GPU implementation for matrix

dimensions 23 − 26.

It was shown that the efficiency of the CR-MB-LLL is significantly affected by the

architectures used. The CR-MB-LLL is 1.5 − 7 times faster compared to the MB-LLL

algorithm when launched on multi-core CPU architecture, however the CR-MB-LLL is at

most 1.4 times faster compared to the MB-LLL when launched on the GP-GPU architec-

ture. This is mainly because the computational complexity reductions introduced in the

CR-MB-LLL algorithm affect the CR-AS-LLL and Boundary Check kernels. However, in

case of large matrices the GSC-Update kernel is taking the major part of the processing

time with frequent accesses to the global memory of the GP-GPU. In case of the CPU,

the memory access has a lower latency and the available cache for CPU is significantly

bigger, causing different speed-ups of the same algorithm on the different architectures.

The proposed algorithms were compared with implementations available in the liter-

ature and the average computational times are significantly lower compared to previous

implementations. Thus, the goal of efficient algorithm design and implementation was

achieved.

123

DOI:10.15774/PPKE.ITK.2015.010



Chapter 6

Theses of the Dissertation

This chapter gives a concise summary of the main scientific contributions of this

dissertation as well as the methods and tools used, and briefly discusses the applicability

of the results.

6.1 Methods and tools

The goal of my research was to solve computationally demanding signal processing

problems in the field of wireless communications with modern MPAs, such as GP-GPUs,

and multi-core CPUs. The main challenge was to identify and develop the mathematical

and algorithmic transformations of the sequential, high-complexity problems in such a

way that an efficient mapping to these parallel architectures became possible.

In the first part of my thesis I consider the optimal hard-output ML detection in

MIMO systems. The complexity of the ML detector increases exponentially with the

number of antennas and the modulation order. In order to significantly reduce the com-

plexity, the SD algorithm was proposed in [69] and applied in a decoding context in [70].

The fundamental aim of the SD algorithm is to restrict the search to lattice points that

lie within a certain sphere around a given received symbol vector. Reducing the search

space will not affect the detection quality, because the closest lattice point inside the

sphere will also be the closest lattice point for the whole lattice.

During detection the optimum search path for the symbol vectors is different. Since

different parts of the search tree are explored by the detection algorithm, a variable

processing time is expected. In order to moderate the effects of the variable complexity

(i) a column norm based ordering method shown in [64] and (ii) a dynamic computing

load distribution strategy were applied. Specifying the order of symbol detection, based

124

DOI:10.15774/PPKE.ITK.2015.010



6.1. METHODS AND TOOLS

on metrics involving the channel matrix, was shown to lead to less computations. The

probability of choosing the right search path on the top levels of the tree can be increased

by first detecting symbols with higher post-detection SNR or SINR. Consequently, a non-

optimal symbol detection on a lower level does not lead to a major step-back on the tree.

The variable processing time of the symbol vectors leads to an imbalance in the

execution time of the thread blocks of a kernel. Until the execution of the thread blocks is

not finished the GP-GPU resources allocated to a kernel will not be freed. The long-time

resource allocation prevents the overlapping execution of multiple kernels on different

streams. With a dynamic load balancing method the tail effect is negligible, thus, the

overlapping execution of multiple kernels becomes possible and the goal of alleviating

the variable processing time is achieved.

In the second part of my thesis the focus is on a powerful preprocessing tool, namely

the LR method [100]. Lattice reduction aims to find a "better" basis whose vectors are

more orthogonal and shorter, in the sense of Euclidean norm, than the original ones. Lat-

tice reduction improves the condition number, the orthogonality defect and the Seysen

measure. Several LR algorithms exist in the literature that differ in computational com-

plexity and achieved performance. However, the most extensively used polynomial-time

algorithm is the Lenstra-Lenstra-Lovász (LLL) algorithm introduced in [101]. Because of

its wide applicability and several favorable properties, my research focused on improving

this method and making it suitable for MPAs.

In [14] it was shown that the performance of linear and non-linear detectors can

be improved when used in conjunction with LR techniques and full diversity order is

achieved with the reduced basis. Since many detection schemes heavily rely on the usage

of the channel matrix, it is straightforward to regard the channel matrix as a lattice

generator matrix.

In MISO systems the multi-user interference must be canceled at the transmitter, this

method is referred to as precoding. According to [10] linear methods, such as Zero-Forcing

precoding, and non-linear methods, such as Tomlinson-Harashima precoding and vector

perturbation techniques perform better if the channel matrix is not badly conditioned.

Moreover, full diversity is achieved even for very large systems.

The tools used to solve the above mentioned computationally challenging signal pro-

cessing tasks were modernmulti-core CPUs, such as Intel Core i7-3820, Intel Xeon X5680,

Intel Xeon E5-2650 v3, and massively parallel architectures, such as NVIDIA GeForce

GTX 690 and NVIDIA Tesla C2075 and K20 GP-GPUs. A number of parallel program-

125

DOI:10.15774/PPKE.ITK.2015.010



6.2. NEW SCIENTIFIC RESULTS

ming models were employed to support the hierarchical parallelism present in modern

computer systems. For coarse-grained shared memory parallelism I used simultaneous

multithreading using OpenMP. For fine-grained parallelism Single Instruction Multiple

Threads (SIMT) was implemented using CUDA.

6.2 New scientific results

Thesis group I. Design of new parallel Sphere Detector
algorithms achieving hard-output true-ML performance
and their efficient mapping to multi-core and many-core
architectures.
(Related articles [1], [3].)

Thesis I.a

I proposed a new Parallel Sphere Detector (PSD) algorithm to achieve true-ML bit

error rate performance in hard-output MIMO detection. The high degree of parallelism of

the PSD algorithm is based on a novel hybrid tree traversal where depth-first search and

breadth-first search methods are efficiently combined, furthermore, at each intermediate

stage, path metric based parallel sorting networks are employed to achieve a faster

convergence. I showed that the PSD algorithm achieves an efficient work distribution in

a highly multi-threaded environment reducing the number of visited tree nodes by a single

thread with 88% − 96%, and the speed-up factor of the detection throughput of the PSD

algorithm in 4 × 4 MIMO systems is 2 − 50 times higher for different signal-to-noise

ratios compared to the sequential case.

The real-valued MIMO system model is described as

y = Hst + v

where y ∈ RM is the received symbol vector, v ∈ RM is the additive channel noise,

st ∈ ΩN is the transmitted symbol vector, Ω is the symbol set, and the superposition

of the transmitted symbols is modeled by the channel matrix H ∈ RM×N . The optimal

126

DOI:10.15774/PPKE.ITK.2015.010



6.2. NEW SCIENTIFIC RESULTS

hard-output ML detector is defined as

ŝML = arg min
s∈ΩN

‖y−Hs‖2.

The ML estimate of the transmitted symbol vector is found by solving an integer least-

squares problem which is analogous to finding the closest lattice point of lattice Λ =

{Hs|s ∈ ΩN} to a given point y as discussed in [62], [68].

With the unconstrained least-squares solution ŝ = H†y, where H† denotes the

Moore–Penrose pseudoinverse, and the QR factorization of the channel defined as

H = QR, the ML detection problem can be reformulated as

ŝML = arg min
s∈ΩN

‖R(s− ŝ)‖2.

The lattice point Hs is included by the sphere S(y, d) with center point y and radius d

if the following inequality is satisfied ‖R(s− ŝ)‖2 6 d2,

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣



r11 r12 · · · r1N

0 r22 · · · r2N
...

... . . . ...

0 0 · · · rNN





s1 − ŝ1

s2 − ŝ2
...

sN − ŝN



∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

6 d2.

Starting with dimension N , the elements of the symbol set are inserted into the partial

symbol vector and the inequality condition is evaluated. The search process is analogous

to a depth-first tree search that is highly sequential, consequently, this problem cannot

be efficiently solved in a multi-threaded environment.

The PSD completely eliminates the sequential parts of the SD algorithm. The tree

traversal of the PSD algorithm is implemented by a novel hybrid tree search method,

where the algorithm parallelism is assured by the efficient combination of depth-first

search and breadth-first search algorithms. Because of the hybrid tree search only distinct

levels of the tree are evaluated that are denoted by the parameter lvlx. On these levels

the number explvlx of partial symbol vectors are expanded simultaneously. During the

expansion of a partial symbol vector (lvlx−1 − lvlx) number of new symbols are added

to the original symbol vector. The simultaneous expansion of explvlx−1 number of partial

symbol vectors on level lvlx−1 will create evallvlx = explvlx−1 · |Ω|(lvlx−1−lvlx) number

of new partial symbol vectors on level lvlx. Note, that a hybrid search is realized at

this point, because with parameters explvlx the extent of the breadth search, while with

127

DOI:10.15774/PPKE.ITK.2015.010



6.2. NEW SCIENTIFIC RESULTS

parameters lvlx the extent of the depth search is controlled. Since several new (partial)

symbol vectors are created after the expansion stage, the parallel path metric update

becomes possible, thus, the resources of an MPA can be efficiently exploited.

Figures 4.20, 4.21, 4.22 show the average number of expanded nodes per thread

for different MIMO systems and symbol set configurations. The signal space of real-

equivalent 8×8 MIMO with symbol set size of |Ω| = 8 symbols has about 1.6×107 symbol

vectors. For an SNR of 5 dB the PSD expands into about 310 nodes per thread while the

Automatic Sphere Detector expands into about 7500 nodes per thread. Consequently,

the total workload of a thread running the PSD algorithm is reduced by 96%. For an

SNR of 20 dB, the workload of a thread running the PSD algorithm is reduced by 95%.

In Fig. 4.18 the average detection throughput achieved with (i) the PSD algorithm

implemented on the GTX690 GP-GPU and (ii) the sequential SD executed simultane-

ously on every thread of an Intel Xeon CPU E5-2650 v3 was compared. At 30 dB SNR

for a 4× 4 MIMO and |Ω| = 4 the detection throughput is increased by 6 times, and for

|Ω| = 8 the throughput is increased by 50 times by the GP-GPU.

Thesis I.b.

I defined highly parallel, dynamic building blocks for the Expansion and Evaluation

pipeline of the PSD algorithm as a function of available parallelism. Based on the

building blocks, I identified a set of parameters that determine the extent of parallelism

and memory footprint. I showed that the achieved average detection throughput of the

GP-GPU mapping outperformed every existing true-ML detector and many non-ML

GP-GPU, ASIC, DSP and FPGA implementations.

Throughout the detection process the most heavily used operations are the vector

expansion and evaluation. In order to remove every possible bottleneck and to make a

parallel implementation possible, I have introduced the EEP. The stages of the EEP are

defined as: (i) the Preparatory Block, (ii) the Selecting, Mapping and Merging Block, (iii)

the Path Metric Evaluation Block, and (iv) the Searching or Sorting Block as shown in

Fig. 4.10.

In the Preparatory Block virtual identifiers are computed simultaneously by tt number

of threads where the k-th thread is denoted by tkid. The virtual identifiers are computed

128

DOI:10.15774/PPKE.ITK.2015.010



6.2. NEW SCIENTIFIC RESULTS

in the following manner:

V T klvlx = {vtlvlx |vtlvlx = (tkid + n · tt) mod |Ω|(lvlx−1−lvlx),

n = 0 : devallvlx/tte − 1},

V Bk
lvlx = {vblvlx |vblvlx = b(tkid + n · tt)/|Ω|(lvlx−1−lvlx)c,

n = 0 : devallvlx/tte − 1}.

In the Selecting, Mapping and Merging block previously evaluated partial symbol

vectors are selected and further expanded. In the Selecting phase, previously evaluated

partial symbol vectors sNlvlx−1
are selected based on the thread’s virtual block identifiers

vblvlx ∈ V Bk
lvlx

. In the Mapping phase the virtual thread identifiers vtlvlx ∈ V T klvlx

are mapped to slvlx−1−1
lvlx

partial symbol vectors. Finally, in the Merging phase each

selected vector sNlvlx−1
and mapped symbol vector slvlx−1−1

lvlx
is merged as sN<j>lvlx

=

(slvlx−1−1<j>
lvlx

, sN<j>lvlx−1
).

In the Path Metric Evaluation block, the path metric of the expanded partial symbol

vectors is updated. This is one of the most time-consuming steps, however, to reduce the

time required the path metrics are updated in parallel by several threads.

The Searching or Sorting block of the EEP is one of the most important stages during

the detection. Depending on the level of processing, either sorting or a minimum search

is performed. The minimum search is applied only when the detection has reached the

last processing level, while sorting is applied on all other levels. The sorting is done with

the use of sorting networks [89], [88], [90]. Due to their data-independent structure, their

operation sequence is completely rigid. This property makes this algorithm parallelizable

for the GP-GPU architecture. The minimum search algorithm relies on the parallel prefix

sum algorithm [91].

As a result, I elaborated a highly parallel expansion and evaluation pipeline where

no frequent thread synchronization is required. This enables a very efficient utilization

of an MPA. In Table 4.7 I compared the average detection throughput of the PSD algo-

rithm achieved with optimal ML implementations known from the literature. The PSD

algorithm outperformed each of them. Further comparison was made with non-optimal

FPGA, DSP, ASIC and GP-GPU implementations. The average detection throughput

of the PSD was better in the majority of cases. Although, some FPGA and VLSI based

non-optimal detectors showed a better performance, but those solutions suffer from a

loss in BER performance.

129

DOI:10.15774/PPKE.ITK.2015.010



6.2. NEW SCIENTIFIC RESULTS

Thesis I.c.

I proposed a dynamic computing load scheduling algorithm that combines in a very

efficient manner the system level and device level parallelism. The result of the elaborated

scheduling is a dynamic binding between the symbol vectors and the thread blocks, that

allows to configure grids with significantly less thread blocks. By reducing the size of

the grids, the resources of the streaming multiprocessors are shared between several

grids, thus, the concurrent executions of kernels on multiple streams are enhanced.

Thereby, the idle time of the processing units, caused by the variable complexity of the

symbol detection, is minimized and the average detection throughput achieved is increased.

The system level parallelism is implemented by the parallel processing of fading blocks

of a received frame. Consequently, the number of kernels launched is equal to the number

of independent channel realizations. Every grid assigned to a kernel launches several TBs

and the detection of the symbol vectors associated to one channel realization is done by

the threads of the TBs. The configuration of the grids, namely the binding of the TBs and

symbol vectors, is critical since this influences the concurrent execution of the kernels.

A straightforward binding requires a high number of TBs, because the resources

of the GP-GPU will be available for a long time duration only for one kernel, thus,

the concurrent execution of the kernels of different streams is limited. By reducing the

number of TBs and keeping the load constant, the varying detection time of the different

symbol vectors could amplify the tail effect. This means that only a few TBs of a grid

are working and the resources of the streaming multiprocessors are not freed up.

In the proposed dynamic computing load scheduling algorithm the number of TBs

in a grid is significantly smaller compared to the straightforward binding case. The work

for a TB is dynamically distributed, namely, when the detection of one symbol vector

is finished, the PSD algorithm executed by the threads of the TB evaluates the next

unprocessed symbol vector. By means of this technique, the tail effect introduced by

the varying processing time of different symbol vectors is balanced. As a result, the

device level parallelism, namely, the concurrent execution of multiple kernels on different

streams, is enhanced.

The effect of dynamic computing load scheduling is shown in Fig. 4.17 for a 4 × 4

MIMO system with symbol sets |Ω| = 2, 4 and 8. An increase of 15%− 30% for |Ω| = 2,

4 and 38%− 64% for |Ω| = 8 of average detection throughput is observed.

130

DOI:10.15774/PPKE.ITK.2015.010



6.2. NEW SCIENTIFIC RESULTS

Thesis group II. Channel preprocessing techniques for
true-ML hard-output MIMO detection.
(Related articles [1], [3].)

Thesis II.a.

I experimentally proved that the computational complexity of the PSD algorithm is

reduced considerably by defining the detection order based on the inverse channel row

norms. The aim of ordering is to detect symbols with lower signal strength on levels

where a full breadth-first search is performed. This approach maximizes the probability

that the best path metric partial symbol vector is the optimal choice on these levels. I

showed that the applied inverse channel based row norm ordering increases the average

detection throughput and decreases the number of expanded nodes.

Detectors based on successive interference cancellation are seriously influenced by the

order of detected symbols. In case if the detected symbol is different from the symbol sent

then symbol cancellation introduces noise instead of lowering the number of interferers.

Several ordering metrics have been introduced in the literature [64]. The most important

ordering metrics are based on the (i) signal-to-interference plus noise ratio (SINR), (ii)

signal-to-noise ratio (SNR), and (iii) channel matrix column norms.

The metrics based on SINR and SNR involve complex computations. A simpler metric

based on the column norms of the channel matrix can be represented as:

y = Hst + v = h1s1 + h2s2 + · · ·+ hnsn + v (6.1)

where hi represents the i-th column of the channel matrix H. The ordering metric is

based on the norms of the column vectors ‖hi‖. As a result, the received signal strength

is proportional with the ordering metric.

Algorithms based on SIC require to detect the strongest symbols first. However, the

PSD starts the detection process with the symbols having the lowest metric, because at

the top of the tree a full breadth-first search is performed and the search is continued

with the best path metric symbol vectors. Since every possibility is examined the error

probability introduced by the lower signal strength is minimized.

The effect of matrix preprocessing based on decreasing ordering of the norms of the

row vectors of the inverse channel matrix was evaluated. By applying channel prepro-

131

DOI:10.15774/PPKE.ITK.2015.010



6.2. NEW SCIENTIFIC RESULTS

cessing an extra increase of 5 − 10% in average detection throughput was achieved, as

shown in Fig. 4.17.

Thesis group III. Complexity reduced parallel Lattice Re-
duction algorithms mapped to massively parallel and hetero-
geneous platforms.
(Related articles [2], [4], [5].)

Thesis III.a.

I proposed a parallel Cost-Reduced All-Swap LLL (CR-AS-LLL) lattice reduction

algorithm where the cost reduction consists in delaying the update of the off-diagonal

Gram-Schmidt coefficients when the size reductions and column swaps are performed.

I elaborated a GP-GPU mapping of the CR-AS-LLL algorithm relying on a two-

dimensional thread block configuration. I showed that efficient work distribution,

memory access, inner product and size reduction computation are achieved with the

proposed mapping. The average computational time of the GP-GPU mapping achieves

one order of magnitude improvement compared to the multi-core CPU mapping.

After every size reduction or column swap the Gram-Schmidt coefficients are updated

in the original parallel All-Swap LLL algorithm. However, a lot of unnecessary compu-

tations are performed, because the frequent size reductions and column swaps change

the value of the Gram-Schmidt coefficients several times. In the proposed CR-AS-LLL

algorithm only the µk,k−1 Gram-Schmidt coefficients are updated regularly because the

evaluation of the LLL conditions depend only on these parameters. The rest off the

coefficients are updated after finishing the swaps and size reductions operations.

When mapped to GP-GPU, the performance of the CR-AS-LLL algorithm depends

on the efficiency of the work distribution among the available GP-GPU threads and

the implementation of the most frequently used operations, such as dot products, size

reductions and column swaps. Figure 5.7 presents a possible mapping for the main parts of

the CR-AS-LLL algorithm. The kernel is launched with a one dimensional grid whose size

is determined by the number of lattice basis processed simultaneously. The thread blocks

TB(Tx, Ty) launched have a two dimensional configuration, where Tx and Ty denote the

number of threads in the x and y dimension. The number of threads Ty is defined

based on the size of the original basis, i.e., Ty = min (n/2, 32). By enabling the usage

of Tx = min (n, 32) threads in the x dimension, the threads, that belong to the same

132

DOI:10.15774/PPKE.ITK.2015.010



6.2. NEW SCIENTIFIC RESULTS

y dimension, will form a warp. Consequently, the elements of matrices B,B∗ stored in

the global memory are accessed through the coalesced memory pattern exploiting the

available memory bandwidth. The size of the low latency shared memory is limited. Thus,

only those Gram-Schmidt coefficients are stored in this memory which are required to

evaluate the LLL conditions. Shared memory also plays an important role in computing

the dot products and in the column swap procedures.

Figures 5.14 and 5.15 compare the average computational time of the CR-AS-LLL

mapped on a GP-GPU and a CPU. The GP-GPU outperforms the CPU for every matrix

dimension with speed-up ranging from 6 to 15.

Thesis III.b.

I proposed the Cost-Reduced Modified-Block LLL (CR-MB-LLL) algorithm where

two levels of parallelism are identified and exploited enhancing the lattice reduction of

higher dimensional lattice basis. The higher level parallelism follows the block reduction

concept where the original lattice basis is divided into several smaller sized sub-matrices

and, on the lower level, the parallel lattice reduction of the sub-matrices is done by the

CR-AS-LLL algorithm. I showed that for large matrices the CR-MB-LLL algorithm is

more efficient than the CR-AS-LLL algorithm.

The problem division to several sub-problems that can be executed concurrently can

be regarded as one level of parallelism. In addition, if a sub-problem could benefit from a

multi-threaded environment it can be regarded as a second level of parallelism. Previous

parallel LR implementations, such as the ones presented in [118], [119], [120] have fo-

cused only on multi-core architectures. The main drawback of the low number of threads

offered by modern CPUs (compared to GP-GPUs) is that low-level parallelism cannot

be exploited in an efficient manner. During the algorithm design, low-level parallelism is

usually omitted and the levels of parallelism are also restricted. In case of GP-GPUs, the

high number of CUDA cores makes the parallel execution of a high number of threads

possible offering significant performance improvements.

The CR-MB-LLL algorithm is designed to exploit the benefits of a highly multi-

threaded environment. The CR-MB-LLL algorithm splits the original basis into several

sub-problems with lower dimension and performs parallel LLL reduction on them. Be-

cause the LLL reduction of the subgroups and the boundaries check can be done in-

dependently, no frequent synchronization is required. Thus, coarse grained parallelism

is achieved by creating the sub-problems. The GP-GPU mapping of the CR-MB-LLL
133

DOI:10.15774/PPKE.ITK.2015.010



6.2. NEW SCIENTIFIC RESULTS

algorithm is similar to the one presented in case of the CR-AS-LLL algorithm because

the procedures used are performed with a two dimensional TB configuration even in the

case of a boundary check.

The CR-MB-LLL algorithm reduces further the computational complexity of the

MB-LLL algorithm. In the MB-LLL algorithm, the submatrices affected by boundary

swap have to be LLL reduced and the Gram-Schmidt coefficients have to be updated.

The complexity reduction in the CR-MB-LLL algorithm is achieved by eliminating the

GS coefficients update in the submatrices after the execution of the CR-AS-LLL and

with the simplified swap procedure.

As shown in Figs. 5.14 and 5.15, the computational time of the CR-MB-LLL is

25 − 40% lower in case of small and medium-sized matrices compared to the MB-LLL

algorithm. Furthermore, the block concept implemented in the CR-MB-LLL achieves

30% speed-up for large matrices compared to the CR-AS-LLL.

Thesis III.c.

I proposed a heterogeneous platform and a suitable mapping for the Cost-Reduced

Modified-Block LLL algorithm where the scheduling of kernels is implemented by a CPU

and the processing tasks are executed by GP-GPU kernels. I compared the performance

of the proposed heterogeneous platform with a dynamic parallelism based GP-GPU

mapping and a parallel CPU implementation. I showed that the average computational

time is better by one order of magnitude for smaller and middle sized matrices when a

heterogeneous platform is used.

The schematic of the heterogeneous platform is shown in Fig. 5.9. The CPU threads

launch (i) the CR-AS-LLL kernels in order to LLL reduce the sub-matrices, (ii) the

Boundary Check kernels for checking the LLL conditions at the boundaries of the sub-

groups and (iii) launch the Coefficients Update kernel to update the Gram-Schmidt co-

efficients and to perform the size reductions wherever it is required.

The control logic of the dynamic scheduling is implemented by the CPU threads. A

different CUDA stream is assigned for every CPU thread, making the concurrent kernel

execution possible and reducing the idle time of the CUDA cores. The status of the sub-

matrices is updated continuously in the GP-GPU global memory and it is communicated

to the CPU, thus, the size of the grids assigned to CR-AS-LLL and Boundary Check

kernels is dynamically adjusted according to the number of modified sub-matrices in

every iteration. The Coefficients Update kernel starts after all the matrices assigned to
134

DOI:10.15774/PPKE.ITK.2015.010



6.3. APPLICABILITY OF THE RESULTS

one CPU thread are completely processed.

Figure 5.11 shows the computational times of the MB-LLL algorithm based on three

different architectures for different matrix dimensions. The performance was evaluated on

a Tesla K20 GP-GPU and an Intel Core i7-3820 processor. The heterogeneous platform

clearly outperforms the solutions based on dynamic parallelism in the case of small

matrices and shows similar performance for large matrices. The CPU implementation

is outperformed for all of the cases. The conclusion is that the data transfer between

CPU and GP-GPU required by the heterogeneous system is less time consuming than

the overhead of the kernel launch with dynamic parallelism and the limitation of the

concurrent execution of kernels on different streams.

6.3 Applicability of the results

Lattice reduction is a powerful concept for solving diverse problems involving point

lattices. It is a topic of great interest, both as a theoretical tool and as a practical

technique. Since point lattices and lattice reduction plays a key role in numerous fields

of applications, my goal was to enhance the performance of the polynomial-time LLL

lattice reduction algorithm.

The results presented in Thesis group III. prove that my goal was successfully

achieved, since I reduced the complexity of the LLL algorithm, I identified and exploited

several levels of parallelism that lead to efficient algorithm mapping to different parallel

architectures and heterogeneous platforms. By exploiting the resources of this powerful

architectures the processing time of the LR was significantly decreased. The following

enumeration gives a brief summary where the results of Thesis group III. can be applied.

• In the field of wireless communications my results could enhance: (i) the equaliza-

tion of frequency-selective channels [123], (ii) the equalization in precoded orthogonal

frequency division multiplexing systems [124], (iii) the source and channel coding in

scenarios with multiple terminals [125], and the preprocessing of sphere decoding [61].

When used in conjunction with LR methods, lower complexity linear and non-linear

detection and precoding methods achieve full diversity order [14], [10]. The compu-

tational complexity of these methods is mostly determined by the preprocessing LR

algorithm, however, my results presented in Thesis group III. significantly reduce the

complexity of the LLL algorithm, achieving better processing times.

• My results can be applied in the field of image processing for improving the speed

of radar imaging, magnetic resonance imaging and color space estimation in JPEG

135

DOI:10.15774/PPKE.ITK.2015.010



6.3. APPLICABILITY OF THE RESULTS

images as shown [126] and [127].

• In the field of combinatorial mathematics it is possible to phrase many different prob-

lems as questions about lattices. Lattice problems arise in integer programming [107],

subset sum problems [67], factoring polynomials with rational coefficients [101], and

diophantine approximation just to name a few of them. My results presented in Thesis

group III. could speed-up the solution of these problems.

• As shown in [128] methods based on LR have been used in cryptography where the

processing time has a critical role.

Research in information theory has revealed that important improvements can be

achieved in data rate when multiple antennas are applied at both the transmitter and

receiver sides [8]. Unfortunately, with the increased performance the complexity of the

associated signal processing problems is also increased. The complexity of the optimal

ML detection in MIMO systems increases exponentially with the number of transmit

antennas and modulation order, thus, its use in practical systems is prohibitive. The SD

algorithm was developed and refined in [69], [67], [61] in order to significantly reduce

the search space. However, the sequential components of the SD algorithm are a serious

limitation in a parallel environment.

In Thesis group I. with the PSD algorithm, I proposed a highly parallel algorithm

that eliminated the sequential components and bottlenecks of the SD algorithm and the

efficient mapping to massively parallel architectures could be realized. In Thesis group

II., I further improved the performance of the PSD algorithm by defining a detection

ordering based on the inverse channel matrix row norms. These results made possible to

significantly improve the computation time of the optimal BER curves in larger MIMO

systems under different circumstances that was very time-consuming until now.

It was shown that the SD algorithm is analogous to the closest lattice point (CLP)

problem, or equivalently, the shortest vector problem (SVP) [61], [62], [71]. Since optimal

LR techniques, such as the Minkowski and Hermite-Korkine-Zolotareff LR algorthms,

iterativetly perform CLP searches and cryptography problems can be traced back to

CLP and SVP problems, my results presented in Thesis groups I. and II. can be applied

to enhance the solution of these problems.

136

DOI:10.15774/PPKE.ITK.2015.010



Bibliography

Author’s journal publications

[1] Csaba M. Józsa, Géza Kolumbán, Antonio M. Vidal, Francisco J. Martínez-

Zaldívar, and Alberto González. “Parallel Sphere Detector algorithm providing

optimal MIMO detection on massively parallel architectures”. In: Concurrency

and Computation: Practice and Experience (2015). doi: 10.1002/cpe.3488.

[2] Csaba M. Józsa, Fernando Domene, Antonio M. Vidal, Gema Piñero, and Al-

berto González. “High performance lattice reduction on heterogeneous computing

platform”. In: The Journal of Supercomputing (2014), pp. 1–14. issn: 0920-8542.

doi: 10.1007/s11227-014-1201-2.

Author’s conference publications

[3] Csaba M. Józsa, Géza Kolumbán, Antonio M. Vidal, Francisco-José Martínez-

Zaldívar, and Alberto González. “New Parallel Sphere Detector Algorithm Provid-

ing High-Throughput for Optimal MIMO Detection”. In: 2013 International Con-

ference on Computational Science (ICCS 2013). Vol. 18. Barcelona, Spain, 2013,

pp. 2432 –2435. doi: http://dx.doi.org/10.1016/j.procs.2013.05.417.

[4] Csaba M. Józsa, Fernando Domene, Gema Piñero, Alberto González, and An-

tonio M. Vidal. “Efficient GPU implementation of Lattice-Reduction-Aided Mul-

tiuser Precoding”. In: Wireless Communication Systems (ISWCS 2013), Proceed-

ings of the Tenth International Symposium on. Ilmenau, Germany, Aug. 2013,

pp. 1–5. isbn: 978-3-8007-3529-7.

[5] Fernando Domene, Csaba M. Józsa, Antonio M. Vidal, Gema Piñero, and Al-

berto González. “Performance analysis of a parallel Lattice Reduction algorithm

on many-core architectures”. In: The 13th International Conference on Compu-

137

DOI:10.15774/PPKE.ITK.2015.010

http://dx.doi.org/10.1002/cpe.3488
http://dx.doi.org/10.1007/s11227-014-1201-2
http://dx.doi.org/http://dx.doi.org/10.1016/j.procs.2013.05.417


BIBLIOGRAPHY

tational and Mathematical Methods in Science and Engineering (CMMSE 2013).

Vol. 2. Almeria, Spain, June 2013, pp. 535–542. isbn: 978-84-616-2723-3.

[6] Tamás Krébesz, Csaba M. Józsa, and Géza Kolumbán. “New carrier generation

techniques and their influence on bit energy in UWB radio”. In: Circuit Theory

and Design (ECCTD), 2011 20th European Conference on. IEEE. Aug. 2011,

pp. 801–804. doi: 10.1109/ECCTD.2011.6043838.

[7] Tamás Krébesz, Géza Kolumbán, and Csaba M. Józsa. “Ultra-wideband im-

pulse radio based on pulse compression technique”. In: Circuit Theory and De-

sign (ECCTD), 2011 20th European Conference on. IEEE. Aug. 2011, pp. 797–

800. doi: 10.1109/ECCTD.2011.6043839.

Related publications

[8] Emre Telatar. “Capacity of Multi-antenna Gaussian Channels”. In: European

Transactions on Telecommunications 10.6 (1999), pp. 585–595. issn: 1541-8251.

[9] Ezio Biglieri, Robert Calderbank, Anthony Constantinides, Andrea Goldsmith,

Arogyaswami Paulraj, and H. Vincent Poor. MIMO Wireless Communications.

New York, NY, USA: Cambridge University Press, 2007. isbn: 0521873282.

[10] Christoph Windpassinger, Robert FH Fischer, Tomáš Vencel, and Johannes B

Huber. “Precoding in multiantenna and multiuser communications”. In: IEEE

Trans. Wireless Commun. 3.4 (2004), pp. 1305–1316.

[11] C.B. Peel, B.M. Hochwald, and A.L. Swindlehurst. “A vector-perturbation tech-

nique for near-capacity multiantenna multiuser communication - Part I: channel

inversion and regularization”. In: IEEE Trans. Commun. 53.1 (2005), pp. 195–

202.

[12] B.M. Hochwald, C.B. Peel, and A.L. Swindlehurst. “A vector-perturbation tech-

nique for near-capacity multiantenna multiuser communication - Part II: pertur-

bation”. In: IEEE Trans. Commun. 53.3 (2005), pp. 537–544.

[13] Daofeng Xu, Yongming Huang, and Luxi Yang. “Improved nonlinear multiuser

precoding using lattice reduction”. In: Signal, image and video processing 3.1

(2009), pp. 47–52.

138

DOI:10.15774/PPKE.ITK.2015.010

http://dx.doi.org/10.1109/ECCTD.2011.6043838
http://dx.doi.org/10.1109/ECCTD.2011.6043839


BIBLIOGRAPHY

[14] Huan Yao and Gregory W. Wornell. “Lattice-reduction-aided detectors for

MIMO communication systems”. In: Global Telecommunications Conference,

2002. GLOBECOM ’02. IEEE. Vol. 1. Nov. 2002, pp. 424–428.

[15] C. Windpassinger and R.F.H. Fischer. “Low-complexity near-maximum-likelihood

detection and precoding for MIMO systems using lattice reduction”. In: Informa-

tion Theory Workshop, 2003. Proceedings. 2003 IEEE. Mar. 2003, pp. 345–348.

[16] M. Taherzadeh, A. Mobasher, and A.K. Khandani. “LLL Reduction Achieves the

Receive Diversity in MIMO Decoding”. In: Information Theory, IEEE Transac-

tions on 53.12 (Dec. 2007), pp. 4801–4805. issn: 0018-9448.

[17] C. Studer, D. Seethaler, and H. Bolcskei. “Finite lattice-size effects in MIMO

detection”. In: Signals, Systems and Computers, 2008 42nd Asilomar Conference

on. Oct. 2008, pp. 2032–2037.

[18] Xiaoli Ma and Wei Zhang. “Performance analysis for MIMO systems with lattice-

reduction aided linear equalization”. In: Communications, IEEE Transactions on

56.2 (Feb. 2008), pp. 309–318. issn: 0090-6778.

[19] Wen-mei W. Hwu. GPU Computing Gems Emerald Edition. 1st. San Francisco,

CA, USA: Morgan Kaufmann Publishers Inc., 2011.

[20] S. Roger, C. Ramiro, A. Gonzalez, V. Almenar, and A.M. Vidal. “Fully Parallel

GPU Implementation of a Fixed-Complexity Soft-Output MIMO Detector”. In:

Vehicular Technology, IEEE Transactions on 61.8 (Oct. 2012), pp. 3796–3800.

[21] Michael Wu, Yang Sun, Siddharth Gupta, and Joseph R. Cavallaro. “Implementa-

tion of a High Throughput Soft MIMO Detector on GPU”. In: J. Signal Process.

Syst. 64.1 (July 2011), pp. 123–136. issn: 1939-8018.

[22] Wang Hongyuan and Chen Muyi. “A Fixed-Complexity Sphere Decoder for

MIMO Systems on Graphics Processing Units”. In: Information Engineering and

Computer Science (ICIECS), 2010 2nd International Conference on. Dec. 2010.

[23] T. Nylanden, J. Janhunen, O. Silven, and M. Juntti. “A GPU implementation for

two MIMO-OFDM detectors”. In: Embedded Computer Systems (SAMOS), 2010

International Conference on. July 2010, pp. 293–300.

[24] D. Garrett, L. Davis, S. ten Brink, B. Hochwald, and G. Knagge. “Silicon com-

plexity for maximum likelihood MIMO detection using spherical decoding”. In:

Solid-State Circuits, IEEE Journal of 39.9 (2004), pp. 1544–1552.

139

DOI:10.15774/PPKE.ITK.2015.010



BIBLIOGRAPHY

[25] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and H. Bolcskei.

“VLSI implementation of MIMO detection using the sphere decoding algorithm”.

In: Solid-State Circuits, IEEE Journal of 40.7 (2005), pp. 1566–1577.

[26] X. Huang, C. Liang, and J. Ma. “System architecture and implementation of

MIMO sphere decoders on FPGA”. In: Very Large Scale Integration (VLSI) Sys-

tems, IEEE Transactions on 16.2 (2008), pp. 188–197.

[27] Rongchun Li, Yong Dou, Dan Zou, Shi Wang, and Ying Zhang. “Efficient graphics

processing unit based layered decoders for quasicyclic low-density parity-check

codes”. In: Concurrency and Computation: Practice and Experience 27.1 (2013),

pp. 29–46. issn: 1532-0634.

[28] Rongchun Li, Yong Dou, and Dan Zou. “Efficient parallel implementation of three-

point viterbi decoding algorithm on CPU, GPU, and FPGA”. In: Concurrency

and Computation: Practice and Experience 26.3 (2014), pp. 821–840.

[29] Fernando Domene, Sandra Roger, Carla Ramiro, Gema Pinero, and Alberto Gon-

zalez. “A reconfigurable GPU implementation for Tomlinson-Harashima precod-

ing”. In: Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE Interna-

tional Conference on. 2012.

[30] J. Kim, Seungheon Hyeon, and Seungwon Choi. “Implementation of an SDR sys-

tem using graphics processing unit”. In: Communications Magazine, IEEE 48.3

(2010), pp. 156–162. issn: 0163-6804.

[31] Chiyoung Ahn et al. “Implementation of an SDR system using an MPI-based

GPU cluster for WiMAX and LTE”. English. In: Analog Integrated Circuits and

Signal Processing 73.2 (2012), pp. 569–582. issn: 0925-1030.

[32] Luis G Barbero, David L Milliner, T Ratnarajah, John R Barry, and Colin Cowan.

“Rapid Prototyping of Clarkson’s Lattice Reduction for MIMO Detection”. In:

Communications, 2009. ICC’09. IEEE International Conference on. 2009, pp. 1–

5.

[33] Brian Gestner, Wei Zhang, Xiaoli Ma, and David V Anderson. “VLSI implementa-

tion of a lattice reduction algorithm for low-complexity equalization”. In: Circuits

and Systems for Communications, 2008. ICCSC 2008. 4th IEEE International

Conference on. 2008, pp. 643–647.

140

DOI:10.15774/PPKE.ITK.2015.010



BIBLIOGRAPHY

[34] B. Gestner, Wei Zhang, Xiaoli Ma, and D.V. Anderson. “Lattice Reduction for

MIMO Detection: From Theoretical Analysis to Hardware Realization”. In: Cir-

cuits and Systems I: Regular Papers, IEEE Transactions on 58.4 (Apr. 2011),

pp. 813–826. issn: 1549-8328.

[35] M. Shabany, A. Youssef, and G. Gulak. “High-Throughput 0.13-µm CMOS Lat-

tice Reduction Core Supporting 880 Mb/s Detection”. In: Very Large Scale In-

tegration (VLSI) Systems, IEEE Transactions on 21.5 (May 2013), pp. 848–861.

issn: 1063-8210.

[36] M. Flynn. “Very high-speed computing systems”. In: Proceedings of the IEEE

54.12 (Dec. 1966), pp. 1901–1909. issn: 0018-9219.

[37] M. Flynn. “Some Computer Organizations and Their Effectiveness”. In: Comput-

ers, IEEE Transactions on C-21.9 (1972), pp. 948–960. issn: 0018-9340.

[38] Michael Flynn. “Flynn’s Taxonomy”. English. In: Encyclopedia of Parallel Com-

puting. Ed. by David Padua. Springer US, 2011, pp. 689–697. isbn: 978-0-387-

09765-7.

[39] NVIDIA Corporation. NVIDIA’s Next Generation CUDA Compute Architecture:

Kepler TM GK110. 2012.

[40] NVIDIA Corporation. CUDA C Programming Guide.

http://docs.nvidia.com/cuda/cuda-c-programming-guide/. 2012.

[41] Barbara Chapman, Gabriele Jost, and Ruud van der Pas. Using OpenMP: Portable

Shared Memory Parallel Programming (Scientific and Engineering Computation).

The MIT Press, 2007. isbn: 0262533022, 9780262533027.

[42] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Don-

garra. MPI-The Complete Reference, Volume 1: The MPI Core. 2nd. (Revised).

Cambridge, MA, USA: MIT Press, 1998. isbn: 0262692155.

[43] Khronos OpenCL Working Group. The OpenCL Specification, version 1.0.29.

2008. url: http://khronos.org/registry/cl/specs/opencl-1.0.29.pdf.

[44] Andrea Goldsmith. Wireless Communications. New York, NY, USA: Cambridge

University Press, 2005. isbn: 0521837162.

[45] S. Alamouti. “A simple transmit diversity technique for wireless communica-

tions”. In: Selected Areas in Communications, IEEE Journal on 16.8 (Oct. 1998),

pp. 1451–1458. issn: 0733-8716.

141

DOI:10.15774/PPKE.ITK.2015.010

http://khronos.org/registry/cl/specs/opencl-1.0.29.pdf


BIBLIOGRAPHY

[46] Jiann-Ching Guey, M.P. Fitz, M.R. Bell, and Wen-Yi Kuo. “Signal design for

transmitter diversity wireless communication systems over Rayleigh fading chan-

nels”. In: Communications, IEEE Transactions on 47.4 (Apr. 1999), pp. 527–537.

issn: 0090-6778.

[47] Vahid Tarokh, N. Seshadri, and A.R. Calderbank. “Space-time codes for high data

rate wireless communication: performance criterion and code construction”. In:

Information Theory, IEEE Transactions on 44.2 (Mar. 1998), pp. 744–765. issn:

0018-9448.

[48] Vahid Tarokh, Hamid Jafarkhani, and A.R. Calderbank. “Space-time block codes

from orthogonal designs”. In: Information Theory, IEEE Transactions on 45.5

(July 1999), pp. 1456–1467. issn: 0018-9448.

[49] Gerard J. Foschini. “Layered space-time architecture for wireless communication

in a fading environment when using multi-element antennas”. In: Bell Labs Tech-

nical Journal 1.2 (1996), pp. 41–59. issn: 1089-7089.

[50] M. Arar and A. Yongacoglu. “Parallel low-complexity MIMO detection algorithm

using QR decomposition and Alamouti space-time code”. In: Wireless Conference

(EW), 2010 European. Apr. 2010, pp. 141–148.

[51] Vahid Tarokh, A. Naguib, N. Seshadri, and A.R. Calderbank. “Combined array

processing and space-time coding”. In: Information Theory, IEEE Transactions

on 45.4 (May 1999), pp. 1121–1128.

[52] Meixia Tao and R.S. Cheng. “Generalized layered space-time codes for high data

rate wireless communications”. In: Wireless Communications, IEEE Transactions

on 3.4 (July 2004), pp. 1067–1075.

[53] Claude Shannon. “A Mathematical Theory of Communication”. In: Bell System

Technical Journal 27 (1948), pp. 379–423.

[54] S.K. Jayaweera and H.V. Poor. “Capacity of multiple-antenna systems with both

receiver and transmitter channel state information”. In: Information Theory,

IEEE Transactions on 49.10 (Oct. 2003), pp. 2697–2709. issn: 0018-9448.

[55] G.J. Foschini and M.J. Gans. “On Limits of Wireless Communications in a Fad-

ing Environment when Using Multiple Antennas”. English. In: Wireless Personal

Communications 6.3 (1998), pp. 311–335. issn: 0929-6212.

142

DOI:10.15774/PPKE.ITK.2015.010



BIBLIOGRAPHY

[56] L.G. Barbero and J.S. Thompson. “Fixing the Complexity of the Sphere Decoder

for MIMO Detection”. In: Wireless Communications, IEEE Transactions on 7.6

(June 2008), pp. 2131–2142.

[57] M.S. Khairy, C. Mehlfuhrer, and M. Rupp. “Boosting sphere decoding speed

through Graphic Processing Units”. In: Wireless Conference (EW), 2010 Euro-

pean. IEEE. 2010, pp. 99–104.

[58] Mostafa El-Khamy, Mostafa Medra, and Hassan M. ElKamchouchi. “Reduced

complexity list sphere decoding for MIMO systems”. In: Digital Signal Processing

0 (2013). issn: 1051-2004.

[59] Chiao-En Chen and Wei-Ho Chung. “Computationally efficient near-optimal com-

bined antenna selection algorithms for V-BLAST systems”. In: Digital Signal Pro-

cessing 23.1 (2013), pp. 375 –381. issn: 1051-2004.

[60] Gianmarco Romano, Domenico Ciuonzo, Pierluigi Salvo Rossi, and Francesco

Palmieri. “Low-complexity dominance-based sphere decoder for MIMO systems”.

In: Signal Processing 93.9 (2013), pp. 2500 –2509. issn: 0165-1684.

[61] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger. “Closest point search in lattices”.

In: Information Theory, IEEE Transactions on 48.8 (2002).

[62] M.O. Damen, H. El Gamal, and G. Caire. “On maximum-likelihood detection and

the search for the closest lattice point”. In: Information Theory, IEEE Transac-

tions on 49.10 (2003), pp. 2389–2402.

[63] A.D. Murugan, H. El Gamal, M.O. Damen, and G. Caire. “A unified framework

for tree search decoding: rediscovering the sequential decoder”. In: Information

Theory, IEEE Transactions on 52.3 (2006), pp. 933–953.

[64] P.W. Wolniansky, G.J. Foschini, G.D. Golden, and R. Valenzuela. “V-BLAST:

an architecture for realizing very high data rates over the rich-scattering wire-

less channel”. In: Signals, Systems, and Electronics, 1998. ISSSE 98. 1998 URSI

International Symposium on. IEEE. Sept. 1998, pp. 295–300.

[65] Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: a cryp-

tographic perspective. Vol. 671. Springer Science & Business Media, 2002.

[66] U. Fincke and M. Pohst. “Improved Methods for Calculating Vectors of Short

Length in a Lattice, Including a Complexity Analysis”. In: Mathematics of Com-

putation 44.170 (1985), pp. 463–471.

143

DOI:10.15774/PPKE.ITK.2015.010



BIBLIOGRAPHY

[67] C. P. Schnorr and M. Euchner. “Lattice basis reduction: Improved practical al-

gorithms and solving subset sum problems”. In: Mathematical Programming 66

(1994), pp. 181–199.

[68] J. H. Conway, N. J. A. Sloane, and E. Bannai. Sphere-packings, lattices, and

groups. New York, NY, USA: Springer-Verlag, Inc., 1987.

[69] M. Pohst. “On the computation of lattice vectors of minimal length, successive

minima and reduced bases with applications”. In: ACM SIGSAM Bulletin 15.1

(1981), pp. 37–44.

[70] E. Viterbo and E. Biglieri. “A universal decoding algorithm for lattice codes”.

In: 14 Colloque sur le traitement du signal et des images, FRA, 1993. GRETSI,

Groupe d’Etudes du Traitement du Signal et des Images. 1993.

[71] B. Hassibi and H. Vikalo. “On the sphere-decoding algorithm I. Expected com-

plexity”. In: Signal Processing, IEEE Transactions on 53.8 (2005).

[72] H. Vikalo and B. Hassibi. “On the sphere-decoding algorithm II. Generalizations,

second-order statistics, and applications to communications”. In: Signal Process-

ing, IEEE Transactions on 53.8 (2005), pp. 2819–2834.

[73] J. Jalden and B. Ottersten. “On the complexity of sphere decoding in digital com-

munications”. In: Signal Processing, IEEE Transactions on 53.4 (2005), pp. 1474

–1484.

[74] J. Fink, S. Roger, A. Gonzalez, V. Almenar, and V.M. Garcia. “Complexity as-

sessment of sphere decoding methods for MIMO detection”. In: Signal Processing

and Information Technology (ISSPIT), 2009 IEEE International Symposium on.

Dec. 2009, pp. 9–14.

[75] Markus Myllylä, Markku Juntti, and Joseph R. Cavallaro. “Implementation as-

pects of list sphere decoder algorithms for MIMO-OFDM systems”. In: Signal

Processing 90.10 (2010), pp. 2863 –2876. issn: 0165-1684.

[76] P. van Emde-Boas. Another NP-complete partition problem and the complexity of

computing short vectors in a lattice. Report. Department of Mathematics. Uni-

versity of Amsterdam. Department, Univ., 1981.

[77] Su, K. “Efficient Maximum Likelihood Detection for Communication over Multi-

ple Input Multiple Output Channels”. MA thesis. University of Cambridge, 2005.

144

DOI:10.15774/PPKE.ITK.2015.010



BIBLIOGRAPHY

[78] Zhan Guo and P. Nilsson. “Algorithm and implementation of the K-best sphere de-

coding for MIMO detection”. In: Selected Areas in Communications, IEEE Jour-

nal on 24.3 (Mar. 2006), pp. 491–503. issn: 0733-8716.

[79] Sizhong Chen, Tong Zhang, and Yan Xin. “Relaxed K-Best MIMO Signal Detec-

tor Design and VLSI Implementation”. In: Very Large Scale Integration (VLSI)

Systems, IEEE Transactions on 15.3 (2007), pp. 328–337.

[80] S. Mondal, K.N. Salama, and W.H. Ali. “A novel approach for K-best MIMO

detection and its VLSI implementation”. In: Circuits and Systems, 2008. ISCAS

2008. IEEE International Symposium on. May 2008, pp. 936–939.

[81] S. Mondal, A. Eltawil, Chung-An Shen, and K.N. Salama. “Design and Implemen-

tation of a Sort-Free K-Best Sphere Decoder”. In: Very Large Scale Integration

(VLSI) Systems, IEEE Transactions on 18.10 (Oct. 2010), pp. 1497–1501.

[82] Yi Hsuan Wu, Yu Ting Liu, Hsiu-Chi Chang, Yen-Chin Liao, and Hsie-Chia

Chang. “Early-Pruned K-Best Sphere Decoding Algorithm Based on Radius Con-

straints”. In: Communications, 2008. ICC ’08. IEEE International Conference on.

May 2008, pp. 4496–4500.

[83] Chung-An Shen and A.M. Eltawil. “A Radius Adaptive K-Best Decoder With

Early Termination: Algorithm and VLSI Architecture”. In: Circuits and Systems

I: Regular Papers, IEEE Transactions on 57.9 (Sept. 2010), pp. 2476–2486. issn:

1549-8328.

[84] K.C. Lai, J.J. Jia, and L.W. Lin. “Hybrid Tree Search Algorithms for Detection

in Spatial Multiplexing Systems”. In: Vehicular Technology, IEEE Transactions

on 99 (2011).

[85] J. Jalden, L.G. Barbero, B. Ottersten, and J.S. Thompson. “Full Diversity Detec-

tion in MIMO Systems with a Fixed-Complexity Sphere Decoder”. In: Acoustics,

Speech and Signal Processing, 2007. ICASSP 2007. IEEE International Confer-

ence on. Vol. 3. Apr. 2007, pp. 49–52.

[86] M.S. Khairy, M.M. Abdallah, and S. E-D Habib. “Efficient FPGA Implementation

of MIMO Decoder for Mobile WiMAX System”. In: Communications, 2009. ICC

’09. IEEE International Conference on. June 2009, pp. 1–5.

[87] Qi Qi and Chaitali Chakrabarti. “Parallel High Throughput Soft-Output Sphere

Decoding Algorithm”. English. In: Journal of Signal Processing Systems 68.2

(2012), pp. 217–231. issn: 1939-8018.
145

DOI:10.15774/PPKE.ITK.2015.010



BIBLIOGRAPHY

[88] P. Kipfer and R. Westermann. “GPU Gems”. In: vol. 2. Addison Wesley Profes-

sional, 2005. Chap. 46, pp. 733–746.

[89] Matt Pharr and Randima Fernando. GPU Gems 2: Programming Techniques

for High-Performance Graphics and General-Purpose Computation (Gpu Gems).

Addison-Wesley Professional, 2005.

[90] K. E. Batcher. “Sorting networks and their applications”. In: 1968, pp. 307–314.

[91] Hubert Nguyen. GPU Gems 3. First. Addison-Wesley Professional, 2007.

[92] NVIDIA Corporation. GTX 680 Kepler (GK104) Whitepaper. 2012.

[93] D Wübben, J Rinas, R Böhnke, V Kühn, and KD Kammeyer. “Efficient algorithm

for detecting layered space-time codes”. In: Proceedings of the 4th International

ITG Conference on Source and Channel Coding (SCC). 2002.

[94] B.M. Hochwald and S. ten Brink. “Achieving near-capacity on a multiple-antenna

channel”. In: Communications, IEEE Transactions on 51.3 (Mar. 2003), pp. 389–

399. issn: 0090-6778.

[95] C. Studer, A. Burg, and H. Bolcskei. “Soft-output sphere decoding: algorithms

and VLSI implementation”. In: Selected Areas in Communications, IEEE Journal

on 26.2 (Feb. 2008), pp. 290–300. issn: 0733-8716.

[96] N. Felber, W. Fichtner, and A. Burg. “A 50 MBPS 4x4 maximum likelihood

decoder for multiple-input multiple-output systems with QPSK modulation”. In:

Icecs 2003: Proceedings Of The 2003 10Th Ieee International Conference On Elec-

tronics,Circuits And Systems. Vol. 1. IEEE. Dec. 2003, pp. 332–335.

[97] M.S. Khairy, C. Mehlfuhrer, and M. Rupp. “Boosting sphere decoding speed

through Graphic Processing Units”. In: Wireless Conference (EW), 2010 Euro-

pean. Apr. 2010, pp. 99–104.

[98] Min Li, B. Bougard, Weiyu Xu, D. Novo, L. Van der Perre, and F. Catthoor. “Op-

timizing Near-ML MIMO Detector for SDR Baseband on Parallel Programmable

Architectures”. In: Design, Automation and Test in Europe, 2008. DATE ’08.

Mar. 2008, pp. 444–449.

[99] Christoph Studer, Markus Wenk, and Andreas Burg. “VLSI Implementation of

Hard- and Soft-Output Sphere Decoding for Wide-Band MIMO Systems”. In:

VLSI-SoC: Forward-Looking Trends in IC and Systems Design. Vol. 373. IFIP

Advances in Information and Communication Technology. Springer Berlin Hei-

delberg, 2012, pp. 128–154.
146

DOI:10.15774/PPKE.ITK.2015.010



BIBLIOGRAPHY

[100] D. Wubben, D. Seethaler, J. Jalden, and G. Matz. “Lattice Reduction”. In: Signal

Processing Magazine, IEEE 28.3 (May 2011), pp. 70–91. issn: 1053-5888.

[101] Arjen Klaas Lenstra, Hendrik Willem Lenstra, and László Lovász. “Factoring

polynomials with rational coefficients”. In: Mathematische Annalen 261.4 (1982),

pp. 515–534.

[102] Murray R Bremner. Lattice basis reduction: An introduction to the LLL algorithm

and its applications. CRC Press, 2012.

[103] Martin Seysen. “Simultaneous reduction of a lattice basis and its reciprocal basis”.

In: Combinatorica 13.3 (1993), pp. 363–376. issn: 0209-9683.

[104] Di Wu, Johan Eilert, and Dake Liu. “A programmable lattice-reduction aided de-

tector for MIMO-OFDMA”. In: Circuits and Systems for Communications, 2008.

ICCSC 2008. 4th IEEE International Conference on. 2008, pp. 293–297.

[105] Susanne Wetzel. “An efficient parallel block-reduction algorithm”. In: Algorithmic

Number Theory. Ed. by JoeP. Buhler. Vol. 1423. Lecture Notes in Computer

Science. Springer Berlin Heidelberg, 1998, pp. 323–337. isbn: 978-3-540-64657-0.

[106] Andre R. Brodtkorb, Christopher Dyken, Trond R. Hagen, Jon M. Hjelmervik,

and Olaf O. Storaasli. “State-of-the-art in heterogeneous computing”. In: Sci.

Program. 18.1 (Jan. 2010), pp. 1–33. issn: 1058-9244.

[107] Ravi Kannan. “Improved algorithms for integer programming and related lattice

problems”. In: Proceedings of the fifteenth annual ACM symposium on Theory of

computing. ACM. 1983, pp. 193–206.

[108] A.H. Banihashemi and A.K. Khandani. “On the complexity of decoding lattices

using the Korkin-Zolotarev reduced basis”. In: Information Theory, IEEE Trans-

actions on 44.1 (Jan. 1998), pp. 162–171. issn: 0018-9448.

[109] Bettina Helfrich. “Algorithms to construct Minkowski reduced and Hermite re-

duced lattice bases”. In: Theoretical Computer Science 41 (1985), pp. 125–139.

[110] Ravi Kannan. “Minkowski’s Convex Body Theorem and Integer Programming”.

In: Math. Oper. Res. 12.3 (Aug. 1987), pp. 415–440. issn: 0364-765X.

[111] Wen Zhang, Sanzheng Qiao, and Yimin Wei. “HKZ and Minkowski Reduction

Algorithms for Lattice-Reduction-Aided MIMO Detection”. In: Signal Processing,

IEEE Transactions on 60.11 (Nov. 2012), pp. 5963–5976. issn: 1053-587X.

147

DOI:10.15774/PPKE.ITK.2015.010



BIBLIOGRAPHY

[112] Phong Q. Nguyen and Brigitte Valle. The LLL Algorithm: Survey and Applica-

tions. 1st. Springer Publishing Company, Incorporated, 2009. isbn: 3642022944,

9783642022944.

[113] L. Afflerbach and H. Grothe. “Calculation of Minkowski-reduced lattice bases”.

English. In: Computing 35.3-4 (1985), pp. 269–276. issn: 0010-485X.

[114] Phong Q. Nguyen and Damien Stehlé. “Low-dimensional Lattice Basis Reduction

Revisited”. In: ACM Trans. Algorithms 5.4 (Nov. 2009), pp. 1–48. issn: 1549-6325.

[115] S. Roger, F. Domene, A. Gonzalez, V. Almenar, and G. Piñero. “An evaluation

of precoding techniques for multiuser communication systems”. In: Proc. 7th Int

Wireless Communication Systems (ISWCS) Symp. 2010.

[116] Christoph Windpassinger, Robert FH Fischer, and Johannes B Huber. “Lattice-

reduction-aided broadcast precoding”. In: IEEE Trans. Commun. 52.12 (2004),

pp. 2057–2060.

[117] Gilles Villard. “Parallel lattice basis reduction”. In: Papers from the international

symposium on Symbolic and algebraic computation. ISSAC ’92. New York, NY,

USA: ACM, 1992. isbn: 0-89791-489-9.

[118] Yixian Luo and Sanzheng Qiao. “A parallel LLL algorithm”. In: Proceedings of

The Fourth International C* Conference on Computer Science and Software En-

gineering. 2011, pp. 93–101.

[119] W. Backes and S. Wetzel. “Parallel Lattice Basis Reduction - The Road to Many-

Core”. In: High Performance Computing and Communications (HPCC), 2011

IEEE 13th International Conference on. 2011.

[120] U. Ahmad, A. Amin, Min Li, S. Pollin, L. Van der Perre, and F. Catthoor. “Scal-

able Block-Based Parallel Lattice Reduction Algorithm for an SDR Baseband

Processor”. In: Communications (ICC), 2011 IEEE International Conference on.

2011.

[121] A. Burg, D. Seethaler, and G. Matz. “VLSI Implementation of a Lattice-Reduction

Algorithm for Multi-Antenna Broadcast Precoding”. In: Circuits and Systems,

2007. ISCAS 2007. IEEE International Symposium on. 2007, pp. 673–676.

[122] L. Bruderer, C. Studer, M. Wenk, D. Seethaler, and A. Burg. “VLSI implemen-

tation of a low-complexity LLL lattice reduction algorithm for MIMO detection”.

In: Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Sym-

posium on. 2010.
148

DOI:10.15774/PPKE.ITK.2015.010



BIBLIOGRAPHY

[123] Wai Ho Mow. “Maximum likelihood sequence estimation from the lattice

viewpoint”. In: Information Theory, IEEE Transactions on 40.5 (Sept. 1994),

pp. 1591–1600. issn: 0018-9448.

[124] Xiaoli Ma, Wei Zhang, and A. Swami. “Lattice-reduction aided equalization for

OFDM systems”. In: Wireless Communications, IEEE Transactions on 8.4 (Apr.

2009), pp. 1608–1613. issn: 1536-1276.

[125] R. Zamir, S. Shamai, and U. Erez. “Nested linear/lattice codes for structured mul-

titerminal binning”. In: Information Theory, IEEE Transactions on 48.6 (2002),

pp. 1250–1276. issn: 0018-9448.

[126] A. Hassibi and S. Boyd. “Integer parameter estimation in linear models with

applications to GPS”. In: Signal Processing, IEEE Transactions on 46.11 (Nov.

1998), pp. 2938–2952. issn: 1053-587X.

[127] R.N. Neelamani, R.G. Baraniuk, and Ricardo de Queiroz. “Compression color

space estimation of JPEG images using lattice basis reduction”. In: Image Process-

ing, 2001. Proceedings. 2001 International Conference on. Vol. 1. 2001, pp. 890–

893.

[128] PhongQ. Nguyen and Jacques Stern. “Lattice Reduction in Cryptology: An Up-

date”. English. In: Algorithmic Number Theory. Ed. by Wieb Bosma. Vol. 1838.

Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2000, pp. 85–112.

isbn: 978-3-540-67695-9.

149

DOI:10.15774/PPKE.ITK.2015.010


	Introduction
	Motivation and scope
	Thesis outline

	High-performance computing architectures and programming models
	Flynn's taxonomy of parallel architectures
	Overview of parallel programming models
	The CUDA programming model


	Overview of MIMO communications
	Benefits of MIMO systems
	MIMO system model
	MIMO capacity

	MIMO detection methods and algorithms
	Introduction
	MIMO detectors classification
	Linear detectors
	Zero-forcing detection
	Minimum mean square error detection

	Successive interference cancellation detectors
	Successive interference cancellation detection concept
	The Vertical Bell Laboratories Layered Space-Time architecture

	Maximum likelihood detection
	Maximum likelihood tree-search based detectors
	The Sphere Detector algorithm
	General description of the Sphere Detector algorithm
	The Fincke-Phost and Schnorr-Euchner enumeration strategies
	Complexity analysis of the Sphere Detector algorithm

	The Automatic Sphere Detector algorithm

	Non-maximum likelihood tree-search based detectors
	K-Best Sphere Detector algorithm
	Hybrid tree-search detectors
	The Adaptive Reduced Breadth-First Search algorithm
	The Fixed-Complexity Sphere Detector algorithm


	The Parallel Sphere Detector algorithm
	Design objectives of the Parallel Sphere Detector algorithm
	General description of the Parallel Sphere Detector algorithm
	The main building blocks of the Expand and Evaluate pipeline
	Preparatory block
	Selecting, mapping and merging block
	Path metric evaluation block
	Searching or sorting block
	Application of the Expand and Evaluate pipeline

	Levels of parallelism and CUDA mapping details
	Performance evaluation of the Parallel Sphere Detector algorithm
	Average detection throughput and scalability
	Preprocessing of the channel matrix
	Average complexity per thread
	Comparison of detection throughput and bit error rate performance


	Conclusion

	Lattice reduction and its applicability to MIMO systems
	Introduction
	Lattice reduction preliminaries
	Lattice reduction algorithms
	Hermite-Korkine-Zolotareff and Minkowski lattice basis reduction
	The Lenstra-Lenstra-Lovász lattice basis reduction
	Seysen's lattice basis reduction

	Lattice reduction aided signal processing
	Lattice reduction aided MIMO detection
	Lattice reduction aided MISO precoding

	Lattice reduction parallelization strategies
	The All-Swap lattice reduction algorithm
	The parallel block reduction concept

	Parallel lattice reduction algorithms and their mapping to parallel architectures
	The Cost-Reduced All-Swap LLL lattice reduction algorithm
	The Modified-Block LLL lattice reduction algorithm
	The Cost-Reduced Modified-Block LLL lattice reduction algorithm
	Evaluation results

	Conclusion

	Theses of the Dissertation
	Methods and tools
	New scientific results
	Applicability of the results




