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Feldhoffer, Giovanni Pazienza, Endre Kósa, Ádám Balogh, Zoltán
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Chapter 1

Introduction

Due to the rapid evolution of computer technology the problems on many pro-

cessing elements, which are arranged in regular grid structures (array processors),

become important. With the large number of the processor cores not only the

speed of the cores but their topographic structure becomes an important issue.

These processors are capable of running multiple tasks in parallel. In order to

make an efficiently executed algorithm, the relative distance between two neigh-

boring processing elements should be taken into consideration. In other words

it is the precedence of locality phenomenon. This discipline requires the basic

operations to be redesigned in order to work on these hardware architectures

efficiently.

In the dissertation solutions for solving hard computational problems are

searched, where the area and dissipated power is minimal, the number of im-

plemented processor, the speed and the memory access are maximal. A solution

is searched within this parameter space for an implementation of a partial differ-

ential equation, and the solution is optimized for some variable of this parameter

space (e.g.: speed, area, bandwidth). The search space will be always limited by

the special properties of the hardware environment.

There are several known problems, which cannot be computed in real time

with the former resources, or just very slowly. The aim of the research is the

examination of these hard problems. As an example a fluid flow simulation is

going to be analyzed, and a hardware implementation for the problems is going

to be introduced.

1
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2 1. INTRODUCTION

The motivation of the dissertation is to develop a methodology for solving

partial differential equations, especially for liquid and gas flow simulations, which

helps to map these problems optimally into inhomogenous and reconfigurable

architectures. To reach this goal two hardware platforms as experimental frame-

work were built up, namely the IBM Cell Broadband Engine Architecture and the

Xilinx Field Programmable Gate Array (FPGA) as reconfigurable architecture.

After the creation of the framework, which models fluid flow simulations, it is

mapped to these two architecture which follows different approach (see Chapter

2). To fully utilize the capabilities of the two architecture several optimization

procedure had to performed. Not only the structure of the architectures are taken

into consideration, but the computational precision too (introduced in Chapter

3). It is important to examine the precision of the arithmetic unit on FPGA,

because significant speedup or lesser area requirement and power dissipation can

be achieved. With the investigation of the computational precision, the decision

can be taken, wether the problem fits onto the selected FPGA or not. It relies

mainly on the number of operations in the arithmetic unit. To get a complete,

standalone machine, the processing element on FPGA should be extended with

a control unit (it is going to e introduced in Chapter 4).

The IBM Cell processor represents a bounded architecture, which builds up

from heterogeneous processor cores. From the marketing point of view, the Cell

processor failed, but its significant innovations (e.g.: heterogeneous processor

cores, ring bus structure) can be observed in todays modern processors (e.g.:

IBM Power 7 [13], Intel Sandy Bridge [14]). According to the special requirement

of the processor, vectorized datas were used which composed of floating point

numbers. For the development of the software the freely available IBM software

development kit (SDK) with C programming language was used.

Xilinx FPGAs are belonging to the leading reconfigurable computers since a

while. Due to the fast Configurable Logic Blocks (CLB) and to the large number

of interconnections arbitrary circuits can be implemented on them. In order to

accelerate certain operations, dedicated elements (e.g.: digital signal processing

(DSP) blocks) are available on the FPGA. The FPGA’s CLB and DSP can be

treated like different type of processors which can handle different operations

efficiently. Due to the configurable parameters of the FPGA the processed data
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3

can be represented in arbitrary type and size. During the research fixed point

and floating point number arithmetic units with different mantissa width were

investigated in order to find the optimal precision for a qualitative good result.

During the implementation process I used the Xilinx Foundation ISE softwares

with VHSIC hardware description language (VHDL) language. For the software

simulation I used the MentorGraphics Modelsim SE software.

The Chapter 1 is built up as follows. First the CNN paradigm is introduced.

It is capable to solve complex spatio-temporal problems. The standard CNN

cell should be extended with a control unit and with memory units in order to

get an universal machine, which is based on the stored programmability (the

extension is introduced in Chapter 4). Several studies proved the effectiveness

of the CNN-UM solution of different PDEs [15, 16]. After the previous section

several implementations of the CNN-UM principle are listed. The emulated dig-

ital CNN-UM is a reasonable alternative to solve different PDEs. It has mixed

the benefits of the software simulation and the analog solution. Namely the high

configurability and the precision of the software solution and the high computing

speed of the analog solution. In the later Chapters the CNN simulation kernel is

going to be introduced on the IBM Cell processor and on the FPGA. In order to

get the reader a clear understanding from the framework a brief introduction of

the hardware specifications are presented. The final section is an outlook of the

recent trends in many core systems.
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4 1. INTRODUCTION

1.1 Cellular Neural/Nonlinear Network

The basic building blocks of the Cellular Neural Networks, which was published in

1988 by L. O. Chua and L. Yang [17], are the uniform structured analog processing

elements, the cells. A standard CNN architecture consists of a rectangular 2D-

array of cells as shown in Figure (1.1). With interconnection of many 2D arrays

it can be extended to a 3-dimensional, multi-layer CNN structure. As it is in

organic structures the simplest way to connect each cell is the connection of

the local neighborhood via programmable weights. The weighted connections of

a cell to its neighbors are called the cloning template. The CNN cell array is

programmable by changing the cloning template. With the local connection of

the cells difficult computational problems can be solved, like modeling biological

structures [18] or the investigation of the systems which are based on partial

differential equations [19].

Figure 1.1: Location of the CNN cells on a 2D grid, where the gray cells are the
direct neighbors of the black cell

1.1.1 Linear templates

The state equation of the original Chua-Yang model [17] is as follows:

ẋij(t) = −xij +
∑

C (kl)∈Nr(i,j)

Aij,klykl(t) +
∑

C (kl)∈Nr(i,j)

Bij,klukl + zij (1.1)
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1.1 Cellular Neural/Nonlinear Network 5

where ukl, xij, and ykl are the input, the state, and the output variables. A and

B matrices are the feedback and feed-forward templates, and zij is the bias term.

Nr (i,j) is the set of neighboring cells of the (i,j)th cell. The output yij equation

of the cell is described by the following function (see Figure 1.2):

yij = f(xij) =
|xij + 1| − |xij − 1|

2
=


1 xij(t) > 1

xij(t) −1 ≤ xij(t) ≤ 1
−1 xij(t) < −1

(1.2)

V xij 

f(V xij ) 

1 

1 

-1 

-1 

Figure 1.2: The output sigmoid function

The discretized form of the original state equation (1.1) is derived by using

the forward Euler form. It is as follows:

xij(n+ 1) = (1− h)xij(n)+

+h

( ∑
C (kl)∈Nr(i,j)

Aij,klykl(n) +
∑

C (kl)∈Nr(i,j)

Bij,klukl + zij

)
(1.3)

In order to simplify computation variables are eliminated as far as possible (e.g.:

combining variables by extending the template matrices). First of all, the Chua-

Yang model is changed to the Full Signal Range (FSR) [20] model. Here the state

and the output of the CNN are equal. In cases when the state is about to go to

saturation, the state variable is simply truncated. In this way the absolute value

of the state variable cannot exceed +1. The discretized version of the CNN state
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6 1. INTRODUCTION

equation with FSR model is as follows:

xij(n+ 1) =


1 if vij(n) > 1

vij(k) if |vij(n)| ≤ 1
−1 if vij(n) < −1

vij(n) = (1− h)xij(n)+

+h

( ∑
C(kl)∈Nr(i,j)

Aij,klxkl(n)+
∑

C(kl)∈Nr(i,j)

Bij,klukl(n) + zij

) (1.4)

Now the x and y variables are combined by introducing a truncation, which is

simple in the digital world from computational aspect. In addition, the h and

(1-h) terms are included into the A and B template matrices resulting templates

Â, B̂.

By using these modified template matrices, the iteration scheme is simplified

to a 3×3 convolution plus an extra addition:

vij(n+ 1) =
∑

C (kl)∈Nr(i,j)

Âij,klxkl(n) + gij (1.5a)

gij =
∑

C (kl)∈Nr(i,j)

B̂ij,klukl + hzij (1.5b)

If the input is constant or changing slowly, gij can be treated as a constant and

should be computed only once at the beginning of the computation.

1.1.2 Nonlinear templates

The implementation of nonlinear templates are very difficult on analog VLSI and

quite simple on emulated digital CNN. In some interesting spatio-temporal prob-

lems (Navier-Stokes equations) the nonlinear templates (nonlinear interactions)

play key role. In general the nonlinear CNN template values are defined by an

arbitrary nonlinear function of input variables (nonlinear B template), output

variables (nonlinear A template) or state variables and may involve some time

delays. The survey of the nonlinear templates shows that in many cases the

nonlinear template values depend on the difference of the value of the currently

processed cell (Cij) and the value of the neighboring cell (Ckl). The Cellular

Wave Computing Library [21] contains zero- and first-order nonlinear templates.
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Figure 1.3: Zero- (a) and first-order (b) nonlinearity

In case of the zero-order nonlinear templates, the nonlinear functions of the

template contains horizontal segments only as shown in Figure 1.3(a). This kind

of nonlinearity can be used, e.g., for grayscale contour detection [21].

In case of the first-order nonlinear templates, the nonlinearity of the template

contains straight line segments as shown in Figure 1.3(b). This type of nonlin-

earity is used, e.g., in the global maximum finder template [21]. Naturally, some

nonlinear templates exist in which the template elements are defined by two or

more nonlinearities, e.g., the grayscale diagonal line detector [21].

1.2 Cellular Neural/Nonlinear Network - Uni-

versal Machine

If we consider the CNN template as an instruction, we can make different al-

gorithms, functions from these templates. In order to run these algorithms ef-

ficiently, the original CNN cell has to be extended (see Figure 1.4) [22]. The

extended architecture is the Cellular Neural/Nonlinear Network - Universal Ma-

chine (CNN-UM). According to the Turing-Church thesis in case of the algo-

rithms, which are defined on integers or on a finite set of symbols, the Turing

Machine, the grammar and the µ - recursive functions are equivalent. The CNN-

UM is universal in Turing sense because every µ - recursive function can be

computed on this architecture.
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Figure 1.4: The architecture of the CNN Universal Machine, the extended CNN
nucleus and the functional blocks of the GAPU

In order to run a sequence of templates, the intermediate results should be

stored localy. Local memories connected to the cell store analog (LAM: Local

Analog Memory) and logic (LLM: Local Logical Memory) values in each cell.

A Local Analog Output Unit (LAOU) and a Local Logic Unit (LLU) perform

cell-wise analog and logic operations on the local (stored) values. The LAOU is a

multiple-input single output analog device. It combines local analog values into

a single output. It is used for analog addition, instead of using the CNN cell for

addition. The output is always transferred to one of the local memories. The

Local Communication and Control Unit (LCCU) provides for communication be-

tween the extended cell and the central programming unit of the machine, across

the Global Analogic Control Unit part of the Global Analogic Programming Unit

(GAPU).

The GAPU is the ”conductor” of the whole analogic CNN universal machine,

it directs all the extended standard CNN universal cells. The GAPU stores, in

digital form, the sequence of instructions. Before the computations, the LCCU

receives the programming instructions, the analog cloning template values A,

B, z, the logic function codes for the LLU, and the switch configuration of the

cell specifying the signal paths. These instructions are stored in the registers

of the GAPU. The Analog Program Register (APR) stores the CNN templates,
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the Logic Program Register (LPR) stores the LLU functions and the Switch

Configuration Register (SCR) contains the setting of switches of an elementary

operation of CNN cell.

1.3 CNN-UM Implementations

Since the introduction of the CNN Universal Machine in 1993 [22] several CNN-

UM implementations have been developed. These implementations are ranged

from the simple software simulators to the analog VLSI solutions.

The software simulator program (for multiple layers) running on a PC cal-

culates the CNN dynamics for a given template by using one of the numerical

methods either by a gray-scale code or a black and white image and can simulate

the CNN dynamics for a given sequence of templates. The software solutions are

flexible, with the configuration of all the parameters (template sizes, accuracy,

etc.), but they are insufficient, considering the performance of computations.

The fastest CNN-UM implementations are the analog/mixed-signal VLSI (Very

Large Scale Integration) CNN-UM chips [23], [20], [24]. The recent arrays contain

128 × 128 and 176 × 144 processing elements [25], [24]. Speed and dissipation

advantage are coming from the operation mode. The solution can be derived by

running the transient. The drawback of this implementation is the limited accu-

racy (7-8 bit), noise sensitivity (fluctuation of the temperature and voltage), the

moderate flexibility, the number of cells is limited (e.g., 128×128 on ACE16k, or

176× 144 on eye-RIS), their cost is high, moreover the development time is long,

due to the utilization of full-custom VLSI technology.

It is obvious that for those problems which can be solved by the analog (ana-

logic) VLSI chips, the analog array dynamics of the chip outperform all the

software simulators and digital hardware emulators.

The continuous valued analog dynamics when discretized in time and values

can be simulated by a single microprocessor, as shown in the case of software

simulators. Emulating large CNN arrays needs more computing power. The

performance can be improved by using emulated digital CNN-UM architectures

where small specialized processor cores are implemented. A special hardware
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accelerator can be implemented either on multi-processor VLSI ASIC digital em-

ulators (e.g CASTLE) [26], on DSP-, SPE-, and GPU-based hardware accelerator

boards (e.g. CNN-HAC [27], Cell Broadband Engine Architecture [28], Nvidia

Cuda [29], respectively), on FPGA-based reconfigurable computing architectures

(e.g. FALCON [30]), as well. Generally, they speed up the software simulators,

to get higher performance, but they are slower than the analog/mixed-signal

CNN-UM implementations.

A special Hardware Accelerator Board (HAB) was developed for simulating

up to one-million-pixel arrays (with on-board memory) with four DSP (16 bit

fixed point) chips. In fact, in a digital HAB, each DSP calculates the dynamics

of a partition of the whole CNN array. Since for the calculation of the CNN

dynamics a major part of DSP capability is not used, special purpose chips have

been developed.

The first emulated-digital, custom ASIC VLSI CNN-UM processor – called

CASTLE.v1 – was developed in MTA-SZTAKI in Analogical and Neural Com-

puting Laboratory between 1998 and 2001 for processing binary images [26], [31].

By using full-custom VLSI design methodology, this specialized systolic CNN

array architecture greatly reduced the area requirements of the processor and

makes it possible to implement multiple processing elements (with distributed

ALUs) on the same silicon die. The second version of the CASTLE processor

was elaborated with variable computing precision (1-bit ’logical’ and 6/12-bit

’bitvector’ processing modes), its structure can be expanded into an array of

CASTLE processors. Moreover, it is capable of processing 240×320-sized images

or videos at 25fps in real-time with low power dissipation (in mW range), as

well. Emulated-digital approach can also benefit from scaling-down by using new

manufacturing technologies to implement smaller and faster circuits with reduced

power dissipation.

Several fundamental attributes of the Falcon architecture [30] are based on

CASTLE emulated-digital CNN-UM array processor architecture. However, the

most important features which were greatly improved in this FPGA-based im-

plementation are the flexibility of programming, the scalable accuracy of CNN

computations, and configurable template size. Therefore, the majority of these
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modifications increased the performance. In case of CASTLE an important draw-

back was that its moderate (12-bits) precision is enough for image processing

but not enough for some applications require more precise computations. More-

over, the array size is also fixed, which makes difficult to emulate large arrays,

especially, when propagating cloning templates are used. To overcome these lim-

itations configurable hardware description languages and reconfigurable devices

(e.g. FPGA) were used to implement the FALCON architecture by employing

rapid prototyping strategy [32]. This made it possible to increase the flexibil-

ity and create application optimized processor configurations. The configurable

parameters are the following:

• bit width of the state-, constant-, and template-values,

• size of the cell array,

• number and size of templates,

• number and arrangement of the physical processor cores.
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1.4 Field Programmable Gate Arrays

Using reconfigurable computing (RC) and programmable logic devices for accel-

erating execution speed is derived from the late 1980, at the same time with the

spread of the Field Programmable Gate Array (FPGA) [33]. The innovative pro-

gression of the FPGAs – which can be configured infinitely many times – lead

the developments in a new line. With the help of these devices almost as many

hardware algorithms can be implemented as software algorithms on conventional

microprocessors.

The speed advantage of the hardware execution on FPGAs, which is practi-

cally 10-100 times faster compared to the equivalent software algorithms, sparked

the interest of developers attention who are working with digital signal processors

(DSP) and with other hard computational problems. The RC developers realized

the fact, that with FPGAs a significant performance gain can be achieved in cer-

tain applications compared to the microprocessors, mainly in those applications

which requires individual bit widths and high instruction-level parallelism. But

the most important argument with the FPGA is the following: the commercially

available devices evolves according to Moore’s law, the FPGA, which contains a

large number of SRAMs and regularly placed logical blocks, scales with the ITRS

(International Technology Roadmap for Semiconductors) memory roadmap [34].

Often they are the frontrunners in the development and in the application of new

manufacturing technologies. For that reason, the reconfigurable devices evolves

technically faster than the microprocessors.

1.4.1 The general structure of FPGAs

The FPGA, as reconfigurable computing architecture, builds up from regularly

arranged logic blocks in two-dimension. Every logic block contains a Look-Up

Table (LUT), which is a simple memory and can implement an arbitrary n-input

logical function. The logic blocks are communicating with each other via pro-

grammable interconnect networks, which can be neighboring, hierarchical and

long-line interconnections. The FPGA contains I/O blocks too, which interfaces

the internal logic blocks to the outer pads. The FPGAs evolves from the ini-

tial homogenous architectures to todays heterogenous architectures: they are
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containing on-chip memory blocks and DSP blocks (dedicated multipliers, and

multiply/accumulator units).

Despite the fact that there are many FPGA families, the reconfigurable com-

puters are exclusively SRAM programmable devices. That means, the configu-

ration of the FPGA, the code as a generated ’bitfile’ – which defines the device

implemented algorithm – stored in an on-chip SRAM. With the loading of the

configurations into the SRAM memory different algorithms can be executed ef-

ficiently. The configuration defines the logic function, which is computed by the

logic blocks and the interconnection-pattern.

From the mid 1980 the FPGA designers developed a number of programmable

logic structures into this architecture. The general structure is shown in Figure

1.5. This basic circuit contains programmable combination logic, synchronous

flip-flop (or asynchronous latch) and some fast carry logic, for decreasing the

need for area and delay dependency during the implementation. In this case the

output can be chosen randomly: it can be a combination logic, or flip-flop. It can

be also observed, that certain configuration uses memory for choosing the output

for the multiplexer.

Figure 1.5: General architecture of the programmable logic block

There are a number of design methodology for the implementation of the

combinational logic in the configurable logic block. Usually the configurable

combinational logic is implemented with memory (Look-Up Table, LUT), but

there are several architectures which uses multiplexers and logical gates instead

of memories. In order to decrease the trade-offs generated by the programmable
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interconnections, in case of many reconfigurable FPGA architectures, the logical

elements are arranged into clusters with fast and short-length wires. By using

fast interconnects of clusters more complex functions with even more input can

be implemented. Most LUT based architecture uses this strategy to form clusters

with two ore more 4 or 6 input logical elements, which are called configurable

logic block (CLB) in case of Xilinx FPGAs.

Basically the I/O architecture is the same in every FPGA family (see Fig-

ure 1.6). Mainly a tri-state buffer belongs to the output and an input buffer to

the input. One by one, the tri-state enable signal, the output signal and the input

signal can be registered and un-registered inside the I/O block, which depends

on the method of the configuration. The latest FPGAs are extended with many

new possibilities, which greatly increased the complexity of the basic structure.

For example the Xilinx Virtex-6 latest I/O properties are the following:

• Supports more than 50 I/O standards with properties like the Digitally

controlled impedance (DCI) active termination (for eliminating termination

resistance), or the flexible fine-grained I/O banking,

• Integrated interface blocks for PCI Express 2.0 designs,

• Programmable input delays.

1.4.2 Routing Interconnect

Similarly to the structure of the logical units, the FPGA developers designed

several solutions for interconnections. Basically the interconnections can be found

within the cluster (for generating complex functions) and out of the cluster too.

For that reason, the important properties of a connection are the following: low

parasitic resistance and capacitance, requires a small chip area, volatility, re-

programmability and process complexity. Modern FPGAs are using two kind of

connection architectures, namely the antifuse and the memory-based architecture.

The main property of the antifuse technology is its small area and low par-

asitic resistance and capacitance. It barriers the two metal layer with a non-

conducting amorphous silicon. If we want to make it conductive, we have to
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Figure 1.6: Programmable I/O architecture

DOI:10.15774/PPKE.ITK.2011.003



16 1. INTRODUCTION

apply an adequate voltage to change the structure of the crystal into a low re-

sistance polycrystalline silicon-metal alloy. The transformation could not turned

back and that is why it can be programmed only once. This technology is applied

by Actel [35] and QuickLogic [36].

There are several memory based interconnection structure, which are com-

monly used by the larger FPGA manufacturers. The main advantage of these

structures over the antifuse solution is the reprogrammability. This property

gives the chance to the architecture designers to make rapid development of the

architectures cost efficiently. The SRAM-based technology for FPGA configura-

tion is commonly used by Xilinx [37] and Altera [38]. It contains 6 transistors,

which stores the state of the interconnection. It has a great reliability and stores

its value until the power is turned off.

Three kind of basic building blocks are used in the structure of the pro-

grammable interconnections: multiplexor, pass transistor and tri-state buffer (see

Figure 1.7).

Figure 1.7: Basic programmable switches

Usually multiplexers and pass transistors are used for the interconnections

of the internal logical elements and all of the above are used for the external

routing. (The use of the two, eight or more input multiplexer – depending on the

complexity of the interconnections – is popular among the FPGAs.) The reason

of the wiring inside of a logical cluster is follows:

• implementation of low delay interconnections between the elements of the

clusters,
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• to develop a more complex element using the elements of the clusters,

• non-programmable wiring for transferring fast carry bits for avoiding the

extra delays when programmable interconnections (routing) are used.

There are three main implementations for the global routing (which are used

by the Xilinx by their FPGA family): row-based, symmetric (island) type and

cellular architecture. Modern FPGA architectures are using significantly complex

routing architectures, but their structures are based on these three.

In case of the symmetric routing architecture the logical clusters are sur-

rounded by segmented horizontal and vertical wiring channels, which can be seen

in Figure 1.8.

Figure 1.8: Symmetrical wiring

Every cluster connects to the channels via ”connection box” and every seg-

ment in the routing can be interconnected to each other through a ”switch box”.

The main property of this architecture is that the interconnection is made by seg-

mented wires. This structure can be found on many Xilinx FPGA: furthermore

Xilinx provides variable lengths for the segments and it provides the clusters with

local connections for improving the efficiency of the architecture.
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The main difference between the cellular routing architecture and the sym-

metrical architecture is that the densest interconnections are taking place local

between the logical clusters and only a few (if there is any) longer connections

exists (e.g.: Xilinx XC6200, see Figure 1.9).

Figure 1.9: Cellular wiring

In most cases this architecture is used in fined grained FPGAs, where the clus-

ters are relatively simple and usually are containing only one logical element. In

order to make the routing process more effective, these logical cells are designed

in such way, that they may take part of the routing network between other log-

ical elements. The main drawbacks of the cellular routing architecture are the

followings:

• The combination pathways, which connects not only the neighborhood, may

have a huge delay.

• In case of CAD (Computer Aided Design) tools, there occurs significant

problem during the efficient placement of the circuit elements and the wiring

of the circuit of the architecture (place & routing).

• The area and delay requirements of the fine grained architecture are sig-

nificant compared to the number of logical element and routing resource
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requirements for an algorithm implementation.

The importance of the last factor can be reduced if pipelining technique is

used, which provides a continuous operation of the arithmetic unit.

The third type is the row-based routing architecture which can be seen in

Figure 1.10.

Figure 1.10: Row-based wiring

This type is mainly used in the not reprogrammable FPGA (called ”one-time

programmable FPGA”), that is why it is used less in todays reconfigurable sys-

tems. It uses horizontal interconnections between two logical cluster. As the

figure shows there are several vertical interconnections for connecting row-based

channels. The row-based architecture uses segmented wires between routing chan-

nels for decreasing the delays of the short interconnections.
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1.4.3 Dedicated elements, heterogenous structure

In advanced FPGAs specialized blocks were also available. These blocks (e.g.: em-

bedded memory, arithmetic unit, or embedded microprocessor) are implemented

because they are commonly used elements, therefore the specialized blocks are

using less general resources from the FPGA. The result is a highly heterogenous

structure.

The memory is a basic building block of the digital system. Flip-flops can be

used as a memory, but it will not be efficient in case of storing large amount of

data. Firstly in case of Xilinx XC4000 FPGA were the LUTs enough flexible to

use it as an asynchronous 16×1 bit RAM. Later it evolved to use as a dual-ported

RAM or as a shift register. These clusters can be arranged in a flexible way to

implement larger bit-width or deeper memory. E.g.: In case of a 4Kb on-chip

RAM on Xilinx Virtex FPGA can be defined in the following hierarchical way:

4096× 1, 2048× 2, 1024× 4, 512× 8, 256× 16.

Among the adders, which builds up from logical elements, in FPGA we can

use embedded multipliers, or Digital Signal Processing (DSP) blocks like separate,

dedicated resources. The DSP block can make addition, subtraction, multiplica-

tion or multiply-accumulate (MAC) operation. The solving of a MAC operation

in one clock cycle can be useful for finite-impulse response (FIR) filtering (which

occurs in many DSP applications).

The FPGA manufacturers are integrating complete dedicated microproces-

sors into their devices in order to implement low bandwidth and/or complex

controlling functions. With this capability (nearly) fully embedded systems can

be implemented on the FPGA. The embedded processor can be found on Xil-

inx Virtex-II Pro, on Xilinx Virtex-4 and on Xilinx Virtex-5 FPGA. The Xilinx

integrates dedicated hard processor cores (e.g.: IBM PowerPC405) into their de-

vices (see Figure 1.11). These embedded processors are connected with on-chip

SRAMs. That means without the configuration of the FPGA it can not make

any useful work.
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Figure 1.11: IBM PowerPC405 processor integration on Xilinx FPGA
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1.4.4 Xilinx FPGAs

Xilinx FPGAs are belonging to the leading reconfigurable computers long ago.

Due to the fast Configurable Logic Blocks (CLB) and the large number of in-

terconnections arbitrary circuits can be implemented on it. In order to acceler-

ate certain operations dedicated elements (e.g.: digital signal processing (DSP)

blocks) are available on the FPGA. Throughout the dissertation all the used

FPGA platforms are made by Xilinx. In the next few sections the used FP-

GAs are going to introduced and a short outlook of the newest and future Xilinx

FPGAs are going to be shown.

1.4.4.1 Xilinx Virtex 2 FPGA

The first thing, which was implemented on the XC2V3000 Xilinx FPGA, was the

control unit (see in later chapters). The Virtex-II series FPGAs were introduced

in 2000. It was manufactured with 0.15 µm 8-layer metal process with 0.12 µm

high-speed transistors. Combining a wide variety of flexible features and a large

range of component densities up to 10 million system gates, the Virtex-II family

enhances programmable logic design capabilities and is a powerful alternative to

mask-programmed gates arrays.

There are several improvements compared to the former FPGAs. These im-

provements include additional I/O capability by supporting more I/O standards,

additional memory capacity by using larger 18Kbit embedded block memories,

additional routing resources and embedded 18× 18 bit signed multiplier blocks.

The XC2V3000 contains 3 million system gates which are organized to 64×56

array forming 14,336 slices. With the 96 18Kb SelectRAM blocks it can provide a

maximum of 1,728 Kbit RAM. The block SelectRAM memory resources are dual-

port RAM, programmable from 16K x 1 bit to 512 x 36 bits, in various depth

and width configurations. Block SelectRAM memory is cascadable to implement

large embedded storage blocks. It has also 96 18×18 bit signed multiplier blocks

for accelerating multiplications.

The IOB, CLB, block SelectRAM, multiplier, and Digital Clock Management

(DCM) elements all use the same interconnect scheme and the same access to

the global routing matrix. There are a total of 16 global clock lines, with eight
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available per quadrant. In addition, 24 vertical and horizontal long lines per row

or column as well as massive secondary and local routing resources provide fast

interconnect. Virtex-II buffered interconnects are relatively unaffected by net

fanout and the interconnect layout is designed to minimize crosstalk. Horizontal

and vertical routing resources for each row or column include 24 long lines, 120

hex (which connects every 6th block) lines, 40 double lines (which connects every

second block), 16 direct connect lines.

1.4.4.2 Xilinx Virtex 5 FPGAs

The fifth generation of the Xilinx Virtex 5 FPGA is built on a 65-nm copper

process technology. The ASMBL (Advanced Silicon Modular Block) architecture

is a design methodology that enables Xilinx to rapidly and cost-effectively assem-

ble multiple domain-optimized platforms with an optimal blend of features. This

multi-platform approach allows designers to choose an FPGA platform with the

right mix of capabilities for their specific design. The Virtex-5 family contains

five distinct platforms (sub-families) to address the needs of a wide variety of

advanced logic designs:

• The LX Platform FPGAs are optimized for general logic applications and

offer the highest logic density and most cost-effective high-performance logic

and I/Os.

• The SX Platform FPGAs are optimized for very high-performance signal

processing applications such as wireless communication, video, multimedia

and advanced audio that may require a higher ratio of DSP slices.

• The FX Platform FPGAs are assembled with capabilities tuned for complex

system applications including high-speed serial connectivity and embedded

processing, especially in networking, storage, telecommunications and em-

bedded applications.

The above three is available with serial transceiver too.

Virtex-5 FPGAs contain many hard-IP system level blocks, like the 36-Kbit

block RAM/FIFOs, 25 × 18 DSP slices, SelectI/O technology, enhanced clock
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management, and advanced configuration options. Additional platform depen-

dent features include high-speed serial transceiver blocks for serial connectivity,

PCI Express Endpoint blocks, tri-mode Ethernet MACs (Media Access Con-

trollers), and high-performance PowerPC 440 microprocessor embedded blocks.

The XC5VSX95T contains 14,720 slices which builds up from 6-input LUTs

instead of 4-input LUTs as in the previous generations. With the 488 18Kb

SelectRAM blocks it can provide a maximum of 8,784 Kbit RAM. The block

SelectRAM memory resources can be treated as a single or a dual-port RAM,

in this case only 244 blocks are available, in various depth and width configura-

tions. Instead of multipliers it uses 640 DSP48E 18×25 bit slices for accelerating

multiplications and multiply-accumulate operations.

The XC5VSX240T contains 37,440 Virtex-5 slices. With the 1,032 18Kb

single-ported SelectRAM blocks, or 516 36Kb dual-ported SelectRAM blocks it

can provide a maximum of 18,576 Kbit RAM in various depth and width config-

urations. It has also 1056 DSP48E bit slices.

1.4.4.3 The capabilities of the modern Xilinx FPGAs

Built on a 40 nm state-of-the-art copper process technology, Virtex-6 FPGAs are

a programmable alternative to custom ASIC technology.

The look-up tables (LUTs) in Virtex-6 FPGAs can be configured as either

6-input LUT (64-bit ROMs) with one output, or as two 5-input LUTs (32-bit

ROMs) with separate outputs but common addresses or logic inputs. Each LUT

output can optionally be registered in a flip-flop. Four such LUTs and their eight

flip-flops as well as multiplexers and arithmetic carry logic form a slice, and two

slices form a configurable logic block (CLB).

The advanced DSP48E1 slice contains a 25 x 18 multiplier, an adder, and an

accumulator. It can optionally pipelined and a new optional pre-adder can be

used to assist filtering applications. It also can cascaded due to the dedicated

connections.

It has integrated interface blocks for PCI Express designs compliant to the

PCI Express Base Specification 2.0 with x1, x2, x4, or x8 lane support per block.
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The largest DSP-optimized Virtex-6 FPGA is the XC6VSX475T, which con-

tains 74,400 slices. With the 2,128 18Kb single-ported SelectRAM blocks, or

1,064 36Kb dual-ported SelectRAM blocks it can provide a maximum of 38,304

Kbit RAM in various depth and width configurations. It has also 2,016 DSP48E1

slices.

7th generation Xilinx FPGAs are manufactured with the state-of-the-art,

high-performance, low-power (HPL), 28 nm, high-k metal gate (HKMG) process

technology. All 7 series devices share a unified fourth-generation Advanced Sili-

con Modular Block (ASMBLTM) column-based architecture that reduces system

development and deployment time with simplified design portability.

The innovative Stacked Silicon Interconnect (SSI) technology enables multi-

ple Super Logic Regions (SLRs) to be combined on a passive interposer layer,

to create a single FPGA with more than ten thousand inter- SLR connections,

providing ultra-high bandwidth connectivity with low latency and low power con-

sumption. There are two types of SLRs used in Virtex-7 FPGAs: a logic intensive

SLR and a DSP/blockRAM/transceiver-rich SLR.

The largest 7th series Xilinx FPGA will contain almost 2 million logic cells

forming more than 300,000 slices. It will embed 85Mb blockRAM. The largest

DSP optimized Virtex-7 FPGA will contain 5,280 ExtremeDSP48 DSP proces-

sors providing 6,737GMACS operations. The total transceiver bandwidth (full

duplex) will be 2,784Gb/s. It will also support the latest gen3x8 PCI Express

interface and will contain maximum 1,200 I/O pins.

Virtex-7 FPGAs are ideally suited for highest performance wireless, wired,

and broadcast infrastructure equipment, aerospace and defense systems, high-

performance computing, as well as ASIC prototyping and emulation.
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1.5 IBM Cell Broadband Engine Architecture

1.5.1 Cell Processor Chip

The Cell Broadband Engine Architecture (CBEA) [39] is designed to achieve high

computing performance with better area/performance and power/performance

ratios than the conventional multi-core architectures. The CBEA defines a het-

erogeneous multi-processor architecture where general purpose processors called

Power Processor Elements (PPE) and SIMD 1 processors called Synergistic Pro-

cessor Elements (SPE) are connected via a high speed on-chip coherent bus called

Element Interconnect Bus (EIB). The CBEA architecture is flexible and the ratio

of the different elements can be defined according to the requirements of the dif-

ferent applications. The first implementation of the CBEA is the Cell Broadband

Engine (Cell BE or informally Cell) designed for the Sony Playstation 3 game

console, and it contains 1 PPE and 8 SPEs. The block diagram of the Cell is

shown in Figure 1.12.

The PPE is a conventional dual-threaded 64bit PowerPC processor which

can run existing operating systems without modification and can control the

operation of the SPEs. To simplify processor design and achieve higher clock

speed instruction reordering is not supported by the PPE. IT has a 32kB Level

1 (L1) cache memory, which is a set-associative, parity protected, 128 bit sized

cache-line memory, and 512kB Level 2 (L2) unified (data and instruction) cache

memory.

The Power Processing Element contains several functional units, which com-

poses the Power Processing Unit shown in Figure 1.13.

The PPU executes the PowerPC Architecture instruction set and the Vec-

tor/SIMD Multimedia Extension instructions. The Instruction Unit performs

the instruction-fetch, decode, dispatch, issue, branch, and completion portions of

execution. It contains the L1 instruction cache. The Load Store Unit performs

all data accesses, including execution of load and store instructions. It contains

the L1 data cache. The Vector/Scalar Unit includes a Floating-Point Unit (FPU)

and a 128-bit Vector/SIMD Multimedia Extension Unit (VXU), which together

1SIMD - Single Instruction Multiple Data
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execute floating-point and Vector/SIMD Multimedia Extension instructions. The

Fixed-point Unit executes fixed-point operations, including add, multiply, divide,

compare, shift, rotate, and logical instructions. The Memory Management Unit

manages address translation for all memory accesses.

The EIB is not a bus as suggested by its name but a ring network which

contains 4 unidirectional rings where two rings run counter to the direction of

the other two. The EIB supports full memory-coherent and symmetric multi-

processor (SMP) operations. Thus, a CBE processor is designed to be ganged

coherently with other CBE processors to produce a cluster. The EIB consists of

four 16-byte-wide data rings. Each ring transfers 128 bytes at a time. Processor

elements can drive and receive data simultaneously. The EIBŐs internal maxi-

mum bandwidth is 96 bytes per processor-clock cycle. Multiple transfers can be

in-process concurrently on each ring, including more than 100 outstanding DMA

memory requests between main storage and the SPEs.

The on-chip Memory Interface Controller (MIC) provides the interface be-

tween the EIB and physical memory. It supports one or two Rambus Extreme

Data Rate (XDR) memory interfaces, which together support between 64 MB

and 64 GB of XDR DRAM memory. Memory accesses on each interface are 1

to 8, 16, 32, 64, or 128 bytes, with coherent memory-ordering. Up to 64 reads

and 64 writes can be queued. The resource-allocation token manager provides

feedback about queue levels.

The dual-channel Rambus XDR memory interface provides very high 25.6GB/s

memory bandwidth. The XDR DRAM memory is ECC-protected, with multi-

bit error detection and optional single-bit error correction. I/O devices can be

accessed via two Rambus FlexIO interfaces where one of them (the Broadband

Interface (BIF)) is coherent and makes it possible to connect two Cell processors

directly.

The SPEs are SIMD only processors which are designed to handle streaming

data. Therefore they do not perform well in general purpose applications and

cannot run operating systems. Block diagram of the SPE is shown in Figure

1.14.

The SPE has two execution pipelines: the even pipeline is used to execute

floating point and integer instructions while the odd pipeline is responsible for
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the execution of branch, memory and permute instructions. Instructions for the

even and odd pipeline can be issued in parallel. Similarly to the PPE the SPEs are

also in-order processors. Data for the instructions are provided by the very large

128 element register file where each register is 16byte wide. Therefore SIMD

instructions of the SPE work on 16byte-wide vectors, for example, four single

precision floating point numbers or eight 16bit integers. The register file has 6

read and 2 write ports to provide data for the two pipelines. The SPEs can only

address their local 256KB SRAM memory but they can access the main memory

of the system by DMA instructions. The Local Store is 128byte wide for the DMA

and instruction fetch unit, while the Memory unit can address data on 16byte

boundaries by using a buffer register. 16byte data words arriving from the EIB

are collected by the DMA engine and written to the memory in one cycle. The

DMA engines can handle up to 16 concurrent DMA operations where the size

of each DMA operation can be 16KB. The DMA engine is part of the globally

coherent memory address space but we must note that the local store of the SPE

is not coherent.

Consequently, the most significant difference between the SPE and PPE lies in

how they access memory. The PPE accesses main storage (the effective-address

space) with load and store instructions that move data between main storage and

a private register file, the contents of which may be cached. The SPEs, in contrast,

access main storage with Direct Memory Access (DMA) commands that move

data and instructions between main storage and a private local memory, called a

local store or local storage (LS). An SPE’s instruction-fetches and load and store

instructions access its private LS rather than shared main storage, and the LS

has no associated cache. This three-level organization of storage (register file, LS,

main storage), with asynchronous DMA transfers between LS and main storage, is

a radical break from conventional architecture and programming models, because

it explicitly parallelizes computation with the transfers of data and instructions

that feed computation and store the results of computation in main storage.
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1.5.2 Cell Blade Systems

Cell blade systems are built up from two Cell processor chips interconnected with

a broadband interface. They offer extreme performance to accelerate compute-

intensive tasks. The IBM Blade Center QS20 (see Figure 1.15) is equipped with

two Cell processor chips, Gigabit Ethernet, and 4x InfiniBand I/O capability. Its

computing power is 400GFLOPS peak. Further technical details are as follows:

• Dual 3.2GHz Cell BE Processor Configuration

• 1GB XDRAM (512MB per processor)

• Blade-mounted 40GB IDE HDD

• Dual Gigabit Ethernet controllers

• Double-wide blade (uses 2 BladeCenter slots)

Several QS20 may be interconnected in a Blade Center house with max.

2.8TFLOPS peak computing power. It can be reached by utilizing maximum

7 Blades per chassis.

The second generation blade system is the IBM Blade Center QS21which

is equipped with two Cell processor chips, 1GB XDRAM (512MB per proces-

sor) memory, Gigabit Ethernet, and 4x InfiniBand I/O capability. Several QS21

may be interconnected in a Blade Center chassis with max. 6.4TFLOPS peak

computing power. The third generation blade system is the IBM Blade Cen-

ter QS22 equipped with new generation PowerXCell 8i processors manufactured

using 65nm technology. Double precision performance of the SPEs are signifi-

cantly improved providing extraordinary computing density up to 6.4 TFLOPS

single precision and up to 3.0 TFLOPS double precision in a single Blade Center

house. These blades are the main building blocks of the world’s fastest super-

computer (2009) at Los Alamos National Laboratory which first break through

the ”petaflop barrier” of 1,000 trillion operations per second. The main building

blocks of the world’s fastest supercomputer, besides the AMD Opteron X64 cores,

are the Cell processors. The Cell processors produce 95% computing power of

the entire system (or regarding computational task), while the AMD processors
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Figure 1.15: IBM Blade Center QS20 architecture

mounted on LS22 board are for supporting internode communication. The peak

computing performance is 6.4 TFLOPS single precision and up to 3.0 TFLOPS

double precision in a single Blade Center house.

DOI:10.15774/PPKE.ITK.2011.003



34 1. INTRODUCTION

1.6 Recent Trends in Many-core Architectures

There are a number of different implementations of array processors commercially

available. The CSX600 accelerator chip from Clearspeed Inc. [40] contains two

main processor elements, the Mono and the Poly execution units. The Mono

execution unit is a conventional RISC processor responsible for program flow

control and thread switching. The Poly execution unit is a 1-D array of 96

execution units, which work on a SIMD fashion. Each execution unit contains a

64bit floating point unit, integer ALU, 16bit MAC (Multiply Accumulate) unit, an

I/O unit, a small register file and local SRAM memory. Although the architecture

runs only on 250MHz clock frequency the computing performance of the array

may reach 25GFlops.

The Mathstar FPOA (Field Programmable Object Array) architecture [41]

contains different types of 16bit execution units, called Silicon Objects, which

are arranged on a 2-D grid. The connection between the Silicon Objects is pro-

vided by a programmable routing architecture. The three main object types are

the 16bit integer ALU, 16bit MAC and 64 word register file. Additionally, the

architecture contains 19Kb on-chip SRAM memories. The Silicon objects work

independently on a MIMD (Multiple Instruction Multiple Data) fashion. FPOA

designs are created in a graphical design environment or by using MathStar’s

Silicon Object Assembly Language.

The Tilera Tile64 architecture [42] is a regular array of general purpose pro-

cessors, called Tile Processors, arranged on an 8×8 grid. Each Tile Processor

is 3-way VLIW (Very Long Instruction Word) architecture and has a local L1,

L2 cache and a switch for the on-chip network. The L2 cache is visible for all

processors forming a large coherent shared L3 cache. The clock frequency of

the architecture is in the 600-900MHz range providing 192GOps peak computing

power. The processors work with 32bit data words but floating point support is

not described in the datasheets.
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Chapter 2

Mapping the Numerical
Simulations of Partial Differential
Equations

2.1 Introduction

Performance of the general purpose computing systems is usually improved by

increasing the clock frequency and adding more processor cores. However, to

achieve very high operating frequency very deep pipeline is required, which cannot

be utilized in every clock cycle due to data and control dependencies. If an array

of processor cores is used, the memory system should handle several concurrent

memory accesses, which requires large cache memory and complex control logic.

In addition, applications rarely occupy fully all of the available integer and floating

point execution units.

Array processing to increase the computing power by using parallel compu-

tation can be a good candidate to solve architectural problems (distribution of

control signals on a chip). Huge computing power is a requirement if we want to

solve complex tasks and optimize to dissipated power and area at the same time.

In this work the IBM Cell heterogeneous array processor architecture (mainly

because its development system is open source), and an FPGA based implemen-

tations is investigated. It is exploited here in solving complex, time consuming

problems.

The main motivation of the Chapter is to find a method for implementing

35
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computationally hard problems on different many-core architectures. Such a hard

problem is the implementation of the numerical simulation of Partial Differen-

tial Equations, which are used in wide range of engineer applications. One of

the toughest PDE is the Navier-Stokes equations, which describes the temporal

evolution of fluids.

Emulated-digital CNN are proven to be a good alternative for solving PDEs

[43, 44]. In this Chapter a CNN simulation kernel is implemented on a het-

erogenous Cell architecture and an improved emulated-digital CNN processor is

evolved from the Falcon processor on FPGA for solving PDEs. During the imple-

mentation of different PDEs on different architecture, the difference between the

two platforms are investigated and their performance are compared. Two ques-

tions formed during the implementation, namely: How to map a computationally

hard problem on a heterogenous processor architecture and on a reconfigurable

architecture (FPGA)? What is the difference in performance between the inho-

mogenous and the custom architecture? In the next few section the answer and

the method for its investigation are going to be described.

2.1.1 How to map CNN array to Cell processor array?

The primary goal is to get an efficient CNN [17] implementation on the Cell

architecture. Because analog CNN architectures are effective solving partial dif-

ferential equations. The analog CNN chips has limitations (limited precision, only

linear templates, sensitive to the environmental noises) and that is why it can not

be used in real life applications. A SIMD (Single Instruction Multiple Date) ar-

chitecture can be implemented efficiently in CNN. Consider the CNN model and

its hardware effective discretization in time. With the emulated digital CNN-UM

these drawbacks can be neglected.

2.1.1.1 Linear Dynamics

The computation of the discretized version of the original CNN state equations

(1.5a) and (1.5b) on conventional CISC processors is rather simple. The appro-

priate elements of the state window and the template are multiplied and the

results are summed. Due to the small number of registers on these architectures,
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18 Load instructions are required for loading the templates, which slow down the

computation. Most of the CISC architectures provide SIMD extensions to speed

computation up, but the usefulness of these optimizations is also limited by the

small amount of registers.

The large (128-entry) register file of the SPE makes it possible to store the

neighborhood of the currently processed cell and the template elements. The

number of load instructions can be decreased significantly.

Since the SPEs cannot address the global memory directly, the user’s appli-

cation running on the SPE is responsible to carry out data transfer between the

local memory of the SPE and the global memory via DMA transactions. De-

pending on the size of the user’s code the 256Kbyte local memory of the SPE

can approximately store data for a 128×128 sized cell array. To handle larger

array only the lines that contain the neighborhood of the currently processed line

and required for the next iteration should be stored in the local memory, but it

requires continuous synchronized data transfer between the global memory and

the local memory of the SPE.

The SPEs in the Cell architecture are SIMD-only units hence the state values

of the cells should be grouped into vectors. The size of the registers are 128bit

and 32bit floating point numbers are used during the computation. Accordingly,

our vectors contain 4 elements. Let’s denote the state value of the ith cell by Si.

It seems obvious to pack 4 neighboring cells into one vector {s5, s6, s7, s8}.
However, constructing the vector which contains the left {s4, s5, s6, s7} and right

{s6, s7, s8, s9} neighbors of the cells is somewhat complicated because 2 ’rotate’

and 1 ’select’ instructions are needed to generate the required vector (see Figure

2.1 ). This limits the utilization of the floating-point pipeline because 3 integer

instructions (rotate and select) must be carried out before issuing a floating-point

multiply-and-accumulate (MAC) instruction.

This limitation can be removed by slicing the CNN cell array into 4 vertical

stripes and rearranging the cell values. In the above case, the 4-element vector

contains data from the 4 different slices as shown in Figure 2.2. This makes it

possible to eliminate the shift and shuffle operations to create the neighborhood of

the cells in the vector. The rearrangement should be carried out only once, at the

beginning of the computation and can be carried out by the PPE. Though, this

DOI:10.15774/PPKE.ITK.2011.003



38
2. MAPPING THE NUMERICAL SIMULATIONS OF PARTIAL

DIFFERENTIAL EQUATIONS

s1 s2 s3 s4 s5 s6 s7 s8 

s4 s5 s6 s7 

s1 s2 s3 s4 s5 s6 s7 s8 

Rotate 

Select 

Central cells 

Left 
neighborhood 

Figure 2.1: Generation of the left neighborhood

s1 s2 s3 s10 s11 s12 s13 s20 s21 s22 s23 s30 s31 s32 s33 s40 

s1 s11 s21 s31 s2 s12 s22 s32 s3 s13 s23 s33 
Rearranged 
state values 

State values 

Left 
neighborhood 

Right 
neighborhood 

Central cells 

Figure 2.2: Rearrangement of the state values

solution improves the performance of the simulation data, dependency between

the successive MACs still cause floating-point pipeline stalls. In order to eliminate

this dependency the inner loop of the computation must be rolled out. Instead of

waiting for a result of the first MAC, the computation of the next group of cells

is started. The level of unrolling is limited by the size of the register file.

To measure the performance of the simulation a 256×256 sized cell array was

used and 10 forward Euler iterations were computed, using a diffusion template.

By using the IBM Systemsim simulator detailed statistics can be obtained about

the operation of the SPEs while executing a program. Additionally, a static tim-
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Figure 2.3: Results of the loop unrolling

ing of the program can be created where the pipeline stalls can be identified. The

instruction histogram is shown in Figure 2.3. Without unrolling, more than 13

million clock cycles are required to complete the computation and the utilization

of the SPE is only 35%. Most of the time, the SPE is stalled, due to data de-

pendency between the successive MAC operations. By unrolling the inner loop

of the computation and computing 2, 4 or 8 sets of cells, with the cost of larger

area, most of the pipeline stall cycles can be eliminated and the required clock

cycles can be reduced to 3.5 million. When the inner loop of the computation is

unrolled 8 times the efficiency of the SPE can be increased to 90%. Performance

of one SPE in the computation of the CNN dynamics is 624 million cell itera-

tion/s. As shown in Figure 2.4. the SPE is nearly one order faster than a high

performance desktop microprocessor. The Falcon processor can outperform the

Cell if it is implemented on a large FPGA. On a Xilinx Virtex-5 SX95T more

than 70 Falcon PE can be implemented.

To achieve even faster computation multiple SPEs can be used. The data can

be partitioned between the SPEs by horizontally striping the CNN cell array. The
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Figure 2.4: Performance of the implemented CNN simulator on the Cell architec-
ture compared to other architectures, considering the speed of the Intel processor
as a unit in both linear and nonlinear case (CNN cell array size: 256×256, 16
forward Euler iterations, *Core 2 Duo T7200 @2GHz, **Falcon Emulated Digital
CNN-UM implemented on Xilinx Virtex-5 FPGA (XC5VSX95T) @550MHz only
one Processing Element (max. 71 Processing Element).
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communication of the state values is required between the adjacent SPEs when

the first or last line of the stripe is computed. Due to the row-wise arrangement

of the state values, this communication between the adjacent SPEs can be carried

out by a single DMA operation. Additionally, the ring structure of the EIB is

well suited for the communication between neighboring SPEs.

To measure the performance of the optimized program 16 iterations were

computed on a 256×256 sized cell array. The number of required clock cycles is

summarized in Figure 2.5. By using only one SPE, the computation is carried

out in 3.3 million clock cycles or 1.04ms, assuming 3.2GHz clock frequency. If

2 SPEs are used to perform the computation, the cycle count is reduced about

by half, and nearly linear speedup can be achieved. However, in case of 4 or 8

SPEs the performance cannot be improved. When 4 SPEs are used, SPE number

2 requires more than 5 million clock cycles to compute its stripe. This is larger

than the cycle count in case of a single SPE and the performance is degraded.

The examination of the utilization of the SPEs shows that SPE 1 and SPE

2 are stalled, most of the time, and wait for the completion of the memory
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operations (channel stall cycle). The utilization of these SPEs is less than 15%,

while the other SPEs are almost as efficient as a single SPE. Investigating the

required memory bandwidth shows that one SPE should load 2 32bit floating

point values and the result should be stored in the main memory. If 600 million

cells are updated every second each SPE requires 7.2Gb/s memory I/O bandwidth

and the available 25.6Gb/s bandwidth is not enough to support all the 8 SPEs.

To reduce this high bandwidth requirement pipelining technique can be used

as shown in Figure 2.6. In this case the SPEs are chained one after the other, and

each SPE computes a different iteration step, using the results of the previous

SPE and the Cell processor is working similarly to a systolic array. Only the

first and last SPE in the pipeline should access main memory, the other SPEs

are loading the results of the previous iteration directly from the local memory

of the neighboring SPE. Due to the ring structure of the Element Interconnect

Bus (EIB), communication between the neighboring SPEs is very efficient. The

instruction histogram of the optimized CNN simulator kernel is summarized in

Figure 2.7.

Though the memory bandwidth bottleneck is eliminated by using the SPEs in

a pipeline, overall performance of the simulation kernel can not be improved. The

instruction histogram in Figure 2.7 still show huge amount of channel stall cycles

in the 4 and 8 SPE case. To find the source of these stall cycles detailed profiling

of the simulation kernel is required. First, profiling instructions are inserted into

the source code to determine the length of the computation part of the program

and the overhead. The results are summarized on Figure 2.8.

Profiling results show that in the 4 and 8 SPE cases some SPEs spend huge

amount of cycles in the setup portion of the program. This behavior is caused by

the SPE thread creation and initialization process. First, the required number

of SPE threads is created, then the addresses required to set up communication

between the SPEs and form the pipeline are determined. Meanwhile the started

threads are blocked. In the 4 SPE case threads on SPE 0 and SPE 1 are created

first, hence these threads should wait not only for the address determination

phase but also until the other two threads are created. Unfortunately this thread

creation overhead cannot be eliminated. For a long analogic algorithm which uses

several templates, the SPEs and the PPE should be used in a client/server model.
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Figure 2.6: Data-flow of the pipelined multi-SPE CNN simulator
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In this case the SPE threads are not terminated after each template operation

but blocked until the PPU determines the parameters for the next operation.

To continue the computation, the SPE threads can be simply unblocked and

the thread creation and initialization overhead occurs only once in the beginning

of the program. Speedup of the implemented CNN simulator kernel running

on multiple SPEs is summarized in Figure 2.9. In the 2 SPE case nearly 2

times faster computation can be achieved while using more SPEs requires more

synchronization between the SPEs. Therefore 3.3 and 5.4 times speedup can be

achieved in the 4 and 8 SPE cases, respectively.

2.1.1.2 Nonlinear Dynamics

The nonlinear functions belonging to the templates should be stored in Look Up

Tables (LUTs), to enable using zero- and first-order nonlinear templates on a

conventional scalar processor or on the Cell processor .

In case of conventional scalar processors, each kind of nonlinearity should be

partitioned into segments, according to the number of intervals it contains. The

parameters of the nonlinear function and the boundary points should be stored

DOI:10.15774/PPKE.ITK.2011.003



46
2. MAPPING THE NUMERICAL SIMULATIONS OF PARTIAL

DIFFERENTIAL EQUATIONS

in LUTs for each nonlinear template element. In case of the zero-order nonlinear

templates, only one parameter should be stored in the LUT, while in case of the

first-order nonlinearity, the gradient value and the constant shift of the current

section should be stored. By using this arrangement, for zero-order nonlinear

templates, the difference of the value of the currently processed cell and the

value of the neighboring cell should be compared to the boundary points. The

result of this comparison is used to acquire the adequate nonlinear value. In case

of the first-order nonlinear template, additional computation is required. After

identifying the proper interval of nonlinearity, the difference should be multiplied

by the gradient value and added to the constant.

Since the SPEs on the Cell processor are vector processors, the values of the

nonlinear function and the boundary points are also stored as a 4-element vector.

In each step four differences are computed in parallel and all boundary points

must be examined to determine the four nonlinear template elements. To get

an efficient implementation, double buffering, vectorization, pipelining, and loop

unrolling techniques can be used similarly to the linear template implementation.

To investigate the performance of loop unrolling in a nonlinear case, the same

256×256 sized cell array and 16 forward Euler iterations were used as in linear

case. The global maximum finder template [21] was used where the template

values were defined by a first order nonlinearity which can be partitioned into 2

or 4 segments. Here the number of required instructions were calculated in the

case when the inner loop of the computation was not rolled out as well as unrolled

2, 4 and 8 times. In addition, the nonlinearity was segmented into two (A) and

four (B) segments. The result of the investigation is shown in Figure 2.10. We

can see that most of the time was spent by an SPE with the single and dual cycle

instructions and stall due to dependency, which can be reduced by the unrolling

technique. Without unrolling the SPE is stalled due to dependency more than

8 million clock cycles in case the nonlinearity is partitioned into two parts (A).

However, by using the unrolling technique it is reduced to nearly 259 000 clock

cycles, so almost 50% less clock cycles are required for the computation in the 8

times unrolled case.

In addition, the effect of increasing the number of segments of the nonlinearity

was investigated. Our experiments show that the number of required instructions
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Figure 2.10: Comparison of the instruction number in case of different unrolling

is more than 25% higher in case of using four nonlinearity segments (B) than if

the nonlinearity is partitioned only into two parts (A). The comparison of the in-

struction distribution of the upper cases shows that the main difference between

them is the number of required single cycles due to usage of more conditional

structures during the implementation as shown in Figure 2.10. In the four seg-

ment case (B) the number of stall cycles is smaller than in the two segment case

(A) without loop unrolling. By using loop unrolling 30% performance increase

can be achieved.

In nonlinear case the performance can also be improved if multiple SPEs are

used. Finally, we studied the effect of multiple SPEs. In this test case the inner

loop of the computation was rolled out at 8 times, and ran on 1, 2, 4 and 8 SPEs

in parallel with the nonlinearity partitioned into two (A) and four segments (B).

The comparison of the performance of these cases is shown in Figure 2.11.

If the nonlinearity is partitioned into two segments (A) the maximum perfor-

mance of the simulation on 1 SPE is about 223 million cell iterations/s, which is
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Figure 2.11: Performance comparison of one and multiple SPEs

almost 24% more than if the nonlinearity is partitioned into four parts (B) as seen

in Figure 2.11. The performance depends not only on the number of segments,

but also on the number of SPEs as in the linear case. So if the number of SPEs

increases, the performance of the simulations increases in the same way.

2.1.1.3 Performance comparisons

The performance of the implementation on the Cell architecture was tested by

running the global maximum finder template on a 256×256 image for 16 itera-

tions. The achievable performance of the Cell using different number of SPEs is

compared to the performance of the Intel Core 2 Duo T7200 2GHz scalar proces-

sor and the linear and nonlinear Falcon Emulated Digital CNN-UM architecture.

The results are shown in Figure 2.4. Comparison of the performance of the single

SPE solution to a high performance microprocessor in the linear case showed that

about 6 times speedup can be achieved. By using all the 8 SPEs about 35 times

speedup can be achieved. Compared to emulated digital architectures one SPE

DOI:10.15774/PPKE.ITK.2011.003



2.2 Ocean model and its implementation 49

Table 2.1: Comparison of different CNN implementations: 2GHz CORE 2 DUO
processor, Emulated Digital CNN running on Cell processors and on Virtex 5
SX240T FPGA, and Q-EYE with analog VLSI chip

CNN Implementations

Parameters
Core 2

Duo
Q-Eye FPGA

CELL
(8 SPEs)

Speed (linear
template, µs)

4092.6 250 737.2 111.8

Speed (nonlinear
template, µs)

84691.4 - 737.2 197.33

Power (W) 65 0.1 20 85
Area (mm2) 143 - 389 253

(CNN cell array size: 176×144, 16 forward Euler iterations)

can outperform a single Falcon Emulated Digital CNN-UM core implemented on

XC5VSX240T Xilinx FPGA. When using nonlinear templates the performance

advantage of the Cell architecture is much higher. In a single SPE configuration

64 times speedup can be achieved while using 8 SPEs the performance is 429

times higher. Typical computing time of one template operation along with area

and power requirements of the different architectures are summarized on Table

2.1. Let us mention that solution of a given computational problem can be much

faster implemented in a Cell architecture then on FPGA.

2.2 Ocean model and its implementation

Several studies proved the effectiveness of the CNN-UM solution of different PDEs

[15] [16]. But the results cannot be used in real life implementations due to

the limitations of the analog CNN-UM chips such as low precision, temperature

sensitivity or the application of non-linear templates. Some previous results show

that emulated digital architectures can be very efficiently used in the computation

of the CNN dynamics [45] [28] and in the solution of PDEs [46] [47] [30]. Using

the CNN simulation kernel described in the previous sections helped to solve

Navier-Stokes PDE on the Cell architecture.
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Simulation of compressible and incompressible fluids is one of the most ex-

citing areas of the solution of PDEs because these equations appear in many

important applications in aerodynamics, meteorology, and oceanography [48, 49,

50]. Modeling ocean currents plays a very important role both in medium-term

weather forecasting and global climate simulations. In general, ocean models

describe the response of the variable density ocean to atmospheric momentum

and heat forcing. In the simplest barotropic ocean model a region of the ocean’s

water column is vertically integrated to obtain one value for the vertically differ-

ent horizontal currents. The more accurate models use several horizontal layers

to describe the motion in the deeper regions of the ocean. Such a model is the

Princeton Ocean Model (POM) [51] being a sigma coordinate model in which the

vertical coordinate is scaled on the water column depth. Though the model is

three-dimensional, it includes a 2-D sub-model (external mode portion of the 3-D

model). Investigation of it is not worthless because it is relatively simple, easy to

implement, and it provides a good basis for implementation of the 3-D model.

The governing equations of the 2-D model can be expressed from the equations

of the 3-D model by making some simplifications. Using the sigma coordinates

these equations have the following form:

∂η

∂t
+
∂UD

∂x
+
∂V D

∂y
= 0 (2.1a)

∂UD

∂t
+
∂U

2
D

∂x
+
∂UV D

∂y
− fV D + gD

∂η

∂x
= − < wu(0) > + < wu(−1) > −

− gD

ρ0

0∫
−1

0∫
σ

[
D
∂ρ′

∂x
− ∂D

∂x
σ′
∂ρ′

∂σ

]
dσ′dσ (2.1b)

∂V D

∂t
+
∂UV D

∂x
+
∂V

2
D

∂y
+ fUD + gD

∂η

∂y
= − < wv(0) > + < wv(−1) > −

− gD

ρ0

0∫
−1

0∫
σ

[
D
∂ρ′

∂y
− ∂D

∂y
σ′
∂ρ′

∂σ

]
dσ′dσ (2.1c)
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where x, y are the conventional 2-D Cartesian coordinates; σ = z−η
H+η

, D ≡ H + η,

where H(x,y) is the bottom topography and η(x, y, t) is the surface elevation.

The overbars denote vertically integrated velocities such as U ≡
0∫
−1

Udσ. The

wind stress components are -< wu(0) > and -< wv(0) >, and the bottom stress

components are -< wu(−1) > and -< wv(−1) >. U, V are the horizontal veloci-

ties, f is the Coriolis parameter, g is gravitational acceleration, ρ0 and ρ′ are the

reference and in situ density, respectively.

The solution of equations (2.1a)-(2.1c) is based on the freely available Fortran

source code of the POM [51]. The discretization in space is done according to

the Arakawa-C [52] differencing scheme where the variables are located on a

staggered mesh. The mass transports U and V are located at the center of the

box boundaries facing the x and y directions, respectively. All other parameters

are located at the center of mesh boxes. The horizontal grid uses curvilinear

orthogonal coordinates.

By using the original Fortran source code a new C based solution is developed

which is optimized for the SPEs of the Cell architecture. Since the relatively small

local memory of the SPEs does not allow to store all the required data, an efficient

buffering method is required. In our solution a belt of 5 rows is stored in the local

memory from the array: 3 rows are required to form the local neighborhood of

the currently processed row, one line is required for data synchronization, and

one line is required to allow overlap of the computation and communication. The

maximum width of the row is about 300 elements.

During implementation the environment of the CNN simulation kernel was

used. Memory bandwidth requirements are reduced by using the buffering tech-

nique described above and forming a pipeline using the SPEs to compute several

iterations in parallel. Data dependency between the instructions is eliminated by

using loop unrolling.

For testing and performance evaluation purposes a simple initial setup was

used which is included in the Fortran source code of the POM. This solves the

problem of the flow through a channel which includes an island or a seamount

at the center of the domain. The size of the modeled ocean surface is 1024km2,

the north and south boundaries are closed, the east and west boundaries are
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open, the grid size is 128×128 and the grid resolution is 8km. The simulation

timestep is 6s and 360 iterations are computed. The results are shown in Figure

2.2. Experimental results of the average iteration time are summarized on Table

2.3.

Table 2.2: The initial state, and the results of the simulation after a couple of
iteration steps. Where the x- and y-axis models 1024km width ocean (1 untit is
equal to 2.048km).
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Table 2.3: Comparison of different CNN ocean model implementations: 2GHz
CORE 2 DUO processor, Emulated Digital CNN running on Cell processors

CNN Implementations
Parameters Core 2 Duo CELL (8 SPEs)

Iteration time ( ms) 8.2 1.11
Computation time of a
72 hour simulation (s)

354.2 47.52

Power (W) 65 85
Area (mm2) 143 253

(CNN cell array size: 128×128, 1 iteration)

2.3 Computational Fluid Flow Simulation on Body

Fitted Mesh Geometry with IBM Cell Broad-

band Engine and FPGA Architecture

2.3.1 Introduction

In the paper of Kocsárdi et. al the authors applied the finite volume Lax-Friedrich

[53, 54] scheme for solving 2D Euler equations over uniformly spaced rectangular

meshes [55]. However, most real life applications of CFD require handling more

complex geometries, bounded by curved surfaces. A popular and often an efficient

solution to this problem is to perform the computation over non-uniform, logi-

cally structured grids. Technically, this idea can be exploited either by employing

body fitted grids or by performing the computation in a curvilinear coordinate

frame following the curvature of the boundaries. Although in the latter approach

the standard 2D scheme over Cartesian geometry can be put to work, it is com-

putationally much more demanding than the former one, due to the expensive

operations related to coordinate transformation.

There is a number of reasons why we have chosen the IBM Cell multiproces-

sor system as the restricted (bounded) architecture, namely, its high computing

performance, the double-precision floating point number support, the support of

the standard multiprocessing libraries, such as OpenMP or MPI and the freely

available software development kit.
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On the other hand, the development time of an optimized software solution is

much shorter than designing a reconfigurable architecture [56][57], however, the

computational efficiency is smaller in terms of area and power. Namely on FPGAs

we can make a more specific structure for the CFD with better performance in

terms of the area and dissipation with a variable accuracy considering to use it

in real life applications.

2.3.2 Fluid Flows

A wide range of industrial processes and scientific phenomena involve gas or fluids

flows over complex obstacles. In engineering applications the temporal evolution

of non-ideal, compressible fluids is quite often modeled by Navier-Stokes [58, 59]

equations. It is based on the fundamental laws of mass-, momentum- and energy

conservation, extended by the dissipative effects of viscosity, diffusion and heat

conduction. By neglecting all the above non-ideal processes, and assuming adia-

batic variations, we obtain the Euler equations [60, 61], describing the dynamics

of dissipation-free, inviscid, compressible fluids. The equations, a coupled set of

nonlinear hyperbolic partial differential equations, in conservative form expressed

as
∂ρ

∂t
+∇ · (ρv) = 0 (2.2)

∂ (ρv)

∂t
+∇ ·

(
ρvv + Îp

)
= 0 (2.3)

∂E

∂t
+∇ · ((E + p)v) = 0, (2.4)

where t denotes time, ∇ is the Nabla operator, ρ is the density, u, v are the x-

and y-components of velocity vector v, respectively, p is the pressure of the fluid,

Î is the identity matrix, and E is the total energy density defined as

E =
p

γ − 1
+

1

2
ρv · v, (2.5)

where γ is the ratio of specific heats. It is convenient to merge (2.2), (2.3) and

(2.4) into hyperbolic conservation law form in terms of U = [ρ, ρu, ρv, E] and the
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flux tensor

F =

 ρv
ρvv + Ip
(E + p)v

 (2.6)

as
∂U

∂t
+∇ · F = 0. (2.7)

2.3.2.1 Discretization of the governing equations

Since logically structured arrangement of data is fundamental for the efficient op-

eration of the FPGA based implementations, we consider explicit finite volume

discretizations [62] of the governing equations over structured grids employing a

simple numerical flux function. Indeed, the corresponding rectangular arrange-

ment of information and the choice of multi-level a temporal integration strategy

ensure the continuous flow of data through the CNN-UM architecture. In the

followings we recall the basic properties of the mesh geometry, and the details of

the considered first- and second-order schemes.

2.3.2.2 The geometry of the mesh

The computational domain is composed of n×m logically structured quadrilat-

erals, called finite volumes (in the 2D case, the volumes are treated as planes) as

shown in Figure 2.12.

Indices i and j refer to the volume situated in the ith column and the jth row.

The corners of the volumes can be described practically by any functions X and

Y of indices (i, j), provided that degenerated volumes do not appear:

xi,j = X(i, j), yi,j = Y (i, j), (2.8)

where xi,j and yi,j stand for the x− and the y− component of corner point (i, j),

respectively, i ∈ [1, n+ 1] and j ∈ [1,m+ 1]. In real life applications X and Y

follow from the functions describing the boundaries of the computational domain.

Consider a general finite volume with indices (i, j), presented in Figure 2.12. Its

volume is labeled by Vi,j , while nf represents the outward pointing normal vector

of face f scaled by the length of the face.
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Figure 2.12: The computational domain

2.3.2.3 The First-order Scheme

The simplest algorithm we consider is first-order both in space and time [56] [57].

The application of the finite volume discretization method leads to the following

semi-discrete form of governing equations (2.6)

dUi,j
dt

= − 1

Vi,j

∑
f

Ff · nf , (2.9)

where the summation is meant for all the four faces of cell (i,j), Ff is the flux

tensor evaluated at face f , and nf is the outward pointing normal vector of face

f scaled by the length of the face. Let us consider face f in a coordinate frame

attached to the face, such that its x-axes is normal to f . Face f separates cell

L (left) and cell R (right). In this case the Ff · nf scalar product equals to

the x-component of F(Fx) multiplied by the length of the face (or area in 3D

case). In order to stabilize the solution procedure, artificial dissipation has to be

introduced into the scheme. Following the standard procedure, this is achieved

by replacing the physical flux tensor by the numerical flux function FN containing
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the dissipative stabilization term. A finite volume scheme is characterized by the

evaluation of FN , which is the function of both UL and UR. Applying the simple

and robust Lax-Friedrichs numerical flux function defined as

FN =
FL + FR

2
− (|ū|+ c̄)

UR − UL
2

. (2.10)

In the last equation c is the local speed of sound, FL=Fx(UL), FR=Fx(UR) and

bar labels speeds computed at the following averaged state

Ū =
UL + UR

2
. (2.11)

The last step concludes the spatial discretization. Finally, the temporal deriva-

tive is dicretized by the first-order forward Euler method:

dUi,j
dt

=
Un+1
i,j − Un

i,j

∆t
, (2.12)

where Un
i,j is the known value of the state vector at time instant n, Un+1

i,j the

unknown value of the state vector at time instant n + 1, and ∆t the time step.

By working out the algebra described so far, leads to the following discrete form
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of the governing equations:

ρn+1
C = ρnC −

−∆t
∆x

((
ρunC+ρunE

2
− (|ū|+ c̄)

ρnE−ρ
n
C

2

)
−
(
ρunW +ρunC

2
− (|ū|+ c̄)

ρnC−ρ
n
W

2

)
(2.13a)

+
(
ρvnC+ρvnN

2
− (|ū|+ c̄)

ρnN−ρ
n
C

2

)
−
(
ρvnS+ρvnC

2
− (|ū|+ c̄)

ρnC−ρ
n
S

2

))
ρun+1

C = ρunC−

−∆t
∆x

((
(ρu2+p)

n

C
+(ρu2+p)

n

E

2
− (|ū|+ c̄)

ρunE−ρu
n
C

2

)
−
(

(ρu2+p)
n

W
+(ρu2+p)

n

C

2
− (|ū|+ c̄)

ρunC−ρu
n
W

2

)
(2.13b)

+
(
ρuvnC+ρuvnN

2
− (|ū|+ c̄)

ρunN−ρu
n
C

2

)
−
(
ρuvnS+ρuvnC

2
− (|ū|+ c̄)

ρunC−ρu
n
S

2

))
ρvn+1

C = ρvnC−

−∆t
∆x

((
ρuvnC+ρuvnE

2
− (|ū|+ c̄)

ρvnE−ρv
n
C

2

)
−
(
ρuvnW +ρuvnC

2
− (|ū|+ c̄)

ρvnC−ρv
n
W

2

)
(2.13c)

+

(
(ρv2+p)

n

C
+(ρv2+p)

n

N

2
− (|ū|+ c̄)

ρvnN−ρv
n
C

2

)
−
(

(ρv2+p)
n

S
+(ρv2+p)

n

C

2
− (|ū|+ c̄)

ρvnC−ρv
n
S

2

))
En+1
C = En

C−

−∆t
∆x

((
(E+p)unC+(E+p)unE

2
− (|ū|+ c̄)

En
E−E

n
C

2

)
−
(

(E+p)unW +(E+p)unC
2

− (|ū|+ c̄)
En

C−E
n
W

2

)
(2.13d)

+
(

(E+p)vnC+(E+p)vnN
2

− (|ū|+ c̄)
En

N−E
n
C

2

)
−
(

(E+p)vnS+(E+p)vnC
2

− (|ū|+ c̄)
En

C−E
n
S

2

))
Complex terms in the equations were marked with only one super- and sub-

script for better understanding, for example (ρu2 + p)
n
C is equal to ρnC (unC)2 +pnC .
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Notations |ū| and |c̄| represent the average value of the u velocity component and

the speed of sound at an interface, respectively.

A vast amount of experience has shown that these equations provide a stable

discretization of the governing equations if the time step obeys the following

Courant-Friedrichs-Lewy condition (CFL condition):

∆t ≤ min
(i,j)∈([1,M ]×[1,N ])

min (∆x,∆y)

|ui,j|+ ci,j
. (2.14)

2.3.2.4 The Second-order Scheme

The overall accuracy of the scheme can be raised to second-order if the spatial and

the temporal derivatives are calculated by a second-order approximation. One

way to satisfy the latter requirement is to perform a piecewise linear extrapolation

of the primitive variables PL and PR at the two sides of the interface in (2.10).

This procedure requires the introduction of additional cells with respect to the

interface, i.e. cell LL (left to cell L) and cell RR (right to cell R). With these

labels the reconstructed primitive variables are

PL = PL +
gL (δPL, δPC)

2
, PR = PR −

gR (δPC , δPR)

2
, (2.15)

with

δPL = PL − PLL, δPC = PR − PL, δPR = PRR − PR (2.16)

while gL and gR are the limiter functions.

The previous scheme yields acceptable second-order time-accurate approxima-

tion of the solution, only if the variations in the flow field are smooth. However,

the integral form of the governing equations admits discontinuous solutions as

well, and in an important class of applications the solution contains shocks. In

order to capture these discontinuities without spurious oscillations, in (2.15) we

apply the minmod limiter function, also:

gL (δPL, δPC) =


δPL if |δPL| < |δPC |

and δPLδPC > 0
δPC if |δPC | < |δPL|

and δPLδPC > 0
0 if δPLδPC ≤ 0

(2.17)

The function gR (δPC , δPR) can be defined analogously.
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2.3.2.5 Implementation on the Cell Architecture

By using the previously described discretization method, a C based CFD solver

is developed which is optimized for the SPEs of the Cell architecture.

The simplest way to define a body fitted mesh is to define the coordinates

of the vertices. By using these coordinates, the length and the normal vector of

the faces and the volume of the quadrilateral can be computed. This solution,

however, requires the lowest memory bandwidth. This is not efficient, due to

the lack of hardwired floating point divider and square root unit inside the SPE.

Computing these values on the SPE requires as many instructions as computing

the derivative and updating the state value of one cell. Additionally, these val-

ues are constant during the computation and can be computed in advance by the

PPU. Eight constant variables are required to describe the quadrilaterals, namely

the length of the interfaces, the normal vector components, the volume and the

mask. Even though, using these precomputed values, the memory I/O band-

width requirement of the algorithm is increased by 45%, the number of required

instructions is nearly halved, therefore, the computing performance is doubled.

Since the relatively small local memory of the SPEs does not allow to store

all the required data, an efficient buffering method is necessary to save memory

bandwidth. In our solution a belt of 5 rows is stored in the local memory from

the array: 2 rows are required to form the local neighborhood of the currently

processed row, one line is required for data synchronization, and two lines to allow

the overlap of the computation and communication as shown in Figure 2.13.

Additionally, 2 rows are needed to store the constant values and temporarily

store the primitive variables (u, v, p) computed from the conservative variables

(ρ, ρu, ρv, E). During implementation the environment of the CNN simulation

kernel was used. Template operations are optimized according to the discretized

equations (2.7) to improve performance. The optimized kernel requires about

32KB memory from the local store of the SPE leaving approximately 224KB for

the row buffers. Therefore, the length of the buffer is of maximum 1000 grid

points, while the number of rows is only limited by the size of the main memory.

Storing the precomputed constant values requires 27% more local store per grid

point, but this overhead is affordable due to the doubled performance.
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Figure 2.13: Local store buffers

To utilize the power of the Cell architecture computation work should be

distributed between the SPEs. In spite of the large memory bandwidth of the

architecture, the memory bus can be easily saturated. Therefore, an appropriate

arrangement of data between SPEs can greatly improve computing performance.

One possible solution is to distribute grid data between the SPEs. In this case

each SPE work on a narrow horizontal slice of the grid, similarly to the first row

of SPEs in Figure 2.14.

Though the above data arrangement is well suited for the architecture of ar-

ray processors and simplifies the inter-processor communication, the eight SPEs

access the main memory in parallel, which might require very high memory band-

width. If few instructions are executed on large data sets, the memory system is

saturated resulting in low performance. One possible solution for this problem

is to form a pipeline using the SPEs to compute several iterations in parallel as

shown in Figure 2.14. In this case continuous data flow and synchronization are

required between the neighboring SPEs but this communication pattern is well

suited for the ring structure of the EIB.

The static timing analysis of the optimized CFD solver kernel showed that

a grid point can be updated in approximately 250 clock cycles. Each update

requires moving 64byte data (4x4byte conservative state value, 4x4byte updated

state value, 8x4byte constant value) between the main memory and the local

store of the SPE. The Cell processor runs on 3.2GHz clock frequency, therefore,

in an ideal case the expected performance of the computation kernel using one
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Figure 2.14: Data distribution between SPEs

SPE is 50.5 million update/s. The estimated memory bandwidth requirement

is 3.23GByte/s, which is slightly more than the 1/8th of the available memory

bandwidth. Therefore, SPEs should be arranged in a 4×2 logical array where the

4 columns work on the 4 slices of the cell array and each row computes different

iteration.

2.3.2.6 Implementation on Falcon CNN-UM Architecture

The Falcon architecture [30] is an emulated digital implementation of CNN-UM

array processor which uses the full signal range model (Section 1.1). On this

architecture the flexibility of simulators and computational power of analog ar-

chitectures are mixed. Not only the size of templates and the computational

precision can be configured but space-variant and non-linear templates can also

be used.

The Euler equations are solved by a modified Falcon processor array in which

the arithmetic unit was redesigned according to the discretized governing equa-

tions. Since each CNN cell has only one real output value, four layers are required

to represent the variables ρ, ρu, ρv and E in case of Lax-Friedrichs approximation.

In the first-order case the non-linear CNN templates acting on the ρu layer can

easily be taken from (2.13b). Equations (2.18)-(2.20) show templates, in which
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cells of different layers are connected to the cell of layer ρu at position (i, j).

Aρu1 =
1

2∆x

 0 0 0
ρu2 + p 0 −(ρu2 + p)

0 0 0

 (2.18)

Aρu2 =
1

2∆x

 0 −ρuv 0
0 0 0
0 ρuv 0

 (2.19)

Aρu3 =
1

2∆x

 0 ρv 0
ρu −2ρu− 2ρv ρu
0 ρv 0

 (2.20)

The template values for ρ, ρv and E layers can be defined analogously.

The ρuu+ p, ρuv, ρu and ρv terms can be reused during the computation of

the neighboring cells and they should be computed only once in each iteration

step. This solution requires additional memory elements but greatly reduces the

area requirement of the arithmetic unit.

Other trick can be applied if we choose ∆t to be integer power of two because

the multiplication in this case can be done by shifts so we can eliminate several

multipliers from the hardware and additionally the area requirements will be

greatly reduced.

In the second-order case limiter function should be used on the primitive

variables and the conservative variables are computed from these results. The

limited values will be different for the four interfaces and cannot be reused in

the computation of the neighboring cells. Therefore, this approach does not

make it possible to derive CNN templates for the solution. However a specialized

arithmetic unit still can be designed to solve it directly.

2.3.2.7 Results and performance

The previous results solving the Euler equations on a rectangular grid shows that

only few specialized arithmetic unit can be implemented even on the largest FP-

GAs. In the body fitted case additional area is required to take into account

the geometry of the mesh during the computation. Symmetrical nature of the

problem, which can be seen on the templates (2.18)-(2.20), enable further op-

timization of the arithmetic unit which compensates the area increase due to
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coordinate transformations. The number of slices, multipliers and block-RAMs

of the arithmetic unit can be seen in Figure (2.15)-(2.17) respectively.
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Figure 2.15: Number of slices in the arithmetic unit

To show the efficiency of our solution a complex test case was used, in which

a Mach 3 flow around a cylinder was computed. The direction of the flow is from

left to right and the speed of the flow at the left boundary is 3-times the speed

of sound constantly. The solution contains a symmetrical bow shock flow around

the cylinder. Therefore, only the upper half of the region should be simulated.

This problem was solved on a 128 × 256 grid, which was bent over the cylinder

using 2ms timestep. Result of the computation after 1s of simulation time is

shown in Figure 2.18.

The experimental results of the average computation time are compared to a

Intel Core2Duo microprocessor is shown on Table 2.4.

The Cell based solution is 35 times faster compared to that of a high perfor-

mance microprocessor, even using a single SPE during the computation. Utilizing

all the 16 SPEs of the IBM CellBlade the computation can be carried out two

orders of magnitude faster, while the FPGA solution is three order of magnitude
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Figure 2.16: Number of multipliers in the arithmetic unit

faster. The power dissipation and the area of the architectures are in the same

range.

2.3.3 Conclusion

Complex spatio-temproral dynamical problems are analyzed by a topographic

array processor. A CNN simulation kernel was implemented on the Cell archi-

tecture and was optimized according to the special requirements of the IBM Cell

processor. By using this kernel both linear and nonlinear CNN arrays can be sim-

ulated. Based on the basic CNN simulation kernel a framework was developed

to compare the optimal mapping of the simulation of a complex spatio-temporal

dynamics on Xilinx Virtex FPGA and on IBM Cell architecture. The framework

has been tested by the acceleration of a computational fluid dynamics (CFD) sim-

ulation. During the implementation the goal was to reach the highest possible

computational performance.

The governing equations of two dimensional compressible Newtonian flows on

body fitted mesh geometry were solved by using different kind of Xilinx Virtex

5 FPGAs and by using the IBM QS22 and LS22 systems. The Falcon proces-
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Figure 2.17: Number of block-RAMs in the arithmetic unit

sor was redesigned according to the discretized version of the partial differential

equations optimized for the dedicated elements (BlockRAM, multiplier) of the

FPGA. A process is developed for the optimal bandwidth management between

the processing elements and the memory on Xilinx Virtex and on IBM Cell ar-

chitectures. It turned out, that placing a memory element close to the processor

results in a beneficial effect on the computing speed, which provides a minimum

one order of magnitude higher speedup independently from the dimension of the

problem.

One order of magnitude speedup can be achieved between an inhomogenous

architecture, like the IBM Cell, and a custom architecture optimized for Xilinx

Virtex FPGA using the same area, dissipated power and precision. During the

simulation of CFD on body fitted mesh geometry the Xilinx Virtex 5 SX240T

running on 410 MHz is 8 times faster, than the IBM Cell architecture with 8 syn-

ergistic processing element running on 3.2 GHz. Their dissipated power and area

are in the same range, 85 Watt, 253mm2 and 30 Watt, 400 mm2 respectively.

Considering the IBM Cell processor’s computing power per watt performance as
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Figure 2.18: Simulation around a cylinder in the initial state, 0.25 second, 0.5
second and in 1 second
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Table 2.4: Comparison of different hardware implementations
Implementations

Intel Cell Processor FPGA
Core2Duo 1 SPE 16 SPEs SX240T

Clock
Frequency (MHz)

2000 3200 3200 410

Million cell
iteration/s

1.05 37.3206 529.9525 2500

Computation Time
on 128×512
1 step (ms)

62.41524 1.756028 0.123664 0.01311

Computation Time
on 128×512

65536 steps (s)
4294.967 120.8372 8.50966 0.86

Speedup 1 35.54343 504.7167 1922.448
Power

Dissipation (W)
65 85 2×85 ∼ 30

Area (mm2) 143 - 2×253 389

a unit, computational efficiency of the Xilinx Virtex 5 SX240T FPGA is 22 times

higher, while providing 8 times higher performance. The one order of magni-

tude speedup of the FPGA is owing to the arithmetic units working fully parallel

and the number of implementable arithmetic units. During CFD simulation, the

IBM Cell processor and the FPGA based accelerator can achieve 2 and 3 order of

magnitude speedup respectively compared to a conventional microprocessor (e.g.:

Intel x86 processors).
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Chapter 3

Investigating the Precision of
PDE Solver Architectures on
FPGAs

Reconfigurable devices seems to be the most versatile devices to implement array

processors. Flexibility of the FPGA devices enable to use different computing

precisions during the solution of PDEs and evaluate different architectures quickly

[30]. Higher computing precision requires wider mantissa which results in larger

implementation area. For that reason it is important to determine the minimal

required computational precision of the algorithm. It is a simple common practice

to use fixed wordlength during the implementation of the datapath on FPGA. The

required silicon area are consumed by a given implementation can be estimated

by the area of the processing units, which is determined mainly by the number

of operations.

In this chapter the optimal precisions with fixed-point and floating-point arith-

metic units on a simple test case is investigated. A single uniform wordlength

was determined in order to have the required accurate solution. There are more

elegant ways to find a more area efficient solutions, like the multiple wordlength

selection problem, but it is proven to be a NP-hard problem [63].

The main motivation of the investigation of the precision was the finite number

of resources. Because different type of problems requires different computational

precision it is necessary to know which problem can be mapped into the FPGA.

In the next section a simple PDE is investigated in order to find a method to
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determine the optimal computational precision of the advection equation solver

architecture.

3.1 The Advection Equation

For the test the simple advection equation (3.1) is selected, where the analytical

solution is known and can be easily generated.

∂u

∂t
+c

∂u

∂x
=0 (3.1)

where t denotes time, u is conserved property, c is the advection speed. The

initial condition is a proper periodical function with the property of:

u(x,t0)=u0(x) (3.2)

the range of the function is from 0 to 1. Periodic boundary condition are used on

the boundaries. With this initial conditions the architecture can easily be tested,

because of the periodicity, the result should be in the same range as the initial

condition. The analytical solution is

ũ(x,t)=u0(x−c(t−t0)) (3.3)

The numerical approximation of the advection equation is not easy, especially

if the initial condition u0 is discontinuous function. Its structure and solution

method is similar to those equations which used in Fluid Flow simulation [55].

This is a good starting equation which helps us investigating the precision of

the arithmetic unit on FPGA to reach the predefined accuracy of the solution.

However this chapter deals only with the one-dimensional case, and this 1D can

not be used in real life applications, it gives us experience for the two- and three

dimensional cases.

3.2 Numerical Solutions of the PDEs

In order to solve the continuous space-time PDE the equations has to be dis-

cretized. Since logically structured arrangement of data is fundamental for the
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efficient operation of the FPGA based implementations, we consider explicit finite

volume discretizations of the governing equations over structured grids employ-

ing a simple numerical flux function. In the following we recall the details of the

considered first- and second-order schemes.

3.2.1 The First-order Discretization

The simplest algorithm we consider is first-order both in space and time. Applica-

tion of the finite volume discretization method leads to the following semi-discrete

form of governing equations

dUi
dt

= − 1

Vi,j

∑
f

Ff , (3.4)

where the summation is meant for the two faces of cell i, Ff is the flux tensor

evaluated at face f . Face f separates cell L (left) and cell R (right).

In order to stabilize the solution procedure, artificial dissipation has to be

introduced into the scheme. Following the standard procedure, this is achieved

by replacing the physical flux tensor by the numerical flux function FN containing

a dissipative stabilization term. The finite volume scheme is characterized by the

evaluation of FN , which is the function of both UL and UR. In the paper we

apply the simple and robust Lax-Friedrichs numerical flux function defined as

FN =
FL + FR

2
− c̄·UR − UL

2
(3.5)

and bar labels speeds computed at the following averaged state

Ū =
UL + UR

2
. (3.6)

In equation (3.5) c is the velocity component, FL=Fx(UL), FR=Fx(UR).

A vast amount of experience has shown that these equations provide a stable

discretization of the governing equations if the time step satisfies the Courant–

Friedrichs–Lewy condition (CFL condition):

u·∆t
∆x
≤c (3.7)

where u is the velocity, ∆t is the time-step, ∆x is the length interval.
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3.2.2 The Second-order Limited Scheme

The overall accuracy of the scheme can be raised to second-order if the spatial and

the temporal derivatives are calculated by a second-order approximation. One

way to satisfy the latter requirement is to perform a piecewise linear extrapolation

of the primitive variables PL and PR at the two sides of the interface in (3.5).

This procedure requires the introduction of additional cells with respect to the

interface, i.e. cell LL (left to cell L) and cell RR (right to cell R). With these

labels the reconstructed primitive variables are

PL = PL +
gL (δPL, δPC)

2
, PR = PR −

gR (δPC , δPR)

2
, (3.8)

with

δPL = PL − PLL, δPC = PR − PL, δPR = PRR − PR (3.9)

while gL and gR are the limiter functions.

The previous scheme yields acceptable second-order time-accurate approxi-

mation of the solution, only if the variations in the flow field are smooth. In case

of discontinuous initial conditions this simple second order approximation can

not be used, because the method can be unstable. In order to capture these dis-

continuities without spurious oscillations, in (3.8) we apply the minmod limiter

function, also:

gL (δPL, δPC) =


δPL if |δPL| < |δPC |

and δPLδPC > 0
δPC if |δPC | < |δPL|

and δPLδPC > 0
0 if δPLδPC ≤ 0

(3.10)

The function gR (δPC , δPR) can be defined analogously.

3.3 Testing Methodology

The goal of the experiment was to assign an adequate step size and an opti-

mal precision for the problem, which is described by equation (3.1). During the

solution different fixed-point and floating point numbers are used. The method-

ology of the experiment is the investigation of different precision on different grid

resolution.
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In fixed-point case, the precision means the length of the whole number, where

2 bits represents the integer part and the rest is for the fraction, because the num-

bers are between 0 and 1. In the floating point the exponent length is constant

11 bit wide and the rest is the mantissa, which will be varied during the examina-

tion. Current computing architectures are supporting 32 bit floating point or 64

bit double precision numbers for computations. Fixed-point computations can be

carried out by using 32 or 64 bit integers. The precision of the fixed- and floating

point numbers on FPGA can be defined in much smaller steps. For the com-

puter simulation of the algorithm we used the Mentor Graphics Algorithmic C

Datatypes [64], which is a class-based C++ library that provides arbitrary-length

fixed-point data types. For different types of floating-point numbers the GNU

MPFR library [65] can be used. Despite of the fact, the MPFR contains low-level

routines, the first floating-point computations, which we planned to make, took

a very long time. Therefore an efficient arithmetic unit were created on FPGA to

overcome the slow speed of the arbitrary precision floating-point computations,

where the floating point operators from Xilinx CoreGenerator Library [37] are

used.

The initial condition is a sinus wave and periodic boundary condition is used.

The initial conditions was tested because of the simplicity of the sinus function

with different precisions, where the result function should match the initial con-

dition after one period. The resolution of the grid is from 100 to 100000 point,

the speed of advection is 12/13 and ∆T is 16/17 times the optimal ∆T , which

can be computed by the CFL condition. These parameters are selected to meet

some critical property, namely it shall not be represented in finite length binary

number, on the other hand the number of time steps to compute one period shall

be an integer to overcome phase errors. The result was simply compared to the

initial condition. The error of the solution is measured by the L∞ (infinity) norm

defined by the following equation:

|x|∞= max
i
|xi| (3.11)

The method to find a minimal bit width of the arithmetic unit is heuristic.

Investigation of different precision operating units are done empirically. With the

increase of the bit width a more accurate result can be achieved as can be seen
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in Figure (3.1) in the floating point first order discretization case. The slope of

the error curves in different precision in fixed point first order and second order

discretization case are similar to the floating point first order case in different

grid resolution. This increasing should be done until the required accuracy of the

solution is reached. There are two cases, when the selected arithmetic precision

is not satisfactory:

• With the increase of the grid resolution may results, that the truncation

and roundoff error overcomes the method error before the required accuracy

is reached. In this case a higher precision arithmetic should be chosen, and

the iterative grid refining should be restarted.

• If the required accuracy of the solution is reached before a grid resolution

(truncation and roundoff error domination), then a lower precision arith-

metic unit can be selected in order to use a smaller architecture.

To find the proper arithmetic precision for the required accuracy, the minimum

point of the curve should be determined with the pre defined grid resolution

(e.g.: the 38 bit width with 104 grid resolution in Figure (3.1)) where the larger

arithmetic precision does not result in higher accuracy. With this method the

minimal grid resolution can be determined for an expected accuracy with the

investigation of the roundoff and truncation error in different arithmetic precision.

After the first couple of floating-point simulations using moderate grid size it

turned out, that the complete testing of even the lowest 29 bit precision case will

take more than 200 hours. That is why we decided to make an arithmetic unit

on FPGA.

3.4 Properties of the Arithmetic Units on FPGA

The purpose was not to gain the highest speed with an acceleration board, but

to investigate the precision of a computation, there for a familiar development

board is used. The architecture was developed on a Xilinx XC2V6000 FPGA

[37], which takes place on an Alpha Data [66] board. It contains 33,792 slices,

144 18×18 bit multipliers and 144 18Kb BlockRAMs. It is not the latest FPGA,

but it represents well todays low cost, low power FPGA.
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Figure 3.1: Error of the 1st order scheme in different precision with 104 grid
resolution

The arithmetic unit of the first order scheme is shown in Figure (3.2). The

architecture of the second order solution is build from two first order arithmetic

units and extended by some floating point units according to equations (3.10)

(see Figure 3.3).

The whole architecture can be seen in Figure 3.4, where the advection equation

solver unit is the accelerator. Area requirements of the arithmetic unit is shown

in Figure (3.5). The required number of slices for the arithmetic unit is increased

by 25-30% as the precision is increasing from 29 bit to 40 bit in both the 1st

and 2nd order cases. The low slope of the area increase derives from the size of

the dedicated elements of the FPGA, whereas the multiplication of two 29 bit

numbers requires the same amount of 18×18 dedicated multiplier block as in the

two 35 bit number multiplication case. The main source of the area increase is the

higher area requirements of the more accurate addition/subtraction operators.

Computation of the first and second order method is well suited to a conven-

tional microprocessor (e.g.: 3GHz Intel Core 2 Duo [67]) when the native (32, 64)

bit width is used. Even the data set of the finest resolution grid can be stored
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Figure 3.2: The arithmetic unit of the first order scheme
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Figure 3.3: The arithmetic unit of the second order scheme
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Figure 3.4: Structure of the system with the accelerator unit
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Figure 3.5: Number of slices of the Accelerator Unit in different precisions
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in the L2 cache of the processor comfortably. However the architecture imple-

mented on the FPGA was not optimized for speed and runs only on 100MHz,

its performance is comparable or in some cases slightly higher than a 3GHz Intel

Core 2 Duo microprocessor.

3.5 Results

The L∞ norm of the error in case of different grid resolution and different fixed-

point and floating-point precisions are compared in Figure (3.6) – (3.8). As the

resolution is increased, the accuracy of the solution can be improved. Finer

grid resolution requires smaller time-step, according to the CFL condition, which

results in more operations. After a certain number of steps the round-off error

of the computation will be comparable or larger than the truncation error of the

numerical method. Therefore the step size can not be decreased to zero in a

given precision. The precision of the arithmetic units should be increased when

the grid is refined.

The arithmetic unit in the 2nd order case (see Figure 3.7) is twice as large as

in 1st order arithmetic unit, additionally the step-size should be halved therefore

four times more computation is required. The slope of the error is higher as

shown in Figure 3.9, therefore computation on a coarser grid results in higher

accuracy.

The L∞ norm of fix-point and floating point solutions with the same mantissa

width are compared in Figure 3.9. Because we use 11 bit for the exponent in

floating-point numbers the 40 bit floating point number compared to the 29 bit

fix-point number. As it can be seen, the floating-point computation results in

more accurate solution than the fix-point. But just adding four bits to the 29bit

fixed-point number and using 33bit fixed-point number the L∞ norm of the error

is comparable to the error of the 40bit floating point computations. In addition

7 bits are saved, which results in lower memory bandwidth and has a reduced

area requirement. The fixed-point arithmetic unit requires 22 multipliers while

the floating-point arithmetic unit requires only 16 multipliers, the number of

required slices is far more less in the fixed-point case. While the 34 bit fixed-point
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Figure 3.6: Error of the 1st order scheme in different precisions and step sizes
using floating point numbers
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Figure 3.7: Error of the 2nd order scheme in different precisions and step sizes
using floating point numbers
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Figure 3.8: Error of the 1st order scheme in different precisions and step sizes
using fixed-point numbers
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arithmetic unit requires only 774 slices from the FPGA, the 40 bit floating-point

(which has only 29 bit mantissa) uses 11718 slices.
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1.00E-02

1.00E+02 1.00E+03 1.00E+04 1.00E+05

29bit fixed 1st order 40bit floating 1st order 40bit floating 2nd order
33bit fixed 1st order

Error

Resolution

Figure 3.9: Comparison of the different type of numbers and the different dis-
cretization

The goal is to find the finest grid resolution for a given precision where the

roundoff and truncation errors are in the same range. This can be easily de-

termined by examining Figure 3.9, where the optimal grid size is located at the

minimum point of the error function.

The second goal is to find the optimal precision for a given grid resolution.

Starting from a low precision simulation and increasing the precision by one

bit, the error is halved in each step when the roundoff error is larger than the

truncation error. The precision should be increased until the error term can not

be decreasing any more. In this point the error of the solution will be dominated

by the truncation error and the effect of roundoff error will be negligible.
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3.6 Conclusion

During engineering computations usually 64 bit floating point numbers are used

to reach an appropriate accuracy. However solution of several complex compu-

tational problems using 64 bit numbers consumes huge computing power. It

is worth to examine the required precision, if the computing resources, power

dissipation or size are limited or the computation should be carried out in real

time.

Significant speedup can be achieved by decreasing the state precision. En-

gineering applications usually does not require 14-15 digit accuracy, therefore

the decreased computational precision can be acceptable. Reduction of the state

precision makes it possible to map some particularly complex problems onto an

FPGA. A methodology was developed to specify the minimal required computa-

tional precision to reach the maximal computing performance on FPGA where

the accuracy of the solution and the grid resolution is given a-priori. The re-

quired computational precision can only be determined precisely in infrequent

cases, when the exact solution is known.

A method was elaborated to find the minimum required computing precision

of the arithmetic units when the step size, spatial resolution and the required

accuracy is defined. A tested method was given to find the precision of the

arithmetic unit of a problem, which has analytic solution. For problems without

analytic solution, the reduced precision results can be compared to the 64 bit

floating point reference precision. The finest resolution of the grid can also be

determined by the method if the desired accuracy is defined.

During the investigation of the arithmetic unit of the advection equation solver

the precision is decreased from 40 bit to 29 bit, while area requirements of the ar-

chitecture are decreased by 20-25% independently from the applied discretization

method. Clock frequency of the arithmetic units does not increase significantly

due to the decreased precision, the main source of speedup is the increased num-

ber of implementable arithmetic units on the FPGA.

The area requirements of the arithmetic units can be significantly reduced by

using properly normalized fixed point numbers. During the investigation of the

advection equation solver architecture, error of the solution of the 33 bit fixed
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point and the 40 bit floating point (29 bit mantissa) arithmetic unit is in the same

order, but the area required for the arithmetic unit is decreased by 15 times. The

main source of speedup is the increased number of implementable arithmetic units

on the FPGA, when fixed point arithmetic is used.
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Chapter 4

Implementing a Global Analogic
Programming Unit for Emulated
Digital CNN Processors on
FPGA

4.1 Introduction

Cellular Neural/Nonlinear Networks (CNN) are defined as locally connected, ana-

log, stored programmable processor arrays [68], visual microprocessors. The to-

pographic, sensory, Cellular Wave Computer architectures, based on the CNN-

UM (Universal Machine) principle, have been implemented in various physical

forms [69] such as mixed-mode CMOS VLSI, emulated-digital (both on ASIC

and FPGA), DSP, and optical implementations.

The analog VLSI implementation of the extended CNN-UM architectures

([22], [70], [23], [25], [71], and [24]) exhibit very high speed (few TeraOP/s) with

low power dissipation, but these architectures have some disadvantages: they

are known to have relative low accuracy (about 7-8 bit) and moderate flexibility,

moreover the number of cells is limited (e.g., 128× 128 on ACE16k, or 176× 144

on eye-RIS). On the one hand their cost is high, and the development time is

long, due to the utilization of full-custom VLSI technology. On the other hand,

the highly flexible software solutions (running on host processors or DSPs) are

usually insufficient, considering the performance of computations.

87
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To overcome the former problems of the analog solutions, the emulated-digital

CNN-UM implementations, as aggregated arrays of processing elements, provide

non-linear template operations and multi-layer structures of high accuracy with

somewhat lower performance [31], [26], and [45].

Among the CNN-UM implementations the emulated-digital approaches based

on FPGAs (Field Programmable Gate Arrays) have been proved to be very ef-

ficient in the numerical solution of various complex spatio-temporal problems

described by PDEs (Partial Differential Equations) [46]. Several FPGA imple-

mentations of the specialized emulated-digital CNN architecture, for example a

real-time, multi-layer retina model [18], non-linear template runner [72], 2D seis-

mic wave propagation models [19], and solution of 2D Navier-Stokes equations,

such as barotropic ocean model [73], and compressible flow simulation [74] have

been successfully designed and tested.

Hence, the elaborated Falcon architecture on FPGA [45] seems to be a good

trade-off between the high-speed analog VLSI CNN-UM and the versatile soft-

ware solutions. In order to provide high flexibility in CNN computations, it is

interesting how we can reach large performance by connecting locally a lot of

simple and relatively low-speed parallel processing elements, which are organized

in a regular array. The large variety of configurable parameters of this architec-

ture (such as state- and template-precision, size of templates, number of rows and

columns of processing elements, number of layers, size of pictures, etc.) allows

us to arrange an implementation, which is best suited to the target application

(e.g. image/video processing or fluid flow simulation). So far, without the proper

controller (Global Analog Programming Unit, GAPU) extension, when solving

different types of PDEs, a single set of CNN template operations has been imple-

mented on the host PC: by downloading the image onto the FPGA board (across

a quite slow parallel port), computing the transient, and finally uploading the re-

sult back to the host computer where logical, arithmetic and program organizing

steps were executed.

If, howewer, we want to run analogic CNN algorithms with template state-

ments, the Falcon architecture has to be extended with this proposed GAPU

implementation. It simplifies the downloading of the input picture(s)/image(s)

(e.g.: pictures for image processing, or surfaces for tactile sensing, etc.) along
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with the sequence of analogic instructions (the program) onto the FPGA, through

merely asserting a ’start’ signal. All the above may be done either without a host

PC, thus our architecture is capable of achieving stand-alone operation, which is

desirable in many industrial contexts. The complex analogic algorithms require

classical program organization elements, i.e., sequential-, iterative- and condi-

tional execution of instructions. Consequently, the embedded GAPU must be

supplied to the Falcon architecture to extend it to a fully functional CNN-UM

implementation on a reconfigurable FPGA.

4.2 Computational background and the optimized

Falcon architecture

The Falcon architecture implemented on reconfigurable FPGA iterates the forward-

Euler discretized CNN equation by using FSR (Full-Signal Range) model, which

is derived from the original Chua-Yang model [68]. The equations for the Euler

method are as follows:

xm,ij(n+ 1) = xm,ij(n) +

p∑
n=1

∑
kl∈Sr(ij)

A′mn,ij,kl · xn,kl(n) + gm,ij (4.1)

gm,ij =

p∑
n=1

∑
kl∈Sr(ij)

B′mn,ij,kl · un,kl(n) + h · zm,ij, (4.2)

where the number of layers is denoted by p, the state of the cell is equal to its

output and limited in the [-1, +1] range. It contains processing elements in a

square grid, and the time-step value h is inserted into the A’ and B’ template

matrices. Moreover, supposing that input is constant or changing slowly, gij can

be treated as constant and should be calculated only once at the beginning of the

computation.

This multi-layer extension of the elaborated Falcon architecture based on

FPGA [45] can be used for emulating a fully connected multi-layer CNN struc-

ture: both the number of layers and the computing accuracy are configurable.

The main blocks of the Falcon architecture are extended with a low-level Control

unit, which is optimized for GAPU extension, and they are shown in Figure 4.1.
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StateOut ConstOut TmpselOut 
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RightOutNew 
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Control 
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Figure 4.1: The structure of the general Falcon processor element is optimized for
GAPU integration. Main building blocks and signals with an additional low-level
Control unit are depicted.

The integrated Control logic has three different control signals: the Enable al-

lows the operation of the Falcon processor element (FPE) for one clock cycle, the

DataValidIn denotes that valid input data arrived, while DataValidOut indicates

the first computed result.

Depending on the template size, several rows from the given layer should

be stored in the Memory unit. It must be supplied with input data from the

main memory (RAM) of the proposed CNN-UM implementation. The arithmetic

unit is modified and optimized for GAPU. Which can be built up from (2r +

1) × (2r + 1) multipliers instead of r dedicated elements. This means that it

is capable of computing the new state value within one clock cycle, supposing

nearest neighborhood (r=1) templates and a single-layer structure. The hardware

complexity of the application increases quadratically as the number of layers are
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increased, so for multi-layer structures the arithmetic core must perform r2 times

more computations than in the single-layer case, and the templates may be treated

as r × r pieces of single-layer templates.

The input picture is partitioned among the physical FPEs: each column of

the processors works on vertical stripe of the image, while each row executes

one iteration step in the discretized time. The inter-processor communication is

solved on processor level. However, certain timing and control signals must be

supplied to the first processor row in order to indicate the processing elements

when the first input data are available. On the other hand, the input pipeline

gets the value of the last pixel in a row, as pixel values are stored continuously in

the RAM. These signals ensure the duplication of the first and last rows of pixels

satisfying the Neumann-type (zero-flux) boundary condition.

One possible problem might be that prototyping boards usually have different

memory-bus width than the Falcon array has. For this reason an Input and

Output Interface are necessary to be implemented between the on-board RAM

memory and the Falcon array (in Figure 4.2).

The Falcon interface multiplexes and transforms multiple words of data (width

of the data bus) into a w wide data word, according to the following equation:

w = n× (ws + wc + wts) , (4.3)

where n means columns of processors, each one works with ws bits of state, wc

bits of constant, and wts bits of template width. This might be a bottle-neck in

speed, but it can be eliminated by the careful selection of the number of processor

elements. An additional Arbiter unit provides the communication with necessary

bus control and gating logic.

4.3 Implementation

4.3.1 Objectives

Since the Falcon processor is only capable of computing the result of one iteration

step on the picture stored in the on-board RAM, it should be extended with an

additional high-level control unit, called GAPU, when more iteration steps are
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Figure 4.2: Structure of the Falcon array based on locally connected processor
elements.
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required. Analogical operations are considered - a dual computational structure,

in which algorithms are implemented with analog and logical (arithmetical) op-

erations. Consequently, the GAPU must control not only program organizing

constructions and I/O instructions, but basic local logical (e.g., bitwise AND,

OR, EQ etc.) and elementary arithmetic operations (e.g., addition, subtraction,

multiplication) between two pictures. On the other hand, the GAPU should

run analog instructions, as well. Timing and control signals (including template

values, i.e., the ’analog’ program) must be supplied to the Falcon architecture

to be feasible for a low-cost programmable CNN-UM. In order to accelerate the

arithmetic and logical operations a Vector processor element (VPE) should be

implemented. It receives the same data structure as an FPE. The number of

VPEs depends on the number of columns of the Falcon processors. The main

objective during the GAPU implementation was, that the GAPU must incur a

minimal overhead in area and no overhead in time at all.

To achieve these goals, the Xilinx MicroBlaze [37] architecture has been used

for implementing most of the complex sophisticated CNN algorithms. MicroBlaze

is an embedded soft processor core optimized for Xilinx FPGAs, meaning that it

is implemented using general logic primitives rather than hard, dedicated blocks

(as in case of the IBM PowerPC architecture, or the ARM processor architecture).

It is designed to be flexible, providing control of a number of features: the 32-bit

RISC architecture of Harvard-style with separated in instruction- and data buses

running at full speed to execute programs and access data from both on-chip and

external memory.

The MicroBlaze system design relies on a soft CPU core, a number of slave

peripherals place on the CPU’s On-chip Peripheral Bus (OPB) and RAM- or

DMA-controllers with the addition of an Arbiter Unit for multi-processor and

multi-bus support. This can be strongly application-specific, which we add and

configure within the soft processor core. Consequently, during the implementation

process we eliminated several unnecessary components from the MicroBlaze core,

and the blocks needed to perform the analogical operations were kept.
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4.3.2 Implementation of GAPU

The architecture of the GAPU is built up from five main components as shown

in Figure 4.3:

• MicroBlaze core,

• OPB bus (On-Chip Peripheral Bus),

• IPIF interface (Intellectual Property Interface),

• BRAM memories,

• Controller unit.

Additionally, it can be integrated with not only one, but several Falcon and Vector

processor elements in an array, which significantly increases the computing per-

formance. The number of the implementable processor is limited by the resources

of the development board.

The State-, Const- and Template-BRAM memories store the state, constant

and template values, respectively, while four special registers in the Controller

module (called Command, Status, IterCounter and IterLeft) implement common

functions in the instruction set processing. The Command register stores the

actual instruction, the Status register shows the status of the process, IterCounter

register stores the maximal number of iterations and the IterLeft register stores

the number of remaining iterations. These control signals controls the work of

the processors which are connected to the GAPU.

In our experimental system a Xilinx MicroBlaze core is attached to a Con-

troller unit across an IPIF interface (Intellectual Property InterFace). According

to the desired function, the Controller module generates control signals for operat-

ing both Falcon and Vector processors. These processor elements can obtain data

from StateBRAM, ConstBRAM and TemplateBRAM memories implemented on

the dedicated on-chip BRAM memories, but storing larger pictures the exter-

nal on-board ZBT-SRAM modules might be used. The previously elaborated

Falcon processor is capable of performing a number of analog operations, while

arithmetical and logical instructions on the CNN array can be carried out by
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Figure 4.3: Detailed structure of the implemented experimental system (all blocks
of GAPU are located within the dashed line).
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additional Vector processor units. In this structure - somewhat similar to mixed-

signal processors - the duality (mentioned in [68], in the context of analog and

logical computing) is expressed in the way timing and control signals are gener-

ated for all components by Controller block. The MicroBlaze core is connected

across an IPIF interface to the OPB bus, which makes it possible to supply more

Falcon processors and Vector processor elements in an array without any signifi-

cant modifications, and perform operations simultaneously.

The entire computation can be started by a single writing operation of a regis-

ter element. According to the given analog or logical/arithmetical operation, the

Command register stores the instructions for Falcon and Vector processors. The

Status register shows the current state of the CNN-array. The IterLeft denotes

the actual number of the iteration, while the IterCount denotes the maximal

number of iterations in the picture, which can be adjusted at the beginning of

the computation. The AddrIn and AddrOut counters have to store the start

addresses of the ConstBRAM and StateBRAM memories. Each bit-width (e.g.,

state-, constant-, template-widths) of the entire structure are configurable, thus

can be adjusted to the corresponding bit-widths of the Falcon architecture for a

specific application. Moreover, owing to the modular structure of the proposed

GAPU if the development of a new analogical operation is required, the Com-

mand register can be easily extended with a given instruction set of the new

function.

In order to utilize the high computing power of the modern FPGAs several

modification need to perform on the GAPU architecture. The dedicated arith-

metic units of the new generation FPGAs becomes faster, while the embedded

microprocessors and the used bus systems evolves slower. The implemented Fal-

con PEs can work much faster than the MicroBlaze processor and its buses. I

developed a new architecture in order to work the FPE, the embedded micro-

processor, the controller circuit and the memory in different clock speed. This

involves the modification of the StateBRAM memories. In spite of using a dual-

ported BRAM, we need to use several single-ported ones. A few to serve the FPEs

with datas and one for the MicroBlaze. In this case the relative slow MicroBlaze

can monitor the state memories too, while the fast FPE can work continuously.

With an additional FIFO element the StateBRAM memory can be reached from
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outside the GAPU architecture. The new architecture makes it possible for the

MicroBlaze, for the control units and for the FPEs to reach the state memories

from the outer memory at the same time.

4.3.3 Operating Steps

In practice the GAPU works as follows:

1. If we want to compute with an analog operation on an arbitrary sized

picture, first a given template should be loaded into the Template BRAM

memory. The maximal number of iterations can be set in the IterCount

register, and in the Command register the analog operation should be given.

The selected template is stored in Template BRAM.

2. The template is loaded from the Template BRAM into the Template mem-

ory unit of the Falcon processor.

3. In the next step the AddrIn and AddrOut pixel counters should be initial-

ized along with the iteration counter storing the current step of iteration

(IterLeft). The IterLeft gets the value of the IterCount register.

4. When a start (compute) signal is asserted, the GAPU sets the flag of the

Command register and Status register to ’1’. Depending on the content of

the Command register, it will enable the Falcon processor to work and ob-

tain data from ConstBRAM and StateBRAM memories. During processing

the analog operation the Status register shows the operating status of the

Falcon processor continuously.

5. If the signal AddrIn En (a valid data is on the input of the processor) is

’true’, the the AddrIn counter is incrementing with the processing of the

datas. This counter helps us to monitor the processed datas. If the counter

reaches the edge of the picture (the last pixel), its content is deleted.

6. If the Falcon processor has the first results, it sets the DataValidOut signal

to ’true’. The way to write the memory is similar to reading the mem-

ory. The AddrOut register counts the number of computed pixels, and its

content is reseted after the last computed pixel.
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7. If the computation reaches the last row of the picture, the number of it-

erations should be decreased by 1, and the AddrIn and AddrOut registers

should be deleted.

The above steps will be iteratively performed, until the given number of iteration

step is obtained. At this point the analog operation will be accomplished.

In the other case if we want to perform a logical or an arithmetic operation

on an arbitrary sized binary picture, in the Command register a flag of the given

instruction should be set, enabling the selected operation of the Vector processor

element. The function of registers is similar to the above analog operation, but in

case of logical processing, it is not necessary to use the iteration counter registers,

because only one iteration should be performed.

These low-level operations may be hidden by a higher level software API,

which makes it possible to control the communication between the MicroBlaze

core and the Falcon or Vector processor cores. In order to provide suitable user

interface, in addition, these functions simplify the download of input pictures

and template values onto the processor elements, starting the CNN computation

with given templates together with an arbitrary number of iterations, and finally

uploading, furthermore, displaying the computed results.

4.4 The real image processing system

In the real image processing system, based on the RC203 FPGA development

board [75], several interfaces are implemented to handle the memory, parallel

port, camera input and video output parts, as shown in Figure 4.4.

Storing the partial results of calculation, the processors can access the on-

board memory through the implemented ZBT interface. A Memory Arbitration

unit decides on the component that can be used by the memory. The FIFO

elements need to match the bit-width differences between the ZBT memory and

other functional elements. The Parallel Port interface is applied to attach the

system to the host PC for configuring (downloading / uploading) the processor.

The VGA interface is necessary to connect the monitor which can display the

computed results, while the video input of the system supports on-line video
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Figure 4.4: Block diagram of the experimental system. The embedded GAPU is
connected with Falcon and Vector processing elements on FPGA.
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signal processing coming from PAL or NTSC video cameras, as well. Several

parts of these predefined interfaces are provided from the Platform Abstraction

Layer (PAL) API of Celoxica [32].

4.5 An Example

The example shows the functionality of GAPU, by using a skeletonization algo-

rithm where a lot of template replacements should be performed in each iteration

step. This may increase significantly the communication (download/upload) time

between the host PC and FPGA, and this will be the great bottleneck when cal-

culating the full processing time. Consequently, if we apply the embedded GAPU,

it will reduce the communication time, and it provides a more efficient utilization

of the Falcon processor.

The analogic algorithm in this example finds the skeleton of a black-and-white

object. The 8 different templates should be applied circularly, always feeding the

output result back to the input before using the next template. The templates

of the algorithm are as follows (using the up-to-date Cellular Wave Computing

Library [76]):
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Input 1st iteration 5th iteration 10th iteration

Figure 4.5: Results after some given iteration steps of the black and white skele-
tonization.

SKELBW1: SKELBW2:

B1 =

 1 1 0
1 5 −1
0 −1 0

 z1 = −1 B2 =

 2 2 2
0 9 0
−1 −2 −1

 z2 = −2

SKELBW3: SKELBW4:

B3 =

 0 1 1
−1 5 1

0 −1 0

 z3 = −1 B4 =

 −1 0 2
−2 9 2
−1 0 2

 z4 = −2

SKELBW5: SKELBW6:

B5 =

 0 −1 0
−1 5 1

0 1 1

 z5 = −1 B6 =

 −1 −2 −1
0 9 0
2 2 2

 z6 = −2

SKELBW7: SKELBW8:

B7 =

 0 −1 0
1 5 −1
1 1 0

 z7 = −1 B8 =

 2 0 −1
2 9 −2
2 0 −1

 z8 = −2

FEEDBACK TEMPLATES:

An =

 0 0 0
0 1 0
0 0 0

 (n = 1...8)

where Bi denotes the control templates, while An denotes the feedback matrix

(the same for all directions). The algorithm runs on the SKELBWI.bmp and the

size of the image is 128× 128. The results of the algorithm are plotted below, in

Figure 4.5.

The above analogic CNN algorithm had been implemented on the experimen-

tal system, based on Virtex-II FPGA with high-level software API (collection of

functions), which makes it possible to control the communication of the GAPU
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between the MicroBlaze core and the array of Falcon / Vector processor elements.

4.6 Device utilization

The experimental system is implemented on the RC203 development board from

Celoxica [75], which is equipped with a Xilinx Virtex-II 3000 FPGA including

14 336 slices, 96 18 × 18 bit signed multipliers, 96 BRAMs and 2 × 2 MB ZBT

SSRAM memory. Using rapid prototyping techniques and high-level hardware

description languages such as Handel-C from Celoxica makes it possible to develop

optimized architectures much faster, compared to the conventional VHDL or

Verilog based RTL-level approaches. During the implementation of the GAPU,

Handel-C is located at the top level of the design, while the MicroBlaze core

and its modules are wrapped as a low-level system processor macro. Using the

Platform Studio integrated development environment [37] from Xilinx supports

both the MicroBlaze soft-core and IBM PowerPC hard processor core designs.

The required number of resources of the Falcon Processor Element and the

proposed GAPU in different precision are examined (see Figure 4.6 and 4.7).

As shown in Table 4.1, the proposed GAPU, based on a Xilinx MicroBlaze

core, requires minimal additional area on the available chip resources at 18-bit

state precision, which accuracy is best suited for dedicated multipliers (MULT18×
18) and block-RAM (BRAM) modules. Though, the GAPU controller occupies

four-times as many slices and BRAMs as one Falcon PE does, but only a small

fraction of the available resources on the moderate-sized Virtex-II FPGA is used.

Due to this consideration, the embedded GAPU does not decrease the number

of implementable Falcon processor elements significantly. The number of the

implementable FPEs and VPEs is configurable. Hence, by using our XC2V3000

FPGA only 12% of the available slices are utilized, which makes it possible to

implement 15 FPE cores, depending on the limited number of BlockRAMs. We

can save some additional area by using external ZBT-SRAM modules instead

of on-chip BRAMs. Moreover, the speed of the GAPU is close to the clock

frequency of a Falcon processing element on Virtex-II architecture (the maximum

realizable clock frequency of the MicroBlaze core is shown in case of the state-

of-the-art Virtex-6 architecture [37]). If we want to attain the best performance,
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Figure 4.6: Number of required slices in different precision
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Figure 4.7: Number of required BlockRAMs in different precision
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Table 4.1: Comparison of a modified Falcon PE and the proposed GAPU in
terms of device utilization and achievable clock frequency. The configuration of
state width is 18 bit. (The asterisk denotes that in Virtex-5 FPGAs, the slices
differently organized, and they contain twice as much LUTs and FlipFlops as the
previous generations).

Device
utilization
and speed

MicroBlaze
GAPU

(@18 bit)

Falcon PE
(@18 bit)

Available on
XC2V3000

Available on
XC6VSX475T

Num. of
occupied slices

1780 452 14 336 74400*

Num. of
BRAMs

18 5 96 2128

Num. of
MULT18×18s

0 9 96 2016

Core
frequency [MHz]

100 133 133 600 (210)

the currently available largest DSP-specialized Virtex-6 SX475T FPGA has to

be used where the GAPU occupies only a minimal additional area (about 2.4%

of slices and only 1% of BRAMs). With the use of this device, 160 Falcon PE

cores can be implemented in an array, as well. The other large-sized Virtex-

II Pro or Virtex4 FX or Virtex5 FX platform FPGAs provide embedded IBM

PowerPC405 hard processor core(s) at a higher speed, which may be a good

alternative to implement GAPU in further development. There are only rumors

about the newest 7th series Xilinx FPGAs, which will embed ARM processor

core.

4.7 Results

Considering consecutive analog operations (e.g., the black and white skeletoniza-

tion above) on a 64× 64 image with 18-bit state-, constant- and 9-bit template-

precision, the Falcon PE cores perform 10 iterations within 0.307 ms. Without the

proposed GAPU extension, due to the slow communication via the parallel port

(downloading / uploading the sequence of instructions, templates, and results),

the data transfer requires approximately 204.8 ms, while the full computing time
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Table 4.2: Comparison of the different host interfaces.

Parallel Port
(without GAPU)

PCI 2.1
(without GAPU)

MicroBlaze-OPB
(with embedded

GAPU)
Bus speed (MByte/s) 0.4 133 266

CNN core speed (MHz) 133 133 133
Picture (Width×Height) 64×64 64×64 64× 64

Num. of iterations 10 10 10
Data size (byte) 4 4 4

Comm. time (ms) 204.8 0.49 0.246
Computing. time (ms) 0.307 0.307 0.307

Full time (ms) 409.907 1.287 0.799
Effectiveness of FPEs 0.30% 38.46% 55.56%

is about 410 ms, as you can see in Table 4.2. In this case, the effective utilization

of the Falcon processor is only 0.3%. If we use a prototyping board equipped

with a PCI interface, the communication time is reduced to 0.49 ms, while the

computation is performed within 1.287 ms.

We can have the best alternative by applying the embedded GAPU where

the MicroBlaze core can communicate directly across the OPB bus at a speed

of 133 MByte/s, which means that data transfer is accomplished within 0.246

ms. Hence, the Falcon PE can be more effectively (in about 55.56% of the full

computing time) utilized when working on analogic operations. Using the em-

bedded GAPU implementation, stand-alone operation and high performance with

minimal additional cost in area can be achieved.

With larger images (eg.: 128×128) and with the same 18-bit state-, constant-

and 9-bit template-precision, the Falcon PE cores perform 10 iterations within

1.23 ms. In this case, with the proposed GAPU, the Falcon PE works in 71.43%

of the full computing time.

4.8 Conclusions

During the long research with my colleague, Dr. Zsolt Vörösházi, we have ex-

tended the Falcon architecture with the proposed GAPU on FPGA.

The Falcon architecture extended with the proposed GAPU was successfully
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designed on FPGA. It provides a fully programmable CNN-UM, on which the

most sophisticated and complex analogic algorithms can be executed. It has

shown that integrating this embedded GAPU is highly advantageous in case se-

quences of template operations in an analogic CNN algorithm are performed

on large-sized (e.g., 128×128, or even 512×512) images. Due to the modu-

lar structure, the GAPU makes the integration easy with the different elabo-

rated, emulated-digital CNN-UM implementations on FPGA, e.g., computing

single layer dynamic, globally connected multi-layer computations, or running

non-linear templates, as well.

I made recommendations for the structure of the GAPU (precision) to de-

velop an emulated digital CNN-UM. The Falcon processor should be extended

with the GAPU, according to the original CNN-UM architecture, in order to exe-

cute a more complex algorithm time efficiently. The implemented GAPU should

consume minimal area while providing high operating speed to avoid slow down

of the Falcon processor, to gain the largest possible computational performance.

The GAPU can be built from a properly configured MicroBlaze, or a dedicated

PPC, or ARM processor. I made further considerations on the structure of the

controller’s state registers and configuration of the template and state memory

in order to adopt the system for the different kind of Falcon Processing Units.

E.g.: Different Falcon units are optimal for black and white or grayscale image

processing.

I have developed a new memory organization methodology in order to exploit

the possibilities of the latest FPGAs. The dedicated arithmetic units of the new

generation FPGAs become faster, but the speed of the embedded processor and

bus architecture are evolving slower. The Falcon processor can work on higher

operating frequency than the embedded microprocessor and the bus system on

the latest FPGAs. I have developed a new architecture, where the embedded

microprocessor, the controller circuit, the memory and the Falcon processing unit

can be operated on different clock speed. In addition to the internal structural

modifications the external memory can be accessed via a dedicated FIFO element.

The new architecture makes concurrent access to the external memory possible

for the MicroBlaze, the control unit and the Falcon processor.
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The implemented GAPU architecture, with the modified emulated digital Fal-

con architecture defines an organic like computing device, which builds up from

simply, but large numbered of locally connected elements, which provides a dis-

tributed, decentralized, failure tolerant operation of the information processing.
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Chapter 5

Summary of new scientific results

1. Development of an efficient mapping of the simulation of partial differential

equations on inhomogenous and reconfigurable architectures: I have com-

pared the optimal mapping of the simulation of a complex spatio-temporal

dynamics on Xilinx Virtex FPGA and on IBM Cell architecture, and I made

a framework for that. The framework has been successfully tested by the

acceleration of a computational fluid dynamics (CFD) simulation. Dur-

ing the implementation my goal was always to reach the highest possible

computational performance. The structure of the accelerator was designed

according to this goal while considering the hardware specifications of the

different architectures.

• I have implemented an effective architecture, in the aspect of

area, speed, dissipated power, bandwidth, for solving partial

differential equations on structured grid. I have redesigned

the arithmetic unit of the Falcon processor according to the

discretized version of the partial differential equations opti-

mized for the dedicated elements (BlockRAM, multiplier) of

the FPGA.

I have developed a process for the optimal bandwidth man-

agement between the processing elements and the memory on

Xilinx Virtex and on IBM Cell architectures, which makes it

possible to continuously supply the processing elements with

data.

109
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I have successfully confirmed experimentally in both cases,

that placing a memory element close to the processor results

in a beneficial effect on the computing speed, which provides

a minimum one order of magnitude higher speedup indepen-

dently from the dimension of the problem.

• I have proved experimentally that one order of magnitude

speedup can be achieved between an inhomogenous archi-

tecture, like the IBM Cell, and a custom architecture opti-

mized for Xilinx Virtex FPGA using the same area, dissipated

power and precision. During the simulation of CFD on body fit-

ted mesh geometry the Xilinx Virtex 5 SX240T running on 410 MHz

is 8 times faster, than the IBM Cell architecture with 8 synergistic

processing element running on 3.2 GHz. Their dissipated power and

area are in the same range, 85 Watt, 253mm2 and 30 Watt, 400

mm2 respectively. Considering the IBM Cell processor’s com-

puting power per watt performance as a unit, computational

efficiency of the Xilinx Virtex 5 SX240T FPGA is 22 times

higher, while providing 8 times higher performance. The one

order of magnitude speedup of the FPGA is owing to the

arithmetic units working fully parallel and the number of im-

plementable arithmetic units. During CFD simulation, the IBM

Cell processor and the FPGA based accelerator can achieve 2 and 3

order of magnitude speedup respectively compared to a conventional

microprocessor (e.g.: Intel x86 processors).

2. Examination of the precision and the accuracy of partial differential equa-

tion solver architectures on FPGA: I have shown in my thesis, that signifi-

cant speedup can be achieved by decreasing the state precision on FPGA.

Engineering applications usually does not require 14-15 digit accuracy, there-

fore the decreased computational precision can be acceptable. Reduction

of the state precision makes it possible to map some particularly complex

problems onto an FPGA. I have developed a methodology to specify the

minimal required computational precision to reach the maximal computing

DOI:10.15774/PPKE.ITK.2011.003



111

performance on FPGA where the accuracy of the solution and the grid res-

olution is given a-priori. The required computational precision can only be

determined precisely in infrequent cases, when the exact solution is known.

• I have elaborated a method to find the minimum required

computing precision of the arithmetic units when the step

size, spacial resolution and the required accuracy is defined.

I have given a tested method to find the precision of the

arithmetic unit of a problem, which has analytic solution.

For problems without analytic solution, the reduced precision results

can be compared to the 64 bit floating point reference precision. The

finest resolution of the grid can also be determined by the method if

the desired accuracy is defined.

• I have shown during the solution of the advection equation

(5.2), that higher computing power can be achieved at the

expense of the precision.

∂u

∂t
+c

∂u

∂x
=0 (5.1)

where t denotes time, u is a conserved property, c is the advection

speed. During the investigation of the arithmetic unit of the

advection equation solver the precision is decreased from 40

bit to 29 bit, while area requirements of the architecture

are decreased by 20-25% independently from the applied dis-

cretization method. Clock frequency of the arithmetic units does

not increase significantly due to the decreased precision, the main

source of speedup is the increased number of implementable arithmetic

units on the FPGA.

• I have proved experimentally that area requirements of the

arithmetic units can be significantly reduced by using prop-

erly normalized fixed point numbers. During the investiga-

tion of the advection equation solver architecture, error of the

solution of the 33 bit fixed point and the 40 bit floating point

(29 bit mantissa) arithmetic unit is in the same order, but
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the area required for the arithmetic unit is decreased by 15

times. The main source of speedup is the increased number of imple-

mentable arithmetic units on the FPGA, when fixed point arithmetic

is used.

3. Implementation of a Global Analogical Programming Unit for emulated

digital CNN-UM processor on FPGA architecture: The dynamics of the

CNN can be emulated by the Falcon processor with different computing

precision, arbitrary sized template on many layers. It should be extended

with Global Analogical Programming Unit (GAPU) in order to execute a

more complex analogical algorithm time efficiently, additionally a Vector

Processor should be attached to accelerate arithmetic and logic operations.

The GAPU is not only used during program organizing and I/O peripheral

management tasks but it should execute local logic, arithmetic and analog

instructions as well. Furthermore, timing and control signals of the Falcon

processor should be set correctly by the GAPU.

The proposed modifications were implemented and verified with a testing

example. Due to the implemented modifications and the extension with the

GAPU and the Vector Processor, a real image processing system, a Cellular

Wave Computer can be developed.

• I made recommendations for the structure of the GAPU (pre-

cision) to develop an emulated digital CNN-UM. The Falcon

processor should be extended with the GAPU, according to the original

CNN-UM architecture, in order to execute a more complex algorithm

time efficiently. The implemented GAPU should consume min-

imal area while providing high operating speed to avoid slow

down of the Falcon processor, to gain the largest possible

computational performance. The GAPU can be built from

a properly configured MicroBlaze, or a dedicated PPC, or

ARM processor. I made further considerations on the struc-

ture of the controller’s state registers and configuration of

the template and state memory in order to adopt the system
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for the different kind of Falcon Processing Units. E.g.: Differ-

ent Falcon units are optimal for black and white or grayscale image

processing.

• I have developed a new architecture, where the embedded mi-

croprocessor, the controller circuit, the memory and the Fal-

con processing unit can be operated on different clock speed.

In addition to the internal structural modifications the exter-

nal memory can be accessed via a dedicated FIFO element.

The new architecture makes concurrent access to the exter-

nal memory possible for the MicroBlaze, the control unit and

the Falcon processor.

The dedicated arithmetic units of the new generation FPGAs become

faster, but the speed of the embedded processor and bus architecture

are evolving slower. The Falcon processor can work on higher operating

frequency than the embedded microprocessor and the bus system on

the latest FPGAs.

5.1 Új tudományos eredmények (magyar nyel-

ven)

1. Parciális differenciál egyenletek numerikus szimulá-ciójának optimális leképe-

zése inhomogén és újrakonfigurálható architektúrára: Összehasonĺıtottam

egy komplex tér-időbeli dinamika szimulációjának optimális (felület, idő,

disszipált teljeśıtmény) leképezését Xilinx Virtex FPGA-án és IBM Cell

architektúrán, és erre egy keretrendszert alkottam. A keretrendszert sik-

eresen teszteltem egy CFD szimuláció gyorśıtásával. Célom mindvégig a

lehető leggyorsabb feldolgozás volt. Az architektúra ennek megfelelően lett

kialaḱıtva figyelembe véve a hardware sajá-tosságait.

• Létrehoztam egy új felület, idő, disszipált teljeśıtmény, sávszé-

lesség szempontjából hatékony architektúrát parciális differ-

enciál egyenletek strukturált rácson történő megoldására. Új-

raterveztem a Falcon processzor aritmetikai egységeit a dis-
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zkretizált parciális differenciál egyenleteknek megfelelően az

FPGA dedikált erőforrásaira (BlockRAM, szorzó) optimali-

zálva.

Eljárást adtam a processzáló elemek és a memória között a

sávszélesség optimális kezelésének problémájára Xilinx Vir-

tex és IBM Cell architektúrákon, amely lehetővé teszi a pro-

cesszáló elemek folyamatos ellátását adatokkal.

Mindkét esetben ḱısérletileg sikerült igazolnom, hogy a műkö-

dési sebességre jótékonyan hat egy processzor közeli tárterület

kialaḱıtása, mely a feladat dimenziójától függetlenül legalább

egy nagyságrendnyi sebességnövekedést biztośıt.

• Kı́sérletileg igazoltam, hogy egy kötött architektúra, mint az

IBM Cell és egy a Xilinx Virtex FPGA-ra tervezett, op-

timalizált architektúra között egy nagyságrendi gyorsulást

lehetséges elérni azonos felület, disszipált teljeśıtmény és pon-

tosság esetén. A Xilinx Virtex 5 SX240T 410 MHz-en 8-szor gy-

orsabb volt, mint a 8 db szinergikus processzor elemet tartalmazó

IBM Cell architektúra 3.2 GHz-en CFD-t szimulálva görbült hálón. A

disszipált teljeśıtményük és felületük azonos nagyság-rendbe tartozik,

rendre 85 Watt, 253 mm2 és 30 Watt, 400 mm2. Az IBM Cell pro-

cesszor egy wattra jutó számı́tási teljeśıtményét egységnyinek

tekintve a Xilinx Virtex 5 SX240T FPGA 8-szoros sebesség-

növekedés mellett a számı́tás hatékonysága 22 szeres. Az egy

nagyságrendnyi sebességkülönbség köszönhető az FPGA tel-

jesen párhuzamosan működő műveletvégző egységeinek, il-

letve a megvalóśıtható aritmetikai egységek számának. A ma

használatos általános célú mikroprocesszorokhoz (pl.: Intel x86 pro-

cesszorok) képest az IBM Cell processzor CFD-t szimulálva 2, az FPGA

alapú gyorśıtó 3 nagyság-rendnyi gyorsulást ért el.

2. Parciális differenciál egyenleteket megoldó architek-túrák pontosságának

vizsgálata FPGA-n: Tézisemben megmutattam, hogy az állapot pontosság-

ának csökkentésével jelentős sebességnövekedés érhető el. Ez a számı́tási
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pontosság csökkentés elfogadható lehet, hiszen nem minden mérnöki alka-

lmazás követel meg 14-15 helyiértéknyi pontosságot. A pontosság csökken-

tésével néhány különösen bonyolult probléma is leképezhető az FPGA-ra.

A megoldás elő́ırt pontossága és a rácstávolság ismeretének tükrében ki-

dolgoztam egy eljárást, amivel a szükséges minimális számábrázolás pon-

tosság megadható, ezáltal az FPGA-val adható legnagyobb számı́-tási tel-

jeśıtmény érhető el. Természetesen a szükséges pontosság meghatározása

csak egzakt megoldás esetén adató meg pontosan és ez kevés esetben áll

rendelkezésünkre.

• Eljárást adtam arra vonatkozólag, hogy hogyan határozható

meg az aritmetika minimális szükséges pontossága ismert lépés-

köz, térbeli felbontás és a megoldás elvárt pontossága esetén.

Analitikus megoldással rendelkező probléma vizsgálata esetén

tesztelt eljárást adtam a problémát megoldó architektúra ar-

itmetikai egységeinek pontosságára. Azon problé-mák esetén,

ahol nincs analitikus megoldása a prob-lémának, ezen csökkentett pon-

tosságú eredményeket a referenciának tekinthető 64 bites lebegőpontos

pontossághoz lehet viszonýıtani. A módszer továbbá alkalmas arra is,

hogy a kereḱıtési és a levágási hibák ismeretével meghatározható adott

pontosság mellett a rács legfinomabb felbontása.

• Megmutattam, hogy az advekciót léıró parciális differenciál-

egyenlet (5.2) megoldása során hogyan lehet a pontosság ro-

vására kevesebb erőforrás felhasz-nálásával nagyobb teljes-

ı́tményt elérni.
∂u

∂t
+c

∂u

∂x
=0 (5.2)

ahol a t az időt, u egy fentartósági tulajdonságot, c az advekció sebességét

jelenti. A pontosság vizsgá-latára használt advekciós egyen-

letet megoldó architektúra esetén, az aritmetikai egységek

pontossá-gának 40 bitről 29 bitre csökkentésével a felhasznált

felületigénye 20-25%-al csökkent az alkalmazott diszkretizációs
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eljárástól függetlenül. Sebességnövekedés jelentős része az FPGA-

ra implementálható művelet-végző egységeknek nagyobb számának kö-

szönhető, az órajel pedig számottevően nem növekszik a pontosság

csökkentésével.

• Kı́sérlettel igazoltam, hogy megfelelő normalizálás esetén a

fixpontos aritmetika adott pontosság mellett további felület-

nyereséggel jár. A pontosság vizsgálatára használt advekciós

egyenletet megoldó architektúra esetén a 33 bit pontos fix

és 40 bit pontos lebegőpontos (29 bit mantissza) aritmetikai

egység megoldás hibája ugyanabba a nagyságrendbe esik, el-

lenben az aritmetikai egység felülete fixpontos esetben 15-

ödére csökken. Fixpontos aritmetikát használva a sebességnövekedés

jelentős része az FPGA-ra implementálható műveletvégző egységek

nagyobb számának köszönhető.

3. Globális Analogikai Vezérlő Egység implementációja emulált-digitális CNN

processzorhoz FPGA architektúrán: A Falcon processzor különböző szám-

ábrá-zolási pontossággal, különböző méretű template-kkel, több rétegben

tudja a CNN dinamikát kiszámolni. Annak érdekében, hogy komplexebb

analogikai algoritmusokat is időben hatékonyan végre lehessen hajtani, ki

kellett egésźıteni egy Globális Analogikai Vezérlő Egységgel (GAPU), továbbá

az aritmetikai és logikai műveletek elvégzésére egy Vektor Processzort kel-

lett késźıteni. A GAPU-nak nemcsak programszervezési és I/O periféria

kezelési feladata van, hanem lokális logikai és aritmetikai műveleteket, vala-

mint analóg utaśıtásokat is tudnia kell kezelni. A GAPU feladata továbbá

a Falcon processzor megfelelő időźıtő- és vezérlő-jeleinek beálĺıtása is.

Az általam javasolt módośıtások implementálásra is kerültek és egy pédán

keresztül tesztelve is lettek. Az eszközölt módośıtásoknak és a GAPU, il-

letve a Vektor Processzorral való kiegésźıtésnek köszön-hetően létrehozható

egy önálló képfeldolgozó rendszer, egy Celluláris Hullámszámı́tógép.

• Emulált digitális CNN-UM kialaḱıtásához javaslatokat tet-

tem a GAPU feléṕıtésére (pontosságára) vonatkozólag. A Fal-
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con processzor kibőv́ıtése a GAPU-val, annak érdekében, hogy kom-

plexebb algoritmusokat is végre tudjon időben hatékonyan hajtani,

kézenfekvő volt az eredeti CNN-UM-nek megfelelően. A GAPU-t

úgy kellett implementálni, hogy ne foglaljon el sok helyet

az FPGA-n, és ne lasśıtsa számot-tevően a Falcon process-

zor működési sebességét, hiszen a cél a lehető legnagyobb

számı́tási teljeśıtmény elérése. A GAPU szerepének betöltés-

ére egy jól konfigurált MicroBlaze-t, dedikált PPC-t, vagy

ARM-ot javasoltam használni. Továbbá megfontolásokat tet-

tem a vezérlő és állapot regiszterek fajtájára és a template

és állapot memória konfigurálhatóságára is annak érdekében,

hogy a rendszer adaptálható legyen a hozzá csatlakoztatott

Falcon Processzáló Egység fajtájához. Pl.: ha csak fekete-fehér

képen dolgozunk, vagy szürkeárnyalatos képeken is akarunk műveleteket

végezni, különböző Falcon egységet célszerű használni.

• Olyan új architektúrát dolgoztam ki ami lehetővé teszi, hogy

a beágyazott mikroprocesszor, a vezérlő áram-körök, a me-

mória és a Falcon processzáló egység különböző órajeleken

működhessen. A belső struktúra átalaḱıtása mellet a külső

elérést is biztośıtottam egy dedikált FIFO-n keresztül. Az

új architektúra lehetővé teszi a MicroBlaze, a vezérlő egység

és a Falcon processzor számára a külső memória konkurrens

hozzáférését.

Az új generációs FPGA-k dedikált műveletvégző egységei gyorsulnak,

de ezt nem követi a beágyazott processzor-architektúra és az alka-

lmazott busz sebessége. Az új FPGA-k esetében a Falcon processzor

nagyobb működési sebességre is képes, mint a mellette be-ágyazott

mikroprocesszor- és busz-rendszer.
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5.2 Application of the results

5.2.1 Application of the Fluid Flow Simulation

Simulation of compressible and incompressible fluids is one of the most exciting

areas of the solution of PDEs because these equations appear in many important

applications in aerodynamics, meteorology, and oceanography. Modeling ocean

currents plays a very important role both in medium- term weather forecasting

and global climate simulations. In general, ocean models describe the response

of the variable density ocean to atmospheric momentum and heat forcing. In the

simplest barotropic ocean model a region of the oceans water column is vertically

integrated to obtain one value for the vertically different horizontal currents. The

more accurate models use several horizontal layers to describe the motion in the

deeper regions of the ocean. Such a model is the Princeton Ocean Model (POM),

being a sigma coordinate model in which the vertical coordinate is scaled on the

water column depth.

Computational Fluid Dynamics (CFD) is the scientific modeling the tempo-

ral evolution of gas and fluid flows by exploiting the enormous processing power

of computer technology. Simulation of fluid flow over complex shaped objects

currently requires several weeks of computing time on high performance super-

computers. The developed CFD simulation architecture, implemented on FPGA,

is several order of magnitude faster than todays microprocessors.

5.2.2 Examining the accuracy of the results

In real life engineering application double precision floating point numbers are

used for computations to avoid issues of roundoff error. However it is worth to

examine the required precision, if the computing resources, power dissipation or

size is limited or the computation should be carried out in real time. The speed

of the partial differential equation solver architecture implemented on FPGA can

be greatly increase, if we decrease the precision of the solver architecture, conse-

quently more processing unit can be implemented on the same area. This thesis is

useful if we want to investigate the limitation of a real time computation. I have

examined a simplified advection equation solver architecture, where the analytic
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solution is known. With the minimal modification of such problems (which has

analytic solution), the computed precision is remaining probably acceptable with

a similar problem, which has no analytic solution.

5.2.3 The importance of Global Analogic Programming
Unit

In order to provide high flexibility in CNN computations, it is interesting how we

can reach large performance by connecting locally a lot of simple and relatively

low-speed parallel processing elements, which are organized in a regular array.

The large variety of configurable parameters of this architecture (such as state-

and template-precision, size of templates, number of rows and columns of pro-

cessing elements, number of layers, size of pictures, etc.) allows us to arrange an

implementation, which is best suited to the target application (e.g. image/video

processing). So far, without the GAPU extension, when solving different types

of PDEs, a single set of CNN template operations has been implemented on the

host PC: by downloading the image onto the FPGA board (across a quite slow

parallel port), computing the transient, and finally uploading the result back to

the host computer where logical, arithmetic and program organizing steps were

executed.

Reconfigurable CNN-UM implementation on FPGAs may also mean a possible

breakthrough point towards industrial applications, due to their simplicity, high

computing power, minimal cost, and fast prototyping.
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[2] Z. Vörösházi, A. Kiss, Z. Nagy, and P. Szolgay, “Implementation of Em-

bedded Emulated-Digital CNN-UM Global Analogic Programming Unit on

FPGA and its Application,” International Journal of Circuit Theory and Ap-

plications, vol. 36, no. 5-6, pp. 589–603, 2008.

The author’s international conference publications
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