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Tex t  r e cogn i t i on ,  even t  de t e c t i on  and  some  theo r e t i c a l  
a spe c t s  o f  c e l l u l a r  wave  compute r  a r ch i t e c tu r e s  

by Kristóf Karacs 

Abstract 

The dissertation is connected to locally connected, cellular systems in two ways. On one 

hand I present detection and recognition algorithms developed for cellular wave computers, 

on the other hand I give a new method to analyze trajectories of one dimensional cellular 

automata over finite strings. 

Recognition of cursive handwritten texts is a complex, in some cases unsolvable, task. One 

problem is that in most cases it is difficult or impossible to identify each letter, even if the 

words are separated. In the new method I developed the identification of letters is not needed 

due to the extensive and iterative use of semantic and morphological information of a given 

language. I use spatial feature-codes, generated by a CNN (Cellular Nonlinear Network) 

based cellular wave computer algorithm, and combine it with the linguistic properties of the 

given language. Most general purpose Handwriting Recognition Systems lack the ability to 

integrate linguistic background knowledge because they only use it for post processing 

recognition results. The high level a priori background knowledge is, however, crucial in 

human reading and likewise it can boost recognition rates dramatically in case of recognition 

systems. In the new system visual source is treated as the only input: geometric and linguistic 

information are given equal importance. On the geometric side word level holistic feature 

detection is used (without letter segmentation) by analogic CNN algorithms designed for 

cellular wave computers [16], [20]. The linguistic side is based on a morpho-syntactic 

linguistic system [48]. A statistical context selection method is also applied to further reduce 

the output word lists. 

Vision is our most important sense, especially in case of orientation and navigation. 

Lacking this information source visually impaired people are very defenseless in most 

situations, and there are very few means to compensate their disability. A mobile navigation 

device would serve them well by providing some sense of safety and independence in many 

real-life situations. This, of course, has to incorporate some level of understanding the 

environments it will operate in. Semantics therefore gets an even more important role in this 
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task. I created a new model of multilevel and multimodal information processing with 

embedded semantics. Based on this model I made semantic description of specific situations 

in connection with route number detection and recognition on public transport vehicles and 

developed cellular wave algorithms for these tasks. 

The Cellular Automaton (CA) is a discrete time computational model. In contrast to CNN 

it was not designated for practical computation, rather to understand the basis of phenomena 

in cellular architectures. In my work I investigated invertibility of elementary CAs by 

modeling their operation with directed graphs. 
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1  Introduction 

Every seeing human takes it for granted from early childhood to be able to recognize 

objects and patterns around us. It is so evident for us we rarely realize how complex the visual 

pattern matching process of our brain is. For some time, using the advances of technology, 

research of human vision is gaining increasing attention among biologists, but there is still a 

long way to go to fully understand the processes that take place in our mind when we see 

people and objects and we are able to recognize them. In parallel, computer scientists have 

been trying to create models for visual recognition tasks, but they faced enormous difficulties, 

and solutions could be made only for a very limited set of problems, typically with high power 

dissipation. There are two main difficulties in performing such pattern recognition tasks. Both 

are connected to the fact that even among the most common and simplest tasks it is hard to 

find one in which the human brain does not make use of its huge network of highly 

associative semantic knowledge. One of the problems is that there are no fully adequate 

models representing these networks within the realms of current technological boundaries. 

The other one is that there are several knowledge levels in these networks and the brain uses 

them in a deeply parallel way, indeed sensing and processing cannot even be really 

distinguished. This parallel model is very far from traditional sequential models, in which 

different levels of information are processed in sequential blocks, so that they can be handled 

independently, and some feedback is added to the system to handle problems arising from the 

base model and to provide stability. 

When I started my research I was convinced that plasticity and parallel evaluation of 

background knowledge have to be built into our models. The amount of incoming data in 

recognition tasks is huge, and extracting relevant features is the only way to tackle with it. If 

background knowledge is used only after the feature extraction stage, then many details might 

be discarded too early that makes it impossible to correctly recognize the target. During my 

research I was challenged with two interesting and complex pattern matching problems: 
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Offline recognition of handwritten cursive texts, and localization and recognition of route 

number signs on public transport vehicles. Both of these tasks are deeply embedded in a 

semantic context. 

Handwriting recognition is the machine analogue of the human reading process. My goal 

was to design a system mimicking the human reading by letting the linguistic knowledge to 

act immediately on letter and word level features without their explicit recognition. 

Handwriting recognition is discussed in Chapter 2. 

The algorithms for sign detection and recognition were motivated by a project aiming to 

create a portable device for blind and visually impaired people, called the “Bionic Eyeglass”, 

to help them in everyday problems they face due to the lack of vision. Such applications 

require deep understanding of the environment where the observed events occur, similarly to 

how reading a sequence of letters is embedded in a linguistic environment. 

The ability to identify a bus or a tram is one of the most important ones among the dozen 

crucial functions determined by the representatives of potential users. Chapter 3 presents a 

semantic framework for processing information coming from sensors of different modalities, 

and its application for sign recognition problems, namely algorithms created by means of 

transforming semantic descriptions of typical signs, displays and vehicles into procedures for 

cellular wave computers. 

Chapter 4 presents results in the area of theory of binary cellular nonlinear networks, also 

known as cellular automata. I gave a method that allows analyzing all orbits of one 

dimensional cellular automata of neighborhood size one for the existence of points where 

trajectories merge and proved that the nonexistence of such points is equivalent to the 

nonexistence of Garden of Eden1 states as well as all orbits being Isles of Eden2. This topic 

belongs to the theoretical side of the field of locally connected cellular architectures. 

1.1 The Cellular Nonlinear Network model 

This section gives a brief introduction to the theory of Cellular Nonlinear/Neural Networks 

(CNN). A CNN is defined by the following principles [13], [14], [15]: 

                                                 
1 A state of a CA is called Garden of Eden iff  no other state is mapped to it, i.e. it has no predecessor under the 

global map. 
2 A state of a CA is called Isle of Eden iff  it is uniquely mapped to itself under the nth iterated global map. For 

the exact definition see Section 4.2. 
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• A spatially discrete collection of continuous nonlinear dynamical systems called cells 

where information can be encrypted into each cell via three independent variables 

called input (u), initial state (x(0)), and threshold (z). 

• A coupling law relating one or more relevant variables of each cell to all local 

neighboring cells located within a prescribed sphere of influence Sr (i,j) of radius r 

centered at cell (i,j). 

 

Figure 1.1 shows a 2D rectangular CNN composed of cells that are connected to their 

nearest neighbors. Due to its symmetry, regular structure and simplicity this type of 

arrangement (a rectangular grid) is primarily considered in all implementations. 

 

j
th column 

 i
th row 

 

Figure 1.1.  A 2-dimensional CNN defined on a square grid. The i,j-th cell of the array is 
colored green, whereas cells that fall within the sphere of influence of neighborhood 

radius r = 1 (the nearest neighbors) are colored pink. 

The bias (also referred to as the “bias map”) of a CNN layer is a grayscale image. The bias 

map can be viewed as the space-variant part of the cell threshold. By using a pre-calculated 

bias map, “linear” spatial adaptivity can be added to a template. If the bias map is not 

specified, it is assumed to be zero. 

The mask (also referred to as the “fixed-state map”) of a CNN layer is a binary image 

specifying whether the corresponding CNN cell is in active or inactive state in the actual 

operation. Using the binary mask is one of the simplest ways to incorporate “nonlinear” 

spatial adaptivity into templates. If the mask is not specified, it is assumed that all CNN cells 

are in active state, that is, the initial state is not fixed. 

In order to specify fully the dynamics of the array, the boundary conditions have to be 

defined. Cells along the edges of the array may see the value of cells on the opposite side of 
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the array (toroid boundary), a fixed value (Dirichlet-boundary) or the value of mirrored cells 

(zero-flux boundary). 

1.2 The CNN core cell and inter-cell interactions 

The CNN paradigm does not specify the properties of a cell. As the basic framework 

throughout this dissertation, let us consider the standard, first order two dimensional (M×N) 

CNN array, in which the cell dynamics is described by the following nonlinear ordinary 

differential equations: 

 

State equation: 

 ( ) ( )
( )

( )
( ), , , ,

1 ( ); ;
r r

l
k l S i j k l S i j

x t x t z A y t B u tij kij ij ij kl ij kl klτ ∈ ∈

= − + + ⋅ + ⋅∑ ∑ɺ  (1.1) 

Output equation: 

 ( ) ( )

( )

( )

( )

1 if 1

( ) if 1 1

1 if 1

x t
ij

y t f x t x t x t
ij ij ij ij

x t
ij

 ≥
 = = − ≤ ≤ 

  
− ≤ −


 (1.2) 

 

where 

• xij, yij, uij are the state, the output, and the input variables of the specified CNN cell, 

respectively, The state and output vary in time, the input is static (time independent), ij 

refers to a grid point associated with a cell on the 2D grid, and kl ∈ Sr is a grid point in 

the neighborhood within the radius r of the cell (i,j) 

• zij is the cell threshold (also referred to as bias) which could be space and time variant 

• term Aij,kl represents the linear feedback, Bij,kl the linear control 

• τ is the cell time constant, for simplicity the default value is τ = 1 

• function f (.) is the output nonlinearity, in our case a unity gain sigmoid 

• t is the continuous time variable. 

 

Equations (1.1) and (1.2) define a rather complex framework for computation. The first 

part of Equation (1.1) is called cell dynamics, whereas the additive terms following it 
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represent the synaptic interactions. If the threshold zij is space-invariant, then the template 

(space-invariant case). Equation (1.2) is the output equation. 

A CNN base cell, when implemented via analog electronic circuits, is shown in Figure 1.2. 

yij

Af(xij)

xiju ij

B

C

R

(t)yl)k,j;(i,A kl∑(t)ul)k,j;B(i, kl∑

+_ z

 

Figure 1.2.  A CNN base cell corresponding to the Equations (1.1) and (1.2). The linear 
control and feedback terms are represented by voltage controlled current sources (Bij,kl 

and Aij,kl). 

The time constant of a CNN cell is determined by the linear capacitor (C) and the linear 

resistor (R) and it can be expressed as τ = RC. A CNN cloning template, the instruction of the 

CNN array, is given by the linear and nonlinear terms implemented by the voltage controlled 

by current sources. 

The cell model in Figure 1.2 is the so called Chua-Yang model. In some cases, from 

implementation point of view, the so called full-range model is more convenient [17]. In the 

full range model, the state and input is connected and the circuit in the dashed line area is 

composed of a capacitor, a nonlinear resistor and a current source. 

In addition to the analog electronic circuit there are other physical implementations, e.g. 

optical, digital, and electromagnetic. 

1.3 The CNN Universal Machine 

All early neural network chip realizations had a common problem: they implemented a 

single instruction only, thus the weight matrix was fixed when processing some input. 

Reprogramming (i.e. changing the weight matrix) was possible for some devices but took in 

order of magnitudes longer time than the computation itself. 
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This observation motivated the design of the CNN Universal Machine (CNN-UM) [16], a 

stored program nonlinear array computer. This new architecture is able to combine analog 

array operations with local logic efficiently. Since the reprogramming time is approximately 

equal to the settling time of a non-propagating analog operation it is capable of executing 

complex analogic algorithms. To ensure programmability, a global programming unit was 

added to the array, and to make it possible an efficient reuse of intermediate results, each 

computing cell was extended by local memories. In addition to local storage, every cell might 

be equipped with local sensors and additional circuitry to perform cell-wise analog and logical 

operations. The architecture of the CNN-UM is shown in Figure 1.3. 
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Figure 1.3.  The architecture of the CNN Universal Machine. 

 

As illustrated in Figure 1.3 the CNN-UM is built around the dynamic computing core of a 

simple CNN. An image can be acquired through the sensory input (e.g. OPT: Optical Sensor). 

Local memories store analog (LAM: Local Analog Memory) and logic (LLM: Local Logical 

Memory) values in each cell. A Local Analog Output Unit (LAOU) and a Local Logic Unit 

(LLU) perform cell-wise analog and logic operations on the stored values. The output is 

always transferred to one of the local memories. The Local Communication and Control Unit 

(LCCU) provides for communication between the extended cell and the central programming 

unit of the machine, the Global Analogic Programming Unit (GAPU). The GAPU has four 

functional blocks. The Analog Program Register (APR) stores the analog program 
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instructions, the CNN templates. In case of linear templates, for a connectivity r = 1 a set of 

19 real numbers have to be stored (this is even less for both linear and nonlinear templates 

assuming spatial symmetry and isotropy). All other units within the GAPU are logic registers 

containing the control codes for operating the cell array. The Local Program Register (LPR) 

contains control sequences for the individual cell’s LLU, the Switch Configuration Register 

(SCR) stores the codes to initiate the different switch configurations when accessing the 

different functional units (e.g. whether to run a linear or nonlinear template). The Global 

Analogic Control Unit (GACU) stores the instruction sequence of the main (analogic) 

program. The GACU also controls timing, sequence of instructions and data transfers on the 

chip and synchronizes the communication with any external controlling device. It has its own 

global analog and logic memories (GAM and GLM, respectively) and global Arithmetic 

Logic Unit (ALU). As a special case the GACU can be implemented by a digital signal 

processor (DSP) or a microcontroller. 

Synthesizing an analogic algorithm running on the CNN-UM the designer should 

decompose the solution in a sequence of analog and logical operations. A limited number of 

intermediate results can be locally stored and combined. Some of these outputs can be used as 

a bias map (space variant current) or fixed-state map (space-variant mask) in the next 

operation adding spatial adaptivity to the algorithms without introducing complicated inter-

cell couplings. Analog operations are defined by either linear or nonlinear templates. The 

output can be defined both in fixed and non-fixed state of the network (equilibrium and non-

equilibrium computing) depending on the control of the transient length. It can be assumed 

that elementary logical (NOT, AND, OR, etc.) and arithmetical (ADD, SUB) operations are 

implemented and can be used on the cell level between LLM and LAM locations, 

respectively. In addition data transfer and conversion can be performed between LAMs and 

LLMs. All templates mentioned but not defined in the paper can be found in the Cellular 

Wave Computing Library [12]. 
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2  Handwrit ing recognit ion 

2.1 Introduction 

2.1.1 Recognition and reading 

Reading plays a substantial role in our everyday life since major part of our knowledge is 

stored in written texts. Although higher and higher percentage of documents are created 

electronically by means of word processors, a huge amount of data gets still recorded by 

means of handwriting where the use of computers is not suitable or feasible. But in many 

cases a fundamental need is present to have handwritten information available in a digital 

form to allow for fast searching, editing and archiving. This need is what motivates the 

development of handwriting recognition systems that aim to perform the process of reading 

and typing a handwritten text by a machine. 

There are two main branches of Cursive Script Recognition (CSR): Offline CSR and 

Online CSR. Offline recognition deals with a handwritten text sometime after the writer has 

created it. This means that the input of the recognition engine is a binary or grayscale image 

that contains handwritten text. In case of online CSR the recognition takes place ‘real-time’, 

during the writing process, and the input is usually provided by a device that can measure 

temporal information and trajectory data, such as an electronic pen or a touch-screen. Our 

work concentrates on the offline case where a substantial part of the data used in the online 

case is unavailable, since dynamic characteristics can only be extracted at the time of writing. 

Offline CSR consists of many really complex subtasks. Only vertical applications, aiming 

to give solution for only a section of the field, have reached a level of quality required in 

commercial applications. Continuous advances in handwriting recognition technology in 

addition to the present industrial demand for CSR systems could boost a much wider interest 

for recognition devices in the near future. This possibility gave the main motivation for our 

work. If a more general solution could perform well enough to reach the critical level of 
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recognition that proves to be acceptable for end users, then it would open the way for a wide 

range of practical applications related to common personal activities thereby contributing to 

the improvement of availability and processing of information. 

2.1.2 Perception as a recognition model 

We define recognition in a general sense as a certain level of interpretation of the data 

acquired from sensors. Experiments show that in case of Handwriting Recognition this level 

should be fairly high to be able to achieve acceptable results [39]. According to [24] 

researchers tend to think that it seems appropriate to base an automated handwriting reading 

system on the human perception model, since they can read handwritten texts with apparent 

ease. This is the reason why [29] concludes that Human Handwriting Processing (HHP) 

systems are rather going to read than to recognize the text. 

What really gives motivation to perception based methods is the Sayre paradox [34]: “To 

recognize a letter one must find the borders of it first. To find the borders we need to know 

first what letter it is.” Many approaches have been already published to overcome this crucial 

problem of CSR (oversegmention to primitives, whole word recognizers, Hidden Markov 

Models, etc.). The answer one gives to the Sayre paradox characterizes the whole architecture 

of the recognizer. Considering the facts mentioned above we have chosen the holistic 

paradigm to enable a development track flexible enough to avoid having to make restrictions 

on the input. 

The perception model focuses on simple features that make the shape of words different. 

These can be either global or local features. During the complex process of human perception, 

the detected shape features are immediately combined in the mind with all available 

background information, a huge part of which is related to language. This is the point where 

the process of interpretation starts. 

There are three essential parts we have to model to realize a similar combinational 

technique: 

 

1. adequate detection and representation of perceptual features 

2. good language model 

3. flexible interface between 1 and 2 that enables the recall of linguistic patterns 

based on geometric patterns 
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The last component is implemented via shape coding. A shape code contains the features 

detected in a word image assigned to possible letter positions in the word. Shape codes are 

represented as (extended) regular expressions, thus allowing to be used as filters in the 

linguistic model, essentially realizing a language reduction system. The first two components 

are discussed in the following subsections. Figure 2.1 shows the role of these components in 

our system. 

 

Figure 2.1.  Relation of key elements of the system. The analog-logic cellular wave 
computer is the architectural platform on which perception based feature extraction is 
implemented. Shape codes represent the interface between geometric and linguistic 

models. The morpho-lexical linguistic framework provides an efficient representation of 
linguistic knowledge. 

2.1.3 Perception and the Analog-logic CNN Visual microprocessor 

Human perception is parallel to a great extent. Cellular Nonlinear Network based 

computers perform outstandingly in global image processing tasks due to their architecture 

[16], [19]. The operation of the CNN Visual microprocessor is based on local interactions, 

making it extremely suitable for parallel processing. This is the main reason why it is very 

efficient in modeling the human reading process. 

Almost every algorithm used for detecting obtrusive features needs complex, 

computationally intensive operations on the input images making reasonable the use of the 

fastest possible parallel hardware architecture, the CNN based wave computer, based on the 

Analog-logic CNN Visual microprocessor. On wave computers simple image processing tasks 

can be performed with a single elementary instruction. Templates that consist of matrices 

interaction pattern containing real values define these instructions. More complex tasks can be 

implemented by template-algorithms that can be described by UMF diagrams, containing 

several template- and logical instructions [20]. However, digital operations are still computed 

on a digital platform. The relation the dual hardware architecture to the main processing steps 

of the system is shown in Figure 2.1. 
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2.1.4 Language model 

By analyzing the whole recognition process we have found some initial steps in case of 

which understanding the text or knowing the language has very small or no role. These steps 

belong to Text Image Segmentation (Figure 2.1). Using the above partitioning the second part 

includes tasks that require some sort of linguistic knowledge. Therefore the appropriate use of 

the context information is very important and practically inevitable. Trying to read a text in a 

completely unknown language humans become abecedarians too, making a lot of errors. Most 

recent handwriting recognition systems attempt to use a word list based language model. 

Lexical databases with fully inflected forms are fairly standard for recognition systems, 

mainly where a small closed vocabulary is used, and new, unknown or ad hoc word 

formations are not required [26]. This procedure is convenient in languages with very small 

inflectional paradigms, like English. However, agglutinative languages, such as Turkish, 

Finnish and Hungarian, have complex inflectional and derivational morphology with 

significantly more endings on all verbs, nouns, adjectives and pronouns. The number of 

endings increases the size of a basic vocabulary by a factor of thousands, thus a word list 

based approach provides no real solution. For efficient composition of inflected forms and to 

avoid a finite but unmanageable explosion of lexicon size morpho-lexical and syntactic 

models and appropriate algorithmic morphological techniques are needed [51]. 

2.1.5 Hierarchical interpretation 

The linguistic knowledge one uses when reading a text consists of multiple levels that are 

tightly interwoven and have no clear interfaces. Some of the most significant categories are 

the following: structure (syntax), meaning (morphology and semantics), context and use 

(pragmatics). Other types of linguistic knowledge (e.g. phonology) can influence the process 

of reading too, but their effect is small. 

Letter features detected in the text image collaborate with background knowledge of 

existing words. Word candidates form potential sentences, and knowledge of grammar helps 

to choose between words, indirectly influencing the perception at feature level. This 

information flows up and down among different levels. This flow has been modeled in [29] 

for bank check processing, considering three different levels: features, letters and words. In 

case of a coherent text at least one additional level of processing is necessary that models 

expression-level relations. 
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The higher the level of knowledge we have in the given field the more complex 

understanding we can obtain of the text. This statement holds also for recognition systems: 

increasing the number of knowledge levels can yield to more complex comprehension and 

thus to better recognition results. 

One could argue that humans are able to read texts without any meaning. That is true, but 

they are much less fluent in meaningless texts. One could further add that humans can also 

read grammatically incorrect sentences. That is also true, but it hardens their job. Finally we 

have to admit that humans can even read texts consisting of nonexistent strings, but at a much 

lower speed than the former two cases. 

The levels of linguistic knowledge refer to units of different sizes of the text, from letters to 

the whole text itself. When dealing with automated systems the most basic linguistic support 

to provide is at the level of morphology, which can be best set apart from other levels. This is 

partly due to the fact that the identification of word boundaries is the most separable task from 

the actual recognition. Therefore in word recognition tasks we can mostly make use of 

morphologic linguistic knowledge [10], but, when dealing with sentences, paragraphs, or 

longer texts, the use of higher levels becomes inevitable. 

As mentioned earlier, higher level linguistic knowledge enables better recognition results, 

but representing high level knowledge in general requires such a complex, intelligent, 

adaptive and flexible framework that has not been developed yet. However, we will 

demonstrate that, even without understanding the meaning of the text, using only word 

collocation statistics, confidence values of sentence candidates can be estimated based on 

bigram frequencies, enabling sentence level recognition directly from the output of the lexicon 

reduction system. 

2.2 System architecture 

An image containing multiple lines of cursive handwritten text serves as the input of the 

system. In the field of Text Image Segmentation we strongly rely on results published in [3] 

and partly in [38], which include pre-processing, line detection, word detection, and upper and 

lower baseline extraction algorithms. Lines and words are detected by means of analogic 

algorithms based on the ones described in [3]. The process includes noise filtering, adaptive 

line detection, skew correction, and word position detection. 

Once word candidate images are extracted, their shape morphology can be analyzed 

individually. Word level processing steps are shown in a gray rectangle in Figure 2.2. At first 
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baselines are extracted for both lines and words (Section 2.3). Parameters characteristic to the 

writing are also computed for every line (Section 2.4). At the word level a rough estimation is 

given for the number of characters of the word (Section 2.5). Based on this estimation the 

upper baseline can be further refined (Section 2.6). 

 

Figure 2.2.  Flow diagram of the recognition process 

For each type of feature a feature image is generated from the word image, where features 

can be extracted from, as described in Section 2.7. The features are combined into a shape 

code in form of an Abstract Shape Descriptor (Section 2.8.2) that is then transformed into a 

regular expression (Section 2.8.3). This is the input of the linguistic module that searches the 

matching words giving a word list as an output (Section 2.9.1). The linguistic module does not 

simply perform a symbol-to-symbol conversion from its input. A direct conversion is 

insufficient, because source symbols are under-specified or incorrectly recognized. The 
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morpho-lexical and syntactic model used can help this process as it recognizes elements of the 

language, extracting meaningful passages from the input sequence. A so called inverse 

filtering takes place on the generated word list using global and less reliable letter features 

(Section 2.9.2 and 2.9.3). 

Section 2.10 describes the construction of the word graph from candidate lists and shows a 

sample method for sentence selection using a statistical approach. Section 2.11 summarizes 

experimental results. 

2.3 Baseline detection 

The handwritten text image can be divided into three horizontal regions that are separated 

from one another by the upper and lower baselines. Baselines have key significance in feature 

detection and classification (see Section 2.7). Precise detection of baselines is very important 

because inaccuracy can lead to false features and thus to misrecognition. 

 

Figure 2.3.  Computed baselines of the word ‘apparently’. Upper and lower baselines cut 
off ascenders and descenders (Section 2.7.3) respectively from the main word body. 

Baseline detection is performed at word and line level as well. This section deals with word 

level detection, whereas line level is mentioned in the next one. Baseline extraction is 

performed by fitting lines on upper and lower extreme points of the word image by using the 

analogic algorithm given in [3]. Here we only briefly describe the basic steps. 

The method basically computes the pseudo convex hull of the word using the HOLLOW 

template, and finds the lowest and uppermost points of the pseudo convex hulls using the 

LOCAL SOUTHERN ELEMENT (LSE) and the LOCAL NORTHERN ELEMENT (LNE) detector 

templates respectively. Pixels are clustered based on their vertical distance from the center 

pixel that is determined by the FINDCENTER algorithm [12]. Pixels belonging to clusters 

whose center has a larger vertical distance from the center pixel than a threshold are 

considered outliers. The threshold value is derived from the distance of baselines computed 
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for the whole line. The baselines are fitted with linear regression on the remaining pixels, and 

the image is rotated so the lower baseline becomes horizontal. 

It is worth to mention that theoretically the baselines are inter-pixel lines, but in practice 

we use one pixel wide baselines, with the upper edge of the upper baseline and the lower edge 

of the lower baseline referring to the theoretical baselines. 

Position of the upper baseline determined in this step is refined later in Section 2.6, by 

means of a method based on horizontal connected components and horizontal histogram of the 

word image using character number estimates (computed in the Section 2.5) to determine an 

appropriate threshold. 

2.4 Writing style parameters 

To be able to extract valid features from the cursive text parameters characteristic to the 

writing style have to be determined. The parameters include baseline distance, thresholds for 

ascender and descender heights, average letter width and slant. Parameters are calculated for 

each line, because text size and style can change gradually as one writes. Nevertheless the 

ratio of size parameters usually still remains constant to a degree, therefore it is stored and 

compared through lines to enable more precise parameter estimations. 

 

 

(a) 

 

(b) 

Figure 2.4.  (a) A sample row with marked upper (2) and lower (3) baselines, top 
ascender line (1) and bottom descender line (4).  (b) Horizontal connected components 

diagram of the row. 

Baseline distance is measured between the upper and lower baselines (line 2 and 3 in 

Figure 2.4), that are estimated using a method described in [3]. The algorithm is based on the 

same idea as the one described in Section 2.3 for the detection of baselines of words, but no 

refinement is made and it is applied to a whole line image. Ascender and descender height 

thresholds are defined to be equal to the 30% of the distance between the top ascender line 

(line 1 in Figure 2.4) and the upper baseline and the bottom descender line (line 4 in Figure 

2.4) and the lower baseline, respectively. These horizontal markers are determined using the 

horizontal connected components of the row image (Figure 2.4 (a)), detected by the 

1 
2 
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HORIZONTAL CONNECTED COMPONENTS DETECTOR (HCCD) template. Top ascender and 

bottom descender lines are defined to be at the outer edge of shoulders containing at least 

three components. 

Let n denote the number of characters on the line. To calculate the average letter width in 

pixels at first we have to give an estimate for n. We rely on an empirical measurement 

performed on a training set of 500 words, in which we examined the number of horizontal 

components per letter. We will show that a good estimate can be given for n based on 

horizontal component counts. Let C be the set of horizontal component counts for the whole 

vertical interval of the line image and let E denote the set of those component counts that are 

above a certain threshold. The threshold is the maximal component count in the region 

between the baselines multiplied by a scalar µ ∈ [0,1]. E is formally defined as 

 

 { }{ }: maxE c C c Cµ= ∈ >  (2.1) 

 

Let Ē be the average over E. Our experiments show that the Ē / n ratio is rather 

independent from the writing style. The smaller the variance of this ratio, the more exact the 

character number estimation. We examined the variance over the training set considering 

values for µ between 0 and 1 with steps of 0.05, and µ0 = 0.7 has been determined to 

minimize the variance Ē / n. 

With µ = µ0 the mean of the ratio is 1.4 with a standard deviation of 0.064. We use the 

(1.25;1.55) interval for the approximation, which corresponds to a 98% confidence interval 

supposing the distribution is normal. By calculating Ē / 1.25 and Ē / 1.55 we obtain an upper 

and a lower bound for n, and the average letter width is calculated by summing the widths of 

word images and dividing it by the estimated number of characters. The computed average 

letter width is used in Section 2.5 to estimate the number of characters in a word. 

For slant detection an algorithm given in [38] is used. The algorithm calculates the number 

of overlapping pixels between the word image and a line of a known slant angle slid along the 

word image for every position of the line and sums the three highest values. The computation 

is performed for different slant angles and the one with the highest sum is chosen as the 

correct slant. 
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2.5 Word length estimation 

2.5.1 Word image width 

The aim of this block is to give a good estimate of the number of letters in the word 

without segmenting it. The primary goal of estimating the number of letters in the word is to 

enable the binding of features to letter positions. But, as described in Section 2.6, an estimate 

for the number of characters can be also used to allow for more precise determination of the 

upper baseline of the word image. 

At this point of the processing the only information source to rely on to calculate an 

estimate is the width of the word image. Evidently the net width of the word image is 

correlated with the number of letters in the word, but due to variations in letter widths a given 

pixel width can refer to multiple word lengths. The reasons for the variations are twofold. On 

one hand letters have different shapes having different normal widths. Although this variance 

is predictable, letter level width information can be used in character recognition in case of 

segmentation based methods. In a holistic approach it can only be taken into account after the 

morphological word generation, when the word width can be compared to the expected width 

of word candidates. On the other hand the width of individual appearances of each letter also 

varies due to the nature of human handwriting. This makes it unreasonable to assign a single 

letter-number to a given pixel width, because such a model would lead to a very high error 

rate, since if word length estimation provides an incorrect length, then the correct word will 

not match the generated shape descriptor and morphologic filtering will exclude it from the 

output word list. 

Therefore we use an interval technique, utilizing the flexibility of the linguistic system that 

allows for this level of ambiguity. This means that we estimate the minimum and maximum 

number of letters for every input word image, based on the corrected width of the image. 

Although the interval estimation leads to longer word candidate lists at the output of the 

morphologic search and thus to lower reduction rate respected to a single value estimation, but 

a much better recognition rate can be achieved with it. Furthermore, the length of the output 

list can be decreased later by a more a sophisticated length filtering method after the 

morphologic search, based on the analysis of the candidates (Section 2.9.2). 

2.5.2 Corrected word width 

To increase the performance of the estimator we eliminate some outliers in the word 

image. These include mainly horizontal leading and ending strokes of the first and the last 
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letter, because the width of these outliers can be significant respected to the character width, 

but it is independent of the number of characters in the word. The same holds for descenders 

(Section 2.7.3) that may reach out horizontally far beyond the borders of the word image part 

between the baselines. In case of some special writing styles ascenders might also have long 

horizontal outliers that are uncorrelated with the number of characters and therefore should be 

removed too. By neglecting the mentioned outliers the additive noise to the width of the word 

caused by them can be filtered out, which leads to a lower variance of word width, and thus 

allows for a better estimate of the number of characters. The mentioned outliers are erased 

from the word image only temporarily, after the word length estimation process they are 

reinserted since they may contain features that are crucial in the recognition phase. 

Descenders are filtered by masking out the region below the lower baseline. The method is 

similar to the detection of descenders, but in this case the opposite part of the image is 

masked. To eliminate leading and ending strokes, we look for vertical regions on the left and 

the right side of the word image box, wherein only a single stroke is located. These vertical 

boxes have to be of a certain minimal width to be considered as containing a leading or ending 

stroke. To locate the potential vertical regions we rely on two auxiliary images, derived from 

the word image. On the vertical histogram, abscissas with a value under a certain threshold 

(maximal stroke-width) indicate regions that possibly contain outliers. The VERTICAL 

CONNECTED COMPONENTS DETECTOR template (VCCD) generates the other image, which 

enables to locate abscissas where only one vertical run is present. The widest abscissa 

intervals on the sides of the intersection of the two sets give the actual outlier regions. 

Henceforth the term word width will refer to the corrected word width, unless otherwise 

noted. 

2.5.3 Universal Width Limits 

To estimate the upper and lower bounds for the number of characters in the word, we 

introduce width limit vectors. Limits refer to the minimal and maximal pixel widths of words 

containing a given number of characters, and can be measured on a training set. If we divide 

the limit vectors by the average letter width, then we obtain Universal Width Limit (UWL) 

vectors that are expressed in terms of unit character width. UWL vectors can be used in case 

of arbitrary cursive inputs because they are independent from the letter sizes and to a great 

extent from the writing style as well. The estimated interval for the number of characters in 

the word is calculated by comparing the width of the word in terms of unit letter width to the 
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UWL vectors. The UWL vectors have been determined on a set of 1000 words for widths up 

to 14 characters by the following method. 

Let us partition the training set X into disjoint Xi subsets for which the letter size and style 

can be considered constant. Let W (x) denote the width of a word x∈Xi measured in pixels, 

and let C (x) denote the number of characters in x. The average letter width over Xi is given by 
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The width limits measured in pixels for length n ∈ ℕ+ are as follows: 
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Dividing these limits by the average letter width and selecting the lowest and largest values 

we can obtain minimal and maximal UWL vectors: 
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Table I.  Minimal and maximal Universal Width Limit vectors and their difference 

No. of 

characters 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Ωmin 0.3 0.9 1.9 2.8 3.9 4.6 5.5 6.3 7.3 8.5 9.3 10.2 11.1 12.0 
Ωmax 1.6 3.1 4.2 5.4 6.5 7.6 8.5 9.2 10.1 11.1 12.1 13.1 14.0 15.0 

Ωmax - Ωmin 1.3 2.2 2.3 2.6 2.6 3.0 3.0 2.9 2.8 2.6 2.8 2.9 2.9 3.0 
 

Measured minimal and maximal UWL vectors are shown in Table I. Note that the 

difference between maximal and minimal UWL values grows with the number of characters 

for shorter words, but it saturates for six letter words and above at around three characters. 
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This phenomenon can be explained by the following simple stochastic model. Let us denote 

the random variable for the width of a word of length n by Yn and the random variable for the 

width of the letter n+1 by Ln+1. Calculating the increment of variance in the model when 

increasing the length of the word by one gives 

 

 ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1var var var var var 2cov ,n n n n n n n nY Y Y L Y L Y L+ + + +− = + − = +  (2.5) 
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Figure 2.5.  Minimal and maximal UWL values divided by number of characters. 

The existence of an upper bound for the difference of UWL values when increasing the 

number of characters is due to the bounded variance of the length of words, which is a result 

of Yn and Ln+1 not being independent. If they were independent, then the covariance term 

would be zero, and the variance should grow indefinitely since the first term is positive. The 

measurements show that negative covariance values asymptotically equalize the variance 

caused by additional characters for words of length six and more in the sense that their 

difference has a constant upper bound. If we divide the maximal and minimal UWL values by 

n, the ratios converge as n grows towards the thresholds 1 + au and 1 - al (Figure 2.5). Our 

measurements have led to au ≈ 0.05 and au ≈ 0.12, showing an asymmetric distribution of 

word lengths between the limits. 
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Ω
m
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2.5.4 Interval estimation 

During the processing stage, given the w width of a word, the estimator provides an 

interval using the pre-computed width limit vectors. Upper and lower estimates for the 

number of characters are defined by the following formulas: 

 

 
min max

max

max min
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 

ɶ ℕ
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 (2.6) 

 

where ωmax(L) and ωmin(L) are the pre-calculated upper and lower estimates for the average 

letter width of line L, respectively (see Section 2.4). 

Due to our statistical approach the obtained width intervals are generally relatively wide, 

but in many cases incorrect lengths do not generate many word candidates, because they are 

excluded by illegitimate feature combinations when binding features to letter positions using 

shape codes (Section 2.8). However, combining the method described above with a 

segmentation technique that can validate letter segments (see algorithms in [3]), could lead to 

narrower interval estimates. 

2.6 Baseline refinement 

The role of this block is to correct potential errors in the upper baseline fitted on the local 

northern elements of the pseudo convex hull, as already mentioned in Section 2.3. The 

majority of the errors occur in case of words with a relatively high number of ascenders 

respected to the width of the word, the computed center pixel of the word will be closer to the 

top ascender line than the outlier threshold. Some of the uppermost pixels of the ascender(s) 

do not get classified as outliers and falsely “pull up” the regression line fitted on them (Figure 

2.6. (a) – (c)). In these cases either the slope of the baseline becomes too steep, or the baseline 

gets positioned above or close to the top of the ascenders, disrupting the detection of 

ascenders. 

Since the measured tangent is unreliable in many cases, especially words of length less 

than five characters, we use a horizontal upper baseline. Note that the word image is already 

skew-corrected, therefore the lower baseline is horizontal, and the upper baseline should be 
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close to parallel to it. Although using a horizontal estimate for the upper baseline could 

theoretically introduce further errors in the detection of ascenders, either false positives or 

false negatives, our experiments show that false negatives can be prevented by an adequate 

choice of the horizontal baseline, whereas false positives can be filtered by using a proper 

ascender height threshold. Figure 2.6 (d) shows an example of an inclined upper baseline 

replaced by its horizontal estimate. The decreased degree of freedom proved to be an 

advantage of using a horizontal baseline because its single parameter can be estimated more 

robustly than two free parameters. 

   

 

(a) (b) (c) (d) 

Figure 2.6.  Upper baselines of some words.  (a)-(c) show examples when the algorithm 
based on local northern elements fails to detect the correct baseline.  (d) is an example 

for a word with a highly inclined upper baseline. 

The problem is addressed in two steps. In the first step the upper baseline is compared to 

the upper baseline of the neighbors and it is corrected if their difference is unacceptably high. 

The second step serves for locating the optimal ordinate for the baseline adaptively, based on 

horizontal pixel distribution measures. 

At first, in addition to the upper baseline of the word, a common upper baseline is also 

computed for the word and its direct neighbors from the LNE points of the three words using 

the method described in Section 2.3. Horizontal baselines are derived from both the word and 

the common upper baseline by taking the average of the vertical components of the endpoints 

of the baseline segments. The ordinates of the horizontal upper baselines will be referred to as 

yu and yu,c, respectively, whereas yl denotes the ordinate of the lower baseline of the word. 

If the horizontal candidate is above the common upper baseline and the distance between 

them is higher than 50% of the distance between the common baselines, then the candidate is 

substituted by the line yu = (3yu,c - yl) / 2. This conservativeness (i.e. not simply using the 

common baseline) is necessary because the common baseline does not definitely lead to a 

better result than the computed one, and it might be even below the ideal upper baseline. The 

significance of this step is to ensure that the upper baseline candidate is not above the mid-
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ascender region, which is important for the second step to be effective. The exact value of the 

threshold used is not important, because adaptive adjustment takes place in the second step. 

For this reason we perform a second step, in which the computed baseline is adaptively 

lowered, aiming to reach the ‘shoulders’ of the word. ‘Shoulders’ are meant to be interpreted 

on either the horizontal histogram or the horizontal connected components diagram that are 

combined. 

In this step a series of operations are performed. All of these operations represent some 

kind of knowledge regarding the expected position of the upper baseline (i.e. the properties of 

the shoulders), thereby ensuring a robust and precise detection. The operations are as follows: 

 

1. If the number of foreground runs that the baseline crosses is larger than the 

estimated maximum number of characters in the word, then the baseline is 

moved upwards as long as it meets the threshold. 

2. If the maximal number of crosses is larger than 5 (words at least 3 characters 

long), then if the ratio of the horizontal histogram value the baseline refers to 

and the peak horizontal histogram value is above 1/5, then the baseline is shifted 

upwards as long as it meets the threshold. 

3. If the number of crossed foreground runs multiplied by 1.5 is less than the 

estimated lower bound for character count, then the baseline is moved 

downwards as long as it meets the threshold. 

4. The baseline is moved downwards as long as it retains the current number of 

crossed foreground runs. 

5. The final position is determined by minimizing the goal function: 

 

 ( ) ( )( ), argmin
u' m

u w h
y y y

y c y H y yα
< <

= −  (2.7) 

 

where y is the vertical coordinate increasing downwards, c(y) refers to the 

number of foreground runs on the y' = y horizontal line, Hh(y) is the horizontal 

histogram of the word, and α is a parameter whose value has been determined 

empirically to be α ≈ 1.5 by minimizing the root mean square error of the upper 

baselines respected to manually drawn baselines on a test set consisting of 

words from multiple writers. 
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The number of foreground runs is computed by the HCCD template. Note that the first 

term of the goal function is the product of two different horizontal measures of the word thus 

trying to establish equilibrium between them and allow for a more robust detection. 

2.7 Feature extraction 

2.7.1 Perceptual features 

Building on the perception model we assumed that features used by humans during reading 

must be quite adequate for our purpose. This question is examined in [35] and it is confirmed 

that features used in human reading are the ones typically used by holistic systems: ascenders, 

descenders, holes and junction points. It is also concluded that the errors made by such 

“reading” systems are less counterintuitive to the user and thus they can be more easily 

corrected. 

We have developed algorithms to detect the following perceptional features in word 

images: 

 

• ascenders, descenders 

• holes 

• accents 

• punctuation marks 

• junction points 

• hills, valleys 

2.7.2 Feature classification 

Features extracted are classified based on size and vertical position and then inserted to the 

shape code as components (Section 2.8). The VERTICALMELTING and 

HORIZONTALMELTING templates are used with different running times to create size classes. 

These templates erode the objects from the upper and from the left side, respectively. The 

number of disappearing pixels is roughly proportional to the running time except for spikes at 

edges that erode faster. This property is advantageous for rough size measurement, because 

perceptional size is better approximated by volume based measures than the distance between 

extrema. The running time parameter is scaled by the baseline distance. 
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VERTICALMELTING: 
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HORIZONTALMELTING: 
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(a) 

 

 

 
(b) 

 

Figure 2.7.  (a) Propagating, directed erosion type templates and  (b) typical usage 
shown by a UMF diagram 

Reconstructed patches form a subset hierarchy in the following way. Let t1, t2, …, tn be the 

required running times of one of the melting-type templates, and let us assume that ti < ti+1 for 

all 1 < i < n. The input of each run is the output of the previous run, and the ith run should last 

for ∆ti = ti+1 – ti time. Let us denote the output of the ith run by Ri. During the melting process 

patches loose size along the melting direction and gradually disappear from the image. 

Therefore as i grows, the number of patches in Ri monotonically decreases. From each Ri a 

feature image Pi is reconstructed, corresponding to the i
th size class, using the FIGREC 

template (See Figure 2.7). The FIGREC template preserves the number of patches on the 

image, but restores their original sizes, hence as i grows, the minimum size of patches in Pi 

monotonically increases, and patches in Pi are also present in Pj for all i > j: 

 

 1 2 1...n nP P P P−⊆ ⊆ ⊆ ⊆  (2.8) 

 

Therefore to obtain disjoint classes we calculate the pairwise differences 1\i i iP P P−
′ =  for 

all i > 1 with the LOGDIF template. Size classification is used for all feature types, but most 

extensively for holes (see Figure 2.11). 

Classification by vertical position is carried out in the following way: Upper and lower 

baselines are shadowed both up and down, using the SHADOWDOWN and SHADOWUP 

MELTING ∆ti 

FIGREC 

Ri 

Pi+1 

Ri+1 
U = R1 
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templates respectively, masking necessary or unnecessary regions in the image. Target 

patches are obtained by means of the LOGDIF and the AND templates respectively, and 

reconstructed with the FIGREC template. This classification scheme is used for holes and 

accents-punctuation marks. 

Great caution is needed after the classification phase due to the variance of different 

handwriting styles and noise present in the image: detection algorithms may miss distorted 

features and may detect false features due to irregular letter shapes. To take this into account 

we calculate the robustness of each detected feature and use only the robust ones in the first 

iteration of shape code generation. The characters these features belong to have been referred 

to as key characters in the literature [24], [40]. 

I have considered implementing a probabilistic model by calculating a confidence value for 

each feature, but the robustness measures I used did not prove to be reliable above a certain 

level of distortion. Therefore less reliable features are used later for inverse filtering, together 

with global features (Section 2.9.3). 

2.7.3 Ascenders and descenders 

Ascenders are large vertical strokes extending well above the corpus, or ‘x’ size, whereas 

descenders are large vertical strokes extending well below the lower baseline of handwriting 

[35]. Therefore precise ascender and descender detection heavily depends on the accuracy of 

baselines. 

By shadowing the upper baseline upwards and the lower baseline downwards we create 

detection masks. Propagating waves initiated from the baselines are used for shadowing, 

generated by the SHADOWUP and SHADOWDOWN templates. Patches that fall under the mask 

range will appear on the ascender and descender feature candidate images. Feature candidates 

are filtered based on height using parameters determined in Section 2.4. 

 

  

Figure 2.8.  Feature maps showing different types of ascenders and descenders. Red and 
purple refer to normal and narrow ascenders, blue and green refer to narrow and wide 

descenders, respectively. 
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Ascenders and descenders are classified based on their widths into three and two classes, 

respectively. The most important factor in ascender and descender robustness is the height of 

the feature. Additionally, collocation with upper and/or lower holes (Section 2.7.4) increases 

feature robustness. 

2.7.4 Holes 

Holes (also called loops) are parts of the background encircled by the script in the 

foreground. These isolated parts can be located with a single CNN instruction. The HOLE-

FILLING template is a standard template included in the Cellular Wave Computing Library 

[12], but it detects holes with an outer boundary that is continuous in an 8-connected manner, 

because it only explores the 4-connected background. As a result those parts of the 

background that are only connected to it in an 8-connected manner are not considered to be 

connected to the background, and hence they are also detected as holes. Figure 2.10 illustrates 

the problem arising from this behavior: down-sampling of the input image can result in 

narrow spaces between letters becoming only a single pixel wide, hence the HOLE-FILLING 

template detects invalid holes in the word image. 

I constructed a new template called HOLE-FILLING4 that detects only holes having a 4-

connected outer boundary, thus overcoming the above problem (Figure 2.9). This has been 

achieved by adding non-zero values to all 8 surrounding elements of the feedback template. 

Similarly to HOLE-FILLING, the HOLE-FILLING template should be used with a 

homogeneous black initial state and a gray boundary condition. The gray boundary condition 

initiates a white wave front that propagates through the whole image in an 8-connected 

manner, crossing the barriers where neighboring foreground strokes have pixels being 8-

connected, but not 4-connected neighbors, and whitening all background pixels not belonging 

to a hole. An earlier, slower solution for this problem [9] led to the same result by more 

template instructions. The foreground pixels are removed from the detected holes with the 

LOGDIF template. 

Holes detected in the word image can be classified into classes by size and location. To 

remove small patches due to aliasing, SMALLKILLER template is run prior to classification. 
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HOLE-FILLING4: 
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HOLE-FILLING: 
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Figure 2.9.  HOLE-FILLING4 template fills holes with 4-connected outer boundaries 
compared to HOLE-FILLING that finds holes with 8-connected outer boundaries. 

 

Figure 2.10.  Comparison between the results of HOLE-FILLING and HOLE-FILLING4 
templates. Detection wave is shown in light-blue, red patches are valid holes detected by 

both templates, and the green patch is an invalid hole detected only by the HOLE-
FILLING template. 

Holes are first classified based on their vertical location into upper and lower and middle 

holes. The middle hole class is not final; patches in it are further classified by height and 

width. Patches disappearing in the first run of using the VERTICALMELTING operator belong 

to the small hole class, whereas the remaining ones become big hole candidates. Patches that 

disappear on a consecutive HORIZONTALMELTING are considered high holes, whereas fat 

holes refer to those that do not totally disappear after another VERTICALMELTING. 

Remaining big hole candidates constitute the big hole class. 

Robustness of holes mostly depends on their size and collocation with other holes. Small 

holes that are only separated from other small holes by a single stroke are not considered to be 

robust. 
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Figure 2.11.  Classification of holes. Red refers to big holes, green to small holes, yellow 
to fat holes, cyan to upper holes and magenta to lower holes. 

2.7.5 Accents and punctuation marks 

We use these feature names in their common sense, except that apostrophes, and acute and 

grave type accents will all be referred to as primes. These features are usually quite distinct on 

the word image, thus making their detection straightforward. The algorithm supposes that 

accents and punctuation marks do not touch the text, i.e. they are not connected to the “main” 

part of the writing. The center line (mean of upper and lower baselines) and the FIGREC 

template is used to identify the pixels belonging to the main image, and applying the LOGDIF 

template to result image we can subtract it from the original word image, leaving the accents 

and punctuations marks only. 

  

Figure 2.12.  Accents and punctuation marks 

Accents are distinguished from punctuation marks by position, and then both features are 

classified based on vertical expansion into two classes: dots, primes, and periods, commas. 

The expansion is measured by the VERTICALMELTING template. 

2.7.6 Junction points 

A junction point is a point on the word image where more than two strokes meet. This 

includes crossing of strokes like in letter ‘t’ or ‘x’ and meeting strokes like in letter ‘d’, ’g’ 

and ’p’. The JUNCTION template in the template library is an obvious choice to detect such 
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points, but with the limited neighborhood available on present hardware robust detection is 

not possible. 

 

Figure 2.13.  Junction points 

Therefore we use another approach by concentrating on the ascender region of the image 

and applying the CONCAVEARCFILLER45 template that detects concave arcs. Our preliminary 

intent was to detect letter ‘t’, but experiments showed that the feature class detected by the 

template may appear in other letter instances as well, which contain concave arcs in the 

ascender area, including ‘B’, ‘M’ and ‘R’. This poses no problem, since all these letters have 

been also included in the default feature mapping for the junction feature. Due to the fact that 

these capitals occur much less frequently than letter ‘t’ (especially when considering non-

initial letters of the word), the effectiveness of the original idea is preserved. 

2.7.7 Hills and valleys 

Letters containing holes, ascenders and descenders are relatively easily identifiable. But 

quite many words do not contain any of these features. Typical letters containing hills are ‘m’ 

and ‘n’ whereas ‘u’, ‘v’, and ‘w’ are ones that contain valleys. Since many hills and valleys 

appear in inter-letter positions they are not robust enough to be included in shape code 

descriptions, they are used in inverse filtering instead (Section 2.9.3). 

Detection of hills and valleys is quite complex respected to the algorithms discussed in 

previous subsections. Its UMF diagram is shown in Figure 2.14. Upper and lower baselines 

are dilated and propagating waves are initiated from them on the background of the word 

image in the region between the baselines. Propagation time is proportional to the distance of 

the baselines. Small patches are removed as noise, as well as patches belonging to transients 

that did not settle. 
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Figure 2.14.  UMF diagram of hill and valley detection. Inputs labeled uline and dline 
refer to upper and lower baselines of the word, respectively. 
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Figure 2.15.  Hills and valleys shown in the word image of ‘number’. Note that not only 
in-letter hills and valleys are detected, but intra-letter ones too, like the valley between 

letter ‘m’ and ‘b’ and the hill between letters ‘b’ and ‘e’. 

2.8 Shape codes 

2.8.1 Representation of shape codes 

The interface between the perception and the linguistic system aims to realize a language 

reduction system. This means that shape codes serve for constructing a filter for the linguistic 

system. The main difference between our system and previously published lexicon reduction 

systems (e.g. [40]) is that we use a language model, not a fixed lexicon. The role of shape 

coding is to combine geometric information of features with their position information. 

Shape codes have two different representations in our system: Abstract Shape Descriptors 

(ASD) and extended regular expressions (ERE). An ASD consists of the features instances 

detected and the corresponding horizontal locations, given as a ratio of the image width. In 

ASDs the number of letters of the word is not specified, and therefore they contain no 

information on which character do the individual features belong to and neither on whether 

two neighboring features are part of the same letter or of different ones. EREs are regular 

expressions, but macros are allowed in them that refer to character sets, this way they allow 

for a much more compact description. The character sets used typically share a common 

feature; therefore macros are named after the corresponding feature. In EREs the possible 

number of letters is already determined, and features are assigned to character positions. An 

ERE, however, can contain multiple combinations of assignments, and these may refer to 

different character numbers. 

2.8.2 Abstract shape descriptors 

To calculate the horizontal position of the features at first we project them vertically onto 

the horizontal axis using the SHADOWDOWN template and find the minimal and maximal 
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abscissas xmin and xmax on the projected line. The horizontal position p is a normalized value 

that is calculated by the following equation: 

 

 ( ) maxmin 1 tan
xx

p
w w

α α β ϕ= + − − ∆  (2.9) 

 

where w is width of the word image, ∆ is the distance between the upper and lower baseline, ϕ 

is the estimated slant respected to the vertical axis and α and β are parameters depending on 

the type of the feature defined in Table II. The homotopy parameter α weights the abscissas of 

left and right edges of the feature patch, whereas the term containing β accounts for the slant 

of the word and β itself refers to the vertical distance of a feature type from the line at the 

bottom of descenders (horizontal line no. 4 in Figure 2.4 (a)). Table III shows the ASD of the 

word in Figure 2.16. 

 

Table II.  Parameters for horizontal position calculation of features. 

Feature type αααα ββββ 
Ascenders, accents 0.9 2.5 

Descenders, punctuation 0.1 0.5 
Other 0.5 1.5 

 

 

 

Figure 2.16.  Feature map of the word “today”. Stripes refer to character positions for 5 
letters. Gray stripes refer to integer positions, white stripes refer to intra-letter positions. 
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Table III.  ASD of the word is given in the first two columns, the third one gives the 
character position the features in the ASD belong to. 

Feature name 
Horizontal 

position 

Estimated 

character 

position 

Ascender 5.6% 1 
Junction 8.3% 1 
Fat hole 20.7% 1.5 
Big hole 39.3% 2.5 
Narrow ascender 46.3% 3 
Big hole 61.2% 3.5 
Wide descender 90.2% 5 

 

2.8.3 Conversion to regular expression 

To be able to convert an ASD into a regular expression we have to assign the features to 

letters, more precisely character positions. Character positions can be thought of as empty 

boxes and each feature is placed into one of these boxes. Each box (character position) refers 

to one letter and the features in it are part of this letter. 

The ambiguity in this task is twofold: on one hand the number of letters is not known 

exactly, we only have an estimated interval for it; on the other hand the width of the letters 

varies considerably, therefore even if we assume the number of letters to be fixed, a given 

horizontal coordinate can refer to different character positions depending on the type and 

distribution of letters in the word. 

  

 

Figure 2.17.  Mapping of topographic features is ambiguous, the hole in letter ‘o’ can 
belong to two distinct positions, doubling the number of possible mappings. 

To overcome this problem calculation of fuzzy functions has been proposed in [8] to match 

the features at the presumed positions against all words in a small sized dictionary. Since the 

matching function differs for every word this method would not perform well in case of large 

dictionary tasks, which is especially true in case of our general approach. Therefore we use a 

simpler assignment that still conserves the vagueness of the position. 

1. ascender, hole 
2. – 
3. – 
 
1. ascender 
2. hole 
3. – 
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Our basic assumption is that characters are approximately evenly distributed in width. 

Based on this we divide the image into vertical blocks of equal widths. This process is 

performed separately for every word length in the estimated interval, i.e. for every 

min max
ˆ ˆC n C≤ ≤  (see Section 2.5.4). To handle variance of letter widths we use overlapping 

blocks that refer to character positions, so that the width of blocks at intermediate positions is 

3/(2n-1), whereas the leftmost and the rightmost blocks are of 2/(2n-1) width, both values 

normalized with the total width of the word image. Let us denote the horizontal intervals 

belonging to the blocks by B(i,n),= [bleft(i,n),bright(i,n)) where 1 ≤ i ≤ n. Boundaries of the 

blocks are defined as 
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 (2.10) 

 

This partitioning results in a horizontal sequence of disjoint rectangles of the same width, 

every other being the intersection of two neighboring blocks defined above. When mapping 

features to character positions these 2n-1 disjoint blocks of normalized width of 1/(2n-1) are 

used. For every 1 ≤ j ≤ 2n-1 the corresponding intervals are: 

 

 ( ) 1
, ,

2 1 2 1

j j
B j n

n n

− =  − − 
ɶ  (2.11) 

 

We will refer to these intervals as estimated character positions. Estimated character 

positions are numbered from 1 to n with a step of 0.5. Thus the interval belonging to character 

position i for estimated word length n is ( )2 1,B i n−ɶ . Estimated character positions integer 

numbers refer to a single final character position, whereas the rest of them refer to two final 

character positions, namely their neighbors. 

A feature belongs to the character position i for an estimated word length n if its horizontal 

position falls into the interval ( )2 1,B i n−ɶ . Let us denote the set of features belonging to these 

intervals by ( )nF j . To resolve the ambiguity in this description, features belonging to intra 
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letter character positions (those that are in sets of even indices) need to be moved to 

neighboring positions in every possible combination. Let m(n) be the number of features in 

these sets. Then there are 2m(n) distinct descriptions generated for word length n. Let us denote 

the set of the kth description at character position j for word length n by ( )n
kF j . The algorithm 

to generate these sets is as follows: 

 

Cycle  n := minĈ  to maxĈ   // word lengths 

d := 1;  //description index 

Cycle  j := 1 to 2n-1  // character positions 

If  j mod 2 = 0 then 

Cycle  f through all the features in ( )1
nF j  

Cycle  k := 1 to d  // descriptions 

Create  a new set series 
n
d kF + ; 

Cycle  i := 1 to 2n-1  // character positions 

Copy all features from ( )n
kF j  to ( )n

d kF j+ ; 

End cycle 

Move feature f from ( )n
kF j  to ( )1n

kF j − ; 

Move feature f from ( )n
d kF j+  to ( )1n

d kF j+ + ; 

d := 2*d; 

End cycle 

End cycle 

End if 

End cycle 

End cycle 

 

After this algorithm is run, all n
kF  features set series refer to the features of the input word 

and have all features mapped to integer estimated character positions, that is sets ( )n
kF j  are 

empty for every even j. At this point a check is all n
kF  features set series are validated if the 

features in them have preserved their relative positions after the disambiguation algorithm. 

Those feature set series that have features in a wrong horizontal order are dropped. 

For every 1 ≤ i ≤ n feature sets ( )2 1n
kF i −  are converted to new feature sets ( )n

kF iɶ  whose 

index refer to final character positions (integers only) and whose elements are not feature 

instances, but feature types. If there is only one feature of a type in a given ( )2 1n
kF i − , then it 
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is simply copied to ( )n
kF iɶ . If there are more, then they are converted to a multi-feature. 

Theoretically every multiplicity of every feature constitutes a multi-feature, but very few of 

them occur in practice. In our experiments it happened in only a single case, when two 

ascenders were mapped to one character position. 

Extended regular expressions are generated from descriptions ( )n
kF iɶ  by the following 

steps: 

 

1. At each character position i, in all descriptions k, and for all word lengths n in 

the estimated interval if at least one feature is mapped to position i, then take the 

conjunction of macros referring to multi-features in ( )n
kF iɶ , otherwise, if no 

features are mapped here, then mark it as an empty set: 

 

 ( ) ( )
( ) ( )

( ) ( )

, if 0

, if 0

n
l k

n
l k

n f F i
k

n
k

M f F i
i

M F i
ϕ ∈

 >


 ∅ =

∧ ɶ

≜
ɶ

 (2.12) 

 

where M (f ) is the macro name of feature f, defined in Table V. 

 

2. Concatenate the conjuncts ( )n
k jϕ  of character positions 1 to n one after another 

in all descriptions k for all word lengths n in the estimated interval: 

 ( ) ( ) ( )1 2n n n n
k k k k nϕ ϕ ϕ ϕ≜ � �…�  (2.13) 

 

3. Take the disjunction of the expressions n
kϕ  over all 2m(n) descriptions for word 

length n: 

 
( )2

1

m n

n n
k

k

ϕ ϕ
=

∨≜  (2.14) 

 

4. Take the disjunction of the expressions nϕ  over all estimated word lengths: 

 
max

min

C
n

n C

ϕ ϕ
=
∨
ɶ

ɶ
≜  (2.15) 
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The ERE of the previous example is shown in Table IV. Regular expressions are obtained 

from the EREs by substituting the character sets into feature macros according to their 

definitions. We have defined a mapping (Table V) from the recognized features to all 

orthographic characters or character sequences that contain it. The latter case occurs rarely, 

only if two narrow and neighboring characters are merged and share all their features (e.g. 

‘ ff ’). The basis of the mapping was created manually based on expected letter shapes and 

feature definitions and tuned based on results on the training set. 

Table IV.  Sample extended regular expression for the word shown in Figure 2.16. 

<fh>&<j>&<da><bh><bh>&<na><@><wd>| 

<fh>&<j>&<as><bh>&<as><bh>&<na><@><wd>| 

<fh>&<j>&<da><bh><na><bh><wd>| 

<fh>&<j>&<as><bh>&<a><na><bh><wd>| 

<fh>&<j>&<da><@><bh>&<na><bh><wd>| 

<j>&<da><fh><bh>&<na><bh><wd>| 

<fh>&<j>&<a><a><bh>&<na><bh><wd>| 

<j>&<a><fh>&<a><bh>&<na><bh><wd> 

 

Table V.  Default feature macro mappings. 

Feature name Macro name Definition 
ascender 

narrow ascender 

wide ascender 

double ascender 

wide descender 

narrow descender 

small hole 

high hole 

big hole 

fat hole 

upper hole 

lower hole 

dot 

prime 

comma 

period 

junction 

no feature  

<a> 

<na> 

<wa> 

<da> 

<wd> 

<nd> 

<sh> 

<hh> 

<bh> 

<fh> 

<uh> 

<lh> 

<d> 

<p> 

<c> 

<.> 

<j> 

<@> 

A|B|C|D|G|I|J|L|O|P|Q|R|S|f|ff|h|k|l|t 

I|L|b|d|h|k|l|t 

B|E|F|I|M|T|Z|ff|k|t 

H|K|M|N|U|V|W|X|Y|t|T 

f|ff|g|j|y 

f|p|q 

a|e|k|o|s 

a|d|e|g|o 

a|b|d|e|g|k|o|p|q|s|t 

B|a|b|d|g|o|p|q|t 

f|ff|h|k|l|A|B|D|O|P|Q|R 

f|ff|g|j|y 

i|j 

' 

, 

.|?|! 

t|B|M|R 

c|i|m|n|r|s|u|v|w|x|z|e  
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2.9 Generating and inverse filtering word lists 

2.9.1 Morpho-lexical word list generation 

The regular expression generated for every word summarizes the extracted shape 

information, and can be used as a mask by the morphologic word generator to provide all 

possible words the given language model can generate that match the criteria. 

We use a linguistic framework described in [48]. The regular expression is converted and 

stored as a trie. The linguistic framework then searches for valid orthographic sequences using 

built-in orthographic lexicons. This search can be performed very efficiently; the framework 

operates in linear time in function of the length of the input regular expression. 

An example for a sample sentence and the returned word lists are shown in Figure 2.18. 

 

 

Figure 2.18.  Two sample rows of handwriting, containing a whole sentence 

 

Table VI.  Top ten word candidates returned for the sentence according to their 
individual frequencies. Correct words are shown in inverse. 

In was. mistake a market the most difficult take is to judge and 's Mining property 

Is can. sixteen on market? of must definite told di Be  are 'm timing properly 

Be so intense Be contact to want deficits talk jo Re  but 'e Mixing opaquely 

Its no sisters be context Is went  task pi MA  one 'i tiring puppetry 

Me up sixties as content Be next  tend si Bo  two 'n Miming  

Mr its intake or defeat be sort  tank ti Rd  out 'c tieing  

Few. now. intends an ticket he west  tied id td  did  Miring  

Men. man. virtues so contest As cost  tale iq Bd  see    

Mm end. winters no outset as east  tube bi   get    

Ten ca integer up bucket at rest  tide gi   put    

 

2.9.2 Word length filtering 

As mentioned in Section 2.5.1, variance in width of letters due to their shape cannot be 

taken into account in word length estimation. But at this point when word candidates are 
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already generated we can use character level information by calculating an expected 

normalized word width for each candidate, and comparing it to the actual word image width. 

Expected normalized word width is expressed in unit character width by summing the 

expected normalized widths for each character of the candidate. The unit character width is 

theoretical measure and it refers to the standard width of letter ‘o’. The normalized width of a 

character is its width in pixels divided by this ideal width. 

Since individual styles may exhibit different relative letter sizes, thus estimating the 

expected pixel widths of letters or bigrams would require a style-specific character segmented 

training set with the corresponding characters. It is generally not feasible to expect such 

training even for non auto-adapting systems. Expected pixel widths could be also estimated by 

probabilistic optimization if we treat individual letter widths as random variables and estimate 

their distribution functions. This method would still require style-specific training that we 

want to avoid. Therefore we use a simpler approach with three width classes and hard-coded 

letter widths based on their ideal shape. The unit width (1.0) is assigned to most lower case 

letters and 1.5 to most capitals, with a few exceptions shown in Table VII. 

Table VII.  Assigned width values in computation of the expected word width 

Letters 

Expected normalized 

width 

[unit character width] 

i, j, l, t 0.5 
M, w 1.5 
T, I 1 

Lower case 1 
Others 

Capitals 1.5 
 

Not being an integer, the calculated expected normalized word width Θ has a better 

resolution than the number of characters, and thus a higher correlation with the expected pixel 

width. Therefore new normalized UWL (NUWL) vectors are needed to tighten the estimated 

interval width, and to realize the filtering of the candidate list. The NUWL vectors were 

determined in a similar way as in Section 2.5.4 on the same training set, and they are shown in 

Table VIII. We use the method described there to determine the pixel width limits for the 

candidate. 
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Table VIII.  Minimal and maximal Universal Width Limit vectors referring to average 
letter width multipliers for in unit character width and their difference 

ΘΘΘΘ 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 

Ω’min 0.3 0.6 0.9 1.5 2 2.2 2.4 2.7 3.5 4 4.5 5.3 5.8 
Ω’max 1.1 1.7 2.3 3 3.6 4.1 4.8 5.4 6.1 6.8 7.7 8 8.2 
Ω’max - Ω’min 0.8 1.1 1.4 1.5 1.6 1.9 2.4 2.7 2.6 2.8 3.2 2.7 2.4 

 

ΘΘΘΘ 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 

Ω’min 6.2 6.7 7.1 7.7 8.2 8.7 9.3 9.8 10.4 10.9 11.3 11.6 12 
Ω’max 8.4 9.3 9.8 10.5 11.1 11.5 11.9 12.5 13 13.4 13.7 14.1 14.5 
Ω’max - Ω’min 2.3 2.6 2.7 2.8 2.9 2.8 2.6 2.7 2.6 2.5 2.4 2.5 2.5 
 

Let Ω’min and Ω’max be the NUWL values corresponding to Θ. For the pixel width of the 

word to be validated, it has to meet the following condition: 

 

 min min max max' ( ) ( ) ' ( ) ( )L w Lω ωΩ Θ < < Ω Θ  (2.16) 

 

where w is the word width in pixels, ωmax(L) and ωmin(L) are the pre-calculated upper and 

lower estimates for the average letter width of line L, respectively (see Section 2.4). Table IX 

shows the filtered output for the word lists in Table VI. 

 

Table IX.  Top ten word candidates after word length filtering. Correct words are shown 
in inverse. 

In so mistake a market The most difficult take is to judge and 's Mining property 

Is no sixteen b contact Of must definite told di td  are 'm timing properly 

Be up intense p context Is want deficits talk jo   but 'e Mixing opaquely 

its its sisters d weight? Be went  task pi   one 'i tiring puppetry 

Me ca sixties tv content Be next  tend si   two 'n Miring  

Mr wo intake o defeat He sort  tank ti   out 'c   

Mm etc intends g contest As west  tied id   did    

Ten via virtues di outset As cost  tale iq   see    

ten co winters pi bucket Do east  tube bi   get    

Tv rid integer ti naught? Do rest  tide gi   put    
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2.9.3 Filtering based on less reliable features 

Hills, valleys, and the features that are not used in the morpho-lexical matching, are used to 

filter the output word list in a second run. Since the number of words to be checked is much 

smaller respected to the first run (we have actually obtained a small size dictionary), we can 

match these features against word candidates. 

For every feature considered an estimated character position is assigned by the method 

described in Section 2.8.2 and 2.8.3, and then we try to match them against generated feature 

descriptions for each remaining candidate. Feature descriptions are derived from word 

candidates based on the feature mapping table. In case of hills and valleys separate tables are 

used for single letters and for those letter pairs, for which the intra-letter space establishes a 

hill or a valley. Even if not all features in the description generated are detected, all features 

have to match the feature description at correct positions. Therefore we look for a matching 

for every feature, and if no match can be found, then the candidate is eliminated. 

2.10 Statistical context selection 

2.10.1 Word graph construction 

In this system we have chosen a simple model to demonstrate the interaction between the 

recognition-associative and the linguistic system. We integrate the contextual knowledge by 

means of a statistical approach: we try to order these lists and choose the correct word 

according the relative frequencies of all bigrams in the sentence. Bigram frequencies are 

gained from the BNC (British National Corpus) [52], which is a general topic corpus. These 

relative frequencies can serve as an estimate for the probability of the occurrence of the 

bigrams in the given text. A more sophisticated post-processing filter is under development by 

applying the HumorESK parser module [49]. 

After word candidate lists are generated for every word image being processed, we look for 

relative frequencies of bigrams formed by all candidates for all the word in inner positions 

(neither first, nor last) and word candidates of the previous and the next positions. Once 

bigram frequencies are obtained for both neighbors, those with a zero frequency are dropped. 

The bigram frequencies are used to generate a word graph (a directed acyclic graph) from 

the remaining word lists. In this graph each level refers to a position in the sentence, and 

nodes on that level are the candidates for the given position. If candidates have confidence 
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values they can be used as weights for nodes, whereas edges are assigned weights of the 

relative frequencies the nodes they connect. 

2.10.2 Candidate filtering 

Due to the bigram model and the technique we use word graphs are generally dense 

enough in the following sense: a node (word candidate) on level i having at least one 

outbound edge to level i+1 and another node on level i+2 with at least one inbound edge from 

level i+1 are connected (through a path of length two). As a consequence we can use a simple 

filtering algorithm before to radically decrease the nodes in the graph, which reflects the local 

influence area property of natural languages. Obviously natural languages cannot be generated 

by a regular grammar, but generally there is a remarkable part of the grammar that reflects 

local generation of words, e.g. expressions, phrasal verbs, etc. 

Considering a position i in a sentence we will refer to the ordered pair of candidates of 

position (i-1 and i) as left bigram, supposing i is not the first position, and of position (i and 

i+1) as right bigram, supposing i is not the last position, if the nodes referring to the 

candidates are connected by an edge. In the list of left bigrams a pair will be validated if its 

second word can be found as a first word of at least one bigram in the right list, and vice 

versa. These are called matching bigrams. Following the validation we filter out invalid 

entries from all bigram lists and the corresponding nodes from the graph. Remaining entries 

will provide us with possible sentence candidates. 

2.10.3 Choosing the optimal path 

The longest path in the graph gives the most probable sentence and the n longest paths 

correspond to the n most probable sentences. These paths can be selected using the Viterbi 

algorithm. A sample graph is shown in Figure 2.19. 

 

the  most  difficult  take  is  to  judge 
of  must  definite  Told  di  td   
Is  want  deficits  Talk  jo     
Be  went    Task  pi     
be  next    tend  si     
he  sort    Tank  ti     
As  west    tied  id     
as  cost    tale  iq     
Do  east    tube  bi     
do  rest    tide  gi     

Figure 2.19.  Word graph for a part (words 7-13) of the sentence in Figure 2.18. In this 
case there is only one path through this sub-graph and it gives the correct sentence. 
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2.11 Results and Evaluation 

2.11.1 Databases used 

The system was tested on a database collected by Senior and Robinson [36]. The database 

contains 25 handwritten pages and 7000 words from the LOB corpus (Lancaster-Oslo / 

Bergen) that were written by a single writer. Some sample lines are shown in Figure 2.20. 

I have also created a small test set to enable testing adaptation to writing style parameters. 

This consists of five handwritten pages, each written by a different person. 

 

Figure 2.20.  Some sample lines from the LOB corpus 

2.11.2 Experimental results 

To evaluate the results we use two concepts. The coverage of the lexicon reduction system 

refers to the capacity of the reduced lexicon to include the right answer [28]. By reduction 

rate we mean the reduction of the lexicon size, i.e. the number of eliminated word forms 

divided by all word forms in the lexicon. In our system the size of the lexicon cannot be 

exactly determined, since the linguistic system can generate many forms from the entries in its 

lexicon. We estimated the number of included word forms to be over 200 000 by parsing the 

word list of the BNC [52] with the linguistic system and counting the correctly recognized 

forms. 

In the literature reduction rate usually refers to the average reduction rate, the minimal 

(worst case) reduction rate is hardly ever reported. This might be due to the fact that it is 

impossible to give a theoretical minimum for the reduction rate, but the minimum over the test 

set can be easily determined. 
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To generate a test set from the corpus on which word level tests can be performed the 

position of words in the scanned images need to be assigned. This process should either be 

done manually, or if automated, then the results must be verified by a human. This 

requirement makes the preparation of tests time consuming. Lexicon reduction systems are 

typically tested on several hundred word images in the literature ([28],[30],[31],[40]), which 

is accepted to give a reliable measure of system performance. 

Our word filtering algorithm was tested on 400 English words, and in 80.5% of the cases 

the correct word was returned in the output list. The average length of the output list is 115, 

meaning an average reduction rate over 99.95%. The longest word list returned had 2342 

words giving a minimal reduction rate of 98.8%. At first glance this coverage ratio might 

seem too low for a lexicon reduction system, because one would expect that only surely 

incorrect words should be filtered. But on one hand an analysis of the errors shows that the 

reasons the problems originate in are not deeply inherent to the architecture and therefore can 

be improved later, on the other hand for the ultra-high reduction rate of our system this result 

is still better than the ones published earlier (Table X). Comparing our system to ones 

mentioned in the literature one can observe that we have achieved a much higher reduction 

rate than usual, and still maintained better coverage than the system with the highest reduction 

rate. Even if we approximate our lexicon size to be 20 000, we still get an average reduction 

rate of 99.45%, which is still above the reference values. 

Table X.  Comparison of lexicon reduction methods 

Method Lexicon size Test set 
Average 

reduction rate 
Coverage 

Presented > 200 000 400 > 99.95% 80.5% 
M. Zimmermann et al [40] 20–1000 811 72.9% 98.6% 
S. Madhvanath et al [30] 20 000 825 50% > 98% 
S. Madhvanath et al [30] 20 000 825 99% 74% 
S. Madhvanath et al [31] 21 000 825 95.2% 95% 
S. Madhvanath et al [31] 21 000 825 99% 80% 

Guillevic et al [27] 3 000 500 3.5% 95% 

 

In [40] the same corpus was used for testing, in [30] and [31] the tests were carried out on 

U.S. city names, whereas Guillevic et al [27] considered only handwritten uppercase words. 

Comparison of the results would be more reasonable if the evaluation had taken place on the 

same test set for each of the compared methods, however, there are only a few similar systems 

developed yet for offline handwriting recognition and in many cases proprietary databases are 

used for testing. 
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Figure 2.21 shows the distribution of the length of output word lists after inverse filtering. 

The importance of inverse filtering is shown by the achieved 30% decrease of the average 

word list length from 156 to 115. It is also worth to note that in half of the cases the final word 

list contains less than 30 words. One can observe that the curve has a quasi-exponentially 

decreasing characteristic. In Figure 2.22 the connection between the length of the input word 

and the length of output word list is shown. The curve of average word list lengths resembles 

a Poisson distribution with λ ≈ 4. 

1
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7.7%

4-7

11.5%

8-15
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13.1%

256-511
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> 1023
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Figure 2.21.  Classes of lengths of output word-lists. 
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Figure 2.22.  Length of the output word-list in function of the number of characters of 
the word to be recognized. 
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2.11.3 Analysis of causes of errors 

Wrong length estimation is the most important cause of error, it accounts for about 30%. 

Invalid features cause another 30% of the errors, the half of which is due to irregular letter 

shapes, whereas the other half is due to aliasing on the low resolution binary image. Out of 

vocabulary words and missing inflection forms from the linguistic system account for about 

15% of the errors, whereas wrong baseline calculation and mispositioning of features each 

cause about 10%. 

2.12 Conclusions 

I introduced a framework that integrates topographic, linguistic and statistical aspects in 

the handwriting recognition process at a low level. Dual use of cellular visual microprocessor 

and standard digital microprocessor enabled efficient processing in all aspects. The integration 

was motivated by the human reading process based on perceptional features and linguistic 

background knowledge. 

A holistic approach is used to extract word level topographic features with no letter 

detection. I introduced the use of shape codes to handle the ambiguity of letter positions of the 

features. An extension has been developed to regular expressions to establish a proper 

interface between the recognition and the linguistic module. This provides under-specified 

information for the linguistic filtering, where morpho-lexical and syntactic models validate 

(either accept or reject) different orthographical candidates derived from a single recognized 

symbol sequence. I also introduced an inverse filtering technique based on global and 

unreliable local features, where the feature description of word candidates is matched against 

the detected geometry. 

I have shown the great importance of linguistic knowledge in recognition systems, 

similarly to human reading. Implementation aspects of different levels of linguistic knowledge 

influencing the recognition process have been analyzed. I have implemented a statistical 

syntactic knowledgebase, integrated it into a recognition system and showed that even by 

using simple models of high level information, the number of possible sentence candidates 

can be decreased by a high degree meanwhile the recognition rate for words increases. 
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3  Detect ion and recognit ion of  s igns 
and displays  in 2D visual  f lows 

3.1 Blind Mobile Navigation 

Visually impaired people not only have to miss all visual information that surrounds us, but 

also all the self-confidence that it provides. In our visually orientated world they are very 

defenseless in most situations, and there are very few means to compensate their disability. In 

spite of the impressive advances related to retinal prostheses, there is no imminent promise to 

make them soon available with a realistic performance to help navigating blind and visually 

impaired persons. A mobile navigation device would serve them well by providing some 

sense of safety and independence in many real-life situations. Although such a device has 

many possible applications, this chapter concentrates only on some well defined, simple 

scenarios. 

3.1.1 The “Bionic Eyeglass” framework 

The Bionic Eyeglass is a wearable device (with a power consumption under 300mW) under 

development with TeraOps visual computing power and with audio input-output to guide 

visually impaired people in their daily life. It provides a broad functionality for typical 

situations where visual information is crucial. These situations can be categorized into three 

classes based on the location where they typically occur. Each situation defines one or more 

tasks that the device can perform for the user. Situations are summarized in Table XI. 

 



DETECTION AND RECOGNITION OF SIGNS AND DISPLAYS IN 2D VISUAL FLOWS 

 

66

Table XI.  Typical tasks considered for the Bionic Eyeglass 

 

3.1.2 Detection and recognition of signs and displays 

Detection and recognition of signs and displays in real, noisy environments is a key 

element in many functions of the Bionic Eyeglass. Taking photographs is not a real option for 

blind or visually impaired people, for the following reasons: 

 

• it is really difficult for them to point the camera towards a sign that they do not know 

the position of 

• the sign can be in motion 

• other people might hide the sign temporarily 

• in many cases there is a time constraint, i.e. the user has to make a decision relatively 

fast 

 

Place Home Street Office 

Lightning Controlled Uncontrolled Controlled 
Events Both emergency and conscious 

Color and 
pattern 
recognition of 
clothes 

Recognition 
of marked and 
unmarked 
crosswalks 

Recognition of 
control signs 
and displays in 
elevators 

Bank note 
recognition 

Escalator 
direction 
recognition 

Support in 
navigation in 
public offices 
and restrooms 

Public 
transport sign 
recognition 

Identification of 
restroom signs 

Bus and tram 
stop 
identification 

Recognition of 
signs on 
walkways 

Recognition of client displays 
(e.g. in banks) 

User-initiated 

 

Recognition of messages on 
ATMs 

Light left 
switched on 

Autonomous 

warnings Gas oven left 
turned on 

Obstacles at head and chest level 
(branches, signs, devices 
attached to the wall, etc.) 
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Due to the reasons mentioned above it is much easier for a visually impaired person to pan 

towards potential directions with the camera while it continuously processes the input and it 

can also give real-time positive feedback if the target is in the scene, thus helping the user to 

locate it. Video input is especially crucial in situations where all of the conditions above are 

true, e.g. when identifying the route number of a public transport vehicle arriving to a stop. 

Supposing a video-rate of 15 frames/sec is realistic for consumer level cameras, whereas the 

user can take at best 1-2 photographs per second. This means that a video input can give at 

least an order of magnitude more input respected to taking steady images. 

In most previous works in the field (e.g. [45],[47]) good quality and relatively high 

resolution inputs were used. Assuming a good quality input video flow is not realistic, 

because the cameras to be used must be small enough and must have small power 

consumption to be worn head-mounted or fit in a light, mobile device that a user can always 

carry with him- or herself. 

The spatial-temporal analogic cellular algorithms I developed are able to localize signs and 

displays in low-resolution 2D visual flows recorded by mobile devices, and to recognize 

numbers they contain. 

3.2 A novel semantic framework for multimodal information processing 

When I started to work on detection and recognition algorithms for unconstrained real-

world video flows, I soon realized that without modeling semantics it is impossible to achieve 

reasonable results. I created this semantic model of multimodal sensory information 

processing to give a framework for related research. The key concept of this model is to 

embed a priori semantic information into the process of detection and recognition. 

The information flow in our model is based on a probabilistic approach which actually 

maps a probabilistic association map whose weights can be continuously modified. Initial 

probability values are determined by a priori knowledge or set to a uniform distribution. 

Techniques for handling the ambiguities include probability mass functions, fuzzy sets and 

rules, and abductive inference (best explanation reasoning). 
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3.2.1 Information flow 

The sensors of multiple modalities collect information on their environment. The 

information is processed through multiple levels in the system. The level of abstractness 

increases along the processing. 

 

 

Figure 3.1.  Information flow in a multimodal sensory system 
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Information of different modalities is continuously and separately processed by analogic 

algorithms to obtain features. These are combined into simple symptoms in each modality 

channel. Certain symptoms induce an event, which usually has influence on multiple 

modalities. Symptoms can be excitatory or inhibitory, and they can be either required or 

optional in the formation of an event. Furthermore, other events can also serve as an – 

excitatory or inhibitory – input of the event through the Event Register (ER). The highest 

level in information processing is the identification of situations. These are characterized by 

events that must have happened in order to allow the situation to be considered active. 

Additionally, there can be certain conditions on the order of the events. 

The most crucial module in the system is the Attention Director (AD). This determines the 

operation and parameters of the actuators and indirectly the sensors too, while it receives 

triggers that arise from combination of the active situation and certain events either directly or 

indirectly through a knowledge base that contains basic information and general rules about 

the physical environment in a logic form. The AD is also influenced by information explicitly 

provided by the user on the aim of the system and tasks to perform. 

The actuators perform any operation concluded to be necessary in the previous level. 

Sensor Control interprets the instructions from the AD in order to properly adjust sensors. 

3.2.2 Description of abstraction levels 

Abstraction levels form a hierarchy that processes information in a bottom-up manner. In 

the following we describe the meaning and role of each level. Table XII lists active modules 

for a sample situation, when the slamming of a door is identified through the audio modality. 

Sensors for different modalities have to be able to identify certain features. Modalities can 

be categorized into two classes: 

 

• Array sensors: audio, visual, infra, tactile 

• Miscellaneous sensors (scalar, binary): temperature, pressure, various switches 

 

Features describe simple observable properties of a single modality of the environment, 

extracted from the sensory information. Topographic features always have a spatial location. 

We require that features have a confidence level, which can be different for each symptom 

they are bound to. A visual feature may be the color or the shape of an object, a tactile feature 

may be the rudeness or the temperature of a surface. 
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Table XII.  Event generation by a series of modules activated by an audio feature 

Module Example 

Active situation sitting in an office 

Knowledgebase record state of the door: open (visual) 

Feature clashing sound from the direction of the door 

Symptom slamming of a door (audio) 

Attention director visual observation of the door 

Symptom door is closed (visual) 

Event generated door has been closed 

New Knowledgebase record state of the door: closed (visual and audio) 

 

Symptoms are still monomodal, but more abstract than features. A symptom is an event-

like entity, but it is limited to a single modality. A visual symptom can be the visual presence 

or movement of an object or a person, an audio symptom can be the roar of the sea or the buzz 

of a neon light. 

An event is an action or any kind of change in the environment. An event is most 

characterized by its result. Since events happen at a certain point of time, but can have an 

effect that lasts longer, we need a memory that registers the occurrence of every event and 

remembers them as long as they might have an effect on the given environment. This task is 

realized by the Event Register. An event can be someone entering a room or the arrival of a 

bus to the stop. 

Situations refer to the environment of the observer, like traveling on a train, visiting a 

museum or paying in a supermarket. A situation influences the attention direction, but only if 

it is active. However the determination of the active situation is not unequivocal due to two 

reasons. On one hand the symptoms might not be restrictive enough to determine a single 

situation, on the other hand two or more previously described (known) situations can be 

relevant and active in a given case. Parallel situations may be independent or somewhat 

related. 

Therefore situations are weighted, and the more weight a situation is assigned, the bigger 

the influence it will have on decisions and attention direction. The weight of a situation is 

determined by a priori information and by events identified during operation. 

The influences described above serve for weighing the significance of the events and 

situations represented in the system. The exact mathematical functions are not yet determined. 

t 

t0 
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In the simplest case they are linear weights, but use of nonlinearities will be inevitable in 

order to achieve good results. Exponential weighing seems the most promising way to 

introduce nonlinearities, though implementation on present architectures would suggest a 

nonlinearity after the linear combination of the weights. The use of bias is important and 

introducing exponential decays for memories or weights could also bring significant 

advantages. 

3.2.3 Further considerations 

Self learning and adaptivity is very important to be able to recognize, learn and handle 

unknown symptoms, events and situations. This could be implemented through a memory that 

registers feature combinations occurring. The Knowledgebase should be able to create new 

symptoms based on frequent combination of features, new events from frequent combination 

of symptoms and new situations from frequent combination of events. Frequency of co-

occurring symptoms, events and situations should be also assigned to newly created entities. 

Expectations can also heavily influence the actual performance of the system, so these 

should be included in the priorities provided to the system. The Attention Director module 

should also incorporate some randomness and it should be very closely related to the 

actuators. 

3.3 Sign and display localization 

After the general framework presented in the previous section, let us narrow our attention 

to the specific semantic situation described in Section 3.1.2, namely detection and recognition 

of signs and displays on public transport vehicles. 

Determining whether a sign or a display is present on an image and localizing it is a very 

non-trivial task, especially on low-resolution, noisy images. The purpose of the sign 

localization step is to find the text or the numbers to be recognized. But the intuitive way to 

tell the location of the sign is by looking for letters and/or numbers on the image. In other 

words the presence of a sign is only justified by the existence of information on it. 
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Figure 3.2.  Block diagram of the sign detection and recognition framework 

Detection of the signs is complicated due to several reasons: 

 

• great variety in types of displays and in places they are used, 

• various lighting conditions, 

• small field of view of the sensor, 

• the user typically has no knowledge in which direction the sign is located, 

• speed of the feedback to help the user in finding the right direction is restricted. 

 

Different types of signs and displays can be detected in different ways. I have developed 

algorithms to detect signs with a white background and ones that have fluorescent numbers 

with a dark background. The steps of the processing are shown in a block diagram in Figure 

3.2. 

3.3.1 Localizing black & white signs 

The idea behind the algorithm is as follows. After thresholding the image with an adaptive 

threshold computed by minimizing intra-class variance of grayscale values in the black and 

the white regions, dark window areas are detected first. In the next step the algorithm looks 
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for almost white holes in the window areas with certain size constraints. Basic steps are 

shown in Figure 3.3, in the form of a Universal Machine on Flows (UMF) diagram. The result 

of the algorithm for a sample frame is shown in Figure 3.4. 

 

 

Figure 3.3.  UMF diagram of the algorithm locating signs with a white background. 
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Figure 3.4.  Sign localization on a tram.  (a) Original input frame  (b) Binarized and 
eroded image  (c) Smoothed window areas  (d) Sign location 

The sign location is tracked through the frames with a simple linear kinematical model. 

The model gives the probable location of the sign on the next frame based on the location in 

the previous two frames. This makes the localization of the sign faster since the target area is 

much smaller. If the sign cannot be located in the estimated area, then the track is assumed to 

be lost and the algorithm is rerun for the whole frame. 

3.3.2 Number localization 

Once the sign area is located a new threshold is computed for the sign area using the same 

method. Actual numbers can be extracted by getting rid of other text and noise present in the 

sign area. However, it is not critical to remove every noise at this point, because a final noise 

removal step takes place before the actual recognition. 

Noise removal is realized in two parallel ways to make the extraction more robust. On one 

hand the frame is removed together with patches lower than a certain value, using the fact that 

the numbers are printed with the largest font size. The threshold was determined to be 1/40th 

of the vertical resolution of the camera by taking into account possible distances from the 

vehicle and the typical size of figures of the route number signs. On the other hand we also 

use the a priori information on the number location based on previous frames (they are usually 

in the center). 

    (a)    (b) 

    (c)    (d) 
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3.3.3 Localizing displays: combining colors and morphology 

In contrast to printed, black and white sign detection, the perceptual localization of 

displays is mainly driven by the color of the display. The background itself cannot be located, 

its perceptual function is only to create high contrast with respect to the foreground. 

The particular difficulty in detecting displays is that in general they cannot be identified by 

some distinctive features. Human observers are able to identify them by recognizing the signs 

on them. But this poses a paradox for a machine vision system: the aim of locating the display 

is to recognize the sign on it thereafter, but to locate them we need to recognize their content 

first. To overcome this paradox we defined some simple, but characteristic properties of 

displays: 

 

• bright and large figures are displayed on them, 

• typical colors are yellow, green and red, 

• they have high contrast for good legibility, 

• form of figures is not patch like, rather stroke type. 

 

The first three properties refer to color and luminance, whereas the last one is a 

morphological property that, despite being ambiguous, enables basic differentiation from 

other formations with similar color and luminance patterns. 

However, to better cope with the great variety of displays, I incorporated the possibility to 

give specific properties of displays. These may include the font(s) used, exact foreground and 

background color ranges, size of figures respected to the display background, as well as other 

information on neighboring objects. This allows the system to perform with greater robustness 

in case of frequent display models and typical scenarios. 

Figure 3.5 shows the process of localization of color displays. Due to lack of availability of 

a locally adaptive sensor, to deal with different lighting conditions and retain color constancy, 

automatic color correction is performed on the input as a first step, using a simple method that 

aims to compensate for described in [46]. This consists of luminance adaptation, performed in 

the Luv color space by low-pass filtering the luminance, and chromatic compensation, which 

is based on the assumption that the mean of each of the RGB channels should be close to the 

half of the maximum. 

Then three different bright color range filters and a background (dark) color range filter are 

applied. Bright color range detectors have both a wide and a tight detection range. Wide range 
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filters detect the foreground pixels of the display of the given color robustly, but cover many 

other irrelevant objects too, whereas narrow range filters are much less sensitive to noise, but 

may miss some foreground pixels (see Figure 3.6 (b) and (c)). To determine proper wide and 

tight color ranges for specific display types we used sample training videos taken at different 

hours of the day and under different light conditions, and analyzed the colors manually. 

Ranges were determined for three typical display colors: yellow, green and red. 

Pixel noise is removed from the output of both the wide and the tight color filter by using 

the MELTDOWN, SMALLKILLER and FIGREC templates respectively. We use the output of 

the denoised tight range filter to reconstruct the other denoised image and noise is removed 

from this one too with the same method (Figure 3.6. (f) and (g)). 

 

 

Figure 3.5.  Flow diagram of display detection. Dotted lines refer to RGB data flows, 
bold lines refer to multiple binary flows and narrow lines refer to single binary flows. 
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 (a) (b) (c) 

   

 (d) (e) (f) 

   

 (g) (h) (i) 

 

  (j) 

Figure 3.6.  Image sequence showing the detection process.  (a) Color corrected image.  
(b) Wide range filter for yellow channel.  (c) Tight range filter for yellow channel.  (d) 
and (e) Noise removed from (b) and (c) respectively  (f) Figure reconstruction using (d) 
as input and (e) as initial state.  (g) Noise removed from (f).  (h) Result of dark filter on 

(a).  (i) Closing performed on (h).  (j) Number image 

The use of the dark filter is motivated by trying to locate those bright formations where 

they do not form patches; that is every pixel has dark pixels in a close neighborhood, where 

the diameter of the neighborhood is the stroke width. A closing operation is performed on the 

dark filtered image to achieve this goal, and the result is used as a mask to find the right 

formations on the combined image from the denoised bright filters. This is carried out by an 
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AND template. Closing is the key operation to distinguish strokes from patches and the length 

of its operation depends on the stroke width. All these operations are performed in parallel for 

all three colors. 

Finally the channels are verified if they contain patches having the correct ratio of width 

and height, and if yes their output is sent to the recognition module. 

3.3.4 Registration with previous frames 

Due to the low resolution of the images and the high level of noise present on them a 

number of semi-dark pixels belonging to the number to be recognized are below the threshold 

value. Therefore the binary number images become vague. To overcome this problem we 

make use of the a priori knowledge that the signs normally do not change, which means we 

can superpose subsequent sign images to achieve better image quality. (See Figure 3.7) 

 

Figure 3.7.  Enhancement of the number image by superposing the actual frame and the 
image memory. 

As a first step of this process the images need to be registered, because detected borders of 

the sign can differ due to noise and changes in light conditions. Since rotation in the plane of 

the image is negligible (the user is expected to and can generally easily avoid twisting wrist 

moves), registration can be done by shifting. Optimal shifting parameters are calculated via 

cross-correlation: 
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where fi denotes the sign image of the ith frame, u and v are the shifting parameters and 

ci (u, v) is the cross correlation matrix at the ith frame (i ≥ 1). The values of u and v are 

determined by maximizing the cross-correlation: 

 

 
,

( , ) argmax ( , )
u v

u v c u v=  (3.2) 

 

The size of the correlation window has been determined – based on experimental data – to be 

±10% (i.e. 20%) of the image size, both vertically and horizontally. 

The shift operation accounts for translation in the plane, but it cannot handle the remaining 

three degrees of freedom (d.o.f.): 

 

• translation towards the camera (zooming – 1 d.o.f.), 

• rotation out of the plane (changing perspective – 2 d.o.f.). 

 

According to our experiments these two changes can be neglected through 2-3 frames (at 

15 frames/sec), but not longer. Therefore we maintain a gradually fading memory of the 

number image and we use the weighted sum of the memory and the actual frame to determine 

the new “aggregated” number image. 

Let ai denote the aggregate memorized number image in step i. At the beginning of a new 

sign track the number memory is initialized with a0 = f1. Registration works the same way as 

described above except that one writes an-1 instead of fn-1. The new number image is given by 

the following homotopy: 

 

 1(1 )n n na f aα α −= + − , (3.3) 

 

where α is a function of normalized correlation. The optimal function depends on usage 

habits, assumptions made on the input image flow, and the threshold value used for 

binarization (recognition uses a binary number image as input). We used a threshold value of 

0.1 and the following piecewise linear function: 
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where maxĉ  is the maximum normalized correlation, a is the average normalized correlation of 

some random sign images and b is an adaptively corrected maximum value of the normalized 

correlation. These were determined based on the following considerations: 

 

• image memory should be preserved as long as the number features are detectable from 

the aggregated image, to compensate for binarization noise. 

• in case of fast camera moves or a relatively high speed vehicle, binary number images 

may change in size or orientation in under 3 frames too much for the correctly super-

positioned numbers to remain recognizable 

 

Parameters a and b were tuned on 5 sample video flows. If the sign track gets lost, then the 

image memory is cleared. 

3.4 Number recognition 

For number recognition we use topographic shape features that can be extracted by cellular 

wave algorithms. In the first step the number of figures in the number is determined by 

counting connected objects on the image that are bigger than a threshold. This threshold can 

be higher than the one used in Section 3.3.2, because at this stage we assume the figures are 

already fully connected. In a second step feature maps are generated (see Figure 3.8). 

 

Figure 3.8.  Feature maps of route numbers: vertical line (blue), upper hole (red), lower 
hole (green), triangular hole (yellow) 
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Features used include holes and lines. Holes are classified based on shape, size and 

position, whereas lines are classified according to orientation (horizontal or vertical) and 

position. The method is based on the algorithms used for handwritten word recognition, 

described in detail in Section 2.7. 

Holes are defined the same way as in Section 2.7.4 and the same HOLE-FILLING4 template 

is used to detect them. Lines are detected as narrow but long rectangles, with threshold 

parameters based on height of figures, with two different combinations for vertical and 

horizontal lines. 

Size classification parameters are also derived from figure height. The figure the feature 

belongs to and horizontal position is given by vertical projection, whereas horizontal 

projection enables to calculate vertical position. 

Shape classification is needed to differentiate between round and triangular holes. 

Classification is based on vertical and horizontal histograms. Histogram value increases 

downwards and to the right in case of triangular holes (“4” is the only number having this 

feature). 

Table XIII.  Feature conversion table 

 

Features are converted to numbers based on a feature allocation table (see Table XIII). The 

feature detection method has been extended by checking for open holes in figures to make the 

recognition more robust and make it able to distinguish figures without holes (especially ‘3’). 

This is carried out by drawing side bars on the figure image, and checking for holes on these 
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modified images. These holes are classified in the same manner as normal holes. Table XIII 

shows the new feature conversion table, Figure 3.9 shows sample feature maps. 

     

Figure 3.9.  Sample feature maps. Right open holes and their auxiliary lines are shown in 
cyan, middle vertical line is shown in blue, and upper round hole is shown in red. 

3.5 Experimental Results 

3.5.1 Blind Acquired Visual Flow Database 

We have recorded more than 100 video flows of lengths between 15 and 90 seconds in bus 

and tram stops of arriving and departing vehicles. Stops serving several lines were selected 

(each one at least five) to let the video database contain various types of vehicles and route 

number signs. The video flows were recorded by a blind person in daylight, but under 

different light conditions. 

We used commercial cellular phones and digital cameras to record videos. The resolution 

of the videos is either QCIF or QVGA. Phones appropriate for this task must have a camera 

capable of video recording with at least QCIF resolution, and there must be a hard-button by 

which recording can be started and stopped (soft buttons on a touch-screen are too vague for a 

visually impaired user). Digital camera recordings were included in the database as well, 

because they the methods used for compressing the video flows are less lossy and allow for 

better quality. 

3.5.2 Black & white signs 

Black and white signs can be found on 25 videos. We categorized them into four classes 

based on recognizability. 7 records belong to the first class, on these not even a thorough 

human analysis can make out the signs. The second class (6 videos) contains records on which 

the signs are blurred and can only be seen for a very short time (3-4 frames), but smart 

humans can recognize them if looking at them frame by frame. The third class consists of 4 

videos that have only a few frames with the sign being readable on them, but most humans 

can still recognize them. On the remaining 8 videos the numbers are clear and shown for more 
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seconds. These records form the fourth class. Detection and recognition results are shown in 

Table XIV. 

Table XIV.  Detection and recognition results 

Class 

Number of 

videos in 

class 

Sign 

correctly 

located 

Number 

correctly 

located 

Number 

correctly 

recognized 

(without 

line info) 

Number 

correctly 

recognized 

(with line 

info) 

1 7 1 0 0 0 
2 6 4 3 1 1 
3 4 3 3 2 3 
4 8 7 7 6 7 

 

Recognition of videos in classes 1 and 2 are not critical, because users can be easily taught 

where to stand in the stop and how to direct the camera during the arrival of the vehicle in 

order to make a good quality record of the passing sign. 

For classes 3 and 4 we have achieved a recognition rate of 83% and a rejection rate (when 

the sign could not be located) of 17%, with the recognizer knowing the bus or tram lines 

touching the given stop. 

3.5.3 Color displays 

The measurements were carried out on 17 video sequences that contain buses or trams with 

color displays. The color display detection algorithm could correctly locate the display on 14 

videos, even if not for all frames. Very bright sunlight and glancing cover caused or weak 

lighting conditions in evening shots caused the failure in the remaining three cases. In case of 

four videos out of the 14, more sign candidates were detected. The correct patch could be 

selected out of these by tracking the movement of patches on an optical flow map. 

       

 (a) (b) (c) 

Figure 3.10.  A sample image on which parts of number images are missing, thus the 
recognition module fails to recognize them correctly.  (a) Original image  (b) Output of 

denoised bright filters  (c) Final result of detection 
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The recognition algorithm could correctly recognize 11 out of the 14 localized signs. Clear 

number forms were always correctly recognized, but in cases when numbers touched each 

other or part of them was distorted, then false or missing features lead to wrong results. An 

example is shown in Figure 3.10 

3.6 Conclusions 

I presented a semantic framework for multimodal information processing. I showed how to 

use semantic embedding in algorithm design by giving algorithms, providing an audio guide 

for blind or visually impaired people to help them to identify and signs and displays and read 

information on them. The algorithms are based on the cellular wave computing paradigm and 

they were designed to operate robustly on noisy, low resolution video flows provided by 

mobile cameras. For algorithm design I used semantic descriptions of the visual scenarios that 

occur in tram and bus stops. 

Our results show that we need to give some basic instructions to the blind or visually 

impaired user in order to enable him/her to use the device in accordance with some basic 

assumptions that greatly increase the probability of a correct recognition. 
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4  Invert ible  Cellular  Automata  

4.1 Introduction 

The concept of Cellular Automata (CA) was introduced by John von Neumann [54] and 

Stanislaw Ulam [53]. Originally they were defined on a two-dimensional lattice, every cell of 

which has a state out of a finite set Σ, called cell state. The evolution of the automaton is 

driven by a local mapping function N: B(Σ) → Σ, that maps the states of a local neighborhood 

of each cell to a new cell state. In our case we restrict ourselves to elementary CAs, heavily 

studied by Wolfram [55]. An elementary CA is one dimensional, the neighborhood size is one 

and the set of cell states has only two elements, i.e. the cell states are binary. Thus the global 

state of the lattice can be represented by a binary string. Let ΣL be the set of L-bit binary 

strings. The local map can be expressed as a truth table with three input bits and one output 

bit: N: Σ3 → Σ. A standard notation introduced by Wolfram is to refer to local rules as the 

decimal form of the 8-bit output column of the truth table, with the first bit (corresponding to 

the input (0,0,0)) being the least significant bit (LSB) and the last bit being the most 

significant bit (MSB). 

Naturally, the local mapping function defines a global map 
N

T : ΣL → ΣL from the set of 

binary strings of a length L to itself. By iterating the global map we gain trajectories over the 

set of global states. Let r

N
T : ΣL → ΣL be the r-times iterated mapping function of rule N . 

N
T  is not necessarily invertible, indeed, in most of the cases it is not, because ΣL contains two 

global states that are mapped to the same global state under 
N

T . 

In this chapter I define the Isles of Eden digraph and I show that it can be used to 

determine the invertibility of elementary CAs. Then I apply it to all local rules that are not 

trivially invertible. For rule 45 and 154 (and all rules in their equivalence classes) I prove that 
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every orbit over ΣL is an isle of Eden if and only if L is odd. For rule 105 and 150 I prove that 

every orbit over ΣL is an isle of Eden if and only if L is not a multiple of 3. The statement is 

proved by applying Theorem 4.1 to these rules in Theorem 4.2 and 4.3. The main result is the 

proof of the backward direction of Theorem 4.1. 

4.2 Isles of Eden 

In this section, after defining isles of Eden, we will prove the equivalence of the following 

statements for a local rule N  and a given string length L: 

 

1. Every orbit is an isle of Eden 

2. There are no Garden of Eden states (
N

T  is surjective) 

3. There are no merging points in the trajectory, (
N

T  is injective) 

4. Every global state has a unique preimage under 
N

T  

5. The cellular automaton is globally invertible 

 

Equivalence of statement 3 and 4 is trivial, since they express the same thing in forward 

and inverse direction under the global map 
N

T . The fourth statement is used as the definition 

of global invertibility for elementary cellular automata (statement 5). Lemma 4.1 and 4.2 

prove the equivalence between statement 1 and 4, whereas Lemma 4.3 proves the equivalence 

of statement 2 and 3. 

First we introduce the mapping Φ of binary strings to the unit interval [0,1] of real numbers 

[59]: 

 ( )
1

( 1)

0

2
L

i
i

i

x
−

− +

=

Φ ∑≜x  (4.1) 

where 0 1 2 1( ... )Lx x x x −=x . Using this mapping the global map 
N

T : Σ → Σ induces an 

equivalent map 
N

χ : ℝ [0,1] → ℝ [0,1], called the CA characteristic function. Let us now 

formally define the concept of isle of Eden [60]. 
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Definition 4.1. Isle of Eden 

 A bit string 

0 1 2 1( ... )Lx x x x −=x  

is said to be a period-n isle of Eden of a local rule N  iff  its preimage under n

N
χ is itself, 

where n

N
χ  is the time-n characteristic function of N . 

More precisely, x  is a period-n isle of Eden of a local rule N  iff 

( )n

N
χ =x x  

 

 

Lemma 4.1. 

An L-bit binary string 0 1 2 1( ... )Lx x x x −=x  is a period-n isle of Eden of a local rule N  

iff  x  has a unique preimage under n

N
T : 

 ( ) ( )
1

n
n N

T
−

=≜x x x  (4.2) 

 

Proof 

The definition of isle of Eden implies that x  is an isle of Eden iff  the point ( )Φ x  referring 

to it is an isle of Eden. 

 

⇒ ( )Φ x  being an isle of Eden can be formally written as 

 ( ) ( )( ) ( )
1

n

N
χ

−
Φ = Φx x  (4.3) 

Applying n

N
χ  to both sides we obtain 

 ( ) ( )( )n

N
χΦ = Φx x  (4.4) 

 

According to the definition of Φ the following equation holds: 

 
N N

T χΦ = Φ� �  (4.5) 

using which we can write the right-hand side as 
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( )( ) ( )

( ) ( )( )
 times

 times

n

N N N N

n

n

N N N N

n

T T T T

χ χ χ χΦ = Φ =

= Φ = Φ

� �⋯� �
�			
			�

� � �⋯
�			
			�

x x

x x
 (4.6) 

By substituting Equation (4.5) into Equation (4.3) and applying ( ) 1
1n

N
T

−
−Φ�  to both sides we 

obtain 

 ( ) ( )
1

n

N
T

−
=x x  (4.7) 

which is exactly what the lemma states. 

 

⇐ Starting from Equation (4.6), applying n

N
TΦ �  to both sides and substituting Equation (4.5) 

into the result we can obtain Equation (4.3). By applying 1( )n

N
χ −  to both sides we obtain 

Equation (4.2), from which it follows that x  is an isle of Eden. � 

 

 

Lemma 4.2. 

Every orbit of a local rule N over ΣL is an isle of Eden iff every ∈ΣLx  has a unique 

preimage under 
N

T . 

 

Proof 

⇒ Let us suppose indirectly that L∈Σ0x  is an isle of Eden, but it either does not have a 

preimage under 
N

T , or its preimage is not unique. Using Lemma 4.1 we know that 
0

x  has a 

unique preimage under n

N
T  (namely itself). 

It is trivial that if a binary string does not have a preimage under 
N

T , then it cannot have a 

preimage under r

N
T  for any r > 1 either. Thus 

0
x  does not have a preimage under n

N
T , which 

is a contradiction, so 
0

x  must have a preimage under 
N

T . 

If the preimage under 
N

T  is not unique, then it preimage under n

N
T  cannot be unique 

either, thus we arrived to a contradiction once again, so 
0

x  must have a preimage under 
N

T  

in this case too. 
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⇐ If every L∈Σx has a unique preimage ( )1

N
T −

1 ≜x x  under 
N

T , then their preimages, 

being members of ΣL, also have unique preimages under 
N

T , and this holds recursively for 

every preimage. Therefore every L∈Σx  has a unique preimage ( ) ( )1r
NT

−
≜rx x  under r

N
T  

for every r > 1. 

Since there are 2L binary strings of length L, every L∈Σx  has to map to itself under the 

inverse map ( )( ) 1
r

N
T

−
x  for some ( ) 2Lr ≤x  and thus it is, by definition, a period- ( )r x  isle of 

Eden of local rule N. � 

 

 

Lemma 4.3. 

Every L∈Σx  has a preimage under 
N

T  iff  every L∈Σy  has at most one preimage under 

N
T , or equivalently 

N
T : ΣL → ΣL is surjective iff  it is injective. 

 

Proof 

Let 
N

T  (ΣL) denote the image of ΣL under 
N

T : ( ) ( )
L

L

N N
T T

∈Σ

Σ =
x

x∪  

 

⇒ Let us suppose indirectly that every L∈Σx  has a preimage under 
N

T  for a local rule N, 

and there are L∈Σ1x  and L∈Σ2x  for which ≠
1 2

x x  and ( ) ( )N N
T T=1 2x x . Then the size 

of ( )N
T ΣL  must be less than the size of ΣL, because 

1
x  and 

2
x  are mapped to the same 

string and no L∈Σx  can be mapped to more than one string. Thus there is a string L∈Σz  

that is not in ( )N
T ΣL , which means, by definition, that there is no L∈Σx  that maps to z , so 

z  does not have a preimage under 
N

T , which contradicts our initial assumption. 

 

⇐ Let us suppose indirectly that every L∈Σy  has at most one preimage under 
N

T , but there 

is an L∈Σ0x  that does not have a preimage under 
N

T . Since there is no L∈Σx  for which 

( )N
T =

0
x x , thus ( )LN

T∉ Σ
0

x , and therefore the number of elements of ( )N
T ΣL  is less 
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than the number of elements of ΣL. It follows that there must exist a ( )N
T∈ Σ

0

Ly  and an 

L∈Σ1x  and an L∈Σ2x  for which ≠
1 2

x x  and ( )N
T =1 0x y  and ( )N

T = 02
x y . This, 

however, contradicts our initial assumption. � 

4.3 Rotation invariance 

The following lemma expresses the rotation invariance property of local cellular automaton 

rules. We will use it when proving Theorem 4.1 in Section 4.5. 

 

Lemma 4.4. 

Let R(n) (u) denote the vector obtained by circularly shifting the bits of an arbitrary vector u 

by n bits, i.e. R(n) (u) = {un, u(n+1) mod L, u(n+2) mod L, ... , u(n-1) mod L}. 

Let 0 1 2 1( ... )Lx x x x −=x  be an L-bit binary string and let n∈ℤ. 

 

The shifting operator R(n) and the mapping function of a local rule N can be exchanged, that 

is ( )( ) ( )( )( ) ( )n n

N N
T R R T=x x . 

 

Proof 

The ith bit of ( )( )nR y  is defined by 

 

 ( ) ( ) ( ) ( )( )mod 1 mod mod 1 mod, ,n i L n i L n i L n i LN
f+ + − + + +=y x x x  (4.8) 

 

for all 0 ≤ i ≤ L–1, where 3:
N
f I I→  is the local mapping function of rule N, with I = {0,1}. 

These set of equations are equivalent to those that define the jth bit of y , where 

j = ((i+n) mod L). Thus the stated equation holds for every position. � 

 

Example 4.3.1. 

Let us consider rule 45, and let x  = 0110100. The output string ( )45
T x  is 0101101. If we 

circularly shift x  by three characters (n = 3), we obtain ( )(3) 0100011R =x . The output after 
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the shifting can be calculated by circularly shifting ( )45
T x  too by three characters, i.e. 

( )( ) ( )( )(3) (3)

45 45
1101010T R R T= =x x . 

 

Example 4.3.2. 

Now let us consider rule 90, and let x  = 00001111. Thus ( )90
10011001T =x . Let us 

circularly shift x  by n = –7 characters: ( )( 7) 00011110R − =x . The output after the shifting 

operator can be obtained by applying circular shifting by –7 characters to ( )90
T x  as well: 

( )( ) ( )( )( 7) ( 7)

90 90
00110011T R R T− −= =x x . 

 

Table XV.  Mapping rules of local rule 45 and 90. 

Output bit Input 

pattern r. 45 r. 90 

000 1 0 
001 0 1 
010 1 0 
011 1 1 
100 0 1 
101 1 0 
110 0 1 
111 0 0 

4.4 Locating points with multiple preimages 

In this section we define the Isles of Eden digraph (and give a method to create it) that can 

generate the bits of two binary strings of any length L in parallel in every possible way so that 

their image under 
N

T  is equal. We use the digraph in a theorem that allows one to decide if it 

is possible to generate different bit strings of a length L (inputs) that have the same image 

under 
N

T , by simply examining the cycles of the Isles of Eden digraph. 

The idea behind the construction is that every move along an edge in the graph adds one bit 

to the length of input strings as well as to the output string, so L moves will generate strings of 

length L. The edges are labeled with these three bits. The nodes are labeled with the previous 

two bits of x  and y , thus making it possible to compute the output based on the present node 
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and on the edge through which we leave the node. The label of the node where the edge leads 

to is composed of the second bits of the previous node and the corresponding bits of the edge. 

Actually, the nodes of the graph refer to a sliding double window of width 2 over x  and y , 

and each move along an edge moves the windows to the right by one bit. 

To compute the first move we need an initial condition of two bits that, due to the cyclic 

boundary condition, are also used at the end of the generation. This means that to meet the 

required boundary condition we need to return to the starting node. Let us give a brief 

overview on basic concepts in graph theory that we will use. 

4.4.1 Graph theoretical background 

Definition 4.2. Directed graph 

 A finite directed graph (digraph) G is given by an ordered pair (V,E) and two 

functions i, t : E(G) → V(G), where 

• V(G) is a finite set of vertices (also called nodes), 

• E(G) is a finite set of edges, 

• i (e) and t (e) are the initial and terminal vertex of edge e ∈ E(G), respectively. 

 

Definition 4.3. Walks and cycles 

 A walk of length n in a directed graph is a finite sequence 1 2 ne e eπ = …  of edges such 

that ( ) ( )1k kt e i e +=  for k = 1, 2, … , n – 1. A vertex can be included more times in the 

sequence. The vertex i (e1) is called the start vertex and the vertex t (en) is called the end 

vertex. A walk with the same starting and ending vertex, i. e. where i (e1) = t (en), is called a 

closed walk or a cycle. 

 

Definition 4.4. Bipartite graph 

 A graph whose vertices can be decomposed into two disjoint sets such that no two 

graph vertices within the same set are adjacent is called a bipartite graph. A sample bipartite 

graph is shown in Figure 4.1. 
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0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0

1 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
  

 

Figure 4.1.  A bipartite graph and its adjacency matrix 

 

Definition 4.5. Adjacency matrix of a directed graph 

 The adjacency matrix of a finite directed graph G on n vertices is the n × n matrix A 

where A (i, j) is the number of edges from vertex i to vertex j. 

 

The powers of A refer to the number of walks in G, that is An (i, j) is the number of walks 

of length n from vertex i to vertex j. 

 

Let us now introduce the concept of de Bruijn graph [56] that is strongly related to the Isles 

of Eden digraphs. The vertices of a de Bruijn graph represent overlaps between sequences of 

symbols from an alphabet. 

 

Definition 4.6. De Bruijn graph 

 Given an alphabet Σ = {s1,…,sm} an (m,n)-de Bruijn graph is a directed graph that has 

mn vertices corresponding to all possible sequences x1x2…xn of n symbols, where xi ∈ Σ, for 

i ∈ {1,…,n}. The set of vertices is thus given by: 

 

 ( ) ( ) ( )1 1 1 1 1 2

 times  times  times

, , , , , , , , , , , ,m m m

n n n

V s s s s s s s s s
  =  
  

… … … …
�	
	� �		
		� �		
		�

. (4.9) 

 

There is an edge from a vertex x1x2…xn to all vertices of the form x2x3…xnα, α ∈ Σ. There 

are k such nodes, thus each vertex has k incoming and k outgoing edges. 

 

1 
 
2 
 
3 
 
4 

5 
 
6 
 
7 
 
8 
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Figure 4.2.  De Bruijn graph of strings of length two. 

 

4.4.2 The new construction: Isles of Eden digraph 

 

Definition 4.7. Isles of Eden digraph (Double preimage locator) 

 Let us consider a directed graph GN with nodes referring to pairs of binary strings of 

length two. There is an edge from node u, labeled ({u1,x, u2,x}, {u1,y, u2,y}), to node v, labeled 

({v1,x, v2,x), {v1,y, v2,y}), if v1,y = u2,y, v1,y = u2,y and local rule N maps both x * = {u1,x, u2,x, v2,x} 

and y * = {u1,y, u2,y, v2,y} to the same output bit z, and the edge is labeled (v2,x, v2,y, z). Let us 

call such a graph the Isles of Eden digraph of local rule N. 

 

Normally it is enough to include nodes for which u1,x ≠ u1,y (generator nodes) and those that 

can be reached from them. If all 16 possible nodes are included we call it the full Isles of Eden 

digraph (Section 4.4.4). 

It is also called double preimage locator, because it is only possible to generate two strings 

that are mapped to the same output if there is string that has two distinct preimages, that is 

when there is a fork in the inverse map and therefore the map is not invertible. 

As an example, Figure 4.3 shows the Isles of Eden digraph of rule 154. Colors of nodes 

refer to different properties: black nodes are generators, gray nodes are degenerate, and every 

other node is white. Bits of the two generated input strings are colored blue and red, 

respectively, whereas the bits of their image, the output string, are green. 

The Isles of Eden digraph is basically the de Bruijn graph of the strings of length L with the 

nodes being the Cartesian product of the set of two bit strings. 
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Figure 4.3.  Isles of Eden digraph for local rule 154. The nodes shaded in gray are 
degenerate denoting that any path consisting solely of them can only generate equal 

strings. Horizontal gray lines partition the graph in a way that they cross only 
downward edges. 

 

A walk e0, e1, … , en-1 in GN, ei labeled (ei,x, ei,y, ei,z), starting from a node u, labeled ({u1,x, 

u2,x}, {u1,y, u2,y}) generate two input strings x ’ and y ’ and one output string z : 
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 x ’ = {u1,x, u2,x, e0,x, e1,x, … , en-1,x}, 

 y ’ = {u1,y, u2,y, e0,y, e1,y, … , en-1,y}, (4.10) 

 z  = {e0,z, e1,z, … , en-1,z}, 

 

for which local rule N maps both {ei-2,x, ei-1,x, ei,x} and {ei-2,y, ei-1,y, ei,y} to ei,z. for all 0 ≤ i < n, 

where e-2,x, e-1,x, e-2,y, and e-1,y refer to u1,x, u2,x, u1,y, and u2,y respectively. 

The cyclic boundary condition of the local cellular automaton rules makes interesting those 

walks that are closed (cycles), which implies n = L. The cyclic boundary condition can be 

formalized by the following equations: 

 

 e-2,x ≡ u1,x = en-2,x, 

 e-1,x ≡ u2,x = en-1,x, (4.11) 

 e-2,y ≡ u1,y = en-2,y, 

 e-1,y ≡ u2,y = en-1,y, 

 

and thus ( )N
T =x z  and ( )N

T =y z , where 

 

 x  = {eL-1,x, e0,x, e1,x, … , eL-2,x}, 

 y  = {eL-1,y, e0,y, e1,y, … , eL-2,y}, (4.12) 

 z  = {e0,z, e1,z, … , eL-1,z}. 

 

It follows that the initial node is labeled ({eL-2,x, eL-1,x}, {eL-2,y, eL-1,y}). 

We can assume eL-2,x ≠ eL-2,y because from Lemma 4.4 we know that if it is the nth bit where 

x  and y  differ, then we can take x (L-n) and y (L-n) instead of x  and y . Thus the first 

generated output bit is z 0 and the last is z L-1. 

 

Definition 4.8. Degenerate node and cycle 

 A node u of the Isles of Eden digraph, labeled (ux, uy), is called degenerate iff ux = uy. 

A cycle in the Isles of Eden digraph is called degenerate if all the nodes in it are degenerate. 
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4.4.3 Constructing the Isles of Eden digraph 

We give a constructive method to create the Isles of Eden digraph for a given local rule 

N . 

 

Algorithm to construct the Isles of Eden digraph 

 

1. Add a node for every possible pair of 2-bit binary strings (xL-2,xL-1)–(yL-2,yL-1) 

so that xL-2 ≠ yL-2, and label them accordingly. (There are 8 such nodes). These 

are the generator nodes, marked with black circles in the graph. 

 

2. Now take a node, labeled (xi-1,xi)–(yi-1,yi), and examine it to see if an 

additional pair of bits (xi+1 and yi+1) can be added so that (xi-1,xi,xi+1) and 

(yi-1,yi,yi+1) generate the same output. (We suppose that all previous output bits 

are equal, thus in this case x  and y  will also generate the same output, and to 

calculate the upcoming output bit the three input bits are available.) 

For every possible pair add an edge with a label containing xi+1 and yi+1 as the 

first two bits, and the generated bit N (xi-1,xi,xi+1) = 

N (yi-1,yi,yi+1) as the third bit. (Nodes with no appropriate continuation will 

have no outgoing edges, and thus will be dead ends.) 

 

3. If there is a node labeled (xi,xi+1)–(yi,yi+1), then connect the given edge to it, 

if not, then create a new node for each such edge, and connect the edge to this 

new node. 

 

4. If all nodes have been examined for possible continuations, then quit, 

otherwise pick a node and go to step 2. 

 

 

 



INVERTIBLE CELLULAR AUTOMATA 

 

98

Example 4.4.1. Constructing the Isles of Eden digraph for Rule 45. 

 

Figure 4.4.  Isles of Eden digraph for local rule 45. Cycles in it refer to different inputs 
that map to the same output. Horizontal gray lines partition the graph in a way that they 

cross only downward edges. 

Table XVI.  Mapping rules of local rule 45. 

Input 

pattern 

Output 

bit 

000 1 
001 0 
010 1 
011 1 
100 0 
101 1 
110 0 
111 0 

 

Initial nodes to be added are (00,10), (00,11), (01,10), (01,11), and their mirrors: (10,00), 

(11,00), (10,01) and (11,01). Let us first examine node (00,10). According to the construction 

the label of a node contains the first two bits of the three bit strings for the next mapping. 

Thus 00 refers to the first two rows of Table 1, and can generate a 1 and a 0 with 
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continuations of 0 and 1, respectively. The substring 10 refers to rows 5 and 6 and can 

generate a 0 and a 1 with continuations of 0 and 1, respectively. Therefore we have to add two 

edges from this node referring to the two possible outputs. 

One will be labeled (0,1,1), which means we concatenate a 0 to 00 and a 1 to 10 obtaining 

000 and 101 respectively. Both generate an output 1 that is the third digit on the label of the 

edge. This edge will point to the node (00,01) that is obtained by taking the last two digits of 

000 and 101, respectively. The other outgoing edge will be labeled (1,0,0). The first digit is 

concatenated to 00, giving 001; the second digit is concatenated to 10, giving 100. Both 

strings generate 0, the third digit of the label. The edge will point to node (01,00) that refers 

two the last two digits of 001 and 100, respectively. 

The nodes (00,01) and (01,00) have to be added to the graph, because they are not present 

yet. This process has to be done for the newly created nodes, and repeated until every node 

added to the graph was examined. 

The nodes (01,11) and its mirror (11,01) are interesting, because they have no possible 

continuation to generate the same output: rows 3 and 4 (having the prefix 01) both generate 1, 

whereas rows 7 and 8 (having the prefix 11) both generate 0. 

 

Example 4.4.2. Constructing the Isles of Eden digraph for Rule 154. 

This example is a bit more complicated since it includes degenerate nodes as well. We used 

the Isles of Eden digraph for Rule 154 as the sample digraph at the definition, shown in Figure 

4.3. 

Table XVII.  Mapping rules of local rule 154. 

Input 

pattern 

Output 

bit 

000 0 
001 1 
010 0 
011 1 
100 1 
101 0 
110 0 
111 1 

 

Initial nodes to be added are (00,10), (00,11), (01,10), (01,11), and their mirrors: (10,00), 

(11,00), (10,01) and (11,01). Let us first examine node (10,01). According to the construction 

the label of a node contains the first two bits of the three bit strings for the next mapping. 
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Thus the substring 10 refers to the rows 5 and 6 of Table 2, and can generate a 1 and a 0 with 

continuations of 0 and 1, respectively. The substring 01 refers to rows 3 and 4 and can 

generate a 0 and a 1 with continuations of 0 and 1, respectively. Therefore we have to add two 

edges from this node referring to the two possible outputs. 

One will be labeled (0,1,1), which means we concatenate a 0 to 10 and a 1 to 01 obtaining 

100 and 011 respectively. Both generate an output 1 that is the third digit on the label of the 

edge. This edge will point to the node (00,11) that is obtained by taking the last two digits of 

100 and 011, respectively. The other outgoing edge will be labeled (1,0,0). The first digit is 

concatenated to 10, giving 101; the second digit is concatenated to 01, giving 010. Both 

strings generate 0, the third digit of the label. The edge will point to node (01,10) that refers 

two the last two digits of 001 and 100, respectively. 

The nodes (00,11) and (01,10) have to be added to the graph, because they are not present 

yet. This process has to be done for the newly created nodes, and repeated until every node 

added to the graph was examined. 

 

Some comments 

Note that both graphs are structured to have the mirrored states next to each other, except 

for the degenerate (self symmetric) ones. Also note that the statement of Lemma 4.4 means 

that a closed walk on a cycle can be started from any if its nodes, and the corresponding input 

and output strings can be transformed to each other by circular shifting of the same length. 

4.4.4 Full Isles of Eden digraph 

The number of nodes in the Isles of Eden digraph is between 8 and 16. The lower limit is 

due to the fact that 8 nodes are always added in the first step of the algorithm. The upper 

bound is given by the number of possible pairs of bit-strings of length 2 that is equal to 

( )222 16= . The reason for not including some nodes for certain local rules is that they have 

no incoming edges and thus they cannot be part of a cycle in the Isles of Eden digraph. 

Nevertheless, we may include all 16 nodes in any Isles of Eden digraph, the number of non-

degenerate cycles will not change. This digraph is called the full Isles of Eden digraph 

( )F
IE NG  of a given local rule N . It can be constructed using the following algorithm: 
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Algorithm to construct the full Isles of Eden digraph 

 

1. Add a node for every possible pair of 2-bit binary strings and label them 

accordingly. (There are 16 such nodes.) 

 

2. Now take a node, labeled (xi-1,xi)–(yi-1,yi), and examine it to see if an 

additional pair of bits (xi+1 and yi+1) can be added so that (xi-1,xi,xi+1)–(yi-1,yi,yi+1) 

generate the same output. (We suppose that all previous output bits are equal, 

thus in this case x  and y  will also generate the same output, and to calculate 

the upcoming output bit the three input bits are available.) For every possible 

pair add an edge from this node to the node labeled (xi,xi+1)–(yi,yi+1), with a 

label containing xi+1 and yi+1 as the first two bits, and the generated bit N (xi-

1,xi,xi+1) = N (yi-1,yi,yi+1) as the third bit. (Nodes with no appropriate 

continuation will have no outgoing edges, and thus will be dead ends.) 

 

3. If all nodes have been examined for possible continuations, then quit, 

otherwise pick a node and go to step 2. 

 

Since the full Isles of Eden digraph contains all 16 possible nodes, it also contains all 4 

degenerate ones. Note that the degenerate subgraph always contains the same edges, since an 

edge from a degenerate node to a (not necessarily different) degenerate node refers to the 

same three bit pattern for both x  and y , and therefore to the same output bit. These edges 

are invariant for the full Isles of Eden digraphs of all 256 local rules. There are 8 of them, 2 

per each degenerate node. 

4.4.5 Effect of global equivalence transformations on Isles of Eden digraphs 

Based on the three global equivalence transformations, appropriate transformations can be 

established for the Isles of Eden digraphs of globally equivalent rules: 
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1. left-right transformation: ( ) ( )( )† †
IE IEN T N=G G  

2. global complementation: ( ) ( )( )IEIE N T N=G G  

3. left-right complementation: ( ) ( )( )* *
IE IEN T N=G G  

4. alternating transformation: 
 ( ) � ( )( )IEIE N T N=G G  

 

The global complementation on ( )IE NG  can be easily characterized for any local rule 

N . ( )IE NG  can be generated from ( )IE NG  by inverting all bits in the labels of the nodes 

and the edges. Naturally, ( )*
IE NG  can be generated from ( )†

IE NG  in the same way. The 

alternating transformation is even simpler: to compute 
 ( )IE NG  from ( )IE NG , only the 

output bits have to be inverted. 

Characterization of the left-right transformation is more complicated. 20 out of the 64 

possible edges are not affected by it, whereas changes regarding the rest of the edges depend 

on the given rule.3 

4.5 Detecting isles of Eden with Isles of Eden digraph 

As we have seen, in order to generate an output with correct cyclic boundary conditions we 

need to return to the starting node. It follows that for every input pair ( ), L∈Σx y  that can 

generate the same output string L∈Σz  and for which ≠x y , there is a cycle of length L in 

the Isles of Eden digraph, and every cycle of length L in the graph represents such an input 

pair ( ), L∈Σx y . Thus the length of the input strings equals to the length of the cycles, and all 

lengths for which there is no cycle in the graph will give a contradiction. The following 

theorem is a joint result of this observation and Lemma 4.2: 

 

                                                 
3 8 out of the 20 are the invariant edges in the degenerate subgraph. The remaining 12 edges start from the 12 

non-degenerate nodes of ( )F
IE NG . 
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Theorem 4.1. 

Every orbit of a local rule N  over ΣL is an isle of Eden if and only if ( )IE NG  has no 

non-degenerate cycle of length L. 

 

Proof 

⇒ Let us suppose indirectly that every orbit of a local rule N  over ΣL is an isle of Eden, but 

there is a non-degenerate cycle of length L in ( )IE NG . The input strings L∈Σx  and L∈Σy  

generated by this cycle have the same image L∈Σz  under 
N

T , but they are different because 

it has a node labeled (ux, uy) with ux and uy being different substrings of x  and y , 

respectively, starting at the same index. Therefore z  has two different preimages under 
N

T . 

This contradicts the fact that every L∈Σz  has a unique preimage under 
N

T  that follows from 

Lemma 4.2, since we assumed that every orbit of a local rule N  over ΣL is an isle of Eden. 

 

⇐ Since there is no non-degenerate cycle of length L in ( )IE NG , thus there exist no two 

different strings that are mapped to the same L∈Σz . Therefore every L∈Σz  has at most one 

preimage under 
N

T , and using Lemma 4.3 and Lemma 4.2 respectively, it follows that every 

orbit of a local rule N  over ΣL is an Isle of Eden. � 

4.6 Invertibility for infinitely many string lengths 

By calculating the images for all rules and for bit-lengths 2 < L < 20 I have numerically 

determined all cases where the rule is invertible, i.e. all preimages are unique. From the table 

one could easily see that out of the 256 rules there are only 16 rules in case of which there are 

more than one string lengths for which all preimages are unique. String lengths for which 

these rules are not invertible either do not exist (the property holds for all string lengths of a 

certain rule), or occur periodically with a period of 2 or 3. The rules are shown in Table 

XVIII. Some of them belong to same equivalence classes [58], which are grouped into lines, 

i.e. every row refers to a single equivalence class. Those rules for which non-invertible string 

lengths do not exist are shown with an infinite period. It is worth to mention that the local 
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mapping function of these rules only depend on one of their inputs. Therefore they can be 

treated as trivially invertible cases. 

Of course, except for the trivially invertible cases, the periodicity for this finite interval 

does not imply that it holds for all integers. To prove this we have to examine the Isles of 

Eden digraphs of these rules. The following sections contain the graphs and the attached 

proofs for the non-trivially invertible classes. The proofs are based on showing that the graphs 

do not contain non-degenerate cycles of lengths non-divisible by the period. 

Table XVIII.  Rules that are invertible for more than one string length for 2 < I < 20. 
Rules belonging to the same equivalence class are displayed on the same line. 

Period of non-

invertible lengths 
Rule numbers 

2 
45, 75, 89, 101 

154, 166, 180, 210 

3 
105 
150 

∞ 

15, 85 
51 

170, 240 
204 

 

Finding cycles in directed graphs is generally a difficult task, but by topologically ordering 

the nodes it can be made much easier, if most edges move to the same direction. We 

organized the Isles of Eden digraphs in Figure 4.3 and Figure 4.4 so that most of the edges 

point downwards. It is trivial that a cycle has to contain edges of other directions (horizontal 

or upward) too. Some cuts are drawn on the graphs that have only downward crossing edges, 

therefore no cycles can contain nodes from the two sides of any such a cut. Therefore these 

cuts partition the graph to subgraphs, and we only need to examine these subgraphs for cycles. 

We will use this observation to find all cycles of a Isles of Eden digraph. 

It is enough to look for simple cycles (all nodes are different except the starting and ending 

node), because other cycles can be decomposed to single cycles, therefore their lengths are the 

sums of the simple cycles they are composed of. 
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4.6.1 Class “Period 2” 

The 8 rules in this class belong to two global equivalence classes, so it is enough to consider 

one from each. Theorems 4.2 and 4.3 deal with rule 45 and 154, respectively. 

 

Theorem 4.2. 

Every orbit of Rule 45 over ΣL is an isle of Eden if and only if L is an odd number. 

 

Proof 

Figure 4.4 shows the Isles of Eden digraph for Rule 45. We will see that for any positive even 

number there is a cycle in ( )45IEG  with this length. From this, using Theorem 4.1, it follows 

that if L is an even number, then there is a cycle of length L in the graph and thus there is an 

orbit of Rule 45 over ΣL that is not an Isle of Eden. Then we will prove that all cycles in the 

graph are of even length, therefore if L is an odd number, then there are no cycles of length L, 

and using Theorem 4.1 we can conclude that every orbit of Rule 45 over ΣL is an Isle of Eden. 

 

⇒ For every length L = 2n there is a cycle in ( )45IEG , e.g. starting from (01,10) and taking 

the cycle of length 2 through (10,01) back to (01,10) n times. These cycles refer to the strings 

(01)n and (10)n and both map to (11)n. 

 

⇐ The upper four nodes form a bipartite subgraph, within which there are only cycles of even 

length. If the starting state is not in the upper four nodes, then the only possibility for a cycle 

is between node (01,10) and (10,01), because the rest of the subgraphs are not even connected. 

This is also a bipartite subgraph, so this allows only for cycles of even length too. � 

 

 

Another proof 

If we determine the adjacency matrix A45 of the graph in Figure 4.4, the number of cycles of 

length n can be easily determined. There are no degenerate nodes in ( )45IEG , so all cycles 

are non-degenerate. Since the number of cycles of length n starting at node i is A45
n (i, i), thus 

the total number of cycles of length n is Tr (A45
n), the trace of A45

n. Tr (A45
n) is equal to the 

sum of the eigenvalues of A45
n, which allows us to compute it for any n without actually 

computing A45
n. The adjacency matrix for rule 45 is the following: 
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 45

0 1 1 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0

A

 
 
 
 
 
 
 

=  
 
 
 
 
 
 
  

 

 

The eigenvalues of A45 can be computed from its characteristic polynomial: 

 ( )6 4 23 2 0x x x− + =  (4.13) 

The nonzero eigenvalues are the following: 1,2 3,42, 1λ λ= ± = ± . Note that the eigenvalues 

of A45 are real and sign symmetric, and hence their sum is zero. Since the eigenvalues of A45
n 

are ( )niλ , they are also sign symmetric for odd n, whereas they are positive integers for even 

n. Therefore 

 
( ) ( )
( ) ( )

Tr 0,  for 2

Tr 0,  for 2 1

n

i

n

i

A n k

A n k

λ

λ

= > =

= = = +

∑
∑

, (4.14) 

where k ∈ ℕ. This is what we wanted to prove. � 
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Table XIX.  Examples of cycles of even length for Rule 45. 

L Route 
Input 

strings 

Output 

string 

4 

(01,10)-
(10,01)-
(01,10)-
(10,01)-
(01,10) 

0101 
1010 

1111 

4 

(00,01)-
(00,10)-
(01,00)-
(10,00)-
(00,01) 

0100 
0001 

0101 

6 

(01,10)-
(10,01)-
(01,10)-
(10,01)-
(01,10)-
(10,01)-
(01,10) 

010101 
101010 

111111 

6 

(00,10)-
(00,01)-
(00,10)-
(00,01)-
(00,10)-
(00,01)-
(00,10) 

000000 
101010 

111111 

8 

(01,10)-
(10,01)-
(01,10)-
(10,01)-
(01,10)-
(10,01)-
(01,10)-
(10,01)-
(01,10) 

01010101 
10101010 

11111111 
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Theorem 4.3. 

Every orbit of Rule 154 over ΣL is an isle of Eden if and only if L is an odd number. 

 

Proof 

Figure 4.3 shows the Isles of Eden digraph for Rule 154. Similarly to the proof of Theorem 

4.2 we only have to show that for any positive even number there is a cycle in the Isles of 

Eden digraph of this length touching a non-degenerate node and that all cycles in the graph 

touching a non-degenerate node are of even length. 

 

 

⇒ For every length L = 2n there is a cycle in ( )154IEG , e.g. starting from (01,10) and taking 

the cycle of length 2 through (10,01) back to (01,10) n times. None of these nodes are 

degenerate. These cycles refer to the strings (01)n and (10)n and both map to (00)n. 

 

⇐ Let us take the indicated subgraphs of ( )154IEG  in a top-down order. The upper two 

nodes form a bipartite subgraph, within which there are only cycles of even length. The next 

subgraph (nodes (00,11) and (11,00)) is not connected. The next subgraph of four nodes is 

also a bipartite subgraph, thus it contains only cycles of even length. The next subgraph 

(nodes (01,11) and (11,01)) is not connected again. Although the bottommost subgraph 

contains cycles of odd length, these cycles include only degenerate nodes. If the starting node 

is in this subgraph, then the two input strings will be equal since the pairs of these four nodes 

contain equal strings, and also, all edges have equal digits for the two input strings. Therefore 

it does not contain any cycles corresponding to different input strings. � 

 

Another proof 

Since ( )154IEG  contains degenerate nodes, the number of total cycles is higher than the 

number of non-degenerate cycles. Thus we cannot use the trace of its adjacency matrix A154. 

But since degenerate nodes in ( )154IEG  do not have outgoing edges going to a non-

degenerate node, therefore no non-degenerate cycles can include degenerate nodes, and we 
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only need to consider the adjacency matrix of the non-degenerate subgraph of ( )154IEG .4 

Let �154A  denote the adjacency matrix of the non-degenerate subgraph of A154. Computing �154A  

gives 

 �
154

0 1 0 0 0 1 0 0 0 0

1 0 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0 0

A

 
 
 
 
 
 
 

=  
 
 
 
 
 
 
  

 

 

Although the non-degenerate subgraph of ( )154IEG  is not isomorphic to ( )45IEG , but their 

characteristic polynomials are the same. Therefore their spectra are equal, and �154A  has the 

same nonzero eigenvalues as A45. Therefore the rest of the proof is the same as rule 45. � 

4.6.2 Class “Period 3” 

 

Theorem 4.4 

 Every bit string of rules 150  and 105  is an Isle of Eden if, and only if, 
3

L
 is not an 

integer. 

 

Proof 5 

At first we construct the Isles of Eden digraphs for rules 150  and 105 . These are shown in 

Figure 4.5. 

 

                                                 
4 The same reasoning also works if the degenerate subgraph is connected to the non-degenerate subgraph only by 

outgoing edges. 
5 This theorem is proven in [60] using circular matrices. 
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Figure 4.5.  Isles of Eden digraph of local rule 105 (left) and 150 (right). 

 

Since rule 105  and 150  are the alternate transforms from each other, therefore 

( )105IEG  and ( )150IEG  are very similar. Observe that only the green output bits are 

inverted. Since the output bit does not affect the topology of the digraph, their adjacency 

matrixes are equal: 
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105 150

0 0 1 0 1 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0 0 1

1 0 0 1 0 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 1 0 1 0 0

A A= =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 

The characteristic polynomial of the matrix is 

 ( )9 3 8 0x x − =  (4.15) 

The nonzero eigenvalues are the following: 1 2,32, 1 3iλ λ= = − ± . Note that the nonzero 

eigenvalues are the complex cubic roots of 8, that is vectors of length 2 and argument 0, 2
3
π , 

and 4
3
π , respectively. Therefore the following statements hold for the complex eigenvalues 

and k ∈ ℕ: 

 ( ) ( )3 1 3 2

2 3 2

1
8

2

k k kλ λ λ+ += =  (4.16) 

and 

 ( ) ( )3 1 3 2

3 2 3

1
8

2

k k kλ λ λ+ += =  (4.17) 

 

The sum of the eigenvalues is zero, and due to Equations (4.15) and (4.16) the sum of 

powers of the eigenvalues is also zero for every integer not divisible by 3, whereas they are 

positive integers for n = 3k, because ( )3 8
k k

iλ =  for i = 1, 2, 3. Therefore 

 
( ) ( )
( ) ( )

105

105

Tr 0,  for 3

Tr 0,  for 3 1 and 3 2

n

i

n

i

A n k

A n k n k

λ

λ

= > =

= = = + = +

∑
∑

, (4.18) 
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where k ∈ ℕ. Since A105 = A150, it follows that all cycles in ( )105IEG  and ( )150IEG  are of 

lengths divisible by 3. The statement of the theorem now directly follows from Theorem 4.1. 

� 

4.7 Conclusions 

I dealt with the invertibility of elementary CAs, and I showed that invertibility for 

infinitely many string lengths occurs also for many non-trivial cases. I defined the Isles of 

Eden digraph that allows one to quickly check if the given CA is invertible for a particular 

length and proved the equivalence of the non-existence of a non-degenerate cycle of length n 

and the invertibility of the CA for length n. Using graph cycle counting algorithms, and 

bipartiteness of subgraphs, as well as spectral analysis of graphs I proved that all rules that 

exhibit periodic invertibility for small string lengths retain this property for every string 

length. 

Analyzing invertibility of cellular architectures is an emerging research field due to its 

connection to computational models and simulating interactions of many particle physical 

systems. Indeed, it is proven that there exist computationally universal invertible cellular 

automata [61]. There are physical systems that are in fact can modeled by invertible cellular 

automata, including lattice-gas model of fluid dynamics [62] and quantum computing [63]. 
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5  Summary 

5.1 Methods of Investigation 

Most of my research is directly connected to the Cellular Nonlinear/Neural Network 

(CNN), the CNN Universal Machine (CNN-UM) and the Cellular Wave Computing 

paradigm. The CNN templates developed were designed using analytical methods published 

in the literature ([18],[19]). I relied on the concept of the CNN-UM being a Universal 

Machine on Flows (UMF) [20] for the design of cellular wave algorithms. Besides the 

templates designed by myself I utilized many standard template classes [12], including ones 

that implement morphological and other image processing operators. 

A key method I have developed is semantic embedding. I applied it to in spatial and 

multimodal spatial-temporal detection tasks to find topographic features by giving semantic 

description of sample input images and video flows based on structural scene analysis. I 

validated the feature detection algorithms on standard and self made test sets. 

I used standard document scanners to acquire handwritten texts. Experiments regarding 

pattern detection in 2D video flows were performed on a Blind Acquired Visual Flow 

Database containing recordings taken with commercial cell phones with built-in cameras and 

compact digital cameras by blind persons in real world situations. 

For algorithm development I used the software package named Aladdin developed by 

Analogic Computers Ltd [21], the ACE-16k cellular visual microprocessor [22] and the 

Matlab software environment [23] with the MatCNN toolbox [64]. 

For expression level language modeling I used bigrams, as a simple, non-semantic model, 

and I relied on statistical methods for probability estimations. 

In the field of cellular automata I relied on results in theory of nonlinear dynamics, graph 

theory, symbolic dynamics, and especially on new results of L. O. Chua in qualitative theory 

of binary Cellular Nonlinear Networks [60]. 
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5.2 New Scientific Results 

Thesis I. Analogic algorithms with spatial semantic embedding for handwritten 

text recognition 

Great variety of handwriting styles makes it hard to recognize handwritten texts by machines 

in general. I created a handwritten text recognition system that mimics the human reading 

process by incorporating cellular wave algorithms as a model of perception and integrating the 

use of linguistic knowledge into the recognition process. The system realizes lexicon 

reduction with a very high reduction rate (>99.9%) and with a coverage over 80%, which is 

comparable to previous results in the literature. 

I.1.  I developed a method called shape coding to embed the recognition of 2D 

morphological shape features into a semantic environment. 

Making use of linguistic information can greatly improve the performance of recognition 

systems, but in the traditional way of using it for post-processing satisfactory results could 

not be achieved. Shape coding enables embedding linguistic knowledge into the recognition 

process without actually recognizing the letters or the word. 

Advantages of this approach are twofold. On one hand it overcomes the problem of the 

mutual dependence of segmentation and recognition of letters (Sayre paradox [34]). On the 

other hand linguistic knowledge can influence the relevancy and importance of geometric 

features. 

I.2.  I determined six holistic features detectable on cellular wave computers and 

implemented several feature extraction and feature classification analogic 

algorithms 

Holistic features are primitives of letters and they are detected on the word image without 

the need to segment it into letters. The six features are as follows: holes, ascenders, 

descenders, junction points, hills and valleys. Some features are classified into several 

feature classes based on their size, shape and/or position. Some characteristic feature maps 

are shown in Figure 5.1. 
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 (a) (b) 

Figure 5.1.  Different classes of  (a) holes,  (b) ascenders and descenders 

I.3.  I determined general parameters characteristic to the writing style and I gave 

methods to adaptively compute them 

Identified parameters include distance of baselines of the writing, thresholds for minimum 

ascender and descender height, size intervals for classification of holes, and average letter 

width. The methods developed are based on my experiments and are realized using cellular 

wave algorithms. 

I.4.  I created a method to map topographic features detected at the word level to 

possible letter positions 

A topographic feature detected can belong to multiple positions in a word, therefore the 

mapping is ambiguous. Figure 5.2 shows a simple mapping problem. The method gives all 

possible mappings obeying the following geometric constraints: slant of the writing, 

horizontal order of features and vertical coupling. 

  

 

Figure 5.2.  Mapping of topographic features is ambiguous, the hole in letter ‘o’ can 
belong to two distinct positions, doubling the number of possible mappings. 

I.5.  I created a method to estimate the number of characters in a handwritten word 

image using horizontal connected components as a quasi-independent measure 

I experimentally proved that, considering a handwritten cursive word image, the number of 

horizontal connected components and the number of letters of the word has a strong 

correlation and their ratio is independent of the writing style. The new method can estimate 

1. ascender, hole 
2. – 
3. – 
 
1. ascender 
2. hole 
3. – 
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the number of letters in a word more accurately than an estimation based on the pixel length 

of the word, meanwhile the input it relies on can be computed with a single cellular wave 

instruction, the HCCD template. 

I.6.  I developed a novel upper baseline detection algorithm that gives robust results 

even for words with a high number of ascenders 

Detecting the upper baseline properly is very important to enable accurate feature detection. 

I gave a cellular wave algorithm for upper baseline detection that uses connected 

component detector to locate a horizontal baseline on a skew-corrected word image. 

Detection result is shown in Figure 5.3 for a sample word. I showed that restricting the 

upper baseline to be horizontal does not decrease the accuracy of feature detection, and that 

one free parameter can be determined more robustly than two. 

 

Figure 5.3.  Sample word image with computed horizontal upper baseline. 
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Thesis II. Detection of dynamic events and specific 2D patterns in saccadic and 

noisy visual flows recorded by a moving, blind platform 

Extracting and reading signs from video flows recorded by a moving camera in real-world 

situations is a very complex task motivated by the way humans find and read signs and use it 

for orientation. I gave algorithms to perform sign detection in specific situations that can be 

described by pre-defined semantics and to recognize numbers in them. The algorithms have 

been tested and validated on recordings from the Blind Acquired Visual Flow Database, 

containing more than an hour of recordings and over 100 dynamic events. 

II.1.  I defined a general semantic framework for hierarchical processing of 

multimodal sensory information with embedded semantics 

I created a framework for hierarchical processing of information coming from multimodal, 

topographic sensors and integrating semantics to control sensing-processing. I defined the 

following abstraction levels in the hierarchy: features, symptoms, events, situations. Events 

are recorded in an Event Register that, together with active situations and a priori goals, 

influences the attention mechanism. Attention Director controls actuators to interact with 

the environment and sensors to facilitate better sensing with regard to current situations and 

events. 

II.2.  I gave analogic cellular wave algorithms to detect and validate route number 

signs on public transport vehicles in a 2D visual flow 

The video flows recorded by mobile devices are of low-quality and some control is needed 

to direct the camera towards the sign. The algorithm I created detects possible sign 

candidates and validates them by checking if they contain large figures. UMF diagram of 

the detection algorithm is shown in Figure 5.5. Detection is shown in Figure 5.4 for a 

sample frame. Valid signs are tracked through frames, and an enhanced image is produced 

by superposing sign images extracted from consecutive frames on one another to allow for 

better recognition results. 
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(a)   (b) 

Figure 5.4.  Sign localization on a tram.  (a) Original input frame  (b) Sign location on 
binarized input 

 

 

Figure 5.5.  UMF diagram of the algorithm locating signs with a white background. 
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II.3.  I gave a topographic feature detection based method to recognize numbers in 

signs extracted from 2D visual flows 

Recognition is based on topographic feature detection by cellular wave algorithms. I use 

holes and straight lines as features and a box model is used in addition to allow the 

detection of open semi-holes in the shape of numbers. Sample topographic feature maps are 

shown in Figure 5.6. 

     

Figure 5.6.  Sample feature maps. Right open holes and their auxiliary lines are shown in 
cyan, middle vertical line is shown in blue, and upper round hole is shown in red. 
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Thesis III. Invertibility of one dimensional cellular wave computers 

Analysis of invertibility of dynamical systems is of great importance. Based on the concept of 

isle of Eden, introduced by L. O. Chua, I developed a new construction for detecting merging 

points in binary cellular nonlinear networks (cellular automata) trajectories using a graph-

theoretical approach. Isles of Eden are orbits with every state of it being the unique preimage 

of itself under the nth iterated global map. I proved a general theorem connecting a well-

defined set of cycles of the digraph to isles of Eden, and analyzed all 256 elementary cellular 

automata for non-trivial invertibility. 

III.1.  I defined a digraph for analyzing pairs of input patterns in elementary CAs, 

called the Isles of Eden digraph, and I gave an algorithm to construct it for any 

elementary CA. I proved a general theorem stating that there are no degenerate 

cycles of length L in the Isles of Eden digraph of a given CA if and only if all of its 

orbits are isles of Eden, which is equivalent to the invertibility of the CA. 

The Isles of Eden digraph is a de Bruijn graph of pairs of two bit binary patterns, and its 

cycles of length L correspond to two binary strings of length L that are mapped to the same 

output. If the strings are equal the cycle is called degenerate. Non-degenerate cycles refer to 

different strings, referring to a merging point in the trajectory. To prove the theorem I 

proved through some auxiliary lemmas that for a given CA and a given pattern length the 

following statements are equivalent: 

1. All cycles of this length are degenerate 

2. Global mapping is surjective (there is no Garden of Eden) 

3. Global mapping is injective (there is no merging point in the trajectory) 

4. All orbits are isles of Eden 

5. The cellular automaton is invertible 

III.2.  I determined all elementary cellular automata that are invertible for an infinite 

number of pattern lengths, and proved that non-invertible pattern lengths occur 

periodically. 

I performed numerical simulations on the space of elementary cellular automata to analyze 

the surjectivity of the global map for all pattern lengths less than 20. Based on the results I 

determined candidates that might be invertible for infinitely many pattern lengths. I 
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analyzed their Isles of Eden digraphs, and proved that non-invertible pattern lengths occur 

periodically for all of them (Table XX). Figure 5.7 shows a sample Isles of Eden digraph 

for rule 45. 

 

Table XX.  CA rules that are invertible for infinitely many pattern lengths. 

Period of non-

invertible states 
Rule numbers 

2 
45, 75, 89, 101 

154, 166, 180, 210 

3 
105 
150 

∞ 

15, 85 
51 

170, 240 
204 

 

 

 

Figure 5.7.  Isles of Eden digraph for local rule 45. All cycles in it are of even length, 
because their containing subgraphs are bipartite. 
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5.3 Application areas of the results 

Most of the research I did is directly motivated by applications. The advantage of the 

methods I developed for handwriting recognition is that they are general purpose algorithms, 

and they are not restricted to small dictionaries. Possible applications include processing of 

personal notes and official forms. 

The semantic embedding framework can be used in a wide area, for any multimodal, multi-

sensor information processing task. Of course, the general framework should be adapted and 

sophisticated according to specific aspects of the given problem. 

Route number localization and recognition algorithms can be utilized in a portable device 

like the Bionic Eyeglass at bus and tram stops to provide help in finding the right vehicle for a 

visually impaired person. They can also serve as a basis for a more general Blind Mobile 

Navigation framework capable of high-level object detection and recognition. Such a 

framework can not only be used by a visually impaired person, but also in autonomous robots 

designed to operate in hazardous environments to facilitate their automatic navigation. 

Results on the invertibility of elementary cellular automata can be used for further 

theoretical investigations in the field, and they can also serve as a basis of a more general 

research on new computational models using quantum computers and the relation of physics 

and computation. Moreover it can be used to investigate methods for detecting real world 

patterns that are easy to generate but difficult to detect. 
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Appendix:  CNN Templates  

Linear, isotropic templates 

 
2 1 2 2 1 2

1 0 1 1 0 1

2 1 2 2 1 2

, ,

a a a b b b

A a a a B b b b z

a a a b b b

   
   = =   
      

 

 

Feedback matrix (A) Control matrix (B) Threshold 
Template 

a0 a1 a2 b0 b1 b2 z 

Boundary 

condition 

AND 2 0 0 1 0 0 -1 X 

BPROP 3 0.25 0.25 0 0 0 3.75 –1 

FIGREC 4 0.5 0.5 4 0 0 3 0 

HOLE-FILLING 3 1 0 4 0 0 -1 0 

HOLE-FILLING4 3 0.5 0.5 4 0 0 -1.5 0 

HOLLOW 3 0.25 0.25 0 0 0 2.25 –1 

JUNCTION 1 0 0 6 1 1 -3 –1 

LOGDIF 2 0 0 -1 0 0 -1 X 

NOT 1 0 0 -2 0 0 0 X 

OR 2 0 0 1 0 0 1 X 

SMALLKILLER 2 1 1 0 0 0 0 0 

 

X: “don’t care” 
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Linear, non-isotropic templates 

CONCAVEARCFILLER45 

0.5 0 0 0 0 0

0.5 2 0 , 0 2 0 , 1

0.5 0.5 0.5 0 0 0

A B z

   
   = = = −   
      

 

DILATION 

0 0 0 0 0 0

0 0 0 , 1 1 0 , 2

0 0 0 0 1 0

A B z

   
   = = =   
      

 

EROSION 

0 0 0 0 1 0

0 0 0 , 0 1 1 , 2

0 0 0 0 0 0

A B z

   
   = = = −   
      

 

HORIZONTAL CONNECTED 

COMPONENTS DETECTOR 

(HCCD) 

0 0 0 0 0 0

1 2 1 , 0 0 0 , 0

0 0 0 0 0 0

A B z

   
   = − = =   
      

 

HORIZONTALMELTING 

(MELTRIGHT) 

1 0 0 0 0 0

1 3 0 , 0 0 0 , 1

1 0 0 0 0 0

A B z

   
   = = = −   
      

 

LOCAL NORTHERN ELEMENT 

(LNE) 

0 0 0 1 1 1

0 1 0 , 0 1 0 , 3

0 0 0 0 0 0

A B z

− − −   
   = = = −   
      

 

LOCAL SOUTHERN ELEMENT 

(LSE) 

0 0 0 0 0 0

0 1 0 , 0 1 0 , 3

0 0 0 1 1 1

A B z

   
   = = = −   
   − − −   

 

SHADOWDOWN 

0 2 0 0 0 0

0 2 0 , 0 2 0 , 0

0 0 0 0 0 0

A B z

   
   = = =   
        

SHADOWUP 

0 0 0 0 0 0

0 2 0 , 0 2 0 , 0

0 2 0 0 0 0

A B z

   
   = = =   
        

VERTICAL CONNECTED 

COMPONENTS DETECTOR 

(VCCD) 

0 1 0 0 0 0

0 2 0 , 0 0 0 , 0

0 1 0 0 0 0

A B z

   
   = = =   
   −     

VERTICALMELTING 

(MELTDOWN) 

1 1 1 0 0 0

0 3 0 , 0 0 0 , 1

0 0 0 0 0 0

A B z

   
   = = = −   
        

 


