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Abstract

Sorting and separation of micron-sized particles have an increasing impor-

tance in biomedical diagnostics, biochemical analyses, food and chemical

processing, and environmental assessment. By employing the unique char-

acteristics of microscale flow phenomena, various techniques have been es-

tablished for fast and accurate separation, and sorting of cells or parti-

cles in a continuous manner. As in classical separation procedures, the

size-fractionation of particles or cells could be realized in passive or active

methods. Passive procedures, which do not require any external force-field,

utilize the interaction between particles, flow, and the channel structure and

particles to separate different-sized particles. Meanwhile, active separation

techniques make use of external force-fields in different ways.

This doctoral thesis provides a novel pathogen detection device (Flow

Through Nematode Filter, FTNF), and a novel application of an asym-

metric column structure, which is called deterministic lateral displacement

(DLD) device. These can be integrated into biochips that can provide fur-

ther downstream analysis of the separation products. The working princi-

ples are explained in detail, and performances of the devices are discussed

through measurement results.

The main application target of the present work is medicine and biomedical

research but we are also open for other application areas. The use of these

simple microfluidic devices will make it possible to extend the use of cell-

sorting in point of care settings, closer to the patient at the clinic or in the

field.

Keywords: Microfluidic fractionation procedures · Pathogen en-

richment from blood · Blood fractionation · Microvesicle separa-

tion from serological samples
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Chapter 1

Introduction

Microfluidics concerns design, fabrication, and experiments of miniaturized fluidic

systems, which has undergone rapid developments during the last two decades [1].

As an interdisciplinary area, this rapidly growing field of technology has numerous

applications in biomedical diagnostics, chemical analysis, automotive, and electronic

industries [2]. One of the pivotal applications of microfluidics is the development of lab-

on-a-chip (LOC) devices as point-of-care (POC) diagnostic tools. A typical LOC device

includes various functional modules: sample transport, sample preparation, separation,

detection, and analysis module [3,4]. The label-free size separation of particles or cells

is vital to many of the analytical and preparative techniques used in the fields of

chemical, biochemical, and clinical analysis, which led to ground breaking advances in

terms of speed of analyses, resolution of separations, and automation of procedures [5].

Additionally, microfluidic separator devices can form a part of portable systems for

point-of-care or on-the-spot detection [6].

Several variations of microfluidic cell sorters, which implement different sorting

mechanisms, have been designed and fabricated [7, 8]. The chosen method of particle

handling is generally based on the nature of application, which strongly depends on the

composition of the sample and the final goal of the analysis should also be considered.

Several strategies exist for this purpose based on specific cell/particle characteristics

including manipulation of particles in fluids or removal of particulate matter from

fluids [9]. The particles may act or interact with the analyte, in which case they need

to be removed from the sample [10].

1
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1.1 Traditional Fractionation Techniques of Biological Samples

1.1 Traditional Fractionation Techniques of Biological

Samples

In traditional cell isolation processes, size separation is commonly used to separate

mixtures of cells or particles before subsequent analysis or culturing [10]. Cells ex-

hibit variations in their hydrodynamic radii stemming from changes in volume, shape

or mechanical properties, dependent on their state of health [11]. The existing cell

separation methodologies can be classified into two main groups to enrich selected sub-

populations [8]. The first group is based on physical descriptors like size, shape, and

density differences and includes filtration and centrifugation techniques, which are com-

monly used for debulking heterogeneous samples [12, 13]. The second group comprises

affinity methods such as capture on affinity solid matrix (beads, plates, fibers) [14–16],

fluorescence-activated cell sorting (FACS) [17, 18] and magnetic cell sorting [19, 20],

which are based upon biochemical cell surface characteristics and biophysical crite-

ria [8].

Traditional fractionation instruments ranging in size from desktop to room sized

models are standard pieces of equipment at most clinical laboratories and are used

to analyze and separate cells and other biological particles [21]. The drawbacks of the

existing, traditional flow cytometers are that these devices are expensive, require an ex-

tensive complementary infrastructure; such as facilities, personnel and reagents. They

are not suited to integration with other analysis steps, and time is required to process

the signal data limits the rate at which cells can be detected. Much work is therefore

being done to develop methods that will not only be cheaper, and therefore more easily

available, but also more effective and possibly able to probe particle properties not

currently accessible [21].

In clinical diagnostic sense, cell sorting and counting devices are examples of tech-

nological solutions that have been designed and optimized for use in centralized lab-

oratories, much like the very first computers. Also nowadays the biological samples

(blood, urine, other biological liquids) are collected from patients at the hospitals, at

home or in special environments and sent to these centralized diagnostic laboratories

where analysis takes place. However, the transportation of samples requires money and

time, and the quality of samples may decay due to natural biological processes.

2
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1.2 Review of Separation Technologies Integrated into Microfluidic devices

1.2 Review of Separation Technologies Integrated into

Microfluidic devices

The trend in life science research to miniaturize analytical processes using microflu-

idic devices, was first seen in the late eighties, and it is still ongoing [1]. The benefits

of miniaturization and integration are including increased automation, parallelization,

speed, resolution and portability as described in reviews by Mosadegh [22], Craig-

head [23], Mark [24], Erickson [25], Franke [26] and Dittrich [27]. The idea of integrat-

ing sampling, sample handling, reactions, separations and detection into one automated

device containing interconnected microchannel networks led to the introduction of the

term micro-total-analysis-system (µTAS) in the literature in 1990 by Manz et al. who

performed first on-chip separation implementing capillary electrophoresis fractionation

of fluorescent molecules [28, 29]. Since that time, applications of µTAS has developed

over the past two decades exponentially, meanwhile scientific journals, conferences, and

companies specializing in LOC technologies are vivid examples of how theinterest in

this field has grown.

In sense of cell isolation, the efficiency of fractionation takes into consideration the

available sample volume for analysis, the characteristic/feature that distinguishes the

cell types, the required purity of the separated population with desired characteristics,

the total number of cells lost during the process of separation, the viability of cells after

separation and the physical stress endured by the cells. Finally, choosing an efficient

sample handling procedure, the time required for the complete cell separation process

and the cost-effectiveness of the technique are also not negligible.

The integration of particle separation techniques into lab-on-a-chip devices is advan-

tageous, as described by Pamme [30], that these label-free processes are continuous, the

separation can be monitored continuously and the sample components are displaced lat-

erally thus each fraction could be collected independently. Based on the applied forces

the fractionation could be tangential or perpendicular to the flow direction and can

be realised as batch or continuous loading procedures (Fig. 1.1). In batch separation

techniques, the particles follow the same paths but at different rates which appears

as fractionation over time only; thus, these procedures require precise injection of a

very small amount of sample into the separation channel. At the other case, the ap-

plied forces have perpendicular components to the flow direction thus the particles are

3
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1.2 Review of Separation Technologies Integrated into Microfluidic devices

Figure 1.1: Batch separation procedure entails the injection of finite volumes parallel to

the flow direction into a separation column. The separated sample fractions pass through

a detector at different times, often followed by repeats to optimize separation parameters.

Collection of the separated fractions can only be achieved with a flow switching mechanism

that redirects different components to different outlets. Continuous procedure separate

perpendicularly to the flow direction. The sample is injected continuously together with a

carrier liquid, meanwhile the separation efficiency can be monitored in real-time. (adapted

from Ref. [30])

displaced laterally and become separated in space.

A range of field flow fractionation (FFF) techniques have been reported for sepa-

ration of particles in lab-on-a-chip based microfluidic systems [30] since FFF method

was pioneered by Giddings in 1960s [31]. The continuous-loaded single-phase field flow

fractionation requires external forces or uses only inertial shear forces.

Large variety of methods have been developed to date that operate by external

forces but in each case, the special cell properties and attributes have to be taken

into consideration. Table 1.1 gives an overview of the different continuous particle

separation methods which are based on external perpendicular forces to the direction

of flow and focuses on the utilized external forces and the basis of separation. These

separation methods can be classified by the applied external forces into acoustophoresis,

dielectrophoresis, magnetophoresis, appication of mechanical forces and optophoresis.

The requirement of external forces increases the complexity of the device and may

limit the application for some specific reagents such as biological samples. Conse-

4
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1.2 Review of Separation Technologies Integrated into Microfluidic devices

Method Separation induced by Separation based on References

Acoustophoresis Acoustic pressure Size, density,

compressibility

[32–37]

Dielectrophoresis Inhomogeneous electric

field

Size, polarisability [38–45]

Magnetophoresis Inhomogeneous mag-

netic field

Size, magnetization [46–51]

Mechanical forces Gravity, centrifugation Size, density [52–55]

Optophoresis Optical force Size, refractive index [56–58]

Table 1.1: Listing of continuous flow separation methods using external forces with details

of the forces utilized and the basis of separation were taken from the selected references.

quently, researchers have been paying attention to the development of novel physical

methods (Table 1.2), which are based on varying only the geometry of microchan-

nels, modifying the flow profile and influencing local flow properties such as bifurcation

channels, deterministic cell rolling (DCR), deterministic lateral displacement (DLD),

pinched-flow fractionation (PFF) devices, applying Dean effect, or using flow-through

filters/membranes.

Hydrophoretic techniques Separation based on References

Bifurcation channels Zweifach-Fung effect [59–67]

Dean flow Dean effect [68–76]

Deterministic cell rolling

(DCR)

Shear-induced and wall-induced lift [77–82]

Deterministic lateral displace-

ment (DLD)

Shear-induced and wall-induced lift [83–101]

Flow-through filters (FTF) Pressure field gradient [102–108]

Pinched flow fractionation

(PFF)

Shear-induced and wall-induced lift [109–124]

Table 1.2: List of continuous flow separation methods using inertial forces detailing the

basis of separation based on the selected references.

Comparison of performance of integrable sample fractionation methods is not always

straightforward. Plenty of approaches provide high throughput, meanwhile others offer

high resolution. Several of the microfluidic devices are simple in terms of operation,

5
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1.3 Structure of the Thesis

whilst other techniques might require a specialist. A number of separation principles

require labelling the sample components, whereas some processes are based on intrinsic

sample properties. As always, the optimum method will depend on the sample and the

analytical task at hand.

1.3 Structure of the Thesis

Chapter 2 discusses the main physical properties of serological samples, which

gives a short discussion of hemodynamic principles is beyond the scope of this thesis

but in this chapter, an overview of basic principles is presented that are helpful in

understanding the physical background.

Chapter 3 discusses a novel microfluidic device to observe uncovered parasitosis

from serological samples. This chapter is based on work published in Springer - Bio-

NanoScience [125] and presented at international conferences, which starts with a short

introduction, represents the physical principles, and shows the results of computational

fluid dynamic simulations, and the experimental tests.

Chapter 4 discusses a novel application of the deterministic lateral displacement

device. This chapter starts with the description of physical principles, continues with

computational fluid dynamics results and concludes with the evaluation of the ex-

perimental results using the DLD structure to separate microvesicles from serological

samples. The results presented in Chapter 4 excluding the discussion on the description

of principles was also published in Springer - BioNanoScience [126].

6
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Chapter 2

Hematology, Hemorheology, and

Hemodynamics

2.1 Hematology

Blood (sanguis), wihtout doubt the most important biological fluid, performs many

fundamental functions to maintain homeostasis; from transporting nutrients and oxygen

to tissues and organs to regulating pH and temperature. It also provides an efficient

transit system through the vascular network for transporting of immune cells as a

defense against foreign microbes and wound healing. As blood contains a myriad of

information about the functioning of the human body, complete blood analysis has

been a primary diagnostic test in our healthcare system.

The total volume of body fluid is distributed mainly between two compartments:

the extracellular fluid and the intracellular fluid. The extracellular fluid is divided into

the interstitial fluid and the blood plasma. In an average 70-kilogram adult human,

the total body water content is about 60 % of the body weight, or about 42 liters [127].

This percentage can change, depending on age, gender, and degree of obesity. About

28 of the 42 liters of fluid in the body are inside the 75 trillion cells and are collectively

called the intracellular fluid, which is almost the 40 % of the total body weight [127].

All the fluids outside the cells are collectively called the extracellular fluid. Together

these fluids account for about 20 % of the body weight, which is about 14 liters [127].

The two largest compartments of the extracellular fluid are the interstitial fluid, which

makes up more than three fourths of the extracellular fluid, and the plasma, which

7
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2.1 Hematology

makes up almost one fourth of the extracellular fluid, or about 3 liters.

Blood contains both extracellular fluid (the fluid in plasma) and intracellular fluid

(the fluid in different blood cells). The average blood volume of adults is about 7 % of

body weight, or about 5 liters [127]. The composition of the blood are cells and plasma

(Table 2.1), which comprises mostly water and contains glucose, proteins, hormones,

mineral ions, gases. The cells of blood (Table 2.2) present are red blood cells (called

RBCs or erythrocytes) white blood cells (called WBCs or leukocytes) and platelets

(PLT, thrombocytes).

Name Mass concentration Name Mass concentration

[mg/dl] [mg/dl]

Sodium 340 Calcium 10.6

Cloride 340 Lactic acid 10

Phospholipids 280 Phosphate 4.5

Cholesterol 150 Magnesium 2.3

Bicarbonate 140 Uric acid 3

Neutral fat 125 Creatinine 1.5

Glucose 100 Bilirubin 0.5

Potassium 20 Bile salts 0.5

Urea 15 Else 4.9

Table 2.1: Average mass concentration of human blood plasma constituents [127]

Name Average cell Approximate Percentage of

concentration normal range volume

[cells/ml] [cells/ml] [%]

Erythrocytes 4.8 · 106 4.5− 6.2 · 106 91

Leukocytes 9.0 · 103 4.1− 10 · 103 5

Neutrophils 5.4 · 103 3.0− 6.0 · 103

Eosinophils 2.7 · 102 1.5− 3.0 · 102

Basophils 6.0 · 101 0− 1.0 · 101

Lymphocytes 2.7 · 103 1.5− 4.0 · 103

Monocytes 5.4 · 102 3.0− 6.0 · 103

Thrombocytes 3.0 · 105 1.5− 4.0 · 105 4

Table 2.2: The size, percentage and the concentration of the main blood cells [128]

8
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2.1 Hematology

The red blood cells are without nucleus, biconcave, disc-shaped bodies. From upper

view, their shape is circular, with an average diameter of 7.5 µm. The number of RBCs

is around 4.5 − 6.2 · 109 particles/dl [129]. The red blood cells are perfectly elastic

structures, flexibly deformable, thus they can pass thought much smaller capillaries

than their diameter. The shape of RBCs is sensitive to osmotic variance. In hypotonic

milieu (where the concentration of the salt is lower than 0.9 %) the shape of the cells

change to spherical shape and after that the cells bursts and the hemoglobin flows out.

In this case we get a hemolyzed solution with the hemoglobin and the membranes of

the red blood cells.

The average cell concentration of leukocytes is around 4.1−10·106 particles/dl [129].

White blood cells are divided into several subclasses, for example basophils, eosinophils,

lymphocytes, monocytes and neutrophils. These cells have a great wealth of form and

functional character.

The platelets are ovoid, round, flat disc-shaped structures. These cell fragments

lack a nucleus. The diameter of the platelets is 2-4 micrometers and their number is

around 1.4−4.2 ·108 particles/dl [129]. The platelets are responsible for blood clotting

(coagulation), by converting fibrinogen to fibrin. This creates a mesh onto which red

blood cells adhere and clot, which then stops more blood from leaving the body and

also helps to prevent bacteria from entering the body.

Blood performs many important functions. First of all it transports oxygen to tis-

sues. Blood supplies the cells with nutrients such as glucose, amino acids, and fatty

acids, removes waste (carbon dioxide, urea, and lactic acid). It has a messenger trans-

port function with hormones and the signaling of tissue damage as well. The blood is

supporting the body’s self-repair mechanism with the coagulation functionality. White

blood cells make immunological detection functions of foreign material by antibodies.

The blood makes the regulation of body pH (the normal pH of blood is in the range of

7.35 - 7.45). Also, it helps in the regulation of core body temperature.

9
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2.2 Hemorheology and Hemodynamics

2.2 Hemorheology and Hemodynamics

Hemodynamics is concerned with the mechanical and physiologic properties describ-

ing motion and equilibrium of blood flow under the action of external forces. Further,

hemorheology describes the rheological properties of blood and its elements, such as

morphology of blood cells and blood viscoelasticity. A full discussion of hemodynamic

and hemorheology principles is beyond the scope of this thesis but in this chapter, an

overview of basic principles is presented that are helpful in understanding the physical

background. Blood is a non-Newtonian fluid, but in narrow microfluidic channels the

flow properties of the human blood could be approximated as Newtonian [130]. Based

on this assumption, the following equations describe Newtonian fluid properties and

are solved with the physical parameters of human blood.

2.2.1 Velocity and Pressure Profile

The sample flow in microchannels has often been associated with negligible inertia

that is, fluid flow in microfluidic channels is assumed to occur at low Reynolds number,

where Reynolds number is a dimensionless parameter describing the ratio between

inertial and viscous forces in a flow. The liquid flow is in stream that is considered to

consist of a series of thin laminae slipping over one another, meanwhile in turbulent

case the blood moves in irregular varying paths continuously mixing within channels.

The description factor for stream types laminar and turbulent, which was introduced

by Stokes, but measured by Reynolds, is described as:

Re =
ρDHv

µ
, (2.1)

which is also called Reynolds number, where ρ is the density of mass, DH is the char-

acteristic hydraulic diameter, v is the mean velocity of the fluid, and µ is the dynamic

viscosity. In a Stokes flow regime, where Re → 0, the inertia of the fluid is ignored

in most microfluidic platforms and contributions of fluid momentum are omitted from

the NavierStokes equations resulting in linear, and thus time-reversible, equations of

motion for Newtonian fluids. Practically achievable and useful flows in microfluidic

systems could operate also in intermediate range flow (∼ 1 <Re<∼ 100) in which non-

linear and irreversible motions are observed for fluid and particles. The intermediate

range flow regime, in which both the inertia and the viscosity of the fluid are finite,

10
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2.2 Hemorheology and Hemodynamics

still lies within the realm of laminar flow which provides a deterministic nature and

thus controllability of fluid and particles within. In the consideration of our application

for blood with density of 1060 kg/m3, shear viscosity of 3.53 · 10−3 Pas, the range of

Reynolds number is shown in Fig. 2.1.

Figure 2.1: The Reynolds number of blood flow (ρ = 1060 kg/m3 and µ = 3.53·10−3 Pas)

is calculated at different velocities (1 mm/s, 5 mm/s, and 10 mm/s)

assuming Newtonian flow behavior at different characteristic hydraulic diameters (log

scale).

For cases of low Reynolds number, neglecting inertia by using a Stokes flow ap-

proximation can lead to incorrect results. To determine exactly the velocity and the

pressure profile in a microfluidic channel, incompressible Navier-Stokes equation is ap-

plied assuming constant viscosity (µ). The Navier-Stokes equation is derived from the

basic laws of conservation of mass, momentum and energy in the following way:

δ−→v
δt

+−→v · ∇−→v = −∇P + ν∇2−→v + F, (2.2)

where −→v is the velocity vector, P is the pressure and F is the sum of external body

forces (e.g. gravity, electrophoretic forces, magnetophoretic forces, mechanical forces

(i.e. ultrasound) and optophoretic forces).

11
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2.2 Hemorheology and Hemodynamics

2.2.2 Energy Conservation

Assuming no friction inside the flow, Bernoulli’s equation can be derived from the

Navier-Stokes equation (Eq. 2.2). Bernoulli’s principle (conservation of energy) states

that for an inviscid flow, an increase in the speed of the fluid occurs proportionally

with an increase in both its dynamic pressure and kinetic energy, and a decrease in its

static pressure and potential energy, which can be described in the following way:

∆P

ρ
+
v2

2
+ agravh = 0, (2.3)

where ∆P is the pressure drop, agrav is the gravitational acceleration and h is height

of fluid. This states that, in a steady flow, the sum of all forms of mechanical energy in

a fluid along a stream is the same at all points on that stream, thus this requires that

the sum of kinetic energy and potential energy remains constant.

2.2.3 Volumetric Flow Rate and Hydrodynamic Resistivity

One of the properties of a fluid is that it will flow from a region of higher pressure

toward a region of lower pressure. The primary parameter used in lab-on-a-chip devices

to describe blood flow is the flow rate, which is the total volume of liquid pumped

through the channel in a given time interval. The relationship between blood flow,

resistance, and pressure in cylindric channels can be determined using the Hagen-

Poiseuille law:

Q =
∆Pπr4

8µL
, (2.4)

where Q is the flow rate, ∆P is the pressure gradient, r is the radius of channel, µ is the

viscosity of fluid (in our case: blood), L is the length of channel. The flow resistance

can be considered in the following representation:

R =
µL

8πDH
4 , (2.5)

where DH is the hydraulic diameter. Generally, the length of microfluidic channels is

in millimeter scale while the hydraulic diameter, which is a commonly used term when

handling flow is well bellow the millimeter scale in noncircular tubes or channels, and

is defined by:

DH =
4A

B
, (2.6)
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2.2 Hemorheology and Hemodynamics

where A is the cross sectional area and B is the wetted perimeter. The microfluidic

channels that are generally used in microfarication have a rectangular cross-section, in

which case the hydraulic diameter (DH) can be considered in the following way:

DH =
2wh

w + h
, (2.7)

where w is the width (w ≈ 100µm) and h is the height (h ≈ 20µm) of our designs thus

the typical value of the hydraulic diameter is around 33µm. According to Eq. 2.4 the

flow rate Q, which is determined by the pressure gradient, radius of channel, viscosity of

fluid and length of the channel, is inversely proportional to the fluid resistance (Eq. 2.5)

and it can be described as:

Q =
∆P

R
. (2.8)

In this case Eq. 2.4 can be considered analogous to Ohm’s law, hence the flow rate

is inversely proportional to the resistance. The walls of the microfluidic channels are

considered as rigid thus the Hagen-Poiseuille law is applicable. If we consider a 1 mm

long straight microchannel with 20 µm depth and the width from 10 µm up to 300 µm

the order of magnitude of flow resistance of blood flow is between 1010− 1012 Pas/m3,

meanwhile the total pressure drop is in the range from a few kPa up to 100 kPa.

2.2.4 Kinematic Properties

In microfluidic channels, the flow is usually smooth and orderly because the fluid

separates into an infinite number of concentric layers with different velocities. When a

fluid (in our case: blood) flows past a solid surface, a thin layer develops adjacent to

the surface where frictional forces retard the motion of the fluid. There is a gradient

of frictional resistance between fluid in contact with the solid surface and fluid in the

center of the stream. If the fluid particles travel along well-ordered nonintersecting

layers, this is termed laminar flow. In a small Reynolds number case, the floating

particles are moved by the fluid through a viscous Stokes drag and their trajectories

are Xp(t) [131]:
dXp

dt
= Vp, (2.9)

dVp
dt

= − 1

τp
[Vp − v(Xp, t)] + g, (2.10)
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2.2 Hemorheology and Hemodynamics

where g is the acceleration of gravity, τp is the relaxation time of the particle, which is:

τp =
2ρpr

2
particle

9µ
, (2.11)

where ρp is the mass density of the particle and rparticle is the radius of the particle.

The fluid velocity at the location of the particles is evaluated by linear interpolation.

The inertia of the particle becomes dominant at higher velocities or masses.

Physical property Blood Water [132] Dimension

Density (ρ) 1.06 · 103 [133] 1.0 · 103 [kg/m3]

Shear viscosity (µ) 3.53 · 10−3 [134] 1.0 · 10−3 [Pas]

Kinematic viscosity (ν) 3.33 · 10−6 [135] 1.0 · 10−6 [m2/s]

Surface tension (in air) (γ) 5.8 · 10−2 [136] 7.3 · 10−2 [kg/s2]

pH 7.35-7.45 [137] 7

hematocrit 45.7 [138] [%]

Table 2.3: Physical properties of human blood (at 37◦C) and water (at 20◦C) at 1 atm

pressure

There are dimensionless numbers that provide information about the qualitative

behavior of flow in a continuous single-phase liquid. The Reynolds number (Re) de-

termines the inertial effect of fluid flow (turbulency), and the Péclet number (Pe)

describes the mass transport contribution of molecules or particles (dispersion). The

particle Reynolds number (Rep) shows the inertial effect on a particle within a fluid

flow, and the Stokes number (St) is useful to study the trajectory mismatch between

the particle and fluid, and the size-based separation effect.

The particle Reynolds number (Rep) can be defined as follows from [139] and is

represented in Fig. 2.2:

Rep =
ρvmaxd

2
particle

µDH
= Re

d2
particle

D2
H

, (2.12)

where Re is the Reynolds number, dparticle is the particle diameter, vmax is the maxi-

mum flow velocity and µ is the shear viscosity (in our case, blood at 3.53 · 10−3 Pas).

In case of mass transport, the particle motion can be estimated by the Péclet

number:

Pe =
vmeanDH

D
, (2.13)
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2.2 Hemorheology and Hemodynamics

Figure 2.2: Particle Reynolds number of different size particles (1 µm, 5 µm, and 8 µm)

at different characteristic hydraulic diameter (log scale) at 1 mm/s flow rate within blood

(ρ = 1060 kg/m3 and µ = 3.53 · 10−3 Pas).

where vmean is the mean velocity of the fluid (in our case, v ≈ 1.0 · 10−2 m/s) and

D is the diffusion coefficient of particles. The diffusion coefficient of the particles is

described by the Stokes-Einstein equation:

D =
kBT

6πµrparticle
, (2.14)

where kB is Boltzmann’s constant (1.38 · 10−23 J/K), T is the absolute temperature

(in our case: 298 K), and rparticle is the radius of a spherical particle. In consideration

of blood cells, the shape of the particles are not perfectly round and rigid but in these

models blood cells can be approximated using perfect spherical particles. If Pe>1 the

advection rate is bigger than the diffusion rate thus the particles are basically confined

to streams. When a particle encounters an accelerating flow in a nonlinear channel,

the Stokes number estimates the particle behavior as the ratio of the relaxation time

of the particle (τp) (eq. 2.11) to the characteristic time of the flow (τf ):

St =
τp
τf

=
2ρpr

2
particle/9µ

DH/vmax
=

ρp
18ρ

Rep, (2.15)

where vmax is the maximum fluid velocity well away from the obstacle, ρp and ρ are

the particle density and fluid density.
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2.2 Hemorheology and Hemodynamics

If St>1, a particle will continue in its original direction of movement instead of

following the fluid stream when the flow turns suddenly due to the channel geometry.

The Péclet and the Stokes number of the main blood components at 0.001 m/s flow

rates are demonstrated in Fig. 2.3 and in Fig. 2.4.

Figure 2.3: Peclet number of different size particles (1 µm, 5 µm, and 8 µm) at 1 mm/s

flow rate within the blood (ρ = 1060 kg/m3 and µ = 3.53 · 10−3 Pas)at different charac-

teristic hydraulic diameters (log scale) using a Newtonian fluid approximation of blood.

2.2.5 Effects of Viscoelasticity

Since blood is a non-Newtonian fluid, its rheological properties depend on shear

rate and the dimensions and the geometry of the conduit through which it flows. The

cellular components are suspended in plasma, an aqueous solution that generally follows

Newtonian dynamics. Since flow resistance is affected in many pathological conditions,

quantitative approaches have been proposed to characterize the complex rheological

properties of blood. Blood cells suspended in plasma will deform due to the interactions

with the surrounding fluid and walls, described by viscous stress tensor (τ) this results

in a gradual deformation over time. The rate of shear, also called velocity gradient, is

caused by the laminar flow along the channel where the lamellae slip on one another
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2.2 Hemorheology and Hemodynamics

Figure 2.4: Stokes number of different size particles (1 µm, 5 µm, and 8 µm) at 1 mm/s

flow rate within the blood (ρ = 1060 kg/m3 and µ = 3.53 · 10−3 Pas)at different charac-

teristic hydraulic diameters (log scale) using a Newtonian fluid approximation of blood.

and move at different speeds perpendicular to the wall. If the ratio between shear

stress and rate of shear strain is linear the fluid is considered Newtonian fluid. For an

incompressible and isotropic Newtonian fluid, the viscous stress is related to the strain

rate by the simpler equation:

τ = µ
δv

δy
, (2.16)

where δv/δy is the derivative of the velocity component that is parallel to the direction

of shear, relative to the displacement in the perpendicular direction. In application the

liquid flow, which is vertebrate blood, is composed of blood cells suspended in blood

plasma. The plasma, which constitutes 55 % of blood fluid, is an aqueous solution

containing 92 % water, proteins, dissolved nutrients (amino acids, fatty acids and glu-

cose), waste products (carbon dioxide, urea, lactic acid) [129]. Regarding viscosity, the

intravenous blood cannot be considered a perfect Newtonian liquid due to blood cells,

but the plasma. Viscoelasticity is a property of human blood that is primarily due to

the elastic energy that is stored in the deformation of red blood cells as the heart pumps

the blood through the body. The energy transferred to the blood by the pressure-driven

flow is partially stored in the elastic structure, another part is dissipated by viscosity,

and the remaining energy is stored in the kinetic motion of the blood.
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2.2 Hemorheology and Hemodynamics

In Poiseuille flow, blood cells and plasma do not travel at the same average veloc-

ity. This results in differences in microchannels and discharge hematocrits. Although

Eq. 2.4 is only valid for Newtonian fluids, fitting experimental data to this equation

(Q =
∆Pπr4tube

8µeL
) provides a convenient method of characterizing flow resistance by the

effective viscosity (µe), which depends on the fluid being tested, the capillary diameter,

and the flow rate (or pressure drop) [140]. At high shear rates blood cells occupy the

central axis of microfluidic channels leaving the cell-free zone of plasma periphery. A

decrease in hematocrit tends to increase shear stress due to the decreased effective vis-

cosity (µe). The normal value of hematocrit is 40−45 % for men, meanwhile 35−40 %

for women, which is approximately three times more than that of water. The F̊ahræus-

Lindquist effect [130] describes the relation between the effective viscosity (µe) and the

radius of capillary tubes (rtube). According to experimental observation of F̊ahræus et

al. the relative viscosity of blood decreases inversely to the diameter of channels due to

the erythrocytes move over the center of the channel, leaving plasma at the wall of the

microchannels and the hematocrit in the channel was always less than the hematocrit

in the original sample. The ratio of these two hematocrits, the tube relative hematocrit

(HR):

HR =
hematocritchannel
hematocritsample

, (2.17)

where hematocritchannel is defined as the ratio of blood cells volume within the channel

to the total volume of the sample.

In the following chapters and discussions we consider a Newtonian approximation of

blood flow under the assumption that most of our microfluidic channels are at the sim-

ilar hydraulic range, and the flow velocities also are considered within a small variation

of a certain range. This simplification is especially necessary when conducting nu-

merical calculations where the implementation of non-newtonian fluid dynamics could

render the already complex models insolvable.
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Chapter 3

Flow Through Nematodes Filter

3.1 Filtration of Nematodes Using an Integrated Micro-

capillary System

3.1.1 Motivation, description of the problem to be solved

The filarial nematodes are a group of arthropod-borne worms that reside in the

subcutaneous tissues, deep connective tissues, lymphatic system, or body cavities of

humans. Some adult filarial worms can survive in the human host for many years,

causing a number of chronic and debilitating symptoms, including inflammatory reac-

tions [141]. The female worms produce large numbers of larvae called microfilariae,

which are highly motile, threadlike prelarvae that in some species maintain the egg

membrane as a sheath; these are called sheathed forms, while those that rupture the

egg membrane are called unsheathed forms. Once released by the female worm, mi-

crofilariae can be detected in the peripheral blood or cutaneous tissues, depending on

the species. The microfilariae, which may survive for 1 to 2 years, are not infective for

other vertebrate hosts, nor do they undergo any further development in the vertebrate

host [141]. The infections are transmitted to humans by the bites of obligate blood-

sucking arthropods that had become infected through ingesting larvae (microfilariae)

contained in a blood meal obtained from a mammalian host. The most speared filarial

species in which the human is the definitive host is summed in Tab. 3.1.

Disease-specific immunodiagnostic and molecular testing markets increase world-

wide. The genus Dirofilaria, which includes etiologic agents such as Dirofilaria immitis
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Species Distribution Vector Location

Wuchereria

bancrofti

Tropics and subtropics

worldwide; mainly India,

China, Indonesia, Eastern

Pacific

Mosquito Lymphatic

Brugia malayi Southeast Asia, Indone-

sia, India, Indonesia,

Southeast Asia

Mosquito Lymphatic

Brugia timori Islands of Timor and

Lesser Sunda in Indonesia

Mosquito Lymphatic

Loa loa Africa Deerfly Subcutaneous

Mansonella

perstans

South and Central

America, Africa

Biting midge Body cavities,

mesentery,

perirenal

Mansonella

ozzardi

South and Central

America, Caribbean

Biting midge,

blackfly

Subcutaneous,

body cavities

Mansonella

streptocerca

West and Central Africa Biting midge Subcutaneous

Onchocerca

volvulus

South and Central

America, Africa

Blackfly Subcutaneous

Dirofilaria

immitis

Japan, Australia, United

States, Europe

Mosquito Pulmonary

nodules

Dirofilaria

repens

United States, Africa,

Asia, Europe, and South

America

Mosquito Subcutaneous

Table 3.1: Listing of human filariasis by Gracia et al. [141]

and Dirofilaria repens, is responsible for the increased occurrence of zoonotic dirofilar-

iosis in vertebrates worldwide. Human infections by these parasites may also occur,

and 1782 cases have been reported in over 37 countries in Europe, North America,

Southeast Asia, and Africa [142–144], 372 of which were pulmonary and 1410 of which

were subcutaneous/ocular cases over the last decade [145]. Increased -travel, pesticide

-restrictions, and the introduction of the Asian tiger mosquito, which take a blood -meal

that is twice as large as the common mosquito species, have contributed to the spread

of cardiopulmonary and subcutaneous dirofilariosis in final host carnivores [146].
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The life cycle of species of Dirofilaria genus consists of larval stages (L1-L3) in

arthropod intermediate host as vector (mosquito), developing stages (L3-L5) and adult

stage in natural host (Fig. 3.1). The development period of the microfilariae mostly

depends on the temperature inside the species of intermediate host (from 10 to 21 days

at around 25◦C). In infective stage, the larvae (L3) migrate to the Malpighian tubule

lumen of the mosquito, while during subsequent nutrition of the intermediate host the

larvae enter to subcutaneous connective tissue of definitive host. In this stage (L3),

the infective larvae of these filarioidea invade a variety of human or animal tissues

and elicit little or no discernible response from the host during the course of their

development unless they enter exquisitely sensitive tissues such as the conjunctivae. The

D. immitis and D. repens, which are responsible in human, persist for months without a

detectable host response. In their natural hosts, filarioids are typically long-lived, living

often several years or more [147]. D. immitis infective larvae (L3s), commonly called

”heartworm”, cause a chronic infection in the right heart/inferior vena cava, and the

pulmonary vein where uncontrolled parasite development may result in serious disease

for the natural host but in humans do not survive their migration in subcutaneous

tissue [148]. D. repens causes chronic infection where parasite development is limited

within the eye, subcutaneous tissues, abdominal cavities, and urinary bladder. Species

of Dirofilaria affect mostly dogs and other carnivores such as cats, wolves, and foxes.

Humans may become infected as aberrant hosts, the worms fail to reach adult stage

while residing in a human body.

The late stage (L4-L5) differential diagnosis of human pulmonary dirofilariosis costs

$80,000 or more per patient in the USA [160]. In addition, in the case of D. immitis, it

exposes the patient to unnecessary surgery which carries a risk of mortality. Therefore,

the early-stage (L3) diagnostic techniques reduce risk of complications and also save

health care costs. Large scale screening for dirofilariosis involves the use of the serolog-

ically based antigen or antibody lateral flow devices which are commercially available

for this purpose: VetScan Canine Heartworm Rapid Test Kit (Abaxis, Union City, CA,

USA), Heartworm IC (Argolabo S.p.A., Scarmagno, TO, Italy), Solo Step CH Canine

Heartworm Antigen Test (Heska, Loveland, CO, USA), FASTest HW Antigen (Megacor

Diagnostik GmbH, Hoerbranz, Austria), CH9705/FX Immunochromatographic device

(Multimage S.r.l., Cavaria, VA, Italy), Woodley InSight Heartworm Rapid Diagnostic
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Figure 3.1: The life cycle of Dirofilaria immitis which consists of three stages (L1-L3) in

arthropod (mosquito) intermediate vector and other two stages (L4 and L5) in vertebrate

host. During the blood meal, an infected mosquito introduces L3 filarioid larvae of D.

immitis into the skin of the definitive host. The L3 nematodes invade the tissues of

natural host undergoing themselves two more molts into adults. Adult heartworms reside

in pulmonary arteries and are occasionally found in the right ventricle of the heart. Adult

females are usually 250 − 310 mm long by 1 mm wide; males are usually 120 − 200 mm

long by 0.7 − 0.9 mm wide. Adults can live for 5 − 10 years. In the heart, the female

worms are capable of producing microfilariae over their lifespan, which are 290− 330 µm

long and 5− 7 µm wide [149]. The microfilariae are found in peripheral blood, which can

be ingested by another mosquito during its blood meal.

Test (Woodley Equipment Company Ltd, Horwich, UK), and Canine Heartworm Anti-

gen Test (SA Scientific, San Antonio, TX, USA). These antigen or antibody lateral

flow devices require at least three adult female heartworms and do not exist for detec-

tion of D. repens. The antigen presence of dirofilariosis does not occur in each case

thus in diagnostics several seroepidemiological methods have been developed to explore

the existence of intravenous nematodes or to determine its volumetric population from

blood samples. The gold standard in diagnosis depends upon microscopical detection

of microfilariae in blood but classical microbiological test is also used. This is very

difficult in dirofilariosis where the parasitemia is frequently below 100 nematodes per
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Figure 3.2: Comparison of detection and diagnostic methods and protocols for dirofilar-

iosis including the proposed simple use FTNF device. A) Blood smear test. Starts with

pipetting a drop of serological sample on a glass slide, then hemolyzing with deionized wa-

ter and finally counting the number of nematodes within the all volume of sample. B) The

modified Knott′s test. Anticoagulant blood sample is dissolved 2% formalin in a conical

centrifuge tube. After the 5 minutes centrifugation at 1500 rpm, the sediment is mixed by

one drop of methylene blue stain coloring the cuticle of nematodes. Finally, the number of

nematodes is counted optically. C) Flow-through nematode filter (FTNF). Concentrates

the nematodes in the center of the device before the hemolysis from a few ml of blood

offering an instantaneous readout.

milliliter of blood. Given the low abundance of parasites in the blood, methods have

been developed to raise the efficiency of detection rising the cost and the required time

of diagnosis. The following enumeration, which is also summarized in Table 3.2, repre-

sents a scale of executive complexity in inverse proportion of currently used diagnostic

methods [146]: serologic methods (fresh blood smear and histochemical stain based
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Method Limit of detection Volume

requirement

Duration References

Serologic methods

(fresh blood smear,

histochemical stain

based tests)

1-2 nematodes 0.5-1 ml 10-30

min

[146,150]

Concentration

methods (Knott’s

test, hematocrit

method, filter test)

1-2 nematodes 2-3 ml 20-40

min

[151,152]

Enzyme-linked

immunosorbent

assays (ELISAs)

22-43 kDa

antigens

200-400 µl 2-4 h [153–156]

PCR amplification 2-3 DNS 10-100 µl 3-5 h [142,157–159]

Table 3.2: Laboratory diagnostics of blood-borne parasitic diseases

tests), concentration methods (Knott’s test, hematocrit method, filter test), enzyme-

linked immunosorbent assays (ELISAs), multiplex real-time PCR amplification. When

dirofilariosis is diagnosed, the erratic progression of many infections and the lack of

microfilariae in most cases necessitate the use of combined diagnostic techniques. The

evaluation of serological methods and the concentration procedures are based on opti-

cal detection while the enzyme-linked immunosorbent assays (ELISAs) and RT-PCR

amplification requires further costs (instruments, higher skilled labor). Each diagnostic

technique is multiplexable and combinable with other methods. The most widespread

technique is the smear test, which is shown in Fig. 3.2.A and starts with pipetting

serological sample onto a glass slide after the hemolysis, the nematodes are counted.

The modified Knott’s test, which concentrates nematodes by centrifugation and mark

specific species by Giemsa stain and shown in Fig. 3.2.B. First, the anticoagulant blood

sample is dissolved 2% formalin in a conical centrifuge tube. After the 5 minutes cen-

trifugation at 1500 rpm, the sediment is mixed by one drop of methylene blue stain

coloring the cuticle of nematodes to distinguish better the different nematode spices.

Finally, the number of nematodes is counted as is the previous method. The advantage

of the concentration method versus the basic serologic methods is the raised detection

limit from a bigger sample volume.
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I have designed a microfluidic device, called flow-through nematode filter (FTNF),

which is shown in Fig. 3.2.C. This device uses an integrated filtering technique pro-

viding the ability to detect much smaller concentration of nematodes from specimens,

determine them more accurately and specifically without any external devices reducing

the price of the measurement retaining an similar efficiency. The developed diagnostic

device integrates a special, microfluidic filter to concentrate circulating parasites from

serological sample.

The overall mechanism and the novelty of the device is shown and highlighted in

Fig. 3.2 and in Fig. 3.3. The designed microfluidic device contains a particle separation

technique which is easy to implement in cheap disposable plastic chips, that we believe

is well suited for the task of removing parasites from a few ml of blood in order to aid

the instantaneous filtration. The mechanism of separation by FTNF is based on the

interaction of nematodes suspended in whole blood with an ordered array of micro-

capillaries and micropillars that the fluid is forced to flow through under low Reynolds

number conditions, while the detectable larvae are trapped.

The required filtration range of the designed device for nematode filtration comes

from parasitology. These nematodes are ovoviviparous and the evolving unsheathed

embryo (microfilariae) live in the bloodstream. The length of D. immitis is 330−380 µm

and their width is 5−7 µm [149]. The microfilariae of D. repens is bigger, 300−360 µm

long and 6− 8 µm wide [149]. In this matter the developed structure has to be robust,

efficient to filter out the desired nematodes and to reduce the risk of coagulation.

Figure 3.3: The overall mechanism of the flow through nematode filter (FTNF) device.

Parasite-infected serological sample is forced through the capillary system from the inlet

on the left (IN) through to the outlet on the right (OUT), meanwhile the most of the

parasites remain trapped within the pillar and capillary filter system.
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Here, a continuous hydrophoretic filtration technique of nematodes which does not

require auxiliary liquid control, can be fabricated using a monolithic polydimethylsilox-

ane (PDMS)-glass technique, has been presented to construct 12 parallel microfluidic

systems varying microcapillary width from 6.1 µm up to 15.4 µm. The flow-through ne-

matode filter (FTNF), which represented in Fig. 3.3 is based on a common microfluidics-

based particle filtration technique, easy to implement in cheap disposable plastic chips,

that we believe is well suited for the task of removing parasites from blood in order

to aid filtration. The fabrication of constructed devices are based on soft-lithography

techniques using monolithic polydimethylsiloxane (PDMS).
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3.2 Device Principles

Figure 3.4 demonstrates the geometry of the microfluidic filter for this mentioned

veterinarian purpose. Each microfluidic structure has a 400 µm wide and 20 µm high

inlet and an outlet. 12 capillary structures have been implemented, which are uniform

within the central region of one device but the widths of microcapillaries (Wcapillary)

varies from 6.1 µm up to 15.4 µm. The active zone, where parasites remain trapped is

surrounded by these rectangular cross-section microcapillaries, which are on a radius

(r) of 1 mm from the center and its repetition angle (α) is from 3.38◦ up to 3.91◦.

The width of obstacles/pillars (Wpillar = 52.8 µm) and the angle without capillary

connection (β = 75◦) are the same in each structure.

Figure 3.4: Schematic of the flow-through nematode filter. The α angle is the structural

repetition of the microcapillaries, r is the radius of the active zone, Wpillar is the width

of the pillars, Wcapillary is the width of the capillary channel and β is the angle without

capillary connection. The proposed inlet and outlet channels are marked with IN and

OUT, respectively. The capillaries are positioned in a circular manner to increase filtration

efficiency by providing an isobaric pressure distribution along the entire filter system.

The following trigonometrical equation proximates the relationship between α and
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the capillary width (Wcapillary):

sin
α

2
=
Wpillar +Wcapillary

2r
(3.1)

Those rigid particles which have greater diameter than Wcapillary, will be filtered

out from the liquid flow. The total cross section of microcapillaries is described by the

following equation:

Scapillaries =
360◦ − βh

α
(2r sin

α

2
−Wpillar) (3.2)

where h is the height of the channel and 360◦ − β is that angle where the capillaries

connect to the active zone.

Generally, the microfluidic filters are described by the pressure drops (∆P ) at dif-

ferent flow velocities and the total flow resistance (Rtot).

∆P = RtotQ (3.3)

The pressure drop is the function of the flow rate (Q) and the total flow resistance

Rtot which is defined as:

1

Rtot
=

n∑
i=1

1

Ri
=

1

R1
+

1

R2
+ ...+

1

Rn
(3.4)

where n is the number of capillaries within one device (n = (360◦ − β)/α). Ri is the

flow resistance of one capillary channel

Ri =
8µL

πr4
H

(3.5)

where µ is the dynamic viscosity, L is the length of the microcapillary and the nominal

hydrodynamic diameter (rH) is

rH =
hWcapillary

h+Wcapillary
(3.6)

Integrating Eq. 3.4, Eq. 3.5 and Eq. 3.6 into Eq. 3.3 we get the pressure drop of

cylindric-shape a capillary structure

∆P =
8µLQα(h+Wcapillary)

4

π(360◦β)h4W 4
capillary

(3.7)
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3.3 Computational Fluid Dynamic Simulations

The main aim of the computational fluid dynamics simulation was to design an iso-

baric zone in the middle of the device by predicting the flow behavior of the microfluidic

device. Due to this reason, the verification of the simulation by pressure measurements

were not in the scope of the thesis work. In this case, the efficiency of filtration could

be increased by these results. The computational fluid dynamics simulations were

calculated to predict the velocity and pressure profiles of the developed structure by

COMSOL Multiphysics 4.3 (COMSOL Inc., Burlington, MA, USA). The pressure drop

has a significant meaning from the point of flow through filtering. Twelve similar mi-

crofluidic devices were designed by increasing capillary width (Wcapillary) from 6.1 µm

up to 15.4 µm and the flow velocity and pressure profile was calculated at 0.25 ml/h,

0.5 ml/h, and 1 ml/h flow rates with the initial and boundary condition and shown in

Fig. 3.5.

As it was discussed in Chapter 2, in narrow microfluidic channels the blood could

be considered as Newtonian fluid thus the eq. 2.2 could be applied to determine the

flow profile. The initial parameters were set to the appropriate blood properties thus

the viscosity was around 3.53 · 10−3 Pas, the density was 1060 kg/m3 in the all do-

mains of the microfluidic device. The side walls had non slipping condition, the outlet

had zero-pressure and the inlet laminar inflow condition at 0.25 ml/h, 0.5 ml/h, and

1 ml/h volumetric flow rates. To investigate the efficiency of filtration the pressure

drop has an important effect. If the pressure drop is significant the trapped elastic par-

ticles, which are larger than the capillary width (Wcapillary) can be squeezed through

the microcapillary structure while using an abnormal pressure the filter can be also

destroyed [161].

For each geometry the flow velocity and pressure profiles have been calculated and

the maximum pressure differences within the devices are shown in Fig. 3.6. The pressure

field has a maximum value on the sidewall of inlet and the smallest value appears on

the sidewall of outlet. Within one device the pressure drop rises as a laminar way in the

function of flow rate and is reduced by the capillary width at the same boundary and

initial conditions. The equidistant microcapillaries from the geometric center develop
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3.3 Computational Fluid Dynamic Simulations

Figure 3.5: Numerical simulation results of flow velocity and pressure profiles at 1 ml/h

inflow rate. A) Flow velocity profile of the thinnest (Wcapillary = 6.1 µm) capillary struc-

ture at 1 ml/h. B) Flow velocity profile of the thickest (Wcapillary = 15.4 µm) capillary

structure at 1 ml/h. C) Pressure profile of the thinnest capillary structure at 1 ml/h. D)

Pressure profile of the thickest capillary structure at 1 ml/h.

a quasi-homogeneous pressure field within the active zone, which is the central field

of the microfluidic device, where the nematodes remain trapped, aiding the filtration

of the larvae but blood cells. Based on computational flow dynamics simulations the

approximation of the pressure drop can be described with the following equation with

R2 = 0.9939. Decreasing the capillary width (Wcapillary) increases the flow resistance

quasi exponentially and in the same time the pressure drop at a fixed flow rate which

is represented in Fig. 3.6.

The microfluidic filters could be clogged during a long measurement, thus it could

be useful to predict the incense of the pressure in the case of clogging. Figure 3.8

shows the clogging caused pressure drop in the thinnest (Wcapillary = 6.1µm) FTNF
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3.3 Computational Fluid Dynamic Simulations

Figure 3.6: Pressure drop within each device calculated by computational fluid dynamics

simulations at 0.25 ml/h, 0.5 ml/h, and 1 ml/h flow rates.

Figure 3.7: Flow resistivity within each device calculated by computational fluid dynam-

ics simulations.

at 0.5 ml/h. The clogging effect could be significant if more than 60 percent of the

channels are blocked.
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3.4 Device Design and Fabrication

Figure 3.8: Clogging analysis of the thinnest (Wcapillary = 6.1µm) FTNF device using

computational fluid dynamics simulations at 0.5 ml/h flow rate. Closing the microcapil-

laries 1 by 1, the pressure drop rises.

3.4 Device Design and Fabrication

Figure 3.9: Overview of the microfluidic device, which integrate 12 different Flow

Through Nematode Filters. The capillary width is between 6.1 µm and 15.4 µm.

Channel layouts were designed by using AutoCAD 2013 (Autodesk Inc., San Rafael,

CA, USA), which are shown in Fig. 3.9 and devices were fabricated in polydimethyl-

siloxane polymer (PDMS, Sylgard 184, Dow Corning, USA) using a standard microfab-

rication soft-lithographic technique [161]. The microfabrication procedure starts with

making a master for replica molding. SU-8 (MicroChem, Newton, MA, USA) photore-

sist was spin coated onto 4” silicon wafer to a thickness of 20 µm (Fig. 3.10.A) and

patterned using UV light in contact mask aligner through a chrome mask (Fig. 3.10.B).
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Figure 3.10: Fabrication steps of the microfluidic devices. A) SU-8 photoresist was spin

coated onto silicon wafer. B) The shape of the microfluidic channels were patterned by

UV light in contact mask aligner through a chrome mask. C) The unpolarized photoresist

was washed away from the surface. D) The liquid PDMS pre-polymer conformed to the

shape of the master. E) The patterned PDMS slab was bonded to microscope glass slide

following surface treatment. F) The final device.

PDMS monomer and curing agent were mixed to a ratio of 10 : 1 (v/v), degassed and

poured over the master and set aside at 70◦C for 2 h for polymerization. The liquid

PDMS pre-polymer conforms to the shape of the master and replicates the features of

the master (Fig.3.10.D). After the polymerization the solid PDMS replica was pulled off

from the mold surface and access holes were punched through the patterned PDMS slab

using a 1 mm hollow pin vise. The patterned PDMS slab was bonded to microscope

glass slide following surface treatment by Plasma-preen II 863 (Plasmatic Systems Inc.

North Brunswick, NJ, USA) (Fig. 3.10.E). Finally, teflon tubes were inserted into the

access holes for fluidic contacts.

3.5 Experimental Setup

Figure 3.11 illustrates the schematic diagram of our nematode filtration platform.

Pressure-driven flow was created using syringe pumps (NE-4000, New Era Pumping

System Inc, Farmingdale, NY, USA) attached to the inlet via Teflon tubes. Typical

flow rates were used between 0.1 ml/h and 2 ml/h, controlled by the syringe pump.

Imaging was performed on an inverted Olympus IX71 microscope (Olympus, Tokyo,

Japan). Image recording was through a USB color CCD camera (uEye UI-222x series,

IDS Imaging Development Systems GmbH, Obersulm, Germany). All videos were cap-

tured at a speed of 50 frames/second and captured videos were analyzed using Matlab

(The MathWorks Inc., Novi, MI, USA). For parasitological experiments, blood-borne

infected, anticoagulant, canine blood has been used, where D. repens parasites were
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determined previously by Knott’s method obtaining their concentration in serological

samples.

Figure 3.11: Schematic image of the parasite filtration platform. The microfluidic devices

are mounted on an inverted microscope. The syringe pump system with the CCD camera

unit are controlled from a single platform.

3.6 Experimental Results

The single layer microfluidic design allows the easy loading, immediate filtration

and analysis of nematodes, eliminating the need of other sample preparation instru-

ments such as centrifuge or other devices. Before each experiment, these microfluidic

structures were optically checked, purified and dried eliminating unnecessary particles

(dust), which can cause clogging. The developed structures were tested at 0.25 ml/h,

0.5 ml/h, and 1 ml/h volumetric flow rates by 15 different blood-borne infected, an-

ticoagulant, canine blood samples. The type and the severity of dirofilariosis was

determined and classified into three commonly used classes (-, +, ++).

Figure 3.12 shows the procedure of nematode filtration, which contains the follow-

ing steps. First, the serological sample is forced through the microfluidic device at a

constant volumetric flow rate during which most of the nematodes remain trapped in
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3.6 Experimental Results

Figure 3.12: Procedure of nematode filtration. A) serological sample is forced through

the microfluidic device B) the medium is changed to air then deionized water C) haemolysis

and increment of visibility D) counting the nematodes optically

the isobaric central region (Fig. 3.12.A). Changing the medium to air and subsequently

to deionized water, air bubble is pushed thought the capillary structure (Fig. 3.12.B).

Since deionized water induces hemolysis by osmotic shock the attached and aggregated

cells as thrombocytes and lymphocytes are lysed and flushed away from the detection

area, while nematodes are resistant to osmotic shock due to their cuticulae this lysis

increases the visibility and the contrast (Fig. 3.12.C). Finally, the trapped nematodes

are counted optically in the central region (Fig. 3.12.D). Our experiments indicates

that the number of trapped nematodes correlates with the applied volumetric flow rate

and the microcapillary width.

Blood-borne infected, anticoagulant blood samples were pushed through the mi-

crofluidic devices and the major population of nematodes were captured in the quasi-

isobaric central region (Fig. 3.4). The population of the nematodes in the original
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blood samples (σpre and in the waste products (σpost) were analyzed by basic serologic

methods (tick blood smears) to determine the efficiency of the device at different flow

rates (0.25 ml/h, 0.5 ml/h, and 1 ml/h). The filtration efficiency (η), which is repre-

sented on Fig. 3.3, has been calculated by taking the amount of the trapped nematodes

(σcaptured) and the initial number of larvae (σpre) in the native serological sample. The

number of trapped nematodes (σcaptured) has been counted optically within the active

zone. Assuming a homogenous sample the following relationship describe the nematode

numbers:

σpre = σcaptured + σpost (3.8)

If the sample volume is fixed and concentration is homogeneous the efficiency (η)

can be defined in the following way:

η =
σcaptured

σpost + σcaptured
(3.9)

Due to the sedimentation of the heavier particles (e.g. nematodes), inhomogeneity

(IH) of the serological sample can occur at low flow rates, which can cause false pre-

diction of the nematode population in the original sample. The inhomogeneity of the

samples was defined by the following equation:

IH =
|σpre − σcaptured + σpost|

σpre
=

2σpost
σpre

(3.10)

The efficiencies of the different microfluidic channels, which is presented in Fig. 3.13,

have been calculated at constant volumetric flow rates (0.25 ml/h, 0.5 ml/h, and

1 ml/h) by the previously described procedure. During each measurement, one exam-

ined sample (+ or ++) was chosen and forced through 12 different FTNF structures

with microcapillary width from 6.1 µm up to 15.4 µm separately at a constant flow

rate five times binning efficiency (η) for histograms. The average population of the

nematodes in the original blood samples (σpre) was obtained from 5 intermediate con-

trol tests at each measurement. The volumetric nematode concentration (σpre) was

between 0.65 · 103 and 3.06 · 103 nematodes/ml). The flow velocity on the inlet de-

termines the pressure drop though the microcapillary structure. Increasing the flow

rate, the pressure drop forces more nematodes through the filter decreasing the effi-

ciency of the filtration. On the other hand, decreasing the flow rate has an influence on
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Figure 3.13: The efficiency and the inhomogeneity of each microfluidic structure

(Wcapillary from 6.1 µm up to 15.4 µm) at different flow rates (0.25 ml/h, 0.5 ml/h,

and 1 ml/h). The error bars of each histogram shows the standard deviations from the

mean values. The R-squared values of each trendlines are displayed.

the inhomogeneity of the samples. Optimizing the applied flow rate for the described

purpose, the inhomogeneity was also measured and binned for histograms. The stan-

dard deviations of the mean values of filtration efficiency and sample inhomogeneity

were calculated and displayed on Fig. 3.13 with trendlines and their R-squared values.
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The robustness analysis of the procedure was considered by trend estimation of mean

efficiencies of different devices (Wcapillary from 6.1 µm up to 15.4 µm) and their R-

squared values (R2 = 0.8996 at 0.25 ml/h, R2 = 0.9829 at 0.5 ml/h and R2 = 0.7506

at 1 ml/h). The highest mean efficiency of filtration was obtained at 0.5 ml/h flow

velocity with the best trend fit. Based on the measurements, we found that increasing

flow rate increases the level and the stability of sample homogeneity. By decreasing the

capillary width (Wcapillary) the filtration efficiency is increased but applying a higher

volumetric velocity the nematodes can be forced through the capillary structure due to

the increased pressure drop and the properties of non-rigid particles. Finally, we found

that the best setup was using 6.1 µm wide capillaries at 0.5 ml/h flow rate.

The nematode infected blood sample, which was obtained at the same homogeneity,

was forced through the FTNF devices. The filtrate contained not only nematodes,

but other blood components (mainly WBCs and platelets). The risk of clogging of

the devices could be significant, if the serological sample was highly populated by

nematodes and the measurement took longer, than the estimated procedure time. The

total filtration capacity of the FTNF devices were not between the main aims of the

research work, but the contamination of an average or low populated samples. The

total blockage of the device was not observed during the experimental procedures on a

highly populated sample (++).

The classical veterinarian procedures include sedimentation or centrifugation just

for sample preparation and the total procedure time takes 30− 45 mins without guar-

antee to homogeneity of concentration of nematodes [146]. The analysis of 0.01 ml

sample using the microfluidic devices at 0.25 ml/h volumetric flow rate takes 58 mins,

at 0.5 ml/h takes 29 mins and at 1 ml/h takes 15 mins which is comparable with

the widely used nematode diagnostic procedures (table 3.2). The parallelization of the

measurement reduces the procedure time guaranteeing the same filtration efficiency.

3.7 Results with the Flow Through Nematode Filter

I have successfully shown how microfilariae circulating in the blood stream can be

filtered and detected using the flow-through nematode filter (FTNF). This microfluidic

device provides a new diagnostic method for parasitic detection from native blood sam-

ples. Pressure and velocity profiles have been calculated to predict the pressure drop
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3.8 Related thesis groups

to secure the efficiency of the microfluidic device. A range of microcapillary structures

within different microfluidic devices have been designed, fabricated and tested to un-

cover dirofilarioses from blood samples. Our results show that this passive filtration

device can be used to speed up current diagnostic processes. A parasite filtration plat-

form has been constructed to automate the procedure decreasing diagnostic costs and

time. The obtained structure is able to use for filtration of other specific parasites.

Due to the applied materials, the FTNF device also can be loaded by the degas-driven

flow avoiding the usage of external syringe pumps to create a laboratory-independent

construction.

3.8 Related thesis groups

Thesis Group I: I have designed, developed and characterized a novel flow through

filter with isobaric filter region for the separation, enrichment and analysis of blood-

borne pathogens ro aid and simplify diagnostic procedures of parasitoses.

Related publications [L1, L4-L10]

I.1: I have designed and developed a novel device structure using biocompatible

materials for the filtration of a wide range of micron-size pathogens.

a) I have designed a novel microcapillary structure arranged in a circular geometry

for hydrophoretic filtration of micron-size pathogens with isobaric filtration conditions

which us called a flow-through nematode filter(FTNF). I have designed structures with

different capillary widths (Wcapillary) from 6.1 µm up to 15.4 µm to test a wide range

of pressure and flow conditions for optimization purposes.

b) I have determined the velocity and pressure profile of each FTNF for different

flow rates using computational fluid dynamics (CFD) simulations. I have calculated

the pressure drop and the flow resistivity of each FTNF structure to develop an

isobaric condition in the center of the structure, and to avoid leakages during the

experiments. Numerical calculations showed that the designed structures will be able

to withstand filtration pressure differences of 1 bar. Also, I have investigated the effect

of clogging on pressure drop on the device and found that 50% clogging increases the
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pressure drop beyond 1 bar.

I.2: I have demonstrated the working principle of the designed nematode filter

furthermore, I have determined and measured the efficiency of the FTNF devices and

the inhomogeneity of the sample.

a) I have fabricated the FTNF structures with different capillary widths by soft-

lithography. I have developed a filtration platform and a 4-step procedure to be used

width the FTNF devices.

b) I have determined the efficiency of the FTNF devices with different capillary

widths and the inhomogeneity of the blood samples due to particle sedimentation have

also been considered during the testing and evaluation. The filtration efficiency was

necessary to be introduced due to the implemented filtration method which does not

provide 100% percent retention of filtrate. Based on the geometrical parameters of the

device, the filtration settings and the nematode size to be filtered ,an average device

efficiency parameter could be established for future reference. Due to the sedimentation

of the heavier particles (nematodes), inhomogeneity (IH) of the serological sample can

occur at low flow rates, which can cause false prediction of the nematode population

in the original sample because more concentrated samples filter differently through the

device.

Testing the filtration devices with nematode infected canine blood, I experimentally

measured the efficiency of each FTNF device taking into consideration the inhomogene-

ity based differences in filtration of the blood sample at different flow rates (0.25 ml/h,

0.5 ml/h and 1 ml/h). I found that the optimal setup was to use 6.1 µm wide capillary

structure at 0.5 ml/h flow rate.

I was able to represent the influence of the flow rate on the inhomogeneity of the

sample due to the sedimentation. Based on the measurements, I found that increasing

flow rate, the homogeneity of the sample increased.

Decreasing capillary width (Wcapillary), the filtration efficiency increases but beyond

a higher volumetric rate the nematodes can be forced through the capillary structure

due to the raised pressure drop.
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Chapter 4

Deterministic Lateral

Displacement Based

Fractionation

4.1 Separation of Microvesicles from Serological Samples

As it was discussed in Chapter 2, blood can be considered as a diagnostic tool for

monitoring the body functions of the patient. The extracellular space of multicellular

organisms contains solutions of metabolites, ions, proteins and polysaccharides and a

large number of mobile membrane-bounded vesicles, called extracellular vesicles such

as exosomes (Exs), microvesicles (MVs) and apoptotic bodies (ABs) [162]. The size

ranges of major blood components is represented in Fig. 4.1.

Recent advances in the study of tumor-derived microvesicles reveal new insights

into the cellular basis of disease progression and the potential to translate this knowl-

edge into innovative approaches for cancer diagnostics and personalized therapy [163].

A key step in cancer diagnostics and molecular biological observations is to separate

cells, functionalized microbeads, extracellular vesicles, or other particles from a solu-

tion which may contain other undesirable elements [30]. Even though a number of mi-

crofluidic techniques have been developed to enhance on-chip blood fractionation [11],

classification of membrane vesicles, protocols of their isolation and detection, molecu-

lar details of vesicular release, clearance and biological functions are still under intense

investigation. The most frequently used methods to purify microvesicles and exosomes
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4.1 Separation of Microvesicles from Serological Samples

Figure 4.1: Size ranges of major blood components. While exosomes share size distribu-

tion with viruses, microvesicles overlap in size with bacteria and protein aggregates (e.g.

immune complexes), apoptotic bodies and thrombocytes fall into the size range of 1−5 µm,

the diameter of red blood cells is around 6 − 8 µm and the size of lymphocytes is from

7 µm up to 12 µm.

from cell culture supernatants or body fluids involve a series of centrifugation and fil-

tration steps to remove cells, apoptotic bodies and other cellular contaminants by a

final high-speed ultracentrifugation to pellet small extracellular vesicles [164]. These

procedures require long preparation time, ultracentrifuge equipment and yield a rela-

tively low amount of extracellular vesicles [165], making it difficult for application in

clinical practice.

In chapter 1, I have classified the different microfluidic sample preparation tech-

niques. Based on the scientific literature, I have decided to develop a novel microfluidic

device to separate tumor-delivered extracellular microvesicles from serological samples.

The novelty of the microfluidic device is the continuous and label-free separation of mi-

crovesicles across functional laminar streams in pressure-driven microfluidic flow that

uses an asymmetric micropost array.

The chosen continuous, label-free separation procedure was reported first by Huang

et al. [88], known as deterministic lateral displacement (DLD), and shown in Fig. 4.2.

The device has 3 inlets and a few millimeters long microfluidic channel with an asym-

metric post array. The theoretical background of the DLD structure is discussed in

Sec. 4.9. The DLD technique is a size-based particle fractionation procedure which

has shown an extremely high size selectivity, adaptability to sorting multiple par-

ticle sizes, and a broad range of operating conditions, sorting particles from sub-
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4.1 Separation of Microvesicles from Serological Samples

Figure 4.2: Overview image from the deterministic lateral displacement device. The

serological sample (INsample) is focused by the lateral sheath buffer solutions (INSB1

and INSB1). The different-sized particles are fractionated along the column structure

(leukocytes (blue), erythrocytes (red), and microvesicles (green)).

Application Critical diameter (Dc) Post shape References

Leukocytes From 3 µm to 23 µm Circular [86,91,96,166]

Erythrocytes From 3 µm to 9 µm Circular,

square,

I-shape

[167,168]

Thrombocytes From 2.3 µm to 5.3 µm Circular [97]

Plasma From 1 µm to 4 µm Circular [91]

Circulating tumor

cells

From 5 µm to 7 µm Circular,

triangular

[84,100,169]

Nematodes,

infections,

pathogens

From 1.2 µm to 15 µm Circular,

I-shape

[83, 88, 90, 92, 95,

98,167]

Table 4.1: Serological applications of the deterministic lateral displacement [170]. The

critical diameter (Dc) determines the size of separated particles.

micrometer scale up to millimeter scale [87–89,91,92,101,171–177] with even a resolu-

tion of down to 10 nm [88]. This technique which shows a marked improvement over

existing methods [170], has been shown capable of separating erythrocytes (RBCs),

white blood cells (WBCs), thrombocytes, plasma, circulating tumor cells and nema-

todes/infections/pathogens from whole blood based on their size as summed up in

Table 4.1. Being a continuous separation method, DLD has all the advantages that

such methods have to offer. Furthermore, clinical implementation of DLD devices may

open new perspectives in translational medicine both in diagnostics and therapy.

Based on the literature, I have designed and developed a microfluidic device, which
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implements a DLD structure to fractionate serological samples with 500 nm resolution

for biomedical purpose. In the following sections, I introduce the applied geometri-

cal parameters of the microfluidic device (Sec. 4.2), the computational fluid dynamics

simulations (Sec. 4.3), the fabrication protocol (Sec. 4.4), the sample preparation steps

(Sec. 4.5), the experimental setup (Sec. 4.6), the implemented cell counting algorithm

(Sec. 4.7), and finally the results of the measurements (Sec. 4.8).

4.2 Design Parameters of the Developed Microfluidic De-

vice

Figure 4.3 shows the geometrical parameters of the asymmetric array. The horizon-

tal (tangential to the flow) distance between two column lines is γ, the vertical array

period is λ, each subsequent column is shifted by ∆λ and diameter of pillars is Dpost.

Microvesicles (green particles) remain within the flow stream and cells (red particles)

are displaced by α angle at each obstacle.

Figure 4.3: Definition of the device geometry based on [88]. The horizontal (tangential

to the flow) distance between two column lines is γ, the vertical array period is λ, each

subsequent column is shifted by ∆λ and diameter of pillars is Dpost. Microvesicles (green

particles) remain within the flow stream and cells (red particles) are displaced by α angle

at each obstacle.

These geometrical parameters describe a threshold size, which is also called critical

diameter (Dc), where the bigger particles are displaced from the smaller ones. The
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theoretical models of the particle separation along the DLD structure are discussed in

Sec. 4.9. Multiple arrays with different geometrical parameters connected in series (a

serial connection of different critical size DLD structures) have also been implemented

to retrieve size fractions of mixed particles. The DLD array was designed with pillars

of 20 µm diameter (Dpost), the gap between adjacent pillars in each column (g) is

10 µm, the vertical (perpendicular to the flow) array period (λ) is 30 µm and the

horizontal (tangential to the flow) array period (γ) is 40 µm. The column shift ratio

(εn) which ranges from 0.1 up to 0.33 with steps of 1/60, describes 15 column sections

(n) following each other thus the Dc,n is between 3.9 µm and 7.7 µm in such an array

sequence (Table 4.2). The width of our DLD structure is 1.5 mm, while the length is

11 mm thus the sidewall effect could be negligible along the DLD structure.

n ∆λn εn αn Ln Dmax,n Dc,n

[µm] [Deg] [µm] [µm] [µm]

1 3 0.100 4.3 720 54 3.9

2 3.5 0.117 5.0 720 63 4.3

3 4 0.133 5.7 680 68 4.6

4 4.5 0.150 6.4 600 67.5 4.9

5 5 0.167 7.1 560 70 5.2

6 5.5 0.183 7.8 520 71.5 5.5

7 6 0.200 8.5 480 72 5.7

8 6.5 0.217 9.2 440 71.5 6.0

9 7 0.233 9.9 440 77 6.3

10 7.5 0.250 10.6 400 75 6.5

11 8 0.267 11.3 400 80 6.8

12 8.5 0.283 12.0 400 85 7.0

13 9 0.300 12.7 400 90 7.3

14 9.5 0.317 13.4 400 95 7.5

15 10 0.333 14.0 400 100 7.7

Table 4.2: Device geometry parameters. λ = 30 µm, Dpost = 20 µm, g = 10 µm and

γ = 40 µm are fixed parameters (see Fig.??). αn is the angle of displacement, Ln is the

length of a section, Dmax,n is maximum vertical (tangential to the flow) distance which the

displaced particles (Dparticle>Dc,n) can be drifted during section n and Dc,n is the critical

diameter of each section
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Figure 4.4: The design of the microfluidic device, which has 3 inlets and 1 outlet. The

DLD array zone contains 15 array sections with different critical diameters implemented.

The detection area is before the outlet.

Figure 4.4 shows the layout of the microfluidic structure, which consists of 15 dif-

ferent sections with different critical diameters. The biological sample is injected at

the center inlet (INsample) and hydrodynamically focused by sheath buffers (INbuffer)

and pushed through the array structure. The 7560 µm-long DLD array terminates in

an observation section in which the laterally displaced distance and the occurred dis-

persion can be measured optically in set of parallel channels. These channels facilitate

counting and binning of the cells for the histograms.

4.3 Flow and Pressure Profiles of the DLD Structure

Velocity and pressure profiles of the DLD structure have been calculated in each

section applying the physical properties of blood and solving the Navier-Stokes equa-
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tion 2.2 by COMSOL Multiphysics 4.4 to optimize the geometry of microfluidic device.

The calculation of the pressure drop profile was necessary to optimize the height of the

device, and also to determine the effective length of the DLD structure (Fig. 4.5). The

prediction of the velocity profile was useful to design the sidewalls and the background

structure of the DLD device.

The pressure drop (∆P ) across the DLD device, which has an effects on the shape

and the rigidity of the cells, is a function of fluid viscosity (µ), the flow rate (Q), the

gap distance between two pillars in the same row (g), the length of the device (L),

the channel height (h) and the channel width (w, w>>h). The gap size (g) between

inertial obstacles, the total width of the DLD array are fixed (in our device, g = 10 µm,

wdevice = 1.5 mm) and using the boundary condition of structure-incorporated sidewall

(Fig. 4.21.C) the pressure drop between two adjacent column lines (∆Pi) is constant;

thus the total pressure drop over the entire DLD structure could be calculated by the

following way:

∆Ptot =

n∑
1

ki ∗∆Pi =

n∑
1

ki ∗Q ∗Ri, (4.1)

where ki is the number of column lines in section n and Ri is the fluid resistance using

Eq. 2.4:

Ri =
µγB4

nomi

32π(wh)4
, (4.2)

where Bnomi is the wetted nominal perimeter of cross-section area. The total pressure

drop ∆Ptot of the DLD array with different channel heights (5 µm, 10 µm, 20 µm,

30 µm, 50 µm) at different flow rates (from 1 mm/s up to 10 mm/s with step of

1 mm/s) was calculated by computational fluid dynamics simulations and displayed in

Fig. 4.5. The flow resistivity in different channel height (5 µm, 10 µm, 20 µm, 30 µm,

50 µm), which is shown in Fig. 4.6, is defined as:

ρi =
µB4

nom

32π(wh)3
. (4.3)

The prediction of pressure drop had an important role to determine the height of

the device at a fixed flow rate. To reach the proposed aim, the volumetric flow rate

on the inlets had to be regulated. Based on computational fluid dynamics simulation,

the pressure drop was calculated on different-height channel structures. The results of

simulation on calculation of pressure drop shows that increasing the channels height,
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4.3 Flow and Pressure Profiles of the DLD Structure

Figure 4.5: The calculated total pressure drop of the DLD array with different channel

heights (5 µm, 10 µm, 20 µm, 30 µm, and 50 µm) at different flow rates.

Figure 4.6: The calculated flow resistivity of the DLD array in different channel height

(5 µm, 10 µm, 20 µm, 30 µm, and 50 µm) at different flow rates.

the pressure drop along the DLD structure will decrease. The pressure drop of the

DLD structure with a 20 µm height channel remains under 5 · 103 Pa at 1 · 10−2 m/s,

which is inside the optimal range of usage conditions. Finally, in consideration of a

48

DOI:10.15774/PPKE.ITK.2015.011



4.4 Device Fabrication

longer DLD structure the lateral displacement of the particles will increase but along

with that the pressure drop will also increase.

4.4 Device Fabrication

I have applied the same fabrication steps as it was discussed in section 3.4. Channel

layouts were designed using AutoCAD 2013 and devices were produced using standard

microfabrication soft-lithographic techniques [161,178] by casting polydimethylsiloxane

on a SU-8 positive relief patterned mold on a 4” silicon wafer which was produced

using photolithography. PDMS monomer and curing agent were mixed to a ratio of

10 : 1 (v/v), degassed and poured over the master and set aside at 70◦C for 2 h for

crosslinking. The liquid PDMS pre-polymer conforms to the shape of the master and

replicates the features of the master. The crosslinked PDMS was removed from the

mold and 0.75 mm inlet and outlet ports were fabricated through the PDMS slab using

a Harris Uni-Core biopsy punch. The patterned PDMS slab was bonded to microscope

glass slide following surface treatment by Plasma-preen II 863. Finally, Teflon tubes

were inserted into the access holes for fluidic contacts. The depth of all channels used

was 20 µm.

4.5 Sample Preparation

The isolation of red bood cells (RBCs) and white blood cells (WBCs) was based on

the Ficoll - PaqueTM process. Venous human blood was collected from a male healthy

adult volunteer and diluted by buffer solution (PBS with 2 mM EDTA) at a ratio of 1:1

(v/v). 35 mL of diluted blood was carefully layered over 15 mL of Ficoll-Paque (Ficoll-

Paque PLUS, GE Healthcare Europe GmbH, Freiburg, Germany) in a 50 mL conical

tube. The sample was centrifuged at 400 g for 20 minutes at 20◦C in a swinging-

bucket rotor without brake. The isolated mononuclear cell layer (lymphocytes and

monocytes) was carefully aspirated and transferred to a new conical tube. The conical

tube was filled by buffer (PBS with 2 mM EDTA), and the cells were resuspended and

centrifuged at 300 g for 7 minutes at 20◦C. The supernatant was removed and the

cell pellet, which contained WBCs, was resuspended in basic media (RPMI-1640 with
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10% FBS) (sample A). RBCs were harvested from the first 50 mL conical tube from

the pellet, and resuspended in basic media (RPMI-1640 with 10% FBS) (sample B).

For the isolation of microvesicles we used a purification procedure as described pre-

viously by Turiák, Misják et al. [179]. The first steps are designed to eliminate cells and

large extracellular vesicles by successive centrifugations at increasing speeds at each of

these steps, the pellet was discarded and the supernatant was used for the following

step. Firstly, the conditioned medium, which mainly contains microvesicles (MVs) and

exosomes (Exs) but also contained some apoptotic bodies (ABs) from BV-2 cell cul-

ture (mouse, C57BL/6, brain, microglial cells), was centrifuged at 300 g for 20 minutes

at 17◦C. The pellet consisting of cells was discarded and the supernatant was trans-

ferred to conical tubes. Next, apoptotic bodies were removed from the supernatant

by centrifuging it at 2000 g for 20 minutes at 17◦C. The supernatant was submitted

for further centrifugation. Finally the supernatant (enriched in microvesicles and exo-

somes) was centrifuged at 20000 g for 40 minutes at 4◦C, and the microvesicle pellet

was resuspended in 0.5 ml PBS. This microvesicle preparation was added to cell- and

platelet-depleted blood plasma (sample C).

4.6 Experimental Setup

Pressure-driven flow was created using syringe pumps, which were attached to the

inlet via Teflon tubes. This setting made it possible to hydrodynamically focus the

sample into a stream of 20 µm in width. Typical flow rates were used between 0.01 ml/h

and 0.1 ml/h, and they were controlled by the syringe pump. Before the measurements

the devices were treated by poliethylenglicol solution( 20ml H2O + 0.2g PEG) during

60 mins to avoid clogging. Imaging was performed on an inverted Olympus IX71

microscope. Image recording was through an EyeRIS camera system. I have developed

an image processing algorithm on a CNN-based device to count the number of particles

in real-time.

4.7 The Developed Cell Counting Algorithm

My aim was to develop a semi-automated system for these high resolution separation

tasks that consists of controllable syringe pumps, controllable microscopic platform, a
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Figure 4.7: Schematic view of our experimental setup. The platform consists of computer-

controlled syringe pump system, a microfluidic device on an inverted microscope, and a

CNN-based camera (EyeRIS).

camera and real-time image processing. The latter two tasks can be implemented in

modern camera systems (e.g. the programmable EyeRIS system by Anafocus; the

programmable SPS02 by Toshiba Teli; or the Bi-I system by Eutecus). Our University

has ongoing research in these areas as well, it was obvious that we could greatly improve

the functionality and automation of the experimental setup with such a device.

Therefore,I have developed a CNN-based algorithm implemented on an EyeRIS v1.3

camera, which is able to count particles in continuous liquid flow using the following im-

age processing steps. The algorithm is the following: image recognition, Gaussian filter,

global threshold, morphologic erosion, morphologic dilatation, morphologic centering,

and cell/object counting. The proposed algorithm works with grey-scale and binary

images and contains four main parts. First of all, it starts with the image recognition,

continues the preprocessing part with filtration. Thirdly, the algorithm performs the

binary image processing steps, which start with the threshold measurements, and ter-

minate with one pixel in the middle of recognized cells. Finally, the cells/particles are

counted from the result images.
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During the measurements the integration time (also called exposure time) is highly

correlated to the light intensity (expT ime = 0.7 ms). The observation output channels

of the DLD structure is monitored (SensedImg N, showed in Fig. 4.8.A). The camera

has a limited 144x176 resolution, the field of view is around 190 µm x 230 µm and the

RBCs are approximately 5-6 pixels in size.

The sensed image (SensedImg N, Fig. 4.8.A) could be perturbed with different noises

due to the sensor or external causes. The proposed algorithm starts with a Gaussian

filter to reduce the single pixel noise (GaussianImg N, Fig. 4.8.B).

Figure 4.8: Cell detection algorithm. A) Grey-scale sensed image from the cell flow

(SensedImg N ). B) Gaussian filtering on the SensedImg N (GaussianImg N ). C) Binary

image is the result of use of threshold (ThreshImg N ). D) The erosion function elimi-

nates the noise from the image (ErosionImg N ). E) Dilatation fills the holes on the cells

(DilatationImg N ).

The conversion from gray-scale (GaussianImg N ) to binary image (ThreshImg

N, Fig. 4.8.C) is made by the global threshold value (GTV). The histogram of the

gray-scale image is not flattened, the values of the pixels are between 100 and 145,

52

DOI:10.15774/PPKE.ITK.2015.011



4.7 The Developed Cell Counting Algorithm

nevertheless we can consider a stable microfluidic system with fixed illumination

(TresholdV alue = 115). During this step the algorithm uses only one function, thus it

is optimal in time, but not in quality. The fluctuation of the light can cause significant

errors, if the size of noise exceeds 2-3 pixels.

The erosion function on a binary image (ErosionImg N, Fig. 4.8.D) eliminates or

reduces the noise. Before this step the image is inverted because the following functions

work with white objects on black background. Two main methods exist for image

erosion. The first is to use a predefined constant that allows to select between 4-

neighbor connection and 8-neighbor connection or use a 3x3 pattern that completely

defines the structuring element. Our algorithm is based on the first method with the

4-neighbor connection case and erases 1 pixels to open morphologically the objects and

eliminate the one pixel errors.

The erosion function erases not only the noise and mistakes, but also consumes

pixels from the objects, which is compensated by the algorithm in the next step. The

dilatation is complementary to the morphological closing, it dilates a binary image in

which objects are white and the background is black. After the dilatation function

the cells have the same diameter on the result image (DilatationImg N, Fig. 4.8.E)

like before the erosion. The second importance of dilatation is colligated to the next

function.

The last step of the image precessing is the centering. This function gets the centroid

positions of the objects (CentroidImg N ). The morphological centroid peels the image

one pixel off as many times as indicated in an input parameter. In our case, it iterates

until no change occurs between iterations.

The termination part of the algorithm counts the cells/particles inside the Region-

Of-Interest (ROI), which is determined by a predefined binary mask (MaskImg). The

result image (ResultImg N ) is generated from a logical AND function of the CentroidImg

N and the MaskImg. The flow velocity is constant inside the output channel and

generally it is 0.020 mm/s. If the flow velocity is fix, in that case also the waiting

time (Twaiting = 2370ms) is well-known between two subsequent images (ResultImg N,

ResultImg N+1 ). The number of the white pixels in the ResultImg N Images describes

the number of the cells in the focused liquid flow. The efficiency of this algorithm was

more than 90 percent.
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4.8 Experimental Results

Section 4.5 introduces the applied sample preparation procedures and the type

of the samples. Sample A contains WBCs, sample B contains RBCs and sample C

has microvesicles with the well defined concentrations. During the measurements, a

composition of the purified blood components (sample D = sample A + sample B

+ sample C, w/w 1:1:1), such as RBCs, WBCs and microvesicles, was loaded into

the center inlet (INSample) whereas the sheath buffer (PBS) was introduced at the

ports on the left (INsb1) and right (INsb2) sides of the sample port thus focusing the

sample flow to the desired width (Fig. 4.2). The concentration of RBCs (sample B) was

around 5 · 106 per µL, WBCs (sample A) were around 7 · 103 per µL and microvesicles

(sample C) were around 8 · 104 per µL. Thrombocytes and apoptotic bodies have been

extracted from the sample simplifying optical classifications. During the measurements

negligible population of the WBCs has been attached to the surface of the obstacles

thus the purity of applied process could be conserved.

Figure 4.9: The efficiency of cell separations using the DLD device (white blood cells

(WBCs, blue), red blood cells (RBCs, red), and microvesicles (MVs, green)). A) The

dispersion of the blood components in the initial section (n = 1). B) The lateral displace-

ment of the components in the final section (n = 15). The error bar displays the standard

deviations.

To optically detect the blood elements, the biological sample (sample D) is driven

through the device at 0.001 ml/h flow rate which provides a suitable rate of cells for

counting and a suitable residence time in front of the camera to be imaged. We record

the lateral position of particles from the center of the inlet at two different positions

along the device (n = 1 and n = 15) in the DLD array and bin the results of 10 different
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measurements into histograms which are shown in Fig. 4.9. Around 1.47·105 of particles

have been optically distinguished and classified into WBCs, RBCs and microvesicles.

The microvesicles, which are below any critical hydrodynamic diameter Dc,n, are

able to follow a given stream through the array in zigzagging mode whereas RBCs and

WBCs occur laterally displaced by every interaction with posts. The further displace-

ment of WBCs occur, when the diameter of RBCs becomes equal with the actual critical

diameter of the post arrayand RBCs enter in zigzagging mode meanwhile WBCs are

forced to adopt orientations that give them a greater displacement along the device.

Shear forces, which result from gradients in the fluid velocity around a particle

may induce complex motions including rotation, tumbling and shape change [168].

RBCs and WBCs can be considered as deformable and non-spherical particles, which

suggests that such blood cells appear to modify their shape and diameter as they pass

through the DLD device which can lead to lower separation efficiency. The behavior

of blood components in the DLD array results in smooth histograms (Fig. 4.9). The

displacement of RBCs, WBCs and microvesicles are observed at the terminal section

by the described system (Sec. 4.6)and algorithm (Sec. 4.7).

The displacement of the different particles are bins for the histograms at the initial

section (Fig. 4.9.A)and in the observation zone (the end of our DLD array) (Fig. 4.9.B).

The position of microvesicles remains equal to their initial position along the entire

device due to the dimensionless numbers of fluid dynamics (Rep<1, Pe>1 and St<1).

The lateral displacement of RBCs from the center of the inlet is around 100− 120 µm

between the initial and the terminal sections. Whereas, WBCs are displaced by 140−
160 µm from their initial position. The obtained and reported efficiency of fractionation

can be increased by a longer device and the throughput can be improved by parallel

microfluidic devices.
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4.9 Device Principles

The results of our experiments applying the DLD structure for novel biomedical

applications, highlights the need to study the theoretical backgrounds more deeply.

The first publications presented separation theories of the DLD structures from the

results of the experiments [88].

Huang el al. states that the DLD separation utilizes the specific arrangement of

posts within a channel to precisely control the trajectory of and facilitate separation

of particles larger and smaller than a critical diameter (Dc) [88]. Each succeeding row

within a constriction is shifted laterally at a set distance from the predecessor, this

leads to the creation of separate flow laminae, which follow well defined paths through

the device [88]. If the particles below Dc are able to follow one such stream through the

array (zigzagging mode) whereas bigger particles are forced through interactions with

posts, to change streams many times, always in the same general direction, becoming

laterally displaced (displacement mode). The DLD phenomenon is based on the column

shift fraction (ε):

ε =
∆λ

λ
=

1

N
= tanα, (4.4)

which is the ratio of vertical (tangential to the flow) distance that each subsequent

column is shifted (∆λ) to the vertical array period (λ), N is the period of geometry

repetition and α is the displacement angle. Inglis et al. described the critical diameter

of the separation [101] by the following equation :

Dc = 2gεη, (4.5)

where g is the gap distance between two pillars in the same row (g = Dpost − λ) and

η is a dimension-less parameter taking into account the parabolic flow profile between

the pillars in the array, which is a consequence of pressure driven flow [101]. Each flow

between two obstacles can be divided into N = 1/ε streams, which carry equal fluid

flux. These streams shift their position in a cyclic manner thus after N subsequent

columns each stream returns to its initial position within the gap.

If the radius of particles is bigger than the mentioned first stream, these particles

will be displaced laterally by α = arctan(ε) = arctan(∆λ
λ ) angle (displacement mode),

meanwhile if their radius is less, they will follow the cyclic repetition of the streams
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Figure 4.10: Migration of particles along the deterministic lateral displacement array.

The smaller than Dc particles flow in zigzagging mode (ZM) The bigger than Dc particles

travel in displacement mode (DM). N = 10, g = 10 µm, γ = 40 µm, and λ = 30 µm.

(zigzag mode, α = 0◦) as it is shown in Fig. 4.10. Due to this case, the width of the

first stream can be considered the following way [101]:

β = gεη =
Dc

2
. (4.6)

If β is defined to be the width of the first stream which is correlated by the following

way with the flow profile (v(x)) within the gap (g)∫ β

0
v(x)dx = ε

∫ g

0
v(x)dx. (4.7)

By assuming a conventional parabolic flow profile through the gap with zero velocity

at the post sidewalls, the flow profile can be numerically determined by

v(x) =

[
g2

4
−
(
x− g

2

)2
]
. (4.8)

Solving Eq. 4.7 involves finding the cube root of[
β

g

]3

− 3

2

[
β

g

]2

+ ε
1

2
= 0. (4.9)

Assuming the flow profile between the micro obstacles is parabolic which holds true at

low Reynolds number, the critical separation diameter Dc can be numerically deter-

mined by [101]:

Dc = g

[
1 + 2w +

1

2w

]
, (4.10)

where

w =

[
1

8
− ε

4
+

√
ε

16
(ε− 1)

]1/3
(
−1

2
− i
√

3

2

)
. (4.11)
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The previously published models explain the migration of the particles based on the

particle-obstacle interaction and these models do not consider the mass, the diameter

and the velocity of the particles along the DLD array. I have constructed a novel

theory of the migration of the particles with real physical parameters within the DLD

structure, which called inertia-based particle separation and discussed in the following

section 4.10.

4.10 Inertia-based Particle Separation Theory

In order to achieve spatial control of particles in microchannels, a mechanism of

lateral migration is required. The DLD structure can be considered as a manipulation

tool that can be used to fractionate a randomly distributed set of particles in a flow

[180]. The drag force accelerates the particles until they are forced free in the flow

direction and travel at the average intersected fluid speed. Lift forces are most often

applied to differentiating different-sized/mass particles.

This inertial migration phenomenon of the particles along the DLD structure could

be observed by the mismatch between fluid streams and particle trajectories, which is

induced by the geometric configuration of channel with sudden expansion and contrac-

tion elements [5, 181].

Let us consider a Descartes coordinate system in two dimensions, as it is shown in

Fig. 4.3, where x coordinate is in the longitudinal direction and y is in the perpendicular

direction of the DLD structure.

In this coordinate system, let us consider an infinite wide DLD structure; thus

the influence of sidewall effect (Sec. 4.11.3) on the flow streams could be neglected.

Applying a stable, developed velocity profile along the DLD structure, the number

of the equivolumed is determined by the period of geometry repetition (N) (Eq. 4.4).

It means, after N column line the fluid stream returns to the same position. Each

stream carries equal fluid flux but is not necessary the same stream width as is shown

in Fig. 4.11.

Figure 4.11 demonstrates the x- and y-components of the flow velocity field between

two obstacles with streams. Before reaching the smallest cross-section area, the liquid

flow is pinched thus its velocity is accelerated. In other hand leaving the pinched

area, the nominal channel diameter is increased; thus the flow velocity is reduced.
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Figure 4.11: Flow velocity field with streams (black lines) within the DLD device (vIN =

1 · 10−3 m/s, h = 20 µm, N = 10, g = 10 µm, γ = 40 µm, and λ = 30 µm). A) the

x-component of the velocity field B) the y-component of the velocity field.

Figure 4.12: Streams (black lines) and vector field of flow velocity (red arrows) within

a DLD array (vIN = 1 · 10−3 m/s, h = 20 µm, N = 10, g = 10 µm, γ = 40 µm, and

λ = 30 µm).

However, the x-component of the velocity field dominates; the y-component is also

important, which causes the lateral migration of the particles along the DLD structure.

Figure 4.12 shows the vector field of flow velocity with the streams between obstacles

at same boundary conditions vIN = 1 · 10−3 m/s, h = 20 µm, N = 10, g = 10 µm,

γ = 40 µm, and λ = 30 µm).

Let us consider neutrally buoyant particles in this stable, developed flow velocity

field. The longitudinal inertial force on the particle is the drag force (FD), which is
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defined the following way:

FD =
1

2
ρv2CDA, (4.12)

where ρ is the fluid density, v velocity of the particle, A is the reference area, and CD

is the drag coefficient, which is a dimensionless coefficient related to the geometry of

the object. Let us consider rigid, circular particles with diameter and mass: (d1, m1,

and m2, d2). The drag force of circular particles could be simplified into the following

equation:

FD = 3πµdv, (4.13)

where µ is the dynamic viscosity and d is the diameter of the particle. Using Newton’s

second law the acceleration of the particle is the following:

a =
3πµdv

m
. (4.14)

The tangential inertial lift effects on the neutrally buoyant particles [182–184]: the

wall-induced lift force and the shear gradient induced lift force. The wall-induced lift

force is an interaction between the particle and the adjacent wall, which directs the

particle away from the wall. The shear gradient induced lift force, due to the curvature

of the velocity flow profile, directs the particle away from the center of the channel.

The particles also have an effect on the streams they are carried by thus altering the

original streams.

Figure 4.13: The cornet tails on two different particles (d1 = d2 and m1 < m2) along

the trajectories represent the acting drag forces with streams (black lines), and the flow

direction (vIN = 1 · 10−3 m/s, h = 20 µm, N = 10, g = 10 µm, γ = 40 µm, and

λ = 30 µm). A) Low-inertial particle (m1) at different time steps with cornet tails on its

trace, which represent the acting drag force at actual positions. B) High-inertial particle

(m2) at different time steps with cornet tails on its trace.
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Figure 4.13 represents a DLD structure (N = 10, g = 10 µm, γ = 40 µm, and

λ = 30 µm) with flow streams and trajectories of two different particles, which have

diameter and mass (d1 = d2 and m1 < m2). The initial position of these particles is the

same, but their trajectories become different along the DLD structure. The particle

with smaller inertia (green) travels with the flow streams, but the particle with bigger

inertia (red) traverse through the streams.

The small inertia particle travels in a zigzagging mode in its original stream, which

returns into the same displacement position from its origin after N constrictions. In

a zigzagging mode (α = 0◦), the small inertia particle is laterally displaced N − 1

times, but at the last cyclic step (N th) this particle returns into the original position

without any lateral displacement by the last downstream. In a displacement mode

(α = arctan(ε)), the high inertia particle is drifted away from their original flow stream

into the adjacent stream at each column line as it is shown in Fig. 4.10.

For a better analysis of the particle migration along the DLD structure, an inlet line

in vertical position has been applied in the middle of the channel. As it was described

by Eq. 4.14, in consideration of a constant viscosity, three variables could influence

the acceleration of particles: the velocity (v), the diameter of the particles (d), and the

mass of the particles (m). The following part discusses the influence of the mass, the di-

ameter, and the velocity of the particles on the travel mode (zigzagging/displacement).

Figure 4.14: Trajectories of the same particles with flow streams (black lines) from

horizontal inlet (h = 20 µm, N = 10, g = 10 µm, γ = 40 µm, and λ = 30 µm) at different

flow rates (vIN1 < vIN2). A) At lower flow rate (vIN1) the particles could follow the flow

streams. B) At higher flow rates (vIN2) the particles are displaced laterally mismatching

their streams.

First of all, let us consider only one particle type along the DLD structure entering
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into the DLD structure in a horizontal line at different flow rates (vIN1 < vIN2).

Figure 4.14 shows that, at lower flow rates (vIN1) the particles could follow the flow

streams, meanwhile at higher flow rates (vIN2) the particles are displaced laterally

crossing their streams.

Figure 4.15: Trajectories of different-weights but identical sizes particles (d1 = d2 and

m1 < m2) with flow streams (black lines) from horizontal inlet (vIN = 1 · 10−3 m/s,

h = 20 µm, N = 10, g = 10 µm, γ = 40 µm, and λ = 30 µm). A) The lighter particles

(m1) flow in zigzagging mode. B) The heavier particles (m2) are displaced laterally.

Let us consider a fix flow rate and two types of particles with the same diameter

but different-mass (d1 = d2 and m1 < m2). Figure 4.15 shows that case, when the

lighter particles (m1) follow the flow streams without crossing them, and travel along

the DLD structure in zigzagging mode. Instead, the heavier particles (m2) leave the

original streams along the DLD structure displacing themselves laterally.

Figure 4.16: Trajectories of different-sized (in diameter) but equal weight particles (d1 <

d2 and m1 = m2) with flow streams (black lines) from horizontal inlet (vIN = 1 ·10−3 m/s,

h = 20 µm, N = 10, g = 10 µm, γ = 40 µm, and λ = 30 µm). A) The bigger particles

(d1) flow in zigzagging mode. B) The smaller particles (d2) are displaced laterally.
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Figure 4.16 shows the case, where the diameters of particles are different but their

weight is the same (d1 > d2 and m1 = m2). The bigger particles (d1) are moved easily

away from the displacing mode into a zigzagging mode than the smaller particles (d2),

which are displaced laterally along the DLD structure.

Figure 4.17: Trajectories of different-weights but identical size particles (d1 = d2 and

m1 < m2) with flow streams (black lines) from vertical inlet (vIN = 1 · 10−3 m/s, h =

20 µm, N = 10, g = 10 µm, γ = 40 µm, and λ = 30 µm). A) The lighter particles

(m1) follow the original flow streams. B) The heavier particles (m2) leave the original flow

streams.

All of the above figures interpreted results where the particles arrived into the model

horizontally at the middle of the device. As it was described previously, we have to

consider tangential inertial lift forces on the neutrally buoyant particles. These forces

are not identical in the vertical direction thus we have to increase the two dimensions

of the Descartes coordinate system into three dimensions, where the z-component is

in the direction of height. In a three-dimension system, let us consider a vertical inlet

line from the bottom to the top of the channel, where two types of particles with the

same diameter but different-weights (d1 = d2 and m1 < m2) enter the DLD structure.

Figure 4.17 shows these particles from a vertical inlet with streams, where the initial

positions have the same line as the particles. In a vertical case, we obtained the same

results: the trajectories of the lighter particles (m1) follow the original flow streams

(zigzagging mode), meanwhile the heavier particles (m2) cross the flow streams.

Introducing the z-direction, the velocity field along the DLD structure has to be

interpreted for better understanding. For this purpose, nine cut planes (CP1, CP2,

..., CP9) have been inserted perpendicularly to the x-direction. Figure 4.18 shows the

first three cut planes (CP1, CP2, and CP3) with the different components of the flow
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4.10 Inertia-based Particle Separation Theory

Figure 4.18: Three components of the velocity field after the pinched section. A) showing

the z-y plane cross section positions relative to the DLD geometry B) the x-component

C) the y-component, and D) the z-component of the flow velocity field at CP1, CP2, and

CP3. Please observe the different range of velocities in different directions.

velocity field. The x-component of the flow velocity field is the most dominant among

the other components along the DLD device, but the oscillation of y- and z- components

also have a significant meaning. At CP1 and CP9, we manage to observe that the flow

velocity profile has only x-component but leaving the middle of the pinched section from

CP1 to CP3, the y- and z-components increase significantly. Due to an increase of the

y-component, the flow streams will open and determine the displacement of different

particles. However the z-component of the flow velocity field along the DLD structure

is around centesimal of the x-component, it also has an effect on the particles.

The region between two column lines has an important change in the y- and the

z-components, which is shown in Fig. 4.19. From CP4 to CP6, these components of

the flow velocity field change their sign. For the z-component, this change is without

any dependence on y-coordinates, but the change of the y-component has a lateral

displacement by ∆λ shift factor due to the influence of the second column line. The
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4.10 Inertia-based Particle Separation Theory

Figure 4.19: Three components of the velocity field between two column lines. A) showing

the z-y plane cross section positions relative to the DLD geometry B) the x-component

C) the y-component, and D) the z-component of the flow velocity field at CP4, CP5, and

CP6.

width of the downstream flow caused by ∆λ determines the resolution of the separation.

Arriving into the pinched section from CP7 to CP9, the x-component starts to rule

the flow velocity field and with y-component focus the flow into the gap between two

adjacent obstacles as it is shown in Fig. 4.20. From the analysis of particle trajectories,

this effect is the most significant due to the fact that in this area the drag force accel-

erates the particles the most. When the different particles arrive into the expanding

regime (Fig. 4.18), the particles with higher inertia cross the opening flow streams and

enter in displacement mode. Those particles, which have a lower inertia, let themselves

accelerated by the drag force as well, following their original streams after the pinched

section.

As it was mentioned previously, the particle effect back to the originally developed

stream flow. To simulate the movement of the particles along the DLD structure re-

quires own developed computational fluid dynamics environment. The novel theoretical
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Figure 4.20: Three components of the velocity field before the pinched section. A)

showing the z-y plane cross section positions relative to the DLD geometry B) the x-

component C) the y-component, and D) the z-component of the flow velocity field at CP7,

CP8, and CP9.

model of the particle migration along the DLD structure has to consider also this in

the future work.

4.11 Uncovered Research Fields of the DLD effect

The investigation into DLD effect is an encouraging topic between the sample prepa-

ration techniques. The following sections highlight the uncovered research fields of the

DLD effect.

4.11.1 Post-Particle Interactions

Steric interactions of non-rigid particles with column array effect on the effective

size of the cells. Attraction and repulsion can occur with the particles due to exter-

nal forces which make the particles adhere to the device. In consideration of blood,
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the adhesion of leucocytes onto the blood vessels is a well-known process during the

inflammation response which acts also within the microfluidic devices or modify the

migration of the cells along the DLD array. During the presented measurements this

effect was minimized by a chemical modification of the inner surfaces of the devices

using polyethylene glycol (PEG) solution.

4.11.2 Particle-Particle Interactions

In the DLD array structure, the gap width (g) is commeasurable with the size of

solute particles thus their perturbation on the surrounding flow fluid can be significant,

which is mostly influenced by their diameter and their rigidity [185]. Increasing the

concentration of the sample, the particle-particle interaction will increase this perturba-

tion effect regarding the particle migration, modify the effective diameter of the flexible

cells and may stick mostly the leucocytes and thrombocytes to the inner surface, which

leads to clogging the DLD structure during a long measurement. In this case, the crit-

ical diameter of the DLD array will locally be modified thus decreasing the resolution

of fractionation, and the flow resistance will increase decreasing the throughput.

4.11.3 Sidewall Effect

Since the separation mechanism of deterministic lateral displacement array relies

on a small amount of fluid flux, the perturbation of the uniform flow profile can be

modified significantly close to the sidewalls [186].

Three design possibilities could be considered: straight sidewall (Fig. 4.21.A),

zig-zag sidewall (Fig. 4.21.B), and structure-incorporated sidewall (Fig. 4.21.C). The

boundary condition of sidewall as linear straight wall modifies the uniform streams

close to the sidewall which effect propagates into upper stream layers. The zig-zag

sidewall-shape compensates this effect but the structure-incorporated sidewall has less

influence on the neighbor streams. Based on these fluid dynamic calculations in the

developed structure the structure-incorporated sidewall has been chosen.

4.11.4 Shape of the Obstacles

Many researchers have investigated the effect of changing post shape within a DLD,

in order to improve performance whilst retaining several of the advantageous proper-
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Figure 4.21: Sidewall effect. Streams (black lines) of the deterministic lateral displace-

ment array with N = 3, g = 5 µm, γ = 15 µm, and λ = 15 µm for each possible sidewall

type: straight sidewall (A), zig-zag sidewall (B), and structure-incorporated sidewall (C).

ties of this technology [170]. The widely used round column shape provides symmetric

flow velocity profile on both sides of the obstacle. Modifying the shape an asymmetric

flow profile can be formed to increase the lateral displacement of bigger particles and

decrease the effect of clogging in slow volumetric rate areas (behind the obstacles).

A wide variety of post shapes were used experimentally and simulated within DLD

structure including round, streamlined, quadrilateral, diamond, triangular, I-shaped,

which are summed up in Table 4.1. Fig. 4.22 presents the velocity profile of the men-

tioned post shapes at 1 mm/s flow velocity, when water was used as a medium with

N = 3, γ = 25 µm, and λ = 25 µm. The zero or negligible velocity profile of the round

and the streamlined post shapes is less than the other column types thus these can be
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considered as the most robust geometry against particle trapping/clogging.

Figure 4.22: Velocity profile with uniform streams (black lines) the deterministic lateral

displacement array applying different post shape types form experiments or simulations:

A) round B) streamlined C) quadrilateral D) diamond E) triangular F) I-shaped.
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4.11.5 Separation or Concentration Modes

The DLD structure, as it was described previously, can separate two different par-

ticles from each other using an asymmetric array structure. Fig. 4.23.A represents the

separation mode where the smaller particles than a critical diameter flow in zigzagging,

which is also used in the applied approach. From the original stream, the bigger par-

ticles than a critical diameter (Dc) can be displaced laterally into the direction of the

sidewall, these particles become concentrated along the DLD structure; thus the device

can be used to increase the concentration of bigger particles relative to a background of

smaller particles or to remove a fraction of larger particles from a sample (Fig. 4.23.B).

Figure 4.23: Possible application modes of the deterministic lateral displacement. A)

Separation of different particles from a focused inlet. B) Concentration of bigger particles

than the critical diameter in unfocused sample flow. C) Multiple arrays in series give

multi-modal fractionation.

In order to separate particles into more than two fractions, subsequent arrays with

different critical diameter can be used as it is shown on Fig. 4.23.C. By having several
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arrays with sequentially decreasing Dc, it is possible to separate particles within various

size thresholds. Increasing critical diameter of the subsequent array should increase the

purity of each fraction and should decrease the risk of clogging along the device.

4.11.6 Dynamic Range of the Separation

The range over which a device is functional is an important evaluation of separation

technologies. Generally, dynamic range refers to the ratio between the largest and the

smallest values of a variable quantity. The dynamic range of a DLD structure can

be considered as the ratio of the largest and the smallest critical diameter within the

device, at which the separation can operate without clogging. The dynamic range of a

single array device is always 1.

The larger the gaps between the obstacles are the better, as the device can accept

a broader range of particle sizes, and that is less susceptible to clogging and results

in lower resistance and potentially higher throughput. In multiple arrays, the DLD

structures with different critical diameters have to be aligned and joined behind each

other.

4.11.7 Shape, Deformation, and Rotation of the Particles

Generally, live biological cells are flexible particles and come in many shapes. These

solute non-spherical particles travel along the DLD device modifying their orientation

and center of mass thank to the fluid-particle, post-particle, and particle-particle in-

teractions. Rotation of the particles varies their effective radius, which also influences

the traveling mode along the DLD structure. This can greatly limit the predictability

of the computational fluid dynamics simulations but on the other hand, controlling

the orientation or flexibility of the solute particles, can lead to the applicable for finer

fractionation or to further separation purposes.

4.12 Conclusion and outlook

Extracellular vesicles provide a means for cells to interact with each other and

appear to play an important role in cancer research and in a wide variety of physiolog-

ical and pathological processes. In this study, on-chip microvesicle fractionation from
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biologically complex samples, such as human blood and conditioned medium from cul-

tured cells was achieved for the first time as a deterministic lateral displacement array

structure was used. Compared to the current standard protocols for isolating microvesi-

cles, our deterministic lateral displacement device is faster, cheaper, label-free and its

efficiency is comparable with clinical laboratory procedures.

Based on these experiments, the DLD array can be considered as a powerful tool

for particle separation and manipulation. We can show the evidence that label-free

fractionation of micron-scale particles can be delivered by using a deterministic lat-

eral displacement array. This suggests that our DLD device may be able to provide

rapid diagnostic information about the haemostatic condition of a blood sample, to

explore cell-to-cell communication or to fractionate blood sample efficiently for clinical

tests without the use of an activation specific label or marker. This chapter begins

with a concise discussion about label-free separation techniques and the exact biomed-

ical problem is described, which we worked on. We identified that the mechanism

of separation is based on an inertia-based motion behavior of the particles along the

DLD structure. This causes that the inertia-based separation of particles, which was

characterized by computational fluid dynamics simulation, shows correlations with our

experimental measurements and results. Based on the theoretical works, we manage to

create a DLD structure, which was useful to solve the initial challenge.

The main objective of this chapter was to produce cell-free plasma containing extra-

cellular vesicles from serological samples, and it has been archived successfully. In this

version of the microfluidic device, we would like to understand better the functionality

of the DLD structure experimentally, determine the position of outlets to increase the

efficiency of separation; thus we designed this microfluidic device with an observation

part, which torrents into just a single outlet. The cost of these aims was that we have

no choice for any analysis of the output products, but only optically using an inverse

microscope.

The efficiency of separation could be increased using a longer DLD structure. Using

specific surface modification the clogging could be eliminated in the inertial section. The

flow resistivity of the inlet channels can be increased applying parallel microcapillaries.

These errors will be solved easily in the further designs significantly raising the efficiency

of the separation.
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As it was mentioned before, the DLD can be used in a diagnostic tool for disease

severity, assess the efficacy of different treatment strategies and possibly determine the

eventual location of metastatic invasions for possible treatment. The DLD structure

could be designed for several purposes as biomedical sample preparation, chemical

analysis or other industrial applications.

In biomedical sense, the DLD array system could be a useful analytic tool for further

hemorheology. The human erythrocyte adopts a distinctive biconcave disc form in

vivo. Any change or variety of their structure could highlight uncovered diseases as

sicklemia, infection of malaria, or other blood-borne pathogens. Another important

field of application is the uncovering of circulating tumor cells (CTCs) and circulating

clusters of cancer and stromal cells, which could be identified in the blood of patients

by the presence of malignant cancer. CTCs constitute seeds for subsequent growth of

additional tumors (metastasis) in vital distant organs, triggering a mechanism that is

responsible for the vast majority of cancer-related deaths. The continuous observation

or filtration of CTCs using DLD devices could give us invaluable information.

Water is essential to life, but many people do not have access to clean and safe

drinking water and many die of waterborne bacterial infections thus nowadays other

challenging field, where the DLD structure could apply, is the observation of water-

born pathogens from drinking water. The most important bacterial diseases trans-

mitted through water are cholera, typhoid fever and bacillary dysentery. Using the

DLD structure with high throughput could be useful also to detect these water-borne

pathogens. Finally, I would like to mention, that by changing the separation range close

or under micron-range could also have a fundamental interest in biomedical detection

field as the fractionation of different-sized extracellular vesicles.
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4.13 Related thesis groups

Thesis Group II: I have realized a continuous label-free separation of tumor-

delivered extracellular vesicles from serological samples by adapting and fine tuning

the deterministic lateral displacement (DLD) method. In this novel application area

of the method I designed, fabricated and tested separation devices and showed their

separation efficiency. I have also studied and extended the physical description of the

DLD effect on particles with an inertia-based theory.

Related publications [L2, L10-L15]

II.1: I have developed a multi-modal deterministic lateral displacement array to

separate continuously the tumor-delivered extracellular microvesicles from serological

samples.

a) I have designed an asymmetric array of cylindrical obstacles implementing the

multi-modal deterministic lateral displacement theory. I have calculated the desired

critical diameters of each DLD array sections. Each DLD section was designed with

cylindric pillars of 20 µm diameter (Dpost), the gap between adjacent pillars in each

columnline (g) is 10 µm, the vertical array period (λ) is 30 µm and the horizontal array

period (γ) is 40 µm. The column shift ratio (εn) which ranges from 0.1 up to 0.33 with

steps of 1/60, describes 15 column sections (n) following each other thus the Dc,n is

between 3.9 µm and 7.7 µm.

b) I have calculated the pressure drop and the flow resistivity of different-height

devices to obtain an acceptable channel height and length for the adopted purpose.

c) I have fabricated DLD devices by soft-lithography. I have constructed a microflu-

idic platform and a procedure to test the DLD devices.

d) I have extended the semi-automated experimental setup with a real-time image

processing and particle counting application which required a CNN-based algorithm

development to count the number of particles in the final channel section area. I could

count the number of cells with this algorithm using an EyeRIS v1.3 camera.

II.2: I have proved experimentally and measured the displacement of the white

blood cells, red blood cells, and microvesicles using the DLD structure. Based on the
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experiments I have created a novel description of the particle migration along the DLD

structure.

a) I proved that the proposed label-free fractionation of microvesicle from blood

cells in serological samples can be delivered in practice by using the deterministic

lateral displacement array at 1 mm/s flow velocity within a 20 µm high DLD structure

with g = 10 µm, λ = 30 µm, and ∆λ varies from 3 up to 10 µm with a step of 0.5 µm.

I have measured the displacement of these blood components from the initial position

at the final detection area.

b) I have created a novel description of the particle migration along the DLD struc-

ture, which considers also the physical parameters of the particles (mass, diameter,

and velocity).
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In my thesis I have presented a series of improvements to the method of the Flow-

Through Nematode Filter to enrich circulating nematodes from native blood and a

deterministic lateral displacement device to separate tumor-derived extracellular vesi-

cles from serological samples that I have developed together with my coworkers.

I have successfully developed a novel microcapillary structure for hydrophoretic

filtration of blood-borne micron-size pathogens. I have designed a set of novel deter-

ministic filter (flow-thought nematode filter, FTNF) have been designed by increasing

capillary width (Wcapillary) from 6.1 µm up to 15.4 µm. I determined the velocity and

pressure profile of each FTNF at different flow rates using CFD simulations. I calcu-

lated the pressure drop and the flow resistivity of each FTNF to avoid leakages during

the experiments. Based on the results of I found that decreasing the capillary width

the pressure drop raises at constant flow rate. Raising the flow rate, the pressure drop

raises and develop an isobaric condition in the center of the FTNF structure.

I have fabricated FTNF devices by soft-lithography. I have developed a detection

platform and a 4-step procedure to use the FTNFs. I have determined the efficiency

of the FTNFs and the inhomogeneity of the samples. Testing the microfluidic devices

with nematode infected canine blood, I measured the efficiency of the each FTNF

device and calculated the robustness of the obtained procedure for veterinary purpose.

I found that the efficiency of the constructed devices at 0.25 ml/h, 0.5 ml/h and 1 ml/h

flow rate is influenced by the sedimentation and the flow rate. The highest mean

efficiency of filtration was obtained at 0.5 ml/h flow velocity with the best trend fit.

Based on the measurements, I found that increasing flow rate, the homogeneity and its

76

DOI:10.15774/PPKE.ITK.2015.011



stability increase. Decreasing capillary width (Wcapillary) the filtration efficiency rises

but beyond a higher volumetric rate the nematodes can be forced through the capillary

structure due to the raised pressure drop and the properties of non-rigid particles.

Finally, I found that the best setup was using 6.1 µm wide capillary at 0.5 ml/h flow

rate.

I designed an asymmetric array of cylindrical obstacles implementing multi-modal

DLD effect. Each DLD array section was designed with pillars of 20 µm diameter

(Dpost), the gap between adjacent pillars in each column (g) is 10 µm, the horizontal

array period (λ) is 30 µm and the vertical (tangential to the flow) array period (γ) is

40 µm. The column shift ratio (εn) which ranges from 0.1 up to 0.33 with steps of

1/60, describes 15 column sections (n) following each other thus the Dc,n is between

3.9 µm and 7.7 µm. I determined the velocity and pressure profile of the DLD arrays

using computational fluid dynamic simulations. I calculated the pressure drop between

two adjunct column lines, which is useful to determine easily the total pressure drop of

all DLD structure. I calculated the flow resistivity of different-heights device to obtain

an optimal channel height for the adopted purpose.

I have fabricated the microfluidic devices by soft-lithography. I have developed a

separation platform and a procedure to use the DLDs. I proved that the proposed

label-free fractionation of microvesicle from blood cells in serological samples can be

delivered in practice by using the DLD array at 1 mm/s flow velocity within a 20 µm

high DLD structure with g = 10 µm, λ = 30 µm, and ∆λ varies from 3 up to 10 µm

with a step of 0.5 µm. I measured the displacement of these blood components from

the initial position at the final detection area. And also a CNN-based algorithm was

implemented to count the number of particles in the final channel section area. I could

count the number of cells with this algorithm using an EyeRIS v1.3 camera.

I have created an inertia-based model of particle migration, which consider also the

physical parameters of the particles (mass, diameter, and velocity). Based on compu-

tational fluid dynamics simulation, I could demonstrate the effect of mass, diameter,

and velocity on the travel mode (zigzagging or displacement mode). I have found that

tracing the same particles at different flow rates, there is a threshold flow rate, be-

low which the particles flow in zigzagging mode, above which enter into displacement

mode. The inertia-based model of particles migration along DLD structure has seven

independent variables (λ, ∆λ, γ, g, v, m, d).
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The developed microfluidic devices can be used as a diagnostic tools for several

biomedical purposes as biomedical sample preparation, chemical analysis or other indus-

trial applications. Modifying the geometries of both devices, the developed microfluidic

structures can be adapted for novel clinical, veterinarian, and industrial cases.

In biomedical sense, these microfluidic devices can replace analytic procedures or

tools in clinical applications. Human erythrocytes adopt biconcave disc form. Any

change or variety of their shape highlights diseases as sicklemia, infection of malaria,

or other blood-borne pathogens.

Another important application can be the observation of the circulating tumor cells

(CTCs), which has an important role in cancer metastasis. The clustering of the cancer

and the stromal cells could be useful to show the presence of malignant cancers. The

continuous observation or filtration of CTCs using the developed microfluidic devices

can give us invaluable information.

Further application of the developed microfluidic devices can be the filtration of

drinking water. Water is essential to life, but many people do not have access to clean

and safe drinking water and many die of waterborne bacterial infections. The obser-

vation and filtration of water-born pathogens from drinking water using microfluidic

devices can be significant in the close future.
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