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1. Introduction 

The network view on biological data has profoundly 

influenced the ways we are looking at problems of diagnosis and 

therapy in life sciences today. In traditional paradigms, we used to 

look at data as isolated entities stored in organized databases. 

Today, we increasingly consider data as an interconnected 

network. There are many kinds of connections – for instance drugs 

can be connected to diseases, to their protein targets, to genes 

producing the targets, or to drugs they can replace or antagonize. 

In a similar manner, proteins can be linked to other proteins they 

physically contact, to genes they regulate, to diseases they play a 

role in, etc. This is a very complex picture, because we have many 

types of entities and relationships which are defined in separate 

ontologies that in turn can be considered as networks of terms. The 

storage and manipulation of such a large body of data is clearly 

too demanding for current computers. In addition, such data 

networks are both incomplete and noisy. Namely, we have a 

seemingly large number of proteins, but the knowledge of proteins 

is rarely validated by experiment, and a large part of the 

annotations are just taken over from homologous proteins of 

various organisms. Also, we cannot be sure whether or not two 

proteins are linked in all tissues and/or in all phases of the cell 

cycle. The solution of these problems is to break down the 

hypothetical data-network into specific - disease-specific, tissue-
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specific, pathogen-specific etc. - manually curated parts which 

contain reliable information on a given problem. This is a tedious 

and labor-intensive solution, which is justified only in highly 

significant fields. Cancer-specific data networks are an example 

of this approach. In addition, there are two major information 

sources that can help data-sparsity problems. On the one hand, 

various high-throughput experimental methods (two-hybrid 

systems, DNA sequencing, Chip-seq, etc.) provide novel kinds of 

molecular interaction data,that in principle can be easily added to 

the existing databases. However, high-throughput data are most 

often laden with noise, which has to be handled. In such cases 

hierarchical data networks (i.e. ontologies) may offer a good 

framework to balance between the reduction of noise and 

sensitivity to discover novel data links from the experiments.  

On the other hand, literature databases containing abstracts or 

full text of scientific papers provide a large body of new 

knowledge that can in principle be linked to molecular data. 

Again, the process is not trivial: scientific texts use natural 

language, and concepts are often not analogous to the ones used 

in other texts or in molecular databases. 

Disease-specific databases and tools represent a current 

approach where the above problems are tackled by large 

communities of scientists. Cancer databases and tools are a typical 

example, since cancer is one of the most severe complex diseases, 
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which is responsible for ~15% of all human deaths, and which has 

>100 more-or-less well-characterized types and >500 human 

genes associated with it [1]. Oncologists use a variety of 

traditional databases, but there are a number of data-collection 

efforts dedicated to the gathering of data on various cancer types. 

All this provides a solid knowledge base for designing integrated 

data-networks in which novel questions related to cancer therapy 

can be answered.  

Here I am concerned with three types of questions that can be 

addressed via integrated data networks: i) finding drug 

combinations potentially useful for cancer therapy. I tackle this 

problem by using a simple network overlap measure applied to 

data networks. And ii) finding novel gene-disease associations in 

ovarian cancer for generating a list of potential biomarkers. I 

approach this problem by using a text mining approach applied to 

MEDLINE abstracts [2] as well as the STRING database [3]. iii) 

Finally, I present a practical application by testing a dedicated, 

data subnetwork in accelerating the taxonomic identification. 

Here I take advantage of the fact that taxonomic and even 

functional subnetworks are hierarchical graphs, which allows a 

substantial speedup with respect to current algorithms. 
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2. Methods 

From a logical point of view, all interaction networks and data 

networks are graphs in which nodes are entities such as molecules, 

diseases, i.e. biological, physical, as well as conceptual objects, 

while the edges or links between nodes are relationships, such as 

molecular interactions, drug-disease connections, drug 

compatibilities, etc. 

This work is concerned with the concept of network 

neighborhood that can be defined as a subnetwork or subgraph 

around a selected node. Defining a subnetwork in a data-network 

can be carried out either by static or dynamic methods using 

probabilistic approach. 

Here it is assumed that an effect propagates from a central 

node such as a drug target. This is a dynamic approach since the 

nodes of the network get weighted in an iterative fashion during 

propagation, and at the end one can select those nodes that have 

weights exceeding some threshold value. We are concerned with 

two kinds of propagation algorithms used in several fields of 

computer science, PageRank [4-6] and diffusion [7-10]. 

The PageRank algorithm is a special case of random walk on 

data network: a walker starts at a certain data node, then randomly 

selects the next node from its neighbor, then moves there, and so 

on. In the case of PageRank the walker not only selects a 

neighboring node randomly, but it can also move to any other 
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nodes with a certain probability (“restart probability”). If the 

walker is only allowed to move to specific set of nodes or to the 

neighboring nodes, then this is the PageRank with prior algorithm 

[5, 6, 11]. If there is prior knowledge available about which nodes 

are more relevant, then one can use this information to bias the 

original PageRank scores. Other well-known algorithms based on 

random walks include k-step Markov [11], HITS [12], and HITS 

with Prior [11]. 

Diffusion is a physical metaphor used to model transport 

phenomena on networks. In our case, we assign an imaginary 

quantity, such as “energy” or “drug action” to one node of the 

network – for instance the gene targeted by the drug – and then 

use an iterative process to compute how this quantity diffuses 

along the network.  

In a similar way to PageRank with prior,? it is possible to 

incorporate prior knowledge about the data network, i.e. relevant 

drugs to a disease by regularizing the Laplacian matrix [7]. The 

regularization could be interpreted as alteration of diffusion 

process by i.) controlling (increasing or decreasing) the energy 

loss of a node, ii.) altering (increasing or decreasing) the input 

energy flow on certain edges, iii.) both of the above. All of the 

mentioned alterations can be described with different 

regularization parameters.  
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The evaluation of a large system of ordinary differential 

equations could be a challenging task, like it is in the case of 

diffusion; however, by using sparse linear algebra and leveraging 

the sparseness of a typical data network, the solution could be 

computed in reasonable time. Instead of computing the matrix 

exponential, one could focus on the approximation of the matrix-

vector product gaining a significant speedup. The expression 

(0)Lte x
 could be approximated by using iterative methods such 

as Arnoldi algorithm [13-15].  

Both PageRank and diffusion methods require the estimation 

of a threshold value below the nodes (and their respective edges) 

are omitted from the network neighborhood. This can be carried 

out by standard Monte-Carlo simulations in which a large number, 

say ten thousand of iterations are started from randomly selected 

nodes of the network, and values significantly, say p<<0.05, 

higher than the background are selected as members of the 

neighborhood.  
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3. New Scientific Results 

I. Prediction of efficient drug combinations 

Related publications of the author: [J1][J3][C1] 

 

Drug combinations are highly efficient in systemic treatment 

of complex multigene diseases such as cancer, diabetes, arthritis, 

or hypertension. Most of the currently used combinations were 

found in empirical ways, which limits the speed of discovery for 

new and more effective combinations.  

 

THESIS I.1. I have developed a novel drug combination 

prediction method based on the assumption that a 

perturbation generated by multiple drugs propagates through 

an interaction network and the drugs may have unexpected 

effect on targets not directly targeted by either of them (Figure 

1). I have introduced a new index, the so-called Target 

Overlap Score (TOS), to capture this phenomenon. The score 

quantifies the potential amplification effect as the overlap 

between the affected subnetworks. The score is computed as 

the Jacquard or Tanimoto coefficient between the sets of 

nodes in the subnetworks, 
1net and

2net : 

1 2

1 2

1 2( , )
net net
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Figure 1. The effect of two drugs (Drug1, Drug2) reaches their imminent 

targets first (arrows) and the effect will then propagate to their network 

neighborhoods (subnetworks) indicated in red and green, respectively. Targets 

in the overlap are affected by both drugs, and we suppose that drugs affecting a 

number of common targets will influence the effects of each other. The overlap 

is quantified as the proportion of jointly affected targets within all affected 

targets (in set theory terms: intercept divided by union). 

 

THESIS I.2. I have showed that by using the TOS score it 

is possible to distinguish both the drug-drug interactions and 

the drug combinations from random combinations. I also 

presented that this measure is correlated with the known 

effects of beneficial and deleterious drug combinations taken 

from the DCDB, TTD and Drugs.com databases (Figure 2). 
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Figure 2. The prediction performance was measured on several different 

training sets, cancer related drug-drug interactions and drug combinations. The 

prediction method is based on a simple measure, the Target Overlap Score 

(TOS). The prediction procedure was repeated 100 times with different negative 

sets, then the average value was reported. The standard deviation of AUC values 

(not shown) are between 0.0001 and 0.006 for the different datasets. 

 

Here the prediction is a ranking, in which the efficient 

combinations are expected to be in the top of the list. The 

performance, namely how good a ranking is, was characterized 

with the AUC value. This score is 1 if the ranking is perfect (i.e. 

all efficient combinations ranked at the top), 0.5 if it is random. 

Drug - drug interactions are often considered as harmful “negative 

combinations”, since they increase the risk of side effects and may 

cause “overdose”. On the other hand, drug combinations are 

considered to be desirable (positive) since they can be efficiently 

used in the treatment of complex diseases. We could show that a 

simple network overlap measure is well correlated with the 
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intensity of positive and negative drug interactions as well as with 

clinical data. 

 

THESIS I.3. I have also investigated that combining two 

frequently used drug-drug similarity measures with TOS - 

namely the functional similarity of drugs computed based on 

their imminent targets, and their therapeutic similarity 

quantified by using the anatomical therapeutic chemical 

(ATC) classification system - does not improve the 

classification performance. 

 

The prediction of drug-drug interactions is expected to 

improve by incorporating more and more information about drugs. 

One of the most often successfully used descriptors for drugs are 

functional annotations (i.e. assigning ontology terms to drugs via 

their targets), and the therapeutic similarity quantified based on 

ATC code annotation. The trained classifier (logistic regression 

model) with various measures (TOS, GO, ATC) does not show 

any improvement in terms of ranking performance compared to 

the ranking defined by TOS alone.  
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THESIS I.4. I have demonstrated the utility of TOS by 

correlating the score to the outcome of recent clinical trials 

evaluating trastuzumab, an effective anticancer agent used in 

combination with anthracycline- and taxane-based systemic 

chemotherapy in HER2-receptor (erb-b2 receptor tyrosine 

kinase 2) positive breast cancer. 

 

I have compared the combinations proposed in the treatment 

of breast cancer being under clinical research (Phase II, Phase III, 

Phase IV studies) with the predicted TOS score. I narrowed the 

search to the investigation that implemented the RECIST 

(Response Evaluation Criteria In Solid Tumors). The TOS showed 

good correlation with several investigated response variables such 

as overall response (r=0.64; p=0.0028), overall survival rate 

(r=0.87; p=0.017), and confirmed clinical benefit (r=0.84; 

p=0.0021). 

 

II. Prediction of cancer biomarkers by integrating text and 

data networks 

Related publications of the author: [J1][J6] 

 

Text mining methods can facilitate the generation of 

biomedical hypotheses by suggesting novel associations between 

diseases and genes. Previously, we had developed a rare-term 
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model called RaJoLink ([16]) in which hypotheses are formulated 

on the basis of terms rarely associated with a target domain. 

 

THESIS II.1. I have improved the sensitivity of the 

RaJoLink rare term based algorithm by using network 

analysis algorithm such as personalized diffusion ranking and 

PageRank with Prior on the STRING protein-protein 

association network. 

 

Since many current medical hypotheses are formulated in 

terms of molecular entities and molecular mechanisms, here we 

extend the methodology to proteins and genes using a 

standardized vocabulary as well as a gene/protein network model. 

The proposed enhanced RaJoLink rare-term model combines text 

mining and gene prioritization approaches. Its utility is illustrated 

by finding known, as well as potential gene-disease associations 

in ovarian cancer using MEDLINE abstracts and the STRING 

database. 

 

 

 

 

 



14 

 

THESIS II.2. Based on the enhanced prediction I proposed 

10 novel genes - RUNX2, SOCS3, BCL6, PAX6, DAPK1, 

SMARCB1, RAF1, E2F6, P18INK4C (CDKN2C), and PAX5 

- that are likely to be related to the disease and at the time had 

not been described as such. Since 2012, two of them (RUNX2, 

BCL6) have been confirmed. 

 

The RUNX2 transcription factor is a putative tumor 

suppressor gene. It has also been associated with many cancer 

types inculding prostate, lung, breast cancer, osteosarcoma, 

thyroid tumors. The potential of the gene in this association is 

supported by the prognostic power of hormone receptors in 

ovarian cancer [17]. In 2012 it was also confirmed that RUNX2 is 

associated with advanced tumor progression in epithelial OC [18]. 

In addition, the inhibition of RUNX2 lead to the significant 

decrease of cell proliferation. 

BCL6 (B-cell CLL/lymphoma 6) is another transcription 

factor found to be frequently mutated in diffuse large-cell 

lymphoma. The gene was related not only to lymphomas and 

leukemias, but also to progression to breast, gastric and lung 

cancer. Interestingly, both BCL6 and RUNX2 are influenced by 

prolactin secretion. Wang et al. showed the BCL6 is a negative 

prognostic factor in ovarian cancer [19] and the inhibition of 
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BCL6 along with NACC1 [20] reduced the invasion capabilities 

of cancer cells. 

 

III. Fast and sensitive characterization of microbial studies 

Related publication of the author: [J5] 

 

Next generation sequencing (NGS) of metagenomic samples 

is becoming a standard approach to detect individual species or 

pathogenic strains of microorganisms. Computer programs used 

in the NGS community have to balance between speed and 

sensitivity and as a result, species or strain level identification is 

often inaccurate and low abundance pathogens can sometimes be 

missed. 

 

THESIS III.1. I have demonstrated that using hierarchical 

networks such as taxonomy along with fast aligners, i. e. 

bowtie2, the evaluation of high-throughput sequencing data is 

feasible in a reasonable time with good classification accuracy. 

The algorithm assigns the individual reads to the common 

ancestor of the taxa having its genome hit by the short read 

(Figure 3).  
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Figure 3. The Taxoner algorithm 
In the first step the short reads were mapped to the microbial genomes. 

In the next step the alignments were preprocessed and only those hits 

were mapped to the taxonomy tree, which were above a certain 

threshold. In the classification or the binning step the read was assigned 

to the lowest common ancestor of the taxa it hit. 

THESIS III.2. I have illustrated the applicability of the 

Taxoner principles on whole genome shotgun sequencing of 

known or unknown pathogens (Staphylococcus aureus, 

Bacillus anthracis). The results suggested that the 

performance of Taxoner is as good as the state-of-the-art 

BLAST-based methods, while it is faster by two orders of 

magnitude. Finally, it is also compatible with various 

sequencing platforms. 

 

In the recent years various sequencing platforms have been 

developed. We compared the classification performance of 

Taxoner, Metaphlan [21] and BLAST [22, 23] combined with 

Megan [24, 25] on whole genome sequencing datasets of 

Staphylococcus aureus produced by Roche 454, Ion Torrent and 
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Illumina. The low false negative rates implicate that Taxoner is 

almost as reliable as BLAST+Megan, however, it requires 

comparatively less computational power and time. 

 

THESIS III.3. I have proven that using the Taxoner 

principles it is possible to characterize the microbial 

communities at the lowest taxonomic level, even in species or 

strain level.  

 

I analyzed the MOCK dataset representing 22 microbial 

strains and species in equal amounts provided by the Human 

Microbiome Project for validation purposes. The dataset consists 

of 6.5 Illumina short-reads. Taxoner was capable of confidently 

detecting most of the taxa (14/22) even in strain level.  

 

THESIS III.4. Taxoner is sensitive and capable of 

identifying taxa being present only in small abundance, 

furthermore, it needs two orders of magnitude less reads to 

complete the identification than MetaPhLan. In addition, the 

method is applicable to cases where the genome sequence of 

the studied microbe is unknown. 

 

In the application to pathogen detection the sensitivity of the 

analysis is a crucial question. The sensitivity was measured as the 
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number of reads necessary for detecting a certain species. After 

randomly sampling an experimental anthrax dataset, the analysis 

revealed that Taxoner could confidently identify the anthrax from 

10 reads, while MetaPhLan needed 200-350 reads. 

Sensitive detection of microorganisms with unknown 

sequence is a crucial question as well, since the majority of them 

are still unknown. In order to assess the classification performance 

on unknown species, whose genome sequence is missing from the 

database, I have analyzed an experimental anthrax dataset (B. 

anthracis strain BA104; NCBI taxon id: Not Available). Taxoner 

classified the majority of reads (96.50%) as Bacillus anthracis, a 

small portion of 1.2% was classified as other species from the 

Bacillus genus.  
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4. Application of the results 

In my research? I have investigated how different graph 

models can help in various bioinformatics problems. My research 

covered the following areas: i) finding novel drug combinations, 

ii) finding novel, unexpected biomarkers from literature, and iii) 

improving the classification performance of metagenomics reads. 

Network analysis strategies are not only helpful in discovering 

novel associations between diseases and genes, but could predict 

new beneficial interactions of drugs as well, thus making it 

possible to design better treatment for cancer patients.  

I have demonstrated that the extension of text mining with 

network analysis can help in identifying novel biomarkers for 

ovarian cancer. Indeed, since 2012, two out of ten completely 

novel associations highlighted by the algorithm have been 

confirmed by other studies [18-20, 26]. 

The application of graph models is not limited to exploring 

the disease-gene-drug relationships. It also includes the analysis 

strategies of high-throughput data, such as the evaluation of 

metagenomics datasets. 

I have managed to demonstrate that applying network 

principles may help us with exploring unexpected and non-trivial 

relationships between drugs, diseases and microbes. 
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