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1 Introduction and Research Aims

Computationally intensive simulations of physical phenomena are in-
evitable to solve engineering and scientific problems. Simulations are used
to test product designs without fabrication or to predict properties of new
physical or chemical systems. Computer engineering has long since been
dealing with the acceleration of simulations to decrease the development
time of new products or to improve the resulting quality by expanding the
design space. Since clock frequency of processors reached the physical limits
caused by power dissipation, processor designers are focusing on multi- and
many-core architectures to keep up with the predictions of Moore’s law. The
goal of high-performance computing is to answer how to exploit the com-
puting potential of these novel parallel architectures, such as GPU (Graph-
ical Processing Unit) and FPGA (Field Programmable Gate Array), to solve
computationally intensive problems.

During my research I investigated the acceleration of two specific prob-
lems with the following questions in mind: What is the best architecture for
the given application? How can the implementation methodology be im-
proved? What performance can be reached, and what are the implementa-
tion tradeoffs in terms of speed, power and area?

The first problem I investigated was the numerical solution of partial dif-
ferential equations (PDEs) on FPGAs. Nagy et al. demonstrated that the FPGA
implementation of the emulated digital CNN-UM (Cellular Neural Network
- Universal Machine) can be generalized to efficiently simulate various types
of conservation laws via finite volume method (FVM) discretization of the
given PDE with the Euler explicit scheme [9]. The mathematical expression
(numerical scheme) which has to be evaluated for each cell in each itera-
tion can be represented with a synchronous data-flow graph. As the goal
is to design a high-performance pipelined arithmetic unit (AU), which can
operate at high frequency, each mathematical operation, i.e., node of the
graph, is implemented with a dedicated floating-point unit (FPU). On re-
cent high-end FPGAs, several floating-point units can be realized, which can
operate at high frequency, however, the global control signals connected to
each floating-point unit slow down the operating frequency of the rest of the
circuit.

My research goal was to develop a novel design methodology which con-
structs high-performance, locally controlled AUs from synchronous data-
flow graphs. My questions were the following: How shall I partition the
data-flow graph to obtain clusters which can be controlled efficiently? How
to control the clusters and how to connect them to avoid synchronization
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problems? What is the price of the improved frequency in terms of speed,
power and area? Finally, how to automate the generation process of the AUs
to drastically decrease the development time of new numerical simulations?

The second problem I investigated was the Density Matrix Renormaliza-
tion Group (DMRG) algorithm [10]. The algorithm is a variational numerical
approach, which has become one of the leading algorithms to study the low
energy physics of strongly correlated systems exhibiting chain-like entan-
glement structure [11]. The algorithm was developed to balance the size of
the effective Hilbert space and the accuracy of the simulation, and its run-
time is dominated by the iterative diagonalization of the Hamilton operator.
As the most time-consuming step of the algorithm, which is the projection
operation of the diagonalization, can be expressed as a sequence of dense
matrix operations, the DMRG is an appealing candidate to fully utilize the
computing power residing in novel parallel architectures.

As the algorithm had not been accelerated on parallel architectures (to
the best of my knowledge), my research goal was to investigate on which ar-
chitecture the algorithm can be implemented most efficiently. My objective
was to give a high-performance, parallel and flexible implementation on the
selected architecture, which can deal with wide range of DMRG configura-
tions.

2 Methods of Investigation

I have implemented a framework in C/C++ to automatize the genera-
tion of the AU from a textual or a SystemC [12] description of the numerical
scheme. In the framework, the scheme is represented as a graph, which en-
abled me to design and evaluate different partitioning algorithms. Later, I
developed a novel graph representation which can incorporate both parti-
tioning and placement information. For algorithm and representation de-
sign, I relied on the literature available on circuit placement [13, 14], graph
partitioning [15] and graph visualization [16].

In the framework, the AU is generated in VHDL language, and the results
are ready to use with the standard FPGA synthesis tools. The control logic
and the mixer units, which supply the AU with data, were also developed
in VHDL with Xilinx ISE Design Suite 13.1. Floating-point units used in the
AU were implemented via Xilinx IP Cores. The placement constraints were
defined in the Xilinx’s user constraint file (UCF) and submitted at the place-
and-route phase. Manual tuning of the placement constraints was carried
out with the Xilinx PlanAhead editor.
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As a consequence of probabilistic heuristics used in the Xilinx’s place-
and-route algorithm, the operating frequency of the final circuit is sensitive
to the input seed parameters. During the performance evaluation, the gen-
erated circuit was implemented with wide range of seed parameters, and the
highest frequency was selected.

The CFD applications which were used to demonstrate the framework
were implemented on a Xilinx Virtex-6 SX475T FPGA with speed grade
-1. The chip, containing 74400 slices, 2016 dedicated multiplier blocks
(DSP48E1), and 38304 Kb on-chip memory (BRAM), is one of the largest
Virtex-6 FPGA offering the highest ratio of DSP and memory resources.

The DMRG algorithm was implemented in C/C++ and can be compiled
in a CPU-only and a hybrid CPU-GPU mode. In the CPU-only mode, all the
basic linear algebra subroutines (BLAS) are accelerated with the Intel MKL li-
brary, while in the hybrid mode, some of the operations are executed on GPU
using the CUDA 5.0 environment. Matrix-matrix multiplications related to
the projection operation of the Davidson algorithm are implemented via the
NVidia CuBlas library, while for asymmetric matrix-vector multiplications I
designed a new CUDA kernel.

The performance of the hybrid implementation was measured both on
a mid-range (Intel Core-i7 2600 3.4 GHz CPU + NVidia GTX 570 GPU) and
on a high-end configuration (Intel Xeon E5-2640 2.5 GHz CPU + NVidia K20
GPU) and compared to the CPU-only performance. The main parameters of
the GPU cards are summarized in Table 1. The comparison was performed in
case of two different models (Heisenberg and Hubbard), and similar speed-
ups were observed for both models.

Model
name

Number of
CUDA cores

Clock
frequency

Device
memory

Compute
capability

NVidia GTX 570 480 1464 MHz 1280 MB 2.0

NVidia K20 2496 706 MHz 5120 MB 3.5

Table 1: Main parameters of the utilized graphical processing units

3 New Scientific Results

The statements of the dissertation are grouped into two categories: the
first group deals with the construction of locally controlled arithmetic units
from synchronous data-flow graphs, while the second group is focusing on
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the first implementation of the DMRG algorithm on modern parallel archi-
tectures.

Thesis I I designed a local control to improve the operat-
ing frequency of the FPGA implementation of syn-
chronous data-flow graphs and gave a method to
determine the number and the topology of locally
controlled components in the design space of speed
and area.

I.1 I designed and implemented a distributed local control to avoid
global control signals and increase the operating frequency of the
control unit at the expense of a moderate area increase. [3]

I experimentally showed that global control signals of the arithmetic unit
of synchronous data-flow graph based FPGA implementations (e.g. numeri-
cal solution of partial differential equations) are the bottlenecks of the oper-
ating frequency of the whole circuit if the number of I/Os of the arithmetic
unit is large. I designed and implemented a locally distributed control for
the arithmetic units of the aforementioned applications to avoid the block-
ing global signals at the expense of a moderate area increase.

To investigate the trade-off between speed and the number of I/Os, I
measured the operating frequency of the proposed control logic without
floating-point units in the function of the number of I/Os. On a Virtex-6
FPGA, which is designed for high-performance computations, a control re-
stricted to maximally 10 I/Os can reach 510 MHz frequency, approximately
20% more than a control handling 20 I/Os. Assuming 450 MHz frequency for
the rest of the circuit (e.g. floating-point units), the restricted control can be
operated without holding back the whole circuit. For the control, it is worth
to target a slightly higher theoretical frequency than the minimal 450 MHz
because operating frequencies are typically much lower in practical designs,
where floating-point units are also implemented.

I designed an optimization procedure to determine the locally controlled
components of the arithmetic unit by partitioning the data-flow graph, if
the number of I/Os exceeds the threshold required for fast operation. The
resulting partition classes can be controlled independently, however, ex-
tra synchronizing First-In-First-Out (FIFO) buffers are required between the
classes, which increase the number of utilized configurable logic blocks
(area requirement of the circuit). I proposed a optimization problem to min-
imize the number of extra FIFOs when the data-flow graph is partitioned to
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meet the I/O constraints required for high performance operation.

I.2 I developed a greedy partitioning algorithm, which outperformed
one of the popular state-of-the-art partitioning algorithms in case of
the proposed optimization problem. [4]

Regarding a computational fluid dynamics (CFD) application, I exper-
imentally showed that partitioning objectives alone are not sufficient to
reach high operating frequency, and placement objectives shall be consid-
ered as well. I designed a simple greedy algorithm which takes placement
objectives into consideration and supports the manual tuning of the place-
ment phase of high-level synthesis. Using the greedy algorithm with manual
placement constraints, the design reached approximately 370 MHz operat-
ing frequency in case of a single precision CFD test case outperforming the
results of the general-purpose hMetis [17] algorithm by approximately 13%.
Without manual placement constraints, the same design reached 328 and
296 MHz frequency in case of single and double precision, respectively.

I.3 I developed a new graph partitioning algorithm which incorporates
both partitioning and placement objectives to improve operating fre-
quency even without manual placement constraints. [1, 5–7]

I proposed a new high-level synthesis approach, which, contrary to the
traditional step-by-step strategy, incorporates placement information al-
ready at the partitioning step, and designed a new partitioning algorithm im-
plementing the approach using simulated annealing. I evaluated the algo-
rithm in two complex CFD test cases by measuring the operating frequency
of the generated circuit in the function of the maximal I/O connection of the
clusters. Maximal speed-up (15-25%) compared to the unpartitioned case
was reached, when the maximal number of I/Os was set to 9 or 10. Both CFD
arithmetic units reached approximately 320-325 MHz in case of double pre-
cision.
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Thesis II To improve the performance of the first hy-
brid CPU-GPU implementation of the Density
Matrix Renormalization Group (DMRG) algo-
rithm, I designed a scheduling algorithm for the
matrix-matrix multiplications of the most time-
consuming step, and developed a new algorithm
for asymmetric matrix-vector multiplication in
GPU.

I analyzed the runtime of the algorithm and found the projection opera-
tion of the iterative diagonalization method (Davidson) to be the most time-
consuming step, which can be rephrased as a sequence of dense matrix-
matrix multiplications. I investigated the performance of GPU and FPGA in
case of matrix-matrix multiplication, and found that the operation can be
implemented on both architectures with high utilization, however, assum-
ing full utilization of both architectures, the GPU is approximately 5 times
faster than the FPGA. I created a high-performance hybrid GPU-CPU ac-
celeration of the algorithm in CUDA environment, which is the first kilo-
processor implementation of the algorithm and is approximately 3.5 times
faster than the high-end, CPU-only version.

II.1 I designed a new scheduling algorithm for the matrix multiplica-
tions of projection operation, which is the most time-consuming
part of the DMRG algorithm, to maintain high utilization of the GPU
in case of different matrix sizes. [8, 2]

I investigated the size of the matrices participating in the matrix-matrix
multiplications in case of the Heisenberg and the Hubbard models, which
utilized different number of symmetries. I found that the size of the matri-
ces varies widely inside and across the iterations of the algorithm, and the
average matrix size is affected by the model and the number of symmetries
applied.

I measured the performance of CPU and GPU in case of matrix-matrix
multiplication in the function of matrix size using the MKL and the CuBLAS
libraries. I experimentally showed that the utilization of GPU can be im-
proved by parallel execution of multiplications, which is supported by the
CUDA environment and also possible in the DMRG application.

To accelerate the projection operation, I proposed a hybrid implemen-
tation where multiplications are distributed between the available comput-
ing architectures. To improve the utilization of GPU during matrix multi-
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plications, I designed a new scheduling algorithm supporting two different
strategies. I created a single-threaded scheduling strategy for large matrices,
in which case one multiplication can utilize all the GPU cores, and a multi-
threaded strategy for small matrices, in which case relatively more mem-
ory is available and the parallel execution is advantageous. In the single-
threaded strategy, multiplications are only scheduled to overlap the commu-
nications and the computations, however, for the multi-threaded strategy,
I designed a complex algorithm, which also takes the limitations of CUDA
kernel scheduling into consideration.

On the high-end K20 GPU, the parallel kernel execution significantly
(44%) accelerated the multiplication of smaller matrices (range of 400-600),
however, the total runtime of the algorithm slightly decreased (5%) as the
average matrix size was larger in the investigated models. In practice, more
complex models are investigated containing several symmetries which de-
crease the average matrix size and anticipate a higher speed-up.

II.2 I developed a new algorithm for GPU to significantly increase
the performance of the computation of the extremely asymmetric
matrix-vector multiplications used in the DMRG algorithm. [2]

To accelerate the extremely asymmetric matrix-vector operations com-
posing the second most time-consuming part of the DMRG algorithm, I de-
signed a hybrid acceleration, in which the workload is distributed according
to the available GPU memory and the performance capabilities of the two
architectures. To improve the performance of the GPU part, I proposed a
new algorithm to compute the transposed matrix-vector multiplication in
CUDA environment, which outperformed the NVidia CuBLAS library by 4-5
times in the DMRG use-cases, where the number of rows of the matrix was
in the range of 1-24. Overall acceleration of the matrix-vector operations in-
cluding the data transfer as well reached approximately 2.4 times speed-up.

4 Application of the Results

Two different types of computationally intensive problems have been
researched to investigate the design methodology of the acceleration and
to give a high-performance implementation on parallel architectures. Each
problem was accelerated via a different architecture, and the results of the
investigation were summarized in different thesis groups.

The design methodology proposed in Thesis 1 can be applied during any
type of complex AU design when the AU has a significant number of I/Os and
the performance takes priority over the area requirements. In my research,
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the AU design was motivated by the numerical solution of different conser-
vation laws via the FVM discretization, however, other applications require
complex AU design as well, e.g. Monte Carlo experiments requiring the com-
putation of an expression with a lot of input variables.

Numerical solution of conservation laws was successfully demonstrated
on FPGAs in case of simulation of CFD [1], electromagnetics [18] or seis-
mic waves [19]. Areas profiting from the acceleration of these simulations
include automotive, aircraft and wind power industries, circuit design and
seismology.

The idea to feedback the high-level floorplan information to high-level
circuit design can also be generalized. In the proposed methodology, the
partitioning of the FPUs can be altered freely to find a favorable floorplan,
however, in theory, any free design parameter could be tuned in a similar
way. The proposed methodology can be integrated into high-level synthesis
tools at the AU generation step or at other parts of the compilation process
where a free parameter shall be optimized for speed.

The results of Thesis 2 were primarily applied in the GPU implementa-
tion of the DMRG algorithm, however, they can be used in further applica-
tions where similar challenges occur. The presented scheduling of matrix-
matrix multiplications can be applied in Tensor Network (TN) methods [20],
which compose a broader class of algorithms including DMRG as well, while
the proposed kernel for asymmetric matrix-vector multiplication can be ap-
plied in Davidson implementations frequently used in quantum chemistry
(e.g. [21]).

As the DMRG algorithm is one of the leading tools to study the low en-
ergy physics of strongly correlated quantum systems exhibiting chain-like
entanglement structure, it can be applied to simulate anisotropic materials
(e.g. polymers [22]) or to describe accurately the electronic structure of open
d shell molecules [23]. Furthermore, the interacting system of atoms trapped
in an optical lattice, proposed as physical implementation of quantum com-
puter, is also tractable via DMRG [24].
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