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1 Introduction 

Designing and building a machine that helps people, is the most important challenge 

and achievement of our civilization. For thousands of years by the development of tools used 

for moving and handling, one had to bear less and less burden on its shoulder and could 

devote more time to art and thinking. As a result, new, better machines were created giving 

aid to people in the field of arithmetic, logic, and even making inferences. Nowadays the 

primary indicator of the development of our civilization is not just the capability of the human 

family, but the capabilities of the machines made and taught by the people. 

Today state-of-the-art engineering aims to understand and reproduce the process of 

the human thought, recognition, and learning – to mimic everything that has put us to the 

top of the evolution. Meanwhile, the scientific community will meet again and again with the 

recognition that life and patterns of organizations in nature, the excellent work of God is the 

perfect inspiration for creating the simplest and most complex devices and alike. 

 

Sight is the most fundamental way of human perception. Therefore, any machine that 

aims to interact with humans and the human world is required not only to be capable of 

sensing physical light but also to be able to interpret the image. 

Artificial vision or computer vision is employed in a number of applications that 

make the daily life easier for millions. Artificial vision provides more accurate and faster 

healthcare, automated industry and quality checking, safe unmanned vehicles, and 

exploration of places where humans cannot enter. The quality of life of visually impaired 

can be improved by orders of magnitude by devices using reliable artificial vision.  

Automated image understanding utilizes methods of several different disciplines. 

Image or image flow is first preprocessed, and mathematical descriptions are generated, 

composing an object representation. If given a specific task regarding the image, 

descriptions are used for analysis, modeling or comparison. Thus, the key of an effective 

image understanding is encapsulated in the choice of the features: the representation must 

highlight those modalities of the image that are discriminative for the given task and neglect 

other irrelevant aspects. 
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In a mathematical interpretation, object recognition is a mapping from an image to 

a few dimensional output vector. The output is an answer to the actual visual query regarding 

the presence, the position, the category or a numerical feature of the object. To give an 

answer, a decision machine is required that has the appropriate a priori knowledge gained by 

learning from already known examples. 

Methods and architectures employed in computer vision applications are consciously 

getting closer to the known mechanisms of the human vision system and perception. 

Classical architectures and concepts are universal, although in several special cases dedicated 

architectures are significantly faster and provide lower power consumption by employing 

multiple processing cores and utilizing the precedence of locality. For that very reason, the 

computational schemes of the available devices should be considered during the design of 

any algorithm. 

The speed of the digital computing blocks used in processors is approaching their 

physical borders. Following Moore's Law about the development of architectures, the 

innovation of multi-core processors using parallel architectures began in the last decade. 

Meanwhile, the interest has increased for alternative technologies as well, breaking out of 

the Neumann’s paradigm. One of these principal branches of research is the development of 

non-Boolean-based, non-digital computing units implemented in a network of interacting 

nanomagnets called Spin Torque Oscillators. The basic principle of the architecture is to use 

current to excite the magnets that, depending on the current and the topology, synchronize 

with a pattern of phases on each oscillator.  

In my work, I defined the terms of data and program on oscillatory networks and 

showed how to use them as computing units. I conducted experiments aiming to find the 

class of problems that are effectively computed on oscillatory networks. 

In my research, I have been striving to create general methods. However, a particular 

area of usage, the design and the implementation of algorithms employed in the Bionic 

Eyeglass was the primary source of my motivation. The Bionic Eyeglass is an application 

collection for visually impaired, realized as a part of a research project of the Hungarian 

Bionic Vision Center. Functions asked by the potential users of the applications and the 

limitations of hardware available defined the requirements, aims, and constraints concerning 

the algorithms. Objects to be recognized – pictograms, banknotes – are all two-dimensional 

and rigid patches, thereby in my research, I focused on algorithms that describe and 

recognize shapes this kind of nature. 
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1.1 Classification 
A concept of the machine learning was described as the “field of study that gives 

computers the ability to learn without being explicitly programmed” by Arthur Samuel [1]. 

In Euripides’ view learning involves an agent remembering its past in a way that is useful 

for its future [2]. 

Learning is essential to an intelligent agent as the capability of improving its 

behavior based on experience [2]. In the supervised learning approach, the goal is to predict 

the decision mapping from inputs to output labels, when a certain number of elements of the 

mapping are given [3]. The set of these a priori known mappings is called training set. 

Depending on the output type, the label can be a qualitative or a quantitative variable. 

According to the naming convention, predictions of continuous, quantitative outputs are 

called regression, and the inference is called classification if the output label is discrete 

qualitative variable. [4]  

Classification is a prediction used to determine a nominal, discrete, class value, that 

can be a category, a semantic label, a discrete number, or a logical value as well.  

 The simplest classification is binary, in this case, the label is a binomial variable. 

Binary classifications include mappings where labels take values of true or false, 1 or 0, in 

or out, a presence or a lack of a particular property, or any set with two discrete elements. 

If the class labels take more than two values, thus the label is a polynomial variable, 

we speak about multiclass classification. [3] In specific tasks the number of the classes is not 

necessarily limited. In this case, we distinguish relevant and not relevant classes from the 

aspect of the actual task. The classification process is different if it is known that the input 

belongs to some of the relevant classes (i.e., boy or a girl), or if the input may be the member 

of any other classes (voices of birds are recognized, but other noises also may appear on the 

input record). Real-world objects and their representation often belong to an unbounded 

number of classes. Depending on the task, out of these classes, the number of relevant ones 

may be orders of magnitude smaller than the number of irrelevant classes, thus representing 

each irrelevant class is not efficient, if at all feasible.  

The most important distinction of predictors is based on the relationship between the 

input data size and the number of the prediction model parameters. If the model size changes 

with the amount of training data, we speak about non-parametric models, and the models 

having fixed number of parameters for a fixed task, independently from the training set, are 

called parametric models. [3][5] In the next paragraphs I will show some examples of non-
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parametric models – artificial neural networks, decision trees, SVMs –, and parametric 

models –K-nearest neighbor models [6], that are later mentioned or compared. 

1.1.1 Nearest-neighbor methods 

The K-nearest neighborhood model (KNN) is one of the most straightforward 

classification algorithms, an example of memory-based or instance-based learnings, where a 

new input is compared to the instances in the training set, specifically the output is the 

plurality vote of K nearest neighbor template outputs. [4][6] The underlying assumption 

behind the algorithm is that the feature space is continuous, and the samples in the feature 

set, except on the boundaries, are surrounded in the majority by other instances from the 

same class. From the probabilistic aspect: 

𝑝(𝑦 = 𝑐 |𝑥, 𝐷, 𝐾) =
1

𝐾
 ∑ ℑ(𝑦𝑖 = 𝑐)

𝑖∈𝑁𝐾(𝑥,𝐷) 

 

thus the probability 𝑝 that the input 𝑥 belongs to the class 𝑐, is determined by the output 

labels 𝑦𝑖 of the 𝐾 closest instances in the training set 𝐷, where 𝑁𝐾(𝑥, 𝐷) is the set of the 

indices of the 𝐾 closest instances in 𝐷, and ℑ(𝑒) is the indicator function: [3] 

ℑ(𝑒) = {
1, 𝑖𝑓 𝑒 𝑖𝑠 𝑡𝑟𝑢𝑒
0, 𝑖𝑓 𝑒 𝑖𝑓 𝑓𝑎𝑙𝑠𝑒

 

To design a nearest neighbor model for a specific task, we face making several 

choices. In order to define closeness, a metric in the feature space is needed. In general, 

typically a Minkowski distance, or 𝐿𝑝 norm is used: [6] 

𝐿𝑝(𝒙𝒊, 𝒙𝒋) = (∑ |𝑥𝑖,𝑞 − 𝑥𝑗,𝑞|

𝑞

)

1/𝑝 

   

In case of real attributes, 𝑝 = 2 is a common choice, resulting in the Euclidean distance [3], 

or with 𝑝 = 1 the Manhattan distance is used as well. 

Another choice to make is to find the optimal 𝐾. For small 𝐾, we get many small 

regions for each class, and with large 𝐾 we get large class regions with smooth boundaries. 

If 𝐾 = 1, we speak about nearest neighbor rule  or nearest neighbor classifier. [5]  

The K-nearest neighborhood algorithm is simple from the aspect of learning since 

the training complexity is zero. Furthermore, addition and removal from the model are 

straightforward as well. Beyond its simplicity, the advantage of the NN is its suitability to be 

implemented on dedicated VLSI architecture. KNNs are successfully used in several 

classification problems, such as handwritten digit recognition, image scene classification, 
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and EKG analysis. From another aspect, KNNs are successful where classes are not 

necessarily compact, many subclasses, prototypes form the superclasses, and the class 

boundaries are irregular. [4] 

The conceptual drawback of the KNN is the lack of generalization, meaning that no 

interpretable model can be derived from the training set. Another disadvantage is called the 

curse of dimensionality, summarized in a nutshell, for high dimensions the KNN models 

perform poorly [3][6]  

In this thesis I will deal with the following two major drawbacks of the KNN: One 

is the KNN’s sensitivity to the distribution and the size of the training set instances. Second 

is the lack of reject option that makes the KNN method inappropriate for classification 

problems, where the number of the classes is large, and only a subset of the classes, the 

relevant ones are distinguished in the training set. [4][7] 

 

Figure 1.1. The basic principle of the nearest neighborhood classification: the input (black circle) 

is classified to the closest known instance. In the example class1 and class2 are subsets of the 

representative set, but class3 is not represented. A nearby input is classified easily, but a distant 

input is also classified to the closest instance in the representative set, in our case to class1, despite 

it transparently belongs to class3.  

As the classifier name says, the input is classified based on the closest known 

instances. However, for every point of the feature space is true that there is always a nearest 

element, even if it is very far away [4], whether because it lies in a region that is covered 

sparsely, or not covered by a training instance. (Figure 1.1)  
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I will focus on the following questions: how can we know if the closest known 

instance is close enough? What could be the criteria for accepting or refusing an input? How 

can the training set instances be optimized in order to have all the classes covered, but not 

over-represented?  

In my thesis, I propose an extension to the standard nearest neighborhood method 

that makes the model able to reject inputs by distinguishing relevant and non-relevant classes 

and a gradual decision algorithm that provides faster classification. 

1.1.2 Decision trees 

Decision trees are another simple and powerful classifier family, and they are the 

most widely used logic method.[7][8] The basic principle of classifying by the decision trees 

is the following: start from the root of the tree, in every non-leaf node i.e. decision node use 

a branching query regarding the attributes of the input to choose between the branches, and 

continue, till a leaf node is reached, where the output class is assigned based on the leaf.  

From another aspect, the root node splits the feature space into two or more subsets. 

Its children – as long as they are non-leaf nodes – continue splitting the resulted subsets along 

other attributes – dimensions. If the resulted subset contains instances only from the same 

class, a leaf node of that class terminates the branch. [9]  

Decision tree learning, i.e., the construction of a decision tree for a training set is to 

determine which attributes to split on in every node, which attribute to choose first, and 

which to continue. Given a set with a binomial or polynomial attribute, the best is to find an 

attribute, that splits the space into pure, homogenous subspaces form the aspect of the label. 

However, this kind of attribute is rare; hence a metric is needed to measure the purity or 

information from the relation of the subsets and the corresponding label splits. [9][10] 

Several purity-impurity functions are known. However, the most frequently used decision 

tree algorithms (ID3, C4.5) employ the entropy. For a polynomial label (having l different 

values), for the (sub)set S, the entropy is defined as follows: 

𝐼(𝑆) = −𝑝1̇ log2 𝑝1̇ − 𝑝2̇ log2 𝑝2̇ − ⋯ − 𝑝𝑙̇ log2 𝑝𝑙̇  

where 𝑝𝑖̇ is the empirical probability of the output label j in the subset S: 

𝑝𝑗̇ =  𝑛𝑗/(𝑛1 +  𝑛2 + ⋯ + 𝑛𝑙) 

The information gain of the attribute 𝑒 is the difference of the entropy of the set S, 

and the weighted average of the entropies of each split: subsets S1 to Sk of S, resulted by the 

splits along the attribute values v1 … vk: 

DOI:10.15774/PPKE.ITK.2019.005



 

7 
 

𝐼𝐺(𝑒) = 𝐼(𝑆) − ∑
|𝑆𝑖|

|𝑆|
 𝐼(𝑆𝑖)

𝑖=1..𝑘

 

where 𝑆1 … 𝑆𝑘 ⊂ 𝑆, resulted by the splits along the values 𝑣1 … 𝑣𝑘 of attribute 𝑒. [8][9][10] 

Decision trees describe the training set, adapted to its weaknesses, overrepresented 

and poorly covered regions, and noise. This phenomenon is called overfitting, and in the case 

of decision trees is manifested in a very deep, detailed, fragmented tree structure, 

representing each case of the training set. From another point of view, the more specific the 

tree is on the actual training set, the less generalization is encapsulated in the model. Thus, 

the goal is to simplify, to prune the tree, even if the error rate increases beneath a reasonable 

level. Generally, two methods can be employed to reduce overfitting: The first is not to split 

a subset under some statistical condition and instead of a decision-node represent the set with 

a leaf of the majority class – this approach is called preprunning. In contrast, the 

postprunning removes some subtrees, after the decision tree has been built, based on 

accuracy criteria. [8][7] 

The advantage of the decision trees is the speed and their simplicity, the models are 

easily readable, interpretable, changeable, and understood by a human observer, making the 

decision trees a frequently used tool in data mining [7][10], Due to the logical approach, 

decision tree learning is not sensitive to attribute distribution or attribute dependence. [8] 

1.1.3 Artificial Neural Networks 

The neural system is one of the wonders of the created world: The brain is a highly 

sophisticated computer with billions of parallel, nonlinear cores. It processes sensed 

information from the receptors, provides a representation of the surrounding context, 

interacts with the environment, and routinely solves pattern recognition problems. It 

develops with experiences and adapts to changed conditions. [11] Thereby the structures and 

the mechanisms discovered in the brain repeatedly arouses the interest of mathematicians, 

software and hardware engineers, researchers of the artificial intelligence, machine learning, 

robotics, etc. Here I will show some basic methods inspired by the neuron network, as the 

set of connected, parallel, distributed computational units.  

The basic unit of an artificial network is the artificial neuron. Neurons are connected 

by directed links, that transmit the activation between the units, input and output, and each 

link has a scalar weight. Units have a bias weight as well.  
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For each unit, the weighted sum of all input is computed, and an activation function 

is applied to derive the output: 

𝑎𝑗 = 𝜑 (∑ 𝑤𝑖𝑗𝑎𝑖

𝑛

𝑖=1

+ 𝑏𝑗) 

where 𝑎𝑙 is the activation from unit 𝑙, 𝑤𝑖𝑗 is the weight associated to the inputs 𝑎𝑖, and 𝑏𝑗  is 

the bias of the unit 𝑗. Other notations denote the bias as 𝑤0𝑗 with a constant activation 𝑎0 =

1. Depending on the activation function 𝜑, the unit is called perceptron, if 𝑔 is a hard 

threshold, or Heaviside function, and we speak about sigmoid perceptron, if 𝜑 is a sigmoid 

function. [2][6][11][12] An example for a sigmoid function is the signum function, the 

hyperbolic tangent function (tanh), and a logistic function defined as follows:  

𝜑𝑙(𝑣) =
1

1 + exp (−𝑎𝑣)
 

where 𝑣 is the weighted sum of input activations, 𝑎 is the slope parameter. 

Depending on the topology, and connection patterns, several types of different neural 

networks are known. 

 

Figure 1.2. Example datasets with two classes. The dataset on (a) is linearly separable. On figure 

(b) the XOR-like function is shown, which is not separable linearly. 

Perceptron 

The basic topology consists of one artificial neuron only. Despite its simplicity, the 

perceptron is a powerful classifier, if the data is linearly separable, i.e., there is a hyperplane 

– decision surface – in the feature space that separates the classes (Figure 1.2.a). [5][10] 

Perceptron learning is determining the input weights and the bias by iterating through 

training set. Every time an input is misclassified, the weights are adjusted based on the 
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misclassified input, multiplied with a learning rate parameter. If the feature space is linearly 

separable, the algorithm converges. [5][10][13] 

Feed-forward neural networks 

In most cases of the interesting classification problems the data is not linearly 

separable (a simple example is the XOR function, Figure 1.2.b), thus one single perceptron 

is not enough. One of the possible solutions is to employ more artificial neurons and connect 

them into a network. If the topology does not contain any feedback connection, we speak 

about a feed-forward network (FFNN). If the neurons are structured in layers, the first one is 

the input source layer, and the last one is the output layer. If the architecture contains more 

layers, intermediate ones are called hidden layers. [6][9] By boosting the structure with 

hidden neurons the network becomes able to extract higher order statistics from the input 

and acquires a global perspective despite its local links. [11] 

Training of a FFNN is similar to a perceptron learning, with the difference that the 

errors found at the output layer, have to take effect in possibly all affecting neurons; thus the 

error has to be propagated backward. [5][9][13] 

Recurrent networks 

If the directed graph of the neural network links contains a feedback loop, the 

structure is called a recurrent network. The feedback loops represent a basic memory in time 

and result in a nonlinear dynamic behavior. Recurrent structures are responsible for some 

types of episodic memory processing and encoding special representations in the human 

brain, in the hippocampus, and the cortex. [14][15] Such architectures of artificial neurons 

are successfully used in time-dependent pattern classifications correspondingly. [11][16] 

1.1.4 Support Vector Machines 

As mentioned before, the overwhelming majority of classification problems is not 

linearly separable. Another way to overcome this problem is to transform the input feature 

space into another space with higher dimension, where the problem is then linearly separable. 

These transformations are called kernel functions. [2]  

DOI:10.15774/PPKE.ITK.2019.005



 

10 
 

 

Figure 1.3 Finding the optimal separator (thick black line) between two classes. Support vectors of 

the optimal separator are data points marked with a cross. The margin is the distance of the dashed 

lines.  

Since transforming to arbitrary large dimension makes any dataset linearly 

separable; however, the model easily gets overfit and loses its generalization capability, 

hence the goal is to find the optimal separator that creates the maximal margin between the 

classes (see Figure 1.3). [6][16] 

Finding the margin, i.e., finding those (transformed) dataset points that hold the 

separators – support vectors – is a quadratic programming optimization problem. However, 

the choice of the kernel function is somewhat based on the designer’s knowledge about the 

problem domain and the available kernel functions and their parameter space. The most 

frequently used kernel functions are polynomial kernel functions, and radial basis functions, 

such as Gaussian kernel function: 

𝐾𝑝𝑜𝑙𝑦(𝑥, 𝑦) = (⟨𝑥|𝑦⟩ + 1)𝑑 , 

𝐾𝐺𝑎𝑢𝑠𝑠(𝑥, 𝑦) = exp (
−‖𝑥 − 𝑦‖2

𝜎2
 ) 

where ⟨∙ | ∙⟩ represents the dot product, 𝑑 is the order of the polynomial, and 𝜎 is the kernel 

width. [8][17][18] 
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1.2 Genetic Algorithms 
Computer science, including machine learning, frequently cherry-picks concepts and 

methods from the created world. Genetic algorithms mimic the principle of the biological 

evolution and natural selection in a stochastic beam search problem, with the difference that 

the subjects of the evolution are vectors, other mathematical structures, and algorithms 

instead of living beings. 

Genetic algorithms work on a population, which consists of individuals represented 

by their chromosomes, that are being built up from genes or bits. The GA starts with a random 

population of length k, and in every iteration new offspring are created from the previous 

generation by the genetic operators. Parent selection is analog to the natural way: the better, 

stronger, faster the individual is, the more has the chance of reproduction. The corresponding 

term for “better” in the world of genetic algorithms is having higher fitness. The fitness 

function estimates the successfulness of the individual, generally with a positive number. 

[2][6][21][19] 

To select a parent for the new generation, two frequently methods are used: 

• Truncation selection: Simply select 𝑓 of the best individuals, where 1 ≪ 𝑓 ≪

𝑘, and drop the rest of the population. 

• Fitness-Proportional Selection: Every individual has the chance to become a 

parent with a probability proportional to its fitness value – even the worst 

individuals can survive, and the best ones may not become a parent. The 

generally used function for individual i with fitness 𝐹(𝑖), satisfying the 

conditions above is the following:  

𝑝𝑠𝑖𝑚𝑝𝑙𝑒(𝑖) =
𝐹(𝑖)

∑ 𝐹(𝑗)𝑗∈𝑃
 

An extended version of selection probability calculation employs a 

temperature T (or in [13] a selection strength 𝑠 = 1/𝑇) that might decrease 

during the algorithm: 

𝑝𝐵𝑜𝑡𝑧𝑚𝑎𝑛𝑛(𝑖) =
exp (

𝐹(𝑖)
𝑇 )

∑ exp (
𝐹(𝑖)

𝑇 )𝑗∈𝑃
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The most widely and generally employed genetic operators are:  

• Crossover: New individuals are created by mixing of two existing 

chromosomes. The most common strategy is the single point crossover: For 

parents 𝒑(𝟏) = [𝑝1
(1)

, 𝑝𝑛
(1)

… 𝑝𝑛
(1)

 ] and 𝒑(𝟐) = [𝑝1
(2)

, 𝑝𝑛
(2)

… 𝑝𝑛
(2)

 ] chose a 

random point 𝑠, where 1 < 𝑠 ≦ 𝑛, and concatenate the corresponding parts to 

get the new individual 𝒑(𝒌+𝟏) = [𝑝1
(1)

… 𝑝𝑠−1
(1)

, 𝑝𝑠
(2)

… 𝑝𝑛
(2)

 ]. Multi-point 

crossover utilizes more split points, uniform crossover randomly chooses each 

gene from its parents. 

• Mutation: For each gene in the offspring, its value is changed with a small 

probability, often chosen 𝑝𝑚𝑢𝑡 ≈ 1/𝐿, where L is the length of the 

chromosome. 

[2][6][16][20][21]  

 

Figure 1.4. Antenna geometry designed with a genetic algorithm by the NASA Evolutionary 

software. 1 

Genes might be discrete or continuous, and might not only represent numbers, 

characters, but complex structures, such as operations, functions, graphs, topologies, 

geometric configurations (see Figure 1.4) [22] and program source codes [23] as well. 

In my work, I used a genetic algorithm in finding the optimal filter parameters in the 

gradual classification (Section 4.), and in designing oscillator topologies (Section 6.) 

 

 

                                                      
1 Source: http://www.nasa.gov/centers/ames/news/releases/2004/antenna/antenna.html 
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1.3 Shape Recognition 
Generally, the goal of computer vision is to generate answers to visual queries based 

on the input image. Depending on the query, several levels can be identified in a vision 

problem. A typical categorization distinguishes between detection, localization, and 

recognition.  

In the detection part, the presence of an object is examined, localization determines 

the position of the object, if available, whereas recognition identifies the detected objects, 

possibly considering their context in the visual scene. However, the definition of an object 

depends on the task. [24][25] In typical computer vision systems the result is computed from 

the image through its features, as a verified hypothesis [26][27]. Similar to queries, features 

may incorporate local details of pixel surroundings as well as global image properties [28]. 

If patches or complete contours are extracted from the image, shapes of local image parts 

can be localized, detected re or recognized. 

The shape is the most meaningful visual aspect of an object, more than the color, 

material or texture [29][30]. Consequently, shape recognition is an essential element of 

artificial vision, especially in understanding digital images and image flows. [31] A broad 

spectrum of application areas relies on shape recognition, including robotics [32][33], 

healthcare [34][35], industrial automatization [36][37][38], surveillance systems [39], 

unmanned vehicle orientation [40], assistance for impaired [41]. 

In computer vision, the shape generally is binary image distinguishing the inner 

regions of the shape and the background. Many applications are defined on grayscale shapes 

or can be extended to process grayscale patches, and shapes might be represented with vector 

graphics as well, however, in this thesis, I will focus on binary shapes consisting of pixel 

points. 
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Figure 1.5. The two-dimensional projections of shapes. For an object having an extent in a 3D (a), 

projections have an only semantic relationship through the original, three-dimensional object. 

Projections of a flat, two-dimensional patch are transformable to each other. 

The way of generation of the shape, the direct source of the binary shape image is a 

black-box for the task of shape recognition, that will not be opened in this thesis, just in a 

nutshell, a shape can be a result of an image processing method that generates binary images, 

such as pattern extraction, segmentation or thresholding. 

From the perspective of this thesis, the source of the original image is more important 

since the shape images suffer from the same geometrical transformations and distortions 

caused by the camera optics, 3D-to-2D projection, photo acquisition, and sampling. From 

the aspect of the projection dependencies, we distinguish flat patches, and objects having an 

extent in all the three dimensions. The two-dimensional projection of a flat patch depends 

only on the mutual position of the camera and the subject, and the patches from different 

angular viewports can be transformed to each other. In contrast, the projection of 3D objects 

depends on the actual positioning of the object – a sculpture or a mug has a completely 

different shape viewed from different sides, not necesseraly transformable to each other, as 

seen in Figure 1.5. [42][43]. 

In my work I was less concerned about 3D shape recognition; however, several 

descriptions and methods described here can be easily extended from 2D to 3D, and a wide 

spectrum of researches concentrate on 3D shape modeling, projections, and analysis. 

[44][45][46][47][48][49] 

 

      

DOI:10.15774/PPKE.ITK.2019.005



 

15 
 

In my thesis I focus on flat, rigid shape patches obtained from a digital image taken 

by a standard camera or a cell phone, that has an extent only in 2D, such as pictograms, road 

signs, patches of banknotes, etc. The challenge in recognition of such shapes lies in the high 

variety of objects, resulted by various lighting conditions, unambiguous segmentation and 

uncontrolled camera handling. 

The key to efficient shape recognition is to use an appropriate representation that 

comprises all crucial characteristics of a shape in a compact descriptor. A shape description 

is considered to be efficient from a recognition point of view, if 

• the representation is compact, 

• a metric for the comparison of the feature vectors can be efficiently computed, 

• the representation is insensitive to minor changes and noise, and  

• the description is invariant to several distortions, such as translation, scale, 
perspective transformation, and rotation. 

The most basic classification of shape descriptions distinguishes between contour-

based and region-based techniques. Each method extracts specific features that encompass 

some significant aspects of the information in shape.  

The requirement of compactness stands for the maximal level of independence of the 

feature data that do not go to the expense of the comparison and recognition performance. In 

other words, redundancy in the feature vector is accepted if it significantly simplifies the 

subsequent processing of the vector, thus accelerates the classification, and may increase the 

accuracy of the recognition. 

Typical shapes of objects seen in our everyday life are compound, and no unified 

aspect can categorize all these shapes unambiguously and clear. Human address shapes 

several properties, as being rough or smooth, fat or skinny, but the most conventional way 

to identify and describe shapes is by comparing or addressing by prototypes (“shaped like 

a…”). [50] Hence it is expedient to observe and analyze more modalities, resulting in more 

robust recognition. 

In the following sections I will present the most important shape description 

methods, and an image descriptor as well, that inspired the GSPPED shape descriptor. 

The basic mathematical features of a shape, as perimeter, area, eccentricity consist 

of only one or few scalar values, though by which they express the feature of the shape in a 

very compressed way. Complex shape descriptors belong to two groups depending on the 

part of the shape they describe: 
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• Contour-based shape features describe the shape based on its contour lines 

in various representations, such as contour moments [51][52], centroid 

distances and shape signatures [53][54][55][56][57], scale space methods 

[58], spectral transforms [59][60], and structural representation 

[61][62][63]. Common drawbacks of contour methods are the complexity of 

feature matching, representation of holes and detached parts of the shape, 

and noise sensitivity [64].  

• Region-based techniques describe the shape based on every point of the 

shape and represent mainly global features of the shape. Moment invariants 

are derived as statistical features of the shape points [65]. Orthogonal 

moment descriptors such as Zernike and Legendre descriptors employ 

polynomials instead of the moment transform kernels [66][67][68]. 

Complex shape moments are robust, and matching is straightforward; 

however, lower order of moments poorly represents the shape, but higher 

orders are more sensitive to noise and difficult to derive [69]. Generic 

Fourier descriptor represents the shape as the 2D Fourier transformation of 

the polar-transformed shape. 

In my research, I aimed to create a compound shape descriptor, in which several 

modalities of the shape are described, and are suitable for fast, robust and reliable 

recognition.  

1.3.1 Basic shape features 

The most basic descriptors combine different size parameters to form features 

independent form position, size and rotation. Dozens of such properties are known and used 

under several aliases, here the most widely employed are presented: 

𝑎𝑠𝑝𝑒𝑐𝑡 𝑟𝑎𝑡𝑖𝑜 =
𝑑𝑚𝑎𝑥

𝑑𝑚𝑖𝑛
 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦 =

𝑃𝑐𝑜𝑛𝑣

𝑃
 

𝑠𝑜𝑙𝑖𝑑𝑖𝑡𝑦 =
𝑇

𝑇𝑐𝑜𝑛𝑣
 𝑎𝑟𝑒𝑎 𝑟𝑎𝑡𝑖𝑜 =

𝑇

𝑇∎
 

𝑟𝑜𝑢𝑛𝑑𝑛𝑒𝑠𝑠 =
4 𝑇

𝜋 𝑑𝑚𝑎𝑥
 𝑓𝑜𝑟𝑚𝑓𝑎𝑐𝑡𝑜𝑟 =

4𝜋

𝑃2
 

𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 =
√4

𝜋  𝑇

𝑑𝑚𝑖𝑛
 

𝑒𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 = √1 −
𝑏2

𝑎2
 

where 𝑇 is the area, 𝑃 is the perimeter of the shape, 𝑇𝑐𝑜𝑛𝑣 and 𝑃𝑐𝑜𝑛𝑣 are the area and perimeter 

of the convex hull, 𝑇∎ is the area of the bounding rectangle, 𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥 are the minimal 
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and maximal diameters respectively, 𝑎 and 𝑏 are the semi-major and the semi-minor axes of 

the fitting ellipse having the same second moments as the shape. [50][70]  

Basic features are highly expressive; however, they represent weak discriminative 

power for classification, although they are suitable for rejection obviously false matches. 

[65] 

1.3.2 Shape moments 

The binary shape image shape is a set of pixel points in a Cartesian coordinate 

system; therefore it can be considered as a statistical set, and statistical moments can be 

computed. Two-dimensional central moments of the joint density 𝑝(𝑥, 𝑦) are defined as 

follows: 

𝑈(𝑟, 𝑠) = ∫ ∫ (𝑥 − 𝜂𝑥)𝑟 (𝑦 − 𝜂𝑦)𝑠 𝑝(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

∞

−∞

∞

−∞

 

The term “central” refers to the spatial normalization, where [𝜂𝑥 , 𝜂𝑦] is the mean of 

𝑝(𝑥, 𝑦). 𝑚 and 𝑛 are the order of the moment. In case of shapes, the distribution is replaced 

by the binary (grey) values of the image (or an image function for non-binary images), means 

are the center of mass [〈𝑥〉, 〈𝑦〉], and instead of continuous, a discrete summation is 

employed: 

𝑚𝑟,𝑠 = ∑(𝑥 − 〈𝑥〉)𝑟 (𝑦 − 〈𝑦〉)𝑠

𝑥,𝑦

 

Central moments are translational invariant but are dependent on the actual size of 

the shape. To get rid of scale dependency, the shape is scaled to a unit area. And since the 

area of a binary image is the (0,0)𝑡ℎ moment, and a scale by a factor of 𝛼 scales the moment 

to 𝑚𝑟,𝑠
′ = 𝛼𝑟+𝑠+2𝑚𝑟,𝑠, the scale-invariant moments are calculated in the following way: 

𝑚̅𝑟,𝑠 =
𝑚𝑟,𝑠

𝑚0,0
(𝑟+𝑠+2)/2

 

Only the first few two-dimensional moments are easily understood by the human or 

at least have standard naming. Moments 𝑚1,0 and 𝑚0,1 are the first-order row and column 

moments, in the case of binary images the center of gravity coordinates – if centralized, then 

both are zero. Moments 𝑚2,0, 𝑚0,2 and 𝑚1,1 are called the row- and column moment of 

inertia, and the row-columns moment of inertia respectively. [28][43][70] 

The second order moments receive special attention since an ellipse can be assigned 

to a shape, which has the same second moments as the shape. The major and the minor axes 
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of the ellipse can be computed as the eigenvalues of the inertia covariance matrix, or inertia 

tensor J:  

𝐽 = [
𝑚0,2 −𝑚1,1

−𝑚1,1 𝑚2,0
] 

The orientation of the ellipse is the declination of the major axis, in other words, the 

object is most elongated in the direction of the major axis. The orientation of the ellipse and 

consequently of the shape then can be expressed with the moments [28][43]: 

𝜙 =
1

2
arctan

2𝑚1,1

𝑚2,0 − 𝑚0,2
 

The eccentricity is another shape measure describing the elongation of the shape. Its 

value is 0 for a circle, and 1 for a line [43] [28]: 

𝜀 =
(𝑚2,0 − 𝑚0,2)2 + 4𝑚1,1

2

(𝑚2,0 + 𝑚0,2)2
 

To develop moments that are invariant to the rotation as well, Hu proposed seven 

moments based on normalized image moments. The construction of these moments will not 

be presented in the thesis but can be found in [5] and in [28][71]. 

1.3.3 The Generic Fourier Descriptor 

The idea behind the Generic Fourier Descriptor is in characterizing the shape image 

by a transformation of its two-dimensional spatial frequencies. To ensure rotational 

invariance, the image is transformed into the polar-space, sampled to a given resolution and 

transformed by the 2D-Fourier transform. 

 

Figure 1.6. The generation of the Modified Polar Fourier Transform. The original image on (a) is 

transformed into the polar coordinates (b); finally, the spatial frequencies are obtained (c) 

 

 

(a) (b) (c)
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Fourier transform is successfully employed in several types of pattern analysis. The 

discrete two-dimensional Fourier transformed coefficients are defined as 

𝐹(𝑢, 𝑣) =
1

𝑁
∑ ∑ 𝐹(𝑗, 𝑘) exp (

−2𝜋𝑖

𝑁
(𝑢𝑗 + 𝑣𝑘))

𝑁−1

𝑘=0

,

𝑁−1

𝑗=0

 

where 𝐹(𝑗, 𝑘) are the pixel values at (𝑗, 𝑘), 𝑁 is the width and height of the image, and 𝑖 =

√−1. [28] 

The definition below, however, is not rotation invariant; thus the usage of 2D Fourier 

as features is suitable for describing textures, or shapes, where a characteristic direction is 

defined, but generally for shapes is not useful. Therefore, the image is transformed into the 

polar space and then transformed. The Modified Polar Fourier Transform for the 𝜌𝑡ℎ radial 

frequency and for the 𝜙𝑡ℎ angular frequency is defined as:  

𝑃𝐹(𝜌, 𝜙) =
1

𝑁
∑ ∑ 𝐹(𝑟, 𝜃𝑗) exp (2𝜋𝑖 (

𝑟

𝑅
𝜌 + 

2𝜋𝑗

𝑇
𝜙))

𝑗

,

𝑟

 

where 0 ≤ 𝑟 = ((𝑥 − 𝑥𝑐)2 + (𝑦 − 𝑦𝑐)2)
1

2 ≤ 𝑅 and 𝜃𝑗 = 𝑗 (
2𝜋

𝑇
) , (0 ≤ 𝑗 < 𝑇), [𝑥𝑐 , 𝑦𝑐] is the 

center of gravity of the shape, and 𝑅 and 𝑇 are the radial and angular resolutions. In Figure 

1.6 the GFD feature generation is demonstrated. 

Finally, the Generic Fourier Descriptor is composed of normalized coefficients: 

𝐺𝐹𝐷 = [
|𝑃𝐹(0,0)|

𝑎𝑟𝑒𝑎
,
|𝑃𝐹(0,1)|

|𝑃𝐹(0,0)|
, … ,

|𝑃𝐹(0, 𝑛)|

|𝑃𝐹(0,0)|
,
|𝑃𝐹(𝑚, 1)|

|𝑃𝐹(0,0)|
, … ,

|𝑃𝐹(𝑚, 𝑛)|

|𝑃𝐹(0,0)|
 ], 

where 𝑎𝑟𝑒𝑎 is the area of the bounding circle, 𝑚 is the maximum number of the radial 

frequencies, and 𝑛 is the maximum number of angular frequencies.  

Papers of the authors of the GFD claim that the GFD performs better than the Zernike 

moments descriptor based on tests on large shape databases. [72][73] 

1.3.4 Zernike Moments Shape Descriptor 

As shown before, rotation invariance is easily ensured by the shape moments. 

However, Hu moments do not fulfill the requirement of compactness; moments involve 

redundancy. Thus they are not orthogonal from the aspect of information theory. [74] Zernike 

Moments are orthogonal complex moments on the unit disk, that are rotationally invariant 

by the magnitude of the moments. [67] Originally, Zernike moments were designed to 

describe optical aberrations. [75] 
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Zernike moments 𝐴𝑛𝑚, where 𝑛 is the order. and 𝑚 the repetition for a discrete image 

are defined as 

𝐴𝑛𝑚 =
𝑛 + 1

𝜋
∑ ∑ 𝑉𝑛𝑚

∗ (𝑟, 𝜑)𝐹(𝑥, 𝑦) 

𝑦𝑥

 

where 𝑛 is a positive integer, 𝑚 =  −𝑛, −𝑛 + 2𝑛, … , 𝑛, 𝑥2 + and 𝑉𝑛𝑚 are the Zernike 

polynomials, where 𝑅𝑛𝑚 is the radial function [71][74][76][77]: 

𝑉𝑛𝑚(𝑟, 𝜑) = 𝑅𝑛𝑚(𝑟) exp(𝑖𝑚𝜑) 

𝑅𝑛𝑚(𝑟) =  ∑ (−1)𝑠
(𝑛 − 𝑠)!

𝑠! (
𝑛 + |𝑚|

2
− 𝑠) ! (

𝑛 − |𝑚|
2

− 𝑠) !
𝑟𝑛−2𝑠 

𝑛−|𝑚|
2

𝑠=0

 

 

Figure 1.7. Birds. On the left side is the original shape, on the right the reconstructed. 15 orders 

were used. 

Radial coordinate 𝑟 and angle 𝜑 in the definitions of the Zernike polynomials are 

defined on the unit disk, thus the shape has to be transformed onto the disk as well. By a 

proper transformation scale and translation invariance is provided. A common choice uses 

the following functions: 

𝑟 =
√(𝑥 − 𝑥𝑐)2 + (𝑦 − 𝑦𝑐)2

𝑟𝑚𝑎𝑥
 

𝑟𝑚𝑎𝑥 =
√𝑚00

2
√

𝑀

𝑁
+

𝑁

𝑀
 

φ = arctan (
𝑦 − 𝑦𝑐

𝑥 − 𝑥𝑐
), 

(a) (b)
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where 𝑁 and 𝑀 is the size of the image, 𝑟𝑚𝑎𝑥 is the radius of the circular part of the image 

that will be mapped to the unit disk, and 𝑥𝑐 and 𝑦𝑐 are the centroid points. [71] 

The rotation invariance is ensured by the magnitude of the complex moments since 

if the image is rotated by an angle 𝛼, moments also “rotate” [71][74][76]: 

𝐴𝑛𝑚
′ = 𝐴𝑛𝑚 exp(−𝑖𝑚𝛼) 

Zernike Moments are suitable not only for detailed representation and thus 

recognition but for reconstruction as well. (see Figure 1.7.). Due to the orthogonality, no 

redundancy is involved in the features, making the Zernike moments highly expressive. The 

original form of the calculation is complex, thus slow, but there exist methods for faster 

computation. [78] However, employing higher order Zernike moments is less effective due 

to generalization loss and sensitivity to noise [75].  

1.3.5 The Projected Principal Edge Distribution 

Projected Principal Edge Distribution (PPED) is a grayscale image descriptor that 

characterizes principal edges of the 64x64 pixels’ moving image window developed for 

recognizing anatomical regions in X-ray images (Figure 1.8). The reason to highlight the 

PPED is the motivation behind its construction: to mimic one of the characteristics of the 

human image processing, the oriented edge description [79], and its design for a dedicated 

VLSI chip. The PPED was the inspiration of the edge-based part of the compound shape 

descriptor presented in this work. 

 

Figure 1.8 The schema of the PPED algorithm 
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To highlight important edges, for every pixel a local threshold is defined as the median 

of differences of neighboring pixel values in a 5 × 5 pixels’ window around the pixel. Edges 

are detected in four directions (0, 𝜋, 𝜋/4, 𝜋/2, and 3𝜋/4) with a convolution resulting four 

edge maps, where values below the actual pixel threshold (defined above) are set to zero. To 

select the principal edges only, for every pixel location of the four edge maps, only the largest 

edge value is kept, and the values of the same pixel location on the other three edge maps 

are set to zero. Maps are then projected in the same direction as the convolution and 

normalized to the length of 16 values. Finally, smoothing is applied to reduce noise. 

For every window position on the input image, a separate feature vector is computed 

and then compared to the labeled templates, choosing the closest instance to classify the 

input. [80] 

Note that PPED and relative descriptors are not rotationally invariant, and scale 

invariance is ensured by using various window sizes and scaling. 
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1.4 Non-Boolean computing architectures 
The physical limitations of the state-of-the-art CMOS technique stimulate researchers 

to find a new solution to keep up with the Moore’s law. One principal approach is to multiply 

the computational elements and use many simple and fast elementary processors [81]. Due 

to data transfer delay, which is now the bottleneck of the computation speed, the precedence 

of locality became extremely important. [82][83] The second direction searches for new 

concepts of computation beyond the CMOS technology, and aims to re-think the basics of 

information science we were used to in the past decades.[84][85][93][94]  

In my research, I investigated both kilo-processor based algorithms and non-CMOS 

based architectures. In the following section, I will outline the basic concepts of oscillator 

networks and the Cellular Neural-Nonlinear Networks. 

1.4.1 Oscillators 

The oscillator is a system producing oscillation, a repetitive change of states. The 

oscillation can be characterized by the period as the time between the same states, and by 

the frequency as the number of reaching a certain state in a time unit. If a metric can be 

defined on the states, the amplitude is the distance between the extreme states. The actual 

state of the oscillation in the state space is the phase. 

From mathematical aspect the oscillation is a state function that is the periodic solution 

of a differential equation with parameter 𝜇: 

𝑥̈ = 𝑓(𝑥, 𝜇) 

 
Figure 1.9. Spatial patterns in nature: sand dunes in a desert2, an ancestral tabby pattern 

on a cat3 

                                                      
2 Author: Yann Arthus-Bertrand, http://goo.gl/9Njkx7 
3 Credits: Helmi Flick/Science, http://www.scienceupdate.com/2012/10/cat/ 
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Oscillations occur in mechanics, electrodynamics, but oscillation is ubiquitous in nature, 

biology, chemistry, and social sciences as well. The oscillator is a pushed pendulum, a mass 

hanging on a spring, or an excited RLC circuit. [86][87][88][89] 

Examples of spatial patterns are shown in Figure 1.9. 

 

Figure 1.10. Huygens’ experiments with pendulum clocks hanged on the same, flexible lath in 1665 
4 

1.4.2 Coupled oscillators 

The networks of oscillators, where the nodes are interacting, are called coupled 

oscillators. 

The coupling is defined by the coupling strength, the effect function of the coupling, 

and the speed and dynamics of the coupling effect. 

𝑥1̈ = 𝑓(𝑥1) +  𝜀 ∙ 𝑔(𝑥1, 𝑥2, … , 𝑥𝑛) 

𝑥2̈ = 𝑓(𝑥2) +  𝜀 ∙ 𝑔(𝑥1, 𝑥2, … , 𝑥𝑛)  

… 

𝑥𝑛̈ = 𝑓(𝑥𝑛) +  𝜀 ∙ 𝑔(𝑥1, 𝑥2, … , 𝑥𝑛) 

Based on the coupling strength () strong and weak couplings are distinguished. In 

my research, I investigated systems with weak coupling. A generally used example for 

weakly coupled oscillators are metronomes placed on a flexible surface (Figure 1.10): After 

a certain time weakly coupled oscillators may get the same frequency, the phenomenon is 

called synchronization. [86] [88] 

                                                      
4 Synchronization, Shcolarpedia, http://www.scholarpedia.org/article/Synchronization 
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In my research, I assume that the state space of every node is the same. The behavior 

of the oscillatory network is determined by the individual dynamics of the nodes, the 

coupling effect, and the attenuation. In the following sections I will use models of weakly 

coupled oscillators, with the assumption that no external event affects the behavior of the 

system, and the structure and the physical parameters are constant. The interaction of the 

system and the outer environment is realized only by excitation of several oscillators and by 

reading the states of the network. 

1.4.3 Spin Torque Oscillators 

Spin Torque Oscillators (STOs) are nanosized microwave oscillators placed on a flat 

surface. The oscillation occurs in the spin vector’s spatial position (M), a direct current 

injection achieves excitation. During oscillation, spin waves are radiated. The interaction of 

the oscillators depends only on their relative position, i.e., the distance that directly defines 

the coupling strength and function. [90][91]  

 

Figure 1.11 The free layer magnetization, M (red arrow), precesses around the direction of an 

applied magnetic field (H0) when natural magnetic damping (blue arrow) is compensated by the 

spin torque (yellow arrow) applied by a spin-polarized current flowing from the fixed layer. 5  

                                                      
5 Andrei Salvin: Microwave sources: Spin-torque oscillators get in phase, Nature Nanotechnology 4, 
479 - 480 (2009) 
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The magnetization is defined by the vector: 

𝑴(𝑡) = (𝑀𝑥(𝑡), 𝑀𝑦(𝑡), 𝑀𝑧(𝑡))
𝑇
 

 

The equations of the motion of the spin torque nano-oscillator results to be: 

𝑑𝑴

𝑑𝑡
= 𝛾(𝑴 × 𝑯𝒆𝒇𝒇) − 𝛾𝛼𝑴 × (𝑴 × 𝑯𝒆𝒇𝒇) − 𝛾𝐴𝑴 × (𝑴 × 𝑺) 

Ms is a parameter related to the saturation magnetization of the material. Permalloy 

is characterized by 𝑀𝑠 = 8.6 ∗ 105,  

𝑯𝒆𝒇𝒇 is the resultant magnetic field  

× denotes the cross product between the vectors,  

A is the normalized current (This number is proportional to the current of the 

oscillator and not the actual current itself (for instance A=100 corresponds to 1 mA).) and  

γ (gyro-magnetic ratio) and α (magnetic efficiency) are physical constants with 

values 𝛾 = 2.21 ∙ 10−5  and 𝛼 = 8 ∙ 10−3, respectively. [92] 

 

Figure 1.12. The structure of a CMOS-STO network processing unit. The input is preprocessed, 

then a conversion layer translates the digital data into analog currents interpretable by the STO 

network layers. Finally, the outputs of the STO layer has to be converted back to the CMOS level 

as well. The output is the result of a classifier. 
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Communication between the STO network and the CMOS layer is through a 

conversion layer (Figure 1.12): the input, as mentioned above, is realized via current 

excitation, the output is the array of the phases read out by a circuit loop. When my research 

was performed, by the state-of-the-art method only the edge of the system could be reached, 

so the excitation and the phase read-out could only be applied on the oscillators placed at the 

border of the network. [A5] 

The STO network synchronizes after a particular time. In the case of a time-varying 

excitation, it can happen that the synchronization does not occur or breaks up and only 

smaller clusters remain synchronized. These partial synchronization patterns may encode 

important information also, but in my research, I only investigated fully synchronized cases. 

[95] 

One computational cycle on an STO network corresponds to synchronization that is 

in order of milliseconds. Therefore, one cycle is significantly longer than a step of a basic 

CMOS unit. However, I will show that a program that is solved in one cycle on an STO can 

be performed on a standard CMOS architecture in substantially longer time. Therefore, even 

if basic tasks are also solvable on STOs, their usage is unnecessary. In the case of a certain 

class of complex tasks, oscillators may return the solution faster.  

Besides acceleration, the significantly lower power distribution of systems with 

STOs is also an important aspect. 

The advantage of the architecture is the size and the computational power, which 

require different programming method than in case of CMOS programming, and the ability 

to process static and spatial-temporal input due to the interaction of the oscillators. [95] 

1.5 The Cellular Neural/Nonlinear Networks 

The CNN is an array of analog dynamic processors or cells that mimic the structure 

and behavior of sensory and processing organs in nature and extend it with the additional 

capability of programmability. Cells are arranged in a grid and are connected only locally 

with neighboring cells in their sphere of influence with the radius rd. (see Figure 1.13) 
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Figure 1.13 Cells and connections in a CNN with rd=1: A cell is connected only with its neighbors. 

The computational model of a single layer CNN (the Chua-Yang model) is described 

by a nonlinear differential equation system of a state variable of a cell x: 

𝑥̇𝑖𝑗 = −𝑥𝑖𝑗(𝑡) +  

+ ∑ ∑ 𝐴(𝑖 − 𝑘, 𝑗 − 𝑙) 𝑦𝑘𝑙(𝑡) +

|𝑙−𝑗|≤𝑟𝑑|𝑘−𝑖|≤𝑟𝑑

 

+ ∑ ∑ 𝐵(𝑖 − 𝑘, 𝑗 − 𝑙) 𝑢𝑘𝑙(𝑡)

|𝑙−𝑗|≤𝑟𝑑|𝑘−𝑖|≤𝑟𝑑

+ 

+ 𝑧𝑖𝑗 

A and B is the feedback and the input synaptic matrix, z represents the threshold, the 

template (A, B, Z) determines the exact function of the actual CNN array. 

U is the input. Note that the input is directly processed after its acquisition. 

The output y is typically defined as a piecewise-linear function [96]: 

𝑦 = 𝑓(𝑥) =
1

2
(|𝑥 + 1| − |𝑥 − 1|) 

The CNN paradigm rewrote the paradigm of the classic Boolean software-based 

thinking. The CNN technology successfully provided new and efficient solutions in many 

fields, mainly in image understanding, topological applications, but also non-topological 

problems [96][97]. Complete library of basic and complex templates can be found in [98]. 

The design both of the Adaptive Limited Nearest Neighborhood classifier and the 

GSPPED shape descriptor was motivated by the principle of parallel computing on kilo-

processor architecture with low power consumption with real-time processing on a standard 

architecture of a PC or a cell phone as well. 
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1.6 The Bionic Eyeglass 
The Bionic Eyeglass is an abstract portable device, to help blind and visually 

impaired people in everyday navigation, orientation and recognition tasks that require visual 

input. [99][100][101][102][103][104] The device is being developed continuously, finalized 

algorithms are now implemented on different platforms, like Android, iOS and FPGA. The 

Bionic Eyeglass assembles several functions required by visually impaired, namely banknote 

recognition, crosswalk detection (see Figure 1.14) [105][106][107], public transport number 

reader and others. 

  

  

Figure 1.14. Examples of white crosswalk detection with the Bionic Eyeglass  

Since the Bionic Eyeglass aims to be a handful, reliable, fast and easy tool, it is 

required to employ real-time algorithms with low power consumption. Hence most of the 

visual algorithms used by the device are based on CNN technique.  
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Figure 1.15 The banknote recognition module in use. The module was designed to function in 

different lighting conditions and backgrounds fully. 

   

Figure 1.16 The morphological processing of the colored input image. Extracted blobs, as numbers 

and portraits are then classified based on their shape or pattern. 

The flagship of the Bionic Eyeglass is the banknote recognition module developed 

to identify Hungarian Forint banknotes in a cell phone image stream (Figure 1.15), 

incorporated in the Android6 and iOS7 application “LetSeeApp”8. The core process flow of 

the recognition is the following: The input is obtained from a single cell phone camera; the 

image is segmented, and interesting blobs are selected employing a hierarchical peeling 

algorithm (see Figure 1.16). [108][109][110][A4] Then the blobs are classified based on the 

shape, color, and their relative position. [A3] Finally an assembled classifier selects the 

output class, and the device provides voice feedback to the user. [A5][A7] 

I participated in the development of the Bionic Eyeglass in designing and 

implementing a fast and robust shape descriptor and a classifier. I present the details of the 

algorithms in Sections 3, 4, 5. 

                                                      
6 https://play.google.com/store/apps/details?id=com.letseeapp.letseeapp&hl=hu 
7 https://itunes.apple.com/hu/app/letseeapp/id1170643143?mt=8 
8 http://letseeapp.com/ 
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1.7 Structure of the thesis 
In Section 1., I introduced the most important concepts of the machine learning, 

shape recognition and oscillatory networks. In Section 2., I investigate open-world object 

recognition and classification, from a general aspect, founding the basic concepts of my 

work. In Section 3. the Global Statistical and Projected Principal Edge Distribution 

description are presented, while in Section 4. the Adaptive Limited Nearest Neighborhood 

Classifier is introduced as a part of a two-level classifier. The relevant shape descriptors and 

classifiers presented in the Introduction are compared with the developed methods in Section 

5. Oscillatory networks, including the formalization of the OCNN architectures, and 

classification of both static and dynamic input, are investigated separately in Section 6. I 

summarize the results and my thesis points in Section 7.  
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2 Object recognition in an open-world environment 

In open-world multiclass recognition problems, only a relatively small subset of the 

classes is considered relevant for the given task. This is similar to a binary classification 

scheme with only positive and negative labels, with the difference that inside the positive 

class we need to be able to differentiate between several “positive” labels, which are 

considered relevant by themselves, as opposed to the irrelevant ones, among which no 

differentiation is necessary. More precisely, the relevancy attribute partitions the set of 

classes into the relevant and the irrelevant subsets. 

2.1 Performance evaluation in multiclass classification 
For an appropriate evaluation performance, metrics need to be adapted to this nature. 

Due to the prevalence of the positive-negative property for this multiclass case, it makes 

sense to rely on traditional binary performance metrics, including recall and precision. To be 

able to use them, we need to extend the binary confusion matrix scheme of positive and 

negative decisions. Since we do not differentiate between irrelevant classes, all decisions 

from and into irrelevant classes are counted as true-negative (TN). True-positive (TP) counts 

all correct positive, that is, relevant, classifications; false-negative (FN) refers to the number 

of decisions where a relevant input was classified as irrelevant. False-positive decisions are 

split into two categories: FPRel indicates the number of false classifications between relevant 

classes, while FPNRel counts decisions where an irrelevant input is classified as a relevant 

one. 

Using this extended taxonomy, precision and recall can be defined as follows: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃𝑅𝑒𝑙 + 𝐹𝑃𝑁𝑅𝑒𝑙
 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃𝑅𝑒𝑙
 

For Fβ, being a weighted average of precision and recall, the definition does not need 

to be changed, with recall being more important for β > 1, and precision weighted more 

important for β < 1: 

𝐹𝛽 = (1 + 𝛽2) 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙

𝛽2 · 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

As I primarily target real-time recognition tasks on video sequences, type II errors 

have a much lower cost than type I errors. Hence, I have used the value 𝛽 = 0.05, which 

reflects this preference. [5][10] 
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2.2 The role of description and classification 
I investigate classic machine learning decomposition and the role of edges and their 

appropriate and efficient representation. The estimation of the ground truth is based on 

limited sensing, resulting in a different representation of essentially same objects. The key 

point of the recognition is a model that draws boundaries of output classes. However, classes 

may differ based on various traits; thus the selection of discriminative features is also 

essential. From this point of view, I will divide recognition to feature extraction and 

classification.  

In this section I investigate shape recognition that models the decision based on 

supervised learning, where the model is built up based on previously labeled inputs denoted 

as templates; the set of already known inputs are denoted as the training set. Independently 

from the exact type and behavior of the classifier, the classification is a comparison of the 

input to labeled elements from the training set (or a model built up from the set), where the 

decision is a function of the objects. The difference is a result of various distortions that occur 

during the image acquisition and preprocessing. Note that distortions may also affect the 

elements of the training set. 

The input shape Si
∗ is a result of a T transformation of the original shape 𝑆𝑖, where γ 

denotes the parameter(s) of the transformation and P is the set of all possible parameters of 

the transformation: 

𝑇𝛾𝑖
(𝑆𝑖) = 𝑆𝑖

∗, 𝛾𝑖 ∈ 𝑃 

The input shape 𝑆𝑡
∗ is a result of a T transformation of the original template shape 𝑆𝑡: 

𝑇𝛾𝑡
(𝑆𝑡) = 𝑆𝑡

∗,   𝛾𝑡 ∈ 𝑃 

The output class of 𝑆𝑖
∗ is the result of a decision function 𝐷̂, depending on one or more 

labeled shapes  𝑆𝑡1
∗  .. 𝑆𝑡𝑛

∗ , comprising the representative set R: 

𝐷̂(𝑆𝑖
∗) = 𝐷𝑅(𝑆𝑖

∗) 

⋃ 𝑆𝑡1
∗

𝑛

𝑖=1

= 𝑅 

The task of the recognition is not the reconstruction of the original shape by 

mathematical operations but to classify independently from transformations that distort the 

original and the template shapes and thus to estimate the ground truth C. 

𝐷̂(𝑆𝑖
∗) ≈ 𝐶(𝑆𝑖

∗) 
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 From this aspect the transformation can also be considered as noise and noise is 

considered as a transformation. 

In the next paragraphs, I give an overview of possible distortions of a shape in an object 

recognition problem and formalize deviations mathematically. Then I try to define the ability 

to represent similarity by formalizing tolerance and invariance generally and especially for 

the target shapes. Finally, I give an overview of possible solutions of ensuring invariance 

and tolerance in a description-based recognition system. 

2.2.1 Distortions in a shape description problem 

To find the all possible deviations of shape I go along the process where the binary 

shape is generated from a real-world object. However, shape generally can be defined as a 

multidimensional set of points; in this thesis, as I mentioned, I only focus on 2D shapes that 

are projections 2D, flat objects in a 3D space and characteristic silhouettes of 3D images. 

Applying the constraints above, during image acquisition by a camera, where the 3D-

2D transformation and the sampling takes place, the following geometric and pixel-level 

deviations may occur: 

a) Rotation of the object on its plane compared to the camera axes  

b) Position difference of the object relative to the camera that can be split to 

ba) distance difference between the camera and the object 

bb) position difference of the projected camera origin and the object 

c) Angular deviation of the object plane normal-vector and the camera projection 

direction 

d) The appearance of noise due to sensing limitations and sampling errors 

e) Some part of the shape is missing or the shape being joint with another pattern 

Note that, from practical considerations, geometric variances can be represented in other 

spaces too. If we consider the characteristic motives of the shape to be larger than the 

sampling rate, the deviance in (d) is limited only to the sensing noise. However, inappropriate 

focusing may also cause loss of details of the shape which in most of the cases exceeds the 

sampling error. [28][42][43] 

The shape is generated from the input image by various image processing algorithms, 

such as segmentation, patterns extraction, and morphological operations. As mentioned 

before, here, I will not investigate these preprocessing phases. Generally, it can be stated that 

the shape generation is a binarization of some characteristic pattern of the image; thus the 

deviation (e) may befall due to the various lighting condition and unambiguous shape edges. 

DOI:10.15774/PPKE.ITK.2019.005



 

35 
 

Summarizing the deviations variations can be named, of which shape recognition may 

be independent, or the similarity index should be proportional to the deviation. From the 

aspect of the shape, the distance variation appears in different scales of the shape. Positioning 

variance results in a different location of the shape on the image canvas; rotation of the image 

in its plane also results rotated shape. Angular deviation of the image plane together with 

positioning difference results in perspective variance. Not only do binarization ambiguity 

and noise result in misplaced edge pixels on the desired shape but also both of them may 

lead to detached shape parts or holes in the original shape. 

2.2.2 Decoding shape similarity 

Variance in the appearance of an object can be modeled in a mathematical sense as 

noise. We call shapes to be similar if the difference is due to different observation properties 

and processing noise. If the shape is rigid, observation property is reduced only to 

geometrical transformations. To achieve classification consistency across various 

distortions, we identify two different aspects, invariance, and tolerance, concerning these 

distortions. 

Invariance of a recognition engine for a particular type of deviation is defined as the 

ability to return the same result for all inputs that only differ in the given deviation. 

𝐷̂(𝑇𝛾(𝑆)) = 𝐷̂(𝑆) 𝑓𝑜𝑟 ∀𝛾 ∈ 𝑃 

We speak about tolerance to an effect if a difference in the input causes no difference 

in the output to a certain limit 𝐿𝑇: 

𝐷̂(𝑇𝛾(𝑆)) = 𝐷̂(𝑆) 𝑓𝑜𝑟 ∀𝛾 ∈ 𝑃, ‖𝛾‖ <  𝐿𝑇 

Note that the norm for the transformation parameter is substantially an abstract 

function, which cannot be measured directly, but only can be estimated based on the 

transformed shape. Similarly, the limit 𝐿𝑇 also represents an abstract value. Both the norm 

and the limit are determined by the actual interpretation of the similarity. 

Tolerance can be defined as a limited, local invariance, and vice versa, invariance is 

a global tolerance. From this reason invariance with respect to an effect implies tolerance to 

the whole domain, while overlapping regions of tolerance can achieve invariance. 

The human similarity metric highly depends on the actual task; thus no general 

statement can be defined which deviations should be eliminated and which should be 

tolerated during a shape recognition. The environment in some cases does provide some 

references regarding the projection details. Some of the parameters described above might 

be fixed, previously adjusted (e.g., relative orientation or position of the camera and the 
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object) or can be derived from the image metadata (e.g., the distance of the focused subject 

of an image, the angular difference from the horizontal plane). In these cases deviations in 

the given parameters result in a different shape; thus invariance is needed only if the human 

notion of the shape is not dependent of the distortion, and only tolerance is required if the 

given parameters are not exact or the human perception does tolerate deviations with a 

certain limit. 

The transformations above can be characterized by the possible outputs applying the 

transformations. The range Q of transformation T is defined as the set of all possible results 

of transformation T on a shape 𝑆: 

𝑄𝑇(𝑆) = {𝑈, 𝑈 = 𝑇𝛾(𝑆), 𝛾 ∈ 𝑃} 

In the case of reversible transformation 𝑇𝛾(∙), the inverse transformation is denoted 

here as 𝑇𝛾−1(∙). To represent noise as transformation, I chose the parameter 𝛾 as a shape, and 

the noise transformation 𝑇𝛾(𝑆) = 𝑆 ⨁ 𝛽, and where ⨁ stands for the logical X-OR operation. 

By using this formalization, the random property of the noise transformation is ensured in a 

random selection of parameter 𝛾. This annotation allows us to represent the noise as a 

reversible operation, where 𝛾−1 = 𝛾 . 

We denote shapes S and U to be separated by transformation T if there are no 

parameters 𝛾1 and 𝛾2 of T which transform S and U to the same shape: 

∄𝛾1, 𝛾2 ∈ 𝑃. 𝑇𝛾1
(𝑆) = 𝑇𝛾2

(𝑈) 

𝑄𝑇(𝑆) ∩ 𝑄𝑇(𝑈) =  ∅ 

If the transformation is reversible then S and U are separated by transformation T: 

∄𝛾. 𝑇𝛾(𝑆) = 𝑈 

𝑆 ∉ 𝑄𝑇(𝑈) 

If we assume that output classes are separated by transformation T, and no reference 

system is given, the recognition should be invariant to transformation T. If the classes are not 

separated, the recognition should only tolerate the difference caused by transformation T. 

Without any assumptions about the noise, adding sampling and preprocessing noise 

to a shape (noise transformation) may result in an arbitrary distortion; no shapes are separated 

by noise transformation, and thus the recognition should only be tolerant to the noise 

transformation. If the noise is bounded, the result space is limited. 

Adding sampling and preprocessing noise (noise transformation) theoretically may 

result in an arbitrary shape. The geometric transformations, except for the 90-degree 
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perspective distortion, are closed transformations; thus invariance with respect to rotation, 

scale, and transition and tolerance to perspective distortion are standard requirements in case 

of shape recognition. However, distortions affecting a shape cannot be handled separately. 

Sampling noise when doing a low-resolution scale or a flat perspective view can be 

significant. Hence, scale invariance and perspective tolerance are limited to scales where 

essential details of the shape are still present. 

2.2.3 The role of feature extraction and classification 

Invariance and tolerance regarding different distortions can be ensured in various 

ways. Feature extraction generalizes the shape from the specific aspect independently from 

those effects that are irrelevant for the classification, and classification performs a decision 

based on a complex distance. Hence, feature extraction is generally responsible for ensuring 

invariance and classification for tolerating difference to a specific limit. However, as I 

described in Section 2.2.2, invariance can be achieved by continuous tolerance and tolerance 

is a partial invariance; thus encoding similarities may occur in different parts of the 

recognition unit. Besides, many classifiers also include generalization power (i.e., kernel 

functions). 

  

DOI:10.15774/PPKE.ITK.2019.005



 

38 
 

3 The Global Statistical and Projected Principal Edge 
Distribution (GSPPED) descriptor 

3.1 Motivation 
Shapes have different properties depending on several aspects, and the distinctive 

characteristics may be encoded in a different aspect. Using only one feature type thus limits 

the description power of the descriptor in terms of discriminative power and classification 

performance. [62] Combining different descriptors include information about different 

essence of the shape and may contain redundant data, but increase robustness 

[111][112][113][114][115]. However, employing compound feature vectors require a 

decision method that suits the different parts of the description. In machine learning several 

ensemble classifiers are known that handle compound features, like boosting, bagging or 

stacking [9][69][116][117][118]  

Representations of the same real-world object may differ due to several effects such 

as lighting conditions, camera settings, position, and noise. The major challenges of object 

detection are to ignore the differences in the representation resulting by sensing and 

preprocessing and to recognize if the difference is caused by different input objects. Several 

invariance requirements are often standard expectations to shape recognition methods, but 

the exact group of requirements has to be defined to each individual task, considering other 

parameters as well, such as hardware ones.  

The description and the classification method presented in this thesis was developed 

in the framework of the Bionic Eyeglass Project that aims to help visually impaired by 

recognizing certain objects and patterns using cell phones, smart devices or dedicated 

architectures. The requirements towards the application also outlined the specifications of 

the used algorithms including shape recognition parts. The patterns to be recognized – figures 

on banknotes, pictograms, indoor and outdoor signs, etc. – are mainly rigid objects, but due 

to various image acquisition conditions and poor image quality significant amount of noise 

has to be handled, and several invariance requirements have to be fulfilled. Since the 

application is valuable only if it is reliable, false answers easily can cause a dangerous 

situation, thus minimizing false-positive errors has priority over maximizing cover ratio. 

Finally, that kind of algorithms is preferred that are appropriate for dedicated VLSI 

architecture but provide real-time processing even on standard cell phone CPU and GPU. 

I suggest a shape description denoted as Global Statistical and Projected Principal 

Edge Distribution description (GSPPED) that combines shape features in order to represent 
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different aspects. To cover most of the potential aspects optimally and avoid excessive 

redundancy, independent features are utilized.  

The descriptor consists of global statistical features and principal edge descriptors 

representing local characteristics. Structurally the descriptor is divided into three parts – see 

also Figure 3.1:  

a) A highly powerful general header including eccentricity and area fill ratio.  

b) A region-based feature set with histogram moments representing global shape 

properties. 

c) A contour-based edge description employing the Extended Projected Principal 

Shape Edge Distribution description (EPPSED) 

 

Figure 3.1 The schematic structure of the GSPEED descriptor 

3.2 General region-based global features 
As I highlighted in the Introduction, moments and general statistical features derived 

from moments are frequently used descriptors in shape and pattern recognition. A series of 

moments express the properties of a shape from basic features to details; however, moments 

of higher orders are more vulnerable to noise and variances in shape. Thus, in vision 

applications, where patterns belonging to the same class may vary due to camera position or 

segmentation, using higher-order moments is less effective.  

The header part of the proposed description aims to depict the shape in the most 

compressed and expressive way. That kind of combinations are searched that are 

perceptually linear but may be calculated by nonlinear operations from easily measurable 

operands. Eccentricity and area ratio represents the basic outline of the shape however, they 

are only suitable to use as primary features at the first phase of the classification in filtering 

obviously false matches.[65] Besides they are simple scalars encompassing understandable 
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and most characterizing information for a human. The smaller the eccentricity is, the closer 

is the shape to a circle, while shape with eccentricity value of one is a line. The area ratio is 

the ratio of the area occupied by the shape and the area of the minimal rectangle covering 

the shape.  

 

Figure 3.2. Vertical and horizontal histograms of a shape 

Using more moments would enable us to describe the shape in more detail, but we would 

lose the general recognition ability. Thus, I used the first four moments: mean, variance, 

skewness, and kurtosis. For the sake of simplicity but not losing dimensional information, 

the moments are computed from the histograms of the shape (Figure 3.2). This solution 

reduces computational complexity compared to the two-dimensional moment calculation 

and provides advantages when the descriptor is computed on VLSI architecture.  

 

Figure 3.3. The distributions of the eccentricity and the area ratio on the Hungarian Forint 

Banknote pattern dataset (for details see Section 5.). Classes 1-9 represent different patterns from 

banknotes, and other irrelevant shapes are denoted as class 0. 
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Figure 3.4 The distributions of the vertical and horizontal moments on the Hungarian Forint 

Banknote pattern dataset (for details see Section 5.). Classes 1-9 represent different patterns from 

banknotes, and other irrelevant shapes are denoted as class 0. The figure shows that these values 

do not contain enough discriminative power to classify the patches but provide a good guide to filter 

and reject obviously different shapes. 

Figures 3.3 and 3.4 show the distribution of the global features of the banknote portrait 

set. The features do not represent enough discriminative power to make accurate 

classification but are feasible to filter out obviously different templates. 

3.3 The Extended Projected Principal Shape Edge 
Distribution (EPPSED) 

The core of the contour-based edge description is based on the principle used by the 

PPED presented in Section 1.3.5. The edge values are detected in four directions; principal 

edges are selected and then projected and concatenated; the result for one shape is a 64-

element feature vector. The essential difference between the methods is in selecting the 

object, calculating the thresholds and the maxima of the four edge maps, and ensuring scale 

and rotation invariance. 

3.3.1 Thresholding 

An essential difference between the EPPSED and the PPED lies in the thresholding 

method and in choosing the maximal edge value. The aim is to design a cross-architecture 
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algorithm, where architecture-dependent computing does not influence the output 

significantly. 

The goal of thresholding in the PPED algorithm family is to highlight principal edges 

values and hide less important ones. Global thresholding removes all values from the edge 

maps which are considered to be noise.  

∀𝑖, 𝑗, 𝑑 𝑀̅𝑖,𝑗
𝑑 = 𝑡𝜃𝑔𝑙𝑜𝑏𝑎𝑙(𝑀𝑖,𝑗

𝑑 ) 

where i and j are pixel coordinates, 𝑑 ∈ 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠 = {⃪, ↓, ↙, ↘}, 𝑀𝑖,𝑗
𝑑  is a pixel of 

the raw edge map at the (𝑖, 𝑗)𝑡ℎ position and from the d direction, 𝑀̅𝑖,𝑗
𝑑  is the globally 

thresholded edge map, and 𝑡𝜃𝑔𝑙𝑜𝑏𝑎𝑙(𝑥) is the threshold function with the threshold value 

𝜃𝑔𝑙𝑜𝑏𝑎𝑙. 

Comparative thresholding aims to select the most substantial value amongst the four 

edge maps and to neglect others. 

∀𝑖, 𝑗 𝑀̂𝑖,𝑗 = max
𝑑 ∈𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠

(𝑀̅𝑖,𝑗
𝑑 ) 

∀𝑖, 𝑗, 𝑑 𝑀𝑖,𝑗
𝑑 = 𝑡𝑀̂𝑖,𝑗(𝑀̅𝑖,𝑗

𝑑 ) 

where 𝑀̂𝑖,𝑗 is the maxima of the four edge map values in the (𝑖, 𝑗)𝑡ℎ pixel location.  

As described in the Introduction, the input of a shape recognition task is the shape: a 

binary image or a grayscale image with a binary mask, where the borders, the edges of the 

shapes are detected by the pattern extractor or the segmentation algorithm. Therefore, the 

selection of the principal edges is the task of the preprocessor, not the shape descriptor. From 

another aspect, the differences between neighboring pixel gray-values in a binary image are 

0 or 1 (pixel value 1 for in-shape pixels and 0 for others); consequently, the median value is 

also 0 or 1. Hence using the median of differences as a global threshold is unnecessary. 

I experimented with different threshold values, and I concluded that in case of hard 

thresholding, the best results can be achieved by using a global threshold value of 𝜃𝑔𝑙𝑜𝑏𝑎𝑙 =

2.  
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Figure 3.5, Thresholding functions: a) hard-thresholding, b) soft-thresholding. 

Using hard-thresholding (𝑡ℎ𝑎𝑟𝑑) may result in ambiguous behaviors near the threshold 

value for almost identical edge values; thus I use a soft-thresholding (𝑡𝑠𝑜𝑓𝑡) method with no 

discontinuity (see Figure 3.5). 

𝑡ℎ𝑎𝑟𝑑
𝜃 (𝑥) =  {

0,    𝑖𝑓 𝑥 <  𝜃
𝑥,   𝑖𝑓 𝑥 ≥  𝜃

 

𝑡𝑠𝑜𝑓𝑡
𝜃 (𝑥) =  {

𝑚𝑎𝑥 [0,
𝜃

𝑏
𝑥 + (1 −

𝜃

𝑏
)] ,     𝑖𝑓 𝑥 <  𝜃 

𝑥,                                               𝑖𝑓 𝑥 ≥  𝜃
 

where 𝜃 is the threshold value or the maximal edge value and b is the tolerance bound. 

The width of the linear cutoff a can be set as a fixed value or as a portion of the 

threshold value θ. The advantage of having a fixed cutoff width is that the global threshold 

is also fixed, and the same difference is tolerated linearly under the threshold values. 

However, proportional cutoff width 𝑏 = 𝑙 ∙ 𝜃 provides the same steepness for every 

threshold. Note that 𝑙 = 1 corresponds to an identical function in all cases, and for fixed 

cutoff width 𝑏 = 2 corresponds to an identical function for the global thresholding. 
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Figure 3.6. The performance of the classification depending on the thresholding. (a) shows results 

for fixed cutoff width, (b) for relative cutoff width. The first column marked as “hard-th” stands 

for the results reached with hard-thresholding. 

Fixed cutoff width 

Since the global threshold is set to 2, the fixed cutoff was tested between (0, 2). Results 

are summarized in Figure 3.6.a. Results show that employing soft-thresholding does not 

cause a decrease in the classification characteristics, except for the recall on a small interval 

that can be interpreted as noise. In my simulations, the F-measure value increases to 99.74% 

with a fixed cutoff width of a = 2, compared to 99.63 achieved by the hard-thresholding 

algorithm. For b = 2 both the precision and the recall increases significantly. 

Relative cutoff width 

I tested the global classification performance depending on the relative cutoff ratio l 

between (0, 1), where 𝑏 = 𝑙 ∙ 𝜃. Results are summarized in Figure 3.6.b. Similarly to the 
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previous results, a narrow cutoff width does not cause any change neither in the precision 

and in the recall. Except for the precision on a small interval, the classification results do not 

decrease compared to the hard-thresholding. The best F-score value of 99:74% was achieved 

with cutoff ratio l = 0.9, where the soft-thresholding outperforms the hard-thresholding in 

the recall and the precision as well. 

3.3.2 Normalization 

|One significant deficiency of the PPED image descriptor is that it is not invariant with 

respect to rotation. Rotation invariance can be ensured at various phases of feature-based 

object recognition. One approach generates rotation-invariant feature vector applying 

adequate mathematical transformation while generation the description. Another possibility 

is to solve the rotation-invariance in classification technique whether by using rotationally 

redundant training set or by applying a preprocessing on the feature vector [119][120][121]. 

Since the PPED algorithmically is not rotation-invariant, only angular normalization or 

employing a rotationally redundant template bank may provide invariance. The latter 

solution can easily result in a vast and complicated database. To achieve rotation invariance, 

I chose to detect a characteristic angle and normalize the shape angularly. The orientation of 

the shape (defined as the declination of the major axis of the ellipse having the same second 

moment) serves well as a characteristic angle since it is consistent in the sense that orientation 

values of similar shapes are close to each other. 

 

Figure 3.7. Angular normalization by the orientation of shapes having eccentricity near 0. The 

almost identical shapes on (a) and (b) are rotated to (c) and (d) respectively.  
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Orientation is a value within (−𝜋, 𝜋); thus, rotation by the orientation provides 

invariance to rotation by 𝑘 ∗ 𝜋, resulting in two distinct possibilities. To make the rotation 

unambiguous, the shape is rotated by 𝜋 if the center of mass of the shape is located on the 

right side. Note that mathematical orientation may significantly deviate from the orientation 

value estimated by a human observer. 

The orientation provides ambiguous results if the eccentricity is close to 0, thus for 

rounded shapes. In these cases, a slight difference in the shape can result in a significant 

difference in the orientation, as shown in Figure 3.7.  

Another angular basis could be considered as well. Most of the graphic patches have 

a natural, human-estimated orientation; however, that is not a computable value in most 

cases. Another characteristic angle is the declination of the line connecting the centroid of 

the shape with the farthest point of the shape, i.e., the maxima of the shape signature defined 

as the distance from the centroid to the edge points depending on the angle. [122]. This 

method provides ambiguous results for the rounded object as well, and its more sensitive to 

noise compared to the mathematical orientation. In [28], several other orientation descriptors 

are presented. 

To achieve scale-invariant shape analysis, the shape is normalized to fit in a window 

sized 64 × 64 pixels, preserving the original aspect ratio. It has been shown earlier that using 

larger sizes is unnecessary. Due to angular normalization, the shape entirely fills the 

horizontal space; thus positioning is limited only to the vertical alignment, where the shape 

is moved to have the same distance between the borders and the square box on the two sides. 

 

Figure 3.8. Construction of the EPPSED feature vector. Edges are detected in four directions; then 

thresholding and maxima selection are applied; finally, projections are concatenated and 

normalized. 
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I summarized the construction of the EPPSED feature vector by Pseudocode 1 and 

Figure 3.8. 

PSEUDOCODE 1 

EV(→) = 























−−−−−

00000
11111

00000
11111
00000

      EV(↘) = 























−

−−

−

−

01000
10110
01010
01101
00010

 

 
EV(↑) = rot90(EV(→))        EV(↗) = rot90(EV(↘)) 

 
function EPPSED(S) 

 N := 64 

 % preprocessing 

 rotate(S, -orientation(S))  

 resize(S, [N, N], fit) 

 if horizontal_mass_center(S) > N/2 then 

  rotate(S, 180) 

 end 

 

 directions := [↑, ↗, →, ↘] 

 % generate edge maps (EM) for every direction 

 for dir in directions 

  EM(dir) := convolution2d(S, EV(dir)) 

 end 

 % for every location threshold the edge maps 

 for i in [1..N], j in [1..N] 

  for dir in directions 

   𝜃 := maxdir2 in directions(EP(dir2)[i, j]) 

   EMT(dir) := tsoft(EM(dir), 𝜃) 

  end 

 end 

 

 % project thresholded edge maps and scale them 

 for dir in directions 

  PR(dir) := histogram(EMT(dir)) 

  scale(PR(dir), N/4) 

 end 

 return EPPSED := [PR(↑), PR(→), PR(↗), PR(↘)] 

end 
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Figure 3.9 Vectors a) and b) differ only in values highlighted in red color, while vectors on c) and 

d) differ in all dimensions. Difference between a) and b) is typical for topological features, where a 

small difference in the input results in an offset in the feature vectors. Manhattan and Euclidean 

distance between pairs a)-b) and c)-d) are the same, but the topological distances are smaller for 

the first pair. 

3.4 Metric for the EPPSED space 
Metric defined on feature set plays an important role in classification, an inappropriate 

metric selection may significantly reduce classification accuracy. I present a new metric 

designed for topological and chronological features, and globally for that kind of vectors, 

where a small difference in the input results in an offset between close dimensions of the 

feature vector. In these cases, a local difference represents a lower global error if a difference 

with opposite sign is also present in close dimensions (see Figure 3.9). 

For the vector class described above, I developed a new metric group. Algorithms are 

based on the standard Euclidean metric, but local errors are summed up to the global error. 

The essence of the developed metrics is that a difference in one dimension (thus in case of 

the shape description a pixel location) generates an error offset that is inversely signed and 

declines exponentially with respect to the distance of the location. The local error is the 

minima of the standard difference and the difference corrected by the offset. Finally, adjusted 
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error values are summed up to the global error. The difference between developed algorithms 

is in the way of generating and cumulating the error offset. Pseudo codes of the algorithms 

are shown in Pseudocode 2.  

PSEUDOCODE 2. TOPOLOGICAL METRICS 

 

Code 1. Pseudo codes of topological metric computing algorithms. Input vectors are fv1 and fv2, 

gd stands for global distance, d for local distance in one dimension, e for offset distance in the 

dimension, err is the local error. off denotes local offset, l is the fading constant. Note that 

computed distances are signed. 

I tested the developed metrics and compared to the Euclidean metric, and results are 

shown in Table 3.1. The tests showed that no significant change appears in the values of the 

precision. The higher recall values could reach the simple fading and the reset difference 

gd = 0; 

off = 0; 

for i=1:n 

    d = fv1(i) - fv2(i); 

    e = d - off; 

    if abs(e) <= abs(d) 

        err = e; 

        off = -e; 

    else 

        err = d; 

        off = l*off; 

    end 

    gd = gd + err^2; 

end 

return sqrt(gd);  
  

a) reset error 

gd = 0; 

off = 0; 

for i=1:n 

    d = fv1(i) - fv2(i); 

    e = off - d; 

    off = l*e; 

    gd = gd + err^2; 

end 

return sqrt(gd);  
  

b) simple fading 
  

gd = 0; 

off = 0; 

for i=1:n 

    d = fv1(i) - fv2(i); 

    e = d - off; 

    if abs(e) <= abs(d) 

        err = e; 

        off = -d; 

    else 

        err = d; 

        off = l*off – d; 

    end 

    gd = gd + err^2; 

end 

return sqrt(gd);   
  
d) reset difference 
 

gd = 0; 

off = 0; 

for i=1:n 

    d = fv1(i) - fv2(i); 

    e = d - off; 

    if abs(e) <= abs(d) 

        err = e; 

        off = -e; 

    else 

        err = d; 

        if abs(d) <= abs(l*off) 

           off = - d; 

        else 

           off = l*off; 

        end 

    end 

    gd = gd + err^2; 

end 

return sqrt(gd);   
  

c) conditional reset 
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algorithms. Since the simple fading algorithm is more straightforward than the reset 

difference, I prefer the usage of the first one. 

I performed several tests with different fading constants, and the best accuracies were 

achieved with fading constant l=0.3. 

TABLE 3.1. PERFORMANCE OF TOPOLOGICAL DISTANCE METRICS 

 
Test set A Test set B” Test set D Test set E 

precision recall precision recall precision recall precision recall 

euclides 99.88% 61.11% 100% 66.38% 99.7% 58.26% 99.75% 90.72% 

reset error 99.88% 60.83% 100% 66.03% 99.59% 57.98% 99.95% 92.37% 

simple 
fading 99.78% 62.41% 100% 66.97% 99.71% 58.89% 99.95% 92.94% 

reset 
difference 99.88% 61.59% 100% 66.88% 99.6% 59.23% 99.89% 92.87% 

conditional 
reset 99.88% 60.83% 100% 66.03% 99.59% 57.98% 99.95% 92.37% 

 

The deficiency of methods shown above is that they are not symmetric. My measures 

showed that global results are not influenced by reversing the order of computation, but 

minimal differences appeared in distances measured in reversed order. 
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4 The Adaptive Limited Nearest Neighborhood 
classification in a two-level classification 

Adapted to the structure of the GSPPED descriptor I propose a two-step 

classification method that adapts to the compound characteristics of the GSPPED descriptor, 

but it can be used in general as well. 

Nearest neighborhood classifiers are typical when using PPED-type descriptors. The 

GSPPED, as a compound descriptor, enables us to use a special comparison method, since 

the parts of the vector represent different features. Compound classifiers are frequently used 

techniques to handle separate parts, but generally, they do not exploit the meaning of each 

part of the vector. 

I suggest a two-step classification scheme that allows using the different parts of the 

descriptor individually. Shape classification is performed by comparison of the descriptor to 

labeled points in the feature space denoted as templates. In the first step global and statistical 

features are compared, then, if a satisfactory match is achieved, the final decision is 

computed from the differences between the contour features.  

I call the set of templates used for comparison as the representative set, which is a 

subset of the training set. Every template in the training set is labeled by its semantic class. 

Depending on the task, several classes are chosen as relevant ones, whereas every input 

vector outside of these is considered non-relevant (non-relevant classes). Although the non-

relevant subset typically comprises many classes, it can be handled as a single class due to 

the lack of need to differentiate among them. 

4.1 Filtering 
The first phase of the decision selects candidates from the representative set for the 

second phase by rejecting obviously dissimilar template vectors. An input descriptor matches 

the labeled template vector if the number of elements with a difference higher than the 

threshold is under a certain limit. 

𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛(𝑓, 𝑡) =  {  
 𝑚𝑎𝑡𝑐ℎ, 𝑖𝑓 𝐸(𝑓, 𝑡) ≤ 𝑡ℎ𝐺

𝑟𝑒𝑗𝑒𝑐𝑡, 𝑖𝑓 𝐸(𝑓, 𝑡) > 𝑡ℎ𝐺
 

 

𝐸(𝑓, 𝑡) = ∑ 𝑒𝑖(𝑓, 𝑡)

𝑖∈𝑓𝑖𝑙𝑡𝑒𝑟𝑠

 

 

𝑒𝑖(𝑓, 𝑡) = {  
1   𝑖𝑓 |𝑓𝑖 − 𝑡𝑖| ≤ 𝑡ℎ𝑖

0   𝑖𝑓 |𝑓𝑖 − 𝑡𝑖| > 𝑡ℎ𝑖
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f is the input shape feature, t is the template vector, thG is the global filtering threshold, and 

thi is the threshold for the ith feature used for filtering. 

Other definition of 𝑒𝑖(𝑓, 𝑡) can also be considered with continuous error values, for 

the sake of simplicity and simple computation I chose a discrete function. The threshold 

values thG and th were determined based on preliminary measurements and genetic algorithm 

results. The fitness value of a filter-vector z was chosen as follows: 

𝑓(𝒛) = ∑ −𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑥, 𝒛)

𝑥 ∈𝑅

 

 

𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝑥, 𝒛) = {

 0    𝑖𝑓 𝐶(𝑥) = 𝐷̃(𝑥, 𝒛)                                                            

 1    𝑖𝑓 𝐶(𝑥) ≠ 𝐷̃(𝑥, 𝒛) 𝑎𝑛𝑑 𝐷̃(𝑥, 𝒛) 𝑖𝑠 𝑛𝑜𝑡 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡     

 𝑃    𝑖𝑓 𝐶(𝑥) ≠ 𝐷̃(𝑥, 𝒛) 𝑎𝑛𝑑 𝐷̃(𝑥, 𝒛) 𝑖𝑠 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡             

 

 
𝐷̃(𝑥, 𝒛) = 𝐷̂𝑅(𝑥) 𝑢𝑠𝑖𝑛𝑔 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 𝒛 

 

𝐶(𝑥) is the class of x, and 𝐷̃(𝑥, 𝒛) is the predicted class of element x from parameter set R 

using the filter vector z. The false-positive penalty value P represents the priority between 

the precision and recall. If P>1 the precision is prioritized, and if P<1 the recall is 

maximized. 

The resulting filter values are denoted z*, and were computed using a genetic 

algorithm, with fitness function defined above with P=50, in 200 epochs and population size 

of 100 individuals, on parametrization set P and test set T, and compared to other set tests as 

well. The details of the shape image sets are described in Section 5. 

 

Figure 4.1. Classification precision (left) and recall (right), tested on three different test sets A, B, 

and C, depending on the usage of filtering phase.  

99,04%

99,69%

99,88%

99,78%

100,00% 99,89%

98,0%

98,5%

99,0%

99,5%

100,0%

Test set A Test set B Test set C

precision
Without filtering With filtering

44,43%
38,46% 36,20%

62,41%

66,97%

55,34%

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

Test set A Test set B Test set C

recall
Without filtering With filtering

DOI:10.15774/PPKE.ITK.2019.005



 

53 
 

However, filtering not only results in a slight increase in precision, but I could 

achieve significantly higher recall rate (see Figure 4.1). 

The explanation of the anomaly is the consequence of the second phase of the 

classification explained in Section 4.2. The Adaptive Limited Nearest Neighborhood model 

learns the limits of acceptance also on filtered results and maximizes the classification 

precision. Assuming that filtering is based on a data orthogonal to the data used in the second 

phase, it might filter out templates that in the second phase would determine a lower 

acceptance radius for some instance. To verify the hypothesis, the frequency of acceptance 

radius lengths was measured in the function of the usage of filtering on the same 

representative set. 

 

Figure 4.2. The frequency of the acceptance radiuses in case of filtering (blue dotted) and without 

filtering (red lined). Filtering allows the acceptance radiuses to take higher values in average, but 

even zero (if no other comparable elements remain after filtering) and overly high values also (if 

only a few and distant templates remain to compare) 

As it is seen in Figure 4.2, filtering allows higher acceptance radii resulting in better 

recall in the final classification. The mean of the acceptance radii is 113.4 if filtering is 

applied. Without filtering the mean is reduced to 75.35, and only a few representative 

instances have higher radius than 110. (Radii shown in this paragraph are distances in the 

EPPSED feature space. Typically, the values of each dimension are in the interval from 0 to 

200.) 
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I also measured the speed of classification that depends on the number of 

comparisons to the template vectors. Filtering reduces the average lookup time by 85-95%. 

TABLE 4.1. RECALL DEPENDING ON THE FILTERING. 

 z* std std/2 std*2 no filtering 
Test set A 62,41% 50,82% 54,23% 47,61% 44,43% 
Test set B 66,97% 60,29% 62,72% 59,02% 38,46% 
Test set C 55,34% 48,91% 47,66% 47,47% 36,20% 

 

Filter values were computed to fit one actual shape set; thus these values may not be suitable 

for other sets. Since generated values are in the same order of magnitude with the standard 

deviation of the measured moments on the training set, I tested the standard deviation (as 

well as the half and the double of the standard deviation) on the same test sets. Results are 

summarized in Table 4.1, where z* denotes the filter vector obtained from the genetic 

algorithm, std denotes the standard deviation of the relevant classes. Precision does not 

depend on the filter values; recall is significantly lower using the standard deviation 

compared to the z*; however they are clearly higher than without filtering. 

4.2 The Adaptive Limited Nearest Neighborhood 
classification 

The second phase of the classification defines the final class of the input employing 

the Limited Nearest Neighborhood classification method. The reason to choose nearest 

neighborhood classifier (NN) is due to its suitability to be implemented on dedicated VLSI 

architecture; it can be easily learned and extended with new knowledge by inserting new 

representative instances. 

As described in the Introduction, an essential property of the nearest neighborhood 

method is that there is always a nearest element to every input vector if no additional 

constraints are specified. This can be a disadvantage in some cases if the distance between 

the closest element and the input is high. 

The inability to reject a hypothesis results in a type I error when remote parts of the 

input space are not covered with training instances. To make the classifier able to maximize 

the precision, I propose an Adaptive Limited Nearest Neighborhood method (AL-NN) that 

allows the rejection of irrelevant inputs Y by defining an acceptance radius individually for 

all training instances. (𝐶(𝑌) ∈ 𝒞𝑁𝑅𝑒𝑙, where 𝒞𝑁𝑅𝑒𝑙 is the set of irrelevant classes and 𝒞𝑅𝑒𝑙 is 

the set of relevant classes.) By setting an upper bound for the distance of an input and a 

representative instance, we can limit the set of inputs that may get classified to the 
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corresponding class to a hypersphere in the feature space, that we call the acceptance region 

of the instance. 

Acceptance regions of different shapes can also be considered. If the dimensions can 

be typically regarded independent, and the noise is not significant, the usage of a hypercube 

as an acceptance region is justifiable. Employing a hyper-ellipsoid allows different limits in 

different dimensions, but it is effective only in case of low dimensional spaces. Since we 

work with a 64 dimensional feature vector, the degree of freedom would be impractically 

high. Additionally, in the proposed edge-based shape description, dimensions are typically 

equivalent as the amount and distribution of noise is the same in all dimensions, dimensions 

are weakly dependent of each other, and we expect a similar tolerance in all dimensions; thus 

we opted to use hyperspheres as acceptance regions. 

Using the same radius for all representative instances would be computationally 

easier, but it would result in a disproportionately large representative set to represent in-class 

regions, and also boundary regions with the same radius. Furthermore, irregular boundaries 

might increase the inefficiency of the cover if the radius is determined based on the radius 

of the highest curvature. 

4.3 Learning 
The acceptance radius indicates the extension of the class, the region in the feature 

space where the characteristics of the instance are valid. The clues in determining the 

acceptance radius as a boundary measure for a representative instance are the closest known 

instances that belong to another class and the instance with the maximal distance that belongs 

to the same class. In case of a relevant sample, it is worthwhile to differentiate relevant 

instances from another classes and irrelevant instances to make the representation more 

flexible. 

I define the set of all irrelevant examples (N), and for every example, I define the set 

of other instances of the same class (𝑆𝑃(𝑥)), and the set of instances of all other relevant 

classes (𝑂𝑃(𝑥)): 

𝑂𝑃(𝑥) = {𝑦 | 𝑦 ∈ 𝑅, 𝐶(𝑦) ∈ 𝒞𝑅𝑒𝑙 , 𝐶(𝑦) ≠ 𝐶(𝑥)} 

𝑁 = {𝑧 | 𝑧 ∈ 𝑅, 𝐶(𝑧) ∈ 𝒞𝑁𝑅𝑒𝑙} 

𝑆𝑃(𝑥) = {𝑤 | 𝑤 ∈ 𝑅, 𝐶(𝑤) = 𝐶(𝑥)} 
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Figure 4.3. Definition of the acceptance range. 𝒙𝟎 and 𝒚𝟎 represent relevant elements from 

different classes, 𝒛𝟎 the closest irrelevant element. Acceptance threshold for 𝒚𝟎 (𝒓(𝒚𝟎)) is set to the 

half of the distance to the closest irrelevant element (𝒓𝑵
𝒎𝒊𝒏(𝒚𝟎)). Acceptance threshold for 𝒙𝟎 

(𝒓(𝒙𝟎)) is chosen as the distance to the closest element of another class (𝒓𝑶𝑷
𝒎𝒊𝒏(𝒙𝟎)). Since 𝒛𝟎 is an 

irrelevant template, it is not included in the representative set, thus no acceptance region is defined 

for it. 

To be able to handle the three cases in a unified manner a partial acceptance region 

function is introduced (𝑟𝐴
𝜆(𝑥)), that expresses the threshold for a given set A and a given 

threshold function λ: 

𝑟𝐴
𝜆(𝑥) =  {

 λ({ 𝑑(𝑥, 𝑣)  |  𝑣 ∈ 𝐴(𝑥)})

 ∞                                      

       

𝑖𝑓 𝐴(𝑥) ≠  ∅

𝑖𝑓 𝐴(𝑥) =  ∅
 

The final acceptance radius will be the smallest of the partial acceptance radiuses. An 

example x from the training set R, from the class 𝐶(𝑥) ∈ 𝒞𝑅𝑒𝑙 will get an acceptance radius 

𝑟(𝑥) (Figure 4.3): 

𝑟(𝑥) = 𝜈 · min (𝜂𝑂𝑃 · 𝑟𝑂𝑃
𝑚𝑖𝑛(𝑥), 𝜂𝑁 ·  𝑟𝑁

𝑚𝑖𝑛(𝑥), 𝜂𝑆𝑃 ·  𝑟𝑆𝑃
𝑚𝑎𝑥(𝑥)) 

where 𝜈 serves as a shared vigilance parameter, which affects how cautious do we want to 

be, and can be used to move on the precision-recall trade-off curve. 

In the experiments I used 𝜂𝑂𝑃 = 𝜂𝑆𝑃 = 1, because this safely excludes other relevant 

samples from the acceptance region but still tries to include as many samples from its own 

class as possible. For the irrelevant classes, I have set the threshold parameter 𝜂𝑁 more 

conservatively to 0.5, so as to enable the omission of the irrelevant elements from the 

representative set, as this choice does not allow acceptance regions to intersect with 

acceptance regions of irrelevant samples. Thus if an input is not within the acceptance region 

of any relevant elements, then it is refused as being a non-relevant input. With these 
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parameter values, setting 𝜈 = 1 results in a strong preference for a high precision over a high 

recall rate. In this thesis, where it is not specified, I used 𝜈 = 1. 

Finding the optimal representation set in general is hard; hence it is important that 

slight overrepresentations do not degrade the recall rate and thus the generalization capability 

of the model does not change considerably. This is satisfied by the formula proposed above, 

as it does not let the radius of the acceptance region decrease if a new instance of the same 

class is added to the representative set. 

4.4 Representative set optimization 
Another major disadvantage of the Nearest Neighborhood classification is that the 

manually built training/representative set might be disproportionately large, making the 

classification very slow. 

The representative set can be optimized by eliminating unnecessary points so that the 

resubstitution results do not change significantly on the training set. Omitting points may 

lead to a small decrease of the cover, but most of the omissions can be regarded as noise 

filtering, thus making the model eventually more robust. 

Selection of unnecessary points can be carried out based on the analysis of the 

representative set, by minimizing the set size, while preserving approximately the same 

cover. A template Y is unnecessary (U denotes the set of unnecessary elements) from the 

aspect of classification if the classification result remains the same for all the points of the 

space (i.e., for an arbitrary input) if Y is removed from the representative set: 

𝑈 = {𝒙 ∈ 𝐹: 𝐷𝑅(𝒙) = 𝐷𝑅 \{𝒀}(𝒙)} 

where F is the feature space, and 𝐷𝑅(𝒙) is the decision for feature vector x using the model 

learnt by representative set R. 

In the Nearest Neighborhood model, the class is determined by the nearest labeled 

point. A representative instance Y is unnecessary if, for every point in the feature space that 

is classified to Y as the closest template point, the second closest template point belongs to 

the same class as Y. 

𝑌 ∈ 𝑈 

↔ 

∀𝒙 ∈ 𝑭 ∃𝒁 ∈ 𝑹\{𝒀} ∀𝒘 ∈ 𝑹\{𝒀}:  

𝑑(𝒙, 𝒀) ≤ 𝑑(𝒙, 𝒘)  →  𝑑(𝒙, 𝒁) ≤ 𝑑(𝒙, 𝒘) 

where 𝑑(𝒙, 𝒚) is the distance between points x and y. 
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The boundary surface B between classes is the set of points that are equally distant 

from support vectors of different classes. A template point Y is unnecessary if it does not 

influence the boundary surfaces. In an n-dimensional feature space such a boundary surface 

is n-1 dimensional, and apart from the singular cases when points lie in one hyperplane, 

complete shadowing of Y can be achieved with at least n necessary points of the same class. 

Therefore, if the number of representative points of a class and the dimension of the feature 

space is the same order of magnitude, only a negligible portion of the representative set can 

be unnecessary.  

In the Adaptive Limited Nearest Neighborhood method proposed in Section 4.3, 

acceptance regions of each representative instance provide a reasonable estimate of their 

contribution to the global cover. (see Figure 4.4).  

 

Figure 4.4 Representative set optimization in the AL-NN model. a) Unnecessary elements of a 

representative set in feature space can hardly be selected without additional information. b) 

Acceptance regions outline the covered parts of the feature space and redundantly represented 

regions as well. c) After optimization, the recall may reduce. 

I propose an iterative optimization algorithm for the Adaptive Limited Nearest 

Neighborhood classification that reduces the mutual cover of the representative set elements. 

As initialization the points of the representative set are ordered in a queue P. The set S is 

initialized as empty: 

𝑃 ≔ (𝒙𝟏, 𝒙𝟐, … 𝒙𝒏), 

 𝑆 ≔ ∅ 

The first element of P is taken out from P and moved to S, and all other instances 

are removed from P that are covered by it.  

𝑝 ≔ 𝑃[1] 

𝑆 ≔ 𝑆 ∪ {𝑝} 

𝑟𝑒𝑚𝑜𝑣𝑒 {𝑥 ∈ 𝑃 | 𝐶(𝑝, 𝑥) = 1} 𝑓𝑟𝑜𝑚 𝑃 

a) b) c) 
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The iteration ends when P is empty, and the S will be the reduced representative set. 

Note that P is an ordered set; thus different permutations will result in different performance. 

In the next paragraph, I will show three permutations and the corresponding performance 

results. 

• Ordering based on the number of representative covers 

𝑃 ≔ (𝒙𝟏, 𝒙𝟐, … 𝒙𝒏), ∀𝑥𝑖, 𝑥𝑗  𝑖 < 𝑗 → 𝑐(𝒙𝒊) < 𝑐(𝒙𝒋) 

𝐻𝑚(𝒙𝒊) = ∑ ℎ𝑚(𝒙𝒊, 𝒙𝒋)

𝑛

𝑗=1
𝑗≠𝑖

 

ℎ𝑚(𝑥𝑖, 𝑥𝑗) = {
1, 𝑖𝑓 𝑑(𝒙𝒊, 𝒙𝒋) ≤ 𝑚 ∙ 𝑟(𝒙𝒊)

0, 𝑖𝑓 𝑑(𝒙𝒊, 𝒙𝒋) > 𝑚 ∙ 𝑟(𝒙𝒊)
 

𝑟(𝒙𝒊) is the acceptance radius of 𝒙𝒊, and m is the cutoff ratio. 

• Ordering based on the acceptance radius 

𝑃 ≔ (𝒙𝟏, 𝒙𝟐, … 𝒙𝒏), ∀𝑥𝑖, 𝑥𝑗  𝑖 < 𝑗 → 𝑟(𝒙𝒊) > 𝑟(𝒙𝒋) 

• Ordering based on covered sum-of-hypersphere-intersection-ratios 

𝑃 ≔ (𝒙𝟏, 𝒙𝟐, … 𝒙𝒏), ∀𝑥𝑖, 𝑥𝑗  𝑖 < 𝑗 → 𝑣(𝒙𝒊) < 𝑣(𝒙𝒋) 

𝑣(𝒙𝒊) = ∑ 𝑉𝑟(𝒙𝒊, 𝒙𝒋)

𝑛

𝑗=1
𝑗≠𝑖

 

𝑉𝑟(𝑥𝑖 , 𝑥𝑗) =
𝑉(𝐺(𝑥𝑖) ∩ 𝐺(𝑥𝑗))

𝑉(𝐺(𝑥𝑖))
 

𝑉(𝐺) is the volume of hyperbody G, 

𝐺(𝑥) is a hypersphere with centroid x and radius of 𝑇(𝒙𝒊) 
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Figure 4.5 Recall and the size of the representative set in the function of the cutoff size for the 

ordering based on the representative cover 

 

Figure 4.6 Recall and the size of the representative set in the function of the cutoff size for the 

ordering based on the acceptance ratio 
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Figure 4.7 Recall and the size of the representative set in the function of the cutoff size for the 

ordering based on the sum-of-hypersphere-intersection-ratios 

I tested the optimization algorithm from cutoff ratio m=1 to m=0, where m=1 stands 

for deleting any covered representative element, and m=0 stands for the unpruned model 

where even identical elements may remain in the set.  

Results show that pruning based on representative cover (Figure 4.5) and the one 

based on the sum-of-hypersphere-intersection-ratios (Figure 4.6) overperform the pruning 

based on the acceptance radius (Figure 4.7), and since computing volumes of the 

hyperspheres and their intersection is orders of magnitude more complex than to run a single 

classification, I suggest to use the first one. 

In more details, in the case of pruning based on the representative cover, from m=1 to 

m=0.5 the recall increases from 0.5 in average to 0.6 nearly linearly, and from m=0.6 to 0 

only a small increase can be noticed. Almost parallel to that the size of the reduced 

representative set increases slightly to m=0.4 and after a significant increase saturates after 

m=0.2. 
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4.5 Extending the representative set 
Adaptive extension of a learned AL-NN model can be carried out efficiently by 

inserting a new point to the representative set and setting the acceptance radius of the inserted 

element based on the original training set. The extension can bring higher recall rates by 

covering previously uncovered regions of the feature space. 

The primary challenge in extending the representative set is to select new instances 

to be inserted adequately. On the one hand, to cover new areas, a candidate has to be far from 

the existing representative elements. On the other hand, an automatic update should only 

insert elements that are classified correctly with reasonably high confidence, that is, ones 

close to a labeled point. If both conditions hold, I declare the insertion of the new instance to 

be safe. 

As I showed in Section 4.2, the acceptance regions clearly bound the coverage in the 

representative set; thus both conditions can be formalized based on acceptance thresholds. 

The real challenge in selecting new instances is that the two conditions are contradictory. To 

resolve the contradiction that the distance of the candidate sample should be low (for high 

confidence) and high (to gain significant coverage) at the same time, we rely on temporal 

information. 

 

Figure 4.8 Acceptance region of a representative instance in the feature set 

I developed an automatic extension algorithm for the AL-NN model, which uses 

temporal information in the update method, if available. A decision is defined to be safe if a 

test set element is closer to the representative example than the half of its acceptance 

threshold. 

𝑑(𝒕, 𝒄) ≤ 𝑚𝑠𝑟(𝒕) 
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 The choice of the value ms=0.5 was based on the quick decision (presented in 

Section 4.2) threshold. 

 An element is chosen as a candidate for insertion if it is at the edge of the acceptance 

region. 

𝑑(𝒕, 𝒄) ≥ 𝑚𝑠𝑟(𝒕) 

A candidate is only inserted to the representative set if neighboring frames contain 

patches that were classified in the same class with a safe decision. (Figure 4.8) 

TABLE 4.2. RESULTS OF THE ONLINE LEARNING ALGORITHM BASED ON THE 

NEIGHBORING FRAMES 

mc # of added instances # of new recognized instances 

0.5 91 35 

0.75 24 15 

0.9 8 15 

0.95 4 6 

 

The radius of neighboring frames is chosen based on the processing framerate and 

the median translation of the image. In the shape set I used, the total processing time is 

between 0.1 to 0.3 second, while the images were taken by a cell phone camera moving 

slightly upon a table; thus the frame radius was set to involve only directly neighboring 

frames. 

I tested the extension with mc=0.5 to mc=0.95. I added new elements from three 

different test sets (test sets A, B, and C) and measured the improvement on an independent 

test set (test set D). Results are summarized in Table 4.2. Details of the test sets are described 

in Section 5. 

Results show that the most valuable new instances are the distant ones, with 𝑚𝑐 ≤

0.9. However, candidate instances that neighbor a safe instance is very rare. 
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5 Experimental results 

The GSPEED and the multi-level classifier including the Adaptive Limited Nearest 

Neighborhood classifier presented in this thesis have been tested in the framework of the 

Bionic Eyeglass, on shape patches obtained from Hungarian Forint banknotes. 

 

Figure 5.1 Fragment of the test sets. In the row a) are shapes from irrelevant classes, rows b)-d) 

show relevant shapes of banknotes, the source banknotes are shown next to the shape images. 

The five shape datasets contain several thousands of shape images, including 

irrelevant inputs that do not belong to any class. The GSPPED was extracted in an average 

of 29.5 milliseconds on a standard computer (Core2 Quad CPU @ 2.66 GHz, 4 GB memory). 

The properties of the test sets are indicated in Table 5.1. 
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TABLE 5.1. TRAINING AND TEST SETS 

database name number of 
instances  

number 
of 

classes 
source 

Test set A 7008  9 live test with visually impaired 

Test set B 6482  9 live test with visually impaired 

Test set C 6171  9 live test with visually impaired 

Test set D 13895  9 live test with visually impaired 

Test set E 13113  9 live test in the laboratory 

Test set F 1500  17 live test with visually impaired 
and generated abstract patches 

Parametrization 
set P 1500  17 live test with visually impaired 

and generated abstract patches 
 

The representative set was produced from a training set; the initial representative set 

contained 792 shapes. Shapes in the test sets represent characteristic graphical patches 

(portraits and drawings) extracted from banknotes, sets F and P contained digits and noised 

abstract patches as well. All datasets included non-relevant patches also, consisting of 

shadows, joined patterns, and other noise from the background. The average lookup time 

was 1.8 ms. Examples of input images are shown in Figure 5.1. Test results are summarized 

in Table 5.2. 

TABLE 5.2. EXPERIMENTAL RESULTS OF THE SHAPE RECOGNITION 

database name Fβ Precision Recall 

Test set A 99,63% 99,78% 62,41% 

Test set B 99,88% 100% 66,97% 

Test set C 99,69% 99,89% 55,34% 

Test set D 99,54% 99,71% 58,89% 

Test set E 99,93% 99,95% 92,94% 
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5.1 A comparative test of the AL-NN classifier  
Results achieved on test sets A–D (excluding test set E) were compared with other 

shape descriptions (Complex Zernike Moments and Generic Fourier Descriptor) and 

classification methods. To allow for different weights for prioritization of precision over 

recall, AutoMLP, FFNN, and SVM models were trained using a cost matrix with false-

positive to false-negative penalty rates ranging from 5 to 100; in the case of the AL-NN, I 

changed the vigilance parameter from 1.0 to 1.25, with an appropriate adjustment of the filter 

limit vector 𝒛 = 𝜈2𝒛∗. 

First I compared the AL-NN classifier to a feed-forward neural network, an 

AutoMLP, a KNN model, and a SVM on the shape feature vectors obtained from the 

GSPPED. 

 

Figure 5.2. Precision and recall of the shape classification by FFNN, AutoMLP and the presented 

Adaptive-Limited Nearest Neighborhood (AL-NN) classification. The source data is constructed by 

the GSPPED shape descriptor. 

The best results were reached by the neural networks, FFNN and AutoMLP. I tested 

the FFNN containing 2 to 5 hidden layers and trained from 100 to 1000 epochs. AutoMLP 

was trained for 20 cycles of 10 generations and 5 MLPs per ensemble in the RapidMiner 

environment. The best performance achieved by the models are shown in Figure 5.2. Since 

the SVM (with radial basis function and polynomial kernels) and the KNN (for K from 1 to 

10) models could not achieve precision rate above 90% with any parametrization, they are 

not included in Figure 5.2. 
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5.2 A comparative test of the GSPPED descriptor 
In order to investigate the efficiency of the GSPPED shape descriptor, I compared it 

with the Generic Fourier Descriptor (GFD) and with the Complex Zernike Moments 

Descriptor (CZMD), trained on the same train set, and using the AutoMLP classifier. 

 

Figure 5.3. Precision and recall of the shape classification, comparing the performance of the 

Complex Zernike Moments Descriptor, the Generic Fourier Descriptor, and the GSPPED 

descriptor 

The feature vector of the GFD contained 85 elements with an angular frequency of 

16 and radial frequency of 4. The CZMD contained 121 feature elements with the highest 

order of 20. Results are shown in Figure 5.3. 

The GSPPED and the Complex Zernike Moments Descriptor evidently outperform 

the Generic Fourier Descriptor. When classified by the AutoMLP, the GSPPED slightly 

outperforms the CZMD, however, with high penalty coefficient, the CZMD provides better 

recall. 

I also compared the descriptors based on the McNemar’s test. CZMD and GSPPED 

with AL-NN differ significantly (p = 1.27e-4), and with GSPPED with AL-NN also exceeds 

the performance compared to GFD significantly (p < 1e-15). 
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5.3 Effect of noise 
To measure the sensitivity of the developed shape description and classifier, I 

repeated the test on noisy images and compared the results with the results obtained with the 

Complex Zernike Moments Descriptor and the Generic Fourier Descriptor. Based on our 

datasets I observed that deviations in the extracted shape images do not occur in pixel-level 

additions or removals, but in joining with other blobs or in the removal of some parts of the 

shape (also see Figure 5.1). To model this kind of noise, I added and removed several 

randomly generated blobs to and from the original shape. The total area of the blobs is given 

as a ratio (w) to the shape area. An example of an artificially added and removed noise is 

demonstrated in Figure 5.4. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.4. Example of blob-level shape noise with manipulation ratio w = 0.2. In a) the original 

shape is shown, in c) the additions, in d) removals are highlighted, and the final noisy shape is 

shown in b). 
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Figure 5.5. Classification recall and precision of the GSPPED, the Complex Zernike Moments 

Descriptor, and the Generic Fourier Descriptor, depending on the noise ratio w that represents the 

ratio of the number of manipulated pixels compared to the total area of the shape. The CZMD and 

GFD features were classified by the AutoMLP algorithm, while GSPPED features were classified 

with the AL-NN method. 

In the case of the CZMD and GFD, results show consistent decrease both in recall 

and in precision. The GSPPED provides lower recall on high noise ratio than the other two 

descriptors. However, the precision is significantly higher compared to the CZMD and the 

GFD (Figure 5.5). These results might highlight the nature of the GSPPED and the AL-NN: 

its generalization capability is limited, but still comparable to other methods, at the same 

time it provides outstanding discriminative power. 

5.4 Summary 
The core idea behind the method presented in this thesis is the two-level description 

and classification: For an input shape a low-level, global statistical information is extracted 

to roughly select the set of similar objects and to reject obviously different templates. In the 

second stage local edge information is investigated to find the closest known shape, but with 

the ability to reject the match. The refusal is based on the acceptance radius that is specified 

individually for every item in the representative set according to the properties of the local 

proximity in the feature set. 

Results demonstrate a high precision rate (99.83%) and an acceptable recall rate 

(60.53%), which fulfill the requirements for a safety-oriented visual application processing 

an image flow. The reason to have lower cover is that input frames contain highly deformed 

shapes, which for the sake of reliability, are classified as non-relevant inputs. The recall is 
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acceptable, as long as a continuous input is available. Compared to other classifiers, none of 

the tested ones could outperform the AL-NN in precision, and the same recall could only be 

reproduced with significantly lower precision. If a final decision is made based on multiple 

input frames and multiple clues, the false positive error can be minimized to practically 

negligible. 

The computation time of the descriptor (~30ms) and the classification time (~2ms) 

allow real-time recognition even on standard CPUs in computers and phones, and the 

architecture core of the algorithm is easily adaptable to locally connected cellular array 

processors. The proposed algorithms were implemented on cell phones and FPGAs with the 

purpose to provide a reliable vision aid for blind and visually impaired people. One of the 

drawbacks of the GSPPED descriptor I have found is the high sensitivity to positioning and 

scaling, depending on minor variations. I will focus on designing and employing a more 

robust translation and scale normalization method. Together with my research group, I also 

plan to investigate the possibility of taking more training elements into account when 

defining the acceptance threshold, similarly to the KNN method. [A1] 
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6 Spin Torque Oscillator Networks 

In this section, the programming basics of cellular oscillatory networks are shown. 

An oscillatory network is a non-Boolean architecture consisting of only interacting 

oscillators placed on a plain surface, where the program is the function of the input current 

and the topology of the oscillators. I show that in this environment complex problems can be 

solved in one program cycle, with significantly lower power consumption and computation 

time compared to standard architectures. 

I present a general topology and two basic ones. Both layouts have the advantages 

of the cellularity, the precedence of the local neighborhoods. The OCNN (Oscillatory 

Cellular Nonlinear Network) is a grid-like layout and is used to enhance classification results 

by performing a transformation in the feature space. The oscillatory network with the 

pyramidal layout is a binary classification architecture including the preprocessing as well. 

The topology of the network is determined by genetic algorithms. To show the capabilities 

of the network, I present a solution for two static classification problems and one for 

spatiotemporal input.  

6.1 Programs in cellular oscillatory networks 

Oscillatory networks (ON) generally consists of several oscillators with given 

physical parameters: the oscillator-dynamics and the coupling interaction between the 

oscillators. I assume that the position and the physical properties of the oscillators do not 

vary during the experiment; the interaction with the outer environment is possible only by 

excitation and measuring of actual state. 

When programming an abstract ON of n oscillators, the data, the input, output 

interface, and the program need to be defined. Since the frame-constraints are strict, the next 

solution seems reasonable: 

Oscillatory network ON is a set of oscillators on a plain: 

( )lknnnn ο,ι,Τ,Θ,oON , where 

no are the oscillators of the network, 

iΘ is the type (dynamics) of the io oscillator, 

nΤ is the topology of the oscillators, 
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nk oι  are the input oscillators, 

nl oο  are the output oscillators. 

Data ( )nOND  is considered as the individual and relative state of the oscillators: the 

unsynchronized oscillation (us), and if the oscillation is fully synchronized, then the phase-

difference. The phase difference is given as the difference of consecutive oscillators in a 

predefined order, from what all differences can be computed. 

 

( )








edsynchronizifΦ

izedunsynchronifus
=OND n  

where 

 11,1 −− + ni,=Φ iii   

• Input kI  is considered as an initial oscillation frequency on input 

oscillators nι  resulted from the excitation on these nodes 

• The output lO  is considered as the data of output nodes lο . 

• The program is considered as the nΤ  topology of the ON and the types of 

oscillators iΘ  determining the dynamics of the individual oscillators 

 

Figure 6.1. A two-dimensional oscillator network. The red (light) nodes are dedicated oscillators 

for input, the blue (dark) nodes for output 

Note that the definition of the system allows static and dynamic, continuous input in time as 

well. In case of static input, the nodes of the oscillator network will synchronize after a 
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certain time. In case of continuous variable input in time the synchronization might not occur, 

or it might be disrupted, the presence of relatively constant synchronization, the groups of 

synchronized partitions also encode information. 

During my work, I used the Spin Torque Oscillator (STO) model. STOs are placed 

on a plain surface, while the interaction is defined only by the distance between the 

oscillators. The positions of the STOs have to fulfill the rules of geometry. The excitation of 

the oscillators is applied by current input, and nodes have random initial states. Conversion 

between CMOS and STO level is limited, and only the oscillators at the edge of the network 

can be accessed. [A2] 

In the case of static input, a basic step time (the time needed to achieve 

synchronization in ON) takes more time than an elementary operation on CMOS. However 

the dynamics of the STO network encapsulates rich computational capacity, and for a class 

of complex problems, only one synchronization step is enough on STO network with very 

low power consumption, while using CMOS long series of steps and much higher power is 

required. One of the most important questions will be to define the class of problems, where 

the STO networks are more efficient than software using CMOS architectures. 

To write a program on STO network, to find the correct topology of oscillators 

requires an entirely novel approach. To solve the problem, it is advisable to apply some 

restrictions on the topology, which adapt to the properties of the ONs, and which were 

successfully used with other technologies also. Since the ONs are cellular, the interaction 

between closer nodes is stronger than between distant nodes; a CNN-type topology seems to 

be appropriate.  

In the following two sections I will present two cellular (mainly locally connected) 

topologies. In the first example the grid-type layout, the OCNN is discussed, then a pyramid-

like topology is presented, based on the OCNN, but with some relaxation of the geometrical 

constraints, still retaining the locality, i.e., the cellular structure of the system. 
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6.2 Improving classification results with OCNN arrays 
I proposed a grid-like topology denoted as OCNN (array). The rows of the grid are 

denoted as layers. An 𝑛 × 𝑚 grid OCNN can be characterized by the n-1 distances between 

the layers and 𝑚 − 1 distances between the columns. Thus; an OCNN program is determined 

by 𝑛 − 1 + 𝑚 − 1 positive values. The nodes of the first (top) layers are denoted as input 

and the last (bottom) layer as output. In the case of 1 × 𝑚 chain network, the input and the 

output nodes are the same. 

 

Figure 6.2. Structure of an Oscillatory CNN. The input is present as the current flow in the top 

layer; the output is the phase differences of the last layer 

The hypothesis I raised was that the link between the input and the output could be 

formalized as a transformation between the two spaces, where the transformation is 

determined by the network topology. To demonstrate this capability of the OCNN array I 

proposed a modified classification architecture that also employs an OCNN array. Compared 

to the classic method where the feature vector of the input is classified to get the final result, 

in the architecture I propose, the feature vector is transformed by the OCNN array, and the 

resulted signature is classified (see Figure 6.3). 
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Figure 6.3 The classic and the proposed classification method using OCNN arrays for 

preprocessing the classification data 

 

In this example, the program is to improve the classification performance. Increased 

accuracy can be achieved by a transformation, where the test set elements get more separable, 

the regions of the same classes get closer to each other, and regions of different classes get 

further.  The method is similar to the kernel functions employed in the SVM classifiers, 

where the input is translated to another space, where in contrast to the original space, the 

classes are separable, as demonstrated in Figure 6.4. 

  

Figure 6.4 The effect of a 1D oscillator chain. Different points illustrate different classes in the 

input and the output space 

Input 

space 
Output 

space 

DOI:10.15774/PPKE.ITK.2019.005



 

76 
 

As a test data, I used reduced EPPSED shape feature vectors generated from the 

images of public shape databases. Examples are shown in Figure 6.5. The reduced feature 

vector consisted of the first and every fourth element of the original feature vector. This 

modification significantly shortened the simulation time and resulted in lower classification 

performance, thus provided a broader area to demonstrate the improvements of the OCNN 

array in the increase of the accuracy.  

 

Figure 6.5. Examples of input shape images of 9 classes, images are from the Shape Database of 

the Vision Groups at LEMS, Brown University 

In the experiment, I employed a one-dimensional OCNN array (chain). To find the 

proper topology that increases the separability, and hence the classification rate I used a 

genetic algorithm, where the chromosomes corresponded to the distances between 

neighboring nodes and the fitness function returned with the classification accuracy achieved 

by the topology determined by the distances: 

( ) i

k

=i
n a

k
=Τf 

1

1
, where 









notif

correctlyclassifiedwaselementtestiif
=a

th

i

0

1
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Figure 6.6. Learning improvement with a one-dimensional OCNN array.   

On the shape set using reduced EPPSED features, the accuracy from 69.6% was 

increased to 87%, using two chains the result increased to 91.3% (Figure 6.6).  

 

Figure 6.7. Example images of the four different image classes of figurines, the sources for the H-

MAX data 

 

To verify the results above, I performed a learning test on a different data set with 

HMAX features and measured the relationship of the classes in the signature and feature 
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space. The HMAX feature aims to describe the input image based on biological methods, 

but result in a significantly larger feature vector counting 8150 elements. The HMAX 

algorithm contains four different layers (S1: Gabor Filter Layer C1: Local invariance Layers 

S2: Intermediate Feature layers C2: Global invariance layers) and generates a different 

number of features in each layer. This way it is capable of generating scale-invariant image 

representations based on the predefined features. [123] Example input images are shown in 

Figure 6.7. 

Since the size of the network increase with the dimension of the input, the number 

of the free parameters of the network is also proportional to the input dimension. Searching 

in such a large parameter space is complex; thus I reduced the input by averaging and vector 

quantization. 

To measure the topology of the feature and the signature space I defined a metric 

that indicates the compactness and the separation of the classes. 

The in-class distance or in-group distance of the class is the average of distances of 

all instances belonging to the class: 

𝐼𝐺𝐷(𝐶𝑖) =
∑ |𝑙, 𝑘|𝑙,𝑘∈𝐶𝑖,𝑙≠𝑘

𝑛(𝑛 − 1)
2

 

where 𝐶𝑖 denotes the class, l and k are the members of the class, n is the number of 

elements int he class 

The cross-class distance is defined as the average of distances of every instance of 

the class and every other class elements: 

𝐶𝐺𝐷(𝐶𝑖) =
∑ |𝑙, 𝑘|𝑙∈𝐶𝑖,𝑘∈𝐶1∪𝐶2∪…∪𝐶𝑖−1∪𝐶𝑖+1∪…∪𝐶𝑚

𝑛 ∙ 𝑜
 

where 𝐶𝑖 denotes the class, l is the member of the class 𝐶𝑖, k is the member of all 

other classes, n is the size of  𝐶𝑖, and o the number of all other elements. 

Since the topology of the classes may vary a lot in extension and distribution also, I 

measured the compactness as the ratio of cross-class and in-class distances. 

𝐴𝐷(𝐶𝑖) =
𝐶𝐺𝐷(𝐶𝑖)

𝐼𝐺𝐷(𝐶𝑖)
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TABLE 6.1 SEPARABILITY METRIC (VECTOR AVERAGING) 

Cross Group/ In 
Group Class I Class II Class III Class IV 

Without the 
OCNN array 3.60 2.87 1.58 1.83 

50 long  
vectors 15.02 3.58 3.26 9.16 

163 long  
vectors 12.28 3.46 3.23 7.92 

815 long  
vectors 20.10 5.30 2.47 8.56 

 

TABLE 6.2 SEPARABILITY METRIC (VECTOR QUANTIZATION) 

Cross Group/ In 
Group Class I Class II Class III Class IV 

50 long  
vectors 29.70 8.82 9.24 9.57 

163 long  
vectors 96.55 10.80 30.74 52.54 

815 long  
vectors 175.56 23.81 56.04 59.28 

 

Results of the learning are shown in Table 6.1 (average) and 6.2 (quantization). The 

compactness could be significantly improved in all four input classes. Based on the 

performance increase experienced on the reduced EPPSED data and the increased 

compactness of the H-MAX data it can be stated that OCNN arrays are programmable to 

perform a transformation in space, based on a limited number of training elements. [A8] 

 

6.3 Classification using pyramid-like cellular oscillatory 
network 

To write in the input and read out the output a specific conversion between the 

oscillators and the CMOS level a specific converter circuit is assumed. Hence, the learning-

classification algorithms are running on the CMOS level. This method is improved here, 

implementing the preprocessing and classification part also on the oscillatory level.  

In the method mentioned above to increase the efficiency of machine learning by 

using OCNN arrays, the classification is done after conversion taking place on CMOS. This 

means that after synchronization the phase differences are read out from the last layer of the 

OCNN to perform the nearest neighborhood classification on CMOS. To avoid reading out 

DOI:10.15774/PPKE.ITK.2019.005



 

80 
 

a vector of phases, an oscillatory classification network is proposed, where only the final 

result is read and converted. Thereby, implementing the classification on oscillatory level 

increases the speed and decrease the size and consumption. 

Since the properties of the oscillators are the same, the behavior of a network 

depends only on the initial phase differences and the topology. Without the possibility of 

wiring, no complex algorithms (steps, branching, etc.) can be done; only those computations 

can be performed that follow from the physics of the coupled oscillators used. Therefore a 

binary classifier is an obvious solution, where the sign of the phase difference of a fixed pair 

of oscillators is considered as the output of the classification. The output-pair can be the part 

of an OCNN array with more layers, i.e., a 1-D OCNN chain, retaining the locality of the 

interactions.  

  

Figure 6.8 The structure of the pyramid-like oscillatory network 

To achieve higher complexity, a pyramid-like architecture is proposed. The regular 

grid-like topology is modified in a way that the number of the oscillators in the layers are 

decreasing from top to bottom, where only two oscillators can be found. (The reason to have 

two oscillators at the bottom, and not one, is that the output is not the phase but the phase 

difference of two oscillators.) In each layer, the distances between the oscillators are also 

varying. Note that all other constraints of the regular OCNN grid are still satisfied: the 

oscillators are homogeneous, and the interaction between node cells only depends on the 

distance between them. (Figure 6.8.) 
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To determine the optimal distances between the oscillators, a genetic algorithm is 

used, where the fitness value is equal to the accuracy of the classification defined as above. 

Every chromosome of given length represents a real and unique network topology. 

• The first [𝑔1, … , 𝑔𝑘−1] genes determine the horizontal position of cells in the first 

(input)  

• The next [𝑔𝑘 , … , 𝑔2𝑘−3]genes determine the distances of the layers (vertical 

position) 

• The rest [𝑔2𝑘−2, … , 𝑔𝑛] genes determine the horizontal positions of the non-top-

layer cell nodes 

6.3.1 Static input classification 

To demonstrate the functionality of the pyramid-like classifier I constructed two 

basic examples. 

The first example solves a summation and threshold classification by learning 

(applicable also for𝐴𝑁𝐷 and 𝑂𝑅 logical functions by biasing). The input is a vector of real 

numbers on the interval of [0, … , 100], the desired output is 𝑡𝑟𝑢𝑒 if the sum of the input is 

higher than a fixed threshold (100𝑛 for logical 𝑂𝑅 operation, 100𝑛(𝑛 − 1) for logical 𝐴𝑁𝐷 

operation), 𝑓𝑎𝑙𝑠𝑒 otherwise. This class of problem is easily solvable by, e.g., neural 

networks, single perceptrons, but with decision trees, no perfect solution can be given. I 

tested the learning on a four-long vector, where I could reach 100% of accuracy on few steps 

of the genetic algorithm. Results are shown in Figure 6.9 and 6.10. 

 

Figure 6.9 The topology of the summation and 

threshold example. The input oscillators are at 

the bottom of the figure, output nodes are at 

the top. 
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Figure 6.10 The fitness value (the classification 

accuracy) of the best instance in the function of 

the epochs during the evolutionary learning of 

the OR-AND example 
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The second example demonstrates a 𝑋𝑂𝑅-type classification by learning. The 

expected input is a vector of real numbers representing logical values, 𝑓𝑎𝑙𝑠𝑒 as [0, 10] and 

𝑡𝑟𝑢𝑒 as [95, 105]. The desired output is true if the number of true inputs is odd, false 

otherwise. This problem-class can be solved in two steps by a decision tree, but it cannot be 

solved by a single perceptron because the input set is not linearly separable.[2] In a hundred 

steps I could achieve 95% accuracy on random test sets. Results are shown in Figure 6.11 

and 6.12. 

 

The presented examples show that the two elementary learning problems are 

solvable on the proposed architecture. 

6.3.2 Classification of spatial-temporal inputs 

Besides the advantages already mentioned, the oscillator network is able to handle 

not only constant but also continuous input in time. Since the oscillation represents memory 

in time, the possibility is given to classify spatial-temporal inputs by the proposed 

architecture at the oscillator-level. 

To test this ability of the oscillator networks I investigated a classification problem 

of primitive spatiotemporal signals. 

In my first experiment, I learned the system to detect the direction of a moving signal. 

All the examples were the members of the “left” or the “right” class, but noise was added to 

the signal in different levels.  In the test environment, I used five input oscillators with 100 

time steps (Figure 6.13 c and 6.13 d). 
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Figure 6.11 The final topology of the 

XOR example. 
Figure 6.12. The fitness value (the 

classification accuracy) of the best 

instance in the function of the epochs 

during the evolutionary learning of the 

XOR-example 
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Figure 6.13 Input examples of moving signal in time with 20 (a and b) and 5 (c and d) input 

oscillators. Blue (dark) color represents low excitation, red (light) corresponds to a high value 

In the first experiment, I used the nearest neighborhood classification on the 

signature output from a 1-D array, where the oscillator array functioned as a feature generator 

also. I investigated the response for noisy events with different noise levels. The train 

elements for the nearest neighborhood classification were the signatures from the oscillator-

system with the noise-free input. The distances of the consecutive oscillators in the chain 

were the same. The noise ratio is the ratio of the noise amplitude and the total input 

amplitude: 

noisesignal

noise
i A+A

A
=n  
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Figure 6.14 The accuracy of the NN classification on noisy input 

Figure 6.14 shows the results for the NN classification on the 1-D oscillator chain 

signatures. The accuracy is decreasing continuously, on the level where the noise amplitude 

and the signal amplitude is equal, the accuracy reaches the 50%, that is level of uncertainty. 

In Figure 6.15 few examples of inputs and output signatures are shown for different noise 

levels. 

 

Figure 6.15 Example inputs for detection of the moving signal direction 
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The motion direction classification was also tested on the pyramid-classifier using 

the generic learning technique showed above. The training set contained patterns with 

different noise levels. To avoid overfitting and ensure that the classifier will learn the basic 

pattern without noise the fitness function f of the trainer was modified to tolerate mistakes 

on higher noise level: 

( ) i

k

=i
n a

k
=Τf 

1

1
, 

where 









notif

correctlyclassifiedwaselementtestiifw
=a

th
i

i

0
 

and 

noisesignal

signal
ii A+A

A
=n=w −1  

The genetic algorithm to build the pyramidal topology was performed with 30 

instance limit for 250 epochs in five families. The resulting oscillator network showed high 

classification accuracy on low noise and acceptable performance even with higher noise 

levels. Accuracy in function of the noise is shown in Figure 6.16, whereas Figure 6.17 shows 

the corresponding topology of the oscillator network. The evolution of the learning is shown 

in Figure 6.18.  

 

Figure 6.16 The classification accuracy in function of the noise level. The vertical axis shows 

intervals of the noise level 
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Figure 6.17 Topology of the pyramidal ON with the highest fitness value resulting in the accuracy 

in Figure 6.18. The input row is at the bottom of the network; the output is computed as the 

difference between the phases of the top oscillators 

 

Figure 6.18 The best accuracy of the learning epochs. The longer plateaus show stuck in the local 

minimas. The maximal value is 0.5245 due to the noise-level corrected fitness function, while the 

minimal value of 0.26225 corresponds to the 50% accuracy (the zero level of a binary classification) 

To validate the results, I performed a reversed test also since a reflected input should 

result in an inverted output. The classification performance remained the same as well as in 

the function of the noise. I also measured the ratio of the intersection of the correctly 

classified input instances and got the result 𝑎𝑐 = 79%. A ratio near to 𝑎𝑐
𝑚𝑎𝑥 = 100% would 

correspond to a total overfitting, since the learning was independent of the directional 

information. On the other hand, since the global accuracy on the test set regardless the noise 

level was 69.4%, the minimal possible value of the intersection ratio, 𝑎𝑐
𝑚𝑖𝑛 = 38.8% would 

indicate total overfitting as well.  
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The goal of the experiments was to verify the basic applicability of the STO networks 

in identifying spatiotemporal signals. I succeed to prove the hypotheses in all cases; however 

further improvements are needed for any application in the future. [A2] 
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7 Summary 

7.1 New Scientific Results 

Thesis I. 

I designed a new general shape descriptor called the Global Statistical and 

Projected Principal Edge Distribution descriptor that is based on different modalities. 

It combines the advantages of the global statistical and local edge-based descriptors. I 

implemented the descriptor and verified its efficiency through experiments. 

Related publications: [A1][A3][A4][A7] 

The descriptor consists of global mathematical shape features, and an edge based 

local feature set. The method of assembling more shape descriptors into one aims to describe 

different modalities independently from each other, and to speed up the recognition process. 

The first part of the descriptor contains statistical shape features that describe the 

shape as whole. Employing these features resulted in a higher cover ratio, and accelerated 

decision accuracy in case of a comparison-based classification. 

The first property is the eccentricity of the shape, which characterizes the elongation 

of the shape with one scalar value. The second property is the ratio of the shape area and the 

area of its bounding box. The following eight features are the first four statistical moments 

of the vertical and horizontal histograms.  

The edge-based shape description part characterizes the local properties of the shape. 

The algorithm was inspired by the PPED image descriptor, which selects and projects 

principal edge values.  

The edges are detected in four directions, resulting in four edge maps. For every 

pixel location in the four edge maps, the principal value is highlighted, and the other values 

are weakened or totally neglected. Highlighting is performed by a soft-thresholding function, 

which decreases the effect of overfitting and provides the ability to use the algorithm on 

different architectures with different number representations. I measured the efficiency of 

the soft-thresholding, and it improves the performance of the shape description. 

The rotation invariance can be ensured at two points of the recognition process. The 

first approach incorporates the invariance in the description directly or by a preprocessing 

including an angular normalization. The second point is at the classification phase, on the 

employing an invariant metric or by storing (all) the different rotations of one instance in the 

training set. 
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Descriptors of the family of PPED are not rotation invariant. Therefore the rotation 

invariance is ensured by rotationally redundant training set. Although this is closer to the 

human sense, it would result in a vast database. From this consideration, I normalize the 

shape angularly, based on the orientation of the shape. The blob is rotated to have its major 

axis parallel to the horizontal axis. Finally, the shape is rotated by 180 degrees if its center 

of gravity is on its right side. 

The scale-invariance is ensured by normalization, by resizing the blob to fit into a 

64 × 64 pixel window. The position-invariance in the vertical dimension is ensured by 

moving the shape in the middle, thus in the other dimension, the shape touches both sides of 

the frame edge.   

The shape descriptor algorithm I designed is optimal for dedicated VLSI architecture 

and for Cellular Wave Computer. 

I compared the GSPPED shape descriptor with the most widely used shape 

descriptors on a shape set containing patches from the Hungarian Forint Banknotes. Results 

show that the performance of the GSPPED is higher than the performance of the Complex 

Zernike Moments and the Generic Fourier Descriptor. 

Thesis II. 

I designed and implemented a reliable and robust, two-level, parametric, 

memory-based classification method. The classifier is able to handle multiple classes, it 

has the ability to reject distant inputs, and can handle compound features. 

Related publications: [A1][A3][A4] 

The two-level decision adapts to the semantics of the descriptor and to the 

discriminative power of each descriptor parts. First, the mathematical and statistical shape-

descriptors are being compared for fast filtering, then by employing the Adaptive Limited 

Nearest Neighborhood algorithm, the edge-based properties are being compared. 

The essence of the method is a multi-level application of the compound descriptor 

that speeds up the decision and increases the cover of the recognition. When comparing with 

representative instances, first only simple mathematical properties are analyzed to examine 

the presence of a basic similarity. Although the final decision cannot be expected from this 

primary comparison, it is proven to be efficient to filter and reject elements that obviously 

differ from the instances of the representative set. 

II.1 I demonstrated that in a two-level, comparison-based classification, 

filtering based on simple but highly expressive features can both speed up the 
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classification and can significantly increase the recall, if the goal of the second level is 

to maximize the precision. 

In case of a comparison-based classification, the complexity of the decision increases 

with the size of the training set. Thus, if the difference exceeds a certain threshold level 

during the comparison, the input can be rejected without continuing the evaluation. The first 

properties of the GSPPED descriptor contain highly expressive features, that are suitable for 

rejection. 

Applying the proposed filtering, the average decision time decreases to 12% 

compared to the decision time without filtering. Besides the significant acceleration, filtering 

has a secondary effect, namely that the cover of the recognition increases by 17% in average 

in case when filtering is applied. This seemingly paradox phenomenon can be explained as 

follows: features applied for filtering are orthogonal to those applied in the second phase of 

comparison in information theoretical sense. To maximize the precision in the second phase, 

the acceptance radius is set as a function of the distance of the closest element of other 

classes. As a result, acceptance regions increase since instances closer to the representative 

elements might be rejected. The explanation is verified through measurements, where 

acceptance regions are 25% larger with filtering. Since the second phase focuses on 

maximizing the precision, the precision remains independent of the filtering. 

II.2 I designed and implemented the Adaptive Limited Nearest-Neighbor (AL-

NN) classifier. The presented method is capable of rejecting non-relevant (zero class) 

instances, that is one of the main benefits against standard KNN methods.  

Nearest-neighbor classifiers compare inputs to already known, labeled instances of 

representative sets. To overcome the one of the main drawbacks of the traditional nearest-

neighbor classifiers - namely the lack of rejecting non-relevant elements - I extended the 

algorithm by introducing limits to each stored instance. 

Limits are set individually to each element of the representative set based on the 

irrelevant and out-of-class instances included in the training set. For this very reason I 

introduced a combined training set including not only relevant instances but non-relevant 

ones as well. Although it is not discussed in the present thesis, the model is capable of making 

decisions in case of overlapping classes on the instance-level. 

The model is built up as follows: The training set contains labeled instances, 

including non-relevant (also called as zero class) elements as well. To all relevant instances 

of the training set a limit is defined based on the surrounding instances. In case of having 

only non-relevant neighbors, the limit is set to the half of the distance between the closest 
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neighbor and the current trainable element. When only an instance from a different class is 

within the current filter region, the limit is set to the distance of the nearest outlier and the 

current example. If all elements within the filter region are of the same class, the limit is 

defined as the distance of the farthest instance of the class. However, in the most cases more 

instances of more classes fall close to the example, thus the limit will be the minima of the 

limits defined above. Finally, if the corresponding filter region of the current training 

instance is empty, we reject the instance due to the lack of information about its surrounding. 

The result of the training is the representative set, containing only relevant class instances. 

The limit can be fine-tuned with a vigilance parameter, that can adjust the recall-precision 

relation as well. 

I compared the classifier with other widely used methods, like KNNs, AutoMLPs, 

FFNNs and SVMs. The AL-NN shows higher performance compared to the other methods. 

II.3 I designed a representative set optimizer and an adaptive online update 

method for the AL-NN classifier. By using the optimizer, the size of the representative 

set can be decreased without a significant decrease of the cover. The online update of 

the representative set provides the ability to include new instances from test sets 

automatically. 

The usability of the decision methods is significantly better if the model can be 

automatically or semi-automatically updated and optimized during tests or measurements. A 

special scenario of such use cases is when the initial training set contains only a few instances 

at the beginning of the first test, and the model continuously increases by performing tests. 

During Adaptive Limited Nearest-Neighborhood classification not only the output 

class of each sample can be determined but also the confidence of the output, based on the 

ratio of the measured distance and the acceptance radius. In case a new instance that is 

classified is located at the border of a class, it can be added to the representative set to extend 

the cover of the current class, or to increase the precision of the borderline between classes. 

To ensure that the representative set is extended with proper instances, I used the temporal 

order to verify the classification result. 

By estimating the size of the intersections of acceptance regions of the instances in 

the representative set, redundant elements can be dropped. I suggested an iterative optimizer, 

where representative instances are ordered based on the number of other instances they 

cover, and in each step the instance with the larger cover is kept, and other instances covered 

by it are removed. By employing the optimizer, the representative set can be reduced to the 

30-50% of the original size, while the cover decreases only by 5-15%. 
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Thesis III. 

I formalized the network of weakly coupled oscillators as a computational unit, 

and I defined the concepts of a program: the data, the input and the output on the 

system. I provided an experimental proof that the oscillator networks are capable of 

resulting in a desired signature on response to a given input excitation, thus the unit is 

suitable to be used as a computational unit. 

Related publications: [A2][A3][A8] 

Two or more oscillators are interacting and form a coupled oscillator network. The 

Spin Torque Oscillators and the networks built from STOs are the subjects of recent 

researches of non-Boolean computational units on several levels. 

The main emphasis today is on investigating the feasibility of using the STOs and 

other non-Boolean units by simulations. In my research an STO network model is used, 

where the interaction is determined only by the topology of the network. The atomic 

operation is considered as a synchronization, where the individual oscillators might be in a 

different phase. I formalized the program as the topology and the oscillator dynamics. The 

data is implemented as a phase-difference array, the input is the excitation, and the output is 

represented as the data of the output nodes. 

I designed and implemented a method that creates an OCNN topology with a 

genetic algorithm, that, as an OCNN, transforms an input to a separable output space. 

The applicability of the method is proven through experiments. 

In classical, two level object detection models the multidimensional input is first 

reduced in dimensionalities through special descriptors, and the final decisions are made 

through these compressed representations. Trainability and correctness of the decision highly 

depends on both compactness and discriminative power of the descriptors according to the 

output classes. 

I proved the OCNN’s capability of performing the desired transformation with a 

learning example. I proposed a new classification method by inserting an OCNN array 

between the feature extractor and the classifier, thus the desired function of the array was to 

transform the feature to improve the final classification results. To design the proper 

topology of the OCNN array, I used a genetic algorithm that maximized the classification 

performance. I tested the proposed system with the classification of EPPSED data and 

verified the results with H-MAX vectors. 
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During the experiment I succeeded in improving classification performance on all 

the test sets. I also proved by measurement that the compactness of the classes in the feature 

space increases significantly. 

I designed and implemented a method that, based on input-output pairs, defines 

the topology of a pyramidal oscillator network built up of STOs, performing the desired 

classification. The applicability of the method for classification of spatio-temporal 

signals is proven through experiments. 

I proved the feasibility of using a STO network as a computational unit by building 

a classifier. Classification encompasses not only a transformation but also separation, thus 

the task is more complex. I tested the classifier on static and spatiotemporal data as well. 

I proposed a multi-layer topology for classification. The number of the oscillators in 

the top layer equals the dimension of the output. In the next layers the number of the 

oscillators is decreasing until the last layer with only two oscillators. 

The topology had been tested for static and spatio-temporal inputs. A static sample 

performing a summation and a XOR was examined with a success. A moving signal function 

was used as a dynamic input with changing directions and noise. In each of the experiments 

the capability of teaching topology was proved. 

7.2 Methods 
The designed algorithms, tests and experiments were mostly implemented in Matlab9 

environment. On lower levels of visual processing (matrix operations, convolution, 

morphology - propgen, torque computing) I employed the built-in functions of Matlab, but 

on higher levels I created my own implementations for better understanding and to allow 

higher flexibility to the methods. 

The WEKA10 and RapidMiner11 machine learning implementation collections 

helped me a lot in exploring the basic applicability of methods. Based on these results I made 

my own implementations of the nearest neighborhood and neural network model, and also 

implemented a framework for genetic algorithms. 

I tested the banknote recognition algorithm of the Bionic Eyeglass with people with 

visual impairments. At the beginning of the tests, the participants were given detailed 

information about the operation of the device. After that, they had to identify banknotes 

without any external help, relying on the device only. During the tests, we stored every 

                                                      
9 http://www.mathworks.com/products/matlab/ 
10 http://www.cs.waikato.ac.nz/ml/weka/ 
11 https://rapidminer.com/ 
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processed frame with the corresponding decisions, so the experiments can be completely 

reproduced later in a simulation environment. With these steps, the team was able to track 

the development of algorithms. During the live tests we have written records and notes to 

collect all remarks according to the behavior of the algorithms, the usability of the device or 

to other environmental circumstances. Test sets presented in this thesis are compound of 

these live tests. 

 

7.3 Application of the results in practice 
The first and second thesis was developed in the framework of the Bionic Eyeglass 

project, actively utilizing experiences collected from the live tests. By employing the shape 

description and classification I proposed, a complex classifier has been created that is 

suitable for the recognition of Hungarian Forint banknotes. The application identifies the 

banknote based on more classifiers, resulting in a robust, reliable device. 

Beyond banknotes, the system might be used for other visual tasks as well, which 

require the classification of rigid, flat shapes. Within the Bionic Eyeglass project algorithms 

might be used for recognition of other banknotes and pictograms, reading of LED displays 

and identification of information boards. 

The developed descriptor and classifier are already implemented on FPGA as well, 

providing faster processing compared to standard CPUs. (The implementation on FPGA was 

not the part of my research.)  

In the future, oscillator networks may exchange the part of present-day classic 

CMOS components. Application areas are examined in many research institutes, this thesis 

is also part of this process. 
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