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Abstract

This thesis is focused on structural analysis, identification and system theoretical real-
ization theory of different dynamical system models. The main goals of this work are to
establish novel approaches for identifiability analysis and provide methods for examining
the relationship between dynamical model and network structure based representations
of various system models with theoretical guarantees.

Structural identifiability, the property of unique parameterization, is examined for time
delayed non-linear dynamical system models with the assumption that all the delays are
constants. The time delays are treated as parameters of the model structure. The joint
identifiability of ordinary system parameters and constant time delays is examined. A
novel method for testing structural identifiability is proposed using the Volterra series rep-
resentation of dynamical systems. The frequency domain representations of the Volterra
series, i.e. the generalized frequency response functions, are used to derive sufficient con-
ditions for identifiability in terms of linear algebraic equations. Unique solution of the
resulting equations with respect to the parameters implies structural identifiability.

The class of discrete time linear dynamical systems is also studied. It is proved that
the set of system (state transition) matrices associated to a Markov parameter (impulse
response) sequence is convex, assuming all the other parameters are fixed. Making use of
the convexity of the feasible set of system matrices and results from the theory of kinetic
systems, algorithms for determining structurally different realizations of a given Markov
parameter sequence are derived. Sparse and dense dynamically equivalent realizations are
defined to the analogy of kinetic systems. Structural uniqueness of the dense realization
is proved.

This thesis is also concerned with the formal model of discrete state Chemical Reaction
Networks, which is known to be equivalent to mathematical models of theoretical com-
puter science, such as Petri nets and Vector Addition Systems with States. In order to
establish quantitative relationship between the network structure and dynamical behavior
of reaction networks, the discrete state reachability problem is studied. An integer linear
programming feasibility approach is employed. Novel upper bound on the maximal length
of cycle-free state transition sequences is derived. Relaxed solutions are also obtained for
the reachability problem. Finally, network structure and initial state dependent condi-
tions are provided under which reachability problem is equivalent to the existence of a
non-negative integer solution of the discrete state equation of the reaction network.
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Mathematical notations

In this section we summarize the notations extensively used throughout this thesis.

∅ empty set
R the set of real numbers
N the set or natural numbers including 0
Z the set of integer numbers
Z≥0 the set of non-negative integer numbers
Tn×m the set of (n×m)-dimensional vectors over the set T
0n×m a zero matrix of dimension n×m
1n×m a matrix of dimension n×m for which all the entries are equal to 1
{0, 1}n×m the set of (n×m)-dimensional binary vectors
{−1, 0, 1}n×m the set of (n×m)-dimensional vectors composed of the entries −1, 0, 1
	 subtraction operator acting on a set and a matrix, A	 A is the set

given by subtracting the matrix A from all the elements of A
[A]ij the entry in the ith row of the jth column of matrix A
[A]i,: the ith row of the matrix A
a ≺ b for a, b ∈ Rn, ai < bi for i = 1, . . . , n
a � b for a, b ∈ Rn, ai ≤ bi for i = 1, . . . , n
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List of abbreviations

GFRF Generalized Frequency Response Function
SISO Single Input Single Output
ARX Autoregressive model with External Input
NARX Non-linear ARX
DE Difference Equation
DT-LDS Discrete Time Linear Dynamical System
SVD Singular Value Decomposition
ERA Eigensystem Realization Algorithm
ERA/DC ERA with Data Correlation
GRA General Realization Algorithm
EEG Electroencephalography
d-CRN discrete state Chemical Reaction Network
LP Linear Program
ILP Integer Linear Program
VAS Vector Addition System
VASS VAS with States
EXSPACE Exponential Space Complexity
NFAT Nuclear Factors of Activated T-cells
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1 Introduction

It is known that several dynamical systems possess a graphical representation in which
the nodes represent the individual components while edges correspond to the functional
relations between components [1, 2, 3]. For example in a gene regulatory network indi-
vidual genes can be written as nodes and edges represent functional connections between
pairs of genes, such as activation, inhibition [4]. The dynamical model of a system may
encode the network structure in terms of the parameters of the underlying differential or
difference equation system. In the case of linear dynamical systems the state transition
(system) matrix encodes the interaction pattern of state variables (individual compo-
nents) by its non-zero off-diagonal entries [5]. In non-linear dynamical system models the
differential equations may also convey information about the underlying network struc-
ture of the interacting components, e.g. in the class of kinetic systems it is proven that
the model parameters and edges of the respective graph-based representation are quan-
titatively related to each other [6, 7]. In Figure 1.1 we illustrate that dynamical model
and network-based representation can also be associated to the same biological process.
Here it is also illustrated that the differential equation model can be used to derive the
graphical representation of the same system.

This thesis is centered around structural analysis, realizability and identification of
various system models. The main motivation of this work is to provide theoretically
grounded computational methods for the analysis of biologically motivated system mod-
els, but the developed methods and algorithms can also be used for studying various
systems of engineering and physical importance. We study the relationship between the
network structure and dynamical behavior of different system models, such as discrete
time linear dynamical systems and discrete state chemical reaction networks. We examine
whether there exist structurally (topologically) different realizations of the same dynam-
ical system. We wish to provide algorithms capable of determining structurally different
realizations of a dynamical system model, assuming that the network-based representation
is not unique. We also examine structural identifiability, a quantitative property ensuring
parametric uniqueness, which is closely related to structural uniqueness of the under-
lying network representation. Structural identifiability can help us quantifying network
structure related properties of dynamical system models as it is related to the parameter-
ization of the dynamical system model. Since biologically motivated dynamical systems
commonly involve time delayed terms, we consider structural identifiability of non-linear
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time delayed system with the assumption that time delays are constant parameters to
be identified and we examine the joint identifiability of time delays and ordinary system
parameters related to the underlying network structure.

Figure 1.1: Illustration of different representations of a complex biological system. Based
on the observed dynamical behavior of the underlying biological system one can
(re)construct both a dynamical system model (ODE model) and a graphical repre-
sentation (reaction network). It is also indicated by an arrow that the ODE model
can be used to write out the graphical representation of the system.

Summary of contributions
Structural identifiability analysis of time delayed non-linear systems. In chap-
ter 2 a novel method is proposed for structural identifiability analysis of non-linear time
delayed systems. It is assumed that all the non-linearities are analytic functions and the
time delays are constant. In the model structures time delays are treated as parameters
and we consider the joint structural identifiability of the ordinary system parameters and
the time delays. We employ the Volterra series representation of non-linear dynamical
systems and make use of the frequency domain representations of the Volterra kernels,
i.e. the Generalized Frequency Response Functions (GFRFs), in order to test parametric
uniqueness. The advantage of representing non-linear systems with their GFRFs is that
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in the frequency domain representation the time delay parameters appear explicitly in
the exponents of complex exponential functions from which they can be easily extracted.
Since the GFRFs can be symmetrized to be unique, they provide us with an exhaustive
summary of the underlying model structure. We use the GFRFs to derive equations
for testing structural identifiability. Unique solution of the composed equations with re-
spect to some parameters provides sufficient conditions for structural identifiability. Our
method is illustrated on non-linear dynamical system models of different degrees of non-
linearities and multiple time delayed terms. Since Volterra series representation can be
applied for input-output models, it is also shown that after differential algebraic elimina-
tion of unobserved state variables the proposed method can be suitable for identifiability
analysis of more general class of non-linear time delayed state space models.

Computational methods for finding structurally different realizations of dis-
crete linear time invariant systems. In chapter 3 we investigate the realizability
of discrete time linear dynamical systems (DT-LDSs) in fixed state space dimension.
Assuming fixed sate space dimensionality (i.e. that all the feasible state space realiza-
tions are of the same dimension), one can associate a network structure to a DT-LDS
of parametrization (A,B,C,D) so that state variables are represented by nodes and two
nodes are connected by an edge if the respective off-diagonal value [A]ji is not equal to
zero. Formally, the nodes associated to state variables xi and xj are connected by a
directed edge from xi to xj iff [A]ji 6= 0. In this graphical representation the edges are
weighted by the respective values of A. This way the system matrix A of an DT-LDS
encodes the underlying weighted interconnection pattern (structure) of the system. Then
the existence of structurally different realizations of an DT-LDS implies that the same
dynamical behavior can be obtained by different weighted network structures. Since the
dynamical behavior of an DT-LDS is uniquely determined by its Markov parameter (i.e.
impulse response) sequence, we examine whether there exist different θ = (A,B,C,D)
state space realizations of a given Markov parameter sequence Y with fixed B, C and D
state space realization matrices. Full observation is assumed in terms of the invertability
of output mapping matrix C. We prove that the set of feasible state transition matrices
associated to a Markov parameter sequence Y is convex, provided that the state space
realization matrices B, C and D are known and fixed. Under the same conditions we
also show that the set of feasible Metzler-type state transition matrices forms a convex
subset. Regarding the set of Metzler-type state transition matrices we prove the existence
of a structurally unique realization having maximal number of non-zero off-diagonal en-
tries. Using an eigenvalue assignment procedure we propose linear programming based
algorithms capable of computing different state space realizations. By using the con-
vexity of the feasible set of Metzler-type state transition matrices and results from the
theory of non-negative polynomial systems, we provide algorithms to determine struc-
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turally different realization. Computational examples are provided to illustrate structural
non-uniqueness of network-based DT-LDSs.

Reachability analysis in discrete state reaction networks. In chapter 4 we con-
sider the class of discrete state Chemical Reaction Networks (d-CRNs), a commonly used
mathematical formulation for modeling the dynamical behavior of biologically motivated
processes on discrete state space. D-CRNs can be used to model systems such as those
arising in the fields of chemical reaction networks, epidemiology, population biology and
systems biology. The model of d-CRNs is equivalent to Petri nets having many applica-
tions in theoretical computer science, e.g. modeling concurrent and distributed systems.
Here we study the relation between network structure and dynamical behavior by making
use of the concept of reachability: given a pair of initial and target states, is it possible
to reach the target state from the initial one along the firings (occurences) of the reac-
tions of the underlying d-CRN structure? In our study reachability problems of sub-and
superconservative d-CRNs are considered, as conservation laws are commonly observed
in biological systems. First an Integer Linear Programming (ILP) feasibility approach is
employed for computationally solving the reachability problem. We provide novel bounds
on the length of cycle-free state transition (reaction) sequences associated to a particular
pair of initial and target states. It is known that a subconservative network has bounded
reachable state space, while that of a superconservative one is unbounded. The reacha-
bility problem of superconservative reaction networks is traced back to the reachability of
subconservative ones. This way it is proved that the reachability problem of superconser-
vative d-CRNs can be reduced to an equivalent reachability problem in a bounded state
space. Next we prove that the reachability problem of low-dimensional d-CRNs is equiv-
alent to the existence of a non-negative integer solution of the respective d-CRN state
equation characterizing the state evolution of the network. Then we consider d-CRNs
of arbitrary high state space dimension so that the network structures are composed of
reactions of at most one input and one output species beyond possible catalyzers. We give
a proof that, assuming all the reactions are charged in the initial and target states, the
reachability problems of sub-and superconservative reaction networks are equivalent to the
existence of non-negative integer solution of the corresponding d-CRN state equations.
Using the aforementioned results, the number of decision variables in the ILP feasibility
formulation – and therefore the time complexity of the arising computational problems –
can be significantly reduced. Then, by means of the Barvinok algorithm, the number of
feasible trajectories satisfying a reachability relation can be counted in polynomial time
in the number of species and in the distance of initial and target states, assuming fixed
number of reactions in the system. Finally, we make use of the totally unimodular prop-
erty of the stochoimetric matrix in the considered subclasses of d-CRNs. We prove that
the reachability relation can be decided in polynomial time under the above conditions
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by linear program-based relaxation.
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2 Structural identifiability analysis of
non-linear time-delayed systems

2.1 Mathematical notations

M(.) notation of an analytical SISO input-output dynamical system
θ parameters of a dynamical system M(.)
Θ parameter space of a dynamical system M(.)
p differential operator
Hn(jω1, . . . jωn) n-th order Generalized Frequency Response Function (GFRF)
Hsym
n (jω1, . . . jωn) n-th order symmetrized GFRF

Table 2.1: Notations specific to chapter 2.

2.2 Background
Several dynamical systems of physical, chemical and biological importance can be modeled
by means of continuous differential equations [9, 52]. An important step in constructing
precise mathematical models is estimating the model parameters [10, 11, 53, 54]. Accurate
estimation of parameters is of paramount importance especially if the purpose is to make
predictions based on the identified model. A related problem of parameter estimation
is structural identifiability (also called prior, theoretical or qualitative identifiability): a
set of parameters in a model structure is said to be structurally identifiable if the exact
parameter values of the set can be uniquely determined in theory, assuming unlimited,
noise-free observational data [55, 56, 57]. Structural identifiability is a quantitative prop-
erty depending on the underlying model structure and initial conditions. It is independent
of the quality and amount of available observation data. Examining structural identifi-
ability of model structures is also important if the system parameters are endowed with
physical significance.

Structural identifiability was introduced among the firsts by Bellman and Astrom in
linear system theory [18]. They used the parameterized transfer function of the system as
exhaustive summary in order to obtain necessary and sufficient conditions on structural
identifiability. In the context of linear systems the similarity transformation approach is
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based on finding invertible transformations of the state space realization matrices [58].
Assuming joint observability and controllability, by Kalman’s algebraic rank condition the
similarity transformation approach provides necessary and sufficient conditions for struc-
tural identifiability. In the case of non-linear systems, deciding structural identifiability is
computationally much more complicated. For uncontrolled autonomous systems the direct
test approach provides a conceptually simple, but limited method by equating the system
non-linearities of different parameterizations [59]. The similarity transformation based
approach was extended to non-linear systems by means of the local state isomorphism
theorem [60, 61]. For locally reduced systems (structural controllability and observability
conditions have to be fulfilled), it seeks for state variable transformations and leads to
solving a set of partial differential equations [62]. The Taylor series approach expands the
model output in Taylor series around t = 0 [63]. The coefficients of the resulting power
series are unique and provide an exhaustive summary for testing structural identifiability.
Conceptually similar to the Taylor series based expansion, the generating series approach
employs the Fliess series expansion of the observables [64]. The coefficients of the se-
ries, which are unique descriptors of the input-output behavior, are the Lie derivatives
of the model output. Both Taylor series and generating series expansions provide suffi-
cient conditions of structural identifiability, but the algebraic expressions obtained by the
generating series approach are simpler [65, 66]. The differential algebra based approach
reformulates the system equations so that the non-measured state variables are eliminated
in order to obtain an equivalent set of differential algebraic equations containing only the
model inputs, outputs and system parameters [17]. Elimination of unobserved variables
can be performed by Ritt’s pseudodivision algorithm [67]. The resulting set of equations
is called the input-output map or characteristic set, which provides a Gröbner basis of
the model equations [68]. Sufficient and necessary conditions on structural identifiability
can be obtained by the characteristic set [17]. The implicit function theorem approach
also eliminates the unobservable variables [69]. It determines a matrix composed of the
derivatives of non-linearities with respect to the system parameters. Then structural
identifiability testing translates to the non-singularity of the obtained matrix. Assuming
constant input excitation, testing structural identifiability can be performed by means
of the concept of non-linear observability [70, 71]. Viewing the constant parameters as
state variables with zero dynamics, structural identifiability can be examined through
the observability of the extended state vector involving the system parameters. Then
identifiability can be examined through the rank of the extended non-linear observability
matrix.

In practice several dynamical systems involve time delayed terms [72, 73, 74, 75, 76].
For example, metabolic regulatory networks may contain delayed signaling pathways,
e.g. delayed feedback loops, which imply specific qualitative dynamical phenomena [77,
78, 79, 80]. Time delayed signals are also proven to be useful for controlling dynamics of
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biological networks [81]. Time delayed models are often employed to model the dynamical
behavior of systems in population biology and epidemiology [72, 82]. Delayed terms are
also used in models of chemical kinetics (e.g. if the dynamics is partially known or certain
intermediates are omitted from the description for simplicity) [83, 84].

A related problem arising in modeling with time delayed differential equations is to ex-
amine the possibility of uniquely determining the constant delay parameters. Structural
identifiability of time delayed systems – including the delays as parameters – has received
less attention. Compared to ordinary system parameters, time delays appear implicitly
in the inputs, outputs and internal state variables, which makes the respective identi-
fiability problem more involved. Identifiability of delayed systems is typically analyzed
in the context of dynamical systems of some specific structure. For linear time delayed
systems sufficient condition on joint identifiability of ordinary parameters and delays can
be obtained [86, 87]. Furthermore, it is shown that under sufficiently exciting input signal
weak controllability provides sufficient and necessary condition for identifiability [88]. For
linear retarded functional differential equations the unique identifiability of coefficients,
delays and initial conditions were also examined, necessary and sufficient conditions for
identifiability are available [85]. In case of non-linear systems, assuming constant integer
time delays, identifiability was examined in [89], however, identifiability analysis was re-
stricted to the ordinary parameters not including the delays. In [90] authors examined the
class of non-linear systems with a single constant time delay and considered the identifi-
ability problem of the delay parameter. It is shown that identifiability of the time delay
parameter is a necessary condition of observability of state variables and identifiability
of ordinary system parameters. The authors also showed that by state elimination, the
resulting input-output relations can be used to decide identifiability of the delay parame-
ter. Linear algebraic conditions are also obtained to eliminate explicit calculation of the
input-output relations for testing identifiability. In [91] the case of delay identifiability
in non-linear systems with unknown inputs was examined. The proposed approach is
based on the deduction of an output-delay equation, which is proven to be related to
identifiability. Assuming the existence of the output-delay equation, in the single delay
case sufficient and necessary conditions were derived for delay identifiability. The results
are shown to be necessary for the more general case of systems with multiple delays. For
the class of kinetic systems (a subclass of non-negative polynomial systems) polynomial
time algorithms were proposed for finding delayed system realizations with different pa-
rameterizations [J9]. This way an efficient computational method was obtained that can
be employed to test (local) structural identifiability. However, the delays are assumed to
be known, hence they cannot be involved in the identifiability analysis.

In this chapter a novel approach is proposed for testing structural identifiability of
non-linear time delayed systems. It is assumed that in the model structure the non-
linearities are analytic functions and the delays are constants. We consider the joint
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identifiability of the ordinary system parameters and the time delays. Making use of the
Volterra series representation of non-linear systems, sufficient conditions are provided for
structural identifiability. The generalized frequency response functions (GFRFs), i.e. the
Fourier transforms of the Volterra kernel functions, are used to construct identifiability
conditions. It is shown that structural identifiability of delayed systems can be traced
back to the unique solution of a set of equations with respect to the ordinary system
parameters and time delays.

2.3 Structural identifiability of time delayed systems
We consider a continuous SISO input-output dynamical system model

M(t, θ, u, y, p) = 0, (2.1)

where u and y are the input excitation and the respective output of the system. The
signals u and y can involve arbitrary number of constant time delays, i.e.

u =
{
u(t), u(t− T u1 ), . . . u(t− T uku

)
}
,

y =
{
y(t), y(t− T y1 ), . . . y(t− T yky

)
}
,

(2.2)

with ku, ky denoting the number of delayed components with respect to u and y, respec-
tively. θ denotes the set of parameters, which includes the time delays

T u1 , . . . T
u
ku
, T y1 , . . . T

y
ky
∈ R≥0.

θ is assumed to be independent of the initial conditions and the input signals. p denotes
the differentiation operator. The system operator M(.) is assumed to be analytic or it
can be approximated with an arbitrary accuracy by polynomial systems. We note that
the analytic assumption on M(.) is not restrictive as it is satisfied by several important
system classes, e.g. systems of polynomial non-linearities, which are widely used to model
physical, chemical and biological systems. Throughout the chapter, we assume zero initial
conditions for the system of in Eq. (2.1).

The input-output model structure defined by Eq. (2.1) may be obtained from non-
linear state space models by differential algebraic elimination of unobserved state variables
[17, 96].

Example 1. In order to illustrate the mapping M(.) we use the following simple system
model:

ẏ(t) = ay(t− T y1 ) + bu(t− T u1 ) + cy3(t− T y2 ), (2.3)

where yn(.) denotes the nth power of y(.). The parameter vector is θ = {a, b, c, T u1 , T
y
1 , T

y
2 },
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where a, b and c are ordinary system parameters, while T u1 , T y1 and T y2 are constant time
delay parameters. In this particular case M(.) takes the form

M(t, u, y, θ, p) = ẏ(t)− ay(t− T y1 )− bu(t− T u1 )− cy3(t− T y2 ). (2.4)

Prior to any parameter estimation procedure performed on a model of E.q (2.1), it is
useful to examine whether it is theoretically possible to uniquely determine the system
parameters.

Definition 1. The model of Eq. (2.1) is said to be structurally globally identifiable
(s.g.i.), if

y(t|θ) = y(t|θ̂) ⇒ θ = θ̂ (2.5)

for any admissible input and t ≥ 0 and any measurable value of θ, where y(t|θ) denotes
the output of the system Eq. (2.1) parameterized with θ.

If Eq. (2.5) is valid only in a bounded neighborhood V(θ) of θ, then the system is said
to be structurally locally identifiable (s.l.i.) around θ. If the system is not identifiable, it
is called structurally unidentifiable (s.u.i.). If the identfiability definitions are restricted
to a subset θ ⊂ θ, then the respective parameters θ are said to be s.g.i, s.l.i and s.u.i.

By involving the time delays in the parameter set θ, structural identifiability is consid-
ered jointly for the ordinary system parameters and the time delays.

Structural identifiability is a model property depending on the underlying model struc-
ture and initial conditions. It is independent of the amount and quality of data available
about the system dynamics.

2.4 Input-output representation for identifiability analysis

2.4.1 Volterra series representation for non-linear input-output
models

Here we provide the Volterra series representation for non-linear SISO system models.
The equivalent frequency domain representation is also detailed which will be extensively
used in the sequel for identifiability analysis.

The Volterra series representation of a dynamical system of the form of Eq. (2.1) can
be written as [93]:

y(t) = y0(t) +
∞∑
i=1

yi(t), (2.6)

where yn(t) is the nth-order non-linearity, which is represented by a series of generalized
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convolutional integrals:

yn(t) =
∫ ∞
−∞

. . .
∫ ∞
−∞

hn(τ1, . . . τn)
n∏
j=1

u(t− τj)dτj, (2.7)

where hn(τ1, . . . τn) is the nth-order Volterra kernel. hn(τ1, . . . τn) is a so-called general-
ized impulse response function. Clearly, for a linear mapping M(.), h1(τ1) is the impulse
response function known from linear system theory [105]. Necessary and sufficient condi-
tions for the existence of Volterra series representation of a non-linear dynamical system
are derived in [94]. If all the non-linearities in Eq. (2.1) are analytic (e.g. polynomial
systems) or can be approximated by polynomials with arbitrary precision, then the exis-
tence of input-output representation of the form Eq. (2.6) is guaranteed. Note that the
introduction of time delays in the input and output does not affect the analytic property
of the system model, hence Volterra series expansion is also available for time delayed
systems [100].

The frequency domain description of non-linear systems through the Volterra series
representation can be obtained by the multidimensional Fourier transformation of the
Volterra kernels [95]:

Hn(jω1, . . . jωn) =
∫ ∞
−∞

. . .
∫ ∞
−∞

hn(τ1, . . . τn)e−j(ω1τ1+...ωnτn)dτ1 . . . dτn. (2.8)

Hn(jω1, . . . jωn) is called the n-order Generalized Frequency Response Function (GFRF)
or simply the nth-order transfer function. Observe that for n = 1 Hn(jω1) is the known
linear transfer function. Since hn(τ1, . . . τn) and Hn(jω1, . . . jωn) are related through the
multi-variable Fourier transform, the n-order output can be expressed by the GFRFs:

yn(t) = 1
(2π)n

∫ ∞
−∞

. . .
∫ ∞
−∞

Hn(jω1, . . . jωn)
n∏
k=1

U(jωk)ej(ω1+...+ωn)tdωk. (2.9)

hn(.) and Hn(.), n ≥ 1 are independent of the input signal and they uniquely describe
of the input-output behavior of underlying non-linear system [101, 102]. However, since
the change of the order in the arguments τ1, . . . τn may result in different kernels without
affecting the input-output behavior, hn(.) andHn(.) are not necessarily unique descriptors.
Hence it is common to introduce the symmetrized GFRFs as follows:

Hsym
n (jω1, . . . jωn) = 1

n!
∑

all permutations
ofω1,...ωn

Hn(jω1, . . . jωn). (2.10)

The symmetric GFRFs are independent of the order of arguments and provide unique
representation [100].
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2.4.2 Computation of the GFRFs

In this section computation of the GFRFs for SISO systems is reviewed using the harmonic
probing method and the extraction operator [97, 98, 99]. Let us consider an arbitrary
non-linear input-output dynamical system model

M(t, θ, u, y, p) = 0, (2.11)

for which a Volterra series representation of Eq (2.6) exists. Since the output of the
system can be expressed by the GFRFs according to Eq. (2.9), Eq. (2.11) becomes

M(t, θ, u,H, p) = 0, (2.12)

with H = {Hn(jω1, . . . jωn)}n≥1. Expressing Hn(.) using Eq. (2.12) may lead to compli-
cated integral equations, which make the problem computationally intractable. In order
to remedy this problem, special input excitations can be employed. The harmonic probing
technique applies a multi-tone input of R distinct frequency components:

u(t) =
R∑
i=1

ejωit, (2.13)

where ω1, . . . ωR are arbitrarily chosen different frequencies. Then the respective Fourier
transform U(jω) is

U(jω) =
R∑
i=1

2πδ(jω − jωr). (2.14)

By applying the input Eq. (2.13) on the system Eq. (2.11), the output becomes

y(t) =
∞∑
n=1

R∑
r1,...rn=1

Hn(jωr1 , . . . jωrn)ej(ωr1+...+ωrn )t =

∞∑
n=1

∑
[all combinations
of R frequencies
taken n at a time]

∑
[all permutations
of ωr1 ,...ωrn ]

Hn(jωr1 , . . . jωrn)ej(ωr1+...+ωrn )t (2.15)

In order to determine Hn(.), it is convenient to choose n = R so that there is only one
non-repetitive combination of frequencies {ω1, . . . ωR}. Then the nth-order output can be
written as

yn(t) = n!Hsym
n (jω1, . . . jωn)ej(ω1+...+ωn)t + [terms of repetitive frequency components].

(2.16)
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By substituting Eq. (2.13) and Eq. (2.15) into Eq. (2.11) one obtains

M(t, θ, u(ΩR),H) = 0, (2.17)

where u(ΩR) denotes the harmonic input of Eq. (2.13) and ΩR = {ω1, . . . ωR} indicates
the set of R distinct different frequency components. Since M(t, θ, u(ΩR),H) is a linear
combination of distinct exponential basis functions, Eq. (2.17) is satisfied only with the
trivial linear combination, i.e. all the coefficients of the exponential terms must be equal
to zero. Then Hsym

n (.) can be determined as the coefficient of the exponential term of the
non-repetitive combination of the n distinct frequency components.

The harmonic probing technique is performed by means of the extraction operator εn[.]
[99].

Definition 2. The extraction operator εn[f ] on a differential algebraic expression f is
defined by the following consecutive steps:

1. Substitute Eq. (2.13) and Eq. (2.15) (with R = n) to the given expression f .

2. Extract the coefficient of ej(ω1+...+ωn)t.

Clearly, the extraction operator εn[.] returns the coefficient of the complex exponential
basis function containing n distinct frequency components.

Making use of the extraction operator, the equation

εn[M(t, θ, u, y, p)] = 0 (2.18)

can be used to determine the nth-order GFRF Hn(.).
We note that the discussed method is suitable for determining the GFRFs for non-linear

time delayed system and recursive algorithms are also available for this purpose [100]. For
a detailed explanatory computation of the GFRFs the Reader is refereed to [J1].

2.5 Testing structural identifiability with GFRFs
Making use of the generalized frequency response functions associated to a Volterra series
representation, sufficient conditions for joint structural identifiability of ordinary system
parameters and time delays can be derived in the form of algebraic equations. Compared
to other series expansion based structural identifiability tests, the proposed method allows
us for directly examining the identifiability of constant time delay parameters appearing
in the model structure. This can be performed since the time delay parameters appear in
the exponents of complex exponential functions in the GFRFs. From the exponents the
delay parameters can be easily extracted.
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Assuming that the Volterra series representation exists for a dynamical system model
M(t, θ, u, y, p) = 0, the unique GFRFs provide us with an exhaustive summary:

s(θ) =
{
Hsym
k (jω1, . . . jωk, θ)

}∞
k=1

, (2.19)

where Hsym
k (jω1, . . . jωk, θ) denotes the parameterized GFRF of order k and θ stands

for the set of parameters including time delays. Then testing structural identifiability
translates to the following equations:

Hsym
k (jω1, . . . jωk, θ) = Hsym

k (jω1, . . . jωk, θ̂), ∀ω1, . . . ωk, k ≥ 1. (2.20)

Here Hsym
k (.) is of the form of a fraction of complex exponential polynomials and we trans-

late Eq. (2.20) to the equality of the nominator and denominator polynomials. Clearly,
complex exponentials of different exponents are linearly independent of each other, which
means that the existence of a particular exponent in one polynomial implies that an ex-
ponential function of the same exponent appears in the other polynomial [104]. Then the
equality of exponential polynomials is equivalent to the equality of the respective coeffi-
cients. This way algebraic equations can be obtained for identifiability testing. Algebraic
conditions on the time delay parameters are derived as the equality of the respective
exponents.

Joint structural identifiability of ordinary parameters and time delays is equivalent
to the unique solution of Eq. (2.20) with respect to θ. However, in general case s(θ)
is composed of a countably infinite set of GFRFs, but in practice we are restricted to
a finite set of s(θ). This way sufficient conditions for structural identifiability can be
derived. Formally, if the relation

Hsym
k (jω1, . . . jωk, θ) = Hsym

k (jω1, . . . jωk, θ̂), k ≤ K =⇒ θ = θ̂ (2.21)

holds for someK ∈ N, then the parameters θ are structurally globally identifiable. Clearly,
if the above relation holds for a subset θ ⊂ θ, the subset θ is s.g.i.

Proposition 1. Let us consider a SISO dynamical system model M(t, θ, u, y, p). Assum-
ing that M(.) is an analytical function, sufficient condition of structural identifiability is
obtained by the GFRFs as follows

Hsym
k (jω1, . . . jωk, θ) = Hsym

k (jω1, . . . jωk, θ̂), k ≤ K =⇒ θ = θ̂ (2.22)

for any K ∈ N, K > 0.

Proof. Since Hsym
k (jω1, . . . jωk, θ) is unique for any k ≥ 0, any feasible parametrization θ̂

satisfies
Hsym
k (jω1, . . . jωk, θ) = Hsym

k (jω1, . . . jωk, θ̂), k ≤ K (2.23)
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for arbitrary K ∈ N. The number of equations of the form Eq. (2.23) to be satisfied by a
feasible parametrization θ̂ is infinitely countable, hence by a finite subset of K equations
sufficient conditions can be obtained.

Clearly, if Eq. (2.20) holds in a finite subset of the parameter space, then sufficient
conditions for local structural identifiability are derived.

If the model structure under study is proven to be weakly non-linear (i.e. a finite num-
ber of non-zero GFRFs exist), then the proposed approach provides sufficient and nec-
essary conditions for structural identifiability and structural non-identifiability of model
parameters can also be determined.

We note that the proposed method can be viewed as an extension of the transfer function
approach applied for identifiability analysis of linear time invariant systems [18]. If the
system under study is linear, then the Volterra series expansion is composed of a single
kernel function and the associated GFRF coincides with the frequency response function
known form linear system theory. It is clear that constant time delay parameters appear
explicitly in the exponents of the linear frequency response function. Since s(θ) involves
only a one-dimensional function H(jω), Eq. (2.20) reduces to a necessary and sufficient
condition.

We also indicate the relation to the generating series approach. It is based on the Fliess
functional series expansion of non-linear systems. In this case an exhaustive summary is
obtained as the coefficients of Fliess series expansion, which are the Lie derivatives of the
output signals. It can be shown that the Volterra series expansion is a reordering of the
Fliess decomposition [92, 103].

2.6 Examples
In this section we provide examples for structural identifiability testing of time delayed
non-linear model structures. First the GFRFs are determined using the harmonic probing
technique along with the extraction operator. Then structural identifiability of parameters
(including time delays) are assessed trough the equations Eq. (2.20).

Note that Hsym
k (.) is a fraction of sums of complex exponential basis functions. We

formulate structural identifiability of the system parameters as the equality of the coeffi-
cients of the complex exponential basis functions of the same exponents and identifiability
of time delay parameters is algebraically expressed as the equality of the respective expo-
nents.

1. Duffing oscillator with time delay

As a biologically motivated dynamic input-output model we consider the Duffing
oscillator, which is used for modeling EEG time series data [106]. The model is
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equipped with a time delayed term according to [100]. The differential equation
model describing the delayed Duffing oscillator is as follows:

ÿ(t) + k1ẏ(t) + k2ẏ(t− T ) + c1y(t) + k3y
3(t) = bu(t), (2.24)

where T ∈ R denotes a constant time-delay parameter. The parameter set of the
above system is θ = {k1, k2, k3, b, c1, T}.

In order to decide whether the parameters in θ are structurally identifiable, first
the GFRFs are computed based on the harmonic probing technique. The GFRFs
provide a set of algebraic equations in the system parameters so that the uniqueness
of the solution is sufficient condition of structural identifiability.

The first GFRF Hsym
1 (jω) can be determined by applying the input signal

u(t) = ejω1t. (2.25)

Then the respective system output – according to Eq. (2.15) – becomes

y(t) = H1(jω1)ejω1t (2.26)

Applying the extraction operator ε1[.] on the system Eq. (2.25) involves substituting
the input and the output into the system, and extracting the coefficient of ejω1 . Then
Hsym

1 (jω1) can be obtained by solving the equation

ε1[M(t, θ, u, y, p)] = 0, (2.27)

where

M(t, θ, u, y, p) = ÿ(t) + k1ẏ(t) + k2ẏ(t− T ) + c1y(t) + k3y
3(t)− bu(t) (2.28)

For the first order GFRF we obtain

Hsym
1 (jω1) = b

(jω1)2 + k1(jω1) + k2(jω1)e−jω1T + c1
(2.29)

The above solution of Hsym
1 (jω1) provides the following equations for structural

identifiability analysis:

b = b̂

(jω1)2 + k1(jω1) + c1 = (jω1)2 + k̂1(jω1) + ĉ1

k2(jω1)e−jω1T = k̂2(jω1)e−jω1T

(2.30)

Clearly, b and c1 are structurally globally identifiable. Depending on T two cases
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can be distinguished. If T = 0, then it follows that

k1 + k2 = k̂1 + k̂2, (2.31)

i.e. k1 and k2 are not structurally identifiable. If T 6= 0, then k1, k2 and T are struc-
turally globally identifiable. Note that the identifiability of k3 cannot be analyzed
via H1(jω1), since it does not account for higher order non-linearities, but k3 is the
coefficient of a 3rd-order term in Eq. (2.25).

Since Eq. (2.25) has no 2nd-order non-linearities, Hsym
2 (jω1, jω2) is absent.

To determine Hsym
3 (jω1, jω2, jω3), the input according to the harmonic probing

technique is of the form

u(t) = ejω1t + ejω2t + ejω3t. (2.32)

Applying u(t) along with the extraction operator ε3[.] on the system Eq. (2.25)
results in the 3rd-order GFRF as follows:

Hsym
3 (jω1, jω2, jω3) =

−k3H1(jω1)H1(jω2)H1(jω3)
(jω1 + jω2 + jω3)2 + (k1 + k2e(jω1+jω2+jω3)T )(jω1 + jω2 + jω3) + c1

.
(2.33)

The above equation of Hsym
3 (.) implies

k3 = k̂3, (2.34)

from which it follows that k3 is structurally globally identifiable and therefore the
model is globally structurally identifiable with respect to the whole parameter vector
θ if the delay is non-zero.

2. Non-linear state space model with multiple time delays

Let us consider the following non-linear delayed system model

ẋ1(t) = [θ1x2(t) + 1]u(t− τ1)− θ2x1(t),

ẋ2(t) = θ3x1(t),

y(t) = θ4x2(t) + θ5y(t− τ2),

(2.35)

with θi, i = 1, . . . 4 are ordinary parameters and τ1, τ2 are constant time delays.
We wish to decide whether the system is structurally identifiable with respect to
θ = {θ1, θ2, θ3, θ4, τ1, τ2}.

Since Eq. (2.35) involves unobserved state variables, they must be eliminated in
order to obtain an equivalent input-output relation containing the parameters θ.
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Such an input-output representation can be obtained by differential algebraic ma-
nipulations of the state space model.

We extended the equations with further derivatives

ẋ1(t) = [θ1x2(t) + 1]u(t− τ1)− θ2x1(t),

ẋ2(t) = θ3x1(t),

y(t) = θ4x2(t) + θ5y(t− τ2)

ẍ1(t) = θ1ẋ2u(t− τ1) + θ1x2(t)u̇(t− τ1) + u̇(t− τ1)− θ2ẋ1(t)

ẍ2(t) = θ3ẋ1(t)

ẏ(t) = θ4ẋ2(t) + θ5ẏ(t− τ2)

ÿ(t) = θ4ẍ2(t) + θ5ÿ(t− τ2)

(2.36)

Then Eq. (2.36) involves 7 equations from which the state variables and their
derivatives (6 unobserved variables) should be algebraically eliminated. In this ex-
ample elimination was performed by Mathematica, the resulted input-output model
associated to Eq. (2.35) is as follows:

− θ3θ4u(t− τ1) + θ1θ3θ5u(t− τ1)y(t− τ2)− θ2θ5ẏ(t− τ2)−

θ5ÿ(t− τ2) + θ2ẏ(t) + ÿ(t)− θ1θ3u(t− τ1)y(t) = 0
(2.37)

Now we can examine structural identifiability of θ based on the GFRFs associated
to Eq. (2.37). First the harmonic probing method is employed to determine the
first GFRFs.

For H1(jω1) we have

H1(jω1) = θ3θ4e
−jω1τ1

(jω1)2 + (jω1)2θ5e−jω1τ2 + θ2(jω1)− θ2θ5(jω1)e−jω1τ2
(2.38)

From the nominator we obtain the following equation

θ3θ4e
−jω1τ2 = θ̂3θ̂4e

−jω1τ̂2 . (2.39)

Clearly, complex exponential basis functions are linearly independent, that is

τ1 = τ̂1, (2.40)

and τ1 is structurally globally identifiable. Then it also holds that

θ3θ4 = θ̂3θ̂4, (2.41)

from which the structural identifiability of θ3 and θ4 does not follow.
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From the denominator of H1(jω1) we have

(jω1)2 + (jω1)2θ5e
−jω1τ2 + θ2(jω1)− θ2θ5(jω1)e−jω1τ2 =

(jω1)2 + (jω1)2θ̂5e
−jω1τ̂2 + θ̂2(jω1)− θ̂2θ̂5(jω1)e−jω1τ̂2

(2.42)

There are two different cases. If τ2 = 0, then the following equations hold for the
ordinary parameters:

θ5 = θ̂5,

θ2 − θ2θ5 = θ̂2 − θ̂2θ̂5,
(2.43)

from which we have that θ5 is s.g.i. Regarding θ5 there are two different cases. If
θ5 6= 1, then s.g.i of θ2 is guaranteed, otherwise it is not necessarily s.g.i.

If τ2 6= 0, then the linear independence of complex exponentials implies that τ2 = τ̂2,
i.e. τ2 is s.g.i. and the following set of equations are arising:

(jω1)2 + θ2(jω1) = (jω1)2 + θ̂2(jω1),

(jω1)2θ5 − θ2θ5(jω1) = (jω1)2θ̂5 − θ̂2θ̂5(jω1),
(2.44)

from which it can be seen that θ2 and θ5 are s.g.i.

In order to examine the identifiability of the remaining parameters let us consider
the 2nd order GFRF:

Hsym
2 =
−θ1θ3θ5H1(jω2)e−jω1τ1 − θ1θ3θ5H1(jω1)e−jω2τ1 + θ1θ3H1(jω2)e−jω1τ1 + θ1θ3H1(jω1)e−jω2τ1

−θ2θ52!e−j(ω1+ω2)τ2j(ω1 + ω2)− θ52!e−j(ω1+ω2)τ2 + θ22!j(ω1 + ω2) + 2![j(ω1 + ω2)]2
(2.45)

Clearly, the structure of the denominator of H2(jω1, jω2) is equivalent to that of
H1(jω), hence it does not provide us with further information on identifiability of
parameters. The nominator gives rise to the following equations for identifiability
testing:

− θ1θ3θ5 + θ1θ3 = −θ̂1θ̂3θ̂5 + θ̂1θ̂3, (2.46)

which cannot be used to prove identifiability of θ1 and θ3. Hence the 2nd-order
GFRF does not provide further insight into parameter identifiability.

Finally, based on the 1st-and 2nd-order symmetrized GFRFs, using the proposed
approach we obtained structural identifiability for a subset of parameters. We note
that higher order GFRFs may provide further insight into the identifiability of sys-
tem parameters.
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2.7 Summary
In this chapter a novel approach is introduced to examine joint structural identifiability
of ordinary system parameters and constant time delays in non-linear dynamical system
models. The systems under study are assumed to be of the form of input-output models
in which all the non-linearities are analytic functions and the time delays are constants.
From a practical point of view, the analytic assumption on the non-linearities is not
restrictive, for example it involves the class of polynomial systems, which is widely used
to model the dynamical behavior of complex physical, chemical and biological processes.
We also note that there is no constraint on the number of different delay parameters.

We employed the Volterra series representation of non-linear dynamical systems. In or-
der to test structural identifiability, the GFRFs, i.e. the Fourier transforms of the Volterra
kernels were used. The GFRFs have the advantageous property of containing explicitly
the time delay parameters of input and output signals. Since the symmetrized GFRFs are
unique, they can be used to construct an exhaustive summary of the underlying dynamic
input-output model structure. Based on the GFRFs, we derived equations of complex
exponential polynomials which are suitable to examine parameter identifiability. Unique
solution of the obtained equations with respect to some parameters implies parametric
uniqueness, this way sufficient condition of structural identifiability of the respective pa-
rameters is guaranteed. Furteher property of the GFRF-based approach is that structural
identifiability can be examined regardless of the input signals.

We illustrated the proposed method on time delayed non-linear system models. Among
the provided examples we treated the case of non-linear state space models with unob-
served state variables. Since the Volterra series modeling assumes input-output model
structure, first we performed differential algebraic manipulations to eliminate unobserved
variables. This way an equivalent input-output model structure can be obtained that
contains all the parameters. In the provided example the resulting input-output repre-
sentation was suitable to prove structural identifiability of a subset of the parameters by
means of the proposed method.
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3 Computing different realizations of
linear dynamical systems

3.1 Mathematical notations

Θ parameters of a state space model, formally Θ = (A,B,C,D)
Ad notation of dense state transition matrix
As notation of sparse state transition matrix
M state feedback matrix, M ∈ Rn×n where n is the dimension of the state vector

Table 3.1: Notations specific to chapter 3.

3.2 Background
Many problems in computer science and engineering involve sequences of real-valued mul-
tivariate observations. It is commonly assumed that observed quantities are correlated
with some underlying latent (state) variables that are evolving over time. Assuming lin-
ear dependencies among the latent states and the observed variables leads us to linear
dynamical systems. The application of linear systems is ubiquitous, ranging from dy-
namical systems modeling to time series analysis, including econometrics, meteorology,
telecommunication, biomedical signal processing [8, 9].

The aim of system identification is to construct parametrized models of dynamical sys-
tems by observing their input-output trajectories [10, 11]. Estimating the parameters
of linear dynamical systems is often solved by maximum likelihood method along with
expectation maximization or numerical optimization [12, 13, 14, 15, 16]. Though the
underlying mathematical representation of linear systems is simple, since the associated
optimization problem to be solved is generally non-convex, estimating their parameters
could be a computationally complicated task and efficient algorithms with theoretical
guarantees are obtained only in restricted cases [15]. A related problem, structural identi-
fiability examines the theoretical problem of whether it is possible to uniquely determine
the model parameters, assuming perfect observational data [17, 18, 58]. It turns out
that even in the case of linear dynamical systems, the underlying parameters may not
be uniquely determined, i.e. different parametrizations of the same model structure may
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provide us with the same dynamical behavior. The structural identifiability of delayed
non-linear input-output models is discussed in chapter 2.

Assuming linear dependence of the underlying state variables and outputs, the Markov
parameters provide relationship between input-output data and state space realizations.
Determining the Markov parameters of linear dynamical systems from input-output data
is one of the fundamental problems of linear system identification. The difficulty with
Markov parameter estimation from observations is that generally a large number of
Markov parameters are required to precisely quantify the dynamical behavior, especially
in the case of lightly damped systems. To remedy this problem the eigenvalue assignment
procedure can be employed which reformulates the linear state equation in an equiva-
lent closed-loop form [27, 28, 29]. If the closed-loop representation can be achieved by a
stabilizing output feedback, then the number of distinct non-zero closed-loop Markov pa-
rameters is guaranteed to be finite and the respective input-output behavior of the system
can be written in the form of a simple ARX model which can be easily identified. The
system Markov parameters from that of the closed-loop system can be uniquely computed
by means of an iterative procedure [27].

Once Markov parameters are obtained, one needs to recover the underlying state space
model parameters of the observed system. Realization algorithms aims at determining
the parameters of state space models from the identified Markov parameters. The first
realization algorithm, known as the Ho-Kalman algorithm, computes the singular value
decomposition (SVD) of the Hankel matrix. Using the SVD the observability and con-
trolability matrices of the system can be determined [19, 20]. Then these can be used
to compute state space matrices. Assuming that only a finite N0 number of Markov pa-
rameters are given, the problem arising is called partial realization problem which can
be solved by the Ho-Kalman algorithm: a minimal state space realization from the block
Hankel matrix is constructed so that the first N0 Markov parameters are equal to the
prescribed ones [21]. The Eigensystem Realization Algorithm (ERA) extends the Ho-
Kalman algorithm [22]. ERA constructs a minimal realization that mimics the output
of the system when subjected to unit pulse input. In order to better handle noise and
structural non-linearities an extension of ERA was also proposed which is called as ERA
with data correlation (ERA/DC) [23]. General Realization Algorithm (GRA) extends the
ERA by singular value decomposition of a weighted Hankel matrix which is constructued
by explicitly using the input data. If the exciting signal is an impulse signals, GRA is
reduced to ERA.

One can observe a growing interest in both quantitative and qualitative examination
of the underlying interconnected structure of dynamical systems [33, 34, 35, 36, 37].
There is a growing importance of large scale distributed engineering systems, such as
power grids, distributed computing networks and intelligent transportation networks that
are composed of smaller functional subunits. The underlying interconnected structure
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of state variables attracted much attention in the context of physico-chemical systems
such as chemically interacting species composing systems biological networks: gene reg-
ulatory networks, protein-protein interaction networks, metabolic networks and signal
transduction pathways [39, 40]. Analyzing the locally connected structure of social net-
works could help us understand how viruses and information spread across the population
[38, 45, 46, 47]. Subsystems, functional units are locally connected to each other according
to some physical interaction topology encoded by their differential equation based descrip-
tion. The distributed, locally connected structure of dynamical systems poses important
requirements towards efficient computational approaches, e.g. distributed controller syn-
thesis methods over traditional centralized control algorithms [24, 25].

For kinetic systems – a class of non-negative polynomial systems having applications in
modeling biochemical processes – it is known that a weighted directed graph structure can
be associated. The graph contains information about the state variables and parameters
of the system, this way encodes the functional interaction patterns of the components
(state variables). It has been shown that in case of structural non-identifiability, differ-
ent dynamically equivalent realizations may lead to structurally non-unique interaction
patterns of the components [30, 31, J9], i.e. the same dynamical behavior is provided
by different interaction topologies. The weighted directed graph topology is encoded in
the form of a column conservation matrix, called Kirchhoff matrix, which takes part in
formulation of the coefficient matrices of the associated polynomial differential equations.
It has been shown that the feasible set of Kirchoff matrices associated to a particular
kinetic system is convex. This result is extensively used to propose convex optimization
based algorithms capable of determining structurally different realizations of kinetic sys-
tems so that they can also take into account convex parametric uncertainties and time
delays [30, 31, J9].

In the context of linear dynamical systems the state transition matrix has the role
of encoding the underlying interconnected topology of state variables. Structural non-
identifiability of the entries in the state transition matrix may have important implica-
tion on the pattern of interaction topology of the variables: there may exist structurally
different state transition matrices – i.e. different interconnected topologies of the state
variables – providing the same Markov parameter sequence, i.e. input-output relation.
Note that structural identifiability refers to the property of unique parameter identifia-
bility of a system, while the structure of a state transition matrix means the non-zero
patterns of the off-diagonal entries in the matrix.

In this chapter we investigate realizability and structural properties of discrete time
linear (time invariant) dynamical systems (DT-LDS). We examine structural implications
of non-unique realizability on the interaction pattern of the state variables as they are
encoded in the state transition matrix. We examine the non-uniqueness of state transition
matrix of DT-LDSs. Assuming fixed input matrix B and invertible observation matrix
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C we prove that the feasible set of system matrices formulate a convex set. We devote
particular attention to DT-LDSs of state transition matrices that are constrained to be
of Metzler property. This constraint involves important linear systems, e.g. multi-agent
system models and social networks [26, 49, 50]. Using the eigenvalue assignment procedure
we formulate a convex optimization based procedure that can be efficiently employed to
find different realizations of DT-LDSs. Assuming the Metzler property and making use
of the convexity of the feasible set of system matrices we provide algorithms capable of
determining structurally different dynamically equivalent state space realizations.

3.3 Mathematical preliminaries and problem formulation
A discrete time linear dynamical system (DT-LDS) in state space representation is given
by a tuple Θ = (A,B,C,D) and the associated system of difference equations (DEs) is as
follows:

x(k + 1) = Ax(k) + Bu(k), x(0) = x0,

y(k) = Cx(k) +Du(k),
(3.1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rn×n and D ∈ Rn×m. x(k) ∈ Rn denotes the vector of
state variables, u(k) ∈ Rm and y(k) ∈ Rn are the input and the associated output of the
system.

Though the solution associated to a particular parametrization Θ and initial condition
x0 is unique, the parameters characterizing the underlying dynamics are not necessar-
ily. There may exist distinct Θ, Θ′ parametrizations of the same input-output behavior
meaning that the system is not structurally identifiable. In order to make the chapter
self-contained, here we define again structural identifiability in the context of DT-LDSs.

Definition 3. A system of the form of Eq. (3.1) is said to be structurally (globally)
identifiable, if for any admissible input u(k) and k ≥ 0 we have that

y(k|Θ1) = y(k|Θ2) ⇒ Θ1 = Θ2,

where y(k|Θ) denotes the output of the system Eq. (3.1) parametrized by Θ.

If the condition of structural identifiability does not hold, the system is said to be
structurally non-identifiable.

In case of structural non-identifiability, in order to quantitatively characterize the sys-
tem, it is appealing to describe the feasible set of possible parameters. A quantitative
characterization of the feasible set may help us finding realizations of favorable properties,
such as sparsity.
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Definition 4. It is said that a tuple Θ′ = (A′, B′, C ′, D′) is a (dynamically equivalent)
realization of a DT-LDS of the form Eq. (3.1) parametrized by Θ, if Θ′ provides the same
input-output behavior, i.e. y(k|Θ′) = y(k|Θ) for any admissible input signal u(k), k ≥ 0.

By recursively expanding Eq. (3.1) one can obtain the input-output equations – a
common starting point of system identification – of the following form:

y(k) = CAkx(0) +
k−1∑
i=0

Yk−i−1u(i) +Du(k), (3.2)

where the terms Yk−i−1 = CAk−i−1B and D are called the Markov parameters of the
systems which are unique descriptors of the input-output behavior and are invariant to
any invertible state transformations. Since Markov parameters are unique regarding the
input-output behavior, we can formulate sufficient and necessary condition of dynamical
equivalence with respect to the Markov parameters as follows: a tuple Θ′ = (A′, B′, C ′, D′)
is a dynamically equivalent realization of Y = {Yk = CAkB}k≥0, if it satisfies Yk =
C ′A′kB′ for k ≥ 0 and D′ = D.

A related problem of structural non-identifiability of DT-LDSs is the existence of dis-
tinct, A, A′ ∈ Rn×n state transition matrices having different patterns in their non-zero
entries, i.e. structurally different state transition matrices. Assuming that Eq. (3.1) de-
scribes the dynamical behavior of a network-based system, the state transition matrix A
can be viewed as a weighted adjacency matrix characterizing the interactions – in terms
of both the interaction pattern and the magnitudes – among the components, i.e. state
variables [26]. Such a way structural non-uniqueness of a network topology can be recast
as an identification problem, namely finding structurally different n-dimensional state
space realizations.

In this work we concerned with the existence of different DT-LDS realizations and focus
on the non-uniqueness and structure of the feasible state transition matrices.
Assumptions: throughout this chapter it is assumed that a DT-LDS is given by a

state space realization Θ = (A,B,C,D) and the matrices B, C and D are fixed over all
the dynamically equivalent realizations of interest. We set C ∈ Rn×n to be invertible.
Regarding the initial condition we assume x(0) = 0n.

By fixing the matrices B, C and D we explicitly restrict our attention to dynamically
equivalent realizations with different system matrices, but fixed input and output patterns.
This is particularly important in the context of network-based dynamical systems where
different state transition matrices incorporate distinct interaction patterns of the system
components. We note that the invertibility of C covers the case of fully observable state
variables.

Making use of the Markov parameter based description together with the above as-
sumptions, the following constraint set can be employed in order to express dynamical
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equivalence of different realizations:

CAkB = CA′kB, k ≥ 0. (3.3)

One difficulty with respect to the above constraint set is that generally we have a countably
infinite set of Markov parameters Y = {Yk}k≥0 implying infinitely many constraints of the
from Eq. (3.3). On the other hand, the terms CA′kB are non-linear and are not convex
in the entries of A′ – even for stable systems of nilpotent state transition matrices – which
could easily make the identification problem computationally intractable.

In this chapter the identifiability of the above defined class of DT-LDSs is studied.
Since the B and C state space realization matrices are fixed, structural identifiability is
restricted to the state transition matrix A. We wish to quantitatively characterize the
feasible set of state transition matrices in the studied class of DT-LDSs. We also address
the problem of determining structurally different n-dimensional realizations of a DT-LDS
given by a particular initial state space realization Θ.

3.4 Embedding eigenvalue assignment procedure
In this section a static full-output feedback based approach is used for stabilizing a DT-
LDS and constructing a compressed set of closed-loop Markov parameters. The procedure
detailed here is known as embedding eigenvalue procedure and applied in DT-LDS iden-
tification to recover the Markov parameters [27, 28].

Let us take a DT-LDS of Eq. (3.1). By taking an arbitrary M ∈ Rn×n we can refor-
mulate Eq. (3.1) as follows:

x(k + 1) = Ax(k) + Bu(k) +My(k)−My(k)

y(k) = Cx(k) +Du(k).
(3.4)

Then for the state equation we have

x(k + 1) = (A+MC)x(k) + (B +MD)u(k)−My(k). (3.5)

Let us introduce the following matrices and new input variable

A = A+MC, (3.6)

B = [B +MD, −M ], (3.7)

v(k) = [u(k) y(k)]>. (3.8)

Then the state space model Eq. (3.1) can be reformulated in the following equivalent

33

DOI:10.15774/PPKE.ITK.2022.003



form:

x(k + 1) = Ax(k) + Bv(k)

y(k) = Cx(k) +Du(k).
(3.9)

Now by recursively expanding Eq. (3.9) the input-output behavior can be expressed as

y(k) = CA
k
x(0) +

k−1∑
i=0

CA
i−1
Bv(k − i) +Du(k). (3.10)

If M can be chosen so that A = A + MC is a stability matrix, then for the Markov
parameters asympthotically we have

lim
i→∞

CA
i
B = 0 (3.11)

In this case, Eq. (3.10) can be approximated as

y(k) ≈
p−1∑
i=0

CA
i−1
Bv(k − i) +Du(k) (3.12)

for a suitably high p ∈ N. In particular, if A + MC is set to be nilpotent, then
(A + MC)n = 0n×n holds. Note that such a stabilizing M matrix exists, if the sys-
tem Eq. (3.1) is observable [27]. Such a way the countable set of Markov parameters
Y = {CB, CAB, CA2B, . . . } is compressed to a finite set

Y = {CB, CAB, CA2
B, . . . CA

n−1
B}. (3.13)

For the compressed Markov parameters we introduce the notation Y k = CA
k
B.

It can be shown that the system Markov parameters Y can be uniquely recovered from
that of the closed-loop system Y of Eq. (3.9) as follow: [27, 28]:

Yk = Y
(1)
k +

k−1∑
i=0

Y
(2)
i Yk−i−1 + Y

(2)
k D, k ≥ 1, (3.14)

where

Y k = CA
k
B =

[
C(A+MC)k(B +MD) − C(A+MC)kM

]
= [Y (1)

k Y
(2)
k

]
(3.15)

for k ≥ 1.
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3.5 Representing different realizations using a
compressed set of Markov parameters

In this section we show that dynamic equivalence of n-dimensional DT-LDS realizations
can be traced back to a finite set of linear equations. We make use of the eigenvalue
assignment procedure, such a way instead of a countably infinite set of Markov parameters
Y one can consider a compressed set of n Markov parameters Y of a (stabilized) closed-
loop system. By an inductive proof a linear reformulation of the non-convex equations
of Eq. (3.3) is provided. We also show the existence of a bijection between the original
state space realizations and the closed-loop system realizations.

Making use of the embedding eigenvalue assignment procedure we can obtain a finite
set of compressed system descriptors Y = {Y k}n−1

k=0 which is unique with respect to the
closed-loop system. Finding different realizations of Y can be recast in the form of a finite
set of non-linear equations:

CA′
k
B = CA

k
B, k = 1, . . . n. (3.16)

Note that the nilpotency of A implies that the nth equation is equivalent to CA′nB =
0n×(n+m), furthermore, the invertability of C means that CA′kB = 0n×(n+m) for k ≥ n.

Eq. (3.16) together with CA′nB = 0n×(n+m) provide us with a finite set of constraints
to be satisfied by all the dynamically equivalent realizations (A′, B, C,D) of Y . However,
Eq. (3.16) contains high non-linearities in A′ which makes the identification problem
non-convex and computationally intractable.

Proposition 2. Let us consider a DT-LDS of Markov sequence Y with a state space
representation Θ = (A,B,C,D). Assume that ∃C−1. Then we have that

CAkB = CA′Ak−1B, k ≥ 1 (3.17)

holds for any feasible n-dimensional realization Θ′ = (A′, B, C,D) of Y .

Proof. Let us assume that Θ′ = (A′, B, C,D) is a dynamically equivalent realization of Y
we have that

CAkB = CA′kB, k ≥ 0.

For k = 1
CAB = CA′B = CA′A0B.

By induction assume that for some k > 1 the equation CAkB = CA′kB holds. Then

CAk+1B = CA′k+1B = CA′A′kB = CA′C−1CA′kB = CA′C−1CAkB = CA′AkB.
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Making use of Proposition 2 the constraint set defined by Eq. (3.3) can be equivalently
reformulated as CAkB = CA′Ak−1B for k ≥ 0 which are linear in A′. Similarly one can
formulate a finite set of linear constraints for the closed-loop system:

CA
k
B = CA′A

k−1
B, k = 1, . . . n (3.18)

By equipping Eq. (3.18) with a linear objective function c : Rn×n 7→ R, we result in a
linear program of the decision variables A′, e.g.:


minA′ c(A′)

subject to

CA
k
B = CA′A

k−1
B, k = 1, . . . n

(3.19)

Such a way a computational model is provided to determining dynamically equivalent
realizations (A,B,C,D) of the closed-loop system Y = {CAkB}nk=1. Furthermore, the
feasible set of solutions of the linear program (3.19) provides all the dynamically equivalent
realizations of Y . We note that in the optimization problem (3.19) the decision variables
are the entries of the matrix A′, i.e. the number of decision variables is n2 where n is the
dimension of the system.

Now it can be shown that the resulted closed-loop state transition matrix A′ can be used
to reconstruct an n-dimensional realization of the open loop system Eq. (3.1) described
by the initial countable set of Markov parameters.

Proposition 3. Let us consider a closed-loop DT-LDS Y with a state space representation
Θ = (A,B,C,D) so that An = 0n×n, A = A + MC and B = [B + MD,−M ] for some
A,M ∈ Rn×n and B ∈ Rn. Assume that there exists A′ ∈ Rn×n, A′ 6= A so that

CA
k
B = CA′

k
B, k = 1, . . . n,

i.e. Θ′ = (A′, B, C,D) is a dynamically equivalent realization of Y . Then Θ′ = (A′, B, C,D)
is a dynamically equivalent realization of Y = {CAkB}k≥0, where A′ = A′ −MC.

Proof. For the sake of convenience we introduce the following notations

Yk(A) = CAkB, Y k(A) = CA
k
B,

Y
(1)
k (A) = C(A+MC)k(B +MD), Y

(2)
k (A) = −C(A+MC)kM

to emphasize the dependence on a particular A. Eq. CA
k
B = CA′

k
B implies that

Y
(1)
k (A) = Y

(1)
k (A′) and Y

(2)
k (A) = Y

(2)
k (A′) hold for k ≥ 1. Since Y0 = CB does not

depend on the state transition matrix, applying recursively Eq. (3.14) for k ≥ 1 we
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obtain that Yk(A) = Yk(A′), k ≥ 0, i.e. Θ′ = (A′, B, C,D) is a dynamically equivalent
realization of Y .

3.6 The geometrical structure of the set of feasible
system matrices

In this section we consider the set of feasible n-dimensional system matrices. We prove
that for fixed B, C and D parameters, the set of feasible system matrices with respect
to any Y Markov sequence is convex. The set of feasible system matrices is denoted as
follows:

A(Y , B, C,D) =
{
A

∣∣∣∣ A ∈ Rn×n, (A,B,C,D) is a realization of Y = {Yk}k≥0

}
. (3.20)

Proposition 4. Let us consider a countable sequence of Markov parameters Y realizable
by a state space realization (A,B,C,D) of order n and denote A(Y , B, C,D) the set of
feasible n-dimensional system matrices as it is defined by Eq. (3.20). Assume that C is
invertible. Then A is convex.

Proof. Let us consider two matrices A1, A2 ∈ Rn×n so that (A1, B, C,D) and (A2, B, C,D)
are realizations of Y . From Proposition 2 it follows that for any a ∈ (0, 1)

CAkB = aCAkB + (1− a)CAkB =

aCA1A
k−1B + (1− a)CA2A

k−1B = C
(
aA1 + (1− a)A2

)
Ak−1B, k ≥ 1

(3.21)

In the sequel for the sake of convenience we use the notation Â = aA1 + (1− a)A2.
Now by induction we prove that CAkB = CÂkB for k ≥ 1.
For l = 1 we have

CAB = C
(
aA1 + (1− a)A2

)
B.

Using the inductive assumption CAlB = CÂlB for general l we obtain that

CAl+1B = CÂAlB = CÂC−1CAlB =

CÂC−1CÂlB = CÂl+1B

We have that any convex combination aA1 + (1 − a)A2 results in a feasible state space
realization (aA1 + (1− a)A2, B, C,D) of the Markov sequence Y .
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3.7 Characterizing structurally different system
realizations

In this section we consider realizations of special structure in their state transition ma-
trices. The off-diagonals are constrained to be non-negative. State transition matrices
having non-negative off-diagonal entries are particularly important when the purpose is to
model networks of interacting components: non-zero off-diagonal entries could represent
the magnitude of interactions while negative diagonals may incorporate to information or
mass leakage. Positive systems – in which all the entries of the state transition matrix
are constrained to be non-negative – compose a widely-studied class of linear time invari-
ant systems with the above structural properties [41]. Discrete time linear compartmental
models – having many applications in modeling biological systems – also satisfy the above
non-negativity condition [42, 43]. Social networks provide an important application field
of modeling discrete time dynamical systems defined on networks [45, 46, 47, 48]. The De-
Groot and Friedkin-Johnsen models are well-known discrete time linear models of opinion
dynamics and information spreading in networks where the off-diagonal entries of state
transition matrices are also constrained to be non-negative [49, 50].

Formally, for a Markov sequence Y we restrict our attention to realizations Θ =
(A,B,C,D) so that A is Metzler, i.e. [A]ij ≥ 0 for i 6= j. Then the feasible set of
state transition matrices can be defined as follows:

Ap(Y , B,C,D) =
{
A

∣∣∣∣∣ [A]ij ≥ 0 for i, j = 1, . . . n, i 6= j, (A,B,C,D) is a realization of Y
}
,

(3.22)
where the superscript p refers to the fact that we will be concerned with the positive off-
diagonal entries. Note that the convexity of Ap(Y , B, C,D) is guaranteed as a corollary
of Proposition 4 which can be seen as follows. For any A1, A2 ∈ Ap(Y , B, C,D), the
convex combination aA1 + (1 − a)A2 with a ∈ (0, 1) is a feasible state transition matrix
in A(Y , B, C,D). Since a convex combination is a linear combination with non-negative
coefficients, the sign of the off-diagonal entries remain non-negative, i.e. Ap(Y , B, C,D)
is convex.

Now with respect to the set Ap(Y , B, C,D) we identify matrices having distinguished
structural properties and show how they relate to all the other feasible state transition
matrices.

In order to ease the discussion of structural properties state transition matrices, we
introduce a simple graph-based description of DT-LDSs with state transition matrices of
Metzler-type using the analogy of influence graphs in the literature of positive systems
[41]. Considering a state transition matrix A ∈ Rn×n, the associated directed graph
representation G(A) = (E, V ) is defined as follows. V , the set of nodes corresponds to
the set of states of the associated DT-LDS. E, the set of edges represents the influences
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between state variables, i.e. (i, j) ∈ E if and only if [A]ij > 0. Such a way G(A) provides
a unique description of the structure of A.

In the sequel the term structure of a state transition matrix A ∈ Ap(Y , B, C,D) refers
to the structure (topology) of the associated directed graph representation G(A) as it is
defined above.

Definition 5. Let us consider a DT-LDS Y with fixed B ∈ Rn×m, C ∈ Rn×n and
D ∈ Rn×m. A matrix A ∈ Ap(Y , B, C,D) is called dense (sparse) state transition matrix
if it contains the maximal (minimal) number of non-zero off-diagonal entries. Then the
associated realization Θ = (A,B,C,D) is said to be a dense (sparse) realization.

Definition 6. Let us consider a DT-LDS Y with fixed B ∈ Rn×m, C ∈ Rn×n and D ∈
Rn×m. A state transition matrix A ∈ Ap(Y , B, C,D) is said to have superstructure prop-
erty, if its graph representation G(A) contains the graph representations of all other feasi-
ble Metzler system matrices as subgraphs, formally G(A′) ⊆ G(A) ∀A′ ∈ Ap(Y , B, C,D).

It can be shown that a dense realization provides a superstructure with respect to
Ap(Y , B, C,D).

Proposition 5. Let us consider a DT-LDS of Markov parameters Y with fixed B ∈ Rn×m,
C ∈ Rn×n and D ∈ Rn×m state space realization matrices. Any dense state transition
matrix Ad ∈ Ap(Y , B, C,D) is of superstructure property.

Proof. Assume that there exists a dense state transition matrix Ad ∈ Ap(Y , B, C,D) so
that Ad has no superstructure property. Then it follows that there exists a state transition
matrix A ∈ Ap(Y , B, C,D) for which there is an index-pair (i, j), i 6= j so that [A]ij > 0,
but [Ad]ij = 0. The convexity of Ap(Y , B, C,D) guarantees that for any a ∈ (0, 1) the
resulted matrix A′ = aA + (1 − a)Ad provides a dynamically equivalent realization with
non-negative off-diagonal entries, i.e. A′ ∈ Ap(Y , B, C,D). Such a way we obtained a
state transition matrix A′ having more non-zero off-diagonal entries, than Ad has, which
is contradiction.

Corollary 1. Let us consider a Markov sequence Y . For any B ∈ Rn×m, C ∈ Rn×n and
D ∈ Rn×m, there exists a structurally unique state transition matrix Ad having maximal
number of non-zero off-diagonal entries with respect to Ap(Y , B, C,D).

3.8 Computational framework for finding structurally
different realizations

In this section first we assume a state space realization Θ = (A,B,C,D) so that its
respective Markov parameter sequence Y is of finite-length, i.e. CAkB = 0n×m, k ≥ p
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for some finite p. Examining the realizability of finite-length Markov sequences can be
motivated by a partial realization problem or realizability analysis of stable and damping
systems having only a finite number of non-zero Markov parameters [27, 44].

Algorithms for determining structurally different realizations of DT-LDS with respect
to Ap(Y , B, C,D) are provided. Making use of the convexity of Ap(Y , B, C,D), we adopt
algorithms proposed for mass action law kinetic systems and show that structurally dif-
ferent realizations regarding the feasible set of Metzler system matrices Ap(Y , B, C,D)
can be efficiently obtained [30]. We prove that a dense state transition matrix Ad in
Ap(Y , B, C,D) can be computed in polynomial time using a convex optimization based
procedure. Then it can be also shown that all the structurally different realizations of
Ap(Y , B, C,D) can be determined by iteratively computing constrained dense realizations.

Finally we show that using the eigenvalue assignment procedure, the proposed algo-
rithms can be extended to compute structurally different realizations of DT-LDSs of
arbitrary Markov parameter sequences.

3.8.1 Algorithm for computing dense realization

Here we provide an algorithm capable of finding a dense realization with respect to
Ap(Y , B, C,D) in polynomial time, given that Y is a finite sequence. The correctness of
the algorithm follows from the convexity of Ap(Y , B, C,D). First we define a subroutine
denoted by FindRealization in order to determine feasible state transition matrices.
FindRealization:

(
Θ = (A,B,C,D), L,H

)
: returns a tuple (A′, P ) so that A′ ∈ Rn×n

is a feasible state transition matrix of Metzler-type, i.e. A′ ∈ Ap(Y , B, C,D), and the
objective function ∑(i,j)∈H [A′]ij is maximized by A′, where H is a set of index pairs. L
denotes a set of index pairs so that [A′]ij = 0, if (i, j) ∈ L. Formally, A′ is obtained as
the solution of the following linear program:



maxA′
∑

(i,j)∈H
[A′]ij

subject to

CAkB = CA′Ak−1B, k = 1, . . . p

[A′]ij = 0, (i, j) ∈ L

(3.23)

The optimization problem 3.23 is employed to find a dense dynamically equivalent
realization. Algorithm FindDenseRealization 1 makes use of the convexity of the
set of feasible state transition matrices. It computes a finite series of realizations by
consecutively running FindRealization 3.23 with different constraints encoded by L.
Note that L encodes the entries to be zero in the results returned by the optimization of
FindRealization.
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Algorithm 1 FindDenseRealization
Input: Θ = (A,B,C,D), L
Output: Result
1: H ← {1, . . . , n2 − n}
2: P ← H

3: Ad ← 0n×n

4: loops← 0
5: while TRUE do
6: (A′, P )← FindRealization(Θ = (A,B,C,D), L,H)
7: if P 6= ∅ then
8: BREAK
9: end if

10: Ad ← Ad + A′

11: H ← H \ P
12: loops← loops+ 1
13: end while
14: if Ad 6= 0n×n then
15: Ad ← Ad

loops

16: return Ad //Result is a dense realization.
17: else
18: return -1 //There is no feasible realization.
19: end if

Proposition 6. The state transition matrix Ad returned by algorithm FindDense-
Realization(Θ = (A,B,C,D), L) provides a dynamically equivalent realization Θ′ =
(A′, B, C,D) of the DT-LDS with Markov parameters Y = CAkB, k = 1, . . . p. Further-
more, Ad is dense among all the state transition matrices in Ap(Y , B, C,D) satisfying the
zero-constraints defined by L. Ad is computed in polynomial time.

3.8.2 Algorithm for computing all structurally different realizations

Here we describe an algorithm capable of determining all structurally different real-
izations of any DT-LDS Θ = (A,B,C,D) with respect to Ap(Y , B, C,D), given that
Y = {CAkB}pk=0 with p > 0 finite. Making use of Algorithm FindDenseRealization
described in the previous section, the proposed computational method iteratively finds
constrained dense realizations. Such a way all distinct structure can be obtained.

Assuming a fixed ordering of the state variables, we introduce the notation R to denote
the set of binary sequences of length (n × n) − n encoding the structure of non-zero off-
diagonal patterns of the system matrices. The i’th entry of R ∈ R is denoted by R[i].
An edge e is in the graph G(A) iff there exists an index i ∈

{
1 . . . |E(G(A))|

}
for which
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e = ei and R[i] = 1. We use z to denote the length of the sequence.
We introduce the array Exist of 2|R| binary variables such that Exist[R] = 1 iff there

exists a dynamically equivalent realization encoded by the sequence R ∈ R.
A stack S is employed to temporarily store tuples of the form (R, k) with R ∈ R and

k ∈ N. The command ’push (R, k) into S’ pushes the tuple (R, k) into S, while ’pop from
S’ returns the last tuple (R, k).

We say that the binary relation =k holds between the sequences R,W ∈ R (R =k W )
if for i = 1 . . . k, R[i] = W [i]. The equivalence class of the relation =k for which R is
a representative element is denoted by Ck(R). Note that for an equivalence class more
representative elements may exist.
The following subroutines are employed in the algorithm:

1. FindDenseRealizationSequence(Θ = (A,B,C,D), R, k, i): computes a dense
state transition matrix Ad with respect to Ap(Y , B, C,D), given a sequence R ∈ R
and k, i ∈ N. It returns a feasible state transition matrix A ∈ Ap(Y , B, C,D) and
the associated binary sequence W ∈ R so that W =k R and for every W [j] = 0 for
j = k + 1, . . . i. If such a reaction does not exist returns -1.

Note that FindDenseRealizationSequence can be implemented by means of
FindDenseRealization.

2. FindNextOne(R, k) returns the smallest index i for which k < i and R[i] = 1. If
R[i] = 0 for all k < i then it returns z+1 where z denotes the length of the sequence
encoding the graph structures.
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Algorithm 2 FindAllRealizations
Inputs: Θ = (A,B,C,D)
Output: Exist
1: D ← FindDenseRealization(Θ = (A,B,C,D), ∅)
2: push (D, 0) into S
3: Exist[D]← 1
4: while size(S) > 0 do
5: (R, k)← pop from S

6: i← FindNextOne((R, k))
7: if i < z then
8: push (R, i) into S
9: end if
10: while i < z do
11: (A′,W )← FindDenseRealizationSequence(Θ = (A,B,C,D), R, k, i)
12: if W < 0 then
13: BREAK
14: else
15: i← FindNextOne(W, i)
16: Exist[W ]← 1
17: if i < z then
18: push (W, i) into S
19: end if
20: end if
21: end while
22: end while

Proposition 7. Algorithm FindAllRealizations(Θ = (A,B,C,D)) determines all struc-
turally different dynamical equivalent state transition matrices of a DT-LDS given by
Θ = (A,B,C,D) with respect to Ap(Y , B, C,D), provided that Y = {CAkB}pk=0 for
some finite p > 0.

3.8.3 Extension to arbitrary DT-LDS

This section extends the aforementioned results in order to find structurally different
realizations of arbitrary DT-LDS. We consider a DT-LDS Θ = (A,B,C,D) so that there
are no constraints on Y = {CAkB}k≥0. The invertability of C implies that the pair (A,C)
is observable, that is the eigenvalue assignment procedure can be employed. Then there
exists M ∈ Rn×n so that A = A+MC is nilpotent, i.e. An = 0.
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Consider the linear program


maxA′
∑

(i,j)∈H
[A′]ij

subject to

CA
k
B = CA′A

k−1
B, k = 1, . . . n

[A′]ij ≥ [M ]ij, i, j = 1, . . . n, i 6= j

[A′]ii ≤ [M ]ii, i = 1, . . . n

[A′]ij = 0, (i, j) ∈ L

(3.24)

Given a solution A′ of the linear program Eq. (3.24), Proposition 3 guarantees that A′ =
A′ −MC provides a dynamically equivalent realization of the system Θ = (A,B,C,D)
and A′ ∈ Ap(Y , B, C,D). Now we replace the linear program of Eq. (3.23) with Eq.
(3.24) in FindRealization so that it returns (A′, P ) where A′+MC = A′ is the solution
of Eq. (3.24) and P is as it is defined above. Then we have that the resulted algorithms
FindDenseReal and FindAllRealizations determine a set of matrices A for which
A 	 MC defines a set of structurally different realizations of Θ = (A,B,C,D). For
each A′ ∈ A, we have that (A′ −MC) ∈ Ap(Y , B, C,D). This way structurally different
realizations with Metzler-type state transition matrices of a DT-LDS – of arbitrary Markov
sequence – can be computed.

3.9 Computational examples
In this section we provide examples to illustrate structural non-uniqueness of the non-
zero off-diagonal patterns of state transition matrices associated to a Markov sequence
Y . By some simple linear dynamical system models we show that the set of feasible
state transition matrices A(Y , B, C,D) is not necessary unique and structurally different
dynamically equivalent realizations can be computed. Throughout the section we restrict
our attention to realizations with system matrices of Metzler-type.

In each example, first the system is stabilized by a full-state feedback M using the
algorithm of [32] in order to obtain a closed-loop system of the form of Eq. (3.9) with
a finite sequence of non-zero Markov parameters Y . In Example 3.9.1 Algorithm 1 and
2 are employed to determine all the structurally different realizations with respect to
Ap(Y , B, C,D). Then Proposition 3 guarantees that structurally different realizations of
the open-loop system Y can be recovered by subtracting M from the closed-loop sys-
tem matrices. Example 3.9.2 illustrate the structural non-uniqueness of a social network
equipped with a linear dynamical behavior. Indirect sparsity and density constraints are
employed in order to find different realizations.
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3.9.1 Example 1

Let us consider the following system

A =



−2 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 0 0 0
0 1 0 −2 0 0 0 0 0 0 0
0 0 1 0 −2 0 0 0 0 0 0
0 0 0 1 0 −1 0 1 0 0 0
0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0



, (3.25)

B =
[

1 0 0 0 0 0 0 0 0 0 0
]
, (3.26)

C is an (n× n)-dimensional identity matrix and D = 0n.
In order to employ the proposed method, first we need to determine a full-output

feedback matrix M ∈ R11×11 so that the resulting matrix (A+MC) is nilpotent. A full-
output feedback M is obtained by the algorithm [32]. This way we obtain a system with
finite sequence of non-zero Markov parameters Y . Then using Algorithm 2 we determined
all the structurally different closed-loop system matrices in Ap(Y , B, C,D). Finally, a
set of structurally different state transition matrices with respect to Ap(Y , B, C,D) is
computed by Ap(Y , B, C,D)	M .

The dense dynamically equivalent realization returned by FindDenseRealization is
depicted in Eq. (3.27).

Figure 3.1 depicts the number of structurally different realizations as the function of the
number of non-zero off-diagonal entries in the state transition matrix. Table 3.2 provides
a set of structurally different realizations in Ap(Y , B, C,D) as they are determined in the
above described way.
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Ad =



−2 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 0 0 0
0 1 0 −2 0 0 0 0 0 0 0
0 0 1 0 −2 0 0 0 0 0 0
0 0 0 1 0 −1 0 1 0 0 0
0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0
0 0 0 1 0 100 100 100. −100 0 0
0 0 0 0 1 0 0 0 0 −100 100
0 0 0 0 1 0 0 0 0 100 −100



(3.27)

8 10 12 14 16 18

Number of positive off-diagonal entries in the system matrix

0

1

2

N
u

m
b

e
r 

o
f 

s
tr

u
c

tu
ra

ll
y

 d
if

fe
re

n
t 

re
a

li
z
a

ti
o

n
s

Figure 3.1: Structural non-uniqueness of feasible system matrices A associated to dynamically
equivalent state space realizations.

3.9.2 Example 2

The Zachary karate club network is a widely studied social network representing the
interactions of 34 members outside a Karate club [51]. Here we study the information
flow across the network equipped with a particular weighted directed edge set as it is
depicted in Figure 3.2. The weighted directed edges can be uniquely encoded in the form
of an adjacency matrix A ∈ R34×34, assuming a fixed ordering of the nodes, i.e. state
variables. For the entries of A see Appendix A. With the chosen edge directions we wish
to simulate the information flow from the direction of the first node, i.e. x1 (source) to
the last nodes, x33 and x34 (sinks).
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Table 3.2: Graph representations of all the structurally different state transition matrices com-
puted by FindAllRealizations. Non-zero entries which are not contained in the
initial realization are denoted by dashed lines.
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We make use of the adjacency matrix A of the network to define the dynamics of
information flow over the nodes and formulate a simple DT-LDS of the from Eq. (3.1).
The adjacency matrix A defines the state transition matrix, [A]ij > 0 iff there is direct
information flow from node j to node i. B ∈ R34 is set to be zero for all the entries except
for the first one which is equal to 1, i.e. [B]1 = 1 and [B]i = 0 for i = 2, . . . 34. This
way we can examine how an input signal u(k) ∈ R, k ≥ 0 – perturbing the state of the
first node – propagates along all the other nodes. C ∈ R34×34 is the identity matrix, i.e.
we assume that all the state variables are observable. D = 034. The state variable vector
x(t) ∈ R34, t ≥ 0 encodes the information content of the state variables. We assume that
x(0) = 034.

Starting with the above defined state space model Θ = (A,B,C), first we performed
the eigenvalue assignment procedure. A matrix M ∈ R34×34 is determined so that the
resulting A = A+M be nilpotent. This way a stabilized closed-loop system Θ = (A,B,C)
– having at most 34 non-zero Markov parameters – is obtained, where B = [B, −M ]. In
order to find a dynamically equivalent realization of the stabilized system Θ with Metzler-
type state transition matrix and sparsity constraint, we solved the following optimization
procedure 

max
34∑

i,j=1
i6=j

∣∣∣∣[A′]ij∣∣∣∣
subject to

CA
k
B = CA′A

k−1
B, k = 1, . . . 34

[A′]ij ≥ [M ]ij, i, j = 1, . . . 34, i 6= j

[A′]ii ≤ [M ]ii, i = 1, . . . 34

(3.28)

where the entries of A′ correspond to the decision variables. Denoting the solution of (3.28)
by As, Proposition 3 guarantees that Âs = As −M provides a dynamically equivalent
realization of the initial system. The obtained realization (Âs, B, C) has 78 non-zero off-
diagonal entries and its graph representation G(Âs) is isomorph to that of the initial state
transition matrix G(A). Next a dense realization (Ad, B, C) is computed with respect to
the closed-loop system Θ using Algorithm 1. Proposition 3 guarantees that Âd = Ad−M
determines a dynamically equivalent realization with respect to the initial system Θ. We
found that the obtained state transition matrix Âd contains 451 non-zero off-diagonal
entries. The obtained matrices Âs and Âd are illustrated in Figure 3.3.

Since [As]ij ≥ [M ]ij and [Ad]ij ≥ [M ]ij hold for i, j = 1, . . . 34, i 6= j, the state
transition matrices Âs and Âd are of Metzler-type. Furthermore, [As]ij = [M ]ij and
[Ad]ij = [M ]ij for i 6= j imply that [Âs]ij = 0 and [Âd]ij = 0, respectively, i.e. G(As) and
G(Ad) are isomorph to G(Âs) and G(Âd), respectively. Such a way we can put indirectly
sparsity and density constraints to state transition matrices of DT-LDS having arbitrary
Markov parameters. However, it is important to note that the resulted state transition
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matrices Âs and Âd are not proved to be sparse and dense with respect to the initial
system Θ, i.e. there may exist dynamically equivalent realizations having less or more
non-zero off-diagonal entries, respectively.

Figure 3.2: Illustration of Zachary’s karate club network with a particular directed edge set.
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Figure 3.3: Graphical representation of state transition matrices associated to different real-
izations. Initial: the initial state transition matrix A. Sparse (computed): the
state transition matrix Âs computed by posing l1 sparsity constraints on the off-
diagonal entries (i.e. decision variables). Dense (computed): the state transition
matrix Âd obtained by Algorithm 1. Note that the initial and sparse matrices are
equivalent in terms of the pattern of their non-zero off-diagonal entries, i.e. G(A)
and G(Âs) are isomorphic graphs. We emphasize that sparsity, as a structural
property, is understood with respect to the off-diagonal entries. The existence of
structurally different state transition matrices implies that the same information
propagation dynamics can emerge in structurally different networks.
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3.10 Summary
In this chapter we considered realizability of discrete time linear dynamical systems.
Throughout the chapter we assumed that a DT-LDS is given by a Markov parameter
sequence Y and that the state space realization matrices B, C and D are known and
fixed. Under these assumptions the existence of different realizations of Y is equivalent
to the existence of distinct state transition matrices of the same dimension that provides
the same sequence Y . Assuming that the state space realization matrix C is invertible,
we quantitatively characterized the set of feasible state space realizations. It is proved
that the set of state transition matrices A(Y , B, C,D) associated to a Markov sequence
Y is convex, given B, C and D matrices. Under the same conditions it is also shown that
the subset of Metzler-type system matrices Ap(Y , B, C,D) is convex. Furthermore, we
proved that there exists a structurally unique state transition matrix Ad ∈ Ap(Y , B, C,D)
of maximal number of off-diagonal entries whose respective graph representation G(Ad)
contains that of any other feasible state transition matrix in Ap(Y , B, C,D) as subgraph.

Making use of the eigenvalue assignment procedure, we reformulated dynamical equiva-
lence of state space realizations in terms of a finite set of linear constraints in the entries of
the state transition matrix. This way we proposed a convex optimization based algorithm
that can be used to find different realizations of any Markov sequence. Since the exis-
tence of different system matrices implies structural non-identifiability of the underlying
dynamical system, this way non-identifiability of DT-LDSs can be validated in fixed state
space dimension in polynomial time. By making use of the convexity of Ap(Y , B, C,D)
and adopting results from the field of non-negative polynomial systems, we provided al-
gorithms that can determine structurally different realizations of DT-LDSs with respect
to Metzler-type state transition matrices. Representative examples are presented in order
to illustrate that dynamically equivalent realizations of DT-LDSs are not necessary struc-
turally unique, i.e. there may exist structurally different realizations of the same DT-LDS
even in the case of fixed B, C and D state space realization matrices.
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4 Reachability analyis of discrete state
Reaction Networks

4.1 Mathematical notations

σX an ordered sequence of states
σr an ordered sequence of reaction vectors
σS an ordered sequence of species
σC an ordered sequence of complexes
Q(O) the number of points with non-negative integer coordinates in a bounded

set O ⊂ Rn

Table 4.1: Notations specific to chapter 4.

4.2 Background
Employing deterministic ordinary differential equation systems to characterize the dy-
namical behavior of complex networks of chemically interacting components (species) is a
widely used approach in mathematical and computational systems biology [4, 107, 108].
Such a continuous state modeling approach assumes high molecular count of species and
their homogeneous (well-mixed) distribution in the surrounding media [109]. However,
in several (bio)chemically interesting systems – such as some enzymatic and genetic net-
works – the molecular count of different species are relatively low (e.g. < 100 molecules)
[109, 110, 111] implying that the assumption of homogeneous species distribution does
not hold [112, 113]. Hence it is necessary to introduce a discrete state model capable
of keeping track the individual molecular counts in order to properly characterize the
qualitative dynamical behavior of (bio)chemical networks of species with low number of
molecules [116, 117]. There exist several mathematical models describing the state evolu-
tion of discrete state chemical reactions networks, such as Markov chain models [113, 117],
stochastic Petri nets [118].

In the context of chemical reaction networks of several interacting components, in order
to completely characterize the system it is needed to simultaneously study the dynamical
behavior and the underlying network structure, as well. Moreover, it is also important to
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examine how the dynamical behavior and the network structure are related to each other,
and how we can predict the dynamical behavior (e.g. in the form of possible state space
trajectories) in aware of the underlying network structure. For continuous state reaction
networks obeying the law of mass action it is recognized that the network structure (i.e.
topology) is not necessarily unique, i.e. the same system of differential equations can be
generated by different network topologies (different sets of interactions among the given
species) [119, 120, 30, 31].

In the case of discrete state reaction networks the so-called reachability is a strictly
related problem to the dynamical behavior, namely, is it possible to reach a prescribed
target state from a given initial one through a finite sequence of transition (reactions)?
It is known the reachability relation between any pair of non-negative initial and target
states is determined by the network structure itself. Through the reachability analysis
several problems of great importance can be analyzed, one of them having high interest is
the existence of so-called extinction events: the existence of trajectories resulting in the
irreversible extinction of some species from the system. It has been shown that under some
conditions on the network structure a discrete state chemical reaction network exhibits
an extinction event from any point of its state space [116, 121, 122]. The properties of
recurrence (the ability of returning to any initial state) and irreducibility (the ability of
reaching any state from any other one) are also examined in the context discrete state
reaction networks [114, 115].

The mathematical model of discrete state chemical reaction networks is equivalent to
an important model of theoretical computer science, namely the so-called vector addition
systems with states (VASS) or equivalently Petri nets [127, 128]. Hence the discrete
chemical reaction network reachability problem is equivalent to the extensively studied
problem of vector addition system (VAS) reachability. The VAS reachability problem is
known to be decidable [130, 131, 132, 133] and for the space complexity we have EXSPACE
lower bound [134]. Unfortunately, contrary to the proven polynomial time complexity of
reachability of rate independent continuous state chemical reaction networks [128], in the
case of discrete state reaction networks it is not known whether there exists an algorithm
of primitive-recursive time complexity deciding this problem [135].

The aim of this chapter is to study of the reachability problem of sub-and supercon-
servative d-CRNs. We make use of the relation between the sub- and superconservative
properties. An ILP feasibility approach is employed to computationally solve the reacha-
bility problem. We provide theoretical upper bounds on the maximal length of cycle-free
state transition sequences associated to a pair of initial and target states. Our main
contributions are summarized in Proposition 16 and Proposition 17, where necessary and
sufficient conditions are given on the network structure and the initial- and target states
under which the reachability relation is equivalent to the non-negative integer solution
of the d-CRN state equation. These results in Corollary 3 and Corollary 4 are extended

52

DOI:10.15774/PPKE.ITK.2022.003



to a subclass of superconservative d-CRNs. Finally, in Proposition 18 we prove that –
under the same consitions – the reachability relation can be decided in polynomial time
by making use of the structural properties of the reaction networks.

4.3 Discrete state chemical reaction networks
A discrete state Chemical Reaction Network (d-CRN) with n species, m complexes and l
reactions is a triple N = (S, C,R) so that:

S = {si | i = 1, . . . , n}

C = {yj =
n∑
i=1

αjisi | si ∈ S, αji ∈ Z≥0, i = 1, . . . , n, j = 1, . . . ,m}

R = {rv = ysource(rv) → yproduct(rv) | ysource(rv), yproduct(rv) ∈ C, v = 1, . . . , l}

where si is the i’th species, yj is the j’th complex and rv is the v’th reaction of the
network. Moreover, αji is the stoichiometric coefficient of the i’th species in the j’th
complex. For a reaction rv = ysource(rv) → yproduct(rv) of R, ysource(rv) and yproduct(rv) are
the source complex and the product complex, respectively.

For each complex yj ∈ C, j = 1, . . . ,m, the stoichiometric coefficients of the species
can be represented as a vector of the form:

yj = [αj1 αj2 . . . αjn]> (4.1)

For each r ∈ R, a reaction vector rij ∈ Zn can be associated to track the net molecular
count changes of the species upon firing the reaction:

rij = yj − yi (4.2)

so that yj and yi are the corresponding source and product complexes of r. In the sequel
the notation ri will be used for denoting both the i’th reaction of the d-CRN and the
associated reaction vector, as well. We will also assume that for all the examined d-CRNs
a fixed order of the reaction vectors is given, i.e. an order r1, r2, . . . , rl is fixed and l = |R|.
We use the constraint that only a single reaction can occur at once.

A d-CRN can also be represented by a directed graph G = G(V,E) such that the
vertices and edges correspond to the complexes and the reactions, respectively, i.e.:

V = C (4.3)

E = R (4.4)

The direction of the edges are determined by the reactions of R, so that if yi → yj ∈ R
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then there exists an edge e ∈ E from the vertex representing yi to the vertex of yj. For
each edge a weight corresponding to the reaction rate constant (also called intensity or
propensity) corresponding to the respective reaction can also be associated.

Beyond the above representations it is also possible to describe a d-CRN in an algebraic
way by means of its unique stoichiometric matrix.

Definition 7. Let us consider a d-CRN N = (S, C,R). The stoichiometric matrix Γ ∈
Zn×l of N is defined as

Γ = [r1 . . . rl] (4.5)

Note that [Γ]ij encodes the net molecule count change on species si upon occuring
rection rj. Beside Γ we also define the following matrices:

Γ+ = [y+
r1 . . . y+

rl
]> (4.6)

Γ− = [y−r1 . . . y−rl
]> (4.7)

where y+
ri
denotes the vector form of the product complex belonging to reaction ri while

y−rj
represents the vector of the source complex associated to reaction rj. The relation

among the above defined matrices is as follows:

Γ = Γ+ − Γ− (4.8)

Example 2. Let us consider the d-CRN N = (S, C,R) depicted in Figure 4.1. N char-
acterizes a simple network of a bi-functional enzyme E having both phosphorylation and
dephosphorylation activities on species I and Ip, respectively. This network is character-
ized by the following sets

S = {I, Ip, E, EI, EIp}

C = {I + E, EI, Ip + E,EIp}

R = {E + I → EI, IE → E + I, EI → Ip + E, E + Ip → EIp, EIp → E + Ip, EIp → E + I}

We fix the order of species and reactions as they are listed in the above sets.
The above model has no information on the probabilities of the reactions, but at any

given time instant at most one reaction can occur.

The molecular count of each species of a d-CRN at any time t ≥ 0 is given by its state
vector X(t) ∈ Zn≥0 and the time evolution of the system is characterized by the following
discrete state equation:

X(t) = X(0) + ΓN(t) (4.9)

where X(0) is the state vector belonging to the initial time instant and
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Γ =


−1 1 0 0 0 1
0 0 1 −1 1 0
−1 1 1 −1 1 1
1 −1 −1 0 0 0
0 0 0 1 −1 −1



Figure 4.1: A discrete state chemical reaction network. Left: reaction network structure as
it is defined by Eq. (4.3) and Eq. (4.4). The nodes and directed edges represent
the complexes and the reactions, respectively. The numbers on the edges denote a
fixed ordering of the reactions. Right: the stoichiometric matrix associated to the
system, i.e. [Γ]ij is the net change in the number of the i’th species upon occurring
the j’th reaction.

N(t) = [N1(t), N2(t), ... Nl(t)]> ∈ Zl≥0 (4.10)

such that Nk(t) ∈ Z≥0 stores the number of occurrences of the k’th reaction up to time
t. We note that N(t) is typically modeled as some point process [113, 117].

Since for our further analysis the time instants when the reactions have occurred are
not of interest, but only the order of reactions, therefore we abandon the notation of time
t in the formulas.

Definition 8. Let us consider a d-CRN N = (S, C,R). It is said that:

1. a species s ∈ S is a catalyzer of a reaction r ∈ R if it has the form of r = s+ s1 →
s+ s2 with s1, s2 ∈ S,

2. a complex y ∈ C is charged at state X ∈ Zn≥0 if X � y,

3. a complex y ∈ C is called zero complex, if it does not involve any species, y = ∅,

4. a reaction r ∈ R is charged if its respective source complex is charged,

5. a state X ∈ Zn≥0 reacts to a state X ′ ∈ Zn≥0 (denoted by X → X
′) if there exists a

reaction r ∈ R such that r is charged at state X and X + r = X
′ ,

6. a reaction (vector) sequence σr is an ordered set of reaction vectors σr = r1 . . . rv

where ri ∈ R, i = 1, . . . , v,

7. a state transition sequence σX is an ordered set states X0, X1, . . . , Xp so that
X1 → X2 → . . . → Xp−1 → Xp,

8. a state X ′ ∈ Zn≥0 is reachable from a state X ∈ Zn≥0 (denoted by X  N X
′ ) if

there exists a directed path in the state space so that X = Xν(1) → Xν(2) → ... →
Xν(v) = X

′ .
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9. A set of states X ⊂ Zn≥0 is said to be coverable from a state X ∈ Zn≥0 if there exists
a state X ′ ∈ Zn≥0 for which X  N X

′ and X ′ � X
′′ for all X ′′ ∈ X .

Considering a state transition sequence σX = X0 X1 . . . Xp−1 Xp, we call X0 and Xp

the initial and target states, respectively, while Xi for i = 1, . . . , p−1 are called transition
states of σX .

The condition that a reaction r ∈ R is charged at state X ∈ Zn≥0 can be expressed
by the inequality X � y−r . For a reaction sequence σr a state transition sequence σX =
X0 X1 . . . Xv can be uniquely associated so that

Xj = Xj−1 + rj, j = 1, . . . , h, (4.11)

where the initial state X0 is assumed to be given. A state transition sequence σX is said to
be admissible if Xi � ri+1 for Xi ∈ σX , i = 0, . . . , v− 1, moreover, we say that a reaction
sequence σr is admissible if the corresponding state transition sequence is admissible.

From the reachability of a state X ′ ∈ Zn≥0 from an initial state X0 ∈ Zn≥0, it follows
that the following equation has a non-negative integer solution c ∈ Zl≥0:

X
′ = X0 + Γc (4.12)

where [c]i encodes the number of occurrences for reaction ri ∈ R for i = 1, . . . , l. However,
it is important to note that from the existence of a non-negative integer solution c of Eq.
(4.12), the reachability relation X0  N X

′ does not necessary follow.
We note that c of Eq. (4.12) corresponds to N(t) of Eq. (4.9). Since a solution c ∈ Zl≥0

of Eq. (4.12) encodes the number of occurences for each reaction in a fixed order, the
following equality is fulfilled:

Γc =
h∑
i=1

ri (4.13)

where h = ∑l
i=1 [c]i and ri ∈ R for i = 1, . . . , h. When we want to emphasize that a

reaction vector sequence is encoded by a particular c ∈ Zl≥0 we will use the notation
σcr = r1, . . . , rh and the state transition sequence determined by σcr will be denoted by σcX .

Definition 9. Let us consider a d-CRN N with initial state X0 ∈ Zn≥0. The reachable
state space Reach(N , X0) of N with initial state X0 is the set of non-negative discrete
states reachable from X0:

Reach(N , X0) =
{
X

∣∣∣∣ X ∈ Zn≥0, X0  N X
}

(4.14)

In the sequel we will also use the following definitions in the analysis of d-CRNs:

Definition 10. Let us consider a d-CRN N = (S, C,R) where R = {r1, . . . , rl}. The
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stoichiometric subspace XR of N is the space spanned by the reaction vectors:

XR = span(r1, . . . , rl). (4.15)

We note that in the notation of the stoichiometric subspace the reaction set R appears
in the subscripts as XR is completely defined by the set of reactions.

Definition 11. Let us consider a d-CRN N = (S, C,R) and a non-negative initial state
X0 ∈ Zn≥0. The non-negative stoichiometric compatibility class associated to X0 is defined
as:

XX0 = (X0 + XR) ∩ Rn
≥0 (4.16)

where XR is the stoichiometric subspace of N .

Clearly, a reachable state space Reach(N , X0) of a d-CRN N satisfies the following
relation:

Reach(N , X0) ⊆ XX0 ∩ Zn≥0. (4.17)

In the context of complexes and reactions the recurrency and transiency are also defined
[121]:

Definition 12. Let us consider a d-CRN N = (S, C,R).

1. A complex y ∈ C is said to be strongly recurrent from a state X ∈ Zn≥0, if X  N Y

implies that there exists a state Z ∈ Zn≥0 such that Y  Z and y is charged at Z,
otherwise y is called weakly transient from X.

2. A complex y ∈ C is called weakly recurrent from X ∈ Zn≥0 if there exists a state
Y ∈ Zn≥0 such that X  N Y and y is strongly recurrent from Y , otherwise y is
strongly transient from X.

We also introduce the definition of extinction events, which are related to transiency
and the reaction network structure [121].

Definition 13. Let us consider a d-CRN N = (S, C,R). It is said that N exhibits an
extinction event on C ′ ⊆ C from X0 ∈ Zm≥0, if every complex y ∈ C ′ is strongly transient
from X0.

4.4 Equivalent Model Formulations
In this section we briefly discuss some discrete state transition models which are equivalent
to the class of discrete state reaction networks. The discussed models are commonly used
in theoretical computer science to model systems of discrete state transitions, they are

57

DOI:10.15774/PPKE.ITK.2022.003



applied to model concurrent systems, communication protocols, asynchronous, distributed
and parallel processes.

Definition 14. [143]
A Petri Net is a tuple P = (P, T, I, O), where

1. P is a finite set of places,

2. T is a finite set of transitions, P ∩ T ,

3. I is a finite set of input functions (preconditions) I : T → P∞,

4. O is a finite set of output functions (consequences) O : T → P∞.

The graphical description of a Petri net is a biparite directed graph:

1. Vertices : P ∪ T ,

2. Edges : I ∪O.

P∞ denotes the multiset derived from P .
The set of places of a Petri net corresponds to the set of species in the equivalent d-CRN

model formulation. The transitions are the reactions. The input and output functions
characterize the source and product complexes, respectively.

Figure 4.2: Equivalent Petri net representation of the d-CRN depicted in Figure 4.1. Species
and reactions correspond to the places and transitions, respectively. The source
and product complexes are characterized by the input and output functions.

Definition 15. [144]
A Vector Addition System with States (VASS) is a graph G = (Q,∆) so that

1. Q is a non-empty finite set of control states,
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2. ∆ ⊆ Q× Zn ×Q is a finite set of transitions,

Q× Nd is a set of configurations.
A run is a non-empty word (q0,m0) . . . (qk,mk) of configurations such that (qj−1,mj −

mj−1, qj) ∈ ∆ for every j = 1, . . . k.

The existence of a run (q0,m0) . . . (qk,mk) implies that qk is reachable from q0.
In a VASS the set of control states corresponds to the state space of the respective

d-CRN model. The transitions characterize the state transitions in the state space of the
reaction network. Note that a configuration (q,m) does not necessarily imply that the
reaction corresponding to m is charged at q, hence additional constraints must be imposed
on the VASS model to represent a semantically correct d-CRN model.

4.5 Integer Linear Programming
In this section some relevant concepts of mathematical programming are briefly reviewed
that will be extensively employed later. An Integer Linear Programming (ILP) instance
can be formulated as follows:

ILP



minx{a>x}

subject to

Ax ≤ b

x ∈ Zn

(4.18)

where x is the n-dimensional vector of decision variables while a ∈ Zn, A ∈ Zm×n and
b ∈ Zm are fixed coefficients. Generally, the above ILP computational problem is known
to be NP-hard that may highly confine our ability to efficiently solve problems of integers
in high dimension.

However, if the value of the decision vector that minimizes (or maximizes) the pre-
scribed objective function is not important for us, but only the existence of a x ∈ Zn

vector satisfying the set of specified constraints, then the problem is called ILP feasibility
problem:

FP

P = {x | Ax ≤ b, A ∈ Zm×n, b ∈ Zm, x ∈ Rn}

P ∩ Zn ?= ∅
(4.19)

An ILP feasibility problem – as a decision problem – addresses the question of whether
the polytope P contains an integer lattice point, formally P ∩ Zn ?= ∅. While a FP is
also known to be NP-hard, it has well-decoupled time complexity with respect to the
number of variables, the number of constraints and the maximum of the absolute values
of the entries of A and b. Therefore, a feasibility problem of the form (4.19) – assuming
fixed dimension n – can be decided in polynomial time in the number of constraints m
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and the maximum of the absolute values of the coefficients A and b by means of the
Lenstra algorithm [136, 137]. Moreover, the number of integer lattice points in P can also
be numerated in polynomial time in m and the maximum of the absolute value of the
coefficients using Barvinok’s integer lattice point counting algorithm [138, 139, 140, 141].
We note that for the Barvinok algorithm there exists an effective implementation called
LattE [142].

The FP problem in Eq. (4.19) can be viewed as a potential relaxation approach to an
NP-hard ILP in situations where only the knowledge of the existence of an integer solution
is needed. By making use of specific structural properties in an ILP problem, additional
relaxation can be obtained. Total unimodularity – as a property of the coefficient matrix
A – provides relaxation for the respective NP-hard ILP problem. Let us introduce the
definition of totally unimodular matrices [150]:

Definition 16. A matrix A is totally unimodular if each sub-determinant of A is 0, +1,
or −1.

Note that in a totally unimodular matrix all the entries are 0 or ±1.
If the coefficient matrix A in Eq. (4.18) is totally unimodular and b is an integer vector,

then by relaxing the integer constraint on the decision variable vector x, the solution of
the resulting linear program is proven to be optimal for the ILP [150, 151].

The following proposition provides condition on the coefficient matrix to be totally
unimodular [150, 151]:

Proposition 8. A matrix A is totally unimodular, if there are no more than two non-zero
entries in each column and the rows can be partitioned into two sets l1 and l2 so that:

1. if a column has two non-zero entries with the same sign, then they are in different
partitions, l1 and l2;

2. if a column has two non-zero entries of different signs, then they are in the same
partition, either l1 or l2.

4.6 Sub-and superconservative d-CRNs
We define conservativity and subconservativity in the same way as it was introduced e.g.
in [109] and [121].

Definition 17. A d-CRN N = (S, C,R) having stoichiometric matrix Γ ∈ Zn×l is called
subconservative (superconservative) if there exists a strictly positive vector z ∈ Rn

>0 for
which z>Γ ≤ 01×l (z>Γ ≥ 01×l) holds. The vector z is called a conservation vector.

60

DOI:10.15774/PPKE.ITK.2022.003



We note that the conservativity of d-CRNs is related to P-invariance (also called S-
invariance) of Petri nets and this structural (network structure-related) property was
previously examined in the context of the theory of reaction networks [121, 123, 115].

An important property related to subconservativity is the strong boundedness which is
defined as follows.

Definition 18. A d-CRN N is said to be strongly bounded, if for any X0 ∈ Zn≥0 initial
state, the reachable state space Reach(N , X0) is bounded.

The subconservative property of the reaction network structure is a necessary and
sufficient condition of strong boundedness [121, 129].

Proposition 9. [129] Let us consider a d-CRN N . The following propositions are equiv-
alent:

1. N is subconservative,

2. N is strongly bounded.

As a special case covered by the intersection of sub- and superconservativity, we can
define the conservative property, as well.

Definition 19. Let us consider a d-CRN N = (S, C,R) with stoichiometric matrix
Γ ∈ Zn×l. The d-CRN N is said to be conservative if there exists a vector z ∈ Rn

>0

satisfying the matrix equation z>Γ = 01×l.

We note that the above structural properties can be easily decided in polynomial time
by means of an LP of the following form:

min
z

n∑
j=1

zj

s.t.

z>Γ ≤ 01×l (or z>Γ ≥ 01×l)

z � 0n + εn, ε � 0n

The relationship between sub-and superconservativity can be expressed by the following
proposition.

Proposition 10. A d-CRN N with stoichiometric matrix ΓN ∈ Zn×l is subconservative
if and only if the d-CRN N ′ with stoichiometric matrix ΓN ′ = −ΓN is superconservative.

Proof.
z>Γ ≤ 01×m ⇐⇒ z>(−Γ) ≥ 01×l (4.20)
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We note that −ΓN means the change of the direction of each reaction in the d-CRN N
of stoichiometric matrix ΓN .

Example 3. Figure 4.3 depicts two d-CRNs: a subconservative and a superconservative
reaction network structure. Indeed, these networks are counterparts that can be easily
transformed to each other by changing the sign of the entries in the stoichiometric ma-
trices. Such a transformation results in the change of the direction of the edges in the
reaction network.

ΓN =



−1 0 0
−1 0 0
1 0 −1
0 −1 0
0 −1 0
0 1 −1
0 0 1


(a)

ΓN ′ =



1 0 0
1 0 0
−1 0 1
0 1 0
0 1 0
0 −1 1
0 0 −1


(b)

Figure 4.3: A pair of sub- and superconservative reaction network structures denoted by N
and N ′ , respectively. The ordering of the reactions are denoted by the numbers
on the edges of the graphs. The two networks can be transformed to each other by
changing the sign of the entries in their stoichiometric matrices. a) subconservative
d-CRN. b) superconservative d-CRN.

From Proposition 10 it follows that instead of the reachability problem of a super-
conservative network structure one can consider an equivalent subconservative d-CRN
reachability problem as it is discussed in Proposition 11.

Proposition 11. Let us consider a subconservative d-CRN N characterized by the ma-
trices ΓN = Γ, Γ+

N = Γ+ and a superconservative d-CRN N ′ with matrices ΓN ′ = −Γ,
Γ−N ′ = Γ+. Let us take an initial state X0 ∈ Zn≥0 and a target state X ′ ∈ Zn≥0. Then the
reachability X0  N X

′ holds if and only if X ′
 N ′ X0 also holds.

Proof.
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1. X0  N X
′ ⇒ ∃c ∈ Zl≥0 such that X0 +Γc = X

′ which is equivalent to X ′ +(−Γ)c =
X0.

From X0  N X
′ it follows that the solution c ∈ Zl≥0 can be decomposed to an

admissible reaction vector sequence σcr = rc1 . . . rch, h = ∑l
i=1 [c]i, i.e. all the states

of σcX determined by σcr are composed of non-negative entries. Then, by reversing
σcX , we obtain a non-negative state transition sequence σ̂cX from X

′ to X0 which is
uniquely determined by means of the reaction vector sequence σ̂cr = −rch . . . − rc1.

It is also needed to show that σ̂cr is an admissible reaction sequence. This can be
done as follows: for each state X ∈ σcX \ X0 there exists a reaction r ∈ σcr so that
upon firing r the resulted state is X from which it follows that X � y+

r , moreover,
considering the reversed reaction sequence σ̂cr, the reaction vector to be occurred at
state X is −r ∈ σ̂cr which is charged at X even if X � y+

r .

Then the admissibility of σ̂cr follows.

2. The proof for the other direction X ′
 N ′ X0 works analogously as above.

The importance of Proposition 11 is that the reachability problem of a superconservative
d-CRN of unbounded reachable state space can be easily traced back to the reachability
problem of a d-CRN of bounded reachable state space which can make the original decision
problem computationally tractable.

4.7 Reachability analysis
In this section we consider the reachability problem arising in the context of d-CRNs.
The classes of sub- and superconservative reaction networks are considered. First the
exact problem statements are detailed. Next we reformulate the reachability problem in
the form of integer linear feasibility problem. In order to tackle the obtained decision
problem we derive upper bounds on the maximal number of reactions (state transitions)
along the admissible reaction (state transition) sequences. In order to reduce the time
complexity of the decision problem we determine subclasses of sub- and superconservative
d-CRNs for which the reachability relation is equivalent to the existence of a non-negative
integer solution of the d-CRN state equation. This way the number of decision variables
in the integer feasibility problem can be significantly reduced.

4.7.1 Problem statement

We wish to solve the following decision problems of d-CRNs:
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1. Given a d-CRN N , an initial state X0 ∈ Zn≥0 and a target state X ′ ∈ Zn≥0. Does
there exists a state transition sequence σX (or equivalently reaction sequence σr) so
that X0  N X

′ holds?

2. Given a d-CRN N , an initial state X0 ∈ Zn≥0 and a set of target states X ⊂ Zn≥0.
Can we find a state X ′ ∈ Zn≥0 for which X0  X

′ and X ′ � T hold for all T ∈ X ?

It is important to emphasize that we consider sequences σX without cycles. Clearly, the
existence of directed cycles in the reachability state space of a d-CRN does not affect any
reachability relation.

The above decision problems are important in the analysis and synthesis of reaction
networks. It could be crucial to examine the existence of some semantically meaningful
states reachable from the initial state of a d-CRN. For example an undesired state may
represent the agglomeration of toxic species and/or the fact that a reaction producing
toxic species is able to fire (i.e. the respective source complex is charged). We also note
the d-CRN reachability is equivalent to the gate-implementability problem in natural
computing [149].

As the model of d-CRNs is equivalent to the model of Petri nets, the results detailed be-
low can also be used to examine concurrent, asynchronous, distributed systems arising in
the context of theoretical computer science, software engineering and telecommunications.

4.7.2 Constraint formulation

This section provides a simple reformulation of the d-CRN reachability and coverability
problems in terms of integer feasibility problems.

Consider a d-CRN N of stoichiometric matrix ΓN . Let us denote the non-negative
initial state by X0. If a given state X ′ ∈ Zn≥0 is reachable from the initial state X0

(X0  N X ′), then there exists a – not necessarily unique – vector c ∈ Zl≥0 satisfying the
following Diophantine equation:

X0 + ΓN c = X
′
. (4.21)

This can also be used to decide whether from the initial state we can reach a target state
where a complex y ∈ C is charged:

X0 + ΓN c ≥ y. (4.22)

If the state space of a d-CRN is bounded, the following inequality also holds:

X0 + ΓN c � Xmax. (4.23)

where [Xmax]i ≥ [X]i for i = 1, . . . , n and X ∈ Reach(N , X0).
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The inequalities described above do not guarantee that there exists a state transition
sequence X0 = Xν(1) → Xν(2) → . . . → Xν(l) = X

′ encoded by c which is admissible: it
is possible that there exists a state transition along the sequence of reactions where the
source complex of the firing reaction is not charged at the actual state Xk, therefore, we
have that for the succeeding state [Xk+1]i < 0 for some i = 1, . . . , n. To remedy this
problem further constraints can be introduced.

First we introduce the notation of cmax to denote the upper bound of c (i.e. c ≺ cmax).
By summing up the entries of cmax, the overall number of reactions is given:

K =
l∑

i=1
[cmax]i (4.24)

While the entries of cmax correspond to the upper bounds of the maximal number of
occurences of the reactions firing along a cycle-free state transition sequence σX fromX0 to
X

′ , K is equal to the associated upper bound for the number of reactions along a directed
cycle-free path. Using the above notations we introduce the following decomposition:

c =
K∑
j=1

vj (4.25)

vj ∈ {0, 1}l j = 1, . . . , K (4.26)
l∑

i=1
[vj]i ≤ 1 j = 1, . . . , K (4.27)

where the binary vector vj, j = 1, . . . , K represents the reaction occurring in the network
in the jth time step, and [vj]i denotes the ith coordinate of vj. Therefore, [vj]i = 1 encodes
that the reaction ri is firing at the jth time step. It can be seen from Eq. (4.25)-(4.27)
that reactions of the forms vj = 0l are technically allowed by the above decomposition. In
order to apply the decomposition in practice, it is needed to determine an upper bound
cmax ∈ Zl for c such that [cmax]i <∞ for i = 1, . . . , l. Based on the decomposition of Eq.
(4.25), the kth state can be written as follows:

Xk = X0 + ΓN
k∑
i=1

vi k = 1, . . . , K (4.28)

In order to guarantee the semantic validity of the state transition sequence at Xk is that
the source complex ysource(rk+1) of the next reaction rk+1 – encoded by vk+1 – to be charged
at Xk. This can be expressed by the following inequality:

X0 + ΓN
k∑
i=0

vi ≥ Γ−Nvk+1 k = 0, . . . , K − 1 (4.29)

where v0 = 0l and Γ−N is defined by Eq. (4.7).
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The reachability and coverability problems of d-CRNs can be expressed by equations
(4.21), (4.23)-(4.29) and equations (4.22)-(4.29), respectively. It can be seen that equa-
tions (4.21)-(4.29) contain linear equalities and inequalities with integer decision variables
vj, j = 1, . . . , K. Hence, the computational problem of reachability and coverability can
be written as integer programming (IP) feasibility problems.

4.7.3 Bounds for the length of reaction sequences

The maximal number of reactions is an important parameter affecting the time complex-
ity of a reachability problem. Therefore, this subsection is devoted to deriving upper
bounds for the length of reaction sequences in the particular cases subconservative and
superconservative reaction network structures.

Subconservative case

In this section it is assumed that the examined d-CRN is subconservative and there exists
at least one reaction producing at least one molecule of at least one species.

It is known that a (sub)conservative d-CRN has a finite state space [124, 129]. Based
on the proof of finiteness of subconservative d-CRNs’ state space, it is possible to compute
an upper bound for the coordinates of the reachable states [124].

Lemma 1. Let us consider a subconservative d-CRN N with initial state X0 ∈ Zn≥0 and
conservation vector z ∈ Rn

>0. Then for all X ′ ∈ Reach(N , X0) states the following upper
bound holds:

[X ′ ]j ≤
z>X0

ζ
j = 1, . . . , n (4.30)

where ζ = min
j∈{1,...,n}

{zj}.

Proof. According to the subconservativity:

∃z ∈ Rn
>0 : z>ΓN ≤ 01×m (4.31)

Let us take an arbitrary X ′ ∈ Reach(N , X0). Since X ′ is reachable from X0, there exists
a non-negative finite linear combination of the reaction vectors r1, . . . rm for which:

X
′ = X0 + a1r1 + . . . + amrm (4.32)

Let us take the following dot product:

z>(X ′ −X0) = z>(a1r1 + . . . + amrm) =

a1z
>r1 + . . . + amz

>rm ≤ 0
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Note that the dot product of the conservation vector z and an arbitrary reaction vector
will be non-positive. From the above inequality:

z>X
′ ≤ z>X0 =⇒ 0 ≤

n∑
i=1

zjX
′

j ≤ z>X0 = M (4.33)

Let us define
ζ = min

j∈{1, ... n}
zj > 0 (4.34)

Then
0 ≤ ζ

n∑
i=1

X
′

i ≤
n∑
i=1

ziX
′

i ≤ z>X0 = M (4.35)

From the above inequality we can derive the following upper bound for X ′
j:

0 ≤ X
′

j ≤
M

ζ
(4.36)

The above bound can be tightened to an element-wise upper bound along each dimen-
sion [129]. For convenience, we give our own proof for this bound in the next proposition.

Proposition 12. Let us consider a subconservative d-CRN having initial state X0 ∈ Zn≥0

and conservation vector z ∈ Rn
>0. Then for all X ′ ∈ Reach(N , X0), the following element-

wise upper bound holds:

[X ′ ]j ≤
z>X0

zj
j ∈ {1, . . . , n} (4.37)

Proof. (Indirect)
Let us assume that there exists a state X ′ which is reachable from X0 and for some
j ∈ {1 . . . , n}:

[X ′ ]j >
z>X0

zj
(4.38)

Since X ′ is reachable from X0 according to Lemma 1 we have that

z>X
′

ζ
≤ z>X0

ζ
(4.39)

otherwise the maximal coordinate value of the states reachable from X
′ would be higher

than z>X0
ζ

, but this would also mean that the maximal coordinate value of the states
reachable from X0 is strictly higher than z>X0

ζ
. From the above inequality and the indirect
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assumption we get:

z>X0 ≥
n∑
i=1

zi[X
′ ]i =

n∑
i=1
i6=j

zi[X
′ ]i + zj[X

′ ]j >
n∑
i=1
i6=j

zi[X
′ ]i + z>X0 (4.40)

from which it follows that
n∑
i=1
i6=j

zi[X
′ ]i < 0 (4.41)

Since zj > 0 for all j = 1, . . . , n, it follows that [X ′ ]j < 0 for some j, which is a
contradiction. Therefore, the bound of Eq. (4.37) holds.

In order to determine the above upper bound, one has to compute a conservation vector
z. This can be done, e.g. by solving the following LP minimization:

min
z

n∑
j=1

zj

s.t.

z>Γ ≤ 01×m

z � 0m + εm, ε � 0m

Given the initial state X0 ∈ Zn≥0, one can derive an n-dimensional hyperrectangle HX0

containing all the states X ∈ Reach(N , X0). One corner point of HX0 is 0n and the
farthest point from 0n is Xmax, which is defined as

[Xmax]j = z>X0

zj
, j = 1, . . . , n. (4.42)

By means of the non-negative integer points of HX0 , a conservative upper bound can be
derived for the maximal length of admissible cycle-free reaction sequences from X0 to X ′ :

l∑
i=1

[cmax]i ≤
n∏
i=1

([Xmax]i + 1) (4.43)

The above inequality can be used to complete the feasibility problem of reachability and
coverability defined by equations ((4.21), (4.23)-(4.29)) and equations ((4.22) - (4.29)).

It is possible to improve the upper bound given in Eq. (4.43) by making use of subcon-
servative property of a d-CRN.

Proposition 13. Let us consider a subconservative d-CRN N with a conservation vector
z ∈ Rn

>0 and initial state X0 ∈ Zn≥0. Introduce the notation Xmax ∈ Zn≥0 according to
Eq. (4.42) for the vector containing the maximal coordinate values of the reachable states
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along each dimension. Then any state X ′ reachable from X0 is an element of the simplex
ΣXmax defined by Xmax:

ΣXmax =

x ∈ Rn
≥0

∣∣∣∣∣∣
n∑
i=1

xi
[Xmax]i

≤ 1

 (4.44)

Proof. Let us substitute X0 into the equation of the above defined simplex (4.44)

n∑
i=1

[X0]i
[Xmax]i

=
n∑
i=1

[X0]izi
z>X0

= 1
z>X0

n∑
i=1

[X0]izi = 1 (4.45)

Let us assume that there exists a state X ′ such that X0  N X
′ and ∑n

i=1
[X′ ]i

[Xmax]i > 1 (i.e.
X

′ is out of ΣXmax and reachable from X0). Then the following holds:

z>X
′

zi
≤ z>X0

zi
(4.46)

from which we get
n∑
i=1

[X ′ ]i
[Xmax]i

≤
n∑
i=1

[X0]i
[Xmax]i

= 1 (4.47)

This is a contradiction.

It can be seen that Eq. (4.44) explicitly contains the non-zero extreme points of the
simplex as the entries of Xmax. We note that ΣXmax can be equivalently defined using the
initial state X0 and the conservation vector z as

ΣXmax =
{
x ∈ Rn

≥0

∣∣∣∣ z>x ≤ z>X0

}
. (4.48)

Making use of the subconservative property, instead of the hyperrectangle HX0 , ΣXmax

can be used to construct an improved upper bound on the number of reactions along a
cycle-free reaction sequence.

The number of non-negative integer points Q(Σ) of an n-dimensional simplex Σ defined
by the points [a1 0 . . . 0]>, [0 a2 . . . 0]>, . . . , [0 0 . . . an]>, [0 0 . . . 0]> can be bounded
by the following expression [125]:

Q(Σ) ≤ 1
n! (a1(1 + a)− 1)(a2(1 + a)− 1) . . . (an(1 + a)− 1) (4.49)

where a = 1
a1

+ 1
a2

+ . . . + 1
an
, ai ≥ 1 i = 1, . . . , n and n ≥ 3. Thus, if n ≥ 3, the number

of non-negative integer points in ΣXmax is bounded as follows:

Q(ΣXmax) ≤ 1
n!

n∏
i=1

[ 1
zi

(z>X0 +
n∑
j=1

zj)− 1
]

(4.50)
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Furthermore, if zi = zj i, j = 1, . . . , n, then Eq. (4.50) is simplified as follows:

Q(ΣXmax) ≤ 1
n!

(
z>X0 − ζ

ζ
+ n

)n
(4.51)

Using the above inequalities, the new upper bound for the number of reactions along a
directed cycle-free path is as follows:

l∑
i=1

[cmax]i ≤ Q(ΣXmax) (4.52)

Then the following extended result can be stated for the subconservative reachability
problem.

Proposition 14. Let us consider a subconservative d-CRN N with conservation vector
z ∈ Rm

>0 and non-zero initial state X0 ∈ Zn≥0. Let us define the maximal coordinate values
along each dimension by the vector Xmax according to (4.42). Consider an arbitrary
non-negative state X ∈ ΣXmax and X∗ 6∈ ΣXmax . Then X∗ is not reachable from X.

Proof. (Indirect)
Let us assume that there exists a state X∗ ∈ Zn≥0 such that X∗ 6∈ ΣXmax and X  X∗

where X ∈ ΣXmax . Then
n∑
i=1

[X∗]i
[Xmax]i

=
n∑
i=1

[X∗]izi
z>X0

> 1 (4.53)

from which we get
z>X∗ > z>X0 (4.54)

Since X∗ is reachable from X: ∃c ∈ Zl≥0 for which

X∗ = X + ΓN c (4.55)

Let us multiply both sides by z>:

z>(X∗ −X) = z>ΓN c (4.56)

Since X ∈ ΣXmax , the inequality z>X ≤ z>X0 holds which implies that z>(X∗ −X) > 0
while z>ΓN c < 0 which is a contradiction.

Given the target state X ′ ∈ Zn≥0 to be reached from a predefined non-zero initial state
X0 ∈ Zn≥0, consider the non-zero state X ′′ = X

′ − v where all the entries of v are equal to
0 except for some j = 1, . . . , n for which vj = 1. By means of X ′′ we define the following
simplex:

ΣX
′′
max

=
{
x ∈ Rn

≥0 |
n∑
i=1

xi
[X ′′

max]i
≤ 1

}
(4.57)
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where [X ′′
max]i = z>X

′′

zi
for i = 1, . . . , n. According to Proposition 14, all the reachable

states are out of the simplex ΣX′′
max

, thus one can reduce the bound of the maximal length
along directed cycle-free paths from X0 to X ′ by the number of non-zero integer points
of ΣX′′

max
:

m∑
i=1

[cmax]i ≤ Ksub = Q(ΣXmax)−Q(ΣX′′
max

) (4.58)

As a special case, let us consider a subconservative d-CRN for which ri ∈ Zm≤0 for all
i = 1, . . . , l. In this particular case the farthest point of the hyperrectangle HX0 from 0n

is determined by X0, i.e. Xmax = X0. Since there is no reaction producing new molecules,
for all X ′ ∈ Zn>0, [X ′ ]i > [X0]i for some i = 1, . . . , n, X ′ is not reachable from X0. Hence
the maximal length of cycle-free reaction sequences can be bounded by the following term:

l∑
i=1

[cmax]i ≤ Q(HX0)−
(
Q(HX′ )− 1

)
(4.59)

Superconservative case

Making use of Proposition 11 the reachability problem of a superconservative d-CRN can
be reformulated as the reachability problem of a subconservative reaction network. This
way all the upper bounds obtained for reaction (state transition) sequences of subconser-
vative reaction networks can be employed for the analysis of superconservative d-CRNs.

Conservative case

In this section we consider conservative reaction networks, i.e d-CRNs for which there
exists a conservation vector z ∈ Rn

>0 so that z>Γ = 0. Note that the conservativity
of an n-dimensional d-CRN can be checked in polynomial time using the following LP
formulation:

min
z

n∑
j=1

zj

s.t.

z>Γ = 01×l

z � εl, ε � 0l

Due to the scalability of z, the choice of ε is arbitrary.
From the definition of conservativity it follows that XX0 is a closed bounded hypersur-

face, hence it can be projected to a simplex of dimension g = rank(Γ).
Let us consider the projection P : Rn → Rg for which the transformation matrix

is denoted by T ∈ Zn×g. All the integer points of XX0 – including all possible states
reachable from X0 (i.e. ∀ X ∈ Reach(N , X0)) – will also be integer ones after applying
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the transformation, i.e.:

X ∈ Zn≥0 and X ∈ XX0 ⇒ P(X) = TX ∈ Zg≥0

Hence we can consider the integer point enumeration problem in the projected space,
instead of that of XX0 . It is known that P(XX0) is an g-dimensional simplex of some points
[p1 0 . . . 0]>, [0 p2 . . . 0]>, . . . , [0 0 . . . pg]>, [0 0 . . . 0]>, where p1, p2, . . . , pg ∈ R≥0.
In order to obtain upper bound for the integer points – by means of Eq. (4.49) – the
exact values of pi, i = 1, 2, . . . , g are needed, which can be easily bounded from above
by Xmax. This way an upper bound for the length of cycle-free reaction sequences for
conservative d-CRNs can be provided as:

m∑
i=1

[cmax]i ≤ Kcon = 1
g!

g∏
i=1

[ 1
zi

(z>X0 +
g∑
j=1

zj)− 1
]

(4.60)

4.7.4 Computational solution of the reachability problem

Using the upper bounds obtained in the previous sections for the maximal length of
feasible cycle-free reaction sequences, in this section we formulate the reachability and
coverability problems in the form of integer feasibility problems.

Consider a subconservative d-CRN N = (S, C,R). Let us denote the initial state of
the system by X0 ∈ Zn≥0. We wish to decide the following problems:

(P1) Let X ′ ∈ Zn≥0 be an arbitrary target state. Is X ′ reachable from X0?

(P2) Let y ∈ C be an arbitrary complex. Is it possible to reach a state X ′ ∈ Zn≥0 from
X0 so that y is charged at X ′?

The above questions can be answered by the following IP feasibility problems:

(P1)



X0 + ΓN c = X
′

vj ∈ {0, 1}l j = 1, . . . , K
l∑

i=1
[vj]i ≤ 1 j = 1, . . . , K

X0 + ΓN
k∑
i=1

vi ≥ Γ−Nvk+1 k = 1, . . . , K − 1

l∑
i=1

[vj]i ≤
l∑

i=1
[vj+1]i j = 1, . . . , K − 1

(4.61)
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(P2)



X0 + ΓN c ≥ y

vj ∈ {0, 1}l j = 1, . . . , K
l∑

i=1
[vj]i ≤ 1 j = 1, . . . , K

X0 + ΓN
k∑
i=1

vi ≥ Γ−Nvk+1 k = 1, . . . , K − 1

l∑
i=1

[vj]i ≤
l∑

i=1
[vj+1]i j = 1, . . . , K − 1

(4.62)

where K is given by Ksub in (4.58) for subconservative and Kcon in (4.60) for conserva-
tive d-CRNs. The lattice of feasible solutions in both cases is represented by the vectors
vj, j = 1, . . . , K. The number of decision variables equals to K · l. To check the feasibility
of the above problems one has to find an integer lattice point in the feasibility regions
defined by the inequalities and equalities.

It is important to note that, according to Eq. (4.58) and Eq. (4.60), K is not polynomial
in n (the dimensionality of the d-CRN, i.e. |S|), but n is known to be constant for a given
reaction network. Furthermore K can be greater than the minimally required number of
steps for reaching a prescribed target state X ′, which may imply zero vectors vj in the
solution for some j = 1, . . . , K. The position of zero vectors among the non-zero ones does
not affect the solution but makes redundancy, hence the following ordering constraints
are introduced to exclude additional feasible permutations of the same set of reactions:

l∑
i=1

[vj]i ≤
l∑

i=1
[vj+1]i j = 1, . . . , K − 1 (4.63)

Once the feasibility problems (4.61) and (4.62) are equipped with the above inequality
constraints each feasible solution represents a distinct reaction (state transition) sequences
between the prescribed initial and target states. We note that the Barvinok’s algorithm
can be used to count all the distinct sequences. Furthermore, the feasibility problems can
be easily extended with addition linear constraints on the decision variables to decide the
feasibility in constrained convex sets.

The above feasibility problems can be easily equipped with linear objective functions
to form integer programs. For example:

min


K∑
j=1

l∑
i=1

[vj]i

 (4.64)

can be used to find a path of minimal length.
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4.7.5 Examples

In this section we illustrate our methods on two examples. Beyond the IP feasibility
approach, we equipped Eqs. (4.61) and Eqs. (4.62) with a linear objective function of
the form ∑m

j=1 cj. The resulting integer programs are capable of finding state transition
sequences from the initial state X0 to a prescribed target state X ′ (or a set of well-
defined target states X ′). We also implemented the next reaction method [152] – as it
was presented in [113] – to simulate the stochastic behavior of the studied d-CRNs. We
note that theoretically it is also possible to count the number of feasible solutions using
Barvinok’s algorithm for which there exists computer implementation [142].

The algorithms were implemented in Python 2.7 and we employed Gurobi as mathe-
matical optimization solver [153]. All the computations were performed on a Lenovo P51s
workstation having two 2.70GHz i7-7500U CPUs and 32GB RAM (DDR4 2133 MHz).

Example 1: A conservative d-CRN with extinction event

Let us consider the d-CRN taken from [121]. The reaction network structure is depicted
in Figure 4.4.

Figure 4.4: Reaction network structure of Example 1

The associated stoichiometric matrix is as follows

Γ =


−1 1 1 −1
1 −1 0 0
0 0 −1 1
0 0 0 0

 (4.65)

Based on the stoichiometric matrix Γ, it can be seen that the above d-CRN is conservative
with a conservation vector z = [1, 1, 1, 1]>. Assuming deterministic mass action kinetics,
one can describe this d-CRN with the following system of ordinary differential equations:

74

DOI:10.15774/PPKE.ITK.2022.003



dx1(t)
dt

= −k1x1(t) + k2x2(t)x3(t) + k3x3(t)x4(t)− k4x1(t)x4(t)

dx2(t)
dt

= k1x1(t)− k2x2(t)x3(t)

dx3(t)
dt

= −k3x3(t)x4(t) + k4x1(t)x4(t)

dx4(t)
dt

= 0

(4.66)

where xi(t), i = 1, 2, 3, 4 denotes the concentration of the ith species at time t and
ki, i = 1, 2, 3, 4 is the reaction rate constant associated to reaction ri.

The time evolution of the molecular counts in the case of the respective stochastic
d-CRN is given by the following state equations:

X1(t) = X1(0)− Y1(k1

∫ t

0
X1(τ)dτ) + Y2(k2

∫ t

0
X2(τ)X3(τ)dτ)− Y3(k3

∫ t

0
X3(τ)X4(τ)dτ)

X2(t) = X2(0) + Y1(k1

∫ t

0
X1(τ)dτ)− Y2(k2

∫ τ

0
X2(τ)X3(τ)dτ)

X3(t) = X3(0)− Y3(k3

∫ t

0
X3(τ)X4(τ)dτ) + Y4(k4

∫ t

0
X1(τ)X4(τ)dτ)

X4(t) = X4(0)
(4.67)

where Xi(t), i = 1, . . . , 4 denotes the molecular count for the ith species, and Yj for
j = 1, . . . , 4 are independent unit-rate (unit-intensity) homogenous Poisson processes.

For a general initial state X0 = [K L M N ]> ∈ Z4
≥0, the target state X ′ = [0 (K +

L + M) 0 N ]> is reachable which gives an extinction event, since X2 depletes both X1

and X3 which are necessary for firing all of the reactions. In the sequel we justify this
reachability argument by employing the proposed IP framework.

We consider this d-CRN with the following particular parametrization: k1 = 4.7,
k2 = 2.4, k3 = 4.9, k4 = 0.3. The initial state is X0 = [X1(0) X2(0) X3(0) X4(0)]> =
[15 10 20 20]>. Assuming deterministic mass action kinetics, our parametrization from X0

results in equilibrium with x1 ≈ 12.27, x2 ≈ 31.98, x3 ≈ 0.75 and x4 = 20. Considering
the discrete state system one can see that in the absence of X1 and X3 this d-CRN has no
reaction which is able to fire. Employing the feasibility framework (4.61) one can check
the reachability of such a target state, namely X

′ = [0, 45, 0, 20]. We solved the IP
problem (4.61) equipped with the objective function ∑l

j=1 cj. From the minimization we
get that copt = [35 0 20 0]>, i.e. through the first and third reactions one can reach X

′

during 55 occurences of these reactions. The determined discrete state transition sequence
of the shortest path is depicted in Figure 4.7.

After running the next reaction method several times from the prescribed initial state
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X0, we obtained a representative sample path reaching the critical state X ′ . This is shown
in Figure 4.5. Note that the depicted state transition sequence is not the shortest path
that we determined by the IP.

Figure 4.5: A sample trajectory of Example 1 for which the finial state is equal to X
′ =

[0, 45, 0, 20]>. For each species the continuous deterministic trajectory (smooth
curve) and the stochastic discrete state counterpart are depicted with the same
line type. Note that the target state can also be reached by fewer occurences of
the reactions.

The feasibility approach has the advantage that it can be easily generalized to check the
reachability of a set of states having prescribed properties. It is known that considering
deterministic mass action kinetics, the system reaches a positive equilibrium point, for
which x2(t) � x1(t). Modifying the framework (4.61) one can check the reachability of
states significantly differing from the deterministic equilibrium point. Instead of Γc =
X

′ −X0 in (4.61), we employ the following inequalities for feasibility analysis:

[X0 + Γc]1 ≥ Xdet
2

[X0 + Γc]2 ≤ Xdet
1

[X0 + Γc]3 ≤ Xmax

(4.68)

where Xdet
1 = 20, Xdet

2 = 32 are upper estimates for the deterministic case equilibrium
values of x1 and x2, respectively, if the initial state is X0 = [13 32 8]>. Based on the IP
(4.61) equipped with the objective ∑l

j=1 cj to be minimized, we proved that there exists
a reachable state for which the above conditions hold. The state transition sequence
corresponding to the shortest path computed by Algorithm 1 is depicted in Figure 4.7.

The existence of such a reachable state is also confirmed through simulation based on
the next reaction method. A simulated sample path is depicted in Figure 4.6 and states of
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interest are denoted by an arrow: while the deterministic system approaches equilibrium,
the stochastic counterpart satisfies the constraint set (4.68).

This example illustrates that by the proposed framework we can detect extinction events
in the discrete model even if the continuous model exhibits steady state.

Figure 4.6: A sample trajectory of Example 1 for which a subset of the states significantly dif-
fer from the equilibrium point of the deterministic mass action system. The arrow
is pointing to the states where the conditions (4.68) hold, though the determin-
istic counterpart approaches positive equilibrium. The continuous deterministic
(smooth) and the stochastic discrete state trajectories of the same species are de-
picted using the same line type.
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Figure 4.7: Minimal-length state transition sequences of Example 1 proving the reachability
cases [13 32 8]>  [45 0 8]> and [15 10 20]>  [0 45 20]>, respectively. The
conservativity surfaces (positive stoichiometric compatibility classes) associated to
the initial states are denoted in gray color.

Example 2: A subconservative d-CRN

In the second example we consider a SIRS epidemiological model having three species
and four reactions. The reaction network structure is depicted in Figure 4.8. The model
describes the time evolution of the susceptible, infected and recovered species of a closed
system. Susceptible species become infected with intensity proportional to β, while in-
fected species get recovered with intensity proportional to γ. The death-rate of infected
species is proportional to parameter µ. Recovered species get susceptible with intensity
proportional to w.
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Figure 4.8: Reaction network structure of the epidemiological model in Example 2. Note that
0 denotes the zero-complex.

Assuming large population number, such a system can be characterized by the following
deterministic differential equation system:

ds(t)
dt

= wr(t)− βs(t)i(t)

di(t)
dt

= βs(t)i(t)− γi(t)− µi(t)

dr(t)
dt

= γ(t)i(t)− wr(t)

(4.69)

where s, i, and r denote the continuous number of susceptible, infected, and recovered
individuals, respectively.

For the case of small population numbers, we consider the following state equations:

S(t) = S(0) + Y1(w
∫ t

0
R(τ)dτ)− Y2(β

∫ t

0
S(τ)I(τ)dτ)

I(t) = S(0) + Y2(β
∫ t

0
S(τ)I(τ)dτ)− Y3(γ

∫ t

0
I(τ)dτ)− Y4(µ

∫ t

0
I(τ)dτ)

R(t) = R(0) + Y3(γ
∫ t

0
I(τ)dτ)− Y1(w

∫ t

0
R(τ)dτ)

(4.70)

where S, I, and R are the integer numbers of susceptible, infected, and recovered indi-
viduals, respectively. Moreover, Yk for k = 1, . . . , 4 are independent unit-rate Poisson
processes.

The stoichiometric matrix associated to the system is the following:

Γ =


−1 0 0 1
1 −1 −1 0
0 1 0 −1

 (4.71)

Based on Γ it can be seen that the system is subconservative with a particular conservation
vector z = [1 1 1]>.

In our simulation setting the parameters had the following values: β = 0.18, γ = 0.9,
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µ = 0.05 and w = 0.39, respectively. Firstly, we consider the reachability of the target
state X ′ = [0 52 0]> where all the individuals are infected. As initial states we choose
X1

0 = [50 2 0]> and X2
0 = [10 26 10]>.

Employing the IP (4.61) equipped with ∑l
j=1 cj we found that there exist paths from

the above initial state to X
′ . The determined shortest paths are depicted in Figure

4.9 with black color. Note that these are partially overlapping reaction sequences. The
subconservativity surface which is the same for the two initial states is shown in gray. All
the states reachable from X1

0 and X2
0 are located on the surface or below that.

Figure 4.9: The bounded state space of Example 2. The conservativity hypersurface is denoted
by gray color. Shortest state transition sequences starting from [50 2 0]> and
[10 26 10]>, respectively, and reaching [0 52 0]> (where all the individuals are
infected) are depicted in black color.

By means of the presented IP framework equipped with cost function ∑m
i=1 ci we deter-

mined a finite reaction sequence starting from X0 = [50 2 0]> for which the final infected
count is equal to zero meaning the complete regression of the disease. This can be achieved
by introducing the following linear equality constraint:

X
′(2) = 0 (4.72)

Such a sample path simulated by the next reaction method is depicted in Figure 4.10
along the respective deterministic dynamical behavior. In Figure 4.11a one can see a
shortest state transition sequence determined by the IP, while in Figure 4.11b the state
transition sequence associated to the stochastic sample path in Figure 4.10 is shown.
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Figure 4.10: A sample path of Example 2 for which the dynamical behavior significantly differs
from that of the deterministic model. We use the same line type to denote the
continuous deterministic (smooth) and the stochastic discrete state trajectories
of the same species.

Figure 4.11: State transition sequences reaching the same target state [32 0 0]> where the
disease vanishes. The conservativity surface is denoted by gray color. a) the
shortest path determined by IP, b) a path simulated by the next reaction method.
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4.7.6 Relaxed conditions for d-CRN reachability

This section provides conditions under which the d-CRN reachability problem is equivalent
to the existence of a non-negative integer solution of the respective discrete state equation,
formally we give condition for which:

X0 + Γc = X ′ ⇔ X0  X ′ (4.73)

Low-dimensional case

In this section the case of low-dimensional (rank(Γ) ≤ 2) sub-and superconservative d-
CRNs are considered.

In order to discuss low-dimensional reachability problems we introduce a distinguished
state M = M(Γ−) as follows:

[M(Γ−)]i = max
{

[Γ−]ij : j = 1, . . . , l
}

i = 1, . . . , n. (4.74)

where Γ− is defined by Eq. (4.7). Note that the set {X | X ∈ Zn≥0, X �M} contains all
the states where each reaction is charged.

Proposition 15. Let us consider a subconservative d-CRN N with stoichiometric matrix
Γ ∈ {−1, 0, 1}n×l and Γ− ∈ {0, 1}n×l. Assume that rank(Γ) ≤ 2. We consider an initial
state X0 ∈ Zn≥0 and a target state X ′ ∈ Zn≥0 such that X0 � M and X ′ � M hold where
M = M(Γ−) is defined by Eq. (4.74). Then the state X ′ is reachable from X0 through
a state transition sequence σX = X0X1 . . . X

′ for which ∀X ∈ σX , X � M if and only if
the equation

Γc = X
′ −X0 (4.75)

has a non-negative integer solution c.

Proof.

1. If X ′ is reachable from X0 through an admissible state transition sequence σX , then
it follows that a solution c ∈ Zl≥0 exists.

2. Assume that there exists c ∈ Zn≥0 such that X0 + Γc = X
′ holds. Let us consider

any reaction vector decomposition σr = rν(1) . . . rν(h) of c where ∑h
j=1 rν(j) = c and∑l

j=1 [c]j = h. We show that Algorithm 3 returns a permutation of σr so that for
all the transition states X the inequality X �M holds.
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Algorithm 3
1: procedure Reorder(X0 [rν(1) rν(2) . . . rν(h)], M)
2: Xcurrent ← X0

3: for i = 1 to h do
4: if Xcurrent = X

′ then
5: return [rν(1) rν(2) . . . rν(h)]
6: end if
7: if [Xcurrent + rν(i)]l < [M ]l for some l = 1, . . . , n then
8: Choose a transition vector rν(j), i < j ≤ h so that

Xcurrent + rν(j) �M

9: r
′ ← rν(i)

10: rν(i) ← rν(j)

11: rν(j) ← r
′

12: end if
13: Xcurrent ← Xcurrent + rν(i)

14: end for
15: return [rν(1) rν(2) . . . rν(h)]
16: end procedure

Let us assume that there exists a transition stateXi, Xi �M so that the forthcoming
state Xi+1 satisfies the inequality [Xi+1]d < [M ]d for some d = 1, 2. For the target
state X ′ to be reached the inequality X ′ � M holds, hence there exists a reaction
increasing the state variable along the coordinate d. Let us assume that all the
reactions increasing the state variable along Xi decrease the other coordinate d′ so
that the resulted forthcoming state Xi+1 satisfies the inequality [Xi+1]d′ < [M ]d′ .
Then Xi = M holds. Now there are two different cases:

(P1) If X ′ = M , then Algorithm 3 terminates, the correctness follows.

(P2) If X ′ 6= M , then the subconservativity of N implies that it is not possible to
reach a state X, X � M , X 6= M , i.e. X ′ is not reachable from Xi. This is
contradiction, since arbitrary permutation of the initial ordering σr results in
the same target state X ′ , given the initial state X0. Then the correctness of
Algorithm 3 follows.

The above algorithm can be easily extended to the class of superconservative reaction
networks.

Corollary 2. Let us consider a superconservative d-CRN N with stoichiometric matrix
Γ ∈ {−1, 0, 1}n×l and Γ− ∈ 0, 1n×l. Assume that rank(Γ) ≤ 2 holds and consider an
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initial state X0 ∈ Zn≥0 and a target state X ′ ∈ Zn≥0 for which X0 � M and X ′ � M hold
where M is defined by Eq. (4.74). Then the state X ′ ∈ Zn≥0 is reachable from X0 if and
only if the equation

Γc = X
′ −X0 (4.76)

has a non-negative integer solution c.

Proof.
According to Proposition 11 we can consider a subconservative d-CRN N ′ of stoichiomet-
ric matrix −Γ and take the reachability problem X

′ ? N ′ X0. Then Proposition 15 can
be applied.

Sub-and superconservative d-CRNs of arbitrary high state space dimension

In this section the reachability problem of arbitrary high-dimensional sub- and super-
conservative d-CRNs is considered. Firstly we examine network structures composed of
reactions having at most one input and one output species. It is shown by an inductive
proof that under some auxiliary condition, the reachability relation X0  N X

′ is equiv-
alent to the existence of a c ∈ Zl≥0 solution of the d-CRN state equation X0 + Γc = X

′ .
Then, according to the relation between sub-and superconservative reaction network struc-
tures, this result is generalized to a subclass of superconservative d-CRNs, as well. We
also extend the results to d-CRNs containing second-order reactions by allowing catalyzer
species.

Firstly we adopt the following necessary and sufficient condition of reachability from
the theory of Petri nets (see Theorem 16, [143]) which will be extensively used in the
sequel.

Lemma 2. Let us consider a d-CRN N with stoichiometric matrix Γ ∈ {−1, 0, 1}n×l

such that for all r ∈ R reactions ∑n
i=1 [y+]i ≤ 1 and ∑n

i=1 [y−]i = 1 holds. Assume that
the reaction network of N does not contain directed cycle (i.e. N has an acyclic network
structure). Consider two states X0, X

′ ∈ Zn≥0. Then the reachability relation X0  N X
′

holds if and only if there exists c ∈ Zl≥0 vector satisfying the state equation X0 +Γc = X
′ .

Now we can state the result on the reachability of subconservative d-CRNs composed
of reaction having at most one input and one output species.

Proposition 16. Let us consider a subconservative d-CRN N = (S, C,R) of stoichio-
metric matrix Γ ∈ {−1, 0, 1}n×l and Γ− ∈ {0, 1}n×l for which C = S ∪ {0}. Assume that
for all r ∈ R reactions ∑n

i=1 [y+]i ≤ 1 and ∑n
i=1 [y−]i = 1 hold. Let us consider two states

X0, X
′ ∈ Zn≥0 so that X0 � M and X ′ � M hold where M = M(Γ−) is defined by Eq.

(4.74). Then the reachability relation X0  N X
′ holds if and only if there exists a vector

c ∈ Zl≥0 satisfying the state equation X0 + Γc = X
′ .
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Proof.

1. X0  N X
′ =⇒ ∃c ∈ Zl≥0 : X0 + Γc = X

′

By the definition of reachability it is guaranteed that the state equation is satisfied
with some c ∈ Zl≥0.

2. X0  N X
′ ⇐= ∃c ∈ Zl≥0 : X0 + Γc = X

′

For this side an inductive proof is employed.

a) k = 2

If a d-CRN is 2-dimensional, according to Proposition 15, the existence of a
solution c ∈ Zl≥0 of the state equation implies that the reachability relation
holds.

b) Inductive assumption

For k = n− 1 we assume that the reachability relation X0  N X
′ holds.

c) k = n

We have two different cases with respect to the existence of directed cycles.

If the reaction network has no directed cycle, then the reachability relation
X0  N X

′ is guaranteed by Lemma 2.

Assume that the reaction network contains at least one directed cycle

σS = sν(1) . . . sν(h) (4.77)

where h ≤ n, sν(1) = sν(h) and sν(i) 6= sν(j) for i, j = 1, . . . , h, i 6= j. Note
again that C = S ∪ {0}, hence σS can be considered as a directed cycle of
complexes in the reaction network (i.e. σS = σC = sν(1) . . . sν(h)). Let us
consider an arbitrary rk1k2 ∈ R reaction defined between some sk1 , sk2 ∈ σS,
i.e. rk1k2 = sk1 → sk2 .

Now we construct a d-CRN N ′ = (S ′
, C ′

,R′) from the stoichiometric matrix
Γ ∈ {−1, 0, 1}(n−1)×l and Γ− ∈ {0, 1}(n−1)×l as follows:

[Γ′ ]i,: =


[Γ]i,:, i < kmax, i 6= kmin,

[Γ]kmin,: + [Γ]kmax,:, i = kmin,

[Γ]i+1,:, kmax ≤ i ≤ n− 1,

(4.78)

and
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[Γ−′ ]i,: =


[Γ−]i,:, i < kmax, i 6= kmin,

[Γ−]kmin,: + [Γ−]kmax,:, i = kmin,

[Γ−]i+1,:, kmax ≤ i ≤ n− 1.

(4.79)

where kmin = min{k1, k2} and kmax = max{k1, k2}. This way we obtained a
d-CRN N ′ satisfying the assumptions of the proposition. Figure 4.12 gives an
illustrative example of how N ′ is constructed. Now we assign to each r′ ∈ R′

the ordered pair of source complex and product complex of r ∈ R from which
it is obtained. In such a way every reaction of N ′ is uniquely described by an
ordered pair (r′

, r) ∈ R′ × R. Then by the mapping P ((r′
, r)) = r one can

uniquely determine the reaction r ∈ R from which r′ ∈ R′ is derived.

Let us construct the states Xm
0 ∈ Zn−1

≥0 and Xm′ ∈ Zn−1
≥0 as follow:

[Xm
0 ]i =


[X0]i, i < kmax, i 6= kmin,

[X0]kmin
+ [X0]kmax , i = kmin,

[X0]i+1, kmax ≤ i ≤ n− 1.

(4.80)

[X ′m]i =


[X ′ ]i, i < kmax, i 6= kmin,

[X ′ ]kmin
+ [X ′ ]kmax , i = kmin,

[X ′ ]i+1, kmax ≤ i ≤ n− 1.

(4.81)

Then we have that Xm
0 � M(Γ−′) and X

′m � M(Γ−′), hence the (n − 1)-
dimensional d-CRN N ′ with the initial and final states Xm

0 and X
′m satis-

fies the assumptions of the proposition. From X0 + Γc = X
′ we have that

Xm
0 + Γ′

c = X
′m holds, hence, according to the (n− 1)-dimensional inductive

assumption, the reachability relation

Xm
0  N ′ X

′m (4.82)

follows.

Let us consider an admissible reaction vector sequence σ′
r associated to the

relation (4.82). Since for each r′ ∈ R′ we associated the reaction r ∈ R from
which r

′ is obtained, making use of the mapping P : R′ × R → R, we can
consider the reaction vector sequence σr (r ∈ R ∀r ∈ σr) uniquely determined
by σ′

r. We start from X0 and modify the state variable X ∈ Zn≥0 according the
reaction vector sequence σr. We may get to two invalid cases:

(C1) [X]k2 = 0, but the source complex of the forthcoming reaction rcurrent ∈
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σr is sk2 . Then, according to the (n − 1)-dimensional reachability, it is
guaranteed that sk1 is charged at the current state X. Let us insert rk1k2

into σr before the current reaction rcurrent.

(C2) [X]k1 = 0, but the source complex of the forthcoming reaction rcurrent ∈
σr) is sk1 . Then, according to the (n − 1)-dimensional reachability, it is
guaranteed that sk2 is charged at the current state X. It is known that sk1

can be reached from sk2 along a reaction vector sequence σ∗r in the reaction
network of N . Let us insert σ∗r into σr before the current reaction rcurrent.

By modifying σr according to the above discussed cases (C1) and (C2), we
obtain an admissible reaction vector sequence σrmod

with respect to the reach-
ability relation

X0  N ′ X∗ (4.83)

where X∗ � 0n, [X∗]i = [X ′ ]i for i = 1, . . . n, i 6= k1 and i 6= k2, moreover
[X∗]k1 + [X∗]k2 = X

′ . According to the assumptions N contains directed
paths both from sk1 to sk2 and from sk2 to sk1 , hence the reachability relation
X∗  N X

′ follows. Then, due to the transitivity of the relation  N , we have
that X0  N X

′ also holds.

Figure 4.12: Graphical explanation how the reaction network structure of N ′ in the proof of
Proposition 16 is constructed. a) Reaction network structure of an n-dimensional
d-CRNN . b) Reaction network structure ofN ′ resulted in by merging the species
sk1 and sk2 of N along their shared reaction rk1k2 (and its reverse counterpart
reaction rk2k1). Note that by merging sk1 and sk2 we obtain a stoichiometric
matrix Γ′ having redundant reactions (e.g. (s1, sk1), (s1, sk2) result in (s1, s

′
k1

),
(s1, s

′
k1

)) and zero reaction vectors (i.e. self-loops on s
′
k1
), but they are omitted

in b. A dircted cycle onwhich the chosen reaction rk1k2 lies is depicted in gray.

The above result can be extended to the case of superconservative d-CRNs.
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Corollary 3. Let us consider a superconservative d-CRN N = (S, C,R) with stoichio-
metric matrix Γ ∈ {−1, 0, 1}n×l and Γ− ∈ {0, 1}n×l for which C = S. Assume that for
all r ∈ R reactions ∑n

i=1 [y+]i = 1 and ∑n
i=1 [y−]i ≤ 1 hold. Let us consider two states

X0, X
′ ∈ Zn≥0 so that X0 � M and X ′ � M hold where M = M(Γ−) is defined by Eq.

(4.74). Then the reachability relation X0  N X
′ holds if and only if there exists a vector

c ∈ Zl≥0 satisfying the state equation X0 + Γc = X
′ .

Proof.
By changing the sign of the entries in the stoichiometric matrix Γ we get a subconservative
d-CRN N ′ of stoichiometric matrix −Γ. Then we can consider the reachability problem
X

′ ? N ′ X0.

We can extend Proposition 16 by allowing the restricted application of catalyzer species
as follows.

Proposition 17. Let us consider a subconservative d-CRN N = (S, C,R) of stoichio-
metric matrix Γ ∈ {−1, 0, 1}n×l and Γ− ∈ {0, 1}n×l. Assume that for each reaction r:

1. r = s1 → s2 for some s1, s2 ∈ S, s1 6= s2, s1 6= 0, OR

2. r = s+ s1 → s+ s2 where s, s1, s2 ∈ S, s 6= s1 6= s2, s 6= 0, s1 6= 0 and ∀r′ ∈ R r
′

does not consume s.

Let us consider two states X0, X
′ ∈ Zn≥0 for which X0 � M and X

′ � M where M =
M(Γ−) is defined by Eq. (4.74). Then the reachability relation X0  N X

′ holds if and
only if there exists a vector c ∈ Zl≥0 satisfying the state equation X0 + Γc = X

′ .

Proof.

1. X0  N X
′ =⇒ X0 + Γc = X

′

It follows from the definition of reachability.

2. X0 + Γc = X
′ =⇒ X0  N X

′

Since in the initial state X0 the number of each catalizer molecule is higher then or
equal to 1 and there is no reaction in N consuming a catalyzer species, it follows that
for each state reachable from X0 the number of each catalyzer molecule is higher
then or equal to 1. Let us remove all the catalyzer species of N from the reactions
where they act as a catalyzer, i.e. for each r ∈ R of the form r = s+ s1 → s+ s2 we
erase the catalyzer s to obtain r′ = s1 → s2. In such a way a d-CRN N ′ is obtained
so that for each X � M , X0  N ′ X iff X0  N X. N ′ satisfies the conditions
of Proposition 16, hence the reachability relation X0  N ′ X

′ holds implying that
X0  N X

′ also holds.
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According to the duality of the sub-and superconservaitvity properties we can extend
Proposition 17 to the case of superconservative d-CRNs.

Corollary 4. Let us consider a superconservative d-CRN N = (S, C,R) of stoichiometric
matrix Γ ∈ {−1, 0, 1}n×l and Γ− ∈ {0, 1}n×l. Assume that for each reaction r:

1. r = s1 → s2 for some s1, s2 ∈ S, s1 6= s2, s2 6= 0, OR

2. r = s+ s1 → s+ s2 where s, s1, s2 ∈ S, s 6= s1 6= s2, s 6= 0, s2 6= 0 and ∀r′ ∈ R r
′

does not produce s.

Let us consider two states X0, X
′ ∈ Zn≥0 for which X0 � M and X

′ � M where M =
M(Γ−) is defined by Eq. (4.74). Then the reachability relation X0  N X

′ holds if and
only if there exists a vector c ∈ Zl≥0 satisfying the state equation X0 + Γc = X

′ .

Proof. By changing the sign of the entries in the stoichiometric matrix Γ we obtain
a subconservative d-CRN N ′ of stoichiometric matrix −Γ satisfying the conditions of
Proposition 17. We can consider the reachability problem X

′ ? N ′ X0.

By the above corollary, any reachability problem on a superconservative d-CRN satis-
fying the conditions of Corollary 4 can be easily traced back to that of a subconservative
network, hence the problem is equivalent to finding a c ∈ Zl≥0 solution for the respective
d-CRN state equation.

The reaction network class covered by the above statements might be beneficial in
modeling first and second order (bio)chemical reaction networks. For a representative
example, see Example 4 below. We also note that any mass action type chemical reaction
network can be dynamically described by an appropriately constructed reaction network
containing at most second order reactions [146]. Moreover, the hypergraph representation
of chemical reaction networks (see, e.g. [147]) is helpful for checking the conditions of
Proposition 17.

Example 4. Nuclear factors of activated T-cells (NFAT) are proteins that can exist in
highly phosphorylated states [148]. They act as transcription factors, i.e. they have
regulatory role in transcription. NFAT1, which is a member of the NFAT familiy, has
13 residues that can be dephosphorylated upon stimulation. NFAT1 has two different
states: active and inactive. The transition between active and inactive states of the
protein is regulated by the level of phosphorylation such that the higher the level of
phosphorylation is, the lower the rate of transition becomes from inactive state to the
active one and vice versa. Phosphorylation and dephosphorylation are achieved by a
kinease and calcineurin, respectively. In the mathematical model the activities of kinase
and calcineurin are modeled as rate constants, hence the respective reactions can be
considered as first-order ones. The protein might be located in the cytoplasm or the
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nucleus of the cell. Cytoplasmic active NFAT1 is imported to the nucleus, while inactive
NFAT1 of the nucleus is exported back to the cytoplasm.

The reaction network structure is depicted in Figure 4.13. It is visible that each reac-
tion is first order and there is no degradation and synthesis, hence the reaction network
structure is conservative with a particular conservativity vector z = 156 and Proposition
16 can be applied.

Figure 4.13: Conformational switch model of NFAT1 [148]. Lower case letters denote the
protein located in the cytoplasm while upper case letters refer to the protein in the
nucleus. aj , Aj and ij , Ij for j = 0, . . . 13 denote the active and inactive proteins,
respectively. Lower indices denote the number of phosphorylated residues.

We note that a reachability problem of the discussed reaction network class without
additional constraints may be determined in polynomial time [145]. However, by using
an ILP feasibility approach, the number of all distinct trajectories satisfying a prescribed
reachability relation can be determined efficiently (see Remark 1), assuming the fixed
number of reactions in the network. In addition, the ILP formulation can also be equipped
with further linear constraints.

Remark 1. Let us consider a subconservative (superconservative) d-CRN N = (S, C,R)
of n species, m complexes and l reactions. Assume that N satisfies the conditions of
Proposition 17 (Corollary 4). Then for any X0, X

′ ∈ Zn≥0 initial and target states for
whichX0 �M(Γ−), X ′ �M(Γ−) hold we have that the number of distinct trajectories σX
satisfying the reachability relationX0

? N X
′ can be determined in polynomial time in the

distance ofX0 andX
′ , given the fixed number of reactions l in the d-CRN. The explanation

of this is the following. According to Proposition 17 (Corollary 4) the reachability problem
X0

? N X
′ is equivalent to the existence of a non-negative integer solution c ∈ Zl≥0 of the

state equation X0 + Γc = X
′ . In this way the reachability problem can be reformulated

as an ILP feasibility problem in terms of c, and the Barvinok algorithm can be applied.
Using the Barvinok algorithm in this particular case the following complexity bounds are
obtained:
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1. exponential in the dimension of the decision variables, that is in the number of
different reactions l,

2. polynomial in the number of constraints, that is in the number of species n,

3. polynomial in the maximum of the absolute values of the coefficients Γ, X ′ −X0.

The particular importance of Remark 1 is that the time complexity of the trajectory
counting problem between a prescribed pair of states is polynomial in the number of
constraints and in the distance of the initial and target states even in the case of super-
conservative d-CRNs for which the associated reachable state space can be unbounded
for any X0 initial state.

4.7.7 Computational example: a superconservative d-CRN of first
order reactions

Figure 4.14: A superconservative d-CRN. 0 indicates the zero complex and the numbers
denote the indices of the reactions onwhich they are located. Due to the super-
conservativity of the network structure the above d-CRN is unbounded for any
initial state X0 ∈ Zn≥0.

Let us consider the d-CRN depicted in Figure 4.14. This system is superconservative
with a particular conservation vector z = 121 implying the unboundedness of its reach-
able state space regardless of the initial state X0. Making use of the above results, the
reachability problem of X0

? X
′ for any X0, X

′ ∈ Z21
≥0 can be reformulated as a subcon-

servative d-CRN reachability problem for which the boundedness of the reachable state
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space – i.e. structural boundedness – is guaranteed and is equivalent to the existence of
a non-negative integer solution of the respective subconservative d-CRN state equation.

As initial state we consider X0 given by Eq. (4.85) that was randomly generated from
[10, 100]21. In order to find a target state X ′ satisfying the reachability relation X0  X

′

we randomly generated target states so that the number of each species was uniformly
sampled from the interval [40, 100]. In the choice of the intervals from which we sample
it was taken into consideration that the discrete state model of reaction networks are
typically employed in the case of low molecular counts [109, 110]. In order to decide the
reachability relation between a pair of particular states X0 and X ′ we need to solve the
following decision problem: Γc = X

′ −X0

c ∈ Z28
≥0

(4.84)

Clearly, Corollary 4 guarantees that Γc = X
′ −X0 is satisfied with some c ∈ Z28

≥0 if and
only if the reachability relation X0  X

′ holds. Let us consider the following initial and
final states:

X0 = [56 10 35 87 66 75 87 60 60 55 50 89 58 72 52 71 48 71 57 47 68]> (4.85)

X ′ = [50 46 65 77 88 95 71 56 59 54 43 76 55 78 40 62 51 71 53 64 91]> (4.86)

We found that for the target state X ′ given by Eq. (4.86) the reachability relation holds.
To solve the decision problems of the form (4.84) the LattE [142] software was used.

Now, let us examine the reachability fromX0 toX
′ with additional constraints. One can

observe that X ′ results in a significant increase of the number molecules in the species
s5, s6, s20 and s21 and any tarjectory from X0 to X

′ results in a net increase in the
number of molecules. These together imply the flow of molecules from the zero complex
(environment). The flow of molecules over the network from the zero complex to s5, s6,
s20 and s21 can take place through different paths. We assume that the directed paths

σS1 = s3 s12 s13 s14 s15 s4, (4.87)

σS2 = s3 s16 s17 s4 (4.88)

are slow compared to the other ones, hence we wish to minimize the flow through them
in order to lower their effect in c. This can be easily expressed by posing addition linear

92

DOI:10.15774/PPKE.ITK.2022.003



constraints on c as it is done in the decision problem (4.89).


Γc = X
′ −X0

c ∈ Z28
≥0

[c]15 ≤ 10

[c]27 ≤ 10

(4.89)

We also determined a particular solution c by equipping (4.89) with the objective function∑28
i=1 [c]i to be minimized:

c = [112 106 112 111 118 48 8 29 12 18 16 11 11 7 8 13 17 16 15 8 17 13 16 13 19 16 9 51]>

(4.90)

For implementation purposes we employed Python 2.7 programming language and the
Gurobi mathematical optimization solver [153]. A Lenovo P51s workstation with two
2.70GHz i7-7500U CPUs and 32GB RAM (DDR4 2133 MHz) was used for all the com-
putations.

4.7.8 Polynomial time reachability with theoretical guarantee

In this section we extend the d-CRN reachability results discussed in the previous sections
[J7]. We provide a polynomial time relaxation of the following IP decision problem:

Γc = X
′ −X0

c ∈ Zl≥0

(4.91)

We prove that Eq. (4.91) can be relaxed to a linear program under the conditions of
Proposition 16 and Corollary 3. The relaxed method has polynomial time complexity in
the number of species (n). This way a computational method is provided for the d-CRN
reachability problem with polynomial time complexity and theoretical guarantee [J7].

Proposition 18. Let us consider a subconservative or superconservative d-CRN N =
(S, C,R) with stoichiometric matrix ΓN ∈ {−1, 0, 1}n×l and Γ−N ∈ {0, 1}n×l and C =
S ∪ {∅}. Let us assume that for each r ∈ R, ∑n

i=1 [y+]i ≤ 1 and ∑n
i=1 [y−]i = 1. Let us

consider two arbitrary states, X0, X
′ ∈ Zn≥0 so that X0 �M , X ′ �M whereM = M(Γ−)

is defined by Eq. (4.74). Then the reachability relation X0  N X ′ can be decided in
polynomial time.

Proof. The conditions imply that the existence of a c ∈ Zl≥0 for which X0 + ΓN c = X ′

holds is a sufficient and necessary condition of the reachability relation X0  N X ′.
We make use of Proposition 8 to show that the stoichiometric matrix ΓN is totally

unimodular. The following propositions hold for ΓN :
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1. Every entry of ΓN is 0, 1 or −1.

2. Every column of ΓN contains at most 2 non-zero entries.

3. The rows of ΓN can be partitioned into two disjoint subsets S1 and S2 so that:

a) if two entries in a column of ΓN have the same sign, then one is in S1 while
the other one is in S2;

b) if two entries in a column of ΓN have the opposite sign, then they are in the
same subset S1 or S2.

Clearly, each entry in ΓN equals to +1, −1 or 0. Each reaction consumes at most
one species and produces at most another one, that is each column of ΓN has at most 2
non-zero entries. Multiple entries of the same sign in a column of ΓN would imply that
different species are consumed or produced by a reaction, but this is not possible in the
considered class of reaction networks. Considering any column of ΓN , the (at most) two
rows containing non-zero entries must be in the same set (S1 or S2). If the the reaction
network graph is connected, then all the rows are put in the same set. Let us assume that
the reaction network graph is not connected. In this case there exist 2 or more linkage
classes in the reaction network graph. Note that the linkage classes are not necessarily
strongly connected. The linkage classes cover disjoint sets of rows in ΓN and for each
linkage class we can choose arbitrarily, either S1 or S2, irrespective of the other linkage
classes. Note that empty rows are not possible as we assume that isolated spacies are not
allowed.

The above proof implies that ΓN is guaranteed to be totally unimodular [151]. Clearly,
for a totally unimodular matrix ΓN the following LP provides an optimal integer solution:



minc{a>c}

subject to

ΓN c = X ′ −X0

c ∈ Rl
≥0

(4.92)

for any a ∈ Rl.

The practical importance of Proposition 18 is that the reachability relation can be
decided by a linear program, which has polynomial time complexity with respect to the
state space dimensionality (n). The IP feasibility formulation employed the Lenstra and
Barvonok algorithms and assumed fixed state space dimensionality to obtain polynomial
time complexity in terms of the number of reactions and the maximum absolute value
entry of the constraint matrices. However, the IP feasibility approach was exponential in
the state space dimensionality (number of species).
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Proposition 18 provides theoretical guarantees that the feasibility of the relaxed LP
implies reachability, while the infeasibility implies that the reachability relation does not
hold.

We can naturally extend Proposition 17 and Corollary 4 by making use of the totally
unimodular property of the stoichiometric matrix ΓN similarly as we obtained Proposition
18. Finally, we note that by linear programming, the infeasibility can be decided with
high accuracy. However, in the case of ILP problems, the infeasibility returned by a solver
conveys lower accuracy.

Example 5. In this example an illustrative reaction network is provided from the lit-
erature of Chemical Reaction Networks [154]. Fig. 4.15 depicts a conservative reaction
network structure N of 14 species (metabolites). The stoichiometric matrix associated to
the system is given by Eq. (4.93). A suitable conservation vector for the d-CRN is given
by z = 1n: z>ΓN = 01×l, n = 14, l = 19. Clearly, for any non-negative initial state, the
reachable state space Reach(N , X0) is an (n− 1)-dimensional hyperplane.
N has a monomolecular reaction network structure with totally unimodular stoichio-

metric matrix. This implies that Proposition 18 can be applied. For any pair of state
vectors X0, X

′ ∈ Zn≥0, X0, X
′ �M(Γ−N ),M(Γ−N ) = 1n, the reachability relation X0  X ′

can be validated in polynomial time by running a linear program of the form of Eq. (4.92)
with some non-zero a ∈ Rl.

Figure 4.15: A conservative d-CRN N for which Proposition 18 holds. N is a monomolecular
reaction network with totally unimodular stoichiometric matrix. This implies
that the generally NP-hard problem of deciding the reachability relation can be
relaxed to a linear program with guaranteed polynomial time complexity.

ΓN =



-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 -1 1 -1 -1 0 0 1 -1 -1 -1 0 0 0 0 0 0 0 0
0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 -1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 -1 -1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 -1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


(4.93)
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Case Continuous Integer Barvinok
A 0.1 [sec] 0.23 [sec] >60 [min]
B 0.01 [sec] 0.01 [sec] >60 [min]
C <0.01 [sec] <0.01 [sec] >60 [min]

Table 4.2: Computational comparison of the different methods proposed for deciding the d-
CRN reachability. Continuous represents the LP formulation given by Eq. (4.92).
Integer denotes the integer program Eq. (4.91) equipped with a linear cost function
of the form minc{a>c}, a = 119. Barvinok stands for the implementation of the
Barvinok’s algorithm [142]. In Case A, [X0]1 = 5, [X1]4 = 395, otherwise [X0]i =
200, [X1]i = 200. In case B, [X0]1 = 100, [X1]4 = 300, otherwise [X0]i = 200,
[X1]i = 200. Finally, in case C, [X0]1 = 195, [X1]4 = 205, otherwise [X0]i = 200,
[X1]i = 200. In all the cases, the reachability relation holds. The table depicts the
different methods with their respective running times.

Table 4.2 depicts the computational comparison of different algorithms proposed for
deciding the d-CRN reachability. Eq. (4.91) and Eq. (4.92) were implemented in Python
3.7. using the Gurobi solver [153]. We used the LattE implementation of the Barvinok’s
algorithm. Note that Proposition 18 provides theoretical guarantee that the LP formu-
lation of Eq. (4.92) has integer solution. Clearly, the feasibility of (4.91) and Eq. (4.92)
implies the d-CRN reachability. In case A, the LP formulation can decide the reachability
problem within half of the time of the IP solution. Note that the higher the Manhattan
distance between the initial state X0 and the target state X1, the higher is the running
time of the algorithms.

4.8 Summary
In this chapter the reachability problems of sub-and superconservative discrete state chem-
ical reaction networks are considered. It is shown that the reachability problem of a su-
perconservative reaction network of unbounded reachable state space can be transformed
to that of a subconservative network for which the boundedness of the reachable state
space is always guaranteed. We employed an ILP feasibility approach to computationally
solve the reachability problem. Upper bound on the maximal length of cycle-free state
transition (reaction) sequences are provided. Using an inductive proof we provided a set of
necessary and sufficient conditions under which the equivalence between a d-CRN reach-
ability problem and the existence of a non-negative integer solution of the corresponding
state equations is guaranteed. In such a way the reachability problem can be traced back
to an ILP feasibility (decision) problem for which the number of decision variables is
significantly lower than that of employed in the literature. Moreover, the number of tra-
jectories satisfying the reachability relation can also be enumerated efficiently, assuming a
fixed reaction network structure. Finally, we proved that the reachability problem can be
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decided in polynomial time with theoretical guarantee in the studied d-CRN subclasses.
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5 Conclusion and Future Works

5.1 New scientific results
Thesis I. I proposed a novel method for testing structural identifiability in
time delayed non-linear dynamical system models [J1].

I applied the Volterra series representation of single input single output non-linear
dynamical systems with constant time delays to give sufficient conditions for the joint
structural identifiability of system parameters and delays. Using the frequency domain
representation of the Volterra kernels in the form of generalized frequency response func-
tions (GFRFs), I showed that the unique solution of a set of appropriately constructed
non-linear algebraic equations implies the joint structural identifiability of the delayed
model.

Thesis II. I proved that the set of feasible state transition matrices of a
discrete time linear dynamical systems (DT-LDS) is convex, assuming that the
matrices B,C and D are fixed. Making use of the convexity of feasible system
matrices I obtained convex optimization based algorithm for finding different
dynamically equivalent n-order realizations with theoretical guarantee [J2].

I inductively proved that the set of feasible system (state transition) matrices of a DT-
LDS is convex, assuming that the matrices B, C and D are fixed and C is invertible. I
showed that the convexity of the set of system matrices can be used to determine differ-
ent dynamically equivalent realizations of the system Θ = (A,B,C,D). I developed new
algorithms from the theory of kinetic systems (mass action law reaction networks) to find
structurally different realizations of a DT-LDS.

Thesis III. I developed a computational method for deciding reachability
and coverability problems in discrete state chemical reaction networks with
novel upper bound on the length of cycle-free state transition sequences [J3].

I employed an integer programming feasibility based computational approach for de-
ciding the reachability problem of discrete state chemical reaction networks with novel
upper bound on the number of decision variables. The method relies on the Lenstra algo-
rithm capable of deciding integer programming feasibility problems in polynomial time,
assuming fixed dimension in terms of the decision variables. I gave new upper bounds for
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the maximal length of cycle-free state transition sequences between any pair of initial and
target states in subconservative reaction network structures. Considering subconservative
reaction networks of state space dimension smaller than or equal to two, I proved that the
reachability property is equivalent to the non-negative integer solution of the associated
reaction network state equation.

Thesis IV. I gave network topology related conditions under which the d-
CRN reachability relation for any pair of initial and target states is equivalent
to the existence of a non-negative integer solution of the d-CRN state equa-
tion. This way an Integer Programming feasibility problem is obtained. I
proved that under the same conditions, the resulting IP feasibility problem
can be relaxed to a Linear Problem with guaranteed polynomial time com-
plexity [J4, J7].

1. It is known that a subconservative network has bounded reachable state space, while
that of a superconservative one is unbounded. I gave a proof that the reachabil-
ity problem of superconservative reaction networks is equivalent to the reachability
problem of subconservative reaction networks. The practical importance of the re-
lation between the sub-and superconservative reachability is that the reachability
problem of a superconservative system – with state space guaranteed to be un-
bounded – can be traced back to that of a subconservative network having bounded
state space. In the classes of sub-and superconservative reaction networks I gave
conditions for network structure under which the reachability property is equivalent
to the existence of a non-negative integer solution of the associated state equation
characterizing the time evolution of the chemical reaction networks. The equiva-
lence, using the Lenstra algorithm, implies an integer programming based feasibility
approach [J4].

2. I showed that the stoichiometric matrix – under the same conditions as IV/1 – is
totally unimodular. It is known that an integer program with totally unimodular
constraint matrix can be relaxed to a linear program. This way I obtained a linear
program with guaranteed polynomial time complexity for the reachability problem
[J7].

5.2 Application possibilities and future works
The main motivation behind the methods and computational procedures proposed in this
thesis is to study the dynamical and structural properties in biologically motivated system
models. An important aspect of this work is to quantitatively examine the relationship
between dynamical (differential/difference equation-based) and structural (topological,
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graph-based) properties of system models. The main application can be to examine
biological systems as they are commonly represented by both dynamical equations and
network representations. The identifiability approach proposed in chapter 2 can be used
as a prior step to any parameter estimation procedure performed on biological processes.
The realizability results of chapter 3 are also related to structural identifiability. Clearly,
the existence of structurally different dynamically equivalent realizations of a DT-LDS
implies local structural unidentifiability. Furthermore, determining structurally different
realizations can provide means for synthetic biology, it may possible to find the most
suitable (biochemically feasible) network structure to implement a prescribed molecular
functionality. The novel results obtained for d-CRNs can be used to computationally
examine the properties of molecular circuits of low molecular multiplicity. Synthetic
biology is also a possible application field as the gate-implementability problem is known
to be equivalent to the d-CRN reachability problem [149]. Since the formal model of
d-CRNs considered in this thesis is equivalent to Petri nets and VASS, the reachability
results can also be applied to solve problems in theoretical computer science and related
applications, such as verification of distributed, concurrent and parallel systems.

The following research directions are listed for future work:

1. Structural identifiability of delayed systems: we used the GFRFs to obtain sufficient
conditions for joint structural identifiability analysis of ordinary model parameters
and constant time delays. A possible extension is to examine whether there exists an
upper bound (depending on the model structure) on the minimal number of distinct
GFRFs to be computed for structural identifiability testing. Clearly, obtaining
an upper bound with theoretical guarantees would imply necessary and sufficient
condition of structural identifiability in non-linear time delayed systems. We also
note that there exists a recursive formula for computing the GFRFs [99]. A recursive
formula could provide means for examining the minimal number of GFRFs required
for obtaining necessary and sufficient condition of structural identifiability.

2. Finding all structurally different realizations of DT-LDSs: extending the proposed
computational methods to find all the structurally different realizations of DT-LDSs
with theoretical guarantee. The embedding eigenvalue assignment procedure em-
ployed to reduce the number of non-zero Markov parameters is useful for determin-
ing structurally different realizations, but we have no theoretical guarantee that this
way all the structurally different realizations can be computed. An interesting way
for extending the proposed work is to examine whether it is possible to substitute
the embedding eigenvalue assignment procedure with another method for which the
obtained compressed set of Markov parameters is proven to be useful for finding all
the structurally different realizations of the original DT-LDS.

3. Extension of the reachability results to more general classes of d-CRN structures:
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the network structure-related conditions for the equivalence of d-CRN reachability
and the existence of a non-negative integer solution of the respective d-CRN state
equation is restricted to certain sub-and superconservative network structure classes.
An interesting way for further research is to examine whether it is possible to extend
the above equivalence result to a wider class of d-CRN structures, e.g. by means of
network structure transformations.
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Appendix A.
Non-zero entries in the initial adjacency matrix of the LDS depicted in 3.2.

[A]2,10 = 1;

[A]3,1 = 0.5; [A]3,2 = 0.5;

[A]4,1 = 0.3; [A]4,2 = 0.5; [A]4,3 = 0.2;

[A]5,1 = 1;

[A]6,1 = 1;

[A]7,1 = 0.3; [A]7,5 = 0.4; [A]7,6 = 0.3;

[A]8,1 = 0.2; [A]8,2 = 0.2; [A]8,3 = 0.2; [A]8,4 = 0.4;

[A]9,1 = 0.4; [A]9,3 = 0.6;

[A]10,3 = 1.0;

[A]11,1 = 0.1; [A]11,5 = 0.1; [A]11,6 = 0.8;

[A]12,1 = 1.0;

[A]13,1 = 0.9; [A]13,4 = 0.1;

[A]14,1 = 0.1; [A]14,2 = 0.2; [A]14,3 = 0.3; [A]14,4 = 0.4;

[A]17,6 = 0.7; [A]17,7 = 0.3;

[A]18,1 = 0.8; [A]18,2 = 0.2;

[A]20,1 = 0.1; [A]20,2 = 0.9;

[A]22,1 = 0.4; [A]22,2 = 0.6;

[A]26,24 = 0.65; [A]26,25 = 0.35;

[A]28,3 = 0.2; [A]28,24 = 0.3; [A]28,25 = 0.5;

[A]29,3 = 1.0;

[A]30,24 = 0.3; [A]30,27 = 0.7;

[A]31,2 = 0.1; [A]31,9 = 0.9;

[A]32,1 = 0.25; [A]32,25 = 0.25; [A]32,26 = 0.4; [A]32,29 = 0.1;

[A]33,3 = 0.1; [A]33,9 = 0.1; [A]33,15 = 0.1; [A]33,16 = 0.1; [A]33,19 = 0.05; [A]33,21 = 0.05; [A]33,23 = 0.1;

[A]33,24 = 0.1; [A]33,30 = 0.1; [A]33,31 = 0.1; [A]33,32 = 0.1;

[A]34,9 = 0.05; [A]34,10 = 0.05; [A]34,14 = 0.15; [A]34,15 = 0.05; [A]34,16 = 0.01; [A]34,19 = 0.09; [A]34,20 = 0.02;

[A]34,21 = 0.08; [A]34,23 = 0.03; [A]34,24 = 0.07; [A]34,27 = 0.1; [A]34,28 = 0.05; [A]34,29 = 0.05; [A]34,30 = 0.05;

[A]34,31 = 0.05; [A]34,32 = 0.05; [A]34,33 = 0.05

115

DOI:10.15774/PPKE.ITK.2022.003


	Abstract
	Acknowledgment
	Mathematical notations
	List of abbreviations
	Introduction
	Summary of contributions

	Structural identifiability analysis of non-linear time-delayed systems
	Mathematical notations
	Background
	Structural identifiability of time delayed systems
	Input-output representation for identifiability analysis
	Volterra series representation for non-linear input-output models
	Computation of the GFRFs

	Testing structural identifiability with GFRFs
	Examples
	Summary

	Computing different realizations of linear dynamical systems
	Mathematical notations
	Background
	Mathematical preliminaries and problem formulation
	Embedding eigenvalue assignment procedure
	Representing different realizations using a compressed set of Markov parameters
	The geometrical structure of the set of feasible system matrices
	Characterizing structurally different system realizations
	Computational framework for finding structurally different realizations
	Algorithm for computing dense realization
	Algorithm for computing all structurally different realizations
	Extension to arbitrary DT-LDS

	Computational examples
	Example 1
	Example 2

	Summary

	Reachability analyis of discrete state Reaction Networks
	Mathematical notations
	Background
	Discrete state chemical reaction networks
	Equivalent Model Formulations
	Integer Linear Programming
	Sub-and superconservative d-CRNs
	Reachability analysis
	Problem statement
	Constraint formulation
	Bounds for the length of reaction sequences
	Computational solution of the reachability problem
	Examples
	Relaxed conditions for d-CRN reachability
	Computational example: a superconservative d-CRN of first order reactions
	Polynomial time reachability with theoretical guarantee

	Summary

	Conclusion and Future Works
	New scientific results
	Application possibilities and future works

	Bibliography



