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1 Introduction
It is known that several dynamical systems possess a graphical rep-
resentation in which the nodes represent the individual components
while edges correspond to the functional relations between components
[1, 2, 3]. For example in a gene regulatory network individual genes can
be written as nodes and edges represent functional connections between
pairs of genes, such as activation, inhibition [6]. The dynamical model
of a system may encode the network structure in terms of the parame-
ters of the underlying differential or difference equation system. In the
case of linear dynamical systems the state transition (system) matrix
encodes the interaction pattern of state variables (individual compo-
nents) by its non-zero off-diagonal entries [7]. In non-linear dynamical
system models the differential equations may also convey information
about the underlying network structure of the interacting components,
e.g. in the class of kinetic systems it is proven that the model pa-
rameters and edges of the respective graph-based representation are
quantitatively related to each other [4, 5]. In Figure 1 we illustrate
that dynamical model and network-based representation can also be
associated to the same biological process. Here it is also illustrated
that the differential equation model can be used to derive the graphical
representation of the same system.

This thesis is centered around the structural analysis, realizability
and identification of various system models. The main motivation of
this work is to provide theoretically grounded computational methods
for the analysis of biologically motivated system models, but the de-
veloped methods and algorithms can also be used for studying various
other systems of engineering and physical importance. We study the
relationship between the network structure and dynamical behavior of
different system models, such as discrete time linear dynamical systems
and discrete state chemical reaction networks. We examine whether
there exist structurally (topologically) different realizations of the same
dynamical system. We wish to provide algorithms capable of deter-
mining structurally different realizations of a dynamical system model,
assuming that the network-based representation is not unique. We
also examine structural identifiability, a quantitative property ensuring
parametric uniqueness, which is closely related to structural uniqueness
of the underlying network representation. Structural identifiability can
help us quantifying network structure related properties of dynamical
system models as it is related to the parameterization of the dynamical
system model. Since biologically motivated dynamical systems com-
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Figure 1: Illustration of different representations of a complex biological
system. Based on the observed dynamical behavior of the underlying
biological system one can (re)construct both a dynamical system model
(ODE model) and a graphical representation (reaction network). It is
also indicated by an arrow that the ODE model can be used to write
out the graphical representation of the system.
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monly involve time delayed terms, we consider structural identifiability
of non-linear time delayed system with the assumption that time de-
lays are constant parameters to be identified and we examine the joint
identifiability of time delays and ordinary system parameters related
to the underlying network structure.

2 Applied tools and methods
2.1 Structural identifiability
Let us consider a continuous single-input single-output (SISO) dynam-
ical system model:

M(t, θ, u, y, p) = 0, (1)
where u and y are the input excitation and the respective output of the
system. The signals u and y can involve arbitrary number of constant
time delays, i.e.

u =
{
u(t), u(t− Tu

1 ), . . . u(t− Tu
ku

)
}
,

y =
{
y(t), y(t− T y

1 ), . . . y(t− T y
ky

)
}
,

(2)

with ku, ky denoting the number of delayed components with respect
to u and y, respectively. θ denotes the set of parameters, which in-
cludes the time delays Tu

1 , . . . T
u
ku
, T y

1 , . . . T
y
ky
∈ R. θ is assumed to be

independent of the initial conditions and the input signals. p denotes
the differentiation operator. The system operator M(.) is assumed to
be analytic. The analytic assumption on M(.) is not restrictive as it
is satisfied by several important systems, e.g. systems of polynomial
non-linearities, which are widely used to model physical, chemical and
biological systems. M(.) may also involve non-linearities in terms of θ.

The input-output model structure defined by Eq. (1) may be ob-
tained from non-linear state space models by differential algebraic elim-
ination of unobserved state variables [8, 9].

Prior to any parameter estimation procedure performed on a model
of Eq. (1), it is useful to examine whether it is theoretically possible
to uniquely determine the system parameters.

Definition 1. The model of Eq. (1) is said to be structurally globally
identifiable (s.g.i.), if

y(θ) = y(θ̂) implies θ = θ̂ (3)
for any measurable value of θ, where y(θ) denotes the output of the
system Eq. (1) parameterized with θ.
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If Eq. (3) is valid only in a bounded neighborhood V(θ) of θ, then
the system is said to be structurally locally identifiable (s.l.i.) around θ.
If the system is not identifiable, it is called structurally unidentifiable
(s.u.i.). If the identfiability definitions are restricted to a subset θ ⊂ θ,
then the respective parameters θ are said to be s.g.i, s.l.i and s.u.i.

�

By involving the time delays in the parameter set θ, we consider
structural identifiability jointly for the ordinary system parameters and
the time delays.

Structural identifiability is a model property depending on the un-
derlying model structure and possibly on the initial conditions. It is
independent of the amount and quality of data obtained during system
operation.

2.2 Realization theory of linear time-invariant sys-
tems

A discrete time linear dynamical system (LDS) in state space represen-
tation is given by a tuple Θ = (A,B,C,D) and the associated system
of difference equations (DEs) is as follows:

x(k + 1) = Ax(k) +Bu(k), x(0) = x0,

y(k) = Cx(k) +Du(k),
(4)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m. x(k) ∈ Rn

denotes the vector of state variables, u(k) ∈ Rm and y(k) ∈ Rp are the
input and the associated output of the system.

Though the solution associated to a particular parametrization Θ
and initial condition x0 is unique, the parameters characterizing the
underlying dynamics are not necessarily. There may exist distinct Θ,
Θ′ parametrizations of the same input-output behavior meaning that
the system is not structurally identifiable. In case of structural non-
identifiability, in order to quantitatively characterize the system, it is
appealing to describe the feasible set of possible parameters. A quan-
titative characterization of the feasible set may help us finding realiza-
tions of favorable properties, such as sparsity.

Definition 2. It is said that a tuple Θ′ = (A′, B′, C ′, D′) is a (dynam-
ically equivalent) realization of a LDS of the form Eq. (4) parametrized
by Θ, if Θ′ provides the same input-output behavior, i.e. y(k|Θ′) =
y(k|Θ) for any admissible input signal u(k), k ≥ 0. �
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By recursively expanding Eq. (4) one can obtain the input-output
equations – a common starting point of system identification – of the
following form:

y(k) = CAkx(0) +
k−1∑
i=0

Yk−i−1u(i) +Du(k), (5)

where the terms Yk−i−1 = CAk−i−1B and D are called the Markov
parameters of the systems, which are unique descriptors of the input-
output behavior and are invariant to any invertible state transforma-
tions. Since Markov parameters are unique regarding the input-output
behavior, we can formulate sufficient and necessary condition of dy-
namical equivalence with respect to the Markov parameters as follows:
a tuple Θ′ = (A′, B′, C ′, D′) is a dynamically equivalent realization of
Y = {Yk = CAkB}k≥0, if it satisfies Yk = C ′A′kB′ for k ≥ 0 and
D′ = D.

A related problem of structural non-identifiability of LDSs is the
existence of distinct, A, A′ ∈ Rn×n state transition matrices having
different patterns in their non-zero entries, i.e. structurally different
state transition matrices. Assuming that Eq. (4) describes the dynam-
ical behavior of a network-based system, the state transition matrix A
can be viewed as a weighted adjacency matrix characterizing the inter-
actions – in terms of both the interaction pattern and the magnitudes
– among the components, i.e. state variables. Such a way structural
non-uniqueness of a network topology can be recast as an identifica-
tion problem, namely finding structurally different n-dimensional state
space realizations.

2.3 Integer feasibility problem
An Integer Linear Programming (ILP) instance can be formulated as
follows:

ILP


minx{a>x}
subject to

Ax ≤ b
x ∈ Zn

(6)

where x is the n-dimensional vector of decision variables while a ∈ Zn,
A ∈ Zm×n and b ∈ Zm are fixed coefficients. Generally, the above ILP
computational problem is known to be NP-hard that may highly confine
our ability to efficiently solve problems of integers in high dimension.

However, if the value of the decision vector that minimizes (or max-
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imizes) the prescribed objective function is not important for us, but
only the existence of a x ∈ Zn vector satisfying the set of specified
constraints, then the problem is called ILP feasibility problem:

FP

{
P = {x | Ax ≤ b, A ∈ Zm×n, b ∈ Zm, x ∈ Rn}
P ∩ Zn ?= ∅

(7)

An ILP feasibility problem – as a decision problem – addresses the
question of whether the polytope P contains an integer lattice point,
formally P ∩ Zn ?= ∅. While a FP is also known to be NP-hard, it has
well-decoupled time complexity with respect to the number of variables,
the number of constraints and the maximum of the absolute values of
the entries of A and b. Therefore, a feasibility problem of the form (7)
– assuming fixed dimension n – can be decided in polynomial time in
the number of constraints m and the maximum of the absolute values
of the coefficients A and b by means of the Lenstra algorithm [10,
11]. Moreover, the number of integer lattice points in P can also be
enumerated in polynomial time in m and the maximum of the absolute
value of the coefficients using Barvinok’s integer lattice point counting
algorithm [12, 13, 14, 15]. We note that for the Barvinok algorithm
there exists an effective implementation called LattE [16].

We also emphasize that special form of an ILP can also provide
efficient (polynomial time) relaxation methods: if A and b are of integer
entries and A is totally unimodular, then running a linear program (LP)
instead of the IP results in an integer solution of the decision variables
x, that is the optimum is guaranteed to be integer.

2.4 Discrete state reaction networks
A discrete state Chemical Reaction Network (d-CRN) with n species,
m complexes and l reactions is a triple N = (S, C,R) so that:

S = {si | i = 1, . . . , n}

C = {yj =
n∑

i=1

αjisi | si ∈ S, αji ∈ Z≥0, i = 1, . . . , n, j = 1, . . . ,m}

R = {rv = ysource(rv) → yproduct(rv) | ysource(rv), yproduct(rv) ∈ C, v = 1, . . . , l}

where si is the i’th species, yj is the j’th complex and rv is the v’th
reaction of the network. Moreover, αji is the stoichiometric coefficient
of the i’th species in the j’th complex. For a reaction rv = ysource(rv) →
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yproduct(rv) of R, ysource(rv) and yproduct(rv) are the source complex and
the product complex, respectively.

For each complex yj ∈ C, j ∈ {1, . . . ,m}, the stoichiometric coeffi-
cients of the species can be represented as a vector of the form:

yj = [αj1 αj2 . . . αjn]> (8)
For each r ∈ R, a reaction vector rij ∈ Zn can be associated to track
the net molecular count changes of the species upon firing the reaction:

rij = yj − yi (9)
so that yj and yi are the corresponding source and product complexes
of r. The notation ri will be used for denoting both the i’th reaction
of the d-CRN and the associated reaction vector, as well. We will also
assume that for all the examined d-CRNs a fixed order of the reaction
vectors is given, i.e. an order r1, r2, . . . , rl is fixed and l = |R|.

A d-CRN can also be represented by a directed graph G = G(V,E)
such that the vertices and edges correspond to the complexes and the
reactions, respectively, i.e.:

V = C (10)
E = R (11)

The direction of the edges are determined by the reactions of R, so
that if yi → yj ∈ R then there exists an edge e ∈ E from the vertex
representing yi to the vertex of yj . For each edge a weight correspond-
ing to the reaction rate constant (also called intensity or propensity)
corresponding to the respective reaction can also be associated.

Beyond the above representations it is also possible to describe a d-
CRN in an algebraic way by means of its unique stoichiometric matrix.

Definition 3. Let us consider a d-CRN N = (S, C,R). The stoichio-
metric matrix Γ ∈ Zn×l of N is defined as

Γ = [r1 . . . rl] (12)
�

The entry [Γ]ij encodes the net molecule count change on species si

upon occuring rection rj .
The molecular count of each species of a d-CRN at any time t ≥ 0

is given by its state vector X(t) ∈ Zn
≥0 and the time evolution of the

system is characterized by the following discrete state equation:
X(t) = X(0) + ΓN(t) (13)
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where X(0) is the state vector belonging to the initial time instant and
N(t) = [N1(t), N2(t), ... Nl(t)]> ∈ Zl

≥0 such that Nk(t) ∈ Z≥0 stores
the number of occurrences of the k’th reaction up to time t. We note
that N(t) is typically modeled as some point process [18, 19].

The above described formal model of d-CRNs is closely related to
theoretical computer science, as it is equivalent to Petri nets and Vector
Addition Systems with States (VASS).

3 New scientific contributions and thesis
points

Thesis I. I proposed a novel method for testing structural
identifiability in time delayed non-linear dynamical system
models [J1].

I applied the Volterra series representation of single input single
output nonlinear dynamical systems with constant time delays to give
sufficient conditions for the joint structural identifiability of system pa-
rameters and delays. Using the frequency domain representation of the
Volterra kernels in the form of generalized frequency response functions
(GFRFs), I showed that the unique solution of a set of appropriately
constructed nonlinear algebraic equations implies the joint structural
identifiability of the delayed model.

Thesis II. I proved that the set of feasible state transition
matrices of a discrete time linear dynamical system (LDS)
is convex, assuming that the matrices B,C and D are fixed.
Making use of the convexity of feasible system matrices I ob-
tained convex optimization based algorithm for finding differ-
ent dynamically equivalent n-order realizations with theoret-
ical guarantee [J2].

I inductively proved that the set of feasible system (state transition)
matrices of a discrete time LDS is convex, assuming that the matrices
B, C and D are fixed and C is invertible. I showed that the convex-
ity of the set of system matrices can be used to determine different
dynamically equivalent realizations of the system Θ = (A,B,C,D). I
developed new algorithms from the theory of kinetic systems (mass ac-
tion law reaction networks) to find structurally different realizations of
a discrete time LDS.
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Thesis III. I developed a computational method for decid-
ing reachability and coverability problems in discrete state
chemical reaction networks with novel upper bound on the
length of cycle-free state transition sequences [J3].

I employed an integer programming feasibility based computational
approach for deciding the reachability problem of discrete state chemi-
cal reaction networks with novel upper bound on the number of decision
variables. The method relies on the Lenstra algorithm capable of de-
ciding integer programming feasibility problems in polynomial time,
assuming fixed dimension in terms of the decision variables. I gave new
upper bounds for the maximal length of cycle-free state transition se-
quences between any pair of initial and target states in subconservative
reaction network structures. Considering subconservative reaction net-
works of state space dimension smaller than or equal to two, I proved
that the reachability property is equivalent to the non-negative integer
solution of the associated reaction network state equation.

Thesis IV. I gave network topology related conditions un-
der which the d-CRN reachability relation for any pair of
initial and target states is equivalent to the existence of a
non-negative integer solution of the d-CRN state equation.
This way an Integer Programming feasibility problem is ob-
tained. I proved that under the same conditions, the resulting
IP feasibility problem can be relaxed to a Linear Problem with
guaranteed polynomial time complexity [J4, J7].

1. It is known that a subconservative network has bounded reach-
able state space, while that of a superconservative one is un-
bounded. I gave a proof that the reachability problem of super-
conservative reaction networks is equivalent to the reachability
problem of subconservative reaction networks. The practical im-
portance of the relation between the sub-and superconservative
reachability is that the reachability problem of a superconserva-
tive system – with state space guaranteed to be unbounded –
can be traced back to that of a subconservative network having
bounded state space. In the classes of sub-and superconservative
reaction networks I gave conditions for network structure under
which the reachability property is equivalent to the existence of
a non-negative integer solution of the associated state equation
characterizing the time evolution of the chemical reaction net-
works. The equivalence, using the Lenstra algorithm, implies an
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integer programming based feasibility approach [J4].

2. I showed that the stoichiometric matrix – under the same condi-
tions as IV/1 – is totally unimodular. It is known that an integer
program with totally unimodular constraint matrix can be re-
laxed to a linear program. This way I obtained a linear program
with guaranteed polynomial time complexity for the reachability
problem [J7].

4 Application possibilities
The main motivation behind the methods and computational proce-
dures proposed in this thesis is to study the dynamical and struc-
tural properties in biologically motivated system models. An impor-
tant aspect of this work is to quantitatively examine the relationship
between dynamical (differential/difference equation-based) and struc-
tural (topological, graph-based) properties of system models. The main
application is the analysis of biological systems as they are commonly
represented by both dynamical equations and network representations.
The identifiability approach of Thesis I can be used as a prior step
to any parameter estimation procedure performed on delayed biologi-
cal processes. The realizability results proposed in Thesis II are also
related to structural identifiability. Clearly, the existence of struc-
turally different dynamically equivalent realizations of a discrete time
LDS implies local structural unidentifiability. Furthermore, determin-
ing structurally different realizations can provide means for synthetic
biology, it may possible to find the most suitable (biochemically feasi-
ble) network structure to implement a prescribed molecular function-
ality. The novel results obtained for d-CRNs (Thesis III, Thesis IV)
can be used to computationally examine the properties of molecular
circuits of low molecular multiplicity and epidemiological process of
low population size. Synthetic biology is also a possible application
field as the gate-implementability problem is known to be equivalent
to the d-CRN reachability problem [20]. Since the formal model of d-
CRNs considered in this thesis is equivalent to Petri nets and VASS,
the reachability results can also be applied to solve problems in theo-
retical computer science and related applications, such as verification
of distributed, concurrent and parallel systems.

The following research directions are listed for future work:

1. Structural identifiability of delayed systems: we used the GFRFs
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to obtain sufficient conditions for joint structural identifiability
analysis of ordinary model parameters and constant time delays.
A possible extension is to examine whether there exists an up-
per bound (depending on the model structure) on the minimal
number of distinct GFRFs to be computed for structural identifi-
ability testing. Clearly, by obtaining an upper bound with theo-
retical guarantees would imply necessary and sufficient condition
of structural identifiability in non-linear time delayed systems.
We also note that there exists recursive formula for computing
the GFRFs [21]. A recursive formula could provide means for
examining the minimal number of GFRFs required for obtaining
necessary and sufficient condition of structural identifiability.

2. Finding all structurally different realizations of discrete time LDSs:
extending the proposed computational methods to find all the
structurally different realizations of discrete time LDSs with the-
oretical guarantee. The embedding eigenvalue assignment proce-
dure employed to reduce the number of non-zero Markov param-
eters is useful for determining structurally different realizations,
but we have no theoretical guarantee that this way all the struc-
turally different realizations can be computed. An interesting
way for extending the proposed work is to examine whether it is
possible to substitute the embedding eigenvalue assignment pro-
cedure with another method for which the obtained compressed
set of Markov parameters is proven to be useful for finding all the
structurally different realizations of the original LDS.

3. Extension of the reachability results to more general classes of d-
CRN structures: the network structure-related conditions for the
equivalence of d-CRN reachability and the existence of a non-
negative integer solution of the respective d-CRN state equation
is restricted to certain network structure classes. An interesting
way for further research is to examine whether it is possible to
extend the obtained reachability result to a wider class of d-CRN
structures by means of networks structure transformations.
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